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Abstract The shape of Mercury, particularly when combined with its geoid, provides clues to the planet’s
internal structure, thermal evolution, and rotational history. Elevation measurements of the northern hemisphere
acquired by the Mercury Laser Altimeter on the MErcury Surface, Space ENvironment, GEochemistry, and
Ranging spacecraft, combined with 378 occultations of radio signals from the spacecraft in the planet’s
southern hemisphere, reveal the low-degree shape of Mercury. Mercury’s mean radius is 2439.36 ± 0.02 km,
and there is a 0.14 km offset between the planet’s centers of mass and figure. Mercury is oblate, with a
polar radius 1.65 km less than the mean equatorial radius. The difference between the semimajor and
semiminor equatorial axes is 1.25 km, with the long axis oriented 15° west of Mercury’s dynamically defined
principal axis. Mercury’s geoid is also oblate and elongated, but it deviates from a sphere by a factor of 10
less than Mercury’s shape, implying compensation of elevation variations on a global scale.

1. Introduction

The long-wavelength shape or figure of a planet is a fundamental geodetic property that provides constraints
on its thermal and dynamical history. The shape of a rotating planet in hydrostatic equilibrium and subject to
tidal forcing can be represented by a triaxial ellipsoid, for which the flattening, f, is related to the planetary
mass, radius, and rotation rate, and the tidal response depends, inter alia, on orbital eccentricity, natural
satellites, and resonance state, if applicable. Deviations from the equilibrium shape reflect the combined
effects of interior dynamics such as mantle convection, lateral variations in the radial density structure,
rigidity, and mass loads. Typically, the orientation of this triaxial ellipsoid is tilted, rotated, and offset with
respect to a Cartesian coordinate system aligned with the principal axes of the planet that are defined by
the planet’s rotational dynamics and centered at the planet’s center of mass (COM). The long-wavelength
geoid or gravity field provides complementary information on the first-order interior density structure
of a planet. Two-way radio frequency Doppler and range measurements to the MErcury Surface, Space
ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft established Mercury’s long-wavelength
geoid [Smith et al., 2012; Mazarico et al., 2014].

A corresponding description of Mercury’s global shape has, until now, remained elusive. Earth-based radar
observations [Harmon et al., 1986; Anderson et al., 1996], Mariner 10 images [Strom et al., 1975], and radio
frequency (RF) occultations [Fjeldbo et al., 1976] of signals from Mariner 10 provided the first measurements
of Mercury’s radius and equatorial shape. However, the low latitudes of the radar measurements, the limited
imaging coverage by Mariner 10, and its two RF occultations gave little insight into the existence or magnitude
of Mercury’s polar flattening. Mercury Laser Altimeter (MLA) [Cavanaugh et al., 2007] observations during
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MESSENGER’s first and second flybys of Mercury confirmed the ellipticity of the equatorial region [Smith et al.,
2010b], and analyses of Mercury’s limb from images acquired during those flybys produced a new estimate of
radius [Oberst et al., 2011]. MLA observations acquired from orbit about Mercury have provided topographic
detail for Mercury’s northern hemisphere [Zuber et al., 2012], but MESSENGER’s eccentric orbit and high north-
ern periapsis left most of Mercury’s southern hemisphere beyond the altimeter’s maximum range. Absolute
elevations and long-wavelength shape from stereo photogrammetry and other image-based methods are
sensitive to small errors in camera geometry. Although designed to measure Mercury’s shape, limb images of
the south-polar regionwere restricted byMESSENGER’s orbit geometry [Elgner et al., 2014]. Thus, RF occultations
obtained from MESSENGER in orbit about Mercury have provided the essential southern hemisphere data
needed to understand the planet’s low-degree shape.

In this paper we describe the RF occultation observations and the resulting spherical harmonic model for
Mercury’s shape, obtained by combining the occultation data with MLA measurements from the northern
hemisphere. The shape of Mercury is represented by a triaxial ellipsoid, defined in spherical harmonics by
the degree-0 term (the mean radius of planet), the three degree-1 terms (the offset of the center of figure,
COF, from the COM), and the five degree-2 terms (ellipsoid axis lengths, tilt, and rotation). We discuss the
results for the long-wavelength shape and its correlation with Mercury’s geoid.

