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Abstract 

Mountain Glacier Change Across Regions and Timescales 

Joshua M. Maurer 

 

Mountain glaciers have influenced the surface of our planet throughout geologic time. These 

large reservoirs of water ice sculpt alpine landscapes, regulate downstream river flows, perturb 

climate-tectonic feedbacks, contribute to sea level change, and guide human migration and 

settlement patterns. Glaciers are especially relevant in modern times, acting as buffers which 

supply seasonal meltwater to densely populated downstream communities and support 

economies via hydropower generation. Anthropogenic warming is accelerating ice loss in most 

glacierized regions of the world. This has sparked concerns regarding water resources and 

natural hazards, and placed glaciers at the forefront of climate research. Here we provide new 

observations of glacier change in key mountain regions to quantify rates of ice loss, better 

understand climate drivers, and help establish a more unified framework for studying glacier 

change across timescales. 

     In Chapter 1 we use seismic observations, numerical modeling, and geomorphic analysis to 

investigate a destructive glacial lake outburst flood (GLOF) which occurred in Bhutan. GLOFs 

are a substantial hazard for downstream communities in many vulnerable regions. Yet key 

aspects of GLOF dynamics remain difficult to quantify, as in situ measurements are scarce due to 



 
 

the unpredictability and remote source locations of these events. Here we apply cross-correlation 

based seismic analyses to track the evolution of the GLOF remotely (~100 km from the source 

region), use the seismic observations along with eyewitness reports and a downstream gauge 

station to constrain a numerical flood model, then assess geomorphic change and current state of 

the unstable lakes via satellite imagery. Coherent seismic energy is evident from 1 to 5 Hz 

beginning approximately 5 hours before the flood impacted Punakha village, which originated at 

the source lake and advanced down the valley during the GLOF duration. Our analysis highlights 

potential benefits of using real-time seismic monitoring to improve early warning systems.  

    The next two chapters in this work focus on quantifying multi-decadal glacier ice loss in the 

Himalayas. Himalayan glaciers supply meltwater to densely populated catchments in South Asia, 

and regional observations of glacier change are needed to understand climate drivers and assess 

impacts on glacier-fed rivers. Here we utilize a set of digital elevation models derived from cold 

war–era spy satellite film and modern stereo satellite imagery to evaluate glacier responses to 

changing climate over the last four decades. In Chapter 2 we focus on the eastern Himalayas, 

centered on the Bhutan–China border. The wide range of glacier types allows for the first mass 

balance comparison between clean, debris, and lake-terminating (calving) glaciers in the area. 

Measured glaciers show significant ice loss, with statistically similar mass balance values for 

both clean-ice and debris-covered glacier groups. Chapter 3 extends the same methodology to 

quantify glacier change across the entire Himalayan range during 1975–2000 and 2000–2016. 

We observe consistent ice loss along the entire 2000-km transect for both intervals and find a 

doubling of the average loss rate during 2000–2016 compared to 1975–2000. The similar 

magnitude and acceleration of ice loss across the Himalayas suggests a regionally coherent 



 
 

climate forcing, consistent with atmospheric warming and associated energy fluxes as the 

dominant drivers of glacier change. 

    Chapter 4 investigates millennial-scale glacier changes during the Late Glacial period (15-11 

ka). Here we present a high-precision beryllium-10 chronology and geomorphic map from a 

sequence of well-preserved moraines in the Nendaz valley of the western European Alps, with 

the goal to shed light on the timing and magnitude of glacier responses during an interval of 

dramatic natural climate variability. Our chronology brackets a coherent glacier recession 

through the Younger Dryas stadial into the early Holocene, similar to glacier records from the 

southern hemisphere and a new chronology from Arctic Norway. These results highlight a 

general agreement between mountain glacier changes and atmospheric greenhouse gas records 

during the Late Glacial. 

    In Chapter 5 we use a numerical glacier model to simulate glacier change across a typical 

alpine region in the European Alps. Model results suggest that shorter observational timespans 

focused on modern periods (when glaciers are far from equilibrium and undergoing rapid 

change) exhibit greater spatial variability of mean annual ice thickness changes, compared to 

intervals which extend further back in time (to include decades when climate was more stable). 

The model agrees with multi-decadal satellite observations of glacier change, and clarifies the 

positive correlation between glacier disequilibrium and spatial variability of glacier mass 

balance. This relationship should be taken into account in regional glacier studies, particularly 

when analyzing recent spatial patterns of ice loss. 

    Advances made in this work are of practical value for societies vulnerable to glacier change. 

This includes potential improvements to GLOF early warning systems via seismic monitoring, 

better constraints on glacier-sourced water scenarios in South Asia, strengthened understanding 



 
 

of long-term glacier responses to baseline natural climate variability, and a clarified relationship 

between glacier disequilibrium and spatial variability of ice loss. When placed within a global 

context, our observations highlight the correlation between regional mountain glacier change and 

greenhouse gas forcing through time. 
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Introduction 

The state of any glacier is determined by its mass and energy balance through time, primarily via 

interaction with the atmosphere (e.g. precipitation and air temperature). Substantial glacier 

changes can occur over a range of different timescales, from glacial lake outburst floods which 

drastically alter landscapes and devastate downstream communities in a matter of minutes 

(Chapter 1), to 21st century acceleration of glacier ice loss across large mountain regions 

affecting availability of seasonal meltwater in densely populated environments (Chapters 2 and 

3), to landscape-altering, millennial-scale glacier advances and retreats which occurred through 

the Quaternary (Chapter 4). Quantifying rates of ice loss and understanding climate drivers of 

glacier change are vital for accurate projections of hydrological impacts in the coming decades. 

    Within the scientific literature, some contrasting viewpoints exist regarding spatiotemporal 

patterns of glacier behavior in various regions. Annual to multi-decadal studies (based on in-situ 

field measurements and satellite observations) often highlight complex spatial patterns of ice loss 

and significant spatiotemporal variability, while centennial to millennial studies (based on 

techniques such as surface exposure dating of moraine boulders) suggest largely synchronous 

glacier changes across regions and hemispheres in response to long-term natural climate 

variability. This contrast is generally understood to be partially caused by the way in which 

glacier dynamics integrate and average climate signals through time; however, there is a clear 

disconnect regarding the topic in glaciological literature. This may be largely due to a deficiency 

of observational data in climatically and topographically complex mountain regions, as well as 

somewhat limited overlap between existing observations of glacier change and numerical 

modeling of glacier dynamics. Here we focus on specific aspects of mountain glacier change 

most relevant to society today, with the overall goal of bringing together different methodologies 
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in order to help establish a more unified framework of glacier change across regions and 

timescales. The chapters in this work are organized by duration of change, beginning with the 

analysis of a destructive event which took place over a few hours – a glacial lake outburst flood 

(GLOF). 
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: Seismic observations, numerical modeling, and geomorphic 

analysis of a glacier lake outburst flood in the Himalayas 

Note: a modified version of this chapter has been accepted for publication in Science Advances. 
Authors: J.M. Maurer, J.M. Schaefer, J.B. Russell, S. Rupper, N. Wangdi, A. Putnam, N. Young. 
 

Glacial lake outburst floods (GLOFs) are a substantial hazard for downstream communities in 

vulnerable regions. Many aspects of GLOF dynamics are difficult to quantify, as in situ 

measurements are scarce due to the unpredictability and remote source locations of these events. 

Here we revisit a destructive GLOF which occurred in Bhutan in 1994, and apply cross-

correlation based seismic analyses to track the evolution of the GLOF remotely (~100 km from 

the source region). We use the seismic observations along with eyewitness reports and a 

downstream gauge station to constrain a numerical flood model, then assess geomorphic change 

and current state of the unstable lakes via satellite imagery. Coherent seismic energy is evident 

from 1 to 5 Hz beginning approximately 5 hours before the flood impacted Punakha village, 

which originated at the source lake and advanced down the valley during the GLOF duration. 

Our analysis highlights potential benefits of using real-time seismic monitoring to improve early 

warning systems. 

1.1 Introduction 

Glacial lakes in the Himalayas are rapidly growing due to climate change and acceleration of 

glacier melt in recent decades (Maurer et al., 2019; Schwanghart et al., 2016). Many of these 

lakes are dammed by unstable, often ice-cored moraines (Richardson and Reynolds, 2000), 

surrounded by steep topography prone to landslides, and frequently subjected to seismic events 

and intense monsoonal precipitation. Risks associated with glacial lake outburst floods (GLOFs) 

are substantial for downstream inhabitants in these regions, and thousands of fatalities have 
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already occurred as a direct result of sudden catastrophic releases of water (Carrivick and Tweed, 

2016). Societies and economies of GLOF-prone regions are severely impacted, including 

destruction of infrastructure, disruption to communities, and loss of life (Carrivick and Tweed, 

2016; Richardson and Reynolds, 2000; Schwanghart et al., 2016; Watanabe and Rothacher, 

1996). The nation of Bhutan, in particular, has been classified as having some of the greatest 

national-level economic consequences of glacier flood impacts, as hydropower dominates the 

nations GDP and socio-economic development potential (Carrivick and Tweed, 2016; Uddin et 

al., 2007). The electric power demands of Himalayan nations are on a steep rise with rapid 

economic growth, and hydropower development continues to expand into higher sites closer to 

glaciers (Schwanghart et al., 2016). 

    Numerous GLOFs have been documented in the Himalayas by firsthand observation and 

satellite imagery after their occurrence (Iwata, 2002; Rounce et al., 2017; Veh et al., 2019). The 

most comprehensive analysis to-date of the Landsat imagery archive finds an average GLOF 

frequency in High Mountain Asia (HMA) of 1.3 GLOFs per year since the 1980’s (Veh et al., 

2019). Despite this steady rate, quantitative in situ observations of GLOFs are scarce 

(Richardson and Reynolds, 2000) and limited to rare situations where pre-installed instruments 

are coincidentally located in the same valley as the GLOF (Cook et al., 2018). Efficient strategies 

to mitigate outbursts, design reliable early-warning systems, and minimize destructive impacts 

would benefit from continuous observation of flood evolution through time. While satellite 

observations can help identify regions of high GLOF-risk and quantify geomorphic impacts after 

occurrence, they cannot capture GLOF events in real-time. Numerical flood models can be used 

to simulate dam outbursts and flood waves (Koike and Takenaka, 2012; Osti et al., 2013; Rounce 

et al., 2017; Watson et al., 2015) yet require numerous physical parameters as input, which are 
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often unknown or poorly constrained (Watson et al., 2015). For example, the shape of a breach 

hydrograph can strongly influence flood characteristics downstream (Westoby et al., 2014). Yet 

these essential upstream boundary conditions in flood routing models are usually unknown, and 

must be estimated using physical or parametric dam breach models with large uncertainties 

(Wahl, 2004). In this regard any physical measurements of river flow behavior can be highly 

useful. Seismic monitoring in particular can measure seismic energy released by GLOF mass 

movements through time, from initial trigger events such as landslides and glacial calving to 

subsequent flood-generated energy from water turbulence and bedload transport (Burtin et al., 

2008; Burtin et al., 2016; Burtin et al., 2010; Gimbert et al., 2014; Lai et al., 2018; Schmandt et 

al., 2013). Such continuous measurements of the timing, location, and magnitude of high flow 

regimes can potentially improve constraints on model parameters which determine simulated 

flood magnitudes and arrival times downstream. 

    The Pho Chhu (river) flows from the pristine mountain region of Lunana (4500 m a.s.l.), 

southward through the Bhutan foothills where it eventually joins the Brahmaputra River in 

northern India (Figure 1.1). The valley has a typical step-like elevation profile, alternating 

between sections of very steep and relatively flat terrain separated by river knickpoints. Fed by 

seasonal snow melt, glacier melt, and summer monsoon rains, the river plays a vital role in the 

welfare and livelihood of the people of Bhutan. In the Pho Chhu valley, residents of small 

villages live and farm along the banks of the river, with rice paddies being a primary seasonal 

crop. In the river source region, several large proglacial lakes are continually expanding in size 

as a result of accelerated glacier melting in recent decades (Maurer et al., 2019; Schwanghart et 

al., 2016). Approximately 90 km downstream from the proglacial lakes is the village of Punakha 

(1200 masl), where a large 17th century Buddhist temple (the Punakha Dzong) is situated along 
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the riverbank at the confluence of the Mo Chhu and Pho Chhu. This temple and surrounding 

region are historically and culturally significant, and there is a great deal of concern about 

catastrophic outburst floods from the unstable lakes above.  

 

Figure 1.1. Region of study. Lugge Tsho was the source of the 1994 GLOF event, while 
Raphstreng Tsho and Thorthormi Tsho are also considered high-risk for future GLOFs. Locations 
of the 5 seismometers used in the study are denoted by the yellow circles in A.  

    Such an event occurred on the night of Oct 7th, 1994, when the moraine dam of Lugge Tsho 
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breached and debris-laden flood waters surged down the Pho Chhu valley. Twenty-one lives 

were lost, and the flood destroyed an estimated 12 houses, 5 water mills, 816 acres of crops, 965 

acres of pasture land, 16 yaks, 6 tons of stored food grains, 4 bridges, 2 stupas, and damaged part 

of the Punakha Dzong (Wangdi and Kusters, 2012). While the exact trigger of the Lugge Tsho 

breach is unknown, various causes of moraine failure have been hypothesized such as the 

melting of its ice core (Iwata, 2002), a gradual increase in hydrostatic pressure as the lake depth 

increased due to melting (Watanabe and Rothacher, 1996), or collapse of part of the right lateral 

hillside into the lake, causing a sudden increase in hydrostatic pressure (Fujita et al., 2008). After 

the tragic incident, much effort was put forth by the government of Bhutan to assess the risk of 

future GLOFs in the region, establish an emergency warning system, artificially lower lake water 

levels, and study Lugge Tsho in more detail. Post-GLOF field investigations found a mean lake 

depth of approximately 50 meters, a lake volume of 58.3 million m3, and a typical discharge at 

the lake outlet varying from 2.5 to 5 m3 s-1 during September and October of 2002. The total 

volume of water released during the GLOF was estimated by Yamada et al. as 17.2 ± 5.3 million 

m3 based on a differential GPS survey of the lowering of the lake level by 16.9 ± 3.2 m 

(Yamada, 2004), while an integration of the Wangdue station hydrograph (Figure S1.1) during 

the GLOF yields approximately 25 million m3 (JICA, 2001). In addition, dam breach, flood 

propagation, and debris flow models (sediment-water mixtures) have also been used to simulate 

GLOF scenarios in this region, including sequential and simultaneous (as may happen during a 

large earthquake) breaches occurring below high-risk lakes in Bhutan. These models suggest that 

downstream villages including Punakha and the major portion of Wangdue Phodrang are at risk 

for severe inundation if another large GLOF occurs (JICA, 2001; Koike and Takenaka, 2012; 

Meyer et al., 2006; Osti et al., 2013; Watson et al., 2015). 
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    Across the Himalayan region as a whole, the destructive potential of GLOFs is increasing. Yet 

the scarcity of observational measurements deters robust validation of numerical simulations, 

hinders quantification of GLOF dynamics, limits real-time warning, and increases uncertainties 

regarding societal impacts. Continuous observational coverage offered by seismic monitoring is 

one potential avenue for addressing this problem. Displacement of mass at Earth’s surface 

generates elastic seismic waves which carry information about the source, and can be recorded 

by seismometers at high temporal resolution across large spatial scales (Burtin et al., 2016). 

Proof-of-concept studies have already shown the potential of seismic monitoring for diverse 

types of surface activities including river bedload transport and debris flows (Badoux et al., 

2009; Burtin et al., 2008; Burtin et al., 2016; Schmandt et al., 2013), and further demonstrate the 

ability of seismic records to specifically provide insight into flood mechanics (Cook et al., 2018; 

Schmandt et al., 2013). Here we extend the application of seismic data to a Himalayan GLOF, 

using data from the International Deep Profiling of Tibet and the Himalaya (INDEPTH) II 

experiment (Nelson et al., 1996; Yuan et al., 1997). This data was collected by a passive 

broadband seismic array situated on the Tibetan Plateau, which was coincidentally recording 

when the GLOF occurred in Bhutan in 1994. Insofar as the authors are aware, INDEPTH II is the 

only seismic data available from 1994 in the region (within a 150 km radius). We perform a 

time-frequency analysis of the seismic signal produced by the GLOF, and use cross-correlation 

functions (CCFs) between seismic stations to locate and track the source of coherent seismic 

energy through time. With the seismic data, firsthand accounts, and gauge station measurements, 

we constrain the progression of the flood from initial outburst to arrival in populated villages 

using a numerical flood model. To further quantify geomorphic impacts of the GLOF, we apply 

historical spy satellite images, Landsat, and modern high-resolution imagery to analyze lake area 
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changes over time, the extent of flood-deposited sediments, the rate of vegetation regrowth post-

GLOF, and pre- and post-flood morphology of the source area dated by 10Be. 

