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Abstract 

Elucidating the abilities of MDM2, MDMX and p21 to regulate ferroptosis 

Divya Venkatesh 

In this thesis, I have explored the role of three genes related to p53, namely p21, MDM2 and 

MDMX, in regulating ferroptosis, a form of non-apoptotic cell death. Ferroptosis, an iron-

dependent mechanism that leads to cell death due to lipid peroxidation, has a large potential to be 

used as a cancer therapy. My results indicate that p21, the effector of p53-mediated cell cycle 

arrest, can suppress ferroptosis possibly through its interaction with CDKs. Further, that MDM2 

and MDMX, the negative regulators of p53, can act as pro-ferroptosis agents and that this role is 

independent of p53. Using various approaches to alter their activity, I found that MDM2 and 

MDMX, likely working in part as a complex, normally facilitate ferroptotic death. They were 

found to alter the cellular lipid profile to prevent the cells from mounting an adequate defense 

against lipid peroxidation. For example, inhibition of MDM2 or MDMX lead to increased levels 

of FSP1 protein and a consequent increase in the levels of coenzyme Q10, an endogenous lipophilic 

antioxidant. Moreover, I found that PPARa activity is essential for MDM2 and MDMX to promote 

ferroptosis. My findings also suggest that MDM2-MDMX inhibition might be useful for 

preventing degenerative diseases involving ferroptosis. Further, that MDM2/MDMX 

amplification may predict sensitivity of some cancers to ferroptosis inducers. Therefore, I believe 

that this thesis project has successfully identified several new regulators of ferroptosis and this 

knowledge can aid better design of therapies centered around ferroptosis.
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Preface 

 This dissertation summarizes our efforts into understanding the potential of three p53 

related genes, p21, MDM2 and MDMX, in altering the ability of cells to resist death by ferroptosis. 

Chapter 1 identifies that vast amount of literature relating to ferroptosis, p53, MDM2 and MDMX 

which provide the foundational basis for developing the project. Chapter 2 pertains to the first part 

of the project which explores the complex nature of the role of p53 in ferroptosis and identifies 

potential roles for two p53 target genes, p21 and MDM2 in regulating ferroptotic sensitivity. The 

portions of Chapter 2 that outline the role of p21 in ferroptosis are part of a manuscript published 

in Aging (2020). Chapters 3 and 4 pertain to the majority of work done during the thesis and are 

part of a second manuscript published in Genes & Development (February 2020). Chapter 3 

examines the pro-ferroptotic roles of MDM2 and MDMX, which were found to be independent of 

p53. Chapter 4 details our efforts into understanding the molecular mechanism controlled by 

MDM2/X to aid ferroptosis. Chapter 4 also identifies PPARa as a new regulator of ferroptosis, 

whose activity mediates the ability of MDM2/X to suppress antioxidant defenses of cells, such as 

CoQ10, in order to promote ferroptotic death. Chapter 5 discusses ideas to further extend the 

findings of this project in the future. 
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Chapter 1: Introduction 

1.1 Ferroptosis 

1.1.1 Discovery and mechanism 

Ferroptosis is a form of non-apoptotic death that essentially compromises the oxidative 

homeostasis of cells in order to kill them. This iron-dependent form of cell death, occurs through 

an increase in cellular phospholipid peroxidation in the context of a compromised phospholipid 

peroxide repair system. Specifically, an insult of increased reactive oxygen species (ROS), partly 

derived from the oxidation of labile iron through Fenton chemistry, in the background of 

compromised antioxidant defenses of cells leads to this type of death. This disrupted oxidative 

status of cells leads to rampant lipid peroxidation in membranes, which eventually compromises 

the integrity of the cells and causes them to perish (Stockwell et al. 2017).  

 

Ferroptosis was originally discovered as a hitherto unknown type of death by two different groups 

using paralleled approaches: one was a genetic approach showing that the loss of GPX4, an enzyme 

capable of preventing the accumulation of the deadly peroxidized lipids, induces a non-apoptotic 

death in mice and that this type of death is also capable of inducing neurodegeneration (Seiler et 

al. 2008); another was a pharmacological approach using high-throughput drug screens, that 

discovered some compounds capable of inducing a non-apoptotic death which was dependent on 

iron regulators and was more lethal to cells harboring a RAS mutation (Yang and Stockwell 2008). 

Much later this new type of non-canonical death was labeled as “ferroptosis” once it was 

established as it was dependent on the presence of iron. This death did not share the key hallmarks 

of any other major types of previously studied death- namely apoptosis, necroptosis and autophagy 
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(Dixon et al. 2012). Ferroptosis can thus be induced either by using pharmacological modulators 

or genetic approaches. 

 

1.1.2 Antioxidant defenses compromised in ferroptosis 

In this section, the role of key proteins that mediate the cellular antioxidant defenses against 

ferroptotic killing of cells will be discussed. 

 

Glutathione peroxidase 4 (GPX4) is the only member of the GPX family that is capable of 

neutralizing lipid peroxides (more information regarding the nature of lipid peroxides is described 

later in this section). GPX4 is capable of converting the harmful lipid peroxides into harmless lipid 

alcohols, which are then incapable of propagating the lipid ROS that would otherwise cause the 

lipid peroxides to accumulate. GPX4 needs to simultaneously oxidize glutathione (GSH is 

converted to GSSG) in order to reduce the oxidized lipids, thereby making GSH a rate limiting 

substrate for GPX4 activity (Conrad and Friedmann Angeli 2015). All the different 

pharmacological inducers of ferroptosis that have since been discovered, do eventually impinge 

on the activity of GPX4 either directly or indirectly as described below. Additionally, GPX4 

expression levels in cells have been found to be correlated with their ferroptosis sensitivity (Yang 

and Stockwell 2008). This further highlights how central the appropriate functioning of GPX4 is 

in preventing ferroptosis.   

 

Nuclear factor erythroid 2-related factor-2 (NRF2) is a transcription factor that is well known for 

its ability to control antioxidant signaling pathways through its target genes. It is in fact considered 

the master regulator of the cellular antioxidant responses owing to its relevance in various 
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scenarios that involve the redox balance. Oxidative stress is capable of oxidizing NRF2’s negative 

regulator, KEAP1 to prevent their interaction, thus allowing NRF2 to translocate to the nucleus 

and effect transcriptional changes. Of relevance to ferroptosis, NRF2’s target genes control the 

synthesis of GSH, as well as iron metabolism; GPX4 is itself a target of NRF2. Therefore, rather 

unsurprisingly, NRF2 levels in cells can influence their ferroptotic sensitivity and these factors are 

inversely correlated (Dodson, Castro-Portuguez, and Zhang 2019). Thus NRF2-GPX4 system is 

one key cellular response against ferroptosis. 

 

Coenzyme Q10 (CoQ10), is an endogenous lipophilic antioxidant that can also neutralize the lipid 

hydroperoxides of the cells. CoQ10 is synthesized by the mevalonate pathway; it is produced as 

one of the branches of the mevalonate pathway, which is often used by cells to generate cholesterol.  

CoQ10 though, is a non-steroidal ubiquinone has been shown to be a quencher of ROS. The reduced 

form of CoQ10  can accept free electrons and this generates the oxidized from of CoQ10 (Turunen, 

Olsson, and Dallner 2004). In addition to its well characterized role in the mitochondrial electron 

transport chain, CoQ10 has also been shown to suppress lipid peroxidation in mitochondrial and 

non-mitochondrial membranes (Shimada et al. 2016). Recently, two reports have demonstrated 

that CoQ10 functions independently of GPX4 and that these are in fact two parallel antioxidant 

defense systems against ferroptosis (Bersuker et al. 2019; Doll et al. 2019). These reports also 

discovered a new suppressor of ferroptosis, AIFM2/FSP1 that has the capacity to regenerate the 

reduced pool of CoQ10 by functioning as an oxidoreductase using NADPH as its substrate. Thus, 

CoQ10 forms the second line of cellular defense against ferroptosis. 

 

1.1.3 Tools available to study ferroptosis 
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In the last decade the study of ferroptosis has become an emerging field of research across the 

world. We now have a whole set of tools that can be leveraged to expand the knowledge regarding 

this type of cell death process. 

 

Ferroptosis inducers: These compounds enable the induction of cell death due to ferroptosis. Four 

main classes of ferroptosis inducers (FINs) are able to cause cell death through distinct upstream 

mechanisms (Fig 1.1). The end result of the cellular responses to each FIN is ultimately cellular 

lipid peroxidation leading to cell death, despite there being different routes to reach this common 

end point. All these inducers are dependent on the presence of labile iron that can get oxidized to 

promote the oxidative stress in treated cells (Stockwell et al. 2017). 

  

Class I FINs, inhibit the activity of system Xc
-, the cysteine/glutamate exchange pump. This pump 

imports cystine in exchange for the export of glutamate. This cystine gets converted to cysteine 

and eventually glutathione. These FINs thus lead to the depletion of glutathione, which 

compromises the activity of GPX4 in combatting the devastating accumulation of peroxidized 

lipids, as glutathione is the substrate needed for this reaction. Examples of class I FINs include 

erastin, its more potent derivative IKE (imidazole ketone erastin) (Larraufie et al. 2015), as well 

as chemotherapeutics, sulfasalazine and sorafenib, that have an ability to induce ferroptosis (Dixon 

et al. 2012; Dixon et al. 2014). Cystine deprivation of cells or preventing the GSH synthesis using 

BSO (buthionine sulfoximine) are other methods of inducing ferroptosis through the depletion of 

GSH that is independent of system Xc
- (Stockwell et al. 2017). 
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Class II FINs (e.g., (1S,3R)-RSL3, hereafter referred to as RSL3) directly bind to and inhibit the 

activity of GPX4. Since the enzymatic activity of GPX4 is essential to detoxify the lipid 

hydroperoxides, this inhibition leaves the cells defenseless against the onslaught of lipid ROS 

(Dixon et al. 2012). 

 

Class III FINs (e.g., FIN56) activate squalene synthase, an enzyme that promotes the synthesis of 

cholesterol over the other branches of the mevalonate pathway, in turn reducing the production of 

the intermediates arising from the branches. Since CoQ10 is one of the so affected intermediates, 

this alteration of the mevalonate pathway promotes ferroptosis (Shimada et al. 2016). Inhibiting 

the mevalonate pathway also blocks the maturation of selenocysteine tRNAs that ensure the 

presence of selenocysteine in GPX4. The presence of this amino acid in the catalytic pocket is 

necessary for GPX4’s activity (Li et al. 2020). In addition, FIN56 is thought to also cause the 

degradation of GPX4. Thereby, these class of FINs effectively compromise two different 

antioxidant defense systems of the cells against ferroptosis (Shimada et al. 2016; Bersuker et al. 

2019; Doll et al. 2019).  

 

Finally, Class IV FINs (e.g., FINO2) directly stimulate the oxidation of iron, as well as the loss of 

GPX4 activity to facilitate the rampant spread of lipid peroxidation (Gaschler et al. 2018).   

 

Ferroptosis inhibitors: Iron chelators and inhibitors of lipid peroxidation are the main ferroptosis 

inhibitors that can block all the four types of ferroptosis induction described above, as they impinge 

on the key pathways on which all classes of FINs are dependent. Radical trapping antioxidants 

(RTAs) like ferrostatin (Dixon et al. 2012) and liproxstatin (Conrad and Friedmann Angeli 2015), 
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as well as certain naturally occurring lipophilic antioxidants such as Vitamin E are some examples 

of the blockers of lipid peroxidation. Of note, not all general antioxidants have the ability to behave 

as ferroptosis inhibitors since their ability to interact with oxidized lipids is crucial for this role. 

Recently, Derek Pratt’s group designed an assay that can verify the ability of RTAs to neutralize 

lipid hydroperoxides, which can be used to identify effective ferroptosis inhibitors (Stockwell 

2019; Shah et al. 2019). Deferoxamine, an iron chelator that is widely used to suppress Fenton 

chemistry and treat iron-overload based disorders (Mobarra et al. 2016) is also capable of blocking 

ferroptosis (Dixon et al. 2012).  

 

On the other hand, there are inhibitors of ferroptosis that impinge on other pathways as well. For 

example, β-mercaptoethanol blocks class I FINS, as it can provide usable cysteine directly to the 

cells, thereby circumventing the need for system Xc
-; also, since the enzymatic activity of 

lipoxygenases (LOXs) is key to the formation of lipid hydroperoxides, LOX inhibitors have been 

previously shown to suppress ferroptosis (Shah, Shchepinov, and Pratt 2018; Seiler et al. 2008). 

(Stockwell et al. 2017). 

 

Assays to detect the involvement of ferroptosis: Knowledge of the mechanism of ferroptosis 

induction, enables the use of molecular indicators of this process in cells as well as tissues to 

determine if the presence of ferroptosis.  

 

As evident from the earlier description of class I FINS, they cause a depletion of GSH and this can 

easily be measured using a commercially available fluorometric assay (Gaschler et al. 2018). The 

upregulation of PTGS2 or CHAC1 gene expression can serve as markers of ferroptosis (Zhang et 
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al. 2019), although their functional relevance is yet unclear. Generally, a cellular death can be 

considered ferroptotic when it can be rescued by both an iron chelator and an inhibitor of lipid 

peroxidation, but not by inhibitors of the other major cell death pathways (Stockwell et al. 2017). 

Another obvious indicator of ferroptosis is change in GPX4 levels (either mRNA or protein levels) 

or more importantly inhibition of GPX4 activity. This activity can be measured using LC/MS, 

where the ability of protein lysates, from cells under study, to reduce a provided phospholipid 

hydroperoxide substrate (such as phosphotidylcholine) is assayed. Alternatively, an absorbance-

based assay that measures the amount of NADPH that is reduced in cellular lysates, during the 

conversion of reduced to oxidized glutathione that is needed for GPX4 to catalyze lipid 

peroxidation of the provided external substrate, can also be used (Yang et al. 2014). 

 

Many reports have demonstrated iron’s relevance to this form of cell death. The formation of lipid 

peroxides is key to ferroptosis and will be discussed in more detail in the next section. These lipid 

hydroperoxides mainly form as a result of spontaneous autooxidation catalyzed by iron (Shah, 

Shchepinov, and Pratt 2018).  This is thought to be one key reason that the presence of labile iron, 

the active form with the catalytic activity, is necessary for ferroptosis.  

 

One of the first reports regarding ferroptosis that described it as an iron dependent process, found 

that ferroptosis sensitivity was influenced by the levels of transferrin receptor (Yang and Stockwell 

2008). This receptor is responsible for the import of transferrin-bound extracellular iron. A more 

recent report, confirmed that the absence of transferrin in cellular media confers ferroptosis 

resistance (Gao et al. 2015). Another study has also demonstrated that antibodies against the 
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transferrin reporter can be used as markers of ferroptosis in both cells and tissues, in either 

immunofluorescence or flow cytometry-based assays (Feng et al. 2020).  

 

The levels of ferritin, the cellular iron storage protein which keeps iron in an inactive state can also 

influence rate of ferroptosis (Yang and Stockwell 2008). Autophagy can enhance ferroptotic death 

by degrading ferritin to release iron (Hou et al. 2016). Therefore, the bioavailability of the 

transferrin receptor and ferritin protein levels can be used as biomarkers for ferroptosis sensitivity. 

Further, as previously mentioned, iron chelators are effective ferroptosis inhibitors. The presence 

of labile iron and ability of class I FINS to increase the amount of labile iron in cells, can also be 

measured using cellular probes like FIP1 (Aron et al. 2016) and in vivo probes such as F-TRX 

(Muir et al. 2019). 

 

ROS that can oxidize lipids is a major requirement of ferroptosis and this ferroptosis-associated 

increase in cellular lipid ROS can be detected by the ability of cells to oxidize C-11 Bodipy 

581/591, a fluorescent lipid-based dye. C-11 Bodipy 581/591 is red in its native state and it turns 

green upon being oxidized- this change can be detected either by flow cytometry or live cell 

imaging (Martinez, Kim, and Yang 2020). 

 

Essentially the state of cellular lipids dictates the outcome of ferroptosis. Phospholipids with 

polyunsaturated fatty acid (PUFA) tails are more prone to oxidation than those with 

monounsaturated tails, and are hence the main targets of ferroptosis. In fact, the excessive presence 

of the latter has been shown to block ferroptosis (Magtanong et al. 2019). The process of oxidation 

of these polyunsaturated phospholipids can be assayed as hallmarks of ferroptosis. Due to their 
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oxidation, some intermediates such as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA) 

are formed. The presence of these lipid derivates can be measured using flow cytometry or 

immunofluorescence in cells and immunohistochemistry in tissues. Additionally, the TBARs assay 

that detects the adducts formed by further reactions of these derivatives can also be used (Feng 

and Stockwell 2018).  

 

Lastly, lipidomics using mass spectrometry methods is an useful analysis tool that has to potential 

for being used both to identify the canonical ferroptosis signatures, as well as to glean new 

information of the type of changes incurred in the cellular lipid metabolism by a novel promoter 

or inhibitor of ferroptosis. This is still a growing field that needs to overcome many limitations in 

order to be effective as an untargeted approach. These include (1) the presence of numerous 

cellular lipid species; (2) the low abundance of most of these lipids, especially the oxidized ones; 

(3) the ability of small changes in handling of the samples at various phases of processing 

collection and lipid extraction to cause major perturbations in the lipidomic profile; (4) the analytic 

complexity due to the huge amount of data obtained and the limited ability of pathway analysis 

tools to handle lipid-based data. On the other hand, a more hypothesized approach involves 

enriching for specific lipid species in the samples and then assessing the differences in the 

abundance of these lipids between test conditions. Given the current limitations stated above, such 

a targeted approach can provide more definitive results rather than an untargeted approach that 

analyses changes in the entire lipidome.  

 

Nevertheless, untargeted lipid profiling done in wild-type HT-1080 fibrosarcoma cells treated with 

erastin/IKE has revealed certain signatures of ferroptosis. There is often a depletion in 
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phospholipids and triacylglycerides, potentially due to the cleavage of their oxidized PUFA tails 

when these cells undergo ferroptosis (Zhang et al. 2019). On the other hand, these cells also exhibit 

an increase in lysophospholipids that are formed after the lipid peroxidation-induced cleavage of 

the PUFA tails, and in diacylglycerides, which can potentially arise due to the hydrolysis of 

triacylglycerides. This signature does of course vary with cell type, the presence of mutations and 

type of ferroptosis induced. 

 

1.1.4 Evidence of involvement of ferroptosis in human disorders 

Several reports have linked dysregulated ferroptotic death to various types of diseases. Ferroptotic 

death has been implicated in multiple neurodegenerative disorders such as Huntington’s, 

Alzheimer’s, Parkinson’s and ischemic stroke (Wu, Tuo, and Lei 2018). Excessive ferroptosis has 

also been shown to be a key effector of cardiomyopathy (Fang et al. 2019), renal damage and 

failure (Friedmann Angeli et al. 2014; Müller et al. 2017) and can potentially mediate the loss of 

immunity against infection (Matsushita et al. 2015). 

 

Ferroptosis also has the potential to be used as a selective cancer therapy. Cancer cells are generally 

more reliant on their antioxidant defenses since their enhanced rate of proliferation produces a lot 

of ROS (Dixon and Stockwell 2014).. They also often have accumulated iron in order to satisfy 

their energy needs. For example, B- cell lymphomas (DLBCLs) and renal carcinomas are very 

sensitive to ferroptosis, as they harbor both the above-mentioned dependencies. While DLBCLs 

are more dependent on system Xc
- , the renal carcinomas require GPX4 activity. Especially in the 

case of the renal cancers, targeting this dependency might provide a new mode of treatment as they 

are often resistant to chemo and radio therapy (Yu et al. 2017). 
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In recent times, there have been several reports that showcase this potential of ferroptosis- IKE 

nanoparticles were able to suppress tumor growth in vivo (Zhang et al. 2019); CD8+ T cells that 

are activated post immune checkpoint blockade therapy were shown to enhance the rate of 

ferroptosis in their target tumors and ferroptosis was an essential part of their ability to clear tumors 

(Wang et al. 2019); FINs were also demonstrated to synergize with radiation to provide a way to 

target radiation sensitive tumors (Lei et al. 2020; Ye, Chaudhary, et al. 2020). While some 

chemotherapeutics like sulfasalazine and sorafenib, as previously explained, can have some 

ferroptotic death associated with their killing effects, it is also conceivable to design combination 

therapies of FINs with other chemotherapeutics as well. In fact, erastin was able to synergize with 

some drugs such as cisplatin and doxorubicin to kill some cancer cell lines (Sato et al. 2018). 

 

The involvement of ferroptosis in immunotherapy also suggests that ferroptosis might be part of 

the natural tumor suppression mechanism in organisms, though this hypothesis is not yet proven. 

The section detailed below also suggests that ferroptosis might play a role in the ability of p53 to 

suppress tumor formation.  

 

Therefore, continuing research efforts into identifying more regulators of ferroptosis is the need of 

the hour. These discoveries will help better frame the therapeutic applications of the 

pharmacological regulators of ferroptosis in the context of cancer and other disorders. 

 

1.2 p53 

Cancer is essentially a result of failure of the attempts of the cellular system at rectifying insults 

or its own mistakes to prevent unchecked proliferation of such damaged cells. One of the major 
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lines of defense of the cell that are bypassed in cancer are tumor suppressors such as p53. Indeed 

the Tp53 gene is found to be mutated with high frequency in cancer; while the frequency of 

mutation varies with the tissue of origin, over 50% of most tumors have either lost p53 expression 

or have acquired a mutation in Tp53 (Olivier, Hollstein, and Hainaut 2010). 

 

1.2.1 Function as a transcription factor 

p53 is a DNA-binding dependent transcription factor and this function is the largest contributor to 

its most well-known role as a tumor suppressor (Beckerman and Prives 2010) . This is evidenced 

by the most common mutations in p53 being missense mutations in its DNA-binding domain, 

which disrupt the ability of p53 to bind to DNA of its target genes in order to control their 

transcription (Olivier, Hollstein, and Hainaut 2010).  

 

p53 has been shown to directly activate a whole host of target proteins, which help p53 modulate 

the fate of the cell (Riley et al. 2008). The ability of p53 to directly repress certain downstream 

targets is yet controversial. While there is some evidence suggesting that p53 can directly repress 

some targets (Ho and Benchimol 2003), there are others that show that p53 downregulates its 

targets only through its activation targets (Sullivan et al. 2018).  p53 can also alter some signaling 

pathways in cells through transcription independent mechanisms: p53 can contribute to controlling 

protein synthesis by associating with some key proteins of the translation machinery (Ewen and 

Miller 1996); the protein-protein interactions of p53 can promote apoptosis (Moll et al. 2005) and 

also suppress homologous recombination post DNA damage by inhibiting several members of the 

repair system (Menon and Povirk 2014).  
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p53 gets activated in response to various stresses that interfere with its negative regulation in 

different ways. Upon activation, it affects a whole host of downstream targets, in any of the above-

mentioned ways (Fig 1.2) (Beckerman and Prives 2010). Depending on the targets affected, p53 

can then mediate various outcomes that have relevance in tumor suppression, as well as other 

disorders. p53 seems to be able to make a choice on which program to activate and differentially 

dictate the fate of the cell based on the type and severity of stress (Surget, Khoury, and Bourdon 

2013). Thus, p53 is key protein in regulating numerous cellular outcomes most of which are 

relevant to its function as a major tumor suppressor. 