2. Analysis of Occultation Measurements

The RF path between the known position of MESSENGER and the observing antenna on Earth at the time
corresponding to occultation defines a line, which yields the radius of Mercury at the tangent point of a
smooth sphere that is centered at Mercury’s COM. We used RF observations obtained with the Deep Space
Network (DSN) antennas from 21 March 2011 to 21 April 2014 to measure Mercury’s radius at the tangent
point at the time of each observed occultation, as detailed by Perry et al. [2011]. The RF wavelength and
the geometry of the RF source (MESSENGER), edge (surface of Mercury), and observer (DSN station) define
a diffraction pattern, which, in the absence of system noise or a Mercury atmosphere, will match RF power
variations observed at the DSN station. We fit the predicted diffraction pattern to the RF power history
[Perry et al., 2011] to identify the time of occultation. Mercury’s position and MESSENGER’s trajectory are
referenced to Mercury’s COM, so the COM is also the reference for the radius measurement corresponding
to each occultation time. Positions on Mercury’s surface were represented in a Cartesian system X, Y, Z, as
defined in 2009 by the International Astronomical Union (IAU) [Archinal et al., 2011]. The dynamically defined
system, in which the Z axis coincides with the spin axis and the X axis points sunward or antisunward at
successive perihelia, differs from the IAU 2009 definition of Mercury’s coordinates by < 0.2°, which is one
tenth of the uncertainty in the angles derived in this work.

The quality of the diffraction fit, which improves as the RF power signal-to-noise ratio (SNR) increases, con-
tributes to uncertainty in the final occultation radius. During most occultations, MESSENGER transmitted
from its low-gain antennas, and the RF power received at the DSN was low. To reduce DSN receiver noise
during the start of a MESSENGER occultation by Mercury, the bandwidth of the open-loop receiver at the
DSN could be narrowed to 1 kHz. Coherent (two-way) operation from MESSENGER made this possible
because the downlink frequency was tied to the uplink frequency, enabling accurate predictions of the
received frequency. When MESSENGER was behind Mercury as viewed from Earth, the transponder used
an internal oscillator for a frequency reference. The reduced stability of this oscillator precluded knowledge
of the downlink frequency to better than 1 kHz, which required a wider (4 kHz) bandwidth for the DSN
receiver to capture reliably the end-of-occultation (egress) transmissions. The increased noise level asso-
ciated with the wider bandwidth prevented determination of most egress times to the accuracy necessary
for useful measurements of Mercury’s radius. The cases with borderline SNR produce poor-quality fits, and
two adjacent data points, one at the unocculted level and one in the noise, often bound the time of occul-
tation. The few dozen occultations that occurred while MESSENGER was transmitting from a high-gain
antenna have sufficient power for radius measurements during egresses. The uncertainty in the time of
occultation propagates into the uncertainty in the raw radius measurement via the velocity perpendicular
to the line of sight. We restricted our data set to occultations for which this uncertainty was ≤ 500m.
Refinements in the diffraction pattern fit since the work reported by Perry et al. [2011] have reduced these
errors to 150m on average.
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Local topography displaces the occultation location both radially and horizontally from the smooth-sphere
tangent point. We corrected for these displacements by first identifying the occulting feature in a stereo
photoclinometry (SPC) [see Gaskell et al. 2008] digital terrain model (DTM). Although absolute elevations from
stereo images may lack long-wavelength control, the local topography has sufficient accuracy to locate the
occulting edge, which is the highest point along the RF path. As the occulting feature lies above the
surrounding terrain, we adjusted the raw occultation radius measurement downward by the height of
the feature relative to the average elevation in a 140× 140 km region centered on the tangent point. The
region size was chosen to be sufficiently large to include the occulting edge but was not so large as to be
subject to long-wavelength errors from the DTM.