1.2 Results 

1.2.1 Analysis of seismic data 

Seismic energy generated during the GLOF was recorded by five seismometers (with locations 

ranging from approximately 75 to 130 km distance from the breach point) as a clear high 

frequency (1–4 Hz) signal lasting several hours (Figure 1.2, Figure S1.2). Seismic energy at 

these frequencies was most likely excited by energy from turbulent flow and bedload transport 

processes, as observed in previous studies of seismic signals generated during high flow regimes 

(Burtin et al., 2008; Burtin et al., 2016; Cook et al., 2018; Goodling et al., 2018; Schmandt et al., 

2013). The GLOF signal strength was 5–15 dB above typical background noise levels (Figure 

S1.10), and occurred during the night and early morning when local anthropogenic noise was at a 

minimum (i.e. anthropogenic noise). Spectrograms show a similar pattern on vertical and 

horizontal components across all five stations (Figure S1.2). Some interstation variability in peak 

frequency content is observed during the two GLOF phases, likely due to lateral heterogeneity in 

attenuation structure and differences in distance from the source. The first detectable high 

frequency signal arrived at approximately 1:45 am, beginning with relatively weak amplitude 

and limited primarily to frequencies between 1-3 Hz. Over the next several hours, the seismic 

energy varied somewhat through time, as the flood wave passed through sections of the valley 

with different slope and river channel characteristics. Around 25 minutes after this first arrival, 

an increase in spectral amplitude occurred across a wider range of frequencies (1–4 Hz) (Figure 

S1.2) then subsequently tapered off over the next 1.5 hours. At approximately 3:50 am the signal 

power began increasing again and reached a maximum at 6:00 am with frequency content 
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ranging from approximately 1–5 Hz. During this interval the flood wave passed through the main 

branch of the Pho Chhu and impacted Punakha at approximately 7:00 am based on eyewitness 

accounts.  

    We further examined the signal correlation across stations to constrain the origin of the 

seismic energy in space and time (Burtin et al., 2016; Burtin et al., 2010; Chao et al., 2015). 

Computing CCFs for every station pair across a series of frequencies ranging from 1 to 5 Hz, we 

find strong correlation of waveforms during two distinct intervals (see Materials and Methods, 

Figure S1.13). The first spans from approximately 1:45 to 3:15 am, during which a strong peak 

in CCF amplitude is apparent (Figure S1.3). Migrating the CCFs during this interval and 

subsequently summing them together, a region of high coherence emerges, focused directly on 

the GLOF breach location at Lugge Tsho (Figure 1.2), indicating that during this time the 

outburst event was the dominant source of seismic energy at these frequencies. Approximately 

four hours later, a second prominent interval of high coherence spans from around 5:45 to 7:15 

am. Migration of the CCFs during this later interval indicates that the GLOF-induced seismic 

energy originated from a lower (downstream) section of river, indicating that the flood wave had 

reached this point in the valley (approximately 70 km from the breach, and 20 km above 

Punakha) by around 5:45 am. 
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Figure 1.2. Key seismic observations on Oct. 7, 1994. (A) Example of a seismic trace (station 
BB20 BHZ) bandpass filtered between 1 to 5 Hz, and spectrogram from 1 to 5 Hz during the 
GLOF duration. (B) Two examples of CCFs between station pairs BB18-BB20 and SP25-SP27 
averaged for the three components (BHZ-BHZ, BHE-BHE, BHN-BHN) for frequency ranges 1.5 
to 2 Hz and 2.25 to 2.75 Hz, respectively. Peaks in coherent seismic energy are evident from 
approximately 1:45 to 3:15 am in the first station pair, and from 5:45 to 7:15 am in the second 
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pair at these frequencies. (C) Migration of the CCFs during the two intervals using a velocity of 
3.0 km s-1 (Figure S1.3; likely indicating regional short period Rayleigh waves) for several station 
pairs, then summed together to form these final coherence maps (see Methods and Figure S1.3). 
These two images illustrate the downstream progression of seismic energy generated by the 
GLOF. The coherence map on the left corresponds to seismic energy generated during the initial 
GLOF breach, while the map on the right corresponds to seismic energy generated approximately 
4 hours later and ~70 km downstream. Times are Asia/Thimphu local time (UTC+6).  

1.2.2 Seismic signal generation 

Generation of seismic waves from fluvial processes is understood to occur by two main 

processes: 1) transport of sedimentary grains that stochastically impact the river bed and 2) 

turbulent fluid flow that interacts with the riverbed. Previous observations of seismic energy 

associated with turbulent flow and bedload transport processes made at much smaller distances 

from the seismic source (typically less than a few hundred meters away) show peak frequencies 

ranging from 1–100 Hz depending on distance from the source and local seismic attenuation 

structure (Burtin et al., 2008; Burtin et al., 2016; Cook et al., 2018; Goodling et al., 2018; 

Schmandt et al., 2013). Here, we demonstrate that coherent seismic energy from approximately 

1–5 Hz is generated and can propagate to distances as far as ~100 km from the source region 

during large GLOF events. Numerical models that predict seismic energy excitation due to 

turbulent flow and bedload transport processes show that >1 Hz seismic energy is difficult to 

generate at such large distances (Gimbert et al., 2014; Lai et al., 2018; Tsai et al., 2012). 

However, the high river flow rates (~2500 m3 s-1) and thick water flow depths associated with 

the GLOF represent extreme conditions that have not been explored in detail in numerical 

models and may well violate their underlying physical assumptions. Additional work is needed 

to fully understand the physical processes responsible for the observed seismic signal generation 

during the GLOF event on Oct 7th, 1994 and how these observations compare with predictions 

from recent numerical models. 
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1.2.3 Constraining a flood model 

Hydropower viability, disaster preparedness, and paleoseismic investigations have previously 

simulated flood events in this region using numerical models (JICA, 2001; Koike and Takenaka, 

2012; Meyer et al., 2006; Osti et al., 2013; Watson et al., 2015). Here we build on results from 

these earlier studies by calibrating a flood model using the new set of independent observations: 

1) an estimated start time and location based on the beginning of detectable seismic energy and 

migrated CCFs, 2) the second interval of correlated seismic energy which occurred several hours 

later and ~70 km downstream of the initial breach, 3) the approximate arrival time of the flood at 

Punakha from firsthand observations, and 4) the flood hydrograph from Wangdue station 

(around 110 km downstream from the breach). Together these provide key constraints on the 

location of the flood wave through the duration of the GLOF, and allow us to parameterize a 

model with a higher degree of confidence than previously possible. The start time of the GLOF 

in particular is a key aspect which was previously unknown. Due to the sensitivity of flood 

models to input parameters (Figure S1.1), these independent observations are especially useful 

for validating and selecting model runs which are most realistic (see Materials and Methods).We 

use the U.S. Army Corps of Engineers Hydrologic Engineering Center’s River Analysis System 

(HEC-RAS) software to perform a series of 2D unsteady flow simulations, select model runs 

which agree with the independent observations within a ± 30 minute threshold (see Materials and 

Methods and Figure 1.3), and report ranges of simulated breach-to-arrival times for the main 

populated villages along the river valley for Thanza (0.4-0.6 hours), Thsojo (1.0-1.3 hours), 

Lhedi (1.4-1.8 hours), Samdingkha (3.9-4.6 hours), Punakha (4.4-5.2 hours), and Wangdue (5.7-

6.5 hours) (Table 1.1). We note that around 6:30 am, the peak flows in the best-fit model runs 

precede (in time) the peak in seismic coherence, approximately 70 km downstream from the 



14 
 

breach. While this may reflect the actual order of events, the model may also be overestimating 

the flood wave velocity above this section of the valley. In all model runs, the duration between 

arrival and peak flow gradually decreases as the flood travels down the section of valley above 

Punakha. This consistent aspect of the flood illustrates the manner in which topography can 

shape a flood wave, in this case causing the wave to become steeper and more prominent while 

traveling down a steep valley gorge. Results from model runs with different breach hydrographs 

all converge to a similar shape before reaching the larger villages downstream. In the village of 

Samdingkha for example (~8 km above Punakha), the duration between first arrival and peak 

flow ranges from 10 to 30 minutes. Without an external early warning system, this sudden rise in 

water level permits only a short time for inhabitants to move to safe ground, particularly if the 

early stages of the rise go unnoticed for several minutes. 
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Figure 1.3. Results from the HEC-RAS 2D unsteady flood model. (A) Elevation profile of the 
river valley, with hourly locations of flood arrival time from the best-fit model run. (B) Distance 
from the moraine breach versus time. The grey square symbols and brackets are independent 
observations from seismic, eyewitness, and gauge station sources. The color-shaded regions 
represent the range of model outputs which match observations within ± 30 minutes, and the 
colored curves represent the single best-fit model run. The orange curve is the simulated arrival of 
the flood wave, the blue curve is the peak flow, and the yellow curve indicates when the flow has 
subsided and reached 1/e (~37%) of the peak. The horizontal separation of the orange and blue 
curves indicate the duration between flood arrival and peak flow for a given location. The grey 
(dashed) boxes indicate the intervals in Figure 2 during which the peaks in coherent seismic 
energy were detected. (C) Map view of region also with modeled flood arrival times. Times are 
Asia/Thimphu local time (UTC+6).  

1.2.4 Geomorphic change caused by the GLOF 

Satellite imagery reveals prominent changes in the Lunana region both before and after the 

GLOF. The most consistent change is a steady increase in the area of Lugge Tsho over the last 
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45 years, starting at approximately 0.42 km2 in January of 1976. The lake area increased at a rate 

of 0.038 km2 yr-1 as the glacier receded and melted, reached 1.1 km2 in September of 1994, then 

underwent a sudden decrease to 0.87 km2 after the GLOF in October of 1994. Subsequently, the 

lake area continued increasing at a rate of 0.025 km2 yr-1, and has since reached a size of 1.42 

km2 as of September 2018 (Figure S1.4). We note that the lake expansion is primarily due to the 

receding glacier rather than rising lake level (see Discussion). The location of the 1994 breach is 

evident in both visible imagery and digital elevation model on the lower left lateral moraine, 

where a cross section along the moraine crest shows a channel approximately 180 m wide and 40 

m deep. Declassified satellite imagery from 1976 clearly shows this location was a pre-existing 

outlet for Lugge Tsho (Figure S1.5). Below the breach, changes in spectral reflectance are visible 

in post-GLOF Landsat imagery where the flood deposited debris and sediment along large 

regions of the valley floor. Upon first breaching the lake-fringing moraine, the flood waters 

flowed into another small lake approximately 500 m downstream. This seasonal lake was full at 

the time the GLOF occurred due to accumulated snowmelt and monsoonal precipitation from the 

prior summer months. The flood washed out the natural dam of this small lake basin, thus now it 

no longer accumulates water as it did in years prior.  

    Around 10 km from the breach, a prominent set of glacier moraines is situated below Thanza 

(Figure 1.4, Table S1.2). Here we analyzed three boulders on the well-preserved outermost 

moraine ridge using 10Be surface exposure dating, following procedures in Schaefer et al. (2009). 

Results yielded three consistent ages ranging from 4.4 to 4.7 kyr, indicating that the moraines 

were deposited during the mid-Holocene and left largely intact by the 1994 flood (Figure S1.5). 

After passing through the moraines, the flood wave spilled over the Tshojo plain, where it 

subsequently deposited a 2.2 km2 swath of sediment. In total, we estimate approximately 4.8 km2 
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of valley floor was covered by sediment as a result of the GLOF. This occurred primarily along 

the upper 25 km of the river (Figure S1.6), as below this upper region the channel is highly 

confined and sediment deposition was minimal. In the decades following, the impacted 

vegetation has slowly recovered (Figure S1.7). In 1994 the mean enhanced vegetation index 

(EVI) of the Tshojo plain dropped to around 25% of the pre-GLOF value as a result of the flood. 

From 1994-2005 the EVI steadily increased as the vegetation began reclaiming the area, 

attaining around 75% of the pre-GLOF value in 2005 and remaining steady for several years 

afterward. Another increase occurred from 2011-2013, during which time an EVI approaching 

that of the pre-GLOF conditions was attained. 

 

Figure 1.4. Geomorphic Map of the Lunana area. The lower (red) moraines were deposited by the 
glacier more than 4000 years ago during the mid-Holocene, as indicated by the 10Be ages of three 
sampled boulders given with 1-sigma analytical error. The younger lake-fringing (purple) 
moraines are late-Holocene in age.  
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Table 1.1 Range of modeled flood arrival and peak flow times at populated villages 

 

1.3 Discussion 

1.3.1 Arrival time of flood in Punakha 

Well-constrained GLOF arrival times are vital for disaster preparedness, yet existing model 

estimates for Punakha include 4.75 hours (JICA, 2001), 5.75 hours (Meyer et al., 2006), and 7 

hours or more (Watanabe and Rothacher, 1996). Given the onset of seismic energy at 1:45 am at 

Lugge Tsho and eyewitness accounts of rising waters around 7:00 am in the village, we estimate 

the flood took approximately 5 hours to reach Punakha. Assuming the delay between the initial 

breach and generation of detectable seismic energy was short (see Materials and Methods), our 

results suggest that some previously published simulations give reasonably accurate arrival times 

(within ± 30 minutes), and the shorter (4.75 to 5.75 hours, 17 km hr-1 average) times are more 

accurate than the 7 hour (12 km hr-1 average) estimate (Watanabe and Rothacher, 1996). These 

results show how a simple estimate of the GLOF start time based on the onset of seismic energy 

can be highly useful for validation of numerical models, by providing an estimate of the average 

velocity of the flood wave. However, a future breach may have different hydrograph 

characteristics depending on the trigger mechanism and nature of the moraine dam failure. The 

1994 GLOF also cleared out a substantial amount of blocking debris, which would allow a future 

GLOF to travel more quickly down the valley. Further research toward constraining probable 

breach hydrograph characteristics and valley roughness parameters will be crucial for refinement 

of GLOF models. With the vast amount of existing seismic data (in databases such as the IRIS 

Low Best fit Upp Low Best fit Upp Low Best fit Upp Low Best fit Upp
Thanza 28.089 90.213 4150 7 01:43 02:08 02:19 0.4 0.4 0.6 02:22 03:20 03:35 0.9 1.8 2.1
Tshojo 28.062 90.164 4060 14 02:19 02:41 03:00 1.0 1.0 1.3 03:20 04:10 04:25 1.8 2.7 3.0
Lhedi 28.034 90.092 3690 23 02:47 03:06 03:26 1.4 1.4 1.8 03:33 04:21 04:36 2.0 2.9 3.2
Samdingkha 27.641 89.865 1270 90 05:29 05:39 06:08 3.9 3.9 4.6 05:43 06:09 06:24 4.1 4.6 4.9
Punakha Dzong 27.582 89.863 1210 98 06:01 06:12 06:38 4.4 4.5 5.2 06:37 06:58 07:13 5.0 5.5 5.8
Wangdue 27.462 89.901 1190 114 07:19 07:35 07:54 5.7 5.9 6.5 08:47 09:12 09:27 7.1 7.7 8.1

Location Lat Lon Elev (m)
Dist from 
breach 

(km)

Flood arrival Peak flow
Time Hrs from breach Time Hrs from breach
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DMC for example) and increasing number of seismic networks, it is likely that other GLOF 

events have been recorded by seismic instruments, but have yet to be investigated. A 

comprehensive search and deeper analysis of any available seismic records in GLOF-prone 

locations may reveal new insights toward quantifying and modeling GLOF trigger events and 

flood waves in these regions. 

1.3.2 Sediment deposition and vegetation recovery 

The area covered by new sediment from the GLOF (4.8 km2) combined with existing sediment-

covered areas (3.0 km2) amount to 7.8 km2. This approximately agrees with previous damage 

assessments, which estimated a total of 7.2 km2 of crops and pastures affected by the flood. The 

2.2 km2 region of most prominent GLOF sediment deposition is located in a scrub alpine 

vegetation zone which receives around 1 m yr-1 of precipitation primarily during the summer 

monsoon months (Suzuki et al., 2007). The flora in this area are composed of sedges, mosses, 

accessorial herbs, and some patches of woody vegetation (rhododendrons, junipers, spireas) 

(Meyer et al., 2009). The nonlinear vegetation recovery rates (Figure S1.7) are likely due to 

factors such as soil moisture, nutrient availability, competition between species, and seasonal 

precipitation in this high elevation ecosystem. The observed recovery patterns may inform future 

studies regarding resilience of aromatic medicinal plants to changing climate, as these flora play 

key roles in the lives of local inhabitants (Joshi et al., 2016).  

1.3.3 Comparison with other GLOFs in the Himalayas 

Compared to other GLOF occurrences in HMA during the last three decades, this 1994 event is a 

top contender for the largest volume of water released. Yet in terms of the percentage of lake 

volume released, it is on the lower end (Figure S1.8). Yamada (2004) surveyed the lake 

bathymetry and estimated the total volume of Lugge Tsho to be 58.3 million m3 in September of 
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2002. Correcting for the lake growth between 1994 and 2002 (3 million m3), and volume of 

water released during the GLOF (17 to 25 million m3), we estimate that the lake volume was 73 

to 80 million m3 in 1994. Based on this approximation, around 24 to 30% of the volume of 

Lugge Tsho was released. Due to the large size of the lake, substantial rate of outflow during the 

breach, and considerable vertical relief, this smaller-than-average percentage of draining resulted 

in a major destructive GLOF downstream. This is consistent with the flood simulations which 

suggest very low dampening and low deceleration of the flood wave peak due to high-relief 

energy and the gorge character of the Pho river (Meyer et al., 2006) (Figure 1.2). Regarding the 

seismic signal, we note the large magnitude of this GLOF event was likely a primary factor 

which caused the high signal-to-noise ratio. Smaller GLOF events which produce less seismic 

energy would require seismometers to be located closer to the GLOF source in order to observe 

the weaker signal. This trade-off between geographical coverage of a seismic array versus the 

capability of detecting smaller events is an optimization problem which future studies could 

address. A search for smaller GLOF events which have occurred in other locations, along with 

any associated seismic signals (observed by nearby stations) may help further constrain signal 

strength versus distance from the source. Such observations could also be used to constrain 

numerical models which simulate seismic energy generated by various flood magnitudes. 