 

1.2.2 p53 can regulate cell survival 

As mentioned earlier, p53 is able to differentially respond to stresses. In terms of acute stresses 

such as extensive or irreparable DNA damage, for example, it can promote death of the damaged 

cells. One of the major cell death processes known to be mediated by p53 is apoptosis. As p53 

controls numerous pro-apoptotic target genes such as Bax, PIGs, NOXA, PUMA, KILLER/DR5 

it can induce both extrinsic and intrinsic apoptotic pathways, even independent of caspase 

activation (Vousden and Lu 2002; Ranjan and Iwakuma 2016).  It can also promote cell death via 

its activation of targets involved in autophagy such as DRAM (Levine and Abrams 2008). In some 

cases, p53 can promote senescence in response to severe damage or oncogenic stress through Pml 

and prolonged p21 activation among others (Qian and Chen 2013). p53 has also been shown to 

regulate other non-apoptotic cell death pathways such as necroptosis, paraptosis, pyroptosis and 

even ferroptosis (Ranjan and Iwakuma 2018) (Fig 1.3). On the other hand, when the stress is more 

moderate, however,  p53 usually induces a cell cycle arrest, that is reversible in most cases and 

allows cells the time to repair their DNA before resuming proliferation (Hoe, Verma, and Lane 
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2014). The type of arrest is dictated by the choice of downstream target affected by p53. For 

example, one of the strongest responder of p53, p21 can impose a G1 arrest, whereas downstream 

targets, 14-3-3σ and GADD45 mediate a G2 arrest (Sionov and Haupt 1999).    

 

The ability of p53 to dictate cellular metabolism can also help determine cell fate independent of 

the above targets that affect cell survival directly. p53 regulates some target genes with the ability 

of altering glycolysis and energy generation of cells, that in turn affect the ability of cells to 

proliferate. p53 controls GLUT1/4 that regulates glucose uptake, TIGAR that is the rate limiting 

enzyme in glycolysis, SCO2 that mediates oxidative phosphorylation and GLS2 that can alter the 

Krebs' cycle and the antioxidant potential of cells (Hager and Gu 2013). p53 can also alter cellular 

lipid metabolism by modulating certain key lipid pathways (Parrales and Iwakuma 2016) such as 

the downregulation of lipogenesis and the mevalonate pathway (Moon et al. 2019), as well as the 

upregulation of fatty acid oxidation and lipid uptake (Gnanapradeepan et al. 2018). Some of these 

roles in metabolism have also been shown to be relevant to the tumor suppressive functions of p53. 

 

1.2.3 Role in multiple disorders 

The most well studied role of p53 as a tumor suppressor, stems from its abilities to suppress the 

unchecked proliferation of cells by the myriad ways listed above. There have been several reports 

that affirm its role as the guardian against tumor growth ever since the discovery of p53 to be a 

tumor suppressor as opposed to a proto-oncogene. Li-Fraumeni syndrome patients, who harbor 

inheritable germline mutations in p53 are cancer prone (Guha and Malkin 2017). Mice that have 

been engineered to be p53 null are also similarly predisposed to develop cancer, especially 

sarcomas and lymphomas (Attardi and Jacks 1999). It is also supposed that most human cancers 
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have lost their p53 function in one of many ways (Vogelstein, Lane, and Levine 2000). Many of 

them acquire p53 mutations in one of their alleles and subsequently lose their second wild-type 

p53 allele by LOH, which is also one of the hallmarks of tumor-suppressors (Baker et al. 1990). 

Those which retain their wild-type p53 often accrue other mutations which inhibit the functionality 

of p53, such as the overexpression of its negative regulators MDM2 and MDMX (Karni-Schmidt, 

Lokshin, and Prives 2016). In the recent past, many therapies trying to reactivate wild-type p53 

function, either by reverting the mutation or by inhibiting its negative regulators, have shown to 

have an anti-tumorigenic potential (Wang and Sun 2010; Cheok and Lane 2017) and this remains 

an ongoing field of study. 

 

While p53 has been extensively studied for its inhibitory roles in cancer due to its effects in 

triggering apoptosis and blocking cell proliferation in response to stress, it can also have a role in 

physiological settings. The loss of p53 can negatively affect embryonic development owing mainly 

to the lack of clearing of cells necessary for the proper maturation of the embryo (Armstrong et al. 

1995; Rinon et al. 2011). On the other hand, hyper activation of p53 can have roles in promoting 

premature-aging (Lessel et al. 2017), death of neurons in neurodegenerative disorders such as ALS 

(Aleksandra Szybińska, 2017), Huntington’s disease (Steffan et al. 2000) and Alzheimer’s disorder 

(Hooper et al. 2007), as well as other developmental syndromes due to improper formation of 

tissues (Van Nostrand et al. 2014; Bowen and Attardi 2019). 

 

p53 can also regulate various aspects of stem cell growth and cellular differentiation (Jain and 

Barton 2018). p53 mainly has inhibitory effects on the self-renewal potential of the adult stem cells 

of hematopoietic and neuronal origin (Meletis et al. 2006; Liu et al. 2009). Loss of p53 activity is 
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a key factor in being able to successfully generate induced pluripotent stem cells (Lin and Lin 

2017). p53 is also able to regulate differentiation of the mesenchymal layer to determine 

appropriate cellular lineages (Molchadsky et al. 2008). 

 

Given the multiple roles that p53 can have in mediating various cellular processes both in cancer 

and otherwise, it is not surprising that p53 is capable of altering the response of cancer cells to 

treatments through its extensive network of downstream transcriptional targets. One of the first 

studies to show this was able to demonstrate that the ability of 123 different chemotherapeutic 

drugs to inhibit the growth of NCI-60 cancer cell lines was linked to their p53 status (Connor et 

al. 1997). Mutations in p53 have been shown to enhance the chemo-resistance of many patient-

tumors to a wide range of traditional forms of chemotherapy, including doxorubicin and cisplatin 

treatments (Hientz et al. 2017). 

 

1.2.4 p53 has a complex role in regulating ferroptosis  

As p53 is a crucial factor in controlling the response of cancer cells to drug treatment, in addition 

to the roles in regulating cellular metabolism, understanding its involvement in the ferroptotic 

death of cells is of large importance. Indeed, in the recent past, several groups have been studying 

the ability of p53 to modulate the ferroptotic sensitivity of cancer cells. 

 

The initial set of reports showed p53 as a promoter of ferroptosis through regulation of a number 

of downstream targets (Murphy 2016). First, p53 can decrease the expression of SLC7A11, a 

component of system Xc
- that is necessary for uptake of cystine by some cells to generate 

glutathione, the substrate of GPX4 activity needed to suppress ferroptosis (Jiang et al. 2015). This 



18 
 

study also provided evidence that ferroptosis can contribute to the tumor growth and the embryonic 

developmental defects seen in mice due to the absence of functional p53. Second, glutaminolysis 

driven by GLS2 was shown to promote ferroptosis in human cancer cells, possibly through its 

ability to alter cellular metabolism, which in part can lead to ROS production to favor ferroptotic 

killing (Gao et al. 2015). GSL2 is a p53 activation target (Hu et al. 2010; Suzuki et al. 2010) and 

in fact, it was also reported that when human cancer cells harbor an African polymorph variant of 

p53 (P47S), whose ability to induce GLS2 is compromised, they are rendered ferroptosis-resistant 

(Jennis et al. 2016). This polymorph of p53 is also ineffective at tumor suppression in mice, even 

though it retains the ability to activate a majority of the transcriptional programs of wild-type of 

p53, including those that control the induction of apoptosis and senescence. Taken together, these 

two studies show that p53 can promote ferroptosis through its activation of GLS2. Third, p53 can 

induce SAT1, an enzyme that controls polyamine metabolism, which was found to increase the 

formation of lipid peroxides to drive this type of cell death in human cancer cells, as well as in 

xenografts and MEFs. SAT1 possibly enhances the presence of lipoxygenases in the cell through 

its effect on metabolism to cause the increase in lipid peroxides (Ou et al. 2016). All these studies 

suggest that ferroptosis can be a part of the arsenal of weapons used by p53 to execute its role in 

tumor suppression. 

 

Yet recently, there have been other studies that have provided evidence that p53 can suppress 

ferroptosis in some contexts. The first report showed that p21, a well-studied p53 target, can delay 

the onset of ferroptosis either induced pharmacologically or due to cystine deprivation in human 

and mice cancer cells (Tarangelo et al. 2018). Here, while the mechanism is not fully established, 

it was supposed that p21 could increase the retention of reduced glutathione even under ferroptotic 
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conditions. Another report showed that p53 can form a complex with DPP4 and prevents it from 

accumulating at the plasma membrane by promoting its nuclear localization (Xie et al. 2017). 

Since only the membrane localized DPP4 can complex with NOX1 to promote the lipid 

peroxidation of the membranes, this interaction with p53 could suppress ferroptosis in human 

colorectal cancer cells.  

 

On the other hand, mutant p53 seems to be able to enhance the ferroptotic sensitivity of human 

cancer cells. Oesophageal cancer cells and xenograft tumors harboring mutant p53 were more 

susceptible to ferroptosis treatment, due to the ability of mutant p53 to bind and inhibit the function 

of NRF2 (Liu et al. 2017). Mutant p53 was also reported to be driver of ferroptosis sensitivity 

across a panel of human colorectal cancer cells (Xie et al. 2017). Since wild-type p53 often has 

opposing functions as mutant p53, this further suggests that p53 can inhibit ferroptosis. 

 

Thus, while the ability of p53 to regulate ferroptosis has been demonstrated in different models, 

the directionality of this regulation seems to vary with context. This necessitates the discovery of 

additional downstream targets of p53 that can regulate ferroptosis. It is possible that p53 chooses 

to affect different downstream targets based on the context, which then dictate the ferroptotic 

outcome. It is also possible that oncogenic alterations in these downstream effectors of the p53 

network leads to differential modulation of the ferroptosis sensitivity through diverse mechanisms, 

contributing to either tumor suppression or oncogenesis.  

 

1.3 MDM2 and MDMX 

1.3.1 Discovery and importance to cancer progression 
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Murine double minute 2 (MDM2) was originally discovered as a gene present in the 

extrachromosomal nuclear bodies of a spontaneously transformed murine fibroblast cell line (3T3) 

(Fakharzadeh, Trusko, and George 1991). The name of this gene hails from the notation of these 

extrachromosomal bodies as ‘double minutes’. MDM2 was found to be highly amplified in these 

cells and it was considered a potential causative factor for their transformation. The human 

ortholog of MDM2 is often referred to as HDM2. MDMX was later discovered as a mouse 

homolog of the MDM2 protein using cDNA expression libraries (Shvarts et al. 1996) and it has a 

human ortholog that is also referred to as HDMX/MDM4 (Shvarts et al. 1997). 

 

Soon after the original discovery of MDM2, it was demonstrated that the underlying reason for its 

role in transforming cells was mostly related to the negative regulation of p53. MDM2 was 

reported to bind to p53 and inhibit the transcriptional output of p53, as well as being capable of 

lowering the stability of p53 (Iwakuma and Lozano 2003). On the other hand, MDMX was 

essentially discovered as a protein that interacts with p53 and that also shared some functions of 

MDM2 (Shvarts et al. 1996). The presence of gene amplifications of MDM2 and MDMX in tumors 

harboring wild-type p53 further gave credence to the theory that the overexpression of these 

MDMs is another route opted by cells to eliminate the function of p53 and turn cancerous (Karni-

Schmidt, Lokshin, and Prives 2016). MDM2 is often overexpressed in gliomas and sarcomas, 

while MDMX is amplified in gliomas as well as in head and neck carcinomas (Danovi et al. 2004). 

 

While the above studies demonstrating the ability of MDM2 and MDMX to restrain p53 mainly 

used in vitro systems, there have since been several mouse models that extend this analysis to in 

vivo models as well. The first pair of studies showed that the embryonic lethality of MDM2 
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deficient mice could be rescued by a concomitant deletion of p53 (de Oca Luna, Wagner, and 

Lozano 1995; Jones et al. 1995). This suggested that the developmental deficiencies and extensive 

apoptosis observed in the MDM2 deficient mice were consequences of unrestrained p53 activity 

in the absence of MDM2. MDMX null mice also exhibited similar p53-dependent embryonic 

lethality, but this lethality was found to have a slightly more delayed onset and to involve cell 

cycle arrest rather than apoptosis (Parant et al. 2001). This supports the idea that MDM2 and 

MDMX are both needed to effectively restrain p53. 

 

Given the lethality seen in mice lacking either MDM2 or MDMX in a background of wild-type 

p53, conditional knock-out models were created in order to be able to examine the nature of p53 

regulation in adult mice. In radio-sensitive tissues, both the conditional activation of p53 in the 

absence of MDM2 as well the conditional knockout of MDM2 in the presence of p53 killed the 

adult mice within a few days (Ringshausen et al. 2006; Zhang et al. 2014). Even in radio-

insensitive tissues, although not usually lethal, the loss of MDM2 did lead to the stabilization of 

p53 and a subsequent increase in activity. Other conditional models with tissue specific expression 

of MDM2/p53 have further demonstrated the presence of this regulation in all tissues of the mice, 

but the more proliferative tissues tend to show more damage/death upon loss of this inhibition of 

p53 (Tackmann and Zhang 2017). On the other hand, the extent of requirement of MDMX for the 

regulation of p53 seems more tissue dependent and the absence of MDMX in adult mice is reported 

to be less severe. This could potentially be a due to the loss of MDMX resulting in a blockage of 

cell proliferation rather than apoptosis as caused by the loss of MDM2 (Marine, Dyer, and 

Jochemsen 2007). 
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Thus, MDM2 and MDMX are both considered essential and non-redundant for maintaining p53 

homeostasis in normal cells (Shadfan, Lopez-Pajares, and Yuan 2012). 

 

1.3.2 Mechanism of negative regulation of p53 by MDM2 and MDMX 

MDM2 and MDMX are the most well-studied inhibitors of p53 activity. They can negatively 

regulate the activity of p53 in multiple ways, both independently and together (Gu J 2002). 

MDM2-p53 signaling is essentially a negative feedback loop, as MDM2 is a target of p53. Upon 

activation, p53 binds to the P2 promoter region of MDM2 that is adjacent to the transcription start 

site of this gene and transactivates MDM2 to produce large amounts of the MDM2 protein (Zhao, 

Yu, and Hu 2014). MDM2 can then bring back p53 levels to normal, in order to help restore the 

cellular homeostasis in normal cells and to allow the cell to resume post a p53-mediated arrest due 

to a mild insult and subsequent DNA repair (Alarcon-Vargas and Ronai 2002).  

 

MDM2 can inactivate p53 in three main ways, which are all contingent on MDM2-p53 binding 

but are not interdependent (Wade, Wang, and Wahl 2010). By binding to p53, MDM2 blocks the 

transactivation domains of p53 and alters its conformation. MDM2 can also recruit additional co-

activators in order to inhibit the transcriptional activity of p53. Alternatively, MDM2 can 

potentiate nuclear export of p53 to prevent its access to the promoters of its downstream targets. 

The key negative role of MDM2 lies in altering p53 stability, by polyubiquitinating it through its 

E3 ligase function and enabling it to be targeted to the proteasome for degradation (Shi and Gu 

2012). This last function of MDM2, benefits from the presence of MDMX, since the MDM2-X 

heterocomplex is a better degrader of p53, owing to its heightened E3 ligase activity (Gu J 2002). 

The reasons for the heightened E3 ligase function of the MDM2-X complex will be discussed in 
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in the following section. Although MDMX does not have any E3 ligase function on its own, it can 

also inhibit the transcriptional potential of p53 independent of MDM2. Through binding-

dependent interactions with the transactivation domain of p53, MDMX can inhibit its ability to 

interact with DNA (Danovi et al. 2004). 

 

The interactions between MDM2/X and p53 keep the basal levels of p53 low in unstressed cells 

but upon cellular stress, this interaction is broken mainly though post-translational modifications 

on either of the partners effected by stress sensors (Wade, Wang, and Wahl 2010). The breakage 

of this interaction thus allows for the activation of p53 needed to appropriately respond to the 

cellular insult. 

 

1.3.3 Structure of the MDMs 

The MDMs- MDM2 and MDMX are structural homologs. While full length human MDM2 protein 

has 491 amino acids, the human MDMX protein has 490 amino acids. MDM2 and MDMX share 

the following key motifs: a p53 binding domain in the N terminus, a relatively unstructured acidic 

domain, a zinc finger motif and a RING domain towards the C-terminus. MDM2 additionally has 

a nuclear localization signal, a nuclear export signal in the region between the p53 binding domain 

and the acidic domain, and a nucleolar export signal in the RING domain. Therefore, MDM2 is 

often localized in the nucleus, while MDMX is usually localized to the cytoplasm, as it lacks these 

motifs (Karni-Schmidt, Lokshin, and Prives 2016).  

 

MDM2 has an important function as an E3 ligase, to poly and mono ubiquitinate its targets and this 

function is crucial to the negative regulation of p53; mouse models harboring a MDM2 mutant  deficient 
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in E3 ligase function are similarly embryonic lethal as a fully MDM2 deficient mouse, thereby further 

demonstrating the necessity of this function for MDM2 to effectively inhibit p53 (Tackmann and Zhang 

2017). The RING domain of MDM2 is essential for this E3 ligase activity as it chelates Zinc to help 

MDM2 transfer ubiquitin from the E2 enzyme onto its target protein (Fang et al. 2000). Although 

MDMX has a RING domain, it has no E3 ligase activity of its own (Iyappan et al. 2010). By forming 

a heterocomplex with MDM2, MDMX is considered to enhance the effectiveness of the E3 ligase 

activity of MDM2 (Wade et al. 2012). Although controversial, MDM2 is thought to be able to 

ubiquitinate itself and MDMX is supposed to stabilize MDM2 by blocking this ability (Stad et al. 

2001). Instead, MDMX might then focus the E3 ligase activity of MDM2 against its other targets, 

thereby providing one reason for the MDM2-X heterocomplex being a better E3 ligase. 

 

The RING domains of these proteins are crucial for the interaction needed between them to form 

a heterocomplex. There are some residues beyond the RING domain at the C-Termini of both 

proteins which are also essential for this complex to be stably formed. Mutations in either protein 

in one of these two regions have been shown to block the formation of the heterocomplex 

(Uldrijan, Pannekoek, and Vousden 2007; Huang et al. 2011). While, these mutations in MDM2 

alone can also block its E3 ligase activity, the extreme C-terminus of MDMX can rescue the E3 

ligase ability of C-terminal mutant of MDM2, thus confirming the importance of the domains of 

MDMX for the E3 ligase activity of the complex (Wade et al. 2012; Poyurovsky et al. 2007). 

 

1.3.4 p53 independent roles of MDM2 and MDMX 

MDM2 and MDMX can possess functions and interactions that are independent of p53. MDM2 in 

particular has been shown to have pro-oncogenic activities beyond regulating p53 (Bohlman and 
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Manfredi 2014). MDM2 can bind to a myriad of proteins, either altering their activity or causing their 

proteasome-mediated degradation (Fåhraeus and Olivares-Illana 2013). MDM2 has been shown to 

regulate gene expression (Biderman, Manley, and Prives 2012; Jain and Barton 2016), heterochromatin 

rearrangement (Mungamuri et al. 2016; Wienken, Moll, and Dobbelstein 2017), as well as DNA repair 

and replication (Melo and Eischen 2012; Eischen 2017) independent of its regulation of p53. 

Furthermore, this protein has p53-independent roles in regulating EMT and metastasis (Chen et al. 

2013; Chen, Wang, Wu, et al. 2017; Lu et al. 2016; Wang et al. 2009), cell survival and growth (Feeley 

et al. 2017), as well as mitochondrial dynamics (Arena et al. 2018).  

 

While it is less studied, MDMX has also been shown to regulate cellular processes independently of 

p53. MDMX can enhance tumor progression in some cases by promoting cancer cell growth and 

genomic instability (Kadakia et al. 2002; Carrillo et al. 2015; Xiong et al. 2017). Supporting the idea 

that MDM2 and MDMX have p53-independent functions is data from human patients’ tumors that do 

not harbor wild-type p53, but have amplified levels of MDM2 or MDMX or both. It is also noteworthy 

that both MDM2 and MDMX can be activated by oncogenic stressors and mitogenic signals apart from 

p53 (Karni-Schmidt, Lokshin, and Prives 2016; Shadfan, Lopez-Pajares, and Yuan 2012). 

 

Intriguingly, in some settings, MDMX may have tumor suppressive roles in limiting cell transformation 

(Matijasevic et al. 2008) and tumor progression (Mancini et al. 2017), as well as promoting genome 

stability (Matijasevic et al. 2016). MDM2 has also been found to have tumor suppressor functions in 

addition to its oncogenic functions (Manfredi 2010). For example, MDM2 has been reported to have 

growth inhibitory domains (Deb 2002; Deb 2003), which seem to be particularly manifested when 

MDM2 is ectopically expressed (Ganguli and Wasylyk 2003; Deb 2003). 
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Of particular interest to this study, MDM2 and MDMX are also capable of regulating cellular 

metabolism independent of p53. MDM2 was shown to be recruited to the chromatin in response to 

starvation and oxidative stress. This chromatin-bound MDM2, co-operated with transcription factors 

ATF3 and ATF4 to control genes involved in serine metabolism (Riscal et al. 2016). Such a regulation 

served to restore cellular oxidative homeostasis. On the other hand, in a recent pair of studies, MDM2 

was shown to regulate the mitochondrial dynamics to promote oxidative stress (Arena et al. 2018; 

Elkholi et al. 2019). Additionally, in a mouse model of lipodystrophy, MDM2 was shown to control 

certain aspects of adipocyte differentiation independent of p53. The absence of this control led to 

various metabolic disorders, many of which were lipid related (Liu et al. 2018). MDM2 has also been 

shown to regulate certain members of the PPAR family, which are lipid regulators whose relevance to 

lipid metabolism will be discussed in detail in a later section. By controlling the activity of PPARα 

(Gopinathan et al. 2009) and the stability of PPARγ (Park et al. 2016), MDM2 can have an influence 

on the global lipid metabolism of cells. MDMX has also been reported to promote the excessive 

accumulation of fat in mice (Kon et al. 2018). These reports suggest that MDM2 and MDMX might 

have a potential in being targeted to treat metabolic disorders. 

 

1.3.5 Tools available to study the functions of MDM2 and MDMX 

Since MDM2 and MDMX are the main negative regulators of p53, there have been several 

approaches taken to target them in an attempt to reactivate p53 for cancer treatment.  

As detailed earlier, there have been many genetic approaches comprising of complete or partial 

knockout of MDM2/X that may be conditional or constitutive in mice, as well as cancer cells. A 

series of mouse embryonic fibroblast lines with loss of MDM2 and p53, MDMX and p53, as well 
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as loss of MDM2, MDMX and p53 are also available (Barboza et al. 2008). By extension, MDM2 

and MDMX can be targeted using RNA interference for performing transient experiments in both 

mice and human cells. If these experiments are performed in the absence of p53, then they allow 

for studying the p53-independent functions of these MDMs. 

 

Further, there are numerous small molecules designed to behave as antagonists of the functions of 

MDM2 and MDMX (Fig 1.4). Most of these disrupt their ability to interact with p53. Many such 

inhibitors often bind to the p53-binding pocket of MDM2 to outcompete p53; nutlin-3 is one of 

the more famous of such inhibitors (Vassilev et al. 2004). RITA is another commonly used 

inhibitor that competitively binds to p53 instead (Issaeva et al. 2004). There are other small 

molecules which abrogate MDMX-p53 binding, as well as small molecules or peptides that can 

simultaneously inhibit the binding of both MDM2 and MDMX to p53 (Karni-Schmidt, Lokshin, 

and Prives 2016). While these inhibitors are a great collection to study the p53-dependent roles of 

MDM2/X, they cannot be used to assess the p53-independent roles of these proteins.  

 

In order to study MDM2 and MDMX outside the context of p53, there is need to utilize inhibitors 

whose mechanism of action is not related to p53. There are two main classes of such antagonists: 

those that affect protein abundance of either MDM2 or MDMX and those that affect the E3 ligase 

function of either MDM2 or the MDM2-X homodimer. The MDMX inhibitor NCS207895 

(Berkson et al. 2005; Wang and Yan 2011), which lowers the transcription of MDMX by 

preventing RNA polymerase from binding to its promoter and SP-141 that enhances the 

autoubiquitination and subsequent proteasomal degradation of MDM2 (Wang et al. 2014) are two 

key inhibitors belonging to the first class. Compounds such as HLI, MPD and Sempervine inhibit 
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the E3 ligase activity of MDM2 but their effects on the E3 ligase activity of the MDM2-X complex 

are unclear (Wade, Li, and Wahl 2013). On the other hand, MELs specifically inhibit the E3 ligase 

activity of the MDM2-X heterocomplex with a much lower inhibition of the E3 ligase activity of 

the MDM2 homodimer (Herman et al. 2011). While these MEL compounds do not inhibit the 

complex formation, MMRi compounds inhibit the E3 ligase activity of the MDM2-X complex 

indirectly by binding to the RING domain of MDMX to prevent the RING-RING interaction 

between the proteins (Wu et al. 2015). 