We validated the occultation results by first comparing them to MLAmeasurements in locations where the two
data sets overlap. Raw occultation results, adjusted for curvature, shouldmatch the elevations of the pixels con-
taining the occulting edge of a spatially smoothed MLA DTM with 64 pixels per degree. For the 75 occultations
between 55°N and 85°N, the average difference between the occultationmeasurements and theMLA occulting
edges was 4±25m, and the standard deviation in the relative difference was 150m, in agreement with the
average time-based uncertainty of the occultation radii. To then evaluate the SPC DTM that is used for topogra-
phy adjustments, we performed the same comparison and found that the occultation elevations averaged 130
±30m higher than the corresponding SPC pixels with a standard deviation of 330m. Further investigation of
the SPC and MLA DTMs showed that the cause of the discrepancy is a suppression in the height of crater rims
and other high-relief features in the SPC DTM. We translated these results to the southern hemisphere and
increased the topography adjustment by 130m and the uncertainty to 330m. TheMLA comparison also reveals
three measurements with larger errors, which may be caused by trajectory or registration errors. Along-track
trajectory errors convert directly to occultation radius errors. Registration errors, which are likely in these
preliminary DTMs, have the largest effect when an RF path glances the rim of a crater, and a kilometer-scale
registration error can cause the projected RF path to intersect or miss the rim. Other uncertainties such as that
in Mercury’s COM with respect to Earth are negligible for radius measurements derived from occultations.

3. Shape Model

The shapemodel (Table 1) is a constrained least squares fit of spherical harmonics to the MLA and occultation
data. The MLA data comprise over 25 million individual measurements of radius. For convenience, the MLA
observations were averaged into 0.5° by 0.5° bins, with Ni observations in each bin. The 110,591 binned values
and the 385 occultation data were fit via least squares by 16,641 spherical harmonic coefficients of degree l
and order m up to 128. An uncertainty of 1/√Ni km was assigned to the binned values, and the occultations
were assigned an uncertainty of 0.31 km. These values reflect the variation in height of individual observa-
tions within a bin where the altitude may vary by kilometers across an individual crater, as well as the uncer-
tainty in the height of the DTM surrounding the occultation edge. The residuals from the least squares fit
model are 0.5 km for all MLA observations and 0.3 km for occultations.

Table 1. Normalized and Unnormalized Spherical Harmonic Coefficients for Degrees 0 to 2a

SH Coefficient Normalized (km) Unnormalized (km) Comments

c00 2439.36 ± 0.02 2439.36 ± 0.02 Radius. IAU value is 2439.7 km
c10 �0.022 ± 0.021 �0.038 ± 0.04 COF-COM Z
c11 0.024 ± 0.016 0.042 ± 0.03 COF-COM X
s11 0.077 ± 0.024 0.133 ± 0.04 COF-COM Y
c20 �0.489 ± 0.014 �1.093 ± 0.03 Polar flattening
c21 �0.036 ± 0.020 �0.046 ± 0.03 X component of c axis tilt
s21 0.018 ± 0.028 0.023 ± 0. 04 Y component of c axis tilt
c22 0.283 ± 0.018 0.181 ± 0.01 Equatorial ellipticity
s22 �0.164 ± 0.019 �0.106 ± 0.01 Rotation of a–b axes in X–Y plane