1.3.4 Current state of high-risk lakes in Lunana 

We find Lugge Tsho surpassed the pre-GLOF size of 1.1 km2 in 2005, and reached an area of 1.4 

km2 in 2018 due to retreat of the glacier terminus (Figure S1.4). If a future event were to cause 

the same 16 to 23 meters of lake surface lowering as occurred during the 1994 GLOF, this would 

translate to 22 to 32 million m3 of water released, or approximately 30% more than the 1994 

flood volume. While satellite imagery indicates that the lake boundaries (excluding the retreating 
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glacier terminus) are nearly unchanged since the GLOF, the ongoing glacier retreat has also 

exposed unstable steep valley walls and lateral moraines above the lake (González-Vida et al., 

2019; Kos et al., 2016). A large mass movement into the water could result in a sudden increase 

in hydrostatic pressure and subsequent overtopping or structural failure of the Lugge Tsho 

moraine dam. The adjacent Thorthormi and Raphstreng lakes are also vulnerable to the same 

problem. Thorthormi sits topographically above Raphstreng by approximately 80 meters, and a 

breach in its moraine could result in a cascading combined GLOF from both lakes (Richardson 

and Reynolds, 2000). Efforts to artificially lower the level of Raphstreng by enlarging the outlet 

channel were undertaken during 2009-2012 in an attempt to reduce the risk, but this dangerous 

manual work by the local people was extremely difficult with uncertain effectiveness. On June 

20, 2019 a minor breach occurred below Thorthormi lake, during which residents of Lunana 

were evacuated and no deaths or serious injuries occurred. While the increased flow was 

relatively minimal (water level increased by approximately 1 meter during ~6:00 to 7:20 pm), it 

was large enough to wash away two bridges in Thanza and Tenchey. A field investigation after 

the event found that enhanced melting and basal sliding of the Thorthormi glacier had caused it 

to surge – this displaced water from Thorthormi lake, which overtopped the primary moraine, 

spilled into the subsidiary lakes, and breached the lower subsidiary lake which drained 

completely. Satellite imagery before and after the event confirmed the draining of the subsidiary 

lake, but the stability of the primary Thorthormi moraine dam is uncertain (Kuensel, 2019). 

1.3.5 Potential for early warning systems 

In Bhutan and elsewhere across the Himalayas, numerous glacial lakes pose immediate GLOF 

threats (Schwanghart et al., 2016). Existing warning systems usually consist of automatic water 

level (AWL) stations installed in priority locations to monitor lake levels and river flows, and 
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transmit data in real-time using GSM or Iridium satellite technologies. If lake levels are detected 

to suddenly drop and/or stream levels rise, emergency warnings are issued (via mobile text 

messages), and a network of warning sirens are sounded. However, AWL sensors are known to 

be somewhat unreliable and susceptible to false alarms (Hydrology-Division, 2013). Our results 

demonstrate the feasibility of seismic monitoring as another way to remotely detect GLOFs, 

which could potentially improve the next generation of early warning systems. The CCF 

methodology would need to be automated and tested more robustly to ensure reliable distinction 

between GLOF seismic signatures and other tectonic, meteorological, anthropogenic, or 

geomorphic sources (Burtin et al., 2016), but with further refinement a network of seismometers 

strategically deployed across a region could hypothetically monitor for sustained signals 

originating from probable GLOF source locations. During the CCF peak at the onset of the 

GLOF (around 1:45 am), we find that only a few minutes of seismic data are sufficient to detect 

the anomalous high frequency signal originating from the upper Lunana valley (Figure S1.9). 

Unlike AWL sensors, seismometers can be installed in safer and more accessible sites with the 

capability to monitor large regions across multiple valleys, although further research is needed to 

determine the optimal trade-off between array density and event detection. The use of 

seismometers and AWL sensors jointly could substantially improve existing early warning 

systems, with cross-validation of the two independent detection methods helping to minimize 

occurrence of false alarms and maximize warning time. 

1.4 Conclusion 

The risk of larger and potentially more destructive floods is rapidly increasing across the 

Himalayas, due to growing glacial lakes and ongoing construction of hydroelectric dams and 

other infrastructure in vulnerable regions (Schwanghart et al., 2016). We have demonstrated that 
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a GLOF can be detected remotely from seismometers located many kilometers away from the 

source, which has potential to improve efficiency and maximize warning time. Our robust 

spatiotemporal constraints indicate at least 5 hours between source and main impact areas in 

Punakha, which affords sufficient warning time for many downstream inhabitants if a GLOF is 

detected in its earliest phase. We find the 1994 flood event eroded, transported, and deposited 

large quantities of sediment in the Lunana valley, but left the local moraine ridges largely intact 

near the source region. We also estimate a post-GLOF recovery of 2-3 decades for the affected 

alpine scrub vegetation, which may help to quantify resilience of the local ecosystem in future 

studies. Given the current situation and ongoing GLOF risks in the Himalayas, future research 

could focus on: 1) deeper analysis and characterization of tectonic, meteorological, 

anthropogenic, and geomorphic seismic signatures to ensure clear distinction of natural hazard 

signals and prevention of false alarms, 2) continued development of efficient algorithms for 

automated real-time processing of environmental seismic data, and 3) deployment of optimized 

seismic arrays in vulnerable regions to detect GLOF events and provide efficient early warning 

systems. 

1.5 Materials and Methods 

 
1.5.1 Seismic data 

Recent proliferation of high-quality broadband seismic data in addition to developments in the 

analysis of the ambient seismic wavefield and other seismic signals have forged new avenues in 

studying characteristics of seismic energy generated by environmental processes (Badoux et al., 

2009; Burtin et al., 2008; Burtin et al., 2016; Cook et al., 2018; Goodling et al., 2018; Schmandt 

et al., 2013). For example, time-frequency analyses of passive broadband seismic data have been 

used to quantify increases in high frequency energy associated with high flow regimes in rivers, 
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and cross-correlation between multiple stations used to isolate coherent seismic phases and 

provide estimates of their origin (Brzak et al., 2009; Burtin et al., 2010). Here we utilize seismic 

data from the INDEPTH II experiment as a tool to investigate the 1994 GLOF in Bhutan, which 

coincidentally occurred while this temporary seismic network was actively recording. INDEPTH 

II was a collaborative geoscience project between the Chinese Academy of Geological Sciences, 

and investigators from U.S., German, and Canadian Geoscience institutions to investigate the 

deep structure and mechanics of the Himalaya-Tibet region (Nelson et al., 1996). In 1994 the 

second phase of the project acquired passive seismic data in southern Tibet and the Himalayas, 

continuously recording three-component broadband and short-period 24-bit data along a ~350 

km linear array at a sample rate of 50 Hz (Sandvol et al., 1997). For our analysis, we used data 

from a total of five broadband and short-period INDEPTH stations ranging from 75 to 135 km in 

distance (99 km average) to the northwest of the GLOF source area (Lugge Tsho). We 

downloaded the data from the IRIS DMC (Incorporated Research Institutions for Seismology 

Data Management Center), using a window for the approximate time of the GLOF occurrence 

(October 7th 1994, from 00:00 to 12:00 hours, Asia/Thimphu time zone) for stations BB18, 

BB20, BB23, SP25, and SP27 (network code XR). The corresponding seismic traces were 

detrended, instrument responses removed to obtain units of velocity (m s-1) using the open-

source Python framework ObsPy (Beyreuther et al., 2010), and band-pass filtered between 1 and 

5 Hz. This frequency range corresponded to the coherent high frequency signal observed across 

all five stations (Figure S1.2) during the GLOF duration, and also excluded lower frequency 

bands associated with noise sources such as ocean-generated microseisms (Berger et al., 2004; 

Webb, 1998) as well as higher frequency anthropogenic noise. Previous studies also observed a 

similar increase in seismic energy in these same frequency bands originating from turbulence 
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and sediment transport by rivers and flood events (Burtin et al., 2008; Cook et al., 2018; 

Goodling et al., 2018; Schmandt et al., 2013). For the purposes of this study, we assume that the 

beginning of detectable seismic energy marked the initiation of the GLOF event. We note that 

the actual outflow may have begun slightly earlier, but the seismic energy was below the 

threshold of detection at first due to a gradual increase in outflow through the moraine breach. 

This remains difficult to constrain as the exact shape of the breach hydrograph is unknown, thus 

our evaluation of the time between the breach and downstream arrival of the flood wave is a 

minimum estimate. 

1.5.2 Time-frequency analysis and cross-correlation functions 

To explore the spectral characteristics of the event and quantify the temporal variation of the 

seismic signal generated by the GLOF, we estimated the power spectral density (PSD) of the 

time series for each station using Welch’s averaging method. We first divided each seismic trace 

into two-minute segments each with 50% overlap. Then for each two-minute segment, we used 

Welch’s method to average modified periodograms computed using 10-second windows, also 

overlapping by 50%. To approximate source locations of the GLOF energy, we followed an 

approach similar to those outlined by previous studies for locating coherent seismic noise 

sources (Bensen et al., 2007; Brzak et al., 2009; Burtin et al., 2010). We first applied a 1-bit 

normalization to reduce the influence of punctual sources of seismic energy, such as earthquakes, 

anthropogenic noise, or instrument issues. This simply means keeping the sign of the time series 

(-1 if less than zero and +1 if greater than zero) and discarding the magnitude (Bensen et al., 

2007). We then calculated the normalized cross-correlation of 20-minute segments (overlapping 

by 50%) in the time series and computed their envelopes (hereafter referred to as the CCFs) for 

every station pair along the seismic array for time lags ranging from -40 to +40 seconds for a 
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series of frequencies ranging from 1 to 5 Hz, using window size of 0.5 Hz. Time information 

from each CCF envelope was migrated to positions in space as follows: We defined a regular 

grid of potential source locations in the region, and for each station pair we calculated the 

theoretical time delays between the two stations for every grid point. The CCF amplitude at each 

corresponding lag time was then mapped to positions in space. The resulting coherence map 𝐴𝐴𝑖𝑖𝑖𝑖 

for stations i and j is given by: 

 
𝐴𝐴𝑖𝑖𝑖𝑖(𝑥𝑥,𝑦𝑦) = 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖  �

𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖
𝑣𝑣

� (1.1) 

 

where d is the distance between the hypothetical source and corresponding station and v is the 

assumed seismic velocity (see below). Thus, each CCF delay time (i.e. the delay is along the 

vertical axis in Figure 1.2B and Figure S1.3) maps to a hyperbola, where the amplitude of the 

hyperbola is simply the CCF amplitude. This was repeated for each 20-minute segment and 

station pair. The resulting maps for hand-selected station pairs and frequencies (those with 

distinct correlation peaks, see Figure S1.3 and Table S1.1) were summed together to form a final 

coherence map for a given interval, where high coherence values indicate the most probable 

source locations (Figure 1.2). Similar results are also obtained if all station pairs are included in 

the stack (Figure S1.11). In order to determine an appropriate velocity during migration, we 

calculated coherence maps for a range of velocities between 1 and 5 km s-1. We found that a 

velocity of 3.0 km s-1 resulted in the highest coherence (Figure S1.3) for these frequencies, 

similar to previous studies (Burtin et al., 2010) and likely indicates short period Rayleigh wave 

energy. We found two distinct peaks in coherence occurred at approximately 2:00 am and 6:30 

am, and chose to focus on these peaks for further analysis. We defined time windows of 1.5 hour 
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duration centered on each respective peak, which we determined to be a reasonable length to 

span their duration (including initial rises preceding the peaks). We also note that quasi-linear 

placement of the seismometers parallel to the valley northwest of the GLOF means the source 

location was well constrained along the valley but poorly constrained perpendicular to the valley 

leading to blurring in that direction. This artifact may be remedied by invoking a probability 

density function centered on the river channel to better localize the signal, though the GLOF 

event studied here was large enough such that this was not necessary. While this and other 

sources of error such as lateral velocity heterogeneities and varying surface topography caused 

some blurring of the coherence maps, we found this basic methodology precise enough to clearly 

track the start and a subsequent down-valley shift in the location of seismic energy during the 

GLOF. 

1.5.3 Flood model 

We implemented the U.S. Army Corps of Engineers Hydrologic Engineering Center’s River 

Analysis System (HEC-RAS) software to perform a 2D unsteady flow simulation using the 

diffusion wave equation (DWE) (Brunner, 2010). This equation is a simplified version of a full 

dynamic wave model (neglects inertial force and advective accelerations) and has been found to 

be a satisfactory approximation in many situations (Moussa and Bocquillon, 1996). Simulations 

were run at a nominal mesh resolution of 30 m using a timestep of 1 second, solved using an 

implicit finite volume approach (Brunner, 2010). We used the 30 m ALOS DEM as terrain input, 

preprocessed using standard carve and fill operations to remove any spurious elevation artifacts 

which may cause unrealistic damming and pooling in localized sections where the river channel 

may be narrower than the DEM resolution (Schwanghart and Scherler, 2014; Watson et al., 

2015). To approximate the normal (pre-GLOF) river flow conditions, we specified inflows for 15 
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major tributaries between Lugge Tsho and Wangdue station and allowed the model to come to 

equilibrium. The (relative) contributions of each tributary were estimated by performing a flow 

accumulation analysis for the region based on upstream watershed areas (Schwanghart and 

Scherler, 2014). We then multiplied all the relative inflow values with a single scale factor to 

estimate (absolute) contributions, so that the river flow at Wangdue station (located downstream 

of all tributaries) matched the observed pre-GLOF conditions of approximately 290 m3 s-1 

(Figure S1.1). In HEC-RAS we expressed the tributaries as inflow boundary conditions, and 

allowed the model to run for 24 hours to establish initial conditions before simulating the flood. 

We then performed multiple model runs using a range of Manning roughness coefficient values 

(n) and various breach hydrograph shapes (Figure S1.1). We tested values of n spanning from 

0.05 to 0.07 (in increments of 0.01), which is the typical range for mountain streams with 

cobbles and large boulders (Brunner, 2010). For the breach hydrographs, we used a simple 

triangular approximation scaled to have ramp-up times (tru) ranging from 15 to 120 minutes (in 

increments of 15 minutes). Based on previously published differential GPS survey of the 

lowering of the lake level (Yamada, 2004) and the Wangdue station GLOF hydrograph (JICA, 

2001), we assumed 17 to 25 million m3 as a probable range for the total volume of water released 

during the GLOF, and constrained the simulated breach hydrographs to 25 million m3. As a 

conservative threshold, we discarded any model runs which did not agree with all independent 

constraints within ± 30 minutes, and report the corresponding range of input parameters and 

model outputs of the remaining ones. We note that the breach may have initiated before the 

seismic signal was detectable (see Seismic Data section), thus we also include simulated breach 

times of 1:15,1:30, and 1:45 am in our analysis. Out of a total of 72 model runs (3 values of n, 8 

values of tru, and 3 breach times), 14 runs produced output which satisfied the specified ± 30 
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minute threshold. Lastly, we quantified the model sensitivity of arrival time estimates in Punakha 

(Figure S1.1). In general, a more gradual release of water and greater channel roughness both 

resulted in a slower-moving flood wave. Increasing tru from 45 to 60 minutes delayed arrival in 

Punakha by 20 to 25 minutes (Figure S1.1E), and increasing n from 0.05 to 0.06 delayed arrival 

time in Punakha by 25 to 35 minutes (Figure S1.1F). Generally, we found the HEC-RAS model 

performed well in satisfying the independent observations within the specified range of model 

parameters. However, we stress the overall sensitivity to breach hydrograph characteristics 

requires caution if external constraints are not available. 

1.5.4 Satellite imagery 

For analyzing GLOF-induced changes in land cover, we used the USGS Landsat 5 through 8 TM 

Collection 1 Tier 1 calibrated top-of-atmosphere (TOA) reflectance product in Google Earth 

Engine (Gorelick et al., 2017). We quantified Lugge Tsho area changes over time by manual 

delineation of the lake boundaries and glacier front between 1976 and 2018 using declassified 

spy satellite imagery (KH-9 Hexagon) and Landsat. The Hexagon images were downloaded from 

the USGS Earth Explorer website (https://earthexplorer.usgs.gov/) after digital scanning of the 

images by the USGS and have a ground resolution of approximately 15 meters. To measure the 

extent of sediments deposited by the GLOF, we selected two Landsat 5 scenes acquired in 

August of 1994 (pre-GLOF) and September of 1995 (post-GLOF) and used supervised 

classification with manually defined training samples of vegetation, sediment, water, ice, and 

clouds from the pre-GLOF scene. We classified both images using the maximum likelihood 

algorithm, and retained the pixels classified as sediment along the valley bottom before and after 

the GLOF. To analyze the post-GLOF vegetation recovery trend, we focused on the largest 

swath of sediment deposition over the Tshojo plain. For this region, we computed the enhanced 
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vegetation index (EVI) for all Landsat 5 and 7 scenes excluding those acquired during monsoon 

season months (May-Oct). We evaluated the topography of the Lunana region using the High 

Mountain Asia 8 m DEM data (version 1) distributed by the National Snow and Ice Data Center 

(NSIDC), and obtained the valley profile from the 30 m ALOS global digital surface model 

dataset distributed by the Japan Aerospace Exploration Agency (JAXA). 

1.5.5 Cosmogenic 10Be surface exposure dating 

We applied cosmogenic 10Be dating (Balco, 2011; Lal, 1991) to three boulders sampled in 2014 

from the prominent and well-preserved lateral-terminal moraines near Thanza, about 10 km 

downstream from the GLOF breach location (Figure 1.4). Geochemical processing was 

performed at the Cosmogenic Nuclide Laboratory at LDEO following standard protocols given 

in Schaefer et al. (2009), and 10Be/9Be measurements were completed at the Center for 

Accelerator Mass Spectrometry at the Lawrence Livermore National Laboratory. The 

background correction for these measurements was below 1%. We used version 3 of the online 

cosmogenic nuclide calculator (Balco et al., 2008) with the default production rate and time-

dependent Stone/Lal scaling scheme for exposure age calculations (Borchers et al., 2016; Lal, 

1991). Geographic and analytical data are given in Table S1.2 and the geomorphic map with the 

10Be ages is shown in Figure 1.4. This glacier chronology will be discussed in detail in 

forthcoming papers.   

