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Abstract

Statistical power is an important detail to consider in the design phase of any
experiment. This paper serves as a reference for experimental economists on power
calculations. We synthesize many of the questions and issues frequently brought up
regarding power calculations and the literature that surrounds that. We provide prac-
tical coded examples and tools available for calculating power, and suggest when and
how to report power calculations in published studies.
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1 Introduction
In spite of years of teaching and using statistics, we had not developed an in-
tuitive sense of the reliability of statistical results observed in small samples.
(Kahneman, 2011)

The purpose of this paper is to provide a concise and consolidated resource for experimental
economists regarding power calculations. The significance of a test is central to our under-
standing of hypothesis testing, while its cousin, statistical power, remains peripheral. Power
calculations are important for experiment and survey design. Nonetheless, researchers are
either not performing power analyses, or are simply not reporting them (Czibor et al., 2019;
Zhang and Ortmann, 2013). Thus, it is important to reiterate and provide additional re-
sources for ex ante analysis of statistical power, and what to report ex post.1
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In Section 2 we provide the formal definition of power, and provide intuition for how to
operationalize it. Section 3 describes the contexts in which reporting power calculations is
relevant and in Section 4 we discuss what calculations can be considered after an experiment
has already been conducted. Section 5 considers some experimental designs for which it
may be difficult to obtain sufficient power in smaller samples. In Section 6 we provide
several options for computing power calculations, including simulated power calculations
with sample code. Section 7 concludes.

2 What is statistical power?
Power is the probability that an experiment will lead to the rejection of the null hypothesis
if it is indeed false, given a pre-specified target significance threshold (Gerber and Green,
2012a). In intervention research, this is referred to as sensitivity, or the ability to detect a dif-
ference between the treatment and control conditions for some outcome of interest. Choosing
the statistical power of a test in the design phase of an experiment helps researchers deter-
mine how much data to collect, given their research question(s). Power is not linked to
causal inference, nor is it a tool for analysing data. It is an experimental design tool, but is
rarely reported in experimental economics papers.

Failure to consider power during design of an experiment can lead to incorrect, or even
harmful, conclusions. Consider the context of a field experiment, where a researcher wants
to estimate the impact of a cash incentive on a preventative health behavior, such as reducing
alcohol consumption. She will conduct an experiment with a randomly assigned treatment
group that receives a cash incentive and a control group that does not. Suppose there is in
fact a positive relationship between receiving the particular incentive and alcohol consump-
tion - people who receive the money actually increase alcohol consumption. If the test to
find the relationship is under-powered, it indicates that the probability of observing the true
relationship is low. This is problematic for two reasons. First, failing to reject a false null
hypothesis (i.e. conclude that the incentive is neither definitively effective nor ineffective)
could result in people being harmed if the intervention is adopted into policy under the as-
sumption that it is harmless.2 Second, a found effect in an under-powered study is likely to
be far from the true effect. Over-estimating the harm of an intervention may then prevent
adoption of an otherwise useful policy.3

The statistical power of an experiment depends on the null and alternative hypotheses, the
targeted significance level and the (anticipated) features of the data (i.e. mean, variance and
distribution). Before conducting the experiment, the researcher specifies a null and alterna-
tive hypothesis for each outcome variable of interest. We follow the convention of deriving
power following the potential outcomes framework and Rubin causal model that is frequently

2Concluding that failure to find a harmful effect indicates a harmless intervention is conditional on
interpreting an insignificant coefficient with a wide confidence interval as a precise zero.

3Note that the confidence interval of an estimated effect size would not immediately inform a reader of
whether the researcher was powered to detect that effect size ex-ante. Power informs us of whether the effect
size may be overstated, whereas the confidence interval around the ex-post effect size does not.
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used to discuss randomized experiments (e.g. Athey and Imbens (2017); Chow et al. (2008);
List et al. (2011)). Let the observed outcome of the treatment be denoted µ̂ ∼ N (µ, σ2/n).4
Suppose there are two potential outcomes from the treatment, µ0 and µ1, where µ0 refers to
the outcome in the absence of the treatment (which is captured empirically via the control
group), and µ1 refers to the outcome in the presence of the treatment (which is captured
empirically via the treatment group).

Let θ = µ1 − µ0 denote the true treatment effect for the main variable of interest. Let the
researcher’s null hypothesis for θ be that θ = θ0, where θ0 ∈ R. For example, if the researcher
wants to test the hypothesis of no difference between treatment and control groups, then θ0
would be zero. The researcher chooses a one-sided alternative that there is some positive
treatment effect greater than θ0.

Null Hypothesis
H0:θ = θ0

Alternate Hypothesis
H1:θ > θ0

where θ0 ≥ 0. Results from hypothesis tests are in terms of H0; one either rejects H0 or fails
to reject H0. When deciding whether to reject H0 it is possible to make two kinds of errors.

A Type I error, or a false positive, occurs if one rejects the null hypothesis, when it is in fact
true. The probability of a Type I error is denoted as α. It occurs if θ̂ falls “too far” from
θ0 for the researcher to believe that θ0 is the true value of θ. What constitutes “too far” is
decided by the researcher, and generally it is set so that α ≤ 0.05.5 This is illustrated below.
Let c denote the (non-standardized) cut-off such that the researcher will reject H0 if θ̂ > c.