aAll uncertainties are one-standard-deviation errors (see text). The normalization factors are given by
clm ¼ Nlmclm; Nlm ¼ 2� δ0mð Þ 2l þ 1ð Þ l �mð Þ!f g= l þmð Þ!½ �1=2 , where the overbar indicates the normalized quantity
and δij is the Kronecker delta. SH denotes spherical harmonic. The complete set of coefficients for an earlier solution,
truncated to degree 125, is archived in the file “gtmes_125v03_sha.tab” located at http://pds-geosciences.wustl.edu/mes-
senger/mess-h-rss_mla-5-sdp-v1/messrs_1001/data/shadr/ [Perry et al., 2013]. The earlier solution used occultation results
that did not incorporate the 130m adjustment described in section 2. This difference produced a larger COF-COM offset
of 0.122 km along the Z axis and a larger mean radius of 2439.40 km.
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The sparse distribution of data on the surface of Mercury in the southern hemisphere causes spherical
harmonic solutions to be unstable. Less than 1% of the MLA observations are south of the equator, and only
227 occultation measurements lie south of 20°S (Figure 1). A weak power law constraint was applied in a
manner similar to the Kaula rule [Kaula, 1966] commonly employed for gravity [e.g., Mazarico et al., 2014]
to damp the least squares equations and yield a more physically plausible solution at the expense of a neg-
ligibly worse fit to the observations. For low-degree topography of terrestrial planets, the variances by degree
of 2l+ 1 topography coefficients summed over order scale approximately as the inverse square of l, as noted
by Bills and Kobrick [1985]. A damping term of (2l+ 1)l2, the inverse of the expected variance for individual
coefficients, was added to terms of degree l on the diagonal of the matrix of the normal equations, to
constrain the solution variance at degrees l> 0, leaving the (0,0) term corresponding to the mean radius
unconstrained. Formal coefficient uncertainties, given as one standard deviation σ, were obtained from the
diagonal terms of the solution covariancematrix and reflect the uncertainties in true coefficient power as well
as the power law constraint. Thus, the formal uncertainties must be regarded as underestimates.

The physical interpretations of the spherical harmonic coefficients are given in Table 2, with the ellipsoid
parameters obtained from the low-degree and low-order spherical harmonic coefficients. Neglecting the
small c21 and s21 terms, the semimajor (a), intermediate (b), and semiminor (c) axes for the triaxial ellipsoid
are given by [Balmino, 1994]

c00 ¼ aþ bþ cð Þ=3; c20 ¼ � aþ b� 2cð Þ=3;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c222 þ s222

p
¼ a� bð Þ=6: (1)

Figure 1. Locations of radius measurements from RF occultations (circles) and MLA binned data. The number and location
of the occultation measurements are sufficient to determine the degree-2 shape of Mercury, but the gaps in the southern
hemisphere reduce the accuracy of higher-degree-and-order terms. Both this figure and Figure 2 are Mollweide
projections centered on 0° cartographic longitude. Elevations in Figures 1 and 2 are relative to a sphere of radius
2440 km. The occultation data are archived at http://pds-geosciences.wustl.edu/messenger/mess-h-rss_mla-5-sdp-v1/
messrs_1001/data/occ/mess_rs_occ_v02.csv [Perry et al., 2013].

Table 2. Parameters of a Triaxial Ellipsoida

Shape Parameter Spherical Harmonic Triaxial Ellipsoid About COM Comments

r (km) 2439.36 ± 0.02 2439.47 Area-averaged radius
φ �15.2 ± 3.3° �3.0° Angle between long axis and X axis
θ 2.1 ± 2.4° 0° (assumed) Angle between polar flattening axis and Z axis
a (km) 2440.53 ± 0. 04 2440.92 Semimajor (long equatorial) axis
b (km) 2439.28 ± 0.04 2439.59 Intermediate (short equatorial) axis
c (km) 2438.26 ± 0.04 2437.91 Semiminor (polar) axis

aThe parameters are derived from the spherical harmonic coefficients (second column) and a triaxial ellipsoid fit
(third column) to the MLA and occultation radii with the offset between the COF and COM set to zero.
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The ellipsoid axes in the equatorial plane are rotated by ϕ = – 15± 3° with respect to the dynamically defined
principal axes of the planet. The tilt, θ, of the ellipsoid with respect to the polar axis is between 0 and 4° (1σ).
Fitting a triaxial ellipsoid directly to the MLA and occultation data produced slightly different results
(Table 2), showing that the other spherical harmonic terms absorb some of the degree-2 shape.