1.6 Acknowledgements 

We thank Victor Tsai and two anonymous reviewers for helping improve this manuscript. We 

would also like to acknowledge the National Center for Hydrology and Meteorology, Royal 

Government of Bhutan for providing field logistics and support for this study. Funding: J.M.M. 

and J.M.S. acknowledge support by a NASA Earth and Space Science Fellowship 



31 
 

(#NNX16AO59H). S.R. and J.M.S. acknowledge support by NSF Geography and Spatial 

Sciences award 17-566. J.M.S. also acknowledges support by Global Change award EAR 10-

574. S.B. acknowledges support by NASA #NNX16AQ61G and NSF #1853881. 



32 
 

1.7 Supplementary Materials 

 

Figure S1.1. River flow (m3 s-1) measured at Wangdue station (~110 km downstream from the 
breach), flood model input parameters, and model sensitivity. (A) Daily flow from 1992 to 2014. 
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The extreme flows during the 1994 GLOF and 2009 Cyclone Aila are highlighted. (B) Flow 
measured every 15 minutes on 7 October 1994 (JICA, 2001). (C) Simulated breach hydrographs 
used as inflow for the flood model runs, with ramp-up times ranging from 15 to 120 minutes. 
Each hydrograph has an integrated volume of 25 million m3. (D) Here the data points represent 
combinations of model parameters (tru and n) which produce output satisfying all independent 
observations within ± 30 minutes. (E) Flood arrival time in Punakha as function of tru. (F) Flood 
arrival time in Punakha as a function of n. 

 

 

Figure S1.2. Seismic traces and spectrograms for each component of the five stations during the 
GLOF on Oct. 7, 1994. Seismic traces are filtered from 1–5 Hz and clearly demonstrate the 
GLOF signal across all five seismometers and on all components. Some interstation variability in 
peak frequency content of the GLOF signal is likely due to lateral variations in seismic 
attenuation as well as distance from the source.  
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Figure S1.3. Example of CCFs migrated to coherence maps for selected station pairs. (A) Data 
from the interval 1:45 to 3:15 am (as indicated by the dashed vertical lines) were used during the 
migration process to create these coherence maps. The CCF amplitudes map to hyperbolae during 
the migration, and the highest values for each station intersect with the GLOF breach location 
(red ‘x’ symbol) using the optimal velocity of 3.0 km s-1. All coherence maps from these station 
pairs were summed together to create the final coherence map for this interval in Figure 1.2C. (B) 
For the selected station and frequency pairs (Table S1.1), migrating the CCF amplitudes using 
velocities ranging from 1 to 5 km s-1 for the two intervals results in the blue and orange curves 
here. Note the peaks at 3.0 km s-1.  
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Figure S1.4. Lake area (Lugge Tsho) through time. (A) Trend in lake area over the past 43 years. 
(B) The progression of the Lugge glacier front through time. Pre-GLOF trend and glacier front in 
blue, Post-GLOF trend and glacier front in red. 
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Figure S1.5. Closeup view of glacier moraines in 1976 and 2012, along with hillshade of region 
around Lugge Tsho and elevation profile across the outlet channel where the breach occurred. (A) 
Lake-fringing moraines where the GLOF breach occurred. The natural outlet of Lugge Tsho is 
evident in 1976, and was widened during the 1994 GLOF. (B) Mid-Holocene moraine ridges and 
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Tshojo plain. The GLOF left these moraines largely intact. (C) blue outline indicates the lake 
extent before the 1994 GLOF event, red outline is after the event. The lake area decreased by 
approximately 25%, and the small seasonal lake below Lugge Tsho was completely drained 
during the GLOF. (D) Elevation profile across the moraine breach, from point x to point x1. 

 

Figure S1.6. Landsat images showing extent of sediments deposited by the GLOF. (A) 
Declassified spy satellite image from 1976. At that time Lugge Tsho was only beginning to form. 
(B) False-color (near-infrared, red, green bands mapped to RGB) Landsat image before the 
GLOF, where vegetation appears red. (C) Same as (B) except after the GLOF. (D) Results from 
the supervised classification, where existing (pre-GLOF) sediments are in grey, and GLOF-
deposited sediments are in white.  
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Figure S1.7. Mean enhanced vegetation index (EVI) of the 2.2 km2 region on the Tshojo plain. 
(A) Landsat images showing state of alpine scrub vegetation in the GLOF-affected region on the 
Tshojo plain. Dark colors are vegetation, light colors are sediments. The region of analysis is 
outlined in yellow. (B) Trend in mean EVI of the region of analysis over the past 30 years, 
showing the sudden decrease in vegetation from the GLOF and subsequent recovery. Landsat 5 
and Landsat 7 data points, along with one-year and three-year moving means are shown.  

 

Figure S1.8. Comparison of the Lugge Tsho GLOF with other known GLOFs in high mountain 
Asia. Data from comprehensive analysis of the Landsat archive by Veh et al. (2019) (A) Pre-
GLOF lake areas versus year of occurrence. Circle size is proportional to the estimated flood 
volumes using an empirical relationship between lake area and volume (Veh et al., 2019). Black 
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unfilled circles are estimated flood volumes from the literature. Red circles are GLOFs in which 
damage was reported, blue circles are GLOFs in which no damage was reported. (B) Histogram 
of the estimated percent lake volume reduction due to GLOFs, from the same Veh 2019 dataset. 
The value for the Lugge Tsho GLOF is indicated by the red dotted line. 

 

Figure S1.9. Coherence maps created from short durations of seismic data. These were produced 
the same way as the coherence maps described in the Methods section, but for much shorter 
intervals (30 sec, 1 min, 2 min, and 5 min) of seismic data centered on the CCF peak around 1:55 
am (~10 minutes after start of the GLOF signal). The coherence maximum centered on the breach 
location is evident, although comparatively less distinct for these shorter intervals. 
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Figure S1.10. Strength of GLOF signal relative to background noise levels. Median vertical 
component (BHZ) PSD values from 1–5 Hz are calculated for the two key time windows 
identified in Figure 1.2c for each day of the deployment: (top) 1:45–3:15 local time (bottom) 
5:45–7:15 local time. Both time windows show a clear power increase of 5–15 dB beyond 
background levels on 10-07, the day of the GLOF breach (black dashed line). Also denoted is a 
Mw 8.3 earthquake (gray dashed line) that occurred in the Kuril Islands (1994-10-04 13:22:55 
UTC) ~5300 km away and was followed by several Mw ~6.0 aftershocks over the next 24-hour 
period. Although visible at all five seismic stations, the earthquake signals were significantly 
weaker (<7 dB increase relative to background) than the recorded GLOF breach at these 
frequencies. Although systematic fluctuations in power occur throughout the deployment, the 
GLOF signal is the most distinct and occurs contemporaneously across all stations.  

 

Figure S1.11. Coherence maps containing all station pairs. Coherence maps are calculated using 
all station pairs and all components (BHZ-BHZ, BHE-BHE, BHN-BHN) for frequencies ranging 
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from 1.5–4.25 Hz (total of 300 CCFs included in final stacks). The resulting maps are comparable 
to those shown in Figure 1.2c that include only the data from Table S1.1. 

 

Figure S1.12. Coherence maps showing background noise levels from the day prior to GLOF 
breach for two time windows. (A) Coherence map for the day prior to the GLOF breach (1994-
10-06) for the time window from 1:45–3:15 local time and for station pairs in Table S1. (B) Same 
as (A) but for the day of the GLOF breach (1994-10-07) as in Figure 1.2c in the main text. (C) 
and (D) same as (A) and (B) but for the time window from 5:45–7:15 local time. 
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Figure S1.13. GLOF coherence relative to background level. 12-hour time series of signal 
coherence calculated for all station pairs and frequencies from 1.5–4.25 Hz as a function of time 
of day for the day containing the GLOF event (red) and the day prior to the GLOF event (black), 
which represents the background level. The upper and lower bounds of each shaded region 
represent the 95th and 75th percentile of coherence values across all lag times, respectively. The 
blue shaded regions mark the times of most significant GLOF signal relative to background 
levels. 

 

Table S1.1. Selected station pairs and frequency ranges with clear CCF peaks used in Figure 1.2c 

 

 

Station pair Freq range (Hz) Station pair Freq range (Hz)
BB18 - BB20 1.50 - 2.00 BB18 - BB20 1.25 - 1.75
BB20 - SP25 1.75 - 2.25 BB18 - BB23 3.50 - 4.00
BB20 - BB23 1.25 - 1.75 BB23 - SP25 2.25 - 2.75
BB20 - SP27 1.25 - 1.75 BB23 - SP27 3.00 - 3.50
BB23 - SP27 1.50 - 2.00 SP25 - SP27 2.25 - 2.75
SP25 - SP27 1.25 - 1.75 BB18 - SP27 3.25 - 3.75
BB18 - SP25 1.75 - 2.25 BB23 - SP27 3.00 - 3.50

Tc = 2:30 am Tc = 6:30 am
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   Table S1.2. Geographical and analytical data from the sampled moraine ridge below Thanza 

 

* Shown are 1σ analytical AMS uncertainties. 
† Calculated using the online exposure age calculator v3 (Balco et al., 2008) with default production rate and time-
dependent Stone/Lal scaling scheme (Borchers et al., 2016; Lal, 1991) 
‡ Internal analytical error 
§ External error, including systematic uncertainties and scaling to the latitude and altitude of the study region. 
 

  

Sample Lat (°N) Lon (°E) Elev (m 
a.s.l.)

Thickness 
(cm)

Topographic 
shielding

10Be (atoms g-1)*
10Be/9Be 
standard Age (yr)† Int (yr)‡ Ext (yr)§

LUNA-14-07 28.08207 90.20015 4163 1.94 0.975 176229 ± 3460 07KNSTD 4700 90 370
LUNA-14-04 28.08147 90.19990 4146 1.62 0.974 171016 ± 4063 07KNSTD 4590 110 360
LUNA-14-03 28.08141 90.19987 4152 1.75 0.975 163819 ± 3515 07KNSTD 4380 90 340
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: Quantifying ice loss in the eastern Himalayas since 1974 

using declassified spy satellite imagery 

Note: a modified version of this chapter has been published in The Cryosphere: Maurer, J.M., 
Rupper, S., Schaefer, J.M., 2016. Quantifying ice loss in the eastern Himalayas since 1974 using 
declassified spy satellite imagery. The Cryosphere 10, 2203. 
 

Himalayan glaciers are important natural resources and climate indicators for densely populated 

regions in Asia. Remote sensing methods are vital for evaluating glacier response to changing 

climate over the vast and rugged Himalayan region, yet many platforms capable of glacier mass 

balance quantification are somewhat temporally limited due to typical glacier response times. 

We here rely on declassified spy satellite imagery and ASTER data to quantify surface lowering, 

ice volume change, and geodetic mass balance during 1974–2006 for glaciers in the eastern 

Himalayas, centered on the Bhutan–China border. The wide range of glacier types allows for the 

first mass balance comparison between clean, debris, and lake-terminating (calving) glaciers in 

the region. Measured glaciers show significant ice loss, with an estimated mean annual geodetic 

mass balance of −0.13 ± 0.06 m w.e. yr−1 (meters of water equivalent per year) for 10 clean-ice 

glaciers, −0.19 ± 0.11 m w.e. yr−1 for 5 debris-covered glaciers, −0.28 ± 0.10 m w.e. yr−1 for 6 

calving glaciers, and −0.17 ± 0.05 m w.e. yr−1 for all glaciers combined. Contrasting 

hypsometries along with melt pond, ice cliff, and englacial conduit mechanisms result in 

statistically similar mass balance values for both clean-ice and debris-covered glacier groups. 

Calving glaciers comprise 18% (66 km2) of the glacierized area yet have contributed 30% (−0.7 

km3) to the total ice volume loss, highlighting the growing relevance of proglacial lake formation 

and associated calving for the future ice mass budget of the Himalayas as the number and size of 

glacial lakes increase. 
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2.1 Introduction 

Glaciers in high-mountain Asia hold the largest store of ice outside the polar regions and 

contribute meltwater used by roughly 20% of the world’s population for agriculture, energy 

production, and potable water (Immerzeel et al., 2010). Glacier changes must be quantified in 

order to evaluate impacts to hydrology and ecosystems, assess glacial lake outburst flood 

(GLOF) hazards, calculate recent contributions to sea level rise, and increase predictive 

capabilities regarding future change and resulting impacts. 

    The heterogeneity of Himalayan glaciers poses significant challenges in quantifying and 

modeling glacier changes. Debris cover in the ablation zone and calving in proglacial lakes are 

particularly noteworthy examples of complicating factors that may significantly affect the 

response of many glaciers. Bolch et al. (2012) estimate the proportion of debris-covered ice in 

the Himalayas is ∼10%, and Scherler et al. (2011) estimate that 93% of glaciers in the Himalayas 

have >20% debris-covered areas. Debris-covered glaciers are difficult to model, since debris can 

either increase or suppress melt depending on debris thickness and extent, though debris-covered 

glaciers in the Himalayas are mostly assumed to be less responsive to ongoing warming 

(Scherler et al., 2011). Similarly, numerical models of glaciers terminating in moraine-dammed 

proglacial lakes are poorly constrained, and these glaciers can undergo enhanced ice loss through 

calving and thermal-undercutting processes independent of climate. Lake-terminating glaciers 

have particular societal relevance because the growing lakes can cause GLOFs and can impact 

glacier mass balance and hydrology. 

    Response of Himalayan glaciers to changing climate remains somewhat controversial, 

primarily due to this complexity of the glacier systems combined with scarcity of direct 

observation, and no unambiguous pattern has emerged (Berthier et al., 2007; Kääb et al., 2012). 
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Complex politics, rugged terrain, and the immense number of glaciers result in a severe lack of 

field data (Bolch et al., 2011; Rupper et al., 2012). The few available field records in the 

Himalayas are often biased towards small to medium-sized clean-ice glaciers due to logistical 

reasons and tend to be located in subregions where mass loss is greater than in the region as a 

whole (Gardner et al., 2013). Thus there is a critical need for spatially and temporally extensive 

glacier change data that capture the full spread of glacier complexities over timespans relevant to 

glacier response times. Here we focus on the eastern monsoonal Himalayas, centered on the 

Bhutan–China border. Few data on glacier changes are available and the region has a large 

diversity of glaciers with regard to elevation, size, debris cover, hypsometry, accumulation rates, 

and calving characteristics. Furthermore, glacier meltwater is an important hydrological resource 

in Bhutan, including for hydroelectric power generation (Beldring and Voksø, 2012). Recent 

hydrologic mixing model results using isotopic and geochemical chemistry have estimated 

glacier seasonal outflow contributions to the Chamkhar Chhu river in Bhutan ranging from 

∼76% at 4500 m to 31% at 3100 m elevation during September (post-monsoon) (Williams et al., 

2015). 

    There are several clean glaciers flowing northward onto the Tibetan Plateau with high 

velocities, likely with large amounts of basal sliding (Kääb, 2005). On the southern flank, most 

large glaciers are debris covered, located in steep valleys, and show slow-to-nearly stagnant 

velocities, with many depressions and melt pond features. Additionally, several glaciers 

(including clean and debris covered) terminate in moraine-dammed lakes. The majority of clean-

ice glaciers in the Bhutan-centered region have a high mass turnover, with most accumulation 

and ablation occurring during the summer months as a result of the Indian monsoon (Rupper et 

al., 2012). In regions with high accumulation, ablation is dominated by melt and thus particularly 
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sensitive to changes in temperature (Rupper and Roe, 2008). Robust melt models indicate these 

eastern Himalayan, temperature-sensitive glaciers are currently out of balance with present 

climatology. One estimate predicts a loss of almost 10% of the current glacierized area, with an 

associated drop in meltwater flux of as much as 30% even if climate were to remain at the 

present day mean values (Rupper et al., 2012). Kääb et al. (2012) computed a 2003–2008 

specific mass balance of −0.26 ± 0.07 to −0.34 ± 0.08 m w.e. yr−1 (depending on different density 

scenarios for snow and ice) for eastern Nepal and Bhutan using laser altimetry, while Gardelle et 

al. (Gardelle et al., 2013) estimated a 1999–2011 geodetic mass balance of −0.22 ± 0.12 m w.e. 

yr−1 for Bhutan by differencing SPOT5 and SRTM DEMs (digital elevation models). Another 

recent study utilizing multi-temporal Landsat images to compute glacier area changes in Bhutan 

showed 23.3 ± 0.9% glacial area loss between 1980 and 2010, with loss mostly observed below 

5600 m a.s.l., and greater area loss for clean glaciers (Bajracharya et al., 2014). The first decadal 

mass balance record of the Gangju La glacier in the Bhutan Himalaya was recently published, in 

which a mass balance of −1.12 to −2.04 m w.e. yr−1 was estimated between 2003 and 2014 

(Tshering and Fujita, 2015). 