 

The varying mechanism of action of these inhibitors provides different ways of targeting MDM2 

and MDMX to best suit the needs of the biological question. Apart from the question at hand, the 

choice of these tools should also be based on their limitations. RITA and the HLI compounds has 

been shown to have p53 independent roles (Wade, Li, and Wahl 2013). While in the case of HLI, 

this may be due to impingement on the p53-independent roles of MDM2 but it still needs to be 

confirmed. Even if not off-target effects per se, the compounds can have effects besides the 

proposed mechanism and these may interfere with drawing firm experimental conclusions. For 

example, some inhibitors of the MDM2/X-p53 interaction can also enhance the formation of 

MDM2 homodimers and MDM2-X heterodimers (Wade, Li, and Wahl 2013). So, these inhibitors 

may in fact enhance the p53-independent roles of MDM2/X. Additionally, the MMRi compounds 

also cause the degradation of both MDM2 and MDMX apart from blocking their RING 

interactions. It is quite possible that the degradation is the main reason for prevention of complex 

formation, but the exact sequence of events and reasons behind the degradation are yet unknown. 

This suggests that the MMRi compounds may also affect the functions of MDM2 and MDMX that 

are independent of each other. Further, the various antagonists can also have other effects based 
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on the system of use and thus, must be carefully assessed before being used to infer the functions 

of MDM2 and MDMX.  

 

The presence of these limitations highlights the need to use multiple approaches that include small 

molecules with different mechanisms complemented with genetic techniques, in order to make 

robust discoveries. Even though each method has its own limitation, if multiple methods all concur 

on the core observations then there would be higher confidence in the conclusions. There is a 

higher likelihood in such inferences being true and not being mere artifacts of the technique used 

for study.  

 

1.4 PPARα 

1.4.1 The PPAR family 

The peroxisome proliferator-activated receptors (PPARs) are a family of transcription factors that can 

sense nutrients and act as nuclear hormone receptors. As mentioned in the previous section, they are 

capable of regulating global lipid metabolism. These proteins are ligand activated transcriptions factors, 

which undergo a conformational change upon ligand binding. Then, along with RXR family of 

proteins, they often form heterodimeric complexes that can bind to the DNA response elements 

(peroxisome proliferators response elements- PPRE) of their targets to regulate their transcription (Qi, 

Zhu, and Reddy 2000). The PPARs respond to various stresses including the levels of lipids in the 

environment, which act as their specific ligands to elicit different downstream responses. There are 

three main isoforms: PPARα, PPARγ, and PPARβ/δ; their expression is tissue specific and they each 

activate/repress different downstream targets to regulate different aspects of lipid metabolism as well 

as energy homeostasis (Fig 1.5). Since all the isoforms share a very conserved DNA binding domain, 
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their functions can be redundant and complementary, but those of PPARα and PPARγ are usually 

opposing. Agonistic and antagonistic small molecule ligand mimics that can alter the activity of these 

transcription factors are mainly used to treat lipid-based disorders (Gervois et al. 2000; Ferré 2004; 

Kersten 2008; Dubois et al. 2017). 

 

1.4.2 Mechanism of transactivation by PPARα 

PPARα was the first of the PPAR isoforms to be studied in depth. While all the PPAR family 

members have a fairly conserved DNA binding domain, the A/B and E domains of PPARα are 

responsible for most of its transactivation abilities. While the E domain is a ligand binding domain 

responsible for ligand-dependent transactivation, the A/B domain promotes a low level of ligand-

independent activities and is also suggested to provide the specificity to the different isoforms (Qi, 

Zhu, and Reddy 2000).  

 

There are three main modes of activation of the targets of PPARα: (1) PPARα-RXRα heterodimer 

directly binds to the PPRE, where PPARα makes the actual point of contact on the DNA, (2) 

PPARα co-operates with other co-transcription factors including RXRα that are bound to DNA 

and (3) PPARα promotes transcription of targets without any form of DNA binding, through 

secondary signaling mediators (McMullen et al. 2014). Thus, very few of the targets of PPARα, 

actually display binding of PPARα and this makes identifying direct targets of this transcription 

factor quite challenging. Additionally, the activation of targets is extremely context specific and 

the choice of targets varies not only with the type of stress/ligand but also on the cell type (Qi, 

Zhu, and Reddy 2000). Lipids such as fatty acids and its oxidized derivatives, eicosanoids, 
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leukotrienes and prostaglandins are naturally occurring ligands of PPARα and their abundance 

serves as one of the determinants of its function (Kersten 2008). 

 

There are several co-activators and co-repressors of PPARα. Prominent synthetic agonists of 

PPARα enable the binding of co-activators to further enhance the activity beyond the mere binding 

of the natural ligands. On the other hand, the antagonists of PPARα alter its conformation to 

prevent the binding of co-activators and instead enable the recruitment of co-repressors to suppress 

the transcriptional activity (Qi, Zhu, and Reddy 2000). 

 

1.4.3 Key roles of PPARα  

PPARα mainly promotes lipid catabolism in tissues with high rates of metabolism. Thus, it is 

abundant in liver, heart, muscle, kidneys and fat tissues. So, the pharmacological agonists of 

PPARα such as fibrates are widely used in the treatment of hyperlipidemia. As mentioned earlier, 

PPARγ usually has an opposing function to PPARα and it mainly promotes lipid biosynthesis as 

well as differentiation in macrophages and adipocytes.  

 

PPARα can control multiple aspects of lipid metabolism including dampening lipid uptake and 

trafficking, enhancing fatty acid oxidation, promoting lipolysis and limiting the storage of 

triglycerides (van Raalte et al. 2004). PPARα can also lower the synthesis of lipid droplets, 

triglycerides and cholesterol. Therefore, enhanced PPARα activity promotes clearing of 

triglycerides both by lowered storage and decreased synthesis. This function is the main basis for 

using the agonists of PPARα in treatment of dyslipidemia (Auwerx et al. 1996; Tyagi et al. 2011). 

Since long chain fatty acids are targeted for β-oxidation by targets of PPARα such as acyl coA 
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oxidase and carnitine palmitoyl transferases, PPARα can also control the synthesis of acyl-

carnitines that can act as effective signaling molecules (Song et al. 2010; Chen, Wang, Huang, et 

al. 2017). While these functions are of particular relevance to this study, PPARα is also involved 

in the control of biogenesis of several other lipid intermediates and the homeostasis of key lipid 

regulators of disorders (Kersten 2008).  

 

Apart from being a master regulator of lipids, PPARα also has prominent roles in regulating 

glucose metabolism, suppressing inflammation and  maintaining energy homeostasis (Youssef and 

Badr 2004; Lefebvre et al. 2006). It can also promote cellular proliferation and mediate the increase 

in production of ROS (Chen, Wang, Huang, et al. 2017; Teissier et al. 2004). Therefore, it is 

unsurprising that excessive activation of PPARα can be tumorigenic in certain tissues (Youssef 

and Badr 2004). Thus, targeting PPARα may provide therapeutic relief to various pathologies (van 

Raalte et al. 2004). 
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1.5 Figures 

 
 

Figure 1.1: The molecular pathways involved in ferroptosis  

Schematic summarizing the different upstream pathways affected by the four classes of ferroptosis 

inducers. It also highlights the mechanism of action of some of the key inhibitors of ferroptosis. 

Figure from: Feng H and Stockwell BR, Plos Biology 2018. 
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Figure 1.2 Stress-induced transcriptional response of p53 

Schematic showing that p53 responds to various forms of stress by activating many downstream 

programs that differentially alter the cell fate.  

Figure modified from: Surget S et al, Onco Targets and Therapy 2013. 
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Figure 1.3 Multiple forms of cell death can be regulated by p53 

Schematic listing the different types of cell death mechanisms that can be triggered by p53 through 

different downstream targets in order to influence cell fate. 

Figure from: Atul Ranjan and Tomoo Iwakuma, Int. J. Mol. Sci. 2016. 
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Figure 1.4 Antagonists of MDM2 and MDMX  

Schematic highlighting the different aspects of MDM2 and MDMX function that are inhibited by 

the various inhibitors. These function include those towards the negative regulation of p53 as well 

as those independent of p53. 

Figure from: Burgess A. et al., Frontiers in Oncology 2016. 
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Figure 1.5 Transcriptional map of PPARs 

This KEGG pathway depicts that different isoforms of the PPAR family control various aspects 

of lipid metabolism through multiple downstream targets. 
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Chapter 2: A role for p53 target genes in mediating ferroptosis 

This chapter is mostly adapted from two published manuscripts: Venkatesh et al., p21 can be a barrier to 

ferroptosis independent of p53, Aging (2020); Venkatesh et al., MDM2 and MDMX promote ferroptosis by 

PPARa-mediated lipid remodeling, Genes & Development (2020) 

2.1 Introduction  

The tumor suppressor, p53 controls the response of cancer cells to drugs through multiple 

mechanism described in Chapter 1 (Beckerman and Prives 2010). In addition, p53 has links to iron 

metabolism and regulation of ROS levels, which are key components of the ferroptosis pathway. 

Cellular iron levels seem to regulate p53 activity through altering its stability. While excessive 

increase in iron levels seem to destabilize p53 (Shen et al. 2014), the use of iron chelators to treat 

some tumors can lead to an increase in p53 levels (Liang 2003). On the other hand, p53 also has a 

bidirectional relationship with the cellular ROS levels (Liu, Chen, and St Clair 2008). Both hypo 

and hyper physiological levels of p53 can increase ROS levels. In turn increased ROS levels 

themselves can activate p53. Therefore, it is possible that ferroptotic stress involving an increase 

in iron and ROS levels (Dixon and Stockwell 2014; Aron et al. 2016), activates p53 and that the 

activity of p53 then influences the outcome of FINs on cell survival.  

 

While this part of the project was conceived with the above hypothesis in mind, there are now 

several reports as described in Chapter 1 demonstrating that p53 is indeed capable of regulating 

ferroptosis. Our own results in the first part of this chapter, looking at the effect of altered p53 

status on the ferroptotic sensitivity, also support these papers in concluding that the directionality 

of the regulation by p53 is complex and context-specific, which is not unlike the other known 

stress-responses of p53. 
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In order to better understand how this context specific regulation of ferroptosis is achieved, we 

decided to investigate the role of some p53 target genes, as most of the differential responses of 

p53 to other stresses depend on its activation of appropriate target genes. First, we studied p21, a 

key p53 target which is a cyclin dependent kinase that often mediates p53-induced cell cycle arrest 

(Warfel and El-Deiry 2013). 

 

Apart from being one of the strongest targets of p53, p21 also has some potential links to 

ferroptosis. p21 can mediate the p53-ROS signaling pathway by helping sustain higher levels of 

ROS to effect senescence in some cancer cells (Fitzgerald et al. 2015). High levels of heme-

oxygenase-1 have been known to confer a resistance to apoptosis by altering cellular growth 

possibly due to upregulation of p21 levels (Inguaggiato et al. 2001). It has also been shown that 

heme-oxygenase can enhance ferroptotic death (Chang et al. 2018; Kwon et al. 2015) but the 

possibility that p21 could also modulate this is yet to be explored. Of direct relevance to ferroptosis, 

p21 has been shown to mediate the resistance of liver cells to treatment with sorafenib (Giovannini 

et al. 2013), a chemotherapeutic kinase inhibitor which has been shown to induce ferroptotic death 

(Dixon et al. 2014). In fact, sorafenib treatment triggers an induction of p21 and knock-down of 

p21 can increase cellular killing by sorafenib (Giovannini et al. 2013). Since at least a part of the 

death due to sorafenib can be attributed to ferroptosis, this strongly suggests a role for p21 in 

regulating ferroptosis. Our investigation into the ferroptotic regulation by p21 yielded complex 

results; nevertheless, they suggest that p21 can mediate ferroptosis in certain cases and are in 

agreement with a more conclusive recent report (Tarangelo et al. 2018). This report as described 
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in Chapter 1,  shows that the p53-p21 axis poses an impediment to the kinetics of ferroptosis in 

some human cancer cells via the p21-dependent maintenance of the intracellular glutathione pool. 

 

Our results also reveal a potential for cyclin-dependent kinases (CDKs) to be involved in 

ferroptosis. The major roles of p21 in growth inhibition are mediated by its two main interactions 

with CDKs and the proliferating cell nuclear antigen (PCNA). The inhibitory effect of p21 on 

CDKs mediates its effect on the different cell cycle stages, whereas its abrogation of the role of 

PCNA in the DNA repair process mediates its ability to block DNA replication. These inhibitory 

effects of p21 on either CDKs or PCNA are binding-dependent. Since both CDKs and PCNA have 

roles that extend beyond just growth inhibition, p21 is able to control other processes as well 

(Abbas and Dutta 2009). For example, p21 mediates a significant portion of the ability of p53 to 

repress transcription (Löhr et al. 2003). These other processes especially in the context of the 

effects of CDKs may be relevant to ferroptosis given some of the results described in this chapter. 
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2.2 Results 

2.2.1 p53 status is not always a predictor of ferroptosis sensitivity 

To evaluate if the role of p53 in ferroptosis is context-specific, we tested a number of human cancer 

cell lines for their sensitivity to erastin. Consistent with prior reports, we found marked differences 

in viability of several cancer cell lines (even within those of the same tissue of origin) in response 

to this compound (Yang et al. 2014) over a 24 h treatment period as summarized in Table 2.1. For 

example, HCT-116 colon cancer cells and H1299 lung cancer cells were virtually unaffected by 

erastin after 24 h of treatment. By contrast, both HT-1080 fibrosarcoma cells and SK-Hep1 liver 

cancer-derived cells were markedly sensitive to erastin (Fig 2.1A). Cell death in these erastin-

sensitive cell lines was validated to be via ferroptosis, as it was reversed by ferrostatin-1 (fer-1) 

(Fig 2.1B). When the time frame of the experiment was extended to 48 h, some cell death in HCT-

116 and H1299 cells was observed, and this was also reversed by fer-1 (Fig 2.1C), indicating that 

their death, while moderate and with a delayed onset, was still via ferroptosis. There was not much 

difference in the response of HCT-116 cells that harbor wild-type p53 and p53-null H1299 cells. 

Similarly, two cancer cell lines with impaired wild-type p53 activity (BJeLR and WSU-NHL) were 

among the more sensitive of the cancer cell lines tested (Table 2.1). These observations were our 

first indicators that there is no obligate requirement for p53 to be present in its wild-type form for 

cancer cells to undergo ferroptosis. 

 

Further, we wanted to determine if the loss of p53 in any given cell line would then enhance its 

sensitivity to ferroptosis. We chose two colon cancer cells with varying ferroptosis sensitivities- 

RKO and HCT-116, and those for which isogenic cell lines with respect to their p53 status were 



42 
 

already available. These isogenic cell lines were created by the deletion of a functional domain of 

p53 (Bunz et al. 2002). In both these cell lines, the loss of p53 made them less sensitive to the 

chemotherapeutic doxorubicin (Left panels of Fig 2.1D and 2.1E), which is thought to elicit at 

least part of its effects on cancer cell survival through the eventual activation of p53 (Wang et al. 

2004). On the other hand, the loss of p53 only slightly decreased the ferroptosis sensitivity of HCT-

116 cells, and the RKO cells actually became more sensitive upon the loss of p53. These results 

highlight the complexity in defining a set direction of regulation of ferroptosis by p53. 

 

We reasoned that the nuanced role of p53 in ferroptosis might be indirect and perhaps based on 

the p53 target being activated in response to ferroptosis induction. Therefore, we sought to 

examine the roles of some known p53 targets in ferroptosis.  

 

2.2.2 p21 may mediate ferroptosis sensitivity in some contexts 

Our first choice was to evaluate the role of p21 as it is one of the key downstream targets of p53 

and has potential links to ferroptosis. In fact, we actually observed that one key difference between 

the HCT-116 and RKO cells used above was their relative levels of p21 protein (Fig 2.1F). Then, 

we observed that upon the induction of ferroptosis using class 1 FINS (erastin or IKE), three 

different sensitive cell lines (HT-1080, SK-HEP1 and U2OS) showed decreased levels of p21 

protein  (as well as p53) as a function of erastin concentration (Figs 2.2A-C). Further, there was 

an increase in p21 protein levels in some resistant cell lines (HCT-116, H1299) (Figs 2.2D-E). 

This increase in the levels of p21 was p53-independent since it was observed even in the p53 null 

H1299 cells, as well as the HCT-116 cells that were engineered to lose p53 ( p53 KO HCT116). 
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Since the above results indicated a potential role for p21 in determining the sensitivity of cells to 

ferroptosis, we wanted to examine if experimentally altering p21 levels would also alter the 

ferroptosis sensitivity.  

 

In the resistant cell lines, HCT-116 and H1299, our goal was to determine if ferroptosis resistance 

can be lowered upon loss of p21. We used RNA interference against p21 in these resistant cells 

and indeed observed a reduction in the resistance to ferroptosis (Figs 2.2F and 2.2G). We tested 

the possibility that a more complete and non-transient loss of p21 might be required to further 

enhance the sensitivity of these cells, as it was reported that p21 can alter the metabolic pathways 

involved in ferroptosis (Tarangelo et al. 2018). Indeed, the HCT-116 derived p21 -/-  cell line 

(Waldman, Kinzler, and Vogelstein 1995), had a much-enhanced sensitivity to ferroptosis 

compared to its wild-type counterpart (Fig 2.2H).  

 

As a reciprocal approach we aimed to increase p21 levels in the FIN-sensitive cell line, HT-1080 

to see if this would decrease ferroptosis. Overexpression of a construct expressing p21 did indeed 

suppress ferroptosis in these cells (Fig 2.2I). Further, we observed that two key mutant versions of 

p21, which either mutated the CDK binding domain or the PCNA binding domain differed in this 

ability to suppress ferroptosis. Specifically, CDK binding-defective version of p21 (Soria et al. 

2006) was unable to block ferroptosis, while mutating the PCNA binding region much less 

impaired p21 in that regard (although the levels of expression of this mutant were lower). This 

result suggests the possibility that p21 alters sensitivity to ferroptosis by changing the cell cycle 

and also prompts investigation into a potential role for cell cycle in mediating ferroptosis in the 

future. It is acknowledged that there is a need to toggle the levels of overexpressed p21 levels to 
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match those seen under physiological conditions to avoid an excessive alteration of the cell cycle 

from biasing the results.  

 

2.2.3 MDM2 E3 ligase activity controls the reduction in p21 protein levels upon ferroptosis 

induction in sensitive cell lines 

Given the imperfect setup of the overexpression experiment, we wanted to understand how p21 

was being accumulates in the resistant cells upon ferroptosis induction, so that we could then 

endogenously enhance the p21 protein levels in the sensitive cells. To our surprise, we found that 

in both sensitive and resistant cells, p21 expression was upregulated at the mRNA level (Fig 2.3). 

As controls, increase in the levels of CHAC1 and PTGS2 were used as read-out of the presence of 

ferroptosis induction. This result indicated that ferroptosis induces p21 in a p53-independent 

manner and that the subsequent loss of p21 protein in the sensitive cells must be a post 

transcriptional event. Note that there was not a universal reduction in protein levels upon 

ferroptosis reduction, owing to constant levels of our loading control, as well as the additional 

control of expected increase in levels of ferritin in ferroptosis (Hou et al. 2016). 

 

MDM2, the key negative regulator of p53, can regulate the stability of p21 in two ways. First, 

MDM2, as the most well-validated repressor of p53 both directly prevents the ability of p53 to 

activate its transcriptional targets such as p21 and also functions as the p53 E3 ligase to maintain 

low levels of p53 protein in unstressed cells, thereby lowering the amount of p53 available to 

activate transcription of its target (Alarcon-Vargas and Ronai 2002) . Second, MDM2 has also 

been reported to increase p21 turnover in a p53-independent manner (Zhang et al. 2004; Jin et al. 

2003), partially through its E3 ligase activity. So, we thought to use inhibitors of MDM2 as a way 
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to enhance the endogenous protein levels of p21. We evaluated the effects of two small molecule 

antagonists of MDM2: nutlin, which  binds to the N-terminal region of MDM2 and blocks the 

primary site of the MDM2-p53 interaction (Vassilev et al. 2004) (Fig 1F), and MEL23 (MDM2 

E3 Ligase Inhibitor 23), which blocks the E3 ligase activity of the MDM2 (Herman et al. 2011) 

(Fig 2.4A). 

 

The addition of nutlin did increase the levels of p21 by activating p53. Although, there was an 

eventual decrease in p21 levels upon ferroptosis induction, the overall level of p21 even upon 

ferroptosis induction was higher with nutlin treatment. MEL23 on the other hand was able to 

significantly reduce the loss of p53 and p21 protein upon ferroptosis, (Fig 2.4B) indicating that in 

sensitive cells, the loss of p21 protein is mostly due to the involvement of the E3 ligase activity of 

MDM2 rather than a consequence of the effects of MDM2 on p53. By extension, we hypothesized 

that both MEL23 and nutlin might be able to suppress ferroptosis in sensitive cell lines owing to 

the suppression of reduction in p21 levels upon ferroptosis induction. We observed that while 

nutlin only had a modest suppression of ferroptosis in four different sensitive cell lines, the 

ferroptosis-suppression with MEL23 was much stronger (Figs 2.4C-F). This striking result 

indicated that p21 levels might be able to mediate ferroptosis at least in some contexts. However, 

this finding also suggested that another p53 target, namely MDM2, might have a role in regulating 

ferroptosis.  

 

2.2.4 Inhibition of the MDM2 E3 ligase activity is able to suppress ferroptosis independent of 

p21 
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To evaluate if the role of MDM2 in ferroptosis was actually dependent on p21, a member of the 

Stockwell lab, Michael Stokes created virus with CRISPR guides against p21. Then, Sung-Hwan 

Moon, in the Prives lab and I created p21 KO clones from two different sensitive cell lines (SK-

HEP1 and HT-1080) using the virus and validated that they did not express detectable p21 (Fig 

2.5 A). These p21 KO cells lines showed no difference in ferroptosis sensitivity. Contrary to our 

original hypothesis, MEL23 was able to suppress ferroptosis to the same degree in either of the 

cell lines even in the absence of p21 (Fig 2.5B and 2.5C). This suggests that one may view the 

decrease in p21 protein upon ferroptosis induction in sensitive cells as biomarkers of MDM2 E3 

ligase activity. It also indicates that cells may be sensitive if they have a high MDM2 E3 ligase 

activity in response to ferroptosis, which would result in the subsequent degradation of p21. 

Therefore, it is possible that MDM2 is the true mediator of ferroptosis in the sensitive cell lines. 

 

2.2.5 MDM2 gets dephosphorylated in response to ferroptosis 

Given our previous results, we wanted to assay the changes in MDM2 protein levels during 

ferroptosis.  But when we used different MDM2 antibodies which differed in detection of MDM2 

protein in ferroptotic cells we obtained strikingly different results (Fig 2.6A). Specifically, a 

mixture of monoclonal antibodies detected lower protein levels of MDM2 in cells treated with 

IKE, while the MDM2 signal detected by 2A10  monoclonal antibody increased with the same 

treatment. Relevantly, it has been previously reported that 2A10 antibody against MDM2 is unable 

to recognize the form of MDM2 phosphorylated at S395 (Cheng and Chen 2011). On the other 

hand, the mix of monoclonal antibodies should be able to more accurately recognize the true 

abundance of the protein despite any of its modifications. This suggested a potential explanation 
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of why the trends were so different between the two sets of antibodies, namely that 

phosphorylation, at least at S395 is lost upon induction of ferroptosis. 