α = Prob (reject H0|H0)

= Prob
(
θ̂ ≥ c|H0

)

Since θ̂ is normally distributed, the researcher will use a z-test. We standardize c so that we
can use the standard normal statistical tables to identify the critical value for any given α,
as follows:

α = Prob

 θ̂ − θ0√
V (θ̂)

≥ c− θ0)√
V (θ̂)

 =⇒

4In Section 6 we touch on non-normally distributed outcomes.
5Traditionally, α ∈ {0.10, 0.05, 0.01}. Recently, Benjamin et al. (2018) advocate for redefining statistical

significance in economics according to an α = 0.005 for claims of new discoveries.
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1− α = Prob

 θ̂ − θ0√
V (θ̂)

≤ c− θ0√
V (θ̂)


= Φ

 c− θ0√
V (θ̂)

 =⇒

Φ−1(1− α) =
c− θ0√
V (θ̂)

=⇒

B1−α =
c− θ0√
V (θ̂)

where B1−α is the critical value associated with the 1 − α portion of the standard nor-
mal distribution that is centered around θ0 (recall that B1−α = −Bα). For example, for
a normally distributed outcome variable, if the researcher chooses a one-sided test with α
= 0.05, then B1−α = 1.645. This means that the researcher will reject H0 if the normal-
ized θ̂ is greater than or equal to 1.645. For a two-sided test with α = 0.05, B1−α = 1.96.
This means that the researcher will reject H0 if the normalized θ̂ is at least 1.96 units from 0.

Statistical power is related to the second type of error, the Type II error. A Type II error, or
a false negative, occurs if one does not reject the null hypothesis when it is in fact false. A
researcher would be committing a Type II error if the true treatment effect were something
other than θ0, but she fails to reject the hypothesis that it is θ0. The probability of a Type
II error is denoted as β. Power is 1-Pr(Type II error).

The approach to analyzing power depends on whether the researcher chooses a simple alter-
native, such as θ = θ1, or a composite alternative, such as θ > θ0. For the simple alternative,
the power of the test is defined relative to a specific H1 - the researcher must assert that θ
will exclusively take either θ0 or another value, say θ1. This requires one power calculation,
which we derive below, for a test statistic with a normal distribution. We return to compos-
ite hypotheses subsequently.

β = Prob (fail to reject H0|H1)

= Prob
(
θ̂ ≤ c|H1

)
= Prob

 θ̂ − θ1√
V (θ̂)

≤ c− θ1√
V (θ̂)


= Φ

 c− θ1√
V (θ̂)


4

Electronic copy available at: https://ssrn.com/abstract=2692696



=⇒ Φ−1(β) =
c− θ1√
V (θ̂)

=⇒ Bβ =
c− θ1√
V (θ̂)

where Bβ is the critical value associated with the β portion of the standard normal distribu-
tion conditional on H1 being true (e.g. for a distribution centered around θ1). For example,
for an outcome variable with a standard normal distribution, if the researcher chooses β =
0.20, then 1 - β = 0.8 and Bβ = 0.84.

Note that c is the same in both the α and β formulas. On one side of c the researcher feels
she cannot reject H0 (and can reject H1). On the other side of c, she feels she must reject
H0 (which implies she believes that H1 is more likely to be true, given the data). Bβ and
B1−α are different in so far as the normalized c is a different number of standardized units
away from each of θ0 and θ1.

Solving both α and β equations for expressions of c obtains:

c√
V (θ̂)

= −Bα +
θ0√
V (θ̂)

c√
V (θ̂)

= Bβ +
θ1√
V (θ̂)

Returning to our example, since the researcher has two independent groups for treatment
and control, V (θ̂) = σ2

1/n1 + σ2
0/n0, where ni refers to the sample size in each of group i.

Also, let σ2
1 = σ2

0. Then, setting the two critical values that satisfy Type I and Type II errors
equal, we can solve for the sample size.6 The sample size, N = n0 + n1, that the researcher
needs to achieve the desired level of statistical power for her experiment is:

N =
(Bα +Bβ)2

(θ1 − θ0)2
· σ2

γ(1− γ)
(1)

where γ equals ( n1

n1+n0
), the portion of the total sample, N , that is in the treatment group.

Replacing the parameters with values and solving for N prior to data collection, is what
we refer to as “power calculations.” Note that Bα determines Bβ for a given θ0, θ1, σ and
N . This makes it clear the trade-off between power and significance, and how this trade-off
may change as we vary θ1 (for composite null hypotheses). However, for the same α one
can obtain additional power by increasing N , by choosing a wider distance between θ0 and
θ1, or by using a one-sided, as opposed to a two-sided, alternative in hypothesis. Across

6For unequal variances see List et al. (2011) Equation 7.

5

Electronic copy available at: https://ssrn.com/abstract=2692696



disciplines, it is generally accepted to aim for a power of 0.8 (Lenth, 2001).7

Finally, note that rather than specifying θ1, the researcher can use Equation 1 to determine
the minimum detectable effect, θ1−θ0, that she would be able to observe given a fixed sample
size and power.

Composite tests and power functions In practice, single power calculations are fre-
quently performed to correspond with composite tests. This is not necessarily misleading if
the researcher has reliable estimates of θ0, θ1 and σ. It is, however, limiting. As we demon-
strate above, a single power calculation requires a specific alternative value, θ1. A composite
hypothesis admits multiple values for θ1. Thus, to properly assess power for a composite
alternative, the researcher must estimate a power function. Using the arguments specified
for the function, the researcher can determine the minimum θ1 that will yield the minimum
acceptable statistical power.

A power function is a mapping of effect sizes to power, given a fixed significance, sample size
and variance. Calculating a power function (for a composite hypothesis) requires the same
steps as a power calculation for the simple hypothesis, but rather than calculating a single
β (for θ = θ1), the researcher will calculate a β for each possible alternative value of θ (e.g.
∀θ1 ∈ R or ∀θ1 ∈ {−0.50,−0.25, ..., 1.25, 1.5, ...}, etc.).