    To build on these pioneering studies and further constrain glacier changes, we utilize a new 

pipeline (Maurer and Rupper, 2015) to extract DEMs from declassified Hexagon imagery (1974) 

and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) scenes 

(2006), then use DEM differencing to measure ice volume change and geodetic mass balance 

between 1974 and 2006 in this temperature-sensitive, monsoon-influenced region. Our approach 

provides high spatial detail and longer temporal range compared to previous measurements, and 

it circumvents significant uncertainties regarding SRTM radar penetration in ice and snow 

(Gardelle et al., 2012). 
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2.2 Methods 

Previous studies have demonstrated the value of declassified spy satellite imagery for glacier 

mass and volume change quantification in various regions of the Himalayas (Bhambri et al., 

2013; Bolch et al., 2011; Holzer et al., 2015; Lamsal et al., 2011; Pellicciotti et al., 2015; 

Pieczonka and Bolch, 2015; Pieczonka et al., 2013; Racoviteanu et al., 2014; Ragettli et al., 

2016; Raj et al., 2013). We rely here on a new workflow called HEXIMAP (Hexagon Imagery 

Automated Pipeline) which utilizes computer vision algorithms to extract DEMs with high 

efficiency and accuracy (Maurer and Rupper, 2015). Both Hexagon and ASTER DEMs are 

extracted using similar methods in order to minimize unwanted elevation bias caused by different 

image processing techniques. The resulting elevation change maps are used to compute average 

surface lowering of glaciers, changes in ice volume, and geodetic mass balance. 

2.2.1 Hexagon 

The Hexagon program consisted of a series of 20 photographic reconnaissance satellite systems 

developed and launched by the United States, operational from 1971 to 1986 during the Cold 

War era. Each satellite carried approximately 96.5 km of film, and thousands of photographs 

worldwide were acquired using the mapping camera system (ground resolution of 9 m, improved 

to 6 m in later missions). The Hexagon mapping camera system acquired multiple 3400 km2 

frames as the satellite proceeded along its orbital trajectory. After image acquisition, film-

recovery capsules were ejected from the satellite and parachuted back to Earth over the Pacific 

Ocean, where they were retrieved midair via “air snatch” by C-130 Air Force planes. The images 

have overlap of approximately 55 to 70%, which allows for extraction of digital elevation 

models (Oder et al., 2012; Surazakov and Aizen, 2010). 
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Eight separate 5000×5000 pixel blocks are processed, which correspond to approximately 20×20 

km regions with the Hexagon film scanned at 7 µm resolution (orange outlines in Figure 2.2), 

with blocks selected to maximize coverage of glaciers and avoid regions with cloud cover. The 

same HEXIMAP methodology, outlined in Maurer and Rupper (2015), is used to extract 

Hexagon DEMs. In summary, epipolar images are generated by computing homography 

transformations via automated point detectors and descriptors (Bay et al., 2006; Fusiello and 

Irsara, 2008). After epipolar resampling, image features line up horizontally and the disparity 

search is reduced to one horizontal dimension. Disparity maps are computed using the semi-

global block matching algorithm (Hirschmüller, 2008), bundle adjustments are performed to 

minimize reprojection error, and stereo-matched points are triangulated in 3-D space using the 

direct linear method (Hartley and Zisserman, 2003). The 3-D point clouds are registered to the 

reference SRTM DEM using nonlinear optimization of pose parameters including rotation, 

translation, and a global scale factor. ICIMOD glacier outlines are utilized to exclude glacial 

terrain during optimization (after being manually edited to match the glacier extent in 1974). The 

glacier outlines are first converted to a raster binary mask to match the spatial resolution of the 

reference DEM. Next, dilation (a morphological operation which adds pixels to edge boundaries) 

is performed to slightly enlarge the glacier boundaries in the raster mask, which helps to 

eliminate unstable glacier pixels not contained by the glacier outlines, as well as eliminate 

possibly unstable moraines (see Figure S2.6 in the Supplement). Any elevation change pixels 

outside of 3 standard deviations are excluded during each iteration in the optimization routine, 

which effectively eliminates other unknown sources of error during optimization. The higher 

spatial-resolution Hexagon point clouds are then resampled to match ASTER data (∼30 m 
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intervals) using linear interpolation. Data voids larger than 2 km2 are not interpolated to avoid 

biasing glacier change results with unrealistic terrain (Figure S2.3 through Figure S2.5). 

2.2.2 ASTER 

The ASTER instrument was launched on board NASA’s Terra spacecraft in December 1999 as 

part of a cooperative effort between NASA and Japan’s Ministry of Economic Trade Industry 

(METI). In the visible and near-infrared (VNIR) spectral region (0.78–0.86 µm), ASTER has a 

nadir-view telescope as well as a backward-looking telescope to provide stereoscopic capability 

at 15 m ground resolution. Both use 4000 element charge-coupled detectors (CCDs), acquiring 

data via linear push broom scanning. Each ASTER scene covers approximately 60×60 km 

(Abrams, 2000). Although a global ASTER DEM (GDEM v2) is publicly available, anomalies 

and artifacts in the data limit its utility for glacier change quantification. Instead, two ASTER 

Level1A scenes (granule ID: ASTL1A 0612040446230612070303 and ASTL1A 

0602030445410602060303) were downloaded from the GDS (ground data systems) 

ASTER/PALSAR Unified Search website, maintained by Japan Space Systems. DEMs were 

extracted from the scenes using similar methodology as previously described for the Hexagon 

imagery, with a few key differences. First, DN (digital number) pixel values from the VNIR 

images are converted to radiance and processed to remove residual striping artifacts. Second, 

since ASTER images are acquired by a linear pushbroom sensor they do not have a single fixed 

center of perspective (Kim, 2000). Consequently, epipolar images cannot be generated using a 

single homography transformation as was done with Hexagon images. Alternatively, sight 

vectors and satellite position matrices (supplied with ASTER ephemeris data) for each CCD row 

are used to project ASTER forward and backward-looking images to a common image plane, 

after which corresponding pixels in the stereo images are matched using the same stereo-
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matching algorithm in HEXIMAP. Lastly, point clouds are triangulated by computing sight 

vector intersections in 3-D space rather than using the direct linear method. All other aspects 

regarding DEM extraction are identical to the Hexagon methodology, thus minimizing any 

unwanted potential elevation bias caused by different image processing techniques. 

2.2.3 Geomorphic change 

To compute glacier changes, the 1974 Hexagon DEMs are subtracted from the 2006 ASTER 

DEMs to create elevation change maps. Pixels located in areas with >30◦ slope are excluded from 

analysis due to lower accuracies during the DEM extraction process (Maurer and Rupper, 2015). 

Elevation changes over 100 m are likely due to stereo-matching errors from cloud cover or low 

radiometric contrast and are thus also excluded. To delineate glacier boundaries, polygons 

representing glacier outlines were downloaded from the ICIMOD mountain geoportal 

(http://geoportal.icimod.org/), which were found to have comparatively greater detail and 

accuracy for this region compared to the Randolph Glacier Inventory, based on overlay and 

visual inspection of Google Earth imagery. The polygons were then manually edited to reflect 

the spatial extent of glaciers in 1974 and 2006 based on visual interpretation of the Hexagon and 

ASTER imagery, along with examination of the elevation change maps. The 30◦ slope threshold 

also effectively excludes any steep parts (nunataks and rock cliffs) in accumulation regions 

which were erroneously delineated as glacier ice, and the glacier outlines are updated 

accordingly. 

    Relative vertical errors between the Hexagon and ASTER DEMs are expected due to different 

sensor characteristics such as viewing geometry, sun position, cloud cover, and atmospheric 

conditions. Further complicating this are non-ice geomorphic changes such as landslides, which 

can be triggered as glaciers recede and alter stress regimes along valley walls and moraine 
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ridges, exposing unstable slopes, and reorganizing large volumes of unconsolidated sediment 

(Richardson and Reynolds, 2000). Several collapsed moraines were observed in the region 

(Figure S2.6), and therefore we base our clean-ice and calving glacier outlines primarily on 

visible satellite imagery, with the thickness change maps as a secondary source. In contrast, we 

base our debris-covered glacier outlines primarily on the thickness change maps, as debris-

covered glaciers are difficult to distinguish from surrounding terrain using visible imagery only. 

Future work could focus on utilization of SAR glacier tracking methods to further constrain the 

extent of debris-covered zones, including surface feature tracking, SAR interferometry, and 

coherence tracking (Atwood et al., 2010; Frey et al., 2012; Mattar et al., 1998; Schubert et al., 

2013; Strozzi et al., 2002).  

    Glacier elevation models extracted using stereophotogrammetry often have errors and gaps 

over snow-covered accumulation zones due to low radiometric contrast and sensor 

oversaturation (Pellikka and Rees, 2009). Hexagon film strips are especially vulnerable to this 

problem, resulting in large regions of missing data and some apparently erratic thickness changes 

over glacier accumulation zones. To exclude these erroneous regions, we compute the 

neighborhood standard deviation of each image pixel (a measure of local image contrast, using a 

5×5 window), along with the gradient and curvature of the thickness change map for each 

glacier. Pixels with neighborhood standard deviations less than 3, which also have either a 

thickness change gradient >45, or a curvature value >0.005m−1 are excluded, and gaps in the 

thickness change maps smaller than 2 km2 are interpolated (Figure S2.3 through Figure S2.5). 

This method allows for removal of erroneous pixels in low-contrast accumulation zones, while 

retaining pixels in debris-covered zones which often have greater local gradient and curvature 

values due to melt ponds and ice cliffs. 
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    To close remaining data gaps in accumulation regions, various approaches can be found in the 

literature. Gardelle et al. (2013) replace missing thickness change data over glaciers by the 

regional mean of the corresponding elevation band for a given glacier type, based on the 

assumption that thickness changes should be similar at a given altitude across the region. 

Pieczonka and Bolch (2015) assume no change in the accumulation regions and replace missing 

data values with 0. Due to the spatially heterogeneous nature of glacier changes in Bhutan, and 

the limited number of contributing pixels at high elevation bands (Figure 2.4), the regional 

extrapolation method introduces significant bias, especially regarding the large region of missing 

data in the accumulation zone of glacier c. Thus, all regional glacier change values reported in 

the text are derived using the method which assumes zero change for missing data. To examine 

the effect on geodetic mass balance and facilitate a comparison between the two methods, we 

also include separate results derived using each assumption (replacing missing data with zero 

change vs. regional extrapolation) in Table S2.3 in the Supplement. For the extrapolation 

method, missing data for different glacier types are extrapolated using the corresponding 

thickness change profiles (either clean, debris, or calving). 

    A total of 21 glaciers are selected (Figure 2.2, outlined in white) based on size (glaciers larger 

than 3 km2) and data coverage (glaciers with at least 25% glacier area covered by the DEMs). 

Unfortunately, incomplete coverage of remote sensing data, clouds, and poor radiometric 

contrast in some areas prevent accurate investigation of all glaciers. While this does limit direct 

comparison to previous studies which measure all glaciers in a region, these 21 largest glaciers 

give a good regional picture of thickness changes over the 3-decade timespan. 

Debris-covered areas for each glacier are delineated using a Landsat TM4/TM5 DN band ratio 

image with a threshold of 2.0 (Paul, 2000). Non-calving glaciers with 20% or greater debris-
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covered area are assigned the debris category (5 glaciers); non-calving glaciers with less than 

20% are assigned the clean category (10 glaciers). The calving category (6 glaciers) includes 

both clean and debris types which terminate in lakes as determined by viewing the Hexagon and 

ASTER imagery. 

    For each glacier, the ice volume change, spatially averaged thickness change, and geodetic 

mass balance over the 32-year timespan are computed using the elevation change maps 

following Equations (2.1) – (2.3): 

 ∆𝑉𝑉 = �𝐷𝐷𝑖𝑖𝑟𝑟2,
𝑛𝑛

𝑖𝑖=1

 (2.1) 

 ℎ� =
∆𝑉𝑉
𝐴𝐴

, (2.2) 

 �̇�𝑏 = ℎ�𝜌𝜌, (2.3) 

where ∆𝑉𝑉 is ice volume change (m3), 𝐷𝐷𝑖𝑖  is the elevation change (m) for pixel 𝑖𝑖 located within a 

glacier polygon, 𝑛𝑛 is the total number of pixels within a glacier polygon, 𝑟𝑟 is the resolution of the 

elevation change map (∼30 m), ℎ� is the spatially averaged elevation change of the glacier, 𝐴𝐴 is 

the average of the 1974 and 2006 glacier areas (m2), �̇�𝑏 is the geodetic (specific) mass balance, 

and 𝜌𝜌 is the estimated average density of glacier ice; here we use an intermediate value between 

firn and ice of 850 ± 60 kg m−3 as recommended by Huss (2013). Geodetic mass balance values 

are converted to m w.e. (meters water equivalent) by dividing �̇�𝑏 by the density of water (1000 kg 

m−3). 

2.2.4 Relative accuracy between DEMs and glacier change uncertainties 

Statistical significance of elevation changes is quantified by estimating the relative vertical 

accuracy between the Hexagon and ASTER DEMs. Table S2.1 shows the root-mean-square 
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error, mean, median, normalized median absolute deviation, standard deviation, 68.3% quantile, 

and 95% quantile of elevation changes between each approximately 20 by 20 km Hexagon DEM 

(orange outlines in Figure 2.2) and the ASTER DEM (blue outline in Figure 2.2) for assumed 

stable (ice-free) terrain. Plots of elevation change against elevation, slope, curvature, and ASTER 

along-track and cross-track were also examined for potential biases (Figure S2.1). We neglect 

any global corrections, as the vast majority of data lie in regions with close to zero bias, and 

pixels with high slope (>30◦) are excluded as outlined in Sect. 2.3. 

    To assess uncertainties for glacier changes, the point elevation error (𝐸𝐸𝑝𝑝𝑝𝑝) and extrapolation 

error (𝐸𝐸𝑒𝑒𝑒𝑒𝑝𝑝) are used to calculate the total elevation error (𝐸𝐸𝑧𝑧) for a given elevation band (Nuth et 

al., 2010): 

 𝐸𝐸𝑧𝑧 = ��
𝐸𝐸𝑝𝑝𝑝𝑝
√𝑛𝑛𝑧𝑧

�
2

+ �
𝐸𝐸𝑒𝑒𝑒𝑒𝑝𝑝
√𝑛𝑛𝑧𝑧

�
2

 (2.4) 

 

    The standard deviations of the relative elevation change over stable terrain are used for 𝐸𝐸𝑝𝑝𝑝𝑝 

(Table S2.1), while the standard deviations of glacial elevation change within each 100 m 

elevation band are used as approximations for 𝐸𝐸𝑒𝑒𝑒𝑒𝑝𝑝. These 𝐸𝐸𝑒𝑒𝑒𝑒𝑝𝑝  estimates are conservative 

because the elevation bands contain intrinsic natural variability, as not all glaciers have 

undergone the same elevation change at a given elevation (Gardelle et al., 2013). The 𝑛𝑛𝑧𝑧 value 

represents the number of independent pixel measurements. To account for spatial 

autocorrelation, we estimate 𝑛𝑛𝑧𝑧  as: 

 𝑛𝑛𝑧𝑧 =
𝑛𝑛𝑏𝑏 ∗ 𝑟𝑟2

𝜋𝜋 ∗ 𝑑𝑑2
 (2.5) 

 

where 𝑛𝑛𝑏𝑏  is the number of pixels in a given glacier elevation band, 𝑟𝑟 is the pixel resolution 

(∼30m), and 𝑑𝑑 is the distance of spatial autocorrelation (Nuth and Kääb, 2011; Nuth et al., 



56 
 

2010). For glacier regions where data exist (i.e., covered by an elevation change map, thus no 

extrapolation is necessary), 𝐸𝐸𝑒𝑒𝑒𝑒𝑝𝑝  is set to zero and the numerator in Eq. (2.5) is set to the area 

within the glacier covered by elevation change data. To estimate 𝑑𝑑, we perform a semivariogram 

analysis, which relates variance to sampling lag and gives a picture of the spatial dependence of 

each data point on its neighbor (Curran, 1988; Rolstad et al., 2009). For all eight regions, we find 

the range varies from approximately 300 to 450m and thus choose a conservative value of 500m 

for 𝑑𝑑. The volume change error for a given glacier is then estimated as: 

 𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣 = ��(𝐸𝐸𝑧𝑧 ∗ 𝐴𝐴𝑧𝑧)2
𝑧𝑧

1

 (2.6) 

 

where 𝐴𝐴𝑧𝑧 is the area of the glacier within a given elevation band 𝑍𝑍. 𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣 is then combined with 

glacier area uncertainties of ±10% and an ice density uncertainty of ±60 kg m−3 using 

standard quadratic (uncorrelated) error propagation. All final glacier change uncertainties are 

reported as ±1 SEM (standard error of the mean) unless noted otherwise. 
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Figure 2.1. Probability density distributions for all pixels in the 2006 minus 1974 elevation change maps 
obtained via DEM differencing, separated into glacial ice terrain and surrounding ice-free terrain groups. 
The glacial terrain distribution has mean = −10.9 m, median = −7.3 m, and σ = 19.7 m. By comparison, 
the ice-free terrain distribution has mean = 0.7 m, median = 0.9 m, and σ = 10.9 m. Nonzero elevation 
changes in the ice-free terrain distribution are likely caused by a combination of actual changes such as 
landslides, along with intrinsic elevation error associated with stereophotogrammetric methods used to 
create the DEMs.  

2.3 Results 

Probability density plots of regional elevation change between the years 1974 and 2006 yield a 

negatively skewed distribution for glaciers with a mean of −11 m and a standard deviation of 20 

m, reflecting the approximate span of ice surface lowering. The surrounding ice-free terrain 

shows a narrower distribution centered near zero, with a mean of 0.7 m and a standard deviation 

of 10 m (Figure 2.1). Nonzero elevation change values in the ice-free terrain distribution (blue 

region, Figure 2.1) are likely caused by a combination of actual changes such as landslides, 

errors caused by clouds, and other intrinsic errors associated with stereophotogrammetric 

methods used to create the DEMs. 