 

To validate this line of reasoning, we first confirmed that there was no increase in the mRNA levels 

of MDM2 unlike those seen in p21 (Fig 2.6B). Further, the reactivity of the 2A10 antibody to 

MDM2 protein from lysates of untreated cells was enhanced by treating the membranes with CIP 

(calf intestinal phosphatase) that dephosphorylates amino acids (Figure 2.6 C). The MDM2 protein 

levels on the membranes treated with CIP, now resembled those achieved with the mix of 

monoclonal antibodies. We used lysates of U87 cells, which have a constitutive expression of 

phosphorylated Akt as they harbor a PTEN deletion, to serve as a positive control to show that the 

antibody, which only recognizes the phosphorylated Akt loses its reactivity upon the same 

treatment of the membrane due to loss of the phosphorylated groups. 

 

This result suggests that MDM2 becomes dephosphorylated (at least at S395) upon ferroptosis 

induction in sensitive cell lines (thereby being detected to a higher extent by 2A10). Such a 

modification could potentially hyper-activate MDM2. There are reports that stressors like DNA 

damage potentiate the phosphorylation of MDM2 at S395, in order to activate p53 through 

blocking the E3 ligase mediated degradation of p53 by MDM2 (Chen 2012).  

 

The results of the first part of the project suggested that MDM2 has the potential to be a new 

regulator of ferroptosis and that its E3 ligase activity was important for this role. 
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2.3 Discussion 

Our results add to the growing literature on the complex role of p53 in ferroptosis 

(Gnanapradeepan et al. 2018). Given the highly context-specific directionality in the regulation of 

ferroptosis by p53, this part of the project focuses on an important next step of studying p53 target 

genes in ferroptosis. To this end, we have identified p21 and MDM2 as two potential targets for 

future study. 

 

Based on the data obtained from the wide range of cancer cell lines tested, p21 seems to have a 

strong potential to be used as a biomarker for ferroptosis sensitivity. Whether this is simply 

indicative of the role of MDM2 in ferroptosis or due to the role of p21 itself in ferroptosis is yet 

unclear, and may depend on the type of cell line used. 

 

While the p21 KO HCT-116 cells were markedly more sensitive to ferroptosis, the results were 

not recapitulated to the same degree by effective RNA interference against p21, even in the same 

cell line. While this could possibly be due to clonal variation arising from the selection process as 

only a single p21 KO clone was used, there are other explanations based on our results in the HT-

1080 cells using overexpressed p21. These results indicate that the ability of p21 to interact with 

CDKs is important for its role in ferroptosis. The inhibition of CDK activity by p21 can have 

multiple effects to inhibit cellular growth including altered transcription, the cell cycle and even 

dedifferentiation to a certain degree (Abbas and Dutta 2009). Even with the limitations of this 

experiment, it is possible that the p21 KOs had a longer growth period in the absence of p21 for 

any of these effects to take full effect and therefore had a more pronounced change in ferroptotic 
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sensitivity than a transient dose of p21 siRNA. if cancer cells underwent some extent of p21-

dependent dedifferentiation in order to become ferroptosis-resistant, then it is likely that these 

changes would need more time to get reverted. Reports showing that dedifferentiation of 

melanoma cells as well as further differentiation of neurons enhance ferroptosis sensitivity 

(Chonghaile 2018; Martinez et al. 2019) lend some support to this theory.  

 

It is also possible that the design of our experiment was not optimized to capture the results of a 

transient RNA interference experiment. If upon p21 overexpression, the rescue was due to delayed 

kinetics of ferroptotic cell death, then by extension, the RNA interference experiment could have 

had an earlier onset of death which might have been missed at the final endpoint that we were 

measuring. A recently published report, supports this theory and demonstrates effectively that p21 

can alter the kinetics of ferroptosis (Tarangelo et al. 2018). We created p21 KO clones of the same 

cell line (HT-1080) that was used by Tarangelo et al., and these lines did not show any basal 

changes to ferroptotic sensitivity, also in line with their findings. It is possible that since sensitive 

cells are capable of eventually lowering p21 levels upon ferroptosis induction, a p21 KO would 

not make much of a difference. This further supports the idea that p21 can be barrier to ferroptosis 

and cells that can prevent its accumulation upon ferroptosis will be sensitive. Tarangelo et al. also 

provide evidence that cell cycle arrest alone is insufficient to suppress ferroptosis, but it is still 

possible that p21 has a myriad of effects with cell cycle changes just being a subset of them. Taken 

together, a future study to better understand the molecular regulation of ferroptosis by p21, should 

evaluate the involvement of CDKs as a key factor. 
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The results that we obtained with MDM2 in this chapter, set us upon a fruitful journey thus forming 

the basis for the next two chapters. The possibility that MDM2 might be dephosphorylated in 

response to ferroptosis, combined with the potential ability of MDM2 to regulate ferroptosis 

suggests that there might actually be another feedback loop in place akin to the one between p53 

and MDM2. This loop would involve FINs activating MDM2 in order to use heightened E3 ligase 

activity of MDM2 to effectively kill cells, or potentially modulate p53 akin to other stresses like 

DNA damage. Further work is necessary to understand how exactly this modification is effected 

and if simply blocking this modification would even be able to suppress ferroptosis. 
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2.4 Methods 

2.4.1 Cells 

HCT116, H1299, SK-Hep1, and U2OS cells were maintained in Dulbecco’s modified Eagle’s 

medium supplemented with 10% heat-inactivated fetal bovine serum (Gemini Bioproducts, cat# 

900-108). HT-1080 cells were maintained in Dulbecco’s modified Eagle’s medium supplemented 

with 10% heat-inactivated fetal bovine serum (Gemini Bioproducts, cat# 900-108), and 1% non-

essential amino acids (Sigma-Aldrich, cat# M7145). RKO cells were grown in McCoy’s 5A 

modified medium (Gibco, cat# 16600-082) supplemented with 10% heat-inactivated fetal bovine 

serum (Gemini Bioproducts, cat# 900-108). The HCT116 cells were a gift from Dr. Vogelstein 

and all other cells were obtained from ATCC. The HT-1080 and SK-Hep1 parental cells are wild-

type for p53/p21 and were edited using CRISPR technique (as described below) to obtain the p21 

KO clones. 

 

2.4.2 Genome editing using CRISPR technique to generate p21 KO clones 

HT-1080 and SK-Hep1 p21 knockout cells were generated using CRISPR/Cas9 genome editing 

technology. Three guides RNAs targeting exon 1 and 2 of p21 (CDKN1A) were designed using 

the chop-chop online tool (https://chopchop.rc.fas.harvard.edu/dev/index.php). Guide sequences 

were purchased as single-strand oligos and prepared for insertion into the lentiCRISPRv2 vector 

following an established protocol (Sanjana, Shalem, and Zhang 2014). Plasmids containing gRNA 

insertions were sequenced for validation, and transfected into HEK293T packaging cells, along 

with envelope plasmids VSV-G and delta 8.9 for lentivirus production. Growth media containing 

lentivirus was collected and stored at -80 °C until use. To create p21-null cell lines, HT-1080 and 
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SK-Hep1 cells (7 x 10^5) were seeded in 6-well plates and incubated with the virus for 24 hrs. 

Successfully transfected cells were selected by using Puromycin 1.5 µg/ml (Santa Cruz Biotech). 

Single cell colonies were isolated by low density seeding, and validated as null by quantifying p21 

protein abundance by western blot using C-19 polyclonal antibody (Santa Cruz Biotechnology). 

The absence of p21 protein even upon induction of p53 by nutlin (10 µM) was used as a criterion 

to select the p21 KO clones used. 

 

2.4.3 Drugs and Chemicals 

The commercial drugs used are: erastin (Selleckchem, cat# S7242), nutlin-3a (Sigma-Aldrich, cat# 

444152), doxorubicin (Sigma-Aldrich, cat#D1515).  

MEL23 was obtained from InterBioscreen (Herman et al. 2011). 

The following drugs were synthesized in Stockwell lab : IKE as in Larraufie MH et al., 

2015(Larraufie et al. 2015) by Yan Zhang, ferrostatin-1 as in Dixon S et al., 2012 (Dixon et al. 

2012) by Michael Gaschler. 

 

All the drugs were dissolved in DMSO (Sigma-Aldrich, cat# D8418). The concentrations of drugs 

used was as follows (unless otherwise mentioned): nutlin- 10 µM, MEL23- 14 µM, ferrostatin-1 

(fer-1)- 20 µM. 

 

2.4.4 Quantitative reverse transcription PCR 

RNA was isolated from cells using the Qiagen RNeasy minikit. cDNA was generated using the 

Qiagen Quantitect reverse transcription kit with 0.5 μg of input RNA as measured with a 

NanoDrop (Thermo Scientific). Real-time PCR was carried out on an ABI StepOne Plus machine 
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using the power SYBR Green dye (Thermo Scientific). Transcript levels were assayed in triplicate 

and normalized to L32 mRNA levels. Relative changes in cDNA levels were calculated using the 

comparative Ct method (ΔΔCT method). 

 

Primer sequences:  

L32 F: TTCCTGGTCCACAACGTCAAG, L32 R: TGTGAGCGATCTCGGCAC,  

p21 F: GGCGGCAGACCAGCATGACAGATT, p21 R: GCAGGGGGCGGCCAGGGTAT, 

chac1 F: GAACCCTGGTTACCTGGG, chac1 R: CGCAGCAAGTATTCAGGTGT, 

ptgs2 F: TAAGTGCGATTGTACCCGGAC, ptgs2 R: TCTCCAAAGGAGGTTACCTGC, 

Mdm2 F: F: TTGGCGTGCCAAGCTTCTCT, Mdm2 R: TACCTGAGTCCGATGATTCC 

 

The p53 primer was premix obtained from Qiagen (Quantitech primer, HS_TP53_1_SG, cat# 

QT00060235) and the rest was ordered from Invitrogen. 

 

2.4.5 Immunoblot 

Cells were lysed with TEB lysis buffer (10mM Tris HCL ph:7.5-8, 137mM sodium chloride, 10% 

glycerol, 1% NP-40) supplemented with 1mM magnesium chloride, 1mM calcium chloride and 

complete protease inhibitors (Roche). Protein concentration was assayed using Bio-Rad protein 

assay dye reagent and results were read using a spectrophotometer. 

Protein extracts were run on in-house made Tris-Glycine SDS Polyacrylamide gels. Proteins were 

then electro transferred at 360mA for 70 min onto a nitrocellulose or PVDF membrane. 

Membranes were blocked with 5% milk in PBST for 30 min, prior to being incubated overnight 

with primary antibodies (1:100-1:1000 dilution according to the specific antibody). The 
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membranes were then washed three times with PBST and incubated with secondary antibody 

(1:5000 dilution) for 1 h at room temperature. After three more washes with PBST, The WB 

images were acquired using ECL (Thermo Fisher, Pierce, cat# 32106 or EMD Millipore, 

Immobilon, cat# WBKLS0050). The primary and secondary antibodies were diluted with 1% milk 

in PBST. 

 

The following primary antibodies were used: p53 (mAb 1801/mAb DO.1, in-house produced); p21 

(C-19, Santa Cruz biotech, cat# sc-397); Mdm2 (2A10, Abcam cat# ab16895 or a mixture of in-

house produced mAb 4B11, 3G5, 2A9); Actin (Sigma-Aldrich, cat# A2066); FTH1 ( Cell 

Signaling Technology cat# 3998); Phospho-Akt (Ser473- Cell Signaling Technology, cat#9271S). 

Actin was used as loading control for all the blots. 

 

For removal of phosphorylated groups 

The samples were run in duplicate in two halves of the membrane. Proteins were then electro 

transferred at 360mA for 70 min onto a PVDF membrane. Membranes were blocked with 5% BSA 

in TBST for 1 h at room temperature. The membrane was then cut to separate the duplicate halves 

and they were then placed in separate containers with 3-5 ml of 1X CIP (Alkaline phosphatase 

from calf intestine) buffer per container. CIP (1 unit per µg of protein present in the membrane) 

was added to each container and the membranes were incubated for 1 h at 37°C. The CIP and its 

buffer were obtained from New England Labs, cat#M0290S. The membranes were then incubated 

overnight with primary antibodies. The primary and secondary antibodies were diluted with 1% 

BSA in TBST. The rest of the procedure is same is described above. 
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2.4.6 Transfection: RNA interference 

15nM of siRNA was used for each well in a 6-well plate. Lipofectamine RNAiMAX (Thermo 

Scientific) was used as the transfection reagent for all siRNA experiments (according to the 

manufacturer's instructions). After 18 h, the media was changed and cells were treated with drugs 

24 h post transfection. The cells were plated prior to transfection such that they are only 80% 

confluent by the end of the drug treatment period. 

 

The following siRNAs were used: siLuciferase (Urist et al. 2004), sip21 #1 (HS_CDKN1A_6 

Flexitube siRNA from Qiagen), sip21 #2 (HS_CDKN1A_7 Flexitube siRNA from Qiagen). 

 

2.4.7 Transfection: Ectopic expression of proteins 

Plasmids were transfected into cells using Lipofectamine 3000 (Thermo Scientific) according to 

the manufacturer's instructions, with a ratio of 1 µg:1.7 µl lipofectamine reagent. After 18 h, the 

media was changed and cells were treated with drugs 24 h post transfection. The cells were plated 

prior to transfection such that they are only a maximum of 80% confluent by the end of the drug 

treatment period. 

 

The plasmids for full length and mutants of p21 were obtained from Dr.Vanessa Gottifredi’s lab 

(Soria et al. 2006).  

 

Note: Cells became more resistant to ferroptosis inducers post transfection. In order to obtain cell 

death post transfection, 3 key factors need to controlled: cell density must be lower than normal, 
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lipofectamine reagent needs to be washed off as soon as possible, and a much higher dose of FINs 

must be used to induce ferroptosis. 

 

2.4.8 Cell viability assay 

For the dose response curves, 1800 cells were plated in 36µl per well of a 384 well plate on day 1. 

Drugs were dissolved in DMSO and a 12 point, two-fold series was prepared. The drugs were then 

dissolved 1:33 in media and 4 µl was added to each well of the plates on day 2. After 24-48 h of 

drug treatment (based on the cell line), the viability of cells was measured using the 1:1 dilution 

of the CellTiter-Glo Luminescent reagent (Promega, cat# G7573) with media, which was read on 

Victor 5 plate reader after 10 minutes of shaking at room temperature. The intensity of 

luminescence was normalized to that of the DMSO control. The experiments were performed twice 

in biological duplicates each time. 

 

The inhibitors tested (MEL23, nutlin, fer-1) were added at a constant concentration as specified, 

to each dilution of the lethal compounds and corresponding amounts of DMSO was added to the 

control FIN treatment alone. 

 

For viability assays when the experiment was performed in 6-well plates, cells were harvested 

using trypsin (0.5 ml per well) and the media was saved from each well. The trypsinized cells were 

resuspended with the saved media and 2-3 aliquots (0.05 ml each) sampling different regions of 

this this suspension were taken into a 96-well plate to serve as technical replicates for the 

measurement. CellTiter-Glo Luminescent Viability assay was used to measure the viability of 



57 
 

these aliquots. The rest of the culture was used to extract protein to be analyzed using western 

blots.  

 

2.4.9 Statistical analysis 

Prism (version 8, GraphPad) was used to make all the graphs in the paper and for performing all 

the statistical analysis shown. The GraphPad style (0.1234(ns), <0.0332(*), < 0.0021(**), 

<0.0002(***)) was used to represent the p values. The p values were calculated by ANOVA and 

appropriate multiple testing correction was done where required. 
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2.5 Tables 

Table 2.1 Cancer cell lines differ in their proclivity to undergo ferroptosis.  

The cells lines have been broadly categorized based on the relative amount of cell death observed 

in response to class 1 FIN, erastin. 

 

 

  



59 
 

2.6 Figures 

 

 

10-3 10-2 10-1 100 101 102
0.0

0.5

1.0

[Erastin] (µM)

Vi
ab

ilit
y

HT-1080
SK-Hep1

HCT116
H1299

Sensitive

Resistant

10-3 10-2 10-1 100 101 102
0.0

0.5

1.0

[Erastin] (µM)

Vi
ab

ilit
y

HT-1080
HT-1080 
+ Fer-1

SK-Hep1
SK-Hep1 
+ Fer-1

10-3 10-2 10-1 100 101 102
0.0

0.5

1.0

[Erastin] (µM)

Vi
ab

ilit
y

HCT116
HCT116 
+ Fer-1

H1299
H1299 
+ Fer-1

A

C

B24 hours 24 hours

48 hours

10-4 10-3 10-2 10-1 100 101
0.0

0.5

1.0

[IKE] (µM)

Vi
ab

ilit
y

HCT116 p53 KO
HCT116 WT

10-4 10-3 10-2 10-1 100 101
0.0

0.5

1.0

[IKE] (µM)

Vi
ab

ilit
y

RKO p53 KO
RKO WT

10
-3.

5
10

-3

10
-2.

5
10

-2

10
-1.

5
10

-1

10
-0.

5
0.0

0.5

1.0

[Doxorubicin] (µM)

Vi
ab

ilit
y

RKO p53 KO
RKO WT

10
-3.

5
10

-3

10
-2.

5
10

-2

10
-1.

5
10

-1

10
-0.

5
0.0

0.5

1.0

[Doxorubicin] (µM)

Vi
ab

ilit
y

HCT116 p53 KO
HCT116 WT

D

E

F



60 
 

Figure 2.1 p53 does not always promote ferroptosis in different cancer cell lines 

(A) Dose response of HT-1080, SK-Hep1, HCT116, and H1299 cells to erastin treatment of 24 h.  

 (B, C) Effect of fer-1 on the dose response of cells to erastin. (B) Viability of HT-1080 and SK-

Hep1 cells after 24 h of treatment. (C) Viability of H1299 and HCT116 after 48 h of treatment.  

(D, E) Drug response of isogenic cell lines based on p53 status in (D) HCT-116 and (E) RKO to 

either doxorubicin (left panel) or erastin (right panel) treatment for 24 h. 

(F) Comparison of p21 protein levels between HCT-116 and RKO cells. Multiple replicates of the 

wild-type and p53 KO cell lines cultured in separate dishes were used. 

 

The data in (A-C) represent the mean ± SE for two out of four independent experiments, in (D, E) 

represent the mean ± SE for two independent experiments. The viability data have been normalized 

to that of the DMSO control. 
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Figure 2.2 p21 has a role in regulating ferroptosis sensitivity 
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(A-E) Impact of treatment with erastin/IKE on the protein levels of p21 and p53. (A) HT-1080 

cells, (B) SK-Hep1 cells and (C) U2OS cells were treated for 16 h whereas (D) H1299 cells and 

(E) HCT116 cells (+/+ and -/- isogenic lines with respect to p53 status derived by Vogelstein’s 

group) were treated for 48 h. 

(F, G) Effect of knockdown of p21 using two different siRNAs (#1, #2) on the degree of death 

elicited by erastin. Cells transfected with an siRNA against luciferase (siCtrl/C) were used as 

control. The bottom panels of (F, G) show the corresponding changes in p21 protein levels. (F) 

HCT-116 cells and (G) H1299 cells were transfected with siRNA for 24 priors and then treated 

with erastin/IKE for 48 h. 

(H) Comparison of ferroptosis sensitivity of HCT-116 derived p21 KO clone to its wild-type 

counterpart when treated with a dose curve of erastin/IKE for 48 h. 

(I) Left panel: Viability of HT-1080 cells transfected with various versions of p21 protein or an 

empty vector plasmid was measured after treatment with IKE for 48 h. The bottom panel depicts 

the corresponding protein levels of p21. 

 

The data in (F) represent the mean ± SE for two out of four independent experiments, in (G-H) 

represent the mean ± SE for two independent experiments, in (I) represent the mean ± SD for one 

of two independent experiments. The viability data have been normalized to the DMSO control in 

(F-H) and to their respective untreated control in (I). 
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Figure 2.3 p21 is differentially regulated at the post-transcriptional level between cells that 

are sensitive and resistant to ferroptosis 

(A-C) Left panels: Impact of IKE treatment on the mRNA levels of p21. (A) HT-1080 cells were 

treated for 16 h while (B, C) H1299 and HCT-116 cells were treated for 48 h. PTGS2 and CHAC1 
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mRNA levels measured in (A, B) serve as markers of ferroptosis. Right panels: the corresponding 

protein levels in the cells used in the left panels are shown. 

 

The data in left panels of (A-C) represent the mean ± SE for three biological replicates with two 

technical replicates each.  

  



65 
 

 

 

Figure 2.4 Lowered reduction of p21 protein levels may suppresses ferroptosis in sensitive 

cancer cell lines 

(A) Cartoons of known structure and mechanism of action of (top panel) nutlin (Vassilev et al. 

2004) and (bottom panel) MEL23 (Herman et al. 2011) . 

(B) Protein levels of Mdm2, p53 and p21 in HT-1080 cells when treated with erastin for 16 h with 

or without the addition of nutlin or MEL23. 
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(C-F) Dose response to erastin treatment of 24 h when co-treated with nutlin and MEL23 in (C) 

HT-1080 cells, (D) SK-Hep1 cells, (E) U2OS cells and (F) RKO cells.  

 

The data in (C-F) represent the mean ± SE for two out of four independent experiments. The 

viability data have been normalized to the DMSO control.  
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Figure 2.5 Loss of MDM2 E3 ligase desensitizes cells to ferroptosis, independent of p21 

(A) MDM2, p53, and p21 protein levels of HT-1080 derived p21 KO clones upon nutlin treatment. 

(B, C) Effect of MEL23 on the dose-response to erastin in (B) HT-1080 derived cells and (C) SK-

Hep1 derived cells. 

 

Cells in (A-C) were treated with drugs for 24 h. The data in (B, C) represent the mean ± SE for 

two of four independent experiments. The viability data have been normalized to the DMSO 

control. 
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Figure 2.6 MDM2 gets dephosphorylated in response to ferroptosis 

(A) Protein levels under ferroptosis treatment are shown to depict the differential detection of 

MDM2 protein based on the antibody used. 

(B) Left panel: MDM2 mRNA is measured upon ferroptosis induction. Right panel: the protein 

levels of the corresponding samples are shown. The cells were treated with IKE for 16 h. 

(C) Effect of alkaline phosphatase (CIP) treatment of membranes. Left panel shows U87 lysates 

used as control. Right panel depicts lysates from HT-1080 cells treated with IKE, with or without 

fer-1 for 16 h. 

 

The data in left panel of (B) represent the mean ± SE for three biological replicates. 
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Chapter 3: MDM2 and MDMX promote ferroptosis in a p53-

independent manner 

A large portion of this chapter is adapted from a published manuscript: Venkatesh et al., MDM2 and MDMX 

promote ferroptosis by PPARa-mediated lipid remodeling, Genes & Development (2020) 

3.1 Introduction 

Recently p53 independent roles of MDM2/X are being explored as summarized in Chapter 1, but 

the role of the MDM2-X complex has mainly been studied in the context of p53. In fact, while 

there are several drugs that attenuate the ability of MDM2/X to inactivate p53, most them aim to 

inhibit their binding to p53 or the E3 ligase activity of only MDM2 (Karni-Schmidt, Lokshin, and 

Prives 2016). In an earlier collaboration, Brent’s and Carol’s labs were the first to design 

compounds called the MELs, one of which was used in the previous chapter. In fact, these 

compounds specifically inhibit the E3 ligase activity of the MDM2-MDMX complex preferentially 

over that of the MDM2 homodimer (Herman et al. 2011). 

 

p21 is the only other known target thought to be regulated by the MDM2-X complex, independent 

of its effects on p53 (Jin et al. 2008; Zhang et al. 2004). The results of our previous chapter indicate 

that MDM2, and possibly the MDM2-X complex can modulate ferroptosis independent of p21. In 

this chapter we extend this to show that MDM2, as well as MDMX are able to promote ferroptosis, 

at least partly because of their ability to form a complex. Since this role is independent of p53, our 

results address the niche of exploring the role of the MDM2-X complex outside the realm of p53.  