Here we demonstrate how a power function is constructed for a test statistic that has a
standard normal distribution. For this example, let θ̂ ∼ N (θ, 2σ2/0.5N), σ2 = σ2

0 = σ2
1 = 4,

N = n0 + n1 and n0 = n1. The researcher pre-specifies the hypothesis as H0:θ = 0 and
H1:θ > 0, has a fixed sample size of N = 64, and chooses α = 0.05. She will reject the null if
θ̂ is greater than the critical value cα = 0.823. We include the “α” subscript to differentiate
the critical values used for the one- and two-sided power functions.8 To generate the values
of the power function, we insert the parameter values, and then successive values of θ1, into
the power formula:

(1− β)α = 1− Φ

(
cα − θ1√
2σ2/0.5N

)

= 1− Φ

(
0.823− θ1√
2 ∗ 4/0.5 ∗ 64

)

Let power evaluated for any given θ1 be denoted Π(θ1). The list of calculations below
demonstrates how power evolves as the effect size increases. We use the known standardized
value for α = 0.05 to find the corresponding un-standardized cut-off value under the null
hypothesis. We then standardize the cut-off relative to the distribution for the alternative
hypothesis. One can think of this as shifting a curve centered on θ1 further from that sta-
tionary cut-off value, as in Figure 1.

7Replications generally require higher power, e.g. Camerer et al. (2016).
8We obtain cα by “unstandarizing” the critical value from the standard normal distribution for α = 0.05.

cα = 0 + 1.645
√
2 ∗ 4/32 = 0.8225.

6

Electronic copy available at: https://ssrn.com/abstract=2692696



Π(−0.50) = 1− Φ

(
0.823 + 0.50

0.5

)
= 0.004

...
Π(−0.25) = 1− Φ

(
0.823 + 0.25

0.5

)
= 0.016

...
Π(0) = 1− Φ

(
0.823− 0.0

0.5

)
= 0.050 =⇒ Π(0) = α

...
Π(0.25) = 1− Φ

(
0.823− 0.25

0.5

)
= 0.126

...
Π(1.25) = 1− Φ

(
0.823− 1.25

0.5

)
= 0.804

The resulting values can be plotted on a graph, as in Figure 2. The solid line pertains to
the one-sided power function. The negative values are included to demonstrate the long left
tail for the one-sided power function with H1:θ > 0.9

The dotted line in Figure 2 is the graph of a two-sided power function. A two-sided power
function is appropriate for a two-sided alternative hypothesis, e.g. θ 6= 0. The formula for
two-sided power is the union of the probabilities for rejecting the null for the left and right
tails. To generate the values of the power function for a two-sided test, α/2 determines the
critical value, rather than α. The two-sided test is an “or” test - the hypothesis is either below
zero (the hypothesized value) or above zero. It cannot be both. Power for the two-sided test
is thus about the absolute value of the effect size. It is symmetrical about the vertical axis
and is lower than the one-sided function for each value of θ1 (because the α/2 critical value
is used).

(1− β)α/2 = Prob(reject H0|θ 6= 0)

= Prob(θ̂ ≥ cα/2|θ ≥ 0 ∪ θ < 0)

= 1− Φ

(
cα/2 − θ1√
2σ2/0.5N

)
+ Φ

(
−cα/2 − θ1√

2σ2/0.5N

)

For values of θ1 greater than θ0 (zero in this example), the the second term in this equation
is very small - this is the long left tail, with very little probability mass, from the one-sided
test. The reverse is true for values of θ1 that are less than θ0; in this case the first term is
the smaller of the two. The calculations below show how the power of the two-sided test
converges to 1 as θ1 increases. As with the one-sided test, we find the corresponding cut-off
value of 0.98 given α/2, and the values of N and σ in this example.

9For H1:θ < 0 there is a long right tail. Π(θ1) converges to 1 as θ1 decreases. It converges to zero as θ1
moves further from θ0 to the right.
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Π(−0.5) = 1− Φ

(
0.98 + 0.50

0.5

)
+ Φ

(
−0.98 + 0.50

0.5

)
= 0.170

...
Π(0) = 1− Φ

(
0.98− 0.0

0.5

)
+ Φ

(
−0.98− 0.0

0.5

)
= 0.050 =⇒ Π(0) = α

...
Π(0.5) = 1− Φ

(
0.98− 0.50

0.5

)
+ Φ

(
−0.98− 0.50

0.5

)
= 0.170

...
Π(1.4) = 1− Φ

(
0.98− 1.4

0.5

)
+ Φ

(
−0.98− 1.4

0.5

)
= 0.800

A power function, therefore, returns the power associated with a range of alternative θ’s
under H1. Each power function pertains to a given N (and σ2), and one can follow a similar
procedure to asses the trade-off between θ1 and N for a given power. Power functions are
easy to generate using statistical software.10 See Section 6 for more detail. We have pre-
sented Bα and Bβ as the critical values in the standard normal distribution. The assessment
of statistical power follows similarly for test statistics that have other distributions.

For a general overview of performing power calculations, see the Jameel Poverty Action Lab’s
(J-PAL) note on power calculations in the course “Evaluating Social Programs” (JPAL, 2014).
Zhong (2009) and Ledolter (2013) also provide a number of numerical examples and deriva-
tions.

3 When to report power?
Taking power into account in a study design is important for economists because doing so
increases efficiency of experimental design. The idea is to avoid samples that are either
unnecessarily large (and thus unnecessarily expensive) or too small to detect an effect. It
also disciplines the researcher to focus on economically meaningful effects because one must
specify an anticipated effect, θ1 − θ0 (along with α, β, and σ), in order to determine N .
But once an experiment is completed, we might ask if it is necessary to report the power
calculations used to arrive at its sample size. We posit that reporting power calculations is
useful under two scenarios in particular: a) when a study was too under-powered ex ante to
detect the statistically significant effect that it does find and b) for replicating studies and
publishing well-designed studies with null effects.