    All clean, debris, and calving glaciers investigated here for change during the 32-year 

timespan show predominate lowering and retreat of ice surfaces (Figure 2.2 and Figure 2.3). 

Individual glacier change statistics are also given in Table S2.2, including ice volume changes, 

spatially averaged thickness changes, and geodetic mass balances. 

    The relatively consistent negative mass balance trend includes both clean and debris-covered 

glaciers. Further insight into the ice-loss patterns can be obtained by examining the elevation 

change maps (Figure 2.3). Most clean glaciers are retreating and exhibit thinning near their 

toes. Conversely, the debris-covered glaciers exhibit irregular patterns of elevation loss in their 

ablation area. Several smaller debris-covered glaciers have varying amounts and distributions 

of debris and show different patterns of thinning. Some glaciers show the greatest thinning near 

their toes, others exhibit downwasting in midsection of the glacier, and still others display 
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scattered ice-loss features. Ice loss is greatly enhanced for several glacier toes terminating in 

moraine-dammed lakes. 

    The mean (area-weighted) geodetic mass balance for the selected glaciers (Figure 2.2, 

outlined in blue) is estimated to be −5.4 ± 1.6 m w.e. for the period 1974 to 2006. Averaged 

over the 32-year timespan, this yields an annual mass balance of −0.17 ± 0.05 m w.e. yr−1. 

Clean glaciers comprise 61% (221 ± 11 km2) of the total studied glacierized area (365 ± 12 km2 

for 21 glaciers) and have contributed 46% (1.09 ± 0.4 km3) to the total ice volume loss with a 

mass balance of −0.13 ± 0.06 m w.e. yr−1. The debris glaciers comprise 21% (78 ± 4 km2) of the 

total glacierized area and have contributed 24% (−0.55 ± 0.4 km3) to the total ice volume loss 

with a mass balance of −0.19 ± 0.11 m w.e. yr−1. Calving glaciers comprise 18% (66 ± 3 km2) of 

the total glacierized area and have contributed 30% (−0.70 ± 0.3 km3) to the total ice volume 

loss with a mass balance of −0.28 ± 0.10 m w.e. yr−1. 
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Figure 2.2. Landsat 8 image showing study region located in the eastern Himalayas and Tibetan Plateau. 
Black outlines identify all glaciers in the region, while white outlines denote glaciers used in this study, 
identified by letters a–u. Glacier outlines were downloaded from the ICIMOD mountain geoportal. 
Orange outlines indicated extent of extracted 1974 Hexagon DEMs; blue line indicates extent of the 2006 
ASTER DEM. Inset: annual geodetic mass balances for selected glaciers during the 1974 to 2006 period 
(2006 ASTER DEM minus 1974 Hexagon DEMs), where each diamond represents a glacier. Central red 
lines are geodetic mass balances for each glacier in m w.e. yr-1 (meters water equivalent per year). 
Diamond widths are proportional to total glacier area, heights indicate ±1 standard error (SEM) 
uncertainty, and colors specify mean glacier elevations. Thick red line indicates zero change. 



60 
 

2.4 Discussion Regional glacier change 

 

The regional mass budget result of −0.17 ± 0.05 m w.e. yr−1 from 1974 to 2006 is less negative 

than other estimates derived from remote sensing over shorter time periods. For example, 

Gardelle et al. (2013) reported a mass budget of −0.22 ± 0.12 m w.e. yr−1 during 1999–2011 and 

recalculated the Kääb et al. (2012) results to obtain −0.52 ± 0.16 m w.e. yr−1 during 2003–2008 

for the Bhutan region. Additionally, our estimate is significantly less negative compared to the 

1970–2007 mass budget of 0.32 ± 0.08 m w.e. yr−1 in the neighboring Everest region estimated 

by Bolch et al. (2011). We hypothesize that the shorter, more recent timespans of the Kääb et al. 

(2012) and Gardelle et al. (2013) studies result in more negative mass budgets due to 

accelerating glacier retreat in Asia since the end of the 1970s (Zemp et al., 2009). Additional 

influencing factors include different spatial extents covered, radar penetration uncertainties 

involved with SRTM data (not an issue in this study), and different methods of dealing with data 

gaps in accumulation zones. 

    Table S2.3 gives results obtained using the two different gapfilling methods in accumulation 

zones. Both methods yield similar geodetic mass balance values when glacier c (which has a 

disproportionately large region of missing data at high elevation) is not extrapolated and purely 

by chance add up to exactly similar values for ∆𝑉𝑉 and �̇�𝑏 in the “all” category. When glacier c is 

extrapolated using the limited number of contributing pixels at high elevation, it introduces 

significant unrealistic bias which overshadows the measured ice thickness changes of other 

glaciers, making the regional mass balance values unrealistically positive. This illustrates that 

care must be taken when extrapolating from individual elevation bands from regional profiles to 

avoid extrapolating large regions from a few unreliable data points. 
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Using a degree-day melt model, Rupper et al. (2012) estimated an area-averaged, net mass 

balance of −1.4 ± 0.6 m w.e. yr−1 (averaged over the time period 1980–2000) for the entire 

glacierized area (glaciers and perennial snowpack) of the Bhutanese watershed. Recently 

published in situ measurements of −1.12 to −2.04 m w.e. yr−1 between 2003 and 2014 for the 

Gangju La glacier (located approximately 15 km southwest from the toe of glacier d in Figure 

2.2) agree well with the melt model results (Tshering and Fujita, 2015). Compared to the remote 

sensing estimates, the modeled and in situ results are significantly more negative. Though 

difficult to compare regional changes to local ones, Cogley (2012) suggests that the discrepancy 

between in situ vs. remote sensing measurements may be explained by the smaller size and lower 

elevations of glaciers selected for fieldwork, along with unquantified local factors such as mass 

gain by snow avalanching. Regarding the melt model, it does not account for the insulating 

effects of debris cover but does account for the albedo effects of the debris, which would lead to 

a significant overestimation of modeled melt over debris-covered glaciers. For clean-ice glaciers 

and perennial snow, the modeled net mass balance is considerably less negative, −0.3 ± 0.2 m 

w.e. yr−1. This latter value is more consistent with our geodetic mass balance of −0.17 ± 0.05 m 

w.e. yr−1 presented here, yet still on the high end. Taken together, the remote sensing data 

support a more conservative model scenario of future glacierized area loss and meltwater flux 

change, highlight the benefit of informing modeling and in situ approaches with remote sensing, 

and exemplify the need for further understanding of these discrepancies. 
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Figure 2.3. Elevation change maps for 2006 minus 1974. Blue outlines denote glaciers used in this study, 
identified by letters a–u. Note regions of missing data in glacier accumulation zones, where the stereo-
matching algorithm failed due to poor radiometric contrast and oversaturation caused by snow cover. 
Glaciers a and b exhibit thinning near their toes, while glacier c is thinning at the transition point between 
a steep slope and nearly flat terrain. Three large debris-covered glaciers (d–f) show somewhat irregular 
patterns of thinning due to downwasting. Glaciers g–j (located in the Lunana region of Bhutan where a 
1994 fatal GLOF event occurred) show significant thinning and retreating of glacier toes, which have 
contributed to the growth of unstable moraine-dammed proglacial lakes (glaciers g, h, and i are classified 
as calving glaciers in this study). Glacier k shows the greatest ice volume loss in the study region. 
Glaciers m–p are located in eastern Bhutan and also show significant downwasting and retreat. Glaciers 
q–u are the most northeastern, are mostly debris covered, and show a moderate rate of thinning. 
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2.4.2 Glacier dynamics 

The elevation change maps presented in Figure 2.3 reveal a variety of decadal-scale glacier 

change patterns. Two north-flowing clean glaciers (a and b) appear to be retreating, losing ice 

near their toes as most simple glacier models predict. Another large north-flowing clean glacier 

has experienced thinning at the transition point between a steep slope and nearly flat terrain 

(glacier c). The downstream “piedmont” portion of the glacier spilling onto flat terrain has not 

thinned as much, suggesting it is dynamically decoupled from the thinning steeper glacier 

portion above. The thinning pattern may also be influenced by a decrease in mass flux of the 

smaller confluence glacier. This would result in thinning of the ice fall at the confluence, thus 

strengthening the disconnect between upper and lower reaches of the glacier. The observed 

decoupling of the “piedmont” tongue may indicate potential for the onset of proglacial lake 

formation, because decreasing flow velocities and increased mass losses can induce the 

formation and expansion of glacial lakes under favorable topographic conditions (Thakuri et al., 

2015). Modeled bed overdeepenings in this region also suggest that gently sloping thick glacier 

tongues of these north-flowing glaciers (including glacier c) have high potential for lake 

formation and enlargement (Linsbauer et al., 2016). Other glaciers terminating in nearly flat 

valleys have already begun to form such lakes, which can become highly hazardous due to 

GLOF potential. In the Lunana region for example, the proglacial lake Lugge Tsho (located at 

the toe of glacier i in Figure 2.2 and Figure 2.3) burst on 6 October 1994, resulting in the deaths 

of 21 people (Watanabe and Rothacher, 1996). 

Three large south-flowing glaciers (d, e, and f) are heavily debris covered. Modern satellite 

imagery viewed in Google Earth reveals melt ponds and associated ice cliffs on the surfaces of 

these glaciers, which can explain their irregular downwasting patterns. Recent studies have 
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shown a disproportionately large amount of melting occurs along exposed ice cliffs compared to 

debris-covered regions. Supraglacial melt ponds are formed as the ice cliffs retreat, and the ponds 

interact with englacial conduits to enhance melting (Immerzeel et al., 2014a; Reid and Brock, 

2014; Sakai and Fujita, 2010). Ice cliff formation is still not well understood, but possible 

mechanisms include collapse of englacial voids (initially created by drainage of melt ponds), 

aspect-induced differences in solar radiation, and debris slope slumping (Benn et al., 2012). A 

recent grid-based model of supraglacial ice cliff backwasting on debris-covered glaciers has 

confirmed the importance of cliffs as contributors to total mass loss of debris-covered glaciers 

and shown that melt is highly variable in space, suggesting that simple models provide inaccurate 

estimates of total melt volumes (Buri et al., 2015). Miles et al. (2016) also showed that 

supraglacial ponds efficiently convey atmospheric energy to a glaciers interior, promoting the 

downwasting process. 

Thorthormi glacier (glacier h) is a distinct example of a debris-covered calving glacier, with 

ice loss due to calving and thermal undercutting apparently far outweighing downwasting 

associated with ice cliffs and melt ponds. The largest thickness changes are occurring on the 

steep midsection portion of the glacier, which may indicate a dynamic thinning response to 

calving as ice is lost at the glacier toe. As ice is removed from the glacier and stored in the lake, 

areas once covered by ice are now replaced by water, resulting in small thickness changes 

observed near the glacier toe. This is consistent with observations of the rapid growth of the 

Thorthormi lake, which is a potential GLOF hazard (Fujita et al., 2008), and suggests that ice 

loss is slightly underestimated by DEM differencing methods for these calving glaciers. 

Glacier k has an anomalously large ice volume loss (∼0.5 km3), accounting for approximately 

20% of the total ice volume loss of the 21 analyzed glaciers. No stereomatching or 
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georeferencing problems are apparent, and Gardelle et al. (2013) show a similar large ice loss 

during a different timespan (1999–2011) using different elevation data (SRTM and SPOT5); thus 

our result is not likely due to image processing errors. It is currently unclear why this glacier has 

undergone such a comparatively large ice loss; however, glacier k has a large, wide accumulation 

area to the west (Figure 2.2). One possible explanation could be that glacier thinning has caused 

the ice divide between glaciers k and c to shift and change position over time, thus decreasing the 

accumulation area and reducing the supply of ice mass for glacier k, causing a drastic reduction 

in volume. 

2.4.3 Glacier types comparison 

Profiles of ice thickness change vs. elevation show distinct thinning patterns for each glacier type 

(Figure 2.4). The clean-ice thickness change profile appears slightly positive in the accumulation 

zones, and thinning generally becomes greater with decreasing elevation, reaching approximately 

−40m of thinning over the 32-year timespan at 5000 m elevation, then exhibiting less thinning 

near glacier toes. First, glacier k does not contribute to the lowest elevation bin, which results in 

smaller thickness change since glacier k is dominantly affecting the regional thinning profile (see 

Figure S2.2). While some of the lower thinning rates may be due to insulating effects of more 

comprehensive debris cover on glacier toes, we conclude that the primary factor is that the toes 

are thinner to begin with and thus have less ice to lose. Our 1974 glacier outlines include glacier 

toes which were already thin at that time, and we expect thinning from 1974 onwards to be 

smaller near the toes. The debris-covered thickness change profile starts near 0 m ice loss at 5700 

m elevation, with thinning rates increasing steadily towards lower elevations, reaching around 

−20 m of thinning at 4200 m. The calving-glaciers thickness profile is somewhat erratic, 
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fluctuating between −10 and −50 m of ice loss from 6000 m down to 4400 m elevation, as several 

glaciers residing at different elevations have undergone significant ice loss due to calving. 

    Although elevation distributions of ice loss differ between glacier types, overall geodetic mass 

balance values for both debris-covered and clean glacier groups are similar in magnitude, with 

overlapping uncertainties (−0.13 ± 0.06 for clean ice and −0.19 ± 0.11 m w.e. yr−1 for debris 

covered). This supports previous findings of similar regional averaged thinning rates between 

glacier types in the Himalayas over more recent ∼10-year time frames (Gardelle et al., 2013; 

Kääb et al., 2012). We hypothesize that the similar magnitudes of ice loss can largely be 

explained by contrasting glacier hypsometries. In this region, most clean-ice glaciers have large 

accumulation zones, while most debris-covered glaciers have small accumulation zones. Since 

the debris-covered glaciers have greater proportions of ice residing at lower elevations, any given 

increase in temperature melts and thins a larger portion of debris-covered glacier area compared 

to clean-ice glacier area. As Figure 2.4 illustrates, the magnitude of thinning for debris-covered 

glaciers is significantly less that for clean-ice glaciers, presumably due to insulating effects of the 

debris. However, integrating this smaller thinning across comparatively larger regions at lower 

elevations yields similar and even more negative mass balance values compared to the clean-ice 

glaciers. While these hypsometry effects are certainly not universal, further investigations are 

needed to determine their prevalence in other regions. Additionally, our measured geodetic 

thinning is influenced by both mass balance processes and ice dynamics (emergent velocities). 

Kääb et al. (2005) showed that the large north-flowing clean-ice glaciers in Bhutan have flow 

velocities up to 200 m yr−1, while south-flowing debris-covered glaciers are nearly stagnant. 

Thus, ice advection down glacier is significantly greater for these clean-ice glaciers, making the 
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apparent mass balance less negative in the ablation zones of the clean-ice glaciers as compared to 

the debris-covered glaciers. 

    Recent studies have identified relationships between glacier slope, surface velocity, and 

thinning rates. For example in the Langtang Himal (Nepal), zones with low surface flow 

velocities and low slopes tend to be associated with dynamic decay of surface features, and local 

accelerations in thinning for these regions correlate with development of supraglacial ice cliffs 

and lakes (Pellicciotti et al., 2015; Ragettli et al., 2016). We find a similar relationship in Bhutan, 

especially regarding glaciers d, e, and f, which have large, flat, debris-covered ablation zones, 

near-stagnant flow velocities (Kääb, 2005), and supraglacial ponds. Melt ponds, ice cliff 

dynamics, and englacial conduits likely play a significant role in enhancing melt for these 

glaciers. Additionally, longwave radiative flux change for a given temperature change is greater 

in regions at warmer temperatures. This may further enhance melt for lower elevation debris-

covered glaciers, given that longwave atmospheric radiation is the most important heat source for 

melting of snow and ice (Ohmura, 2001). 

    Some glaciers in the region are partially debris covered, with greater proportions of debris-

covered area near glacier toes and lower proportions of debris-covered area moving up the 

glacier (glaciers h and o). The mid-glacier regions with less debris-covered area exhibit greater 

thinning; this may be a result of enhanced ice melt due to the albedo effect of supra-glacial debris 

cover that is thin enough to not provide considerable insulation effects and the fact that bare ice 

melts at a faster rate than debris-covered ice at the same elevation. Modeling studies in the 

Khumbu region indicate that debris-covered tongues will detach from their accumulation areas in 

the future, leading to greater future melt rates (Rowan et al., 2015; Shea et al., 2015). 
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    Calving glaciers in the study area have more negative mass balances compared to both types 

of land-terminating glaciers (both clean and debris covered) and represent a disproportionately 

large amount of the total ice volume loss relative to their aerial extent. For these glaciers, large 

moraine-dammed lakes have formed as a result of expansion and merging of smaller supraglacial 

lakes, and glacial meltwater is effectively stored adjacent to glacier termini (Basnett et al., 2013). 