 

In this chapter, we demonstrate that MDM2 and MDMX are strong regulators of ferroptosis as 

their roles can be shown in different cancer settings (established human cancer cell lines of 
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different origins and patient cellular models). We are also able to extend the ability of MDM2 and 

MDMX to promote ferroptosis to the context of neurodegeneration in rat brain slices. 
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3.2 Results 

3.2.1 p53 is not required for suppression of ferroptosis caused by the inhibition of MDM2 

In the first part of the project as described in Chapter 2, MDM2 was determined to have the 

potential to be a new player in ferroptosis. While it confirmed that this was a p21 independent role, 

it was necessary to examine if this was simply a p53 dependent function of MDM2.   

 

Prives lab member David Tong, generated multiple clones of p53 knock-out (KO) from HT-1080 

and SK-Hep1 cells using CRISPR/Cas9 technology (Fig 3.S1A). These cell lines were then tested 

for their respective responses to a range of erastin concentrations (Figs 3.1A and 3.1B). Consistent 

with previous reports (Murphy 2016), these p53 KO derivatives were more resistant to erastin 

compared to their wild-type counterparts. Nevertheless, the HT-1080 and SK-Hep1 p53 KO clones 

were still more sensitive to erastin than were cells classified as resistant (such as H1299 or 

HCT116) in Chapter 2. This p53 independent death was through ferroptosis as it was reversed by 

fer-1, as well as by deferoxamine (DFO), which is an iron chelator that prevents ferroptosis (Dixon 

et al. 2012) (Figs 3.1C, 3.1D, 3.S1B, 3.S1B and 3.S1F-3.S1I). Neither fer-1 (Figs 3.S1D and 3.S1J) 

nor DFO (Figs 3.S1E and 3.1S1K) had any effect on the responses of parental (WT) or p53 KO 

clones of HT-1080 and SK-Hep1 cells that were treated with staurosporine (STS), which elicits an 

apoptotic response (Belmokhtar, Hillion, and Ségal-Bendirdjian 2001). Thus, while in these cell 

lines p53 moderately sensitizes to ferroptosis, its presence is not required for ferroptosis. So now 

we could examine if the ferroptosis suppressive effects of nutlin and MEL23 were p53 

independent. 
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In the p53 KO cells, nutlin had little effect on cell death (Figs 3.1E, 3.S2A and 3.S2B), while, as 

was seen in the parental (WT) counterparts, MEL23 substantially decreased the extent of 

ferroptosis (Figs 3.1G, 3.S2C and 3.S2D). Similar results with MEL23 and nutlin were obtained 

in SK-Hep1-derived p53 KO clones (Figs 3.1F, 3.1H, 3.S2F-3.S2I). Note that MEL23 did not 

prevent apoptosis induced by STS treatment in any of these cell lines (Figs 3.S2E and 3.S2J), 

indicating that the effect of MEL23 does not extend to apoptosis.  

 

The results with MEL23 suggested that MDM2 might promote erastin-mediated cell death with or 

without p53. As nutlin functions to block the p53-MDM2 interaction, it would not necessarily be 

capable of inhibiting p53-independent functions of MDM2, perhaps explaining its inability to 

suppress erastin-induced cell death in p53 KO cells (insight into the suppression of ferroptosis by 

nutlin in parental cells expressing wild-type p53 is provided below). 

 

We validated the specific effect of the drugs by showing that that RNA interference against MDM2 

in p53 KO HT-1080 cells also prevents ferroptosis. In these experiments, we induced ferroptosis 

with IKE, a more potent inhibitor of system Xc
- (Figs 3.1I and 3.1J). We obtained similar results 

by depleting MDM2 using RNAi in SK-Hep1-derived cells (Figs 3.S2K, 3.S2M, 3.S2N, 3.S2P, 

3.S2Q and 3.S2S) As another control, ablation of MDM2 did not alter cell death upon treatment 

with STS (Figs 3.S2L, 3.S2O and 3.S2R). In summary, these results demonstrate that MDM2 

depletion or inhibition can selectively block ferroptosis, but not apoptosis, even in cancer cells 

lacking p53. 
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3.2.2 MDMX promotes sensitivity to ferroptosis independently of p53, alone and in complex 

with MDM2 

We previously reported that MEL23 blocks the E3 ligase activity of the MDM2-MDMX 

heterodimer, preferentially over that of the MDM2 homodimer (Herman et al. 2011). Since 

MEL23 reduced sensitivity of cells to ferroptosis, we reasoned that lowering levels of the MDMX 

protein would reduce MDM2-MDMX complex formation and thereby might similarly suppress 

ferroptosis. We sought to deplete MDMX protein using the MDMX inhibitor NCS207895 

(Berkson et al. 2005; Wang and Yan 2011), which represses expression from the MDMX promoter 

(Fig 3.2A), and by using MDMX RNA interference, both of which result in lower MDMX protein 

levels. Indeed, treatment of cells with MEL23 or NCS207895, but not nutlin, prevented ferroptosis 

in both HT-1080 parental (Fig 3.2B) and HT-1080-derived p53 KO (Figs 3.2C, 3.S3A) cell lines. 

Similar results were obtained in SK-HEP1 parental (Fig 3.S3B) and SK-HEP1-derived p53 KO 

cells (Figs 3.S3C and 3.S3D).  

 

Confirmation that MDMX is required for a ferroptotic response was obtained using experiments 

showing that either parental HT-1080/SK-Hep1 cells or their p53 KO derivatives underwent 

significantly less ferroptosis when depleted of MDMX by siRNAs (Figs 3.2D, 3.2E, 3.S4A-

3.S4D). Notably, the suppressive effects of MEL23 or siMDMX are not transient and do persist to 

a certain degree for at least 48 h after treatment (Figs 3.S4E-3.S4G). Thus, MDMX is required for 

erastin-induced ferroptosis in these cell lines, and this function of MDMX does not require p53. 

 

These data raised the question as to why nutlin treatment reduced ferroptosis in cells with wild-

type p53 (Figs 3.1 and 3.S2). Consistent with previous reports (Patton et al. 2006; Wade et al. 
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2006; Xia et al. 2008), the levels of MDMX were markedly reduced upon nutlin treatment in the 

parental HT-1080 cells (Fig 3.2B). By contrast, nutlin treatment did not reduce levels of MDMX 

in HT-1080 p53 KO cells (Figs 3.2C and 3.S3A). Similarly, in parental SK-Hep1 cells (Fig 3.S3B), 

nutlin treatment resulted in reduced MDMX protein abundance, which was not observed in p53 

KO SK-Hep1 cells (Figs 3.S3C and 3.S3D). By contrast, and as expected, MEL23 led to 

accumulation of MDMX, as reported previously (Herman et al. 2011), by preventing its 

degradation by the MDM2 E3 ligase in both parental and p53 KO cells. Therefore, we hypothesize 

that the ability of nutlin to partially rescue viability in cells harboring wild-type p53 (but not KO 

cells that do not express p53) was due to its effect on the levels of MDMX protein. This finding, 

which suggests why nutlin was able to reduce ferroptosis in the presence of wild-type p53, provides 

further evidence that MDMX drives ferroptosis sensitivity. 

 

The ability of MEL23 to suppress ferroptosis, in conjunction with the need for both MDM2 and 

MDMX to promote ferroptosis, led us to test whether the complex formed between MDM2 and 

MDMX mediates the ferroptosis sensitivity of cells, as opposed to the possibility that MDM2 and 

MDMX have independent functions. Towards this end, we ectopically expressed either wild-type 

MDMX or the MDMX variants MDMX (C463A) and MDMX (DC5), which lack the ability to 

bind to MDM2 (Uldrijan, Pannekoek, and Vousden 2007; Huang et al. 2011) (Fig 3.S4H). 

Overexpressed wild-type MDMX markedly increased cell death induced by erastin (Fig 3.3) which 

could be suppressed by fer-1 (Figs 3.S4I and 3.S4J) in both HT-1080 and SK-Hep1 cells. This is 

consistent with the idea that MDMX is itself a target of the MDM2-MDMX complex and hence a 

limiting factor in the activity of the complex.  
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Overexpression of either mutant of MDMX produced significantly less ferroptosis, such that while 

both MDMX mutant proteins did cause an increase in cell death due to erastin, neither was as 

effective as wild-type MDMX despite being expressed at similar or even greater levels than wild-

type MDMX (Figs 3.3, 3.S4I and 3.S4J). Attempts to overexpress MDM2 and perform comparable 

experiments were not technically successful.  

 

These results indicate that the MDM2-MDMX complex plays a role in facilitating ferroptosis, but 

also suggest that MDMX may have additional functions beyond being a part of the MDM2-

MDMX heterodimer. Together with the finding that MEL23 is known to inhibit the MDM2 E3 

ligase mainly when in complex with MDMX, we infer a primary role for the MDM2-MDMX 

complex in promoting ferroptosis.  

 

We tried to extend our study to include other small molecule inhibitors of MDM2/X or specifically 

their complex. Indeed, our p53 KO clones (derived from either cell line) had lowered ferroptosis 

sensitivity due to any of the currently available inhibitors that we tried, which further strengthened 

our conclusion. But each inhibitor has its own disadvantages, which sometimes interfered with 

accurate interpretation of the data (Table 3.1). Therefore, we chose to use MEL23 and the MDMX 

inhibitor for further study as their disadvantages did not seem to limit their scope of use in the 

context of ferroptosis. 

 

3.2.3 The MDM2-MDMX complex can promote ferroptosis in patient-derived glioblastoma 

models and rat brain slices 
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To examine whether MDM2 and MDMX can mediate ferroptosis in other contexts, we expanded 

our study to include patient-derived glioblastoma (GBM) cellular models, as well as an 

organotypic brain slice culture model of Huntington’s disease. It was reported that patient 

glioblastoma models vary in their sensitivities to the ferroptosis inducer RSL3 (Quartararo et al. 

2015). We compared the sensitivity of two GBM patient-derived models with high expression of 

MDM2 (Ye, Reznik, et al. 2020), but with wild-type TP53 versus two patient-derived cell models 

with normal expression level of MDM2 and wild-type or mutated TP53 (Fig 3.4A). We found that 

these two sets of GBM models (high versus normal expression of MDM2) had different responses 

to RSL3 (Fig 3.4B); specifically, the models with high MDM2 expression had ~50 times greater 

sensitivity to RSL3-induced ferroptosis. This trend in sensitivities of these models was specific to 

ferroptosis, as their response to apoptosis inducers, staurosporine and doxorubicin, was similar 

(Figs 3.4C and 3.4D). Notably, we were able to prevent cell death in both sets of GBM models 

with the co-addition of MEL23 (Figs 3.4E and 3.4F). The models with high expression of MDM2 

exhibited a stronger inhibition of RSL3-induced death upon co-treatment with MEL23, such that, 

upon MEL23 treatment their response to RSL3 became similar to that of the wild-type MDM2-

expressing models. These results suggest that MDM2, and likely the MDM2-MDMX complex, 

are able to drive the sensitivity of glioblastoma cells to ferroptosis. 

 

Our collaborators Denise Dunn and Donald Lo, then examined the role of the MDM2-MDMX 

complex in the medium spiny neurons (MSNs) of the striatum of rats using a postnatal brain-slice 

model of Huntington’s disease (Reinhart et al. 2011). These brain explants have been previously 

shown to lose a large portion of healthy MSNs when the first exon of mutant HTT (mHTT-Q73) 

is co-transfected with yellow fluorescent protein (YFP), as compared to the number of MSNs with 
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YFP transfection alone (Kaplan et al. 2015; Reinhart et al. 2011). Since fer-1 can suppress 

ferroptotic death in this model (Skouta et al. 2014), we used it as a positive control to rescue the 

death of these MSNs with mutant HTT. We observed that MEL23 was also able to prevent mutant-

HTT-induced death of these MSNs, even at low concentrations (Fig 3.4G). This suggests that 

MEL23 is an inhibitor of ferroptosis in rat neurons, and that MDM2 and MDMX might mediate 

ferroptosis even in the context of neurodegeneration. 

 

Our results demonstrate that MDM2 and MDMX are bona fide regulators of ferroptosis and that 

they promote this type of death independent of p53. Further, we believe that the MDM2-X complex 

is crucial for full efficiency of death by ferroptosis. 
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3.3  Discussion 

One main strength of this study is that we have used various ways to inhibit MDM2/X- small 

molecule inhibitors of MDM2 and MDMX, siRNA-mediated ablation of these proteins, and 

ectopically expressed MDMX variants- which eliminate a possibility of drawing a conclusion 

based on any potential off-target effects of just one method. The results so obtained gives us 

confidence in concluding that MDM2 and MDMX can regulate ferroptosis in a p53-independent 

manner. This study also provides a repertoire of tools for any future study of p53-independent 

roles of MDM2/X in cancer. 

 

Identifying a role for MDM2 and MDMX in ferroptosis may provide insight into therapeutic 

applications of ferroptosis inducers and inhibitors. The data presented here suggest that cancers 

with high levels of the MDM2-MDMX heterocomplex (and its E3 ligase activity) might be suitable 

targets for therapy involving ferroptosis inducers. Our results showing that the MDM2-MDMX 

complex can mediate the ferroptosis sensitivity of patient-derived glioblastoma cell lines further 

corroborates this hypothesis. There have been extensive efforts to develop nutlin-like compounds 

to treat cancers with wild-type p53 (Warner et al. 2012; Atatreh et al. 2018); one possible approach 

is to pair such compounds with other chemotherapeutics to achieve a more profound cancer control 

(Zanjirband, Edmondson, and Lunec 2016; Deben et al. 2015). Given the discovery of p53-

independent roles of MDM2 and MDMX, cancers with amplifications in MDM2 and MDMX 

(even in the absence of wild-type p53) (Pishas et al. 2015; Wade, Li, and Wahl 2013) might benefit 

from therapies that act as antagonists of MDM2 and MDMX. Yet such therapies would likely not 

benefit from being combined with FINs or chemotherapeutics that induce ferroptosis, such as 

sorafenib (Lachaier et al. 2014) and sulfasalazine (Stockwell et al. 2017). In regard to such 
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combinations, our data indicate that combining MDM2-MDMX antagonists with ferroptosis 

inducers would in fact be counter-productive.  

 

The results reported here could also aid in designing therapies for neurodegenerative disorders, 

ischemia, and organ damage, which have been shown to involve ferroptosis (Stockwell et al. 

2017): MDM2-MDMX inhibitors might be used as inhibitors of degeneration in these diseases, as 

has been suggested for fer-1 (Yang and Stockwell 2016). In support of this concept, we found that 

MEL23 has a robust neuroprotective effect in the brain slice model of Huntington’s disease. 

MDM2 has also been shown to regulate kidney function, predominantly through its effects on p53, 

but also via p53-independent roles in modulating post-ischemic kidney injury (Mulay et al. 2012). 

Since there is mounting evidence that ferroptosis mediates kidney injury (Martin-Sanchez et al. 

2017) and failure (Friedmann Angeli et al. 2014; Müller et al. 2017), our data provide additional 

support for the notion that MDM2 (and MDMX) antagonists might have potential in treating 

kidney dysfunction.  

 

While most of this work was done in the absence of p53, we did find that the suppression of MDM2 

and MDMX was effective in reducing the degree of ferroptosis in cells with functional p53. 

Especially in the context of the class II FIN RSL3, there seems to be a further desensitization to 

ferroptosis by inactivation of the MDM2-MDMX complex beyond the effect of loss of p53. We 

therefore suggest that MDM2 and MDMX may also be able to mediate the role of p53 in 

ferroptosis perhaps in different ways that are specific to particular classes of FINs. This mediatory 

role of the MDMs needs to be further evaluated to better understand the entirety of their role in 

ferroptosis. 
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Finally, MDM2 and MDMX  may have context-dependent tumor suppressor functions in addition 

to their well described oncogenic functions mediated by inhibition of p53 (Manfredi 2010). Our 

results suggest a mechanism for this observation, namely that MDM2 and MDMX can act as tumor 

suppressors by facilitating ferroptosis. Given that mounting evidence suggests that ferroptosis is a 

tumor suppressive mechanism (Jiang et al. 2015; Ou et al. 2016; Wang et al. 2016; Jennis et al. 

2016; Murphy 2016; Zhuang and Gan 2019), our data provide a new hypothesis for the field to 

explore. 
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3.4 Methods 

3.4.1 Genome editing using CRISPR/ cas9 technology to generate p53 KO clones 

HT-1080 and SK-Hep1 p53 KO cells used were wildtype for p53 and they were cultured as in 

2.4.1. These cells (7x105) were transfected with 2 µg of p53 CRISPR/Cas9 KO plasmid (Santa 

Cruz Biotech). Two days later, cells were treated with nutlin-3A (10 µM) for 10-12 days to inhibit 

proliferation of cells with wild-type p53, thereby enriching for p53 KO cells. Single-cell clones 

were selected via limiting dilution, and p53 KO clones were confirmed by Western blotting using 

FL-393 polyclonal antibody. The presence of indels in targeted exons 4, 5, and 7 was verified by 

DNA sequencing. 

 

3.4.2 Immunoblot 

The same methodology as described in 2.4.5 was used. Actin or GAPDH was used as the loading 

control. 

 

The following primary antibodies were additionally used: MDM2 (D1V27, CST cat#86934 or 

N20, Santa Cruz biotech, cat# sc-813); MDMX (Bethyl laboratories cat# A300-287A or mAb 8C6, 

produced in Dr. Jiandong Chen’s lab); GAPDH (CST cat# 5174S). 

 

3.4.3 Chemicals 

The following chemicals were additionally used apart from those listed in 2.4.3: MDMX inhibitor 

NSC207895 (Calbiochem, cat# 444158), staurosporine (Selleckchem, cat# S1421), deferoxamine 

(Calbiochem, cat# 252750). 
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The fixed concentrations of compounds used was as follows (unless otherwise mentioned): nutlin, 

10 µM, MEL23, 14 µM, ferrostatin-1 (fer-1), 20 µM, deferoxamine (DFO), 90 µM, MDMX 

inhibitor, 5 µM. 

 

3.4.4 Transfection-siRNA 

The same methodology as described in 2.4.6 was used. 

 

The following siRNAs were used: siLuciferase (Urist et al. 2004), siMDMX #1 : si_102_MDMX 

(Chen et al. 2005), siMDMX #2: Hs_MDM4_4 FlexiTube siRNA (QIAGEN, Valencia, CA, 

USA), siNegative control from silencer select (ThermoFisher, cat# 4390843), siMDM2#1 from 

silencer select (ThermoFisher, cat# s8630) and siMDM2#2 from silencer select (ThermoFisher, 

cat# ss224037). 

 

3.4.5 Transfection- plasmids 

The same methodology as described in 2.4.7 was used. 

 

MDMX wild-type plasmid was obtained from Jiandong Chen’s lab, MDMX C463A was obtained 

from Dr. Zhi-Min Yuan’s lab(Huang et al. 2011) and MDMX D5 was obtained from Dr. Karen 

Vousden’s lab (Uldrijan, Pannekoek, and Vousden 2007).  

 

Note: Cells became more resistant to ferroptosis inducers after transfection when using 

Lipofectamine series of reagents. In order to observe cell death post transfection, three key factors 
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were controlled: cell density was kept low, Lipofectamine was washed off as soon as possible, and 

a higher concentration of FINs was used to induce ferroptosis compared to non-transfected 

conditions. On day 1, 1 x 105 cells were plated in 2 mL in each well of a 6-well plate for HT-1080-

derived cells and 2 x 105 cells were plated for SK-Hep1-derived cells. The cells were transfected 

in the late evening of day 2. The cells were washed and the medium was changed after an overnight 

incubation with transfection reagent. On the evening of day 3, FINs were added. IKE was used 

instead of erastin to achieve more potent ferroptosis induction. For SK-Hep1 cells, a confluent 10 

cm dish was transfected with siRNA (20 nM of siRNA). 24 h post-transfection, cells were 

harvested, counted and plated into 384-well plates. Cells were simultaneously plated into 6-well 

plates to be harvested on the same day as the cell viability assay was performed, to measure the 

efficiency of knockdown. 

 

3.4.6 Huntington’s brain slice assay 

This assay was performed as previously described in (Kaplan et al. 2015).     

 

3.4.7 Immunoprecipitation 

The cells were lysed as described in 2.4.5 and immediately used for the next steps. All of the 

following steps were performed at 4°C. Equivalent amounts (180 µg) of each cell lysate were 

subjected to immunoprecipitation with specific antibody for 2 h. Then, 40 µL of protein G beads 

(GE Healthcare) that were pre-blocked with bovine serum albumin (BSA) (New England BioLabs) 

was added for another 1 h. Then the beads were washed 3 times with 500 mL of lysis buffer 

(without the protease inhibitors). The proteins were eluted by adding protein sample buffer and 

incubating for 10 min at 95°C. Immunoblotting analysis was performed as described in 2.4.5. 
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For MDM2 IP: 1 million HT-1080 p53 KO cells were plated in 10 cm dishes. The next day, they 

were transfected with 300 ng of the MDMX variants (WT, C463A, D5) using Lipofectamine 3000 

(Thermo Scientific) for 48 h before harvesting. TEB lysis buffer was used for the steps described 

above. We used 4 µg of the purified D1V27 (CST cat#86934) antibody against MDM2. 

 

3.4.8 Cell viability assay 

For dose response curves and 6 well experiments the same methodology as described in 2.4.8 was 

used. 

 

For siRNA experiments in SK-Hep1-derived cells: 1,400 cells were plated for SK-Hep1 wild-type 

cells, while 1,000 cells were plated for the SK-Hep1-derived p53 KO cells (clone 2 and clone 4). 

The rest of the viability assay procedure remained the same.  

 

For viability assays performed in 6-well plates, cells were harvested using trypsin (0.5 ml per well) 

and the medium was saved from each well. The trypsinized cells were resuspended with the 

collected medium and 2-3 aliquots (0.10 ml each) sampling different regions of this suspension 

were taken into 96-well plates to serve as technical replicates for the measurement. CellTiter-Glo 

Luminescent Viability assay was used to measure the viability of these aliquots. The rest of the 

culture was used to extract protein to be analyzed using western blots.  

 

3.4.9 Statistical analysis 
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Prism (version 8, GraphPad) was used to make all the graphs in the paper and for performing all 

the statistical analysis shown. The GraphPad style (0.1234(ns), <0.0332(*), < 0.0021(**), 

<0.0002(***)) was used to represent the p values. The p values were calculated by ANOVA and 

appropriate multiple testing correction was done where required. 
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3.5 Tables 

Table 3.1 Multiple inhibitors of MDM2/X tested for their ferroptosis suppressive abilities 

All the inhibitors listed were able to suppress ferroptosis independent of p53, but since they each 

have different limitations, we chose to pursue the two whose disadvantages did not directly 

interfere with the context of ferroptosis. 
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3.6  Figures 
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Figure 3.1 p53 is not required for suppression of ferroptosis caused by inhibition of MDM2  

(A, B) Dose-response of wild-type and p53 KO cells to erastin in (A) HT-1080 derived cells and 

(B) SK-Hep1 derived cells. 

(C, D) Inhibition of erastin-induced HT-1080 cell death by (C) fer-1 and (D) DFO 

(E-H) Effect of MDM2 antagonists (nutlin and MEL23) on the dose-response of two different cells 

lines to erastin treatment. (E) HT-1080 derived cells and (F) SK-Hep1 derived cells treated with 

the combination of nutlin and erastin. (G) HT-1080 derived cells and (H) SK-Hep1 derived cells 

treated with the combination of MEL23 and erastin.  

(I, J) Suppression of ferroptosis by the knockdown of MDM2 in two HT-1080 derived p53 KO 

clones. The top panel shows the viability of cells treated with a lethal dose of IKE when transfected 

with either the siRNA against Luciferase or one of two different siRNAs against MDM2. The 

bottom panel shows the corresponding decrease in the protein levels of MDM2 upon RNA 

interference against Luciferase (L) or MDM2 (1 and 2). The transfection was done using 15nM of 

siRNA and the cells were treated with IKE 24 h after transfection. 

 

Cells in (A-H) were treated with drugs for 24 h. Cells in (I, J) were treated with drugs for 18 h. 

The data in (A-H) represent the mean ± SE for two out of four independent experiments. The 

viability data in (I, J) represent the mean ± SE for four independent experiments. The viability data 

have been measured using ATP based CellTiter-Glo reagent and have been normalized to the 

DMSO control. 
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Figure 3.2 MDMX promotes sensitivity to ferroptosis independently of p53 
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(A) Cartoon of the known structure and mechanism of action of the MDMX inhibitor (Berkson et 

al. 2005; Wang and Yan 2011). 