It is important to emphasize that reporting power calculations does not help in the inter-
pretation of the experimental results. Once an experiment has been completed we should
rely on statistical inference to determine the impact of our result. This includes not just
the point-estimate of the effect size and its p value, but also a discussion of the estimate’s
confidence interval. Power and threshold levels of statistical significance are determined
prior to data collection, while the confidence intervals are a function of the data. Confidence

10For example, the following command will generate a similar power function to Figure 2 in Stata version
15: power twomeans 0 (-2.5(.25)2.5), sd(2) knownsds n(64) graph.
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intervals are especially useful when results are not significant because they indicate a range
of plausible values for the true θ. Power and confidence intervals are linked through sample
size, and a low powered study will be reflected in a wide, and thus inconclusive, confidence
interval. That interval could include treatment effects that are and are not economically
meaningful, even if the point estimate is statistically significant.11

When researchers report their results from a study, they are also providing validated sample
statistics for other researchers to use (or not to use). We refer again to Equation 1. What
values should be used for µ0, µ1 and σ? Researchers can look to well-powered past studies
for estimates. Overstated effect sizes from low powered studies should not be used to power
future studies (Button et al., 2013; Gelman and Carlin, 2014; Ioannidis, 2005; Szucs and
Ioannidis, 2017). If past studies do not report power, this distinction cannot be made. As
seen in Figure 3, the lower the power of a test for a given σ, the closer that H0 and H1 will
be. A more extreme point estimate is, therefore, needed in order to reject H0 in favor of H1

in low powered study. Using a t-distribution, as opposed to a standard normal distribution
does not adjust for this. Since the tails of t-distribution are wider than those of the normal
distribution, t-scores are larger than z-scores for the same level of significance. Therefore,
only large deviations, far in the tail of the H1 distribution, will classify as statistically signif-
icant in underpowered studies. Powering a study using an overstated effect size as a target
for µ1 would lead to yet another underpowered study.

Reporting power calculations is also important for replication exercises and qualifying null
effects as recommended by the Journal of the Economic Science Association (Nikiforakis
and Slonim, 2015). Publishing studies that failed to detect significance in a well-powered
study, where others may have found a significant effect, is an important part of the scien-
tific process. For example, Zethraeus et al. (2009) study the relationship between hormones
and economic behavior in the lab. The authors are explicit about the power of their study,
which is sufficiently high at over 90%. Participants are randomized into different hormone
treatment groups and then play a series of games. The authors find no significant effect, a
contradiction to existing correlative results (e.g. Apicella et al. (2008); Burnham (2007)).
Such a result deserves consideration for publication, as it adds to a body of scientific evi-
dence. Anything less than this contributes to publication bias.12

One way to accommodate publication of ex ante power calculations, which has taken hold in
recent years, is pre-registration. Pre-registration essentially forces a researcher to publicize
her intended hypothesis tests and the needed sample size for those tests.13 The researcher
would list any statistical software and associated commands that she used to perform the

11Goodman and Berlin (1994) provide a useful rule-of-thumb (Predicted 95% CI = observed difference +-
0.7 * (true difference 80% power)) for predicted confidence intervals, which depend on the observed effect
size, β, and α.

12A few pooled replication papers have received considerable attention in economics and psychology
(Camerer et al., 2016; Nosek, 2015), but it remains to be seen if individual, well-powered studies that
find no effect will occupy space in top journals.

13For example, EGAP allows for pre-registration of experimental studies: https://egap.org/registration-
license-options/.
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calculations. If the researcher uses simulations to explore power, the code should be provided.
This prevents the researcher from data mining, or running dozens of hypothesis tests, while
only reporting the one or two significant results (Anderson, 2008), because the study is
only powered to detect a certain number of effects. But, as Coffman and Niederle (2015)
detail, the main downside to pre-analysis plans is that they tie researchers to particular
analyses and inhibit exploratory work, which can be particularly taxing for young researchers
or researchers without sufficient budgets to carry out pilot studies. As a result, Coffman
and Niederle (2015) advocate for establishing a norm that journals publish well-powered
replications of studies rather than tying researchers to pre-analysis plans. Banerjee et al.
(2020) suggest that researchers can offer pre-analysis plans, but that the results be evaluated
as a “distinct object” from the plan.

4 What can we compute ex-post?
Researchers may find themselves in a situation where the experiment has been completed
and either a) they did not use power to determine sample size, or b) the parameter values
they chose for the ex ante power calculations were inaccurate and actual effect sizes were
much smaller (or larger) than anticipated, and/or c) their study faced considerable attrition
(at random) such that the researcher was unable to maintain the sample size that her original
power calculations dictated (as often occurs with field studies). The researcher then would
like to know what can be computed ex post?

First, we can begin with what should not be done ex post. One temptation may be to retro-
spectively calculate an “observed” or “post hoc” power given the observed p value, treatment
effect, variance and sample size from the completed experiment. This calculation is prob-
lematic because power is not an observable concept (Goodman and Berlin, 1994; Hoenig and
Heisey, 2001; Lenth, 2001). Target significance, based on α, is an ex ante concept that is
useful insofar as it helps us calculate power. But the observed significance has nothing to
do with power. Moreover, observed power and the observed p value are inversely related,
while the ex ante trade-off between α and 1− β is positive (Hoenig and Heisey, 2001). The
difference is subtle, and often goes unrecognized. We provide a graphical example, which we
believe best exhibits the fallacy of observed power.

Take a scenario where the researcher pre-specifies an α = 0.05, and β = 0.2, and is testing
H0:θ̂ = 0 against H1:θ̂ 6= 0, where θ̂ follows a standard normal distribution. B1−α/2 = 1.96.
Her observed test statistic is 1.9, with distribution under H ′1. She fails to reject the null
(top panel of Figure 4). Now she decides to compute observed power. Observed power is the
probability that the observed statistic falls to the left of 1.96 under H ′1, the curve centered
around 1.9 (Prob(θ̂ ≥ 1.96|θ = 1.9)). The bottom panel of Figure 4 has “observed power”
shaded. We can see that this probability will always be 0.5 or less (since the probability of
landing to the left of 1.9 is 0.5 and to the right of 1.9 is 0.5). We can also see that if α had
been smaller than 0.05, then observed power would be even smaller.