As changing climate increases glacier melt, the resulting lakes interact with remaining ice to 

further enhance melt through thermal undercutting processes independent of climate (Sakai et al., 

2009; Thompson et al., 2012). This positive feedback mechanism has important implications for 

future hazard and water resource issues, especially for glaciers terminating in flat valleys with 

potential lake-forming topographies. Gardelle et al. (2011) estimated that in the eastern HKH 

(India, Nepal, and Bhutan) glacial lakes have grown continuously between 1990 and 2009 by 20 

to 65%. Thus, these glacier-lake systems not only represent GLOF hazards but also will likely 

play a key role in the Himalayan ice mass budget during the coming decades. 
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Figure 2.4. Ice thickness change profiles for clean ice, debris covered, calving, and all glaciers combined 
(rates of change can be obtained by dividing values on the vertical axis by 32 years). Thickness change 
pixels are separated into 100 m bands; black lines are the mean, and the grey shaded regions represent the 
standard error of the mean estimated as 𝜎𝜎𝑧𝑧 √𝑛𝑛𝑧𝑧⁄  , where 𝜎𝜎𝑧𝑧 is the standard deviation of elevation change 
for each band and 𝑛𝑛𝑧𝑧 is calculated using Eq. (2.5). The glacier area (km2) contained in each band is 
indicated by the blue histogram bars, and the number of glaciers contributing to each elevation band is 
shown by the blue number above each bin. Note that the histogram bars do not include extrapolated data. 

2.5 Conclusions 

We applied a new DEM extraction pipeline toward Hexagon spy satellite imagery and ASTER 

data to compute glacier thickness changes over a multi-decadal timescale across a large 

glacierized area (∼365 km2) in the eastern Himalayas. The consistency of the DEM extraction 

method provided high geolocational accuracy and minimized elevation biases when differencing 

the DEMs. In addition, the long timespan (1974–2006) allowed for effective separation of glacier 
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change from noise inherent in the remote sensing methods. Results provide insight into the 

complex dynamics of glaciers in the monsoonal Himalayas and highlight similarities and 

differences in the decadal responses of clean, debris-covered, and calving glaciers. Though 

regional thinning and ice loss is apparent, individual glacier dynamics vary widely depending on 

elevation, hypsometry, extent and thickness of debris, and potential for calving in proglacial 

lakes. Both clean and debris-covered glaciers show similar negative geodetic mass balances, 

while lake-terminating glaciers have geodetic mass balances more negative than land-terminating 

glaciers. The more negative mass balances of lake-terminating glaciers suggest that calving and 

thermal undercutting are important mechanisms contributing to ice loss in the region and 

highlight the rapidly growing hazard potential of GLOFs in the monsoonal Himalayas. Overall, 

these results enhance understanding regarding potential glacier contribution to sea-level rise, 

impact on hydrological resources, and hazard potential for high mountain regions and 

downstream populations in Asia. 
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2.7 Supplementary 

 

Figure S2.1. Plots of elevation change vs. elevation, slope, maximum curvature, and ASTER along-track 
and cross-track directions for assumed stable terrain in each of the 8 Hexagon DEM regions given in 
Table S2.1. Black curves and grey shaded regions indicate the mean and standard deviation of each bin, 
respectively. The area (km2) contained in each bin is indicated by the blue histogram bars, calculated as 
the number of pixels per bin * pixel resolution2.  
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Figure S2.2. Ice thickness change 
profiles for individual glaciers. Similar 
to Figure 4, Thickness changes are 
separated into 100 m bins, and the 
horizontal red lines indicate zero 
change.  
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Figure S2.3. Hexagon and ASTER images, along with thickness change map processing stages for clean 
ice glaciers. Stage 1: raw elevation change maps; stage 2: after excluding erroneous pixels; stage 3: after 
interpolating gaps smaller than 2 km2, and stage 4: after filling remaining accumulation zone gaps with 
zero elevation change. 
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Figure S2.4. Same as Figure S2.3, but for debris-covered glaciers. 
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Figure S2.5. Same as Figure S2.3, but for calving glaciers. 
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Figure S2.6. Two examples of unstable moraine ridges. Red dotted ellipses indicate sections which have 
collapsed near glaciers a and k. 
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Figure S2.7.  Same as Figure 2.3, except 
elevation changes are visualized as discrete 
classes rather than using continuous color 
coding.  
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Table S2.1. Vertical accuracy statisticsa of Hexagon DEMs relative to the 2006 ASTER DEM (meters)  

ID Lona Latb RMSEz Mean Median NMADc STD 68.3%Q 95%Q 

1 90.05 28.25 8.1 0.5 0.7 6.4 8.1 6.8 15.9 
2 90.26 28.24 8.6 1.2 1.3 7.3 8.5 7.5 15.6 
3 89.97 28.09 11.5 1.4 1.4 8.7 11.5 9.4 22.5 
4 90.12 28.10 11.6 0.7 0.8 9.2 11.6 9.8 21.9 
5 90.27 28.08 12.8 0.6 1.0 8.7 12.8 9.4 24.4 
6 90.42 28.14 14.9 1.6 1.5 11.6 14.8 12.7 30.3 
7 90.73 28.05 8.9 0.1 0.6 6.6 8.9 7.0 17.8 
8 90.66 28.25 11.8 0.4 1.1 8.9 11.8 9.5 22.5 

a Over assumed stable terrain (i.e. excluding glaciers). b Center of each Hexagon DEM region.  
c Normalized median absolute deviation. d Hole interpolation max area (km2). 
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Table S2.2. Glacier Change Statistics 

 

 

 

 

Glacier ID a b c d e f g 
Longitude (deg) 89.99 90.04 90.25 89.99 90.07 90.15 90.21 

Latitude (deg) 28.21 28.18 28.19 28.16 28.14 28.16 28.13 
Mean Elevation (m) 5710 5712 6183 4940 4565 4853 5012 

1974 Area (km2) 13.4 ± 1.3 25.0 ± 2.5 86.2 ± 8.6 23.5 ± 2.3 8.8 ± 0.9 30.1 ± 3.0 5.4 ± 0.5 

∆V (km3) -0.08 ± 0.03 -0.29 ± 0.07 -0.26 ± 0.31 -0.14 ± 0.06 -0.09 ± 0.03 -0.17 ± 0.09 -0.03 ± 0.03 
∆Vextrap (km3) -0.05 ± 0.03 -0.27 ± 0.07 0.09 ± 0.31 -0.20 ± 0.06 -0.09 ± 0.03 -0.18 ± 0.09 -0.03 ± 0.03 

𝒉𝒉� (m) -5.6 ± 2.2 -12.0 ± 3.2 -3.0 ± 3.6 -6.1 ± 2.5 -10.3 ± 4.0 -5.5 ± 2.9 -5.2 ± 5.9 
b ̇ (m.w.e.) -0.15 ± 0.06 -0.32 ± 0.09 -0.08 ± 0.10 -0.16 ± 0.07 -0.27 ± 0.11 -0.15 ± 0.08 -0.14 ± 0.16 

Data coverage (%) 39 48 28 49 100 68 100 
Debris coverage 

(%) 1 6 3 41 37 44 16 

Calving (y/n) n y n n n n y 
        
 h i j k l m n 
 90.27 90.33 90.35 90.39 90.47 90.7 90.75 
 28.13 28.11 28.09 28.1 28.08 28.06 28.04 
 5486 5151 5154 5749 6133 5505 5450 
 13.8 ± 1.4 6.1 ± 0.6 5.0 ± 0.5 49.8 ± 5.0 29.7 ± 3.0 5.7 ± 0.6 9.2 ± 0.9 
 -0.12 ± 0.08 -0.10 ± 0.03 -0.04 ± 0.02 -0.52 ± 0.13 -0.02 ± 0.13 -0.02 ± 0.02 -0.08 ± 0.03 
 -0.16 ± 0.08 -0.10 ± 0.03 -0.08 ± 0.02 -0.45 ± 0.13 0.07 ± 0.13 -0.02 ± 0.02 -0.09 ± 0.03 
 -8.5 ± 5.7 -18.3 ± 6.0 -8.7 ± 4.8 -10.7 ± 2.8 -0.6 ± 4.3 -4.4 ± 3.3 -8.4 ± 3.1 
 -0.23 ± 0.15 -0.48 ± 0.16 -0.23 ± 0.13 -0.28 ± 0.08 -0.02 ± 0.11 -0.12 ± 0.09 -0.22 ± 0.08 
 30 100 58 54 26 60 76 
 17 11 10 11 14 1 1 
 y y n n n n y 
        
 o p q r s t u 
 90.79 90.78 90.62 90.66 90.68 90.63 90.67 
 28.03 28.06 28.21 28.24 28.26 28.25 28.29 
 5216 5540 5342 5139 5304 6034 5602 
 5.7 ± 0.6 9.1 ± 0.9 3.1 ± 0.3 12.5 ± 1.3 6.5 ± 0.7 9.8 ± 1.0 10.2 ± 1.0 
 -0.04 ± 0.02 -0.09 ± 0.02 -0.04 ± 0.02 -0.11 ± 0.04 -0.03 ± 0.03 -0.03 ± 0.03 -0.04 ± 0.03 
 -0.07 ± 0.02 -0.12 ± 0.02 -0.04 ± 0.02 -0.11 ± 0.04 -0.03 ± 0.03 -0.01 ± 0.03 -0.05 ± 0.03 
 -7.6 ± 3.4 -10.1 ± 3.0 -11.9 ± 6.4 -9.1 ± 3.1 -5.1 ± 4.4 -3.2 ± 3.4 -4.3 ± 2.9 
 -0.20 ± 0.09 -0.27 ± 0.08 -0.32 ± 0.17 -0.24 ± 0.09 -0.13 ± 0.12 -0.08 ± 0.09 -0.11 ± 0.08 
 63 41 100 84 100 55 51 
 8 1 42 39 1 19 9 
 n y n n n n n 

 

∆𝑉𝑉 is ice volume change without extrapolation, ∆𝑉𝑉𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒𝑝𝑝 is ice volume change 
after extrapolating missing data using regional data from individual elevation 
bands, ℎ� is the spatially-averaged elevation change of the glacier, and �̇�𝑏 is the 
geodetic mass balance for each glacier over the 32-year timespan. 
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Table S2.3 Results using different gapfilling methods 

 clean debris calving all 
     

Area (km2) 221 ± 11 78 ± 4 66 ± 3 365 ± 12 
Area (%) 61 21 18  

     

 Assuming zero change for missing data 

∆V (km3) -1.09 ± 0.4 -0.55 ± 0.4 -0.70 ± 0.3 -2.34 ± 0.6 
∆V (%) 46 24 30  

b ̇ (m.w.e. yr-1) -0.13 ± 0.06 -0.19 ± 0.11 -0.28 ± 0.10 -0.17 ± 0.05 
 

    
 Extrapolating missing data using regional profiles 

∆V (km3) -0.60 ± 0.4 -0.62 ± 0.4 -0.77 ± 0.3 -1.99 ± 0.6 
∆V (%) 30 31 39  

b ̇(m.w.e. yr-1) -0.07 ± 0.06 -0.21 ± 0.11 -0.31 ± 0.10 -0.14 ± 0.05 
     

 
Assuming zero change for missing data in glacier c, 

extrapolating missing data for all other glaciers  

∆V (km3) -0.95 ± 0.4 -0.62 ± 0.4 -0.77 ± 0.3 -2.34 ± 0.6 
∆V (%) 41 26 33  

b ̇(m.w.e. yr-1) -0.11 ± 0.06 -0.21 ± 0.11 -0.31 ± 0.10 -0.17 ± 0.05 
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: Acceleration of ice loss across the Himalayas over the past 40 

years 

Note: a modified version of this chapter has been published in Science Advances: Maurer, J., 
Schaefer, J., Rupper, S., Corley, A., 2019. Acceleration of ice loss across the Himalayas over the 
past 40 years. Science Advances 5, eaav7266. This publication also received widespread media 
coverage (https://scienceadvances.altmetric.com/details/62415511). 
 

Himalayan glaciers supply meltwater to densely populated catchments in South Asia, and 

regional observations of glacier change over multiple decades are needed to understand climate 

drivers and assess resulting impacts on glacier-fed rivers. Here, we quantify changes in ice 

thickness during the intervals 1975–2000 and 2000–2016 across the Himalayas, using a set of 

digital elevation models derived from cold war–era spy satellite film and modern stereo satellite 

imagery. We observe consistent ice loss along the entire 2000-km transect for both intervals and 

find a doubling of the average loss rate during 2000–2016 [−0.43 ± 0.14 m w.e. year−1 (meters of 

water equivalent per year)] compared to 1975–2000 (−0.22 ± 0.13 m w.e. year−1). The similar 

magnitude and acceleration of ice loss across the Himalayas suggests a regionally coherent 

climate forcing, consistent with atmospheric warming and associated energy fluxes as the 

dominant drivers of glacier change. 

3.1 Introduction 

The Intergovernmental Panel on Climate Change 5th Assessment Report estimates that mass loss 

from glaciers contributed more to sea-level rise than the ice sheets during 1993–2010 (0.86 mm 

year−1 versus 0.60 mm year−1, respectively), yet uncertainties for the glacier contribution are 

three times greater (Church et al., 2013). Glaciers also contribute locally to water resources in 
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many regions and serve as hydrological buffers vital for ecology, agriculture, and hydropower, 

particularly in High Mountain Asia (HMA), which includes all mountain ranges surrounding the 

Tibetan Plateau (Azam et al., 2018; Lutz et al., 2014). Shrinking Himalayan glaciers pose 

challenges to societies and policy-makers regarding issues such as changing glacier melt 

contributions to seasonal runoff, especially in climatically drier western regions (Lutz et al., 

2014), and increasing risk of outburst floods due to expansion of unstable proglacial lakes 

(Harrison et al., 2018). Yet, substantial gaps in knowledge persist regarding rates of ice loss, 

hydrological responses, and associated climate drivers in HMA (Azam et al., 2018). 

    Mountain glaciers are known to respond dynamically to a variety of drivers on different time 

scales, with faster response times than the large ice sheets (Oerlemans and Fortuin, 1992; Roe et 

al., 2017). In the Himalayas, in situ studies document significant interannual variability of mass 

balances (Vincent et al., 2013; Wagnon et al., 2013; Zemp et al., 2015) and relatively slower 

melt rates on debris-covered glacier tongues over interannual time scales (Pratap et al., 2015; 

Vincent et al., 2016). Yet, the overall effects of surface debris cover are uncertain, as many 

satellite observations suggest similar ice losses relative to clean-ice glaciers over similar or 

longer periods (Gardelle et al., 2013; Pellicciotti et al., 2015). Because of the complex monsoon 

climate in the Himalayas, dominant causes of recent glacier changes remain controversial, 

although atmospheric warming, the albedo effect due to deposition of anthropogenic black 

carbon (BC) on snow and ice, and precipitation changes have been suggested as important 

drivers (Gertler et al., 2016; Kraaijenbrink et al., 2017; Salerno et al., 2015). 

    Model projections of future Himalayan ice loss and resulting impacts require robust 

observations of glacier response to past and ongoing climate change. Recent satellite remote 

sensing studies have made substantial advances with improved spatial coverage and resolution to 
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quantify ice mass changes during 2000–2016 (Brun et al., 2017; Gardelle et al., 2013; Kääb et 

al., 2015), and former records extending back to the 1970s have been presented for several areas 

using declassified spy satellite imagery (Bolch et al., 2011; Maurer et al., 2016; Pellicciotti et al., 

2015; Ragettli et al., 2016; Zhou et al., 2018). These long-term records are especially critical for 

extracting robust mass balance signals from the noise of interannual variability (Roe et al., 

2017). Many studies also report the highly heterogeneous behavior of glaciers in localized 

regions, with some glaciers exhibiting faster rates of ice loss during the 21st century (Ragettli et 

al., 2016; Zhou et al., 2018). Independent analyses document simultaneously increasing 

atmospheric temperatures at high-elevation stations in HMA (Dimri et al., 2017; Kattel and Yao, 

2013; Ren et al., 2017; Yang et al., 2011). To robustly quantify the regional sensitivity of these 

glaciers to climate change, a reliable Himalaya-wide record of ice loss extending back several 

decades is needed. 

    Here we provide an internally consistent dataset of glacier mass change across the Himalayan 

range over approximately the past 40 years. We use recent advances in digital elevation model 

(DEM) extraction methods from declassified KH-9 Hexagon film (Maurer and Rupper, 2015) 

and ASTER stereo imagery to quantify ice loss trends for 650 of the largest glaciers during 

1975–2000 and 2000–2016. All aspects of the analysis presented here only use glaciers with data 

available during both time intervals unless specified otherwise. We investigate glaciers along a 

2000-km transect from Spiti Lahaul to Bhutan (75°E to 93°E), which includes glaciers that 

accumulate snow primarily during winter (western Himalayas) and during the summer monsoon 

(eastern Himalayas), but excludes complications of surging glaciers in the Karakoram and 

Kunlun regions where many glaciers appear to be anomalously stable or advancing (Azam et al., 

2018). Our compilation includes glaciers comprising approximately 34% of the total glacierized 
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area in the region, which represents roughly 55% of the total ice volume based on recent ice 

thickness estimates (Frey et al., 2014; Kraaijenbrink et al., 2017). This diverse dataset adequately 

captures the statistical distribution of large (>3 km2) glaciers, thus providing the first spatially 

robust analysis of glacier change spanning four decades in the Himalayas. We extract DEMs 

from declassified KH-9 Hexagon images for the 650 glaciers, compile a corresponding set of 

modern ASTER DEMs, fit a robust linear regression through every 30-m pixel of the time series 

of elevations, sum the resulting elevation changes for each glacier, divide by the corresponding 

areas, and translate the volume changes to mass using a density conversion factor of 850 ± 60 kg 

m−3 (see Materials and Methods). 