(B, C) Effect of MDM2 and MDMX antagonists (MEL23, nutlin, and MDMX inhibitor) on the 

lethality of erastin in HT-1080 derived cells. This effect was analyzed using microscopic images 

taken at 10X magnification (top panel) and cell viability (bottom left panel). The corresponding 

MDM2/X protein levels were also measured (bottom right panel). 

(D, E) Suppression of ferroptosis by the knockdown of MDMX in HT-1080 derived cells. The left 

panel shows the viability of cells treated with a lethal dose of IKE when transfected with either the 

scrambled siRNA negative control or one of two different siRNAs against MDMX. The right panel 

shows the corresponding decrease in the protein levels of MDMX upon RNA interference against 

the control (N) or MDMX (1 and 2). The transfection was done using 15nM of siRNA and the 

cells were treated with IKE 24 h after transfection. 

 

Cells in (B, C) were treated with drugs for 16 h. Cells in (D, E) were treated with drugs for 18 h. 

The viability data in (B, C) represent the mean ± SE for two independent experiments. The viability 

data in (D, E) represent the mean ± SE for three independent experiments. The viability data have 

been measured using ATP based CellTiter-Glo reagent and have been normalized to the DMSO 

control. 
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Figure 3.3 Wild-type MDMX is more effective at sensitizing cells to ferroptosis than MDM2 

binding-deficient mutants of MDMX  

(A-D) Effect of overexpression of MDMX variants (WT and C463A) on the lethality of IKE in 

p53 KO clones derived from two different cells. The transfection was done using 300µg of plasmid 

of each variant in (A) HT-1080 derived cells and (B) SK-Hep1 derived cells. The transfection was 

done using a dose-curve (0-300µg) of each variant in (C) HT-1080 derived cells and (D) SK-Hep1 

derived cells. The right panel of (A, B) and the bottom panel of (C, D) show the corresponding 
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expression levels of the MDMX variants. The cells were treated for 18 h with IKE (5µM) 24 h 

after transfection. 

 

The viability data in (A-D) represent the mean ± SE for three independent experiments. The 

viability after drug treatment has been measured using ATP based CellTiter-Glo reagent and is 

normalized to the viability of the DMSO control under each transfection condition respectively. 
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Figure 3.4 The MDM2-X complex can promote ferroptosis in patient-derived glioblastoma 

models and rat neurons  

(A-F) The MDM2-X complex mediates the sensitivity of four different patient-derived 

glioblastoma models to RSL3. (A) RSL3’s EC50, MDM2 and p53 status for the glioblastoma 
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models. Dose response of the glioblastoma models to (B) RSL3, (C) staurosporine (STS), and (D) 

doxorubicin. MEL23 is able to inhibit the sensitivity of (E) MDM2 wild-type glioblastoma models 

and (F) MDM2 amplified glioblastoma models to RSL3 treatment. 

(G) MEL23 is able to suppress the mutant Huntingtin (mHTT) protein induced neurodegeneration 

of rat striatal medium spiny neurons in a brain slice model of Huntington’s disease. Rat 

corticostriatal brain slice explants were co-transfected with the first exon of the mHTT (Q73) and 

YFP transfection was used as a control. Brain slices were treated with either DMSO, a positive 

control mixture of 50µM KW-6002 and 30µM of SP600125, fer-1 as a second positive control, or 

a three-point concentration-response curve for MEL23. 

 

Cells in (A-F) were treated with drugs for 24 h. The data in (A-F) represent the mean ± SE for two 

out of four independent experiments. The data in (G) represent the mean ± SE from one of two 

representative experiments, with at least 24 samples assessed per condition. The viability data have 

been measured using ATP based CellTiter-Glo reagent and have been normalized to the DMSO 

control. 
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Figure 3.S1 p53 knock-out clones are moderately less sensitive to ferroptosis (Related to 

Figure 3.1) 

(A) p53 protein levels in the CRISPR edited p53 KO clones derived from HT-1080 and SK-Hep1 

cells.  
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(B-K) Dose-response of two different cell lines to erastin and STS when co-treated with fer-1 or 

DFO. HT-1080 derived cells were treated a combination of fer-1 and (B) erastin or (D) 

staurosporine (STS). HT-1080 derived cells were treated a combination of DFO and (C) erastin or 

(E) STS. SK-HEP1 derived cells were treated with a combination of fer-1 and (F, G) erastin or (J) 

STS. SK-HEP1 derived cells were treated a combination of DFO and (H, I) erastin or (K) STS. 

 

Cells in (B-K) were treated with the drugs for 24 h. The data in (B-K) represent the mean ± SE for 

two out of four independent experiments. The viability data have been measured using ATP based 

CellTiter-Glo reagent and have been normalized to the DMSO control. 
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Figure 3.S2 MDM2 can suppress ferroptosis independent of p53 (Related to Figure 3.1) 
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(A-J) Effect of MDM2 antagonists (nutlin and MEL23) on the dose-response of two different cells 

lines to erastin and STS treatment. (A, B) HT-1080 derived cells and (F, G) SK-Hep1 derived cells 

treated with the combination of nutlin and erastin. (C, D) HT-1080 derived cells and (H, I) SK-

Hep1 derived cells treated with the combination of MEL23 and erastin. The lethality of STS is 

unaffected by MEL23 in (E) HT-1080 derived cells and (J) SK-Hep1 derived cells. 

(K-S) Suppression of ferroptosis by the knockdown of MDM2 in SK-Hep1 derived p53 KO cells. 

The transfected cells were treated with a dose-curve of either (K, N, Q) IKE or (L, O, R) STS. (M, 

P, S) The corresponding decrease in levels of MDM2 protein in the cells transfected with either a 

scrambled siRNA negative control (N) or one of two different siRNAs against MDM2 (1 and 2). 

The transfection was done using 20nM of siRNA and the cells were treated with drugs 48 h after 

transfection.  

 

Cells in (A-R) were treated with drugs for 24 h. The data in (A-L, N, O, Q, R) represent the mean 

± SE for two out of four independent experiments. The viability data have been measured using 

ATP based CellTiter-Glo reagent and have been normalized to the DMSO control. 
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Figure 3.S3 The presence of p53 is not essential for the ability of MDMX to promote 

ferroptosis (Related to Figure 3.2) 

(A-D) Effect of MDM2 and MDMX antagonists (nutlin, MEL23, and MDMX inhibitor) on the 

response of cells to 16 h of erastin treatment. Cell viability of (A) HT-1080 derived p53 KO cells 

and (B-D) SK-Hep1 derived cells when treated with erastin in combination with the antagonists is 

shown. The top panel images in (B, C) correspond to the cells used to measure viability shown in 

their respective bottom panels. The images were captured at 10X magnification. The protein levels 

in the right panels of (A, D) and bottom right panels of (B, C) correspond to the samples for which 

cell viability was measured. 

 

The viability data in (A-D) represent the mean ± SE for three independent experiments. The 

viability data have been measured using ATP based CellTiter-Glo reagent and have been 

normalized to the DMSO control. 
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Figure 3. The protein levels of MDMX dictate the sensitivity to ferroptosis (Related to Figure 

3.2 and 3.3) 

(A-D, F, G) Suppression of ferroptosis by the knockdown of MDMX in cells. The effects of RNA 

interference against MDMX (1 and 2) was compared to that against the scrambled siRNA negative 

control (N). In (A-D), the top panels show the viability of cells treated with a lethal dose of IKE 

for 24 h, after 24 h of transfection. In (F), the bottom panel shows the viability of cells treated with 

a lethal dose of Erastin for 24 and 48 h, after 24 h of transfection. In (G), the right panels show the 

viability of transfected cells treated with a dose-curve of Erastin for either 24 or 48 h, after 48 h of 

transfection. HT-1080 derived cells were used in (A, F) and SK-HEP1 derived p53 KO cells were 

used in (B-D, G). The bottom panels of (A-D), the top panel of (F) and the left panel of (G) show 

the corresponding decrease in the protein levels of MDMX at the respective time points. The 

transfection was done using 20nM of siRNA. 

(E) The suppressive effects of MEL23 and fer-1 on the cellular response to erastin at 24 and 48 h 

in HT-1080 derived p53 KO cells. 

(H) Immunoprecipitation using MDM2 antibody in HT-1080 derived p53 KO cells shows the 

ability of the various MDMX variants (WT, C463A, D5) to be bound to MDM2.  

(I, J) Effect of overexpression of MDMX variants (WT, D5) on the lethality of IKE in p53 KO 

clones derived from two different cells. (I) HT-1080 derived cells and (J) SK-Hep1 derived cells 

were treated with a combination of fer-1(10µM) and IKE after transfection with either MDMX 

variant. The right panels show the corresponding expression levels of each MDMX variant. The 

transfection was done using 300µg of plasmid of each variant. 
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Cells in (I, J) were treated for 18 h with IKE, 24 h after transfection. The viability data in (A-D) 

represent the mean ± SE for three independent experiments, in (E, F, I, J) represent the mean ± SE 

for two of three independent experiments, in (G) represent the mean ± SE for two independent 

experiments. In (A-G), the viability data have been normalized to the DMSO control. For (I, J), 

the viability under drug treatment is normalized to the viability of the DMSO control under each 

transfection condition respectively. The viability data have been measured using ATP based 

CellTiter-Glo reagent. 
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Chapter 4: MDM2/X lower PPAR⍺ activity to dampen the 

antioxidant defenses of cells against ferroptosis 

A large portion of this chapter is adapted from a published manuscript: Venkatesh et al., MDM2 and MDMX 

promote ferroptosis by PPARa-mediated lipid remodeling, Genes & Development (2020) 

4.1 Introduction 

Although p53 has been implicated in the control of many cell death pathways (Ranjan and 

Iwakuma 2016), the p53 independent role of MDM2/X in such regulation is largely unexplored. 

Our previous chapter has been the first study to show that regulating ferroptosis is a p53 

independent property of the MDM2/X complex. Since this is such a novel role of MDM2/X, it 

became important to characterize the molecular pathway involved.  

 

In the previous chapters, we eliminated the only known targets of the MDM2/X complex, namely 

p53 and p21, as not being essential for the role of the complex in ferroptosis. Lack of other known 

targets of the MDM2-X complex prevented us from being able to quickly pinpoint a potential 

mechanism of action. The two approaches that were then used to identify the mechanism of 

regulation of ferroptosis by MDM2/X, are described in this chapter. First, we evaluated if any of 

the known modulators of ferroptosis were under the control of MDM2/X. Since no such targets 

were found, we instead started evaluating some of the known targets of MDM2 with potential ties 

to ferroptosis (based on their known biological roles) without any successful hits. We then asked 

which ferroptosis checkpoint is affected by the inhibition of MDM2/X to identify the level of 

regulation involved. As described in Chapter 1, the different FINs effect cell death by impinging 

on different upstream pathways and these form the basis of the different checkpoints of ferroptosis 

which can be manipulated to alter the final outcome. Evaluating the effect of MDM2/X antagonists 
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on the different classes of FINs led us to conclude that one of the more downstream checkpoints 

was being affected. This finding led us to perform an untargeted lipidomic analysis. While such 

an analysis has been previous performed in the context of wild-type p53 cells treated with 

erastin/IKE, our profiling of p53 KO cells treated with erastin in combination with MDM2/X 

antagonists revealed novel alterations to the lipid compositions of cells. These changes prompted 

us to study the roles of the PPAR family in ferroptosis. A previous study showed that MDM2 was 

able to strongly regulate the activity of PPARα (better than that of PPARβ/δ, while PPARγ’s 

activity was unaltered) (Gopinathan et al. 2009). This report taken together with the changes that 

we observed in the lipid composition being hallmarks of PPARα activity, caused us to mainly 

focus on this isoform. 

 

Our results show that PPARα is indeed the modulator of the ability of MDM2/X to alter the lipid 

metabolism of cells undergoing ferroptosis. We also show that MDM2/X and PPARα activity are 

upstream regulators of a newly discovered ferroptosis regulator, FSP1 that functions to enhance 

the antioxidant response of cells to ferroptosis (Bersuker et al. 2019; Doll et al. 2019). Therefore, 

we believe that MDM2 and MDMX dampen the antioxidant defenses of cells to promote death 

due to ferroptotic insult. 
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4.2 Results 

4.2.1 Promotion of ferroptosis by MDM2 and MDMX is not dependent on the cell cycle   

In the previous chapter, our results showed that the role of MDM2/X is independent of p21, a key  

regulator of the cell cycle (Warfel and El-Deiry 2013). But even in the absence of p53, MDM2 has 

been reported to promote cell growth and survival in some settings (Feeley et al. 2017), and these 

effects need not be dependent on p21. In line with this, David Tong in the Prives lab was unable 

to create stable MDM2 or MDMX knock-out cells with CRISPR/Cas9 using either HT-1080 or 

SK-Hep1 derived p53 KO cells. This supports the notion that MDM2 and MDMX are necessary 

for cell survival in these cancer cell lines, even when lacking p53.  

 

MEL23 and the MDMX inhibitor were able to prevent ferroptotic cell death, even after 7-8 h of 

treatment (Fig 4.1A left panel). At this time point, we did not find significant changes in the cell 

cycle analysis performed by a member of the Prives lab, Alyssa Klein, which were common to the 

two MDM2-MDMX inhibiting compounds that had similar effects on ferroptosis (Fig 4.1A right 

panel). Taken together, these results indicate that the impact of blocking MDM2-MDMX complex 

activity on ferroptosis is independent of p21 and is not merely a by-product of cell cycle changes.  

 

4.2.2 MDM2 and MDMX regulate a hitherto-unknown mediator of ferroptosis 

We first examined if some of the known ferroptosis regulators could be modulating the role of 

MDM2/X in ferroptosis, but none of these seemed to be involved in mediating the role of 

MDM2/X (Table 4.2). Instead, our results indicated that there might be a novel mechanism 

involved. 
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As an alternative approach, we examined multiple previously known targets of MDM2 that have 

a potential link to ferroptosis. While our analysis revealed potential new regulators of ferroptosis 

that can be further studied, as well as some hitherto unknown targets of the MDM2-X complex, 

none of the targets tested seemed to modulate this role of MDM2/X in ferroptosis (Table 4.2). 

 

4.2.3 Inhibition of MDM2 and MDMX protects cells from ferroptosis caused by all classes of 

FINs 

To gain insight into the role(s) of MDM2 and MDMX in promoting ferroptotic cell death, we 

aimed to identify the point in this process that was affected by MDM2 and MDMX inhibition. This 

was accomplished by testing the impact of both MEL23 and the MDMX inhibitor on the response 

to other classes of FINs, which induce ferroptosis through different mechanisms, with the help of 

two Prives lab members, Everett Kengmana and Nicholas O’Brien (Fig 4.1B). Importantly, both 

compounds were able to suppress ferroptosis induced by all of the FINs, with the degree of rescue 

being the highest with class I FINs. Notably, these effects also did not require p53, although RSL3 

was better suppressed in the presence of p53 (Figs 4.1C, 4.S1A-4.S1C). Thus, MDM2 and MDMX 

were not limited to promoting ferroptosis induced by system Xc
- inhibition; their roles extend to 

ferroptosis induced by all known mechanisms. We surmised that MDM2 and MDMX facilitate the 

lethal phospholipid peroxidation that is commonly affected by all four classes of FINs. Consistent 

with this conclusion, we confirmed that depletion of GSH, a characteristic of class I FINs, was not 

prevented by either of the MDM2 or MDMX inhibitors using an assay optimized in the Stockwell 

lab by Joleen Csuka (Figs 4.1D and 4.S1D). On the other hand, lipid peroxidation, which is a 

hallmark of all classes of FINs, was blocked by these same inhibitors (Figs 4.1E and 4.S1E). This 
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supports the likelihood that MDM2 and MDMX facilitate lipid peroxidation, a common 

requirement for all FINs. 

 

In order to further examine the mechanism by which MDM2 and MDMX promote ferroptosis, we 

first focused on HT-1080 cells and their p53 KO derivatives. We used class I FINs to define the 

mechanism, as they showed the best suppression with MDM2-MDMX antagonists.  

All classes of FINs are dependent on the presence of labile iron, as iron chelators are able to block 

ferroptosis (Stockwell et al. 2017). Using FIP1, a cellular FRET-based iron probe, Aron et al. 

reported that erastin treatment causes an increase in the cellular levels of labile iron, which are 

brought back to basal levels by co-treatment with the iron chelator DFO. On the other hand, fer-1 

can block ferroptosis without changing labile iron levels (compared to erastin treatment alone), 

demonstrating that the reduction in iron levels is not the only means by which ferroptosis can be 

blocked (Aron et al. 2016). With the help of our collaborators, Allegra Aron and Christopher 

Chang, we obtained the FIP1 probe to test in our system. When FIP1 was used to test the impact 

of MDM2 and MDMX inhibition on iron levels, we found that, unlike DFO, neither MEL23 nor 

the MDMX inhibitor was able to lower the levels of labile iron in cells (Figs 4.1F and 4.S1F). This 

led us to conclude that, in order to promote ferroptosis, MDM2 and MDMX do not need to alter 

iron levels in cells, and that these compounds do not act like iron chelators. 

 

4.2.4 MDM2 and MDMX prevent antioxidant responses during ferroptosis 

4.2.4.1 MDM2 and MDMX alter the lipid metabolism of cells undergoing ferroptosis 

Having ruled out the above mechanisms of suppressing ferroptosis, an untargeted lipidomic 

profiling was originally performed in collaboration with UC Denver’s metabolic core headed by 
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Angelo D’Alessandro. Subsequently these results were further validated and extended in-house in 

the Stockwell lab, by Fereshteh Zandkarimi. We wanted to evaluate whether inhibition of MDM2 

and MDMX changed the profile of lipids present in cells in order to disfavor lipid peroxidation. 

Co-treatment of cells with erastin and either MDM2 or MDMX inhibitors did indeed alter the lipid 

profile of cells. We observed two main trends in the lipid profile. 

 

The first trend showed that these inhibitors caused an upregulation of the abundance of many lipid 

species, including phosphatidylcholines (PC), phosphatidylethanolamines (PE), and free fatty 

acids (FA) (Figs 4.2A and 4.S2A). This accumulation of lipids could indicate impaired catabolism, 

such as through b-oxidation. When there is incomplete b-oxidation, intermediate chain acyl 

carnitines (C5-C14) accumulate, while long chain acyl carnitines (C16-C22) are unaffected 

(Afshinnia et al. 2018), but we did not observe such an alteration (Figs 4.S2B and 4.S2C). Instead, 

in addition to C5 and C16 carnitines, others such as C2 carnitines (derived from acetyl CoA 

obtained by metabolic breakdown products) and C4 carnitines (derived from both amino acid and 

lipid catabolism) (Koves et al. 2008) were all increased in abundance upon MDM2-X inhibition. 

Additionally, when we blocked b-oxidation using etomoxir, which did indeed increase ferroptotic 

sensitivity as previously reported (Miess et al. 2018), there was no effect on the ability of MDM2/X 

antagonists to suppress ferroptosis (Fig 4.S2D). Therefore, we conclude that altered b-oxidation is 

not the sole effect of MDM2 and MDMX inhibition. Instead, we assume that blocking these 

proteins led both to increased lipid anabolism and impaired lipid catabolism, and that the altered 

levels of acyl-carnitines are simply markers of this global regulation of lipid metabolism. 
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In the lipid profile analysis, we observed a second trend pertaining to triacylglycerides. In fact, 

both triacylglycerides and diacylglycerides were upregulated upon erastin treatment, but were 

brought back to normal by the MDM2 and MDMX antagonists (Figs 4.2B and 4.S2E). Blocking 

diacylglycerol acyltransferase (DGAT) to lower the triacyl glyceride levels directly was not able 

to block ferroptosis (Figs 4.S2F and 4.S2G). Therefore, the altered levels of triacylglycerides can 

also be viewed as a casualty of the altered lipid metabolism due to MDM2-X inhibition. 

 

We hypothesized that cells treated with MDM2 and MDMX antagonists may upregulate lipid 

metabolism pathways to combat oxidative stress. Among the upregulated lipids upon MDM2-X 

inhibition were monounsaturated lipids (Fig 4.2B), which were reported to be able to counteract 

ferroptosis (Magtanong et al. 2019). In a second line of evidence that is presented below, we also 

found the ability of MDM2-X to regulate another key component of anti-oxidant defense of cells, 

CoQ10. Taken together, these lipidomic data led us to consider the possibility that one or more 

master regulators of lipids might be under the control of MDM2 and MDMX.  

 

4.2.4.2 PPARa activity plays a key role in facilitating the abilities of MDM2 and MDMX to 

promote ferroptosis  

In order to identify the candidate master regulator, we first examined if ferroptosis altered the 

localization of MDM2/X. We observed no consistent localization changes upon ferroptosis 

induction with erastin, or suppression using DFO, MEL23 and MDMX inhibitor (Fig 4.S3A).  
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We then examined some previously known targets of MDM2 that have potential links to lipid 

metabolism (Table 4.1). The knockdown of two such targets (DHFR or FANCD2) did not prevent 

the activity of MDM2/X antagonists in ferroptosis (Figs 4.S3B and 4.S3C).  

 

Along with Nicholas A O’Brien in the Prives lab, we then evaluated the role of PPARa, a 

transcription factor whose activity has been previously reported to be regulated by MDM2 under 

some conditions (Gopinathan et al. 2009). In fact, the PPAR family of transcription factors are 

known to be involved in large-scale rewiring of lipid homeostasis, particularly in response to stress 

(Gervois et al. 2000; van Raalte et al. 2004; Kersten 2008). PPARa is also reported to regulate 

carnitine palmitoyl transferases to promote the formation of acyl-carnitines (Song et al. 2010; 

Chen, Wang, Huang, et al. 2017) and in fact, pharmacological fibrates that function by enhancing 

PPARa activity are frequently used as triglyceride-lowering drugs (Auwerx et al. 1996; van Raalte 

et al. 2004; Kersten 2008). Recently, it was also found that PPARa activation can promote the 

synthesis of monounsaturated fatty acids (Tian et al. 2020). Since we saw a decrease in abundance 

of triacylglycerides and an increase in abundance of acylcarnitines and monounsaturated fatty 

acids, in addition to large-scale changes to the lipid profile of cells treated with the MDM2 and 

MDMX antagonists, we hypothesized that this effect of MDM2 and MDMX on ferroptosis might 

be mediated by PPARa.  

 

To test this, we evaluated whether altering PPARa activity altered the sensitivity of cells to 

ferroptosis. To this end, we used both a PPARa-specific agonist (pirinixic acid) and a PPARa 

antagonist (GW6471). We confirmed the effectiveness of these compounds by testing their 

respective effects on select transcriptional targets of PPARa (Figs 4.S4A and 4.S4B). In the p53 
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KO derivatives of both HT-1080 and SK-Hep1 cells, increased PPARa activity suppressed 

ferroptosis (Figs 4.2C and 4.2D), while decreased PPARa activity increased their sensitivity to 

ferroptosis (Figs 4.2E and 4.2F). Akin to the effect of the PPARa agonist, the ectopic 

overexpression of PPARa also suppressed ferroptotic death (Figs 4.S3D and 4.S3E). On the other 

hand, PPARg antagonist (GW9662) was able to decrease the ferroptotic sensitivity (Figs 4.S4C 

and 4.S4D) in line with reports indicating that the a and g isoforms of PPAR have opposing cellular 

functions (Kersten 2008). Despite a lot of effort, we were unable to eliminate the PPARa protein 

using RNA interference or CRISPR technology.  