Hoenig and Heisey (2001, pg 2) plot observed power against the pre-specified α, which shows
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that any insignificant estimate from a study will, mechanically, exhibit an ex post power that
is less than 50%. Conversely, any significant estimate from a study will, mechanically, exhibit
ex post power that is greater than 50%. For this reason, any ex post power calculation where
the effect is significant will result in high ex post power, and, conversely, insignificant effects
will result in low ex post power.

Abandoning observed power does not conflict with performing the ex post calculation rec-
ommended by Nikiforakis and Slonim (2015), particularly, for the publication of studies
with null effects. One can calculate the minimum detectable effect size given the sample
size and estimates of σ from the data (as well as predesignated values for α and β), which,
crucially, do not depend on whether the study found a significant result or not. The latter
information cannot help with inference on the study’s observed results, but it can provide a
clue as to whether economically meaningful effect sizes might have been overlooked in the
original study design, particularly, if the researcher was overly optimistic with respect to the
magnitude of the intervention’s effect.

Other ex post methodologies to replace observed power calculations have been proposed, but
are beyond the main scope of this paper. Gelman and Carlin (2014) propose design analysis
with accompanying code, which focuses on how to interpret results from studies with small
sample sizes. In particular, they focus on the probability that a found effect size is the wrong
sign or is far in magnitude from the true effect size, and whether the minimum detectable
effect is scientifically meaningful.

In sum, once an experiment has been completed, and a statistically significant effect was
not found, researchers have the option of computing the minimum detectable effect given
their sample size and variance. They should also consider the confidence intervals around
their effects to determine how well measured their effect sizes are. Both low power and poor
measurement can result in wide confidence intervals. But one should not compute the 1− β
associated with an observed effect.

5 Considerations for small samples
Power poses a particular challenge to researchers who are limited to using small samples,
due to, for example, funding constraints or working with difficult to obtain samples (more
common for lab-in-the-field studies). We discuss four design features that are often employed
in lab experiments and explain how they reduce the power of a study. Each of these features
demands a larger sample size to detect an effect with a given effect size, variance, α, and β.

Two- versus one-sided alternative hypotheses Powering a study for a one-sided alter-
native, as opposed to a two-sided alternative, is often appropriate if the researcher expects
an effect in a particular direction. A one-sided test will also afford the researcher more power
than a two-sided test, and so can be particularly useful for studies that face sample restric-
tions. However, for some studies, even when the researcher expects an effect in a specific
direction, it is still prudent to minimize the risk of not detecting effects in either direction.
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This applies when the underlying theory or past literature are limited, such that the basis
for the expected effect direction is weak.14 In such studies, a conservative approach would
be to power the study for a two-sided alternative.

Between- versus within-subject experiments Most experiments use either a between-
or a within-subjects experimental design (some may involve both). Between-subject designs
require a larger sample size than within study designs to reach the same level of statistical
power. Intuitively, for a within study, each participant serves as her own control; whereas
in a between design a large fraction of the total sample must be designated as the control
group. The formula to calculate required sample size for a within-subject study is different
than for a between-subjects study due to the structure of the standard errors. In this section
we compare these formulas to explain more formally where the difference in power comes
from.

The example discussed so far, with the corresponding formula for calculating N, Equation 1,
is known as a between-subjects design. In a simple between-subject experiment, one random
sample receives the treatment and another serves as the control. The difference in mean
outcomes in each of the two samples is interpreted as the treatment effect.

For a within-subject design, the experimenter takes multiple observations from the same par-
ticipants but under different conditions (e.g. before the treatment and after the treatment).15

The variance for the mean difference in outcomes in a within-subjects study is:

V (θ̂W ) =
σ2
1

NW

+
σ2
0

NW

− 2σ1σ0ρ

NW

where ρ is the correlation of subjects’ round 1 and round 2 outcomes and NW indicates
the sample size for a within-subjects design. The analogous equation to Equation 1 for
determining sample-size for a two-round within-subjects study then is:

NW =
(Bα +Bβ)2

(θ1 − θ0)2
· 2σ2(1− ρ) (2)

This equation assumes common variance for both rounds, σ2 = σ2
1 = σ2

2.16

14It also applies if the true effect (in the unanticipated direction) is potentially harmful: failure to detect
it can lead to damaging policy implications or directions for future research that can unintentionally cause
harm. We do not belabor this point here since economics laboratory experiments rarely test potentially
harmful interventions.

15In very simple within-subject study, every participant receives each treatment. The treatment is not
randomly assigned. A within-subject experiment generates panel data, and the total sum of squares is the
sum of the within and between sum of squares. One can include individual specific effects in the analysis.
See Baltagi (2013), Searle et al. (2009) and Wooldridge (2010) for further reference. To determine the
precise effect that added covariates, fixed effects, or random effects have on statistical power, one can run
simulations, which is discussed in Section 6.