4. Discussion

The British geophysicist Jeffreys [1970] was an enthusiast of planetary shape and went so far as to remark,
“The determination of the Earth’s axes is the main object of geodesy…” Although his remark is overstated,
low-degree shape is a fundamental global property of a planet, and Jeffreys had a longstanding interest in
why the second-degree shapes of the Earth and Moon departed from their hydrostatic values. The same
question can now be addressed for Mercury, as the combined MLA and occultation data enable determina-
tion of the low-degree shape of Mercury. The planet’s short axis is nearly aligned with its Z axis, and the long
axis is within 15° of the dynamically defined X axis, the principal semimajor axis of the mass distribution. The
new shape model allows determination of global flattening (discussed in detail below), as well as a specific
comparison of flattening in the northern and southern hemispheres.

Flattening in the southern hemisphere is similar to that in the northern hemisphere derived from MLA data
alone and reported by Zuber et al. [2012]. Regions within 10° of the poles are 2.23 km (southern) and 2.45 km
(northern) lower in elevation than the mean equatorial elevation (Figures 2 and 3). The low elevations
measured in the southern hemisphere differ sharply from initial results obtained by analyzing stereo images
[Becker et al., 2011], which showed southern elevations similar to average equatorial elevations. The occultation
results prompted additional review of the camera parameters, and slight improvements in those parameters are
bringing image-based results into agreement with the occultation elevations in the southern hemisphere
[Becker et al., 2014].

Mercury’s COM-COF offset is given by δX=42 ± 30m, δY= 133± 40m, δZ=�38 ± 40m. The substantially
larger COM-COF offsets inferred for the Moon [Smith et al., 2010a], Mars [Smith et al., 1999], and Earth
[Melosh, 2011] have been interpreted to result from hemispheric asymmetries in crustal thickness, although
the origin of those asymmetries differs among those bodies. For Earth, the offset reflects the hemisphere con-
taining most of the continental crust versus the hemisphere centered on the Pacific Ocean basin. For Mars,
the offset results from the combined effects of the thicker crust beneath the southern highlands than
beneath the northern lowlands and the nearly antipodal positions of the Tharsis rise and Hellas impact basin.
The lunar COM-COF offset has long been interpreted to result from the effect of thicker crust on the farside
than the nearside [Kaula, 1975]. Among inner solar system bodies, Mercury has a small COM-COF offset rela-
tive to its radius, a situation similar to that for Venus [Bindschadler et al., 1994], suggesting no substantial
hemispheric asymmetry in crustal thickness. Mercury’s small COM-COF offset and the similar elevations at

Figure 2. Shape of Mercury from a damped, spherical harmonic fit to degree and order 128 to the MLA and occultation
data shown in Figure 1. Color bar gives elevation in kilometers.
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both poles are perhaps unexpected given the large expanse of northern smooth plains [Denevi et al., 2013], a fea-
ture that has no counterpart in the southern hemisphere. The hemispheric asymmetry in smooth plains distribu-
tion coupled with the results here suggests that the density of the smooth plains material may differ only slightly
from that of the surrounding crust.

The spherical harmonic power spectral density (PSD) of Mercury’s shape is dominated by degree 2 (Figure 4)
and is anomalous by extrapolation from higher degrees (an argument that has been used at the Moon to
contend that the degree-2 geoid is out of hydrostatic equilibrium [Williams et al., 2001]). Because degree
2 is so dominant, the full shape ofMercury is almost completely represented by a triaxial ellipsoid. Given the excess
power in degree 2 and the planet’s slow rotation, Mercury’s shape must be well out of hydrostatic equilibrium.

Matsuyama and Nimmo [2009] provided the theory necessary to recover the hydrostatic values of the sphe-
rical harmonic coefficients, hc20 and

hc22, of the shape of Mercury subject to tidal forcing, which depends on
both the planet’s orbital eccentricity and its 3:2 spin-orbit resonance state. One measure of the departure
from the hydrostatic state is the ratio of the model shape coefficients c20 and c22 to their hydrostatic counter-
parts. We find values of c20/

hc20 and c22/
hc22 equal to 300 and 450, respectively, a considerable departure

from the hydrostatic state. (These ratios are only lower bounds, however, because the hydrostatic numbers
depend directly on h2, the vertical displacement Love number, and we have used an upper bound, the value
of h2 for a fluid homogeneous sphere.) An additional measure, one independent of the interior rheology and
density structure, is the equatorial ellipticity ratio (b�c)/(a�c) [Matsuyama and Nimmo, 2009]. The estimated
value of this quantity (0.45) is 75% of the equilibrium value of 0.59.