 

Nevertheless, we tested if MEL23 and MDMX inhibition were able to rescue ferroptosis when 

PPARa activity was reduced. Strikingly, in the absence of PPARa activity, neither MDM2-

MDMX antagonist was effective in suppressing ferroptosis. As a control, the ability of fer-1 to 

inhibit ferroptosis was unaffected by the lack of PPARa activity (Figs 4.3A-C, 4.S4E-4.S4G). We 

verified that the effects seen were not due to increased toxicity of compounds, such that the 

combination of either MEL23 or the MDMX inhibitor with the PPARa antagonist did not 

significantly decrease viability (Figs 4.S4H and 4.S4I), nor did co-treatment with the antagonist 

result in any changes in the ability of the antagonists to block or ablate MDM2 and MDMX (Figs 

4.3B, 4.3C, 4.S4E and 4.S4G). Importantly, both MEL23 and the MDMX inhibitor themselves 

acted as agonists of PPARa activity, as seen by the upregulation of known PPARa transcriptional 

targets (Figs 4.3D and 4.S5A). This corroborates the published report that MDM2 can regulate 

PPARa activity (Gopinathan et al. 2009), and also suggests that the MDM2-MDMX complex is 

able to regulate this activity.  



113 
 

 

The exact mode of regulation of PPARa activity by MDM2-X is nonetheless unclear. These 

MDM2/X antagonists did not significantly or consistently alter the protein levels of PPARa (Fig 

4.S5B). Since PPARa is a transcription factor, nuclear exclusion could also alter its activity; we 

did not detect any change in localization of PPARa upon MDM2-X inhibition (Fig 4.S5D), even 

in the context of ferroptosis (Fig 4.S5C). This suggests that MDM2 and MDMX do not need to 

control the protein stability or nuclear localization of PPARa in order to regulate its transcriptional 

activity. On the other hand, both MDM2 and MDMX were detected when we immunoprecipitated 

PPARa, and this binding was not abrogated by the MDM2-X antagonists (Figs 4.3E, 4.S5E and 

4.S5F). These results suggest that the MDM2-X complex may post-translationally modify PPARa 

and alter its activity without inducing its degradation or nuclear exclusion.  

 

4.2.4.3 MDM2/X alter the antioxidant responses of cells through PPARa activity 

We evaluated whether heightened PPARa activity under MDM2-X antagonistic conditions could 

enhance other key defenses of cells. Stockwell lab member, Fereshteh Zandkarimi measured the 

levels of CoQ10, the lipophilic antioxidant. Treatment with MDM2-X antagonists elicited a 

markedly increased ratio of reduced to oxidized CoQ10 during ferroptosis (Figs 4.3F and 4.S5G). 

In fact, these inhibitors not only suppressed the reduction in the ratio resulting from erastin 

treatment, but enhanced it further beyond the levels of the vehicle control due to an increase in the 

levels of reduced CoQ10 (Fig 4.S5G right panel). This finding is in line with our hypothesis of 

large-scale rewiring of lipid metabolism caused by MDM2 and MDMX to favor pro-oxidant 

cellular pathways.  
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Further, as described in Chapter 1, FSP1/AIFM2 can block ferroptosis independent of GPX4 by 

increasing the amount of reduced CoQ10 (Bersuker et al. 2019; Doll et al. 2019). We found that 

MDM2/X inhibition causes an increase in FSP1 levels, which likely in turn regenerates reduced 

CoQ10 to block ferroptosis. We also observed that, in order to achieve the complete induction of 

FSP1 by MDM2-X inhibition, the full PPARa activity is required in either cell line (Figs 4.3G and 

4.S5H).  

 

These results thus indicate that lowered PPARa activity is a key conduit for MDM2/X to suppress 

the antioxidant defenses of cells and thereby promote ferroptosis. We provide a model in Fig 4.3H 

depicting our proposed scheme of the roles of MDM2 and MDMX in preventing the normal ability 

of cancer cells to resist the lipid peroxidation that drives ferroptosis. 
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4.3  Discussion 

Our data show that MDM2 and MDMX control ferroptosis sensitivity through their ability to 

regulate lipid homeostasis. Blocking the MDM2-MDMX complex causes an accumulation of 

monounsaturated lipids and reduced CoQ10, as well as changes in the abundance of acyl carnitines 

and tri/diacylglycerides.  This indicates that inhibition of MDM2-MDMX complex activity leads 

to a coordinated rewiring of lipid metabolism to suppress ferroptosis. Of note, oleaginous 

microorganisms accumulate lipids in response to ROS (Shi et al. 2017), suggesting a similar stress 

response upon inhibition of MDMX and MDM2.  

The increase in reduced CoQ10 due to altered regulation of FSP1 has also been shown to be a strong 

defense against lipid peroxidation (Bersuker et al. 2019; Doll et al. 2019). It is unlikely, however, 

that the increase in CoQ10 levels is the only means by which MDM2 and MDMX suppress 

ferroptosis, as MDM2 and MDMX inhibition also suppresses death induced by the class III FIN, 

FIN56, which can inhibit mevalonate pathway-derived CoQ10 production (Shimada et al. 2016). It 

is therefore probable that additional defenses against ferroptosis are upregulated in the absence of 

MDM2 and MDMX activity. Taken together, we assume that MDM2 and MDMX normally 

function to coordinate lipid metabolism, perhaps through one or more master regulators, in a 

manner that favors ferroptosis.  

 

One such regulator is PPARa, the activity of which is modulated by the MDM2-MDMX 

antagonists and in turn this activity can mediate the role of MDM2 and MDMX in ferroptosis. 

Altered PPARa activity by MDM2 and MDMX disables the antioxidant defenses of cells, as well 

as effects other changes to the lipidome that together favor ferroptosis. The PPAR family of 

receptors, which are master regulators of cellular metabolism, particularly that of lipids, have been 
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implicated in several diseases (Tyagi et al. 2011). PPARa activity in particular has been targeted 

to control hyperlipidemia (Auwerx et al. 1996), but of direct relevance here, it has also been 

implicated in controlling oxidative homeostasis of cells with implications in inflammation (van 

Raalte et al. 2004; Tyagi et al. 2011). It was reported that  MDM2 can regulate the transcriptional 

activity of PPARa, and the direction of regulation was dependent on their relative expression 

levels (Gopinathan et al. 2009). While the previous paper mainly focused on MDM2 behaving like 

a PPARa agonist, in our cell lines, both MDM2 and MDMX actually behave like PPARa 

antagonists and this is just one example of the complex nature of this regulatory mechanism.  

 

Since our results indicate that MDM2 and MDMX do not alter the PPARa protein levels, their 

inhibitory effect on PPARa is not due to its degradation. Yet, the results with MEL23, which is an 

inhibitor of the E3 ligase activity of the MDM2-MDMX complex, suggests either the possibility 

that blocking ubiquitination of PPARa (but not its degradation) affects its activity, or that 

degradation of a regulator of PPARa leads to its altered activity. Given that MDM2 and MDMX 

associate with PPARa, it is more likely that its activity is kept at bay through ubiquitination by 

the MDM2-X complex.  Future studies will hopefully illuminate better how MDM2 and MDMX 

control PPARa in cells undergoing ferroptosis.       

 

There are numerous other proteins that can potentially be modulated to render cells susceptible to 

ferroptosis (Yang and Stockwell 2016), either through PPARa or independently. For example, 

FSP1 protein levels were still induced, albeit to a lesser degree, even when PPARa activity was 

inhibited. It is possible that the MDM2-X complex can also directly control the stability of FSP1, 

along with regulating its transcription through PPARa or that there are other target proteins 
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involved in this process. E3 ligase targets of MDM2, other than p53, have been discovered (Riley 

and Lozano 2012), but there are no confirmed targets of the MDM2-MDMX heterocomplex other 

than p53 and p21. Since we found that the role of the MDM2-MDMX complex in ferroptosis is 

independent of p53 and p21, other targets (as yet unknown) can likely mediate these effects on 

lipid metabolism. Our experiments indicated that some other known targets of MDM2, could 

actually be targets of the MDM2-X complex and have a role in ferroptosis, but are not involved in 

mediating the role of MDM2-X in ferroptosis. Identifying more targets of the MDM2-MDMX 

complex and especially those that can modulate the cellular lipid profile changes poses a 

substantial challenge for the future.  

 

In the previous chapter we had a puzzling finding with MDMX overexpression, which suggests 

that MDMX may have additional MDM2-independent role(s) in promoting ferroptosis. Given that 

we now know the mechanism by which MDM2/X exert their effects on ferroptosis, we can suggest 

a potential explanation for this result. It is possible that MDMX can coordinate additional changes 

in lipid metabolism possibly through different master regulators. This is in agreement with a recent 

report showing that MDMX might control obesity in mice by preventing lipid accumulation (Kon 

et al. 2018).  

 

Identifying the mechanism by which MDM2 and MDMX regulate ferroptosis may also provide 

some additional therapeutic benefits apart from those mentioned in the previous chapter. Some 

cancer therapies that activate p53 and cause unintended organ damage might be doing so through 

the induction of MDM2/X mediated ferroptosis in those organs. For example, some studies suggest 

that the cardiotoxicity associated with doxorubicin treatment for breast cancer, can be counteracted 
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with CoQ10 supplementation (Conklin 2005). Such therapies might benefit from combinations with 

ferroptosis inhibitors, to allow for higher doses of the therapy to be safely administered. Also, 

PPARa inducing fibrates that are already being used to treat patients with lipid based disorders 

(Auwerx et al. 1996; van Raalte et al. 2004), could potentially be used in treating disorders such 

as neurodegeneration and organ damage, which implicate ferroptosis as mentioned in the previous 

chapter. On the other hand, PPARa activity in tumors may also be a predictor of ferroptosis 

sensitivity. Thus, combining inhibitors of PPARa with FINs might enable targeting of ferroptosis-

resistant cancers that display high PPARa activity. 
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4.4  Methods 

4.4.1 Immunoblot 

The same methodology as described in 2.4.5 was used except the lysis buffer was RIPA buffer 

(0.05M Tris-HCL pH:8.0, 0.5% Sodium deoxycholate, 0.1% SDS, 1% NP-40 and 0.15 M Sodium 

hydrochloride). PPARa was only detected when samples were lysed with RIPA buffer. Actin or 

GAPDH was used as the loading control. 

 

The following primary antibodies were additionally used from those listed in 2.4.5 and 3.4.2: 

PPARa (H-2, Santa Cruz biotech cat# sc-398394 or Abcam cat# ab24509); GAPDH (CST cat# 

5174S); FSP1 (mAB produced in Dr. Marcus Conrad’s lab). 

 

4.4.2 Chemicals 

The following chemicals were additionally used apart from those listed in 2.4.3 and 3.4.3: PPARa 

agonist (Pirinixic acid, Selleckchem, cat# S8029), PPARa antagonist (GW6471, Santa Cruz 

Biotechnology, CAS 436159-64-7), PPARg antagonist (GW9662, Santa Cruz Biotechnology, 

CAS 22978-25-2) and DGAT1 inhibitor (Cayman Chemicals A-922500). All compounds were 

dissolved in DMSO (Sigma-Aldrich, cat# D8418). 

 

4.4.3 Transfection-siRNA 

The same methodology and reagents as described in 2.4.6 and 3.4.4 was used, except for that 

TransIT-X2 Transfection Reagent (Mirus) was used instead of lipofectamine to lower the 

interference of exogenous lipids from altering the activity of PPARa. 
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4.4.4 Transfection- plasmids 

The same methodology as described in 2.4.7 and 3.4.5 was used, except TransIT-X2 Transfection 

Reagent (Mirus) was used instead of lipofectamine for all experiments related to PPARa.  

 

 

Full length PPARa plasmids were obtained from Origene (Myc-DDK-tagged-Human peroxisome 

proliferator-activated receptor alpha (PPARA), transcript variant 5, cat #RC216176). 

 

4.4.5 Immunoprecipitation 

The same methodology as described in 3.4.7 was used. 

 

For PPARa IP: 1.5 million SK-HEP1 p53 KO cells or 1 million HT-1080 p53 KO cells were 

plated in 10 cm dishes. The next day they were treated with MDM2-X antagonistic drugs (MEL23, 

MDMX inhibitor) or DMSO control for 24 h before harvesting. RIPA lysis buffer was used for 

the steps described above. We used 4 µg of the H-2 (Santa Cruz biotech cat# sc-398394) or 

ab24509 (Abcam) antibodies against PPARa. 

 

4.4.6 Cell viability assay 

The same methodology as described in 3.4.8 was used. 

 

4.4.7 Quantitative reverse transcription PCR 

The same methodology as described in 2.4.4 was used. 
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Primer sequences:  

L32 F: TTCCTGGTCCACAACGTCAAG, L32 R: TGTGAGCGATCTCGGCAC; 

CPT1A F: ATC AAT CGG ACT CTG GAA ACG G, CPT1A R: TCA GGG AGT AGC GCA 

TGG T; 

ACOX1 F: GGA ACT CAC CTT CGA GGC TTG, ACOX1 R: TTC CCC TTA GTG ATG 

AGC TGG;  

ABCA1 F: TCA GAG ACG ACC CTG GAA GA, ABCA1 R: 

TGGCAAGGTACCATCTGAGG; 

ECH1 F: TTC AAC AAG ATT TCG AGA GAC GC, ECH1 R: TCC TGG TAT CGA GTG 

ATG ATG T 

 

4.4.8 Cell cycle analysis by flow cytometry 

HT-1080 cells (3 x 105) were plated in each well of a 6-well plate and treated with compounds the 

next day. The cells were harvested using trypsin. The cell pellets were washed with phosphate 

buffered saline (PBS) and fixed/permeabilized with 50% ice-cold ethanol. The pellets were further 

washed with PBS and resuspended in PBS containing solution of 50 μg/ml ribonuclease A and 

62.5 μg/ml propidium iodide (Sigma-Aldrich, St Louis, MO, USA). Samples were analyzed using 

FACSCalibur (Becton Dickinson, Franklin Lakes, NJ, USA). FlowJo Version 10.4.2 was used to 

determine the percent of cells in each stage of the cell cycle. 

 

4.4.9 Reduced glutathione measurement 

HT-1080 cells were plated in 10 cm dishes (2 x 106) and treated with compounds the next day. 

Cells were harvested and lysed using ice-cold PBS containing 0.5% Nonidet P-40. Samples were 
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centrifuged for 15 min at 4 °C at 13,000 g. The supernatant was deproteinized using a 

deproteinizing kit (ab2047080, Abcam) while on ice. Reduced GSH levels were determined using 

GSH/GSSG Ratio Detection Assay Kit (Fluorometric - Green) (ab138881, Abcam) following the 

manufacturer's protocol. 

 

4.4.10 Measurement of Iron levels 

The measurement of iron levels was performed using the iron probe developed by the lab of Dr. 

Christopher J Chang. The protocol described in Aron et al (Aron et al. 2016) for measuring the 

labile iron pool during erastin-induced ferroptosis was used for conducting the experiment and for 

the imaging approach. HT-1080 cells(2 x 104) were plated into each well of the 4-chambered cover 

glass slides. The following day, cells were treated with compounds for 4 h, then washed with 

HBSS. The cells with incubated with HBSS containing 2.5-5 µM of the iron probe for 90 min at 

37 °C in the dark. The cells were then washed several times with HBSS before a second incubation 

with HBSS containing 1 µM of Hoescht 33342 (Thermo Fisher Scientific) for 10 min at 37 °C in 

the dark. The cells were again washed several times with HBSS and imaged using the 20X 

objective of a confocal microscope (LSM 700; Carl Zeiss). The cells thus were images after a total 

period of 6.5 h post compound treatment. 

 

4.4.11 Lipid ROS measurement using C11-BODIPY 581/591 

HT-1080 cells were plated in 6-well plates (3 x 10^5) and were treated with the compounds the 

following day for 6.5-7 h. Cells were harvested using trypsin and washed using HBSS. Cells were 

centrifuged briefly and the pellet was resuspended in HBSS containing 10 μM C11-BODIPY 

581/591 (ThermoFisher) and incubated at 37 °C for 20 min. Fluorescence intensity was measured 
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on the FL1 and FL2 channels using FACSCalibur (Becton Dickinson, Franklin Lakes, NJ, USA). 

FlowJo Version 10.4.2 was used to generate the histograms and quantify the mean fluorescence 

intensity of the FL1 and FL2 channel. The intensity of FL1 channel was normalized to that of the 

FL2 channel to account for any differences in uptake of reagent due to compound treatment. A 

minimum of 2 x 10^4 cells was analyzed per condition. 

 

4.4.12 Lipid profiling 

Coenzyme Q10 detection and characterization: Mass spectrometry based targeted lipid profiling 

was done as previously described in (Kraft et al. 2020) 

 

Lipid Profile Analysis used for estimation of lipids and acyl carnitines (UC Denver): Mass 

spectrometry based untargeted lipid profiling was done as previously described in (Reisz et al. 

2019) 

 

Lipid Profile Analysis used for estimation of triacyl and diacyl glycerides: Mass spectrometry 

based untargeted lipid profiling was done as previously described in (Zhang et al. 2019) 

 

4.4.13 Statistical analysis 

Prism (version 8, GraphPad) was used to make all the graphs in the paper and for performing all 

the statistical analysis shown. The GraphPad style (0.1234(ns), <0.0332(*), < 0.0021(**), 

<0.0002(***)) was used to represent the p values. The p values were calculated by ANOVA and 

appropriate multiple testing correction was done where required. 
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4.5 Tables 

Table 4.1 Evaluation of key ferroptosis modulators and MDM2-associated proteins  

In order to identify the mechanism of regulation of ferroptosis by MDM2/X, multiple proteins 

were tested for their roles as modulators of this pathway. Different known modulators of 

ferroptosis, as well as certain known targets of MDM2 with potential roles in ferroptosis were 

found to not modulate the roles of MDM2/X in ferroptosis. 
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4.6 Figures 
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Figure 4.1 MDM2 and MDMX control a central checkpoint of ferroptosis  

(A) The influence of MDM2 and MDMX antagonists (MEL23 and MDMX inhibitor) on the cell 

cycle profile of HT-1080 derived p53 KO cells after 7-8 h of treatment. The left panel shows the 

viability of cells treated for this duration with erastin (10µM) in combination with the antagonists. 

The right panel depicts the cell cycle profile assessed by flow cytometry using propidium iodide 

when cells were treated with the antagonists for this duration. 

(B) Schematic depicting the previously established mechanisms of various FINs (Stockwell et al. 

2017).  

(C) Inhibitory effect of MEL23 on the response of HT-1080 derived p53 KO cells to various 

classes of FINs: RSL3, FIN56 and FINO2.  

(D) Assessment of reduced glutathione levels in HT-1080 derived p53 KO cells treated with 

erastin, with or without MEL23 or MDMX inhibitor.  

(E) Lipid ROS levels in HT-1080 derived p53 KO cells were measured by flow cytometry using 

C-11 Bodipy 581/591. The cells were treated with IKE in combination with either ferrostatin-1 or 

MDM2/X antagonists. The left panel represents the histogram showing the green fluorescence and 

the right panel represents the quantification of the normalized fluorescence. 

(F) The levels of labile (ferrous) iron in HT-1080 derived cells were measured using the FIP-1 

probe. The cells were treated with erastin, either alone or in combination with DFO or MEL23.  

 

Cells in (C) were treated with drugs for 24 h. Cells in (D-F) were treated with erastin/IKE (10 µM) 

for 6.5 h. The data in left panel of (A) represent the mean ± SE for three independent experiments, 

and in right panel of (A) represent the mean ± SE for three biological replicates. The data in (C) 

represent the mean ± SE for two out of four independent experiments. The data in (D) represent 



127 
 

the mean ± SE for three biological replicates. The data in the right panel of (E) represent the mean 

± SE for three independent experiments. The data in (F) is from one representative experiment out 

of three independent experiments. The data in (F) show the mean ± SE obtained from analyzing at 

least 100 different cells (from a minimum of five different fields) for each treatment condition. 

The viability data have been measured using ATP based CellTiter-Glo reagent and have been 

normalized to the DMSO control. 
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Figure 4.2 MDM2 and MDMX regulate lipid metabolism to favor ferroptosis 

(A, B) Signal intensities of (A) lipids and (B) triacyl glycerides (TAG) in HT-1080 derived p53 

KO cells were measured by LC-MS and analyzed as significantly altered by ANOVA. The cells 

were treated with erastin in combination with MDM2 and MDMX antagonists.  

(C-F) The cell death due to erastin was assessed when PPARa activity was modulated using an 

agonist, pirinixic acid, or an antagonist, GW6471, in two different cell lines. Pirinixic acid blocks 

the lethal dose of erastin in (C) HT-1080 derived p53 KO cells and (D) SK-Hep1 derived p53 KO 

cells. GW6471 enhances the dose-response to erastin in (E) HT-1080 derived p53 KO cells and 

(F) SK-Hep1 derived p53 KO cells. 

 

Cells in (A, B) were treated with erastin (10µM) for 6.5 h. Cells in (C, D) were treated with erastin 

and pirinixic acid for 16 h. Cells in (E, F) were treated with erastin for 24 h and with GW6471 for 

48 h.  The data in (A, B) represent the mean ± SE for three biological replicates. The data in (C, 

D) represent the mean ± SE for three or two of three independent experiments respectively. The 

data in (E, F) represent the mean ± SE for two out of four independent experiments. The viability 

data have been measured using ATP based CellTiter-Glo reagent and have been normalized to the 

DMSO control. 
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Figure 4.3 PPARa activity plays a key role in facilitating the abilities of MDM2 and MDMX 

to dampen the antioxidant responses of cells and promote ferroptosis  
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(A, B) Effect of PPARa antagonist GW6471 on the ability of MEL23, MDMX inhibitor, and fer-

1 to block ferroptosis in SK-HEP1 derived p53 KO cells. (B) Left panel: the relative cell death due 

to erastin when in combination with these inhibitors and GW6471. (B) Right panel: the effect of 

MEL23 and MDMX inhibitor on the protein levels of MDM2 and MDMX is unaffected by 

cotreatment with GW6471. (A) Visualization of the aforementioned changes in cell viability at 

10X magnification. 

(C) PPARa antagonist GW6471 suppresses the ability of siMDMX and siMDM2 to block 

ferroptosis in SK-HEP1 derived p53 KO cells. Two different siRNAs (#1 and #2) were used 

against each protein and compared against a scrambled siRNA negative control (siCtrl). The right 

panel shows the corresponding decrease in the protein levels of MDM2 and MDMX upon RNA 

interference. The transfection was done using 20nM of siRNA in media with GW4671 and the 

cells were treated with drugs 24 h after transfection.  

(D) MEL23 and MDMX inhibitor upregulate the mRNA levels of some known PPARa 

downstream targets in SK-HEP1 derived p53 KO cells. 

(E) Immunoprecipitation using PPARa antibody in SK-HEP1 derived p53 KO cells shows binding 

to MDM2 and MDMX even under treatment with MDM2-X antagonists. 

(F) Ratio of reduced to oxidized CoQ10 levels in HT-1080 derived p53 KO cells treated with erastin 

in combination with MDM2 and MDMX antagonists. 

(G) PPARa activity modulates the levels and extent of increase of FSP1 protein in cells treated 

with the MDM2/X antagonists in HT-1080 p53 KO cells. 

(H) Summary schematic depicting the hypothesized role of MDM2 and MDMX in ferroptosis. 
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Cells in (A-C, E, G) were treated with erastin/MEL23/MDMX inhibitor for 16 h and (A- C, G) 

also with GW6471 for 40 h. Cells in (D, F) were treated with erastin (10µM) for 6.5 h. The data 

in (B, C) represent the mean ± SE for three or two of three independent experiments respectively. 

The data in (D, F) represent the mean ± SE for three biological replicates. The viability data have 

been measured using ATP based CellTiter-Glo reagent and have been normalized to either the 

DMSO control or the GW6471 control respectively in (B), and to each transfection’s respective 

control that is not treated with erastin in (C). 
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Figure 4.S1 The inhibition of MDM2 and MDMX suppresses ferroptosis induced by any of 

the four classes of FINs (Relating to Figure 4.2) 
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(A-C) Inhibitory effect of MDM2 and MDMX antagonists (MEL23, MDMX inhibitor) on the 

response of two different cell lines to various classes of FINs. HT-1080 derived cells have been 

treated with a combination of (A) MEL23 or (B) MDMX inhibitor, each with RSL3, FIN56 or 

FINO2 respectively. (C) SK-Hep1 derived cells have been treated with either MEL23 or MDMX 

inhibitor, each in combination with either RSL3, FIN56 or FINO2. 