16In Stata powerpairedmeans can be used to specify a within experiment power calculation. Stata allows
for unequal variance and one can perform calculations with various estimates of ρ. For example, power
pairedmeans 110 105, corr(0.25) sd(15) will assume a 0.25 correlation between individuals’ outcomes
under different treatments.
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Comparing Equation 1 and Equation 2, we obtain:

NW = 2(1− ρ)γ(1− γ)NB

If the between-subjects study allocates half of the subjects to each of the treatment and
control groups, this simplifies to NW = 1/2(1− ρ)NB (Maxwell et al., 2018, p. 650). Thus,
with ρ > 0, the needed NW will be less than half of NB for a given α, β, µ0, µ1 and σ. Even
with ρ = 0, the between-subjects design will need twice as many participants to achieve the
same power as a corresponding within design. Bellemare et al. (2014) show that “between
study designs require 4 to 8 times more subjects than a within study design to reach an
acceptable level of statistical power.” 17,18

In this section we discussed why within-subject designs provide more power than between
designs; however, they may not always be appropriate for the particular experiment at hand.
Charness et al. (2012) provide an overview of the pros and cons of each design and the cir-
cumstances under which each may be appropriate.

Multiple treatments A between subjects study with multiple treatments puts additional
constraints on power. This is because the study attempts to detect a separate effect for each
treatment on the outcome variable, and a sufficiently large group is needed to detect the
effect of each treatment.

One way to maximize power with multiple treatment arms is by using an unbalanced design.
This implies that there is a different number of participants in each treatment arm. Many
studies with several treatments distribute the same number of subjects into each treatment
group, because this optimizes power when variances are equal across groups. But if we can
more precisely anticipate the expected variance of the outcome for each treatment arm, then
the number of participants assigned to each of the treatment arms and control group can be
different.

To elaborate, we could at least expect the observations in the treatment arm(s) to exhibit
more variation than observations in the control group. In particular, we can assign few
participants to treatment arms in which we might expect a lower variance in the outcome
variable. Thus, designs with equal sample sizes across all treatment and control groups re-
quire a larger sample size than is optimal, because the highest variance across all treatment
cells is (implicitly) assumed. List et al. (2011) provide a derivation of power calculations

17ρ in this formula should not be confused with the intra-cluster correlation coefficient (ICC), which is often
also denoted as ρ. The ICC measures the Pearson correlation between two individuals in the same cluster.
Accounting for ICC > 0 in Equation 1 gives NBC = [σ2(1 + ICC(m− 1))(Bα +Bβ)

2
]
/[γ(1− γ)(θ1 − θ0)2

]
,

where m is the cluster size (List et al., 2011; Matthews, 2006, p. 204-207). ICC > 0 thus increases required
sample size for a given power. See Sainani (2010) for examples. See Frèchette (2012) for discussion of when
a within-subjects study has ICC > 0.

18Some experiments involve both within- and between-subject treatments - e.g. split plot designs, where
a field is divided into several plots where each receives different irrigation schemes (between), and then the
plots are sampled repeatedly using different types of fertilizers (within). The appropriate power calculations
can be made for each outcome. See Maxwell et al. (2018) for detail in analyzing such designs.
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for a treatment and control group with unequal variances (their equations 6 and 7).19 An-
other promising area of research with regards to between designs with multiple treatments
is adaptive designs, in which more study participants are allocated to promising treatment
arms over time. See Finucane McKenzie et al. (2018) and Xiong et al. (2019).

Multiple hypothesis testing Additional consideration must be taken if researchers want
to examine power for multiple hypotheses. Multiple hypothesis tests (MHT) can arise for
several reasons: multiple treatments - meaning, for a given outcome, applying k treatments
will require conducting k hypothesis tests to test the effect of each treatment; multiple sub-
groups - meaning, for a given treatment and outcome, testing the treatment’s effect for each
subgroup (e.g. the effect for men versus women); and multiple outcomes - meaning, testing
the effect of any one treatment on multiple outcomes (List et al., 2019). As the number
of hypothesis tests increases, so does the probability that one of them will be significant.
After M independent tests, the probability of making at least one type I error in M tests is
1− (1− α)M .20 Thus, after 10 tests, and 5% significance, the probability of falsely rejecting
one or more null hypotheses is already 40%.

One can adjust power calculations for multiple hypotheses via simulation. For example,
Porter (2018) provides R code to adjust for multiple hypothesis tests in simulated power
calculations. Rather than using p values generated from single t-tests, rejection rates are
based on p values adjusted by any of the many available procedures (Bonferroni, Holm, or
Benjamini-Hochberg) that account for the number of tests being conducted, and by a chosen
definition for rejection - e.g. “the probability of detecting effects of at least a particular
size on at least one outcome, or the probability of detecting an effect of a particular size
or larger for each particular hypothesis test” (Porter, 2018). List et al. (2019) provide a
new procedure to correct for multiple hypothesis testing that outperforms the Bonferroni
correction in terms of power. In Section 6 we also provide simple starter code to generate
one’s own simulated power calculations. Note that MHT can put more demands on one’s
power calculations, but this will depend on the definition for rejection that is chosen.

Even if one takes multiple hypotheses into account ex ante in the power analysis, ex post
corrections are still needed in order to account for the probability of one or more false
rejections.

6 Computing power
Most statistical programming languages offer packages that will compute sample size, given
the choice of α, β, µ0, µ1, and σ, as well as additional parameters such as the ratio of the

19We provide an example with multiple treatment arms and different variances in Section 6. Also, Stata
allows for different ratios of the treatment to control sample size using the nratio option with the power
command.