3.2 Results 

3.2.1 Glacier mass changes 

Our results indicate that glaciers across the Himalayas experienced significant ice loss over the 

past 40 years, with the average rate of ice loss twice as rapid in the 21st century compared to the 

end of the 20th century (Figure 3.1). We calculate a regional average geodetic mass balance of 

−0.43 ± 0.14 m w.e. year−1 (meters of water equivalent per year) during 2000–2016, compared to 

−0.22 ± 0.13 m w.e. year−1 during 1975–2000 (−0.31 ± 0.13 m w.e. year−1 for the full 1975–2016 

interval) (see Materials and Methods). A 30-glacier moving average shows a quasi-consistent 

trend across the 2000-km longitudinal transect during both time intervals (Figure 3.1), and 

subregions have similar means and distributions of glacier mass balance. Some central 

catchments deviate somewhat from the Himalaya-wide mean during 2000–2016 (by 

approximately 0.1 to 0.2 m w.e. year−1) in the Uttarakhand (~79.0° to 80.0°E), the Gandaki 

catchment (~83.5° to 84.5°E), and the Karnali catchment (~81° to 83°E), which has fewer larger 

glaciers and relatively incomplete data coverage. Similar to previous in situ and satellite-based 
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studies (Brun et al., 2017; Sherpa et al., 2017), we observe considerable variation among 

individual glacier mass balances, with area-weighted SDs of 0.1 and 0.2 m w.e. year−1 during 

each respective interval for the 650 glaciers. This variability most likely reflects different glacier 

characteristics such as sizes of accumulation zones relative to ablation zones, topographic 

shading, and amounts of debris cover. Yet we find that in our survey (using a rough average of 

60 glaciers per 7000-km2 subregion), local variations tend to average out and mean values are 

similar across most catchments. 
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Figure 3.1. Map of glacier locations and geodetic mass balances for the 650 glaciers. Circle sizes are 
proportional to glacier areas, and colors delineate clean-ice, debris-covered, and lake-terminating 
categories. Insets indicate ice loss, quantified as geodetic mass balances (m w.e. year−1) plotted for 
individual glaciers along a longitudinal transect during 1975–2000 and 2000–2016. Both inset plots are 
horizontally aligned with the map view. Gray error bars are 1σ uncertainty, and the yellow trend is the 
(area-weighted) moving-window mean, using a window size of 30 glaciers.  

    Contrasting distributions of glacier mass balances are evident when comparing between time 

intervals. The 1975–2000 distribution has a negative tail extending to −0.6 m w.e. year−1, while 

the 2000–2016 distribution is more negative, extending to −1.1 m w.e. year−1 (Figure 3.2A). 
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During the more recent interval, glaciers are losing ice twice as fast on average (Figure 3.2B), 

though this varies somewhat between subregions. For example, we find that the average rate of 

ice loss has increased by a factor of 3 in the Spiti Lahaul region, and by a factor of 1.4 in West 

Nepal. We also compile altitudinal distributions of ice thickness change for the glaciers and 

create a Himalaya-wide average thickness change profile versus elevation (Figure 3.2, C and D). 

These distributed thinning profiles are a function of both thinning by mass loss and of dynamic 

thinning due to ice flow. We find that the 2000–2016 thinning rate (m year−1) profile is 

considerably steeper, which is likely caused by a combination of faster mass loss and widespread 

slowing of ice velocities during the 21st century (Azam et al., 2018; Dehecq et al., 2019). 
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Figure 3.2. Comparison of ice losses between 1975–2000 and 2000–2016 for the 650 glaciers. (A) 
Histograms of individual glacier geodetic mass balances (m w.e. year−1) during 1975–2000 (mean = 
−0.21, SD = 0.15) and 2000–2016 (mean = −0.41, SD = 0.24). Shaded regions behind the histograms are 
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fitted normal distributions. (B) Result of dividing the modern (2000–2016) mass balances by the 
historical (1975–2000) mass balances for each glacier, showing the resulting distribution of the mass 
balance change (ratio) between the two intervals (mean = 2.01, SD = 1.36). In this case, the shaded region 
is a fitted kernel distribution. (C) Altitudinal distributions of ice thickness change (m year−1) separated 
into 50-m elevation bins during the two intervals. (D) Normalized altitudinal distributions of ice thickness 
change. Normalized elevations are defined as (𝑧𝑧 − 𝑧𝑧2.5) (𝑧𝑧97.5 − 𝑧𝑧2.5)⁄ , where 𝑧𝑧 is elevation and 
subscripts indicate elevation percentiles. This scales all glaciers by their elevation range (i.e., after 
scaling, glacier termini = 0 and headwalls = 1), allowing for more consistent comparison of ice thickness 
changes across glaciers with different elevation ranges. Note the abrupt inflection point in the 2000–2016 
profile at ~0.1; this is likely due to retreating glacier termini. Shaded regions in the altitudinal 
distributions indicate the SEM estimated as 𝜎𝜎𝑧𝑧 √𝑛𝑛𝑧𝑧⁄ ,  where 𝜎𝜎𝑧𝑧 is the SD of the thinning rate for each 50-
m elevation bin and 𝑛𝑛𝑧𝑧 is the number of independent measurements when accounting for spatial 
autocorrelation (see Materials and Methods). 

    We multiply geodetic mass balances by the full glacierized area in the Himalayas between 75° 

and 93° longitude to estimate region-wide ice mass changes of −7.5 ± 2.3 Gt year−1 during 2000–

2016, compared to −3.9 ± 2.2 Gt year−1 during 1975–2000 (−5.2 ± 2.2 Gt year−1 during the full 

1975–2016 interval). Recent models using Shuttle Radar Topography Mission (SRTM) elevation 

data for ice thickness inversion estimate the total glacial ice mass in our region of study to be 

approximately 700 Gt in the year 2000 (see Materials and Methods) (Frey et al., 2014; 

Kraaijenbrink et al., 2017). If this estimate is accurate, our observed annual mass losses suggest 

that of the total ice mass present in 1975, about 87% remained in 2000 and 72% remained in 

2016. 

3.2.2 Comparison of clean-ice, debris-covered, and lake-terminating glaciers 

We study mass changes for different glacier types by separating glaciers into clean-ice (<33% 

area covered by debris), debris-covered (≥33% area covered by debris), and lake-terminating 

categories based on a Landsat band ratio threshold and manual delineation of proglacial lakes 

(see Materials and Methods). All three categories have undergone a similar acceleration of ice 

loss (Table 3.1), and debris-covered glaciers exhibit similar and often more negative geodetic 

mass balances compared to clean-ice glaciers over the past 40 years (Figure 3.3). Altitudinal 

distributions indicate slower thinning for lower-elevation regions of debris-covered glaciers 
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(glacier tongues where debris is most concentrated) relative to clean-ice glaciers, but 

comparatively faster thinning in mid- to upper elevations (Figure 3.4). Lake-terminating glaciers 

concentrated in the eastern Himalayas exhibit the most negative mass balances due to thermal 

undercutting and calving (Ren et al., 2017; Sakai et al., 2009), though they only comprise around 

5 to 6% of the estimated total Himalaya-wide mass loss during both intervals. 

 

Table 3.1. Himalaya-wide geodetic mass balances (m w.e. yr-1) 
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Figure 3.3. Comparison between clean-ice (<33% debris-covered area) and debris-covered (≥33% debris-
covered area) glaciers for seven subregions. Circle sizes are proportional to glacier areas, colors delineate 
clean-ice versus debris-covered categories, and boxplots indicate geodetic mass balance (m w.e. year−1). 
Box center marks (red lines) are medians; box bottom and top edges indicate the 25th and 75th 
percentiles, respectively; whiskers indicate 𝑞𝑞75 + 1.5 ⋅ (𝑞𝑞75 − 𝑞𝑞25) and 𝑞𝑞25 − 1.5 ⋅ (𝑞𝑞75 − 𝑞𝑞25), where 
subscripts indicate percentiles and “+” symbols are outliers. 
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Figure 3.4. Altitudinal distributions of ice thickness change (m year−1) for the 650 glaciers. Glaciers are 
separated by time interval (top) and category (<33% versus ≥33% debris-covered area) (bottom). (A) 
Altitudinal distributions of ice thickness change for clean-ice glaciers during 1975–2000 and 2000–2016. 
The y axes are normalized elevation as in Figure 3.2. (B) Same as (A), but for debris-covered glaciers. (C) 
Altitudinal distributions of ice thickness change during 1975–2000 for clean-ice and debris-covered 
glaciers. (D) Same as (C), but for 2000–2016. (E) Altitudinal distributions of glacierized area for both 
glacier categories. Elevational extent of debris cover varies widely between individual glaciers, but is 
mostly concentrated in lower ablation zones. The clean-ice category includes 478 glaciers and the debris-
covered category includes 124 glaciers. 

3.3 Approximation of required temperature change 

As a first approximation of the consistency between observed glacier mass balances and 

available temperature records, we estimate the energy required to melt the observed ice losses 

and conservatively estimate the atmospheric temperature change that would supply this energy 

via longwave radiation to the glaciers, using a simple energy balance approach (see Materials 

and Methods). We propagate significant uncertainties associated with input from global climate 

reanalysis data, scaling of temperatures from coarse reanalysis grids to specific glacier 

elevations, and averaging of climate data over the glacierized region. Results suggest that the 

observed acceleration of ice loss can be explained by an average temperature ranging from 0.4° 

to 1.4°C warmer during 2000–2016, relative to the 1975–2000 average. This approximately 
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agrees with the magnitude of warming observed by meteorological stations located throughout 

HMA, which have recorded air temperatures around 1°C warmer on average during 2000–2016, 

relative to 1975–2000 (Figure 3.5). More comprehensive climate observations and models will 

be essential for further investigation, but these simple energy constraints suggest that the 

acceleration of mass loss in the Himalayas is consistent with warming temperatures recorded by 

meteorological stations in the region. 
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Figure 3.5. Compilation of previously published instrumental temperature records in HMA. (A) Regional 
temperature anomalies, relative to the 1980–2009 mean temperatures for each record. The yellow trend 
(Ren et al., 2017) from the quality-controlled and homogenized climate datasets LSAT-V1.1 and CGP1.0 
recently developed by the China Meteorological Administration (CMA), using approximately 94 
meteorological stations located throughout the Hindu Kush Himalayan region. The orange trend (Xu et 
al., 2017) is from a similar CMA dataset derived from 81 stations more concentrated on the eastern 
Tibetan Plateau. The blue trend (Kattel and Yao, 2013) is from three decades of temperature data from 13 
mountain stations located on the southern slopes of the central Himalayas. The black trend is the 5-year 
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moving mean. (B) Temperature anomalies from high-elevation stations at the Chhota Shigri glacier 
terminus (Dimri et al., 2017); Dingri station in the Everest region (Yang et al., 2011); average from the 
Kanzalwan, Drass, and Patseo stations (Shekhar et al., 2010); and average of 16 stations above 4000 m 
elevation on the Tibetan Plateau and eastern Himalayas (Yan and Liu, 2014). Here, temperature 
anomalies are relative to the mean of each record. The gray trend line is the 5-year moving mean. (C) 
Difference in mean temperature (°C) between the two intervals, i.e., the mean of the 2000–2016 interval 
relative to the mean of the 1975–2000 interval.  

3.4 Discussion 

3.4.1 Implications for dominant drivers of glacier change in the Himalayas 

The parsing of Himalayan glacier energy budgets is not a straightforward task owing to the 

scarcity of meteorological data, in combination with the complex climate and topography of the 

region (Azam et al., 2018). Furthermore, the Himalayas border hot spots of high anthropogenic 

BC emissions, which may affect glaciers by direct heating of the atmosphere and decreasing 

albedo of ice and snow after deposition (Gertler et al., 2016). While improved analyses 

combining observations and high-resolution atmospheric and glacier energy balance models will 

be required to quantify these effects, the pattern of ice loss we observe has important 

implications regarding dominant climate influences on Himalayan glacier mass balances. Our 

results suggest that any drivers of glacier change must explain the region-wide consistency, the 

doubling of the average rate of ice loss in the 21st century compared to 1975–2000, and the 

observation that clean-ice, debris-covered, and lake-terminating glaciers have all experienced a 

similar acceleration of mass loss. 

    Some studies have suggested a weakening of the summer monsoon and reduced precipitation 

as primary reasons for negative glacier mass balances, particularly in the Everest region (Salerno 

et al., 2015). While decreasing accumulation rates may account for a significant portion of the 

mass balance signal for some glaciers, an extreme Himalaya-wide decrease in precipitation 

would be required to explain the extensive ice losses we observe, especially given that monsoon-

dominated glaciers with high accumulation rates are known to be much more sensitive to 
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temperature than accumulation changes (Oerlemans and Fortuin, 1992; Rupper and Roe, 2008). 

Regional studies of precipitation trends in the Himalayas do not suggest a widespread decrease in 

precipitation over the past four decades (Supplementary Materials). A uniform BC albedo 

forcing across the Himalayas is another possible explanation, although BC concentrations 

measured in snow and ice in the Himalayas have been found to be spatially heterogeneous 

(Gertler et al., 2016; Kaspari et al., 2014), and high-resolution atmospheric models also show 

large spatial variability of deposited BC originating from localized emissions in regions of 

complex terrain (Gertler et al., 2016; Qian et al., 2009). Future analyses focused on quantifying 

the spatial patterns of BC deposition will reveal further insights, yet given the rather 

homogeneous pattern of mass loss we observe across the 2000-km Himalayan transect, a strong, 

spatially heterogeneous mechanism seems improbable as a dominant driver of glacier ice loss in 

the region. 

3.4.2 Debris-covered glaciers 

Similar thinning rates of debris-covered (thermally insulated) glaciers relative to clean-ice 

glaciers have been observed by previous studies and have been not only ascribed to surface melt 

ponds and associated ice cliffs acting as localized hot spots to concentrate melting but also 

attributed to declining ice flux causing dynamic thinning and stagnation of debris-covered glacier 

tongues (Azam et al., 2018). While we cannot yet directly deconvolve relative contributions from 

these processes, we find that average thinning rates for debris-covered glaciers are slower than 

clean-ice glaciers at low elevations (glacier tongues where debris is most concentrated), which 

agrees with reduced melt rates from field studies. In turn, debris-covered glaciers tend to have 

comparatively faster thinning at mid-range elevations, where debris cover is sparser and also 

where the majority of total glacierized area resides (Figure 3.4). Models of debris-covered 
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glacier processes suggest that this pattern of thinning may cause a reduction in down-glacier 

surface gradient, which, in turn, reduces driving stress and ice flux and explains why debris-

covered ablation zones become stagnant (Benn et al., 2012). We also find that clean-ice glaciers 

exhibit a much more pronounced steepening of the thinning profile over time, compared to 

debris-covered glaciers. It may be that both glacier types experience a uniform thinning phase 

followed by a changing terminus flux and retreat phase, but the clean-ice glaciers are in a later 

phase of response to recent climate change (Roe and Baker, 2014). 

3.4.3 Comparison with previous studies in the Himalayas 

To compare our results with previous remote sensing studies that derive mass changes from 

various sensors (including Hexagon, SRTM, SPOT5, ICESat, and ASTER), we restrict our 

results to the approximate geographical regions covered by each corresponding study (Bolch et 

al., 2011; Brun et al., 2017; Gardelle et al., 2013; Kääb et al., 2015; Maurer et al., 2016; 

Pellicciotti et al., 2015; Ragettli et al., 2016; Zhou et al., 2018) and then compute area-weighted 

average geodetic mass balances. In addition, we compare individual glacier mass balances for 

the Everest and Langtang Himal regions, where mass changes were previously estimated using 

declassified Corona and Hexagon imagery (Bolch et al., 2011; Pellicciotti et al., 2015; Ragettli et 

al., 2016). Despite factors such as variable spatial resolutions, distinct void-filling methods, 

heterogeneous spatial and temporal coverages, and different definitions of glacier boundaries, we 

find that our average mass balances generally agree with previous analyses and overlap within 

uncertainties (Table S3.1). However, because of the significant variability of individual glacier 

mass changes within subregions, our results also highlight the importance of sampling a large 

number of glaciers to obtain a robust average trend for any given area. 
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3.4.4 Comparison with benchmark mid-latitude glaciers and global average 

To gain perspective on mass losses from these low-latitude glaciers in the monsoonal Himalayas, 

we compare our results with benchmark mid-latitude glaciers in the European Alps, as well as 

with a global average mass balance trend (Figure S3.1) (Zemp et al., 2017). The Alps contain the 

most detailed long-term glaciological and high-elevation meteorological records on Earth, and 

the climatic sensitivity and behavior of these European glaciers are well understood compared to 

glaciers in HMA. Air temperatures in the Alps show an abrupt warming trend beginning in the 

mid-1980s, and Alpine mass balance records display a concurrent acceleration of ice loss, with a 

continual strongly negative mass balance after that time. Himalayan weather station data indicate 

a more gradual warming trend, with the strongest warming beginning in the mid-1990s (Figure 

S3.1, A and B). We find that mass balance in the Himalayas is less negative compared to the 

Alps and the global average, despite close proximity to a known hot spot of increasing BC 

emissions with rapid growth and accompanying combustion of fossil fuels and biomass in South 

Asia (Bond et al., 2013). The concurrent acceleration of ice loss observed in both the Himalayas 

and Europe over the past 40 years coincides with a distinct warming trend beginning in the latter 

part of the 20th century, followed by the consistently warmest temperatures through the 21st 

century in both regions. 

3.5 Conclusion 

Our analysis robustly quantifies four decades of ice loss for 650 of the largest glaciers across a 

2000-km transect in the Himalayas. We find similar mass loss rates across subregions and a 

doubling of the average rate of loss during 2000–2016 relative to the 1975–2000 interval. This is 

consistent with the available multi-decadal weather station records scattered throughout HMA, 

which indicate quasi-steady mean annual air temperatures through the 1960s to the 1980s with a 
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prominent warming trend beginning in the mid-1990s and continuing into the