(D) Assessment of reduced glutathione levels of HT-1080 derived p53 KO cells over different 

time points (2.5, 4.5 and 6.5 h). The cells were treated with erastin with or without either MEL23 

or MDMX inhibitor.  

(E) Lipid ROS levels in HT-1080 derived p53 KO cells were measured by flow cytometry using 

C-11 Bodipy 581/591. The cells were treated with erastin in combination with either fer-1 or 

MDM2 and MDMX antagonists. The left panel represents the histogram showing the green 

fluorescence for one representative experiment and the right panel represents the quantification of 

the normalized fluorescence. 

(F) The levels of labile (ferrous) iron levels in HT-1080 derived cells were measured using the 

FIP-1 probe. The cells were treated with erastin, either alone or in combination with MDMX 

inhibitor. 

 

Cells in (A) were treated with drugs for 24 h. Cells in (B, C) were treated with drugs for 16 h. Cells 

in (D-F) were treated with erastin (10µM) for 6.5 h. The data in (A) represent the mean ± SE for 

two out of four independent experiments. The data in (B, C) represent the mean ± SE for two of 

three independent experiments. The data in (D) represent the mean ± SE for three biological 

replicates. The data in the right panel of (E) represent the mean ± SE for four independent 

experiments. The data in (F) show the mean ± SE obtained from analyzing at least 100 different 
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cells (from a minimum of five different fields) for each treatment condition and is one 

representative experiment out of three independent experiments. The viability data have been 

measured using ATP based CellTiter-Glo reagent and have been normalized to the DMSO control. 
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Figure 4.S2 MDM2 or MDMX inhibitors alter the abundance of various lipid species in cells 

undergoing ferroptosis (Relating to Figure 4.3) 

(A-C, E) Signal intensities of (A) lipids, (B, C) acyl carnitines, (E) triacyl glycerides (TAG), and 

diacyl glycerides (DAG) in HT-1080 derived p53 KO cells were measured by LC-MS and 

analyzed as significantly altered by ANOVA. The cells were treated with erastin in combination 

with MDM2 and MDMX antagonists.  

(D) The b-oxidation inhibitor, etomoxir does not block the ferroptotic activity of MEL23 or 

MDMX inhibitor in HT-1080 derived p53 KO cells. Right panel- etomoxir lowers the ATP content 

of cells, as previously reported. 

(F, G) The DGAT1 inhibitor (A-922500) does not alter the ferroptotic sensitivity of (F) HT-1080 

derived p53 KO cells and (G) SK-HEP1 derived p53 KO cells. 

 

Cells in (A-C, E) were treated with erastin (10µM) for 6.5 h. Cells in (D, F, G) were treated with 

erastin for 16 h and (F, G) were also treated with the inhibitor for the same time. The data in (A-

C, E) represent the mean ± SE for three biological replicates. The data in (D, F, G) represent the 

mean ± SE for two independent experiments. The viability data in (D) have been measured using 

PrestoBlue reagent and in (F, G) ATP based CellTiter-Glo reagent. The viability data have been 

normalized to the DMSO control. 
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Figure 4.S3 PPARa, but not DHFR or FANCD2, mediates the role of MDM2 and MDMX in 

ferroptosis (Relating to Figure 4.3) 

(A) The localization pattern of MDM2 and MDMX was visualized at 20X magnification. DAPI 

was used to label the nucleus.  

(B, C) Knockdown of (B) DHFR or (C) FANCD2 does not significantly suppress the ability of 

MEL23 or the MDMX inhibitor to block ferroptosis. The top panel shows the viability changes 

under the various conditions. The middle panel highlights the change in fold change of cell death 

due to ferroptosis when co treated with the MDM2-X antagonists. The bottom panel depicts the 

corresponding decrease in the protein levels of DHFR/FANCD2 upon RNA interference. The 

transfection was done using 20nM of siRNA. The cells were treated with drugs 24 h after 

transfection. 

(D, E) PPARa overexpression suppresses ferroptosis in (D) SK-HEP1 derived p53 KO cells and 

(E) HT-1080 derived p53 KO cells. The top panels show the effect of PPARa overexpression on 

the cell death response to erastin. The bottom panels show the corresponding expression levels of 

PPARa in the cells. 

 

Cells in (A) were treated with erastin (10µM) for 6.5 h. Cells in (B, C) were treated with IKE for 

18 h. Cells in (D, E) were treated with erastin for 16 h. The data in (A) show one representative 

experiment of three independent experiments. The data in (B, C) represent the mean ± SE for two 

independent experiments. The data in (D, E) represent the mean ± SE for two of three independent 

experiments. The viability data have been measured using ATP based CellTiter-Glo reagent and 

have been normalized to each transfection’s respective control that is not treated with erastin.  
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Figure 4.S4 MDM2 and MDMX behave as antagonists of PPARa in order to promote 

ferroptosis (Relating to Figure 4.4) 

(A, B) The change in the mRNA levels of some known PPARa downstream targets by the PPARa 

agonist, pirinixic acid, and the PPARa antagonist, GW6471, in (A) HT-1080 derived p53 KO cells 

and (B) SK-Hep1 derived p53 KO cells. 

(C, D) The PPAR	𝛾 antagonist (GW9662) blocks ferroptosis in a concentration dependent manner 

in both (C) HT-1080 derived p53 KO cells and (D) SK-HEP1 derived p53 KO cells. 

(E, F) Effect of PPARa antagonist GW6471 on the ability of MEL23, MDMX inhibitor, and fer-

1 to block ferroptosis in HT-1080 derived p53 KO cells. (E) Left panel: The relative cell death due 

to erastin when in combination with GW6471 and either MEL23, MDMX inhibitor, or fer-1. (E) 

Right panel: The effect of MEL23 and MDMX inhibitor on the protein levels of MDM2 and 

MDMX is unaffected by co-treatment with GW6471.  (F) Visualization of the aforementioned 

changes in cell viability at 10X magnification. 

(G) PPARa antagonist GW6471 suppresses the ability of siMDMX and siMDM2 to block 

ferroptosis in HT-1080 derived p53 KO cells. Two different siRNAs (#1 and #2) were used against 

each protein and compared against a scrambled siRNA negative control (siCtrl). The right panel 

shows the corresponding decrease in the protein levels of MDM2 and MDMX upon RNA 

interference. The transfection was done using 20nM of siRNA in media containing GW4671. The 

cells were treated with drugs 24 h after transfection.  

(H, I) PPARa antagonist GW6471 only slightly increases the basal toxicity when co-treated with 

either MEL23 or MDMX inhibitor in (H) HT-1080 derived p53 KO and (I) SK-HEP1 derived p53 

KO cells. 
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Cells in (A, B) were treated with pirinixic acid (10µM) for 24 h and with GW6471 (10µM) for 40 

h. Cells in (C-I) were treated with erastin for 16 h and also treated with GW9662/GW6471 for 40 

h. The data in (A, B) represent the mean ± SE for three biological replicates. The data in (C, D) 

represent the mean ± SD for one representative of three independent experiments. The data in (E, 

G-I) represent the mean ± SE for three independent experiments. 

The viability data have been measured using ATP based CellTiter-Glo reagent and have been 

normalized to either the DMSO control or the GW6471 control respectively in (E), to each 

transfection’s respective control that is not treated with erastin in (G), and to the DMSO control in 

(C, D, H, I).  
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Figure 4.S5 Inhibition of MDM2/X does not need to alter the stability or localization of 

PPARa in order to limit its ability to promote antioxidant defenses against ferroptosis 

(Relating to Figure 4.3) 

(A) MEL23 and MDMX inhibitor upregulate the mRNA levels of some of the known PPARa 

downstream targets in HT-1080 derived p53 KO cells. 

(B) MEL23 and MDMX inhibitor, do not significantly or consistently alter the levels of PPARa. 

Note that PPARa protein levels tend to vary between experiments. 

(C, D) The localization pattern of PPARa was visualized under treatment conditions. DAPI was 

used to label the nucleus. (C) 20X magnification was used and the cells were treated for 6.5 h in 

the context of ferroptosis. (D) Cells under MEL23 treatment were also examined at 24 h post 

treatment at both 20X and 40X magnifications. 

(E, F) Immunoprecipitation using two different PPARa antibodies in (E) SK-HEP1 derived p53 

KO cells and (F) HT-1080 derived p53 KO cells shows binding to MDM2 and MDMX even under 

treatment with MDM2-X antagonists. The condition with no antibody represents the IgG control 

to show the specificity of the binding. 

(G) The levels of CoQ10 in HT-1080 derived p53 KO cells was measured by LC-MS. The cells 

were treated with erastin in combination with MDM2 and MDMX antagonists. The left panel 

depicts the levels of the oxidized form of CoQ10 while the right panels shows the levels of the 

reduced form of CoQ10 under these treatment conditions. 

(H) PPARa activity modulates the levels and extent of increase of FSP1 protein in cells treated 

with the MDM2/X antagonists in SK-HEP1 p53 KO cells. The top panel shows the increase in 

FSP1 levels due to MDM2/X antagonists and the bottom panel compares the change in FSP1 levels 

due to the MDM2/X antagonist with or without the addition of the PPARa antagonists (GW6471). 
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Cells in (A, G) were treated with the drugs for 6.5 h. Cells in (B, E, F, H) were treated with MEL23 

or MDMX inhibitor for 16 h and lower panel of (H) also with GW6471 for 40 h . The data in (A, 

G) represent the mean ± SE for three biological replicates. 
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Chapter 5: Perspectives and future directions 

Multiple reports have demonstrated the importance of p53 in determining the extent of cancerous 

death through ferroptosis. In this dissertation we take an alternative route to examine the relevance 

of p53 to ferroptosis. Instead of examining the direct effect of presence or absence of p53 on the 

ferroptotic sensitivity of cancer cells, we have focused on evaluating the ability of other proteins 

in the p53 network to modulate ferroptosis. The original aim of this project was two pronged: one, 

to identify downstream targets of p53 that can alter the rate of ferroptosis; two, to then use that 

knowledge to unravel the complexity in defining the direction of regulation of ferroptosis by p53.  

We were indeed successful in identifying three proteins of the p53 network, namely p21, MDM2 

and MDMX, which can modulate ferroptosis. While Chapter 2 describes p21 as a potential conduit 

of the suppressive roles of p53 on ferroptosis, Chapters 3 and 4 mainly show a p53-independent 

pro-ferroptotic role for MDM2 and MDMX. Chapters 3 and 4, do suggest that MDM2/X might be 

able to mediate the ability of p53 to promote ferroptosis, at least in some settings. Nevertheless, 

the second aim of the project does not yet have a clear answer. In the future, we need to compare 

the levels or activities of MDM2/X and p21 in various contexts to evaluate if either can determine 

the extent of ferroptosis upon perturbation to p53 levels. Based on the availability of substrates 

and in co-operation with other ferroptosis modulators, it is more likely that p53 activates different 

or multiple targets, that together determine the final effect on ferroptosis. Therefore, there is need 

to identify more members of the p53 network with roles in ferroptosis, in order to fully satisfy this 

goal. 

 

Chapters 3 and 4 also add to the growing literature regarding p53-independent roles of MDM2, 

MDMX and especially the MDM2-X complex. While being novel, it is in line with the previous 
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reports highlighted in Chapter 1 that demonstrate the abilities of MDM2 and MDMX to regulate 

cellular metabolism independent of p53. Particularly, our work demonstrates a molecular pathway 

to further the suggested role of MDM2/X in being capable of altering the cellular lipid metabolism.  

 

In addition, we have uncovered MDM2, MDMX and PPAR⍺ as the upstream regulators of the 

newly discovered ferroptosis suppressor, FSP1. This finding suggests that perhaps, many of the 

regulators listed in Chapter 1, could have more of a crosstalk and interdependence than we 

currently appreciate. In the future, when more regulators of ferroptosis are uncovered due to 

ongoing research efforts, a more comprehensive molecular map of the drivers of ferroptosis can 

be developed. 

 

In order to better understand the p53-independent roles of MDM2-X complex in ferroptosis, as 

well as in regulating other aspects of cell survival, the most important next step of this project lies 

in uncovering new targets of the complex that are independent of p53. This includes both direct 

ubiquitination targets of the MDM2-X complex as well as its binding partners outside the context 

of p53. Strategies to identify such targets will be discussed in the sections below. 

 

5.1 A role for p53 target genes in mediating ferroptosis 

Owing to our discovery in Chapter 3, that MDM2 and its E3 ligase activity are key promoters of 

ferroptosis, one of the results in Chapter 2 assumes more importance. In Chapter 2, upon 

ferroptosis induction a reduction in the protein levels of the E3 ligase targets of MDM2 (p53, p21 

and MDM2 itself) was observed only in the sensitive cells. This reduction was suppressed by the 

use of MEL23, the inhibitor of the E3 ligase activity of MDM2 that also blocked ferroptosis. On 
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the other hand, in ferroptosis-resistant cells, p53 and p21 accumulated and this is potentially an 

indication of suppressed MDM2 E3 ligase activity, which could be contributing to their resistance. 

These results taken together with the apparent dephosphorylation of MDM2 observed in sensitive 

cells due to FIN treatment, suggest that MDM2 E3 ligase activity is hyperactive in cells sensitive 

to ferroptosis. The possibility that FINs actually lead to this activation since this activity is needed 

to promote ferroptosis, is very pertinent at this point.  

 

First, the change in the phosphorylation status of MDM2 upon ferroptosis induction needs to be 

confirmed in order to further explore this hypothesis. While it is well known that phosphorylation 

of MDM2 can alter its activity and stability, the phosphorylated residue dictates the type of 

alteration. Different upstream effectors are responsible for the phosphorylation of MDM2 at 

specific residues (Chen 2012). For example, DNA damage can lead to the phosphorylation of 

MDM2 at various sites through different downstream sensors, in order to compromise the ability 

of MDM2 to regulate p53 in multiple ways. While the phosphorylation at S395 through ATM 

inhibits the E3 ligase activity of MDM2 (Maya et al. 2001), the phosphorylation at S407 through 

ATR can prevent MDM2-mediated nuclear export of p53 (Shinozaki et al. 2003) and the 

phosphorylation at Y394 through c-Abl blocks both these functions of MDM2 against p53 (Sionov 

et al. 2001). On the other hand, phosphorylation of the serines in the acidic domain of MDM2 

through mediators such as GSK3 can enhance the degradation of p53 without directly affecting 

the E3 ligase activity of MDM2. Thus, this role of GSK3 is downregulated upon DNA damage 

(Blattner et al. 2002; Kulikov, Boehme, and Blattner 2005).  
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MDMX phosphorylation can also play a role in determining the E3 ligase activity of the MDM2-

X heterocomplex. For example, Chk-2 phosphorylation in proximity of the RING domain of 

MDMX can enhance MDM2-X heterodimerization and hence activity (Chen et al. 2005). 

Conversely, WIP1 can dephosphorylate MDM2 at S395 to enhance its E3 ligase activity. 

Interestingly, if WIP1 dephosphorylates MDMX, then it has the opposite effect of lowering the 

MDM2-X heterocomplex formation (Chen 2012). 

 

Based on our data with the 2A10 antibody, we have some evidence that MDM2 is 

dephosphorylated on the S395 position upon ferroptosis induction. This needs to validated using 

site-specific phosphorylation antibodies, as well as mass-spectrometry-based protein studies. It 

will also be important to determine whether ferroptosis can lead to changes in the phosphorylation 

status of MDMX and if so, at what position(s). Identifying the site(s) of phosphorylation may also 

shed light on upstream modulators that might respond to FINs and in turn activate MDM2.  

 

Second, it is yet unclear if the changes in MDM2/X phosphorylation status have any direct 

relevance to the ability of  MDM2/X to promote ferroptosis. We had some preliminary data (data 

not shown) that an inhibitor of WIP1 can promote ferroptosis. This was counter-intuitive, since 

inhibition of WIP1-mediated MDM2 dephosphorylation would be expected to block ferroptosis. 

But this result suggests that in this context, WIP1 may favor MDMX dephosphorylation, the 

inhibition of which could then promote complex formation and hence ferroptosis. The extent of 

formation of the MDM2-X heterocomplex needs to be assessed in cells treated with this WIP1 

inhibitor to confirm that the effect is specific to the MDM2-X E3 ligase activity. Further, the effects 

of MDM2/X mutants, with altered ability to undergo phosphorylation, on the ferroptosis sensitivity 
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of cancer cells need to be evaluated. These variants would be mutated at the identified 

phosphorylation sites to either be resistant to phosphorylation or be constitutively phosphorylated. 

 

Finally, the phosphorylation status of MDM2/X needs to be assessed using ferroptosis inhibitors 

that inhibit the various stages of the ferroptosis pathway, in order to determine which checkpoint 

is involved in this alteration and if it could possibly be key to triggering excessive death. 

 

5.2 MDM2 and MDMX promote ferroptosis in a p53-independent manner 

Our findings in Chapter 3 used multiple approaches (small molecule and genetic) in various 

contexts to show that MDM2 and MDMX are bona fide regulators of ferroptosis. While this 

indicates the robustness of this regulation, we are unaware if it is context-specific. Since we used 

cancer cell lines derived from different tissues of origin (even those without a MDM2/X 

amplification), this argues against a clear contextual effect. Nevertheless, it is important to extend 

this analysis to other cancer cell lines, both with and without p53. The key question is, can we use 

techniques to enhance MDM2-X activity? for example, can MDMX overexpression be a tool to 

convert some of the ferroptosis-resistant cells identified in Chapter 2, to be more responsive to 

ferroptosis? 

In line with this, it is also important to evaluate whether MDM2-X can be used as biomarkers of 

ferroptosis across tumors. While our results with glioblastoma patient models provide one context 

while this would be true, we did not observe a strong correlation between the expression levels of 

MDM2/X and the ferroptosis sensitivity of NC1-60 cancer cell lines (data not shown). The 

limitation of this analysis is that the expression levels were represented by mRNA levels and they 

may not always correlate with protein levels. Proteomic analyses of cancers are necessary to be 
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able to reach firmer conclusions. Additionally, we do not yet have a quantitative assay to measure 

the E3 ligase activity of MDM2-X complex, which might serve as a better biomarker in various 

contexts. While a luciferase-based reporter assay was used in the discovery of the MELs, this only 

measured the E3 ligase activity of ectopic constructs. Instead, a reporter assay based on the use of 

exogenously provided tagged-substrates of the E3 ligase activity could enable the measurement of 

endogenous activity. Developing such an assay would be a substantial challenge for future studies. 

 

Regarding the E3 ligase activity of the MDM2-X complex, while our data does indicate that it is 

important for ferroptosis, we were limited by the available tools to determine the extent of its 

requirement for the role of MDM2 and MDMX in ferroptosis. There is a need to develop more 

inhibitors of this activity that do not affect complex formation, as MELs are the only such 

inhibitors available currently. The other inhibitors of the E3 ligase activity of the complex do so 

either by inhibiting the formation of the complex (E.g.: MMRi compounds) or are only known to 

affect the E3 ligase activity of MDM2 without necessarily being specific towards that of the 

MDM2-X complex (E.g.: HLI98, Sempervine). Additionally, the exact molecular mechanism of 

inhibition by MEL23 or the precise binding site is also unclear. Biophysical studies to minimally 

determine the binding of MELs to MDM2-X are needed to better understand the complex’s role 

in ferroptosis. Further, it has not yet been established whether MELs can inhibit protein-protein 

interactions of the complex that are independent of its E3 ligase activity. The main bottleneck here 

is the lack of known binding partners of the MDM2-X complex outside the context of p53. We 

need to perform affinity-based proteomic studies to identify binding partners of the MDM2-X 

complex to truly assess the extent of impact of the MELs on the biological roles of MDM2 and 

MDMX. 
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5.3 MDM2/X lower PPAR⍺ activity to dampen the antioxidant defenses of cells 

against ferroptosis 

We identified PPAR⍺ and PPARɣ as new regulators of ferroptosis in Chapter 4, and these seem 

to function in opposition to each other. It is not yet clear if their effects are truly independent of 

each other, as they are known to have cross-talk at times (Song et al. 2010; Kersten 2008). An 

earlier report did indicate that PPARɣ stability can be regulated by MDM2 through Neddylation 

(Park et al. 2016). But another report showed that MDM2 seems to alter the activity of PPAR⍺ but 

not PPARɣ (Gopinathan et al. 2009). These contrasting reports suggest two things that can be 

evaluated in our context: (1) MDM2/X may control the activity of PPAR⍺ through NEDDylation, 

which can be assessed using NEDDylation inhibitors and a NEDDylation assay, (2) even though 

the agonistic/antagonistic molecules of PPAR⍺ and PPARɣ that were used were supposed to be 

specific to each isoform, we need to also evaluate the effect of MDM2-X inhibition on the activity 

of PPARɣ in our cells. It is possible that the MDM2-X complex is able to lower the activity of 

PPAR⍺, as well as enhance the activity of PPARɣ to effect the final change in ferroptotic 

sensitivity. 

 

In this chapter, we faced the arduous task of identifying the mediator of the role of MDM2-X 

complex in ferroptosis, without the knowledge of p53-independent targets of the complex. While 

we did discover PPAR⍺ and FSP1 to be two key mediators of this mechanism, the exact mode of 

their regulation by MDM2-X still remains a mystery.  
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In regard to FSP1, the next step is to determine if the level of regulation of its protein expression 

is transcriptional or translational. Our preliminary data indicated that FSP1 protein is controlled 

by a combination of altered stability through MDM2-X E3 ligase activity and altered transcription 

through PPAR⍺ activity. In order to validate this hypothesis, more follow-up experiments are 

required. RT-PCR can be used to assess the change in FSP1 mRNA levels in response to 

MDM2/X/ PPAR⍺	inhibition while a cycloheximide chase upon MDM2/X inhibition will help to 

separate effects on FSP1 protein stability vs synthesis. An ubiquitination assay can determine if 

FSP1 protein’s ubiquitination status is altered upon MDM2-X inhibition. CHIP of PPAR⍺ on FSP1 

promoter region will shed more light on whether FSP1 transcription is likely under the control of 

PPAR⍺ activity.  

It is possible that in addition to changes in the protein levels of FSP1, its activity is also altered 

when the MDM2-X complex is inhibited. For example, since MDM2 has been known to alter the 

mitochondrial dynamics as described in Chapter 1, it is possible that the MDM2-X complex alters 

the availability of NADPH, the substrate of FSP1. This possibility can be studied by minimally 

measuring the levels of NADPH in the cells and if positive, then followed up by tracing which 

upstream pathways might be altered to effect this change. 

 

It is also likely that other MDM2-X targets are involved in mediating the regulation of PPAR⍺, 

FSP1 and other aspects of ferroptosis. Thus, the knowledge of a list of proteins affected by the 

MDM2-X complex, independent of their effects on p53, would aid further study into understanding 

the full molecular pathway involved. The proteomics study mentioned previously, would yield a 

list of proteins affected by the MDM2-X complex, but only some of these targets would be 

expected to be direct ubiquitination targets. Direct targets would then need to be further identified 



154 
 

using a “ligase trap” which can specifically affinity-purify the ubiquitination targets of a given E3-

ligase (Mark, Loveless, and Toczyski 2016) or by ubiquitylome analysis, that enriches for 

ubiquitinated substrates only in a proteomic screen (Theurillat et al. 2014). It is likely that these 

proteomics studies need to also be performed in the context of ferroptosis, as it is possible that 

induction of this cell death mechanism can vary the functionality of MDM2-X complex. 

The comprehensive list of MDM2-X targets (ubiquitin dependent and independent), obtained 

through this two-stage analysis, can then be used to mount an arrayed-CRISPR screen to identify 

further regulators of ferroptosis. These targets can also be subjected to pathway analysis to identify 

affected pathways beyond ferroptosis and can thus provide, a gold mine for future studies.  

 

This thesis details one of the first studies that implicate MDM2 and MDMX in being facilitators 

of a cell death process in a p53-independent manner. Hopefully, further study into generating 

MDM2-X complex inhibitors as well as identifying more targets of MDM2-X will lead to the 

discovery of different roles of MDM2 and MDMX in regulating cell survival, outside the context 

of p53 regulation.  
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