20P(Making an error) = P(reject H0|H0) = α; P(Not making an error) = P(not reject H0|H0); P(Not
making an error in M tests) = (1− α)M ; P(Making at least 1 error in m tests) = 1 - (1− α)M .
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sample size between treatment to control groups. Stata includes the commands power,21

sampsi and sampclus. Note, importantly, that Stata’s default output is framed in terms
of composite tests H0 : θ = θ0 versus H1 : θ 6= θ0, but the command allows the user to
specify a specific null and a single alternative, on one side of θ0. The the two-sided aspect
is then reflected only in the critical value. Stata’s power command can, however, produce
power function outputs in table and graph form, for both one-sided and two sided tests. To
generate the power function output, the user inputs a list of possible values for one or more
parameters, and specifies the option table or graph. The two-sided option is also easily
changed to one-sided, using the option onesided. Open source languages such as R and
Python also have their respective power libraries.22

Another tool for power analysis is the Optimal Design (OD) software (Raudenbush et al.,
2011).23 OD exclusively considers two-sided alternative hypotheses applied to designs with
a single treatment and a control and an even split of subjects in each group. OD does not
accommodate designs where each subject is subject to two or more treatments. The tool can
produce graphs that depict the trade-offs between any two chosen parameters. For example,
the researcher may input an anticipated effect size and standard deviations to generate a
graph of power versus sample size. To learn the coordinates of any given point on a graph,
the user must click on the desired point. Stata will also produce these graphs, but in OD
they are the default output and very quick to generate. However, unlike Stata, OD will not
output a table.

OD can calculate power for a variety of experimental designs, with a focus on multi-level
and longitudinal designs. There are two design options that JESA readers will likely find
most useful. They are under the “person randomized trials” sub-menu. A person random-
ized trial is an experiment where the unit of randomization is the individual subject.24 The
pertinent options in the “person randomized trials” category are labeled “single level trials”
and “repeated measures.” A single level trial is the same as a single period between subjects
experiment: choosing this option in OD tells the software that the study will have one (post-
treatment) outcome measure per subject and that each subject is either in the treatment
group or the control group. Note, however, that power calculations for this design option
assume a continuous outcome variable.

The repeated measures option pertains to a between subject design with multiple observa-
tions per person. This kind of design is useful for tracking treatment effects over multiple
periods of decision making. It thus accommodates panel data. A multiple round public

21A one sample, two-sided sample size calculation with α = 0.05, 1− β = 0.8, µ0 − µ1 = 2 - 2.5 and σ =
0.8 is coded as power onemean 2 2.5, sd(0.8); A two sample, two-sided mean test where µ0 − µ1 = 12
- 15, σ0 = 5, σ1 = 7 and the treatment groups is twice the control group is coded as power twomeans 12
15, sd1(5) sd2(7) nratio(2).

22For a comprehensive list of power packages see Bellemare et al. (2016).
23The software is free and available here. More information can be found at this site. A guide by J-PAL

that includes tutorials is available here.
24In contrast, OD also accommodates multi-site and block randomized trials, which are more relevant to

field experiments.
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goods game (with no feedback) is an example of a repeated measures design in the lab. As
with the single level trials, each subject is assumed to be in either the treatment group or
the control group. In OD, power calculations for this design assume a single observation per
subject prior to treatment being applied (in both treatment and control groups). To use the
repeated measures feature, one would specify the frequency of observations (F), the duration
of the study (D), and the total number of observations per subject (M=FD + 1, where the
1 refers to a pre-treatment observation). As before, the calculations for this option pertain
only to continuous outcome variables.

Normal vs non-normal distributions Section 2 contextualized the derivation of sample
size and power with respect to a normally distributed test statistic. But the principles apply
more generally, as well. In the way of non-normal distributions there are several consid-
erations. For normally distributed data, if σ2 is unknown, it is typically estimated using
sample variances. As a result, the test statistic will have a t-distribution, and critical values
associated with Bα and Bβ would be taken from a t-distribution rather than a standard
normal distribution. Stata takes this approach as its default for twomeans and onemean.25

Second, other types of data, such as studies with multiple observations per subject, will re-
quire test statistics with different distributions. Most statistical packages support a variety of
test statistics (and their corresponding distributions). Both Stata and OD assign an appro-
priate probability distribution automatically, given user inputted information on the study
design and type of variable being tested (mean, proportion, etc.). The programs’ user man-
uals describe the possible test statistics for the various designs (and tests) that they support.

In large samples, normal approximations may be adequate, particularly for t-statistics and
chi-squared statistics. To illustrate, for power calculations that use a t-distribution, “large”
may apply to a sample as small as 25 observations. This can be seen in Figure 5. The figure
demonstrates how quickly the critical values that achieve 80% power using a t-distribution
converge to the critical value from a standard normal distribution, as the sample size in-
creases. The standard normal critical value is marked with a dashed line. This figure shows
that the t-distribution and standard normal distribution return very similar power as the
sample size passes 25. At N = 20, the same critical value to achieve 80% power on a
t-distribution will yield 80.54% power using a standard normal. At N = 25 it yields 80.43%.
Finally, for very small samples where a specific distribution is not assumed, non-parametric
tests are more appropriate. Rahardja et al. (2009) and, more recently, Happ et al. (2019),
provide closed form calculations of power calculations for the Mann-Whitney U test.

Even with the many programs available, researchers may still face situations where closed
form solutions for sample size and power may not exist. In such cases simulation based power
calculations can be a useful tool to overcome the weaknesses of programmed commands, and
is common among statisticians (van der Sluis et al., 2008). Essentially, the researcher gen-
erates k samples of size N following the distribution specified under H0 and k samples of

25In this case, Stata uses an estimate of 1 for the unknown standard deviation. The user can override the
default by adding the option knownsds to the command line. This default changes to a z-distribution if the
study design will lead to clustered error terms, which is common in field experiments.
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size N following the distribution specified under H1 and compares the two samples k times
using her preferred statistical test. β is the proportion of k tests that are not rejected, and
power is 1− β.