The substantial departure of the degree-2 shape from a hydrostatic value requires a mechanism to support
the shape. Clues are provided by the corresponding degree-2 geoid. Figure 4 shows that the geoid PSD is
also anomalous at degree 2 relative to extrapolation from higher degrees and, not surprisingly, is also well

Figure 3. Shape of Mercury at spherical harmonic degree and order 2. Stereographic projection centered on the north pole
and extending to the equator. The major and minor axes are each marked with a + symbol and labeled with their length.
The small departure, θ ~ 2°, of the semiminor axis, c, from the Z axis and the modest rotation (ϕ ~�15°) of the semimajor
axis, a, from the X axis are seen in the displacement of the shape axes from the IAU-defined coordinate axes.
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out of hydrostatic equilibrium. Additional
essential elements of the degree-2 shape
are that the geoid has about 1% of the
power of the shape but is nonetheless
highly correlated (0.99) with it (Figure 4).
These observations suggest that most of
the degree-2 geoid signal results from
the shape and that the shape must be
mostly compensated, as the geoid-to-
shape ratio (admittance) is 0.11 for polar
flattening and equatorial ellipticity. The
lack of a perfect correlation between the
degree-2 shape and geoid is almost
entirely due to the �15° relative rotation
of the ellipsoidal axes in the equatorial
plane (Figure 3). The corresponding value
for the degree-2 geoid is estimated at
�0.04° [Mazarico et al., 2014] in a principal
axis system, and theoretically is zero. The

equatorial rotation of the degree-2 shape relative to the geoid is consistent with earlier findings [Anderson et al.,
1996; Smith et al., 2010b] and may be due to asymmetries in the deep compensation but may also be an artifact
of the sparse coverage at the equator.

That Mercury’s degree-2 shape is a fossil relic of an earlier orbital and spin state is untenable [Matsuyama
and Nimmo, 2009] because the semimajor axes required for Mercury’s orbit are unrealistically small, only
0.05–0.06 AU given MESSENGER-derived estimates of the gravity coefficients C20 and C22 [Mazarico et al.,
2014]. The time required for outward migration from this position to Mercury’s current orbit rivals the
age of the solar system. As mentioned above, the degree-2 shape must be compensated to some degree,
and the nature of the mechanisms involved lingers as a fundamental question. Compensation solely via
Airy isostasy requires a pole-to-equator variation in crustal thickness of ~24 km for the crustal and mantle
densities adopted by Smith et al. [2012]. However, scenarios for when and how global variations in crustal
thickness could have formed remain to be defined and explored, and there are indications that other compen-
sation mechanisms are involved. Mercury’s mean crustal thickness is estimated to be 35±18 km [Padovan et al.,
2015], and the degree-2 admittance (0.11) requires that a substantially deeper component of compensation
exists in the mantle to support the degree-2 shape if such compensation is isostatic. Contributions from lateral
variations inmantle density resulting from latitudinal and longitudinal variations in temperature associated with
Mercury’s insolation pattern are possible [Phillips et al., 2014; Tosi et al., 2014] for some fraction of the support of
degree-2 shape, but at least the longitudinal variations have likely changed over Mercury’s history as the
planet’s orbital eccentricity evolved chaotically [Correia and Laskar, 2009]. Other lateral variations in mantle
density are also possible, including variations in the thickness of a postulated layer of solid FeS at the base of
the mantle [Smith et al., 2012; Hauck et al., 2013; James et al., 2015] and/or variations in mantle density asso-
ciated with the history of mantle melt extraction. Finally, we note that an external load on an elastic lithosphere
provides an alternative mechanism to satisfy the admittance constraint. This mechanism diminishes the need
for a deep density source but substitutes the need to identify such a surface load. MESSENGER observations
have thus established that, taken together, Mercury’s low-degree shape and geoid are fundamentally different
from those of the other terrestrial planets and present a challenging puzzle for the innermost planet.
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