Arnold et al. (2011) provide sample code for simulated power calculations in R and Stata,
where their examples include calculations for cluster randomized trials and studies with two
treatments arms with different outcome variances. Two user written Stata packages also ex-
ist for simulating power calculations including Bellemare et al. (2016)’s powerBBK package,
Luedicke (2013)’s powersim package. Bellemare et al. (2016)’s package is remarkably versa-
tile and can account for experimental design, order effects, budget constraints, differences
in variances across treatment and control, multiple treatment arms, and panel data.26 We
also provide a simple benchmark example in the Appendix A using Monte Carlo simulations
to calculate power in Python that can be easily adjusted for other distributions, sample
sizes, effect sizes, variances, and number of simulations. The code defines the parameters
for two distributions (N0, N1, α, µ0, µ1, σ0, σ1), reflecting the distribution of each random
sample that would be drawn from the treatment and control groups, and the number of
simulations.27 For each random draw from the treatment and control group, the program
calculates the mean difference between the groups and its related p value on a standard nor-
mal distribution. It then reports power, or the percentage of times where the null is rejected
across all simulations.

6.1 Choosing inputs for a power calculation

There are no strict rules for how to determine the values of µ0, µ1 and σ2 for power calcu-
lations. Effect sizes and standard errors from studies that examine similar populations and
treatments are the most common source. But studies do not uniformly report µ0, µ1 and
σ2, or they may not contain values for these parameters in specific sub-samples of interest
(e.g. women versus men). Pilot studies or pre-intervention surveys can be useful, but must
be considered carefully, as these are often small sample exercises. For exploratory studies,
researchers may not know what absolute effect to expect, such that discovering an effect of
any size may be sufficient to meet research goals. Clearly, choosing specific values for µ0, µ1

and σ2 is not a straightforward or trivial exercise.

Moreover, a power calculation inherently assumes that the parameters are equal to the val-
ues to which we set them, where in fact, point estimates lie somewhere within a confidence
interval. The data from which that point estimate is derived could support a much smaller

26A sample command for a study of t = 2 rounds, a budget ranging from 40 to 800 in 40 dollar increments
per round, a within design, an effect size of 0.1, where the baseline is 6.3, individual heterogeneity variance of
0.045, and variance of the error term of 0.02 is: budget(40(40)800) t(2) design(both) beta(6.3 0.1)
muvar(0.045) epsvar(0.02) command(regress) panel rep(100).

27The comparison of means can be replaced by a regression framework where we regress the outcome
variable on an indicator for treatment and control and store the resulting p value on the indicator variable.
The latter lends itself to more complicated designs - multiple treatments, multiple subgroups, multiple
outcomes.
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or larger value for the true µ0, or µ1, which could change the power calculation considerably.
We might think that an estimate of σ derived from the same data would account for this
issue; however, confidence intervals decrease at a slower rate - with one over the square root
of the sample size for the z-statistic- than the standard deviation alone (Gelman and Hill,
2006). Therefore, using a specific µ0 or µ1 to calculate power is never conclusive, since the
true values are inside a confidence interval which shrinks slowly with N. These uncertainties
argue that, except in very particular cases, power can be calculated over a range of param-
eter values. For exploratory studies, in particular, this will help the researcher avoid overly
conservative sample sizes. Authors can present plots of the power function (power graphed
against effect size) for a given sample size. This should be accompanied by a discussion of
how the researcher used the information to decide on a sample size.

Finally, when a specific expected effect is hard to determine, or when the researcher has
limited control over the sample size, it is useful to calculate the minimum detectable effect
(MDE), given assumptions about sample size, and power. For example, the researcher can
present the MDE under 90%, 80%, and 70% power, and discuss the conditions under which
these MDEs are attainable. See, for example, Drichoutis et al. (2015).

7 Conclusion
Using and reporting power in published articles is a practice economists conducting exper-
iments should adopt. In lieu of power calculations, experimental economists have tended
to apply rules of thumb (e.g. N > 30) for determining sufficient sample sizes. Rules of
thumb are not without statistical underpinning, but power calculations bring to focus the
importance of economically meaningful effect sizes and also shed light on how and why a
particular subject pool is attained.

We discuss many of the topics frequently brought up in experimental design and analysis
that are also related to power, including the fallacy of observed power, overstated effect sizes,
publication bias, the importance of reporting power for null effects, and replication.
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Figure 1: Power (one-sided) for successive values of θ1. Power is the area marked by hori-
zontal lines, c is the critical value for the chosen α and θ0 and θ1 are the values for the null
and alternative hypotheses, respectively. The chart shows how power increases as θ1 moves
further from θ0.
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Figure 2: Power function for one- and two-sided alternatives. Power function is evaluated
for alternative hypothesis effect sizes, θ1.

Figure 3: Overstated Effect Size in Underpowered Studies
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α = 0.5, Bα/2 = 1.96, β = 0.2, N = 100

Figure 4: Fallacy of Ex post Power

Figure 5: Convergence of t-distribution to normal distribution
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A Appendix

A.1 Example: Simulation of Power Calculations

import numpy as np

import scipy.stats

# Set parameters
sample_0 = 30

sample_1 = 30

mean_0 = 0.0

effect_size = 0.8

sigma_0 = 1

sigma_1 = 1

simulations = 10000

#Empty l is t to store p values
p_values = []

#Draw samples from a normal distribution
for i in range(simulations):

# Sample from control group
control = np.random.normal(loc = mean_0, scale = sigma_0, size = sample_0)

# Sample from treatment group
treatment = np.random.normal(loc = mean_0 + effect_size , scale = sigma_1, size = sample_1)

# ttest across control and treatment
result = scipy.stats.ttest_ind(control, treatment)

# Store p value from test
p_values.append(result[1])

#Number of simulations where the null was rejected
p_values = np.array(p_values)

reject = np.sum(p_values < 0.05)

# Calculate percentage of times reject null
percent_reject = reject / float(simulations)

print("Power: ", percent_reject)

To alter the code to account for other distributions and statistical tests (e.g. non-parametric
tests) we would simply replace the np.random.normal() function with another sampling
distribution (e.g. np.random.chisquare()) and the scipy.stats.ttestind() function with another
statistical test (e.g. such as scipy.stats.mannwhitneyu()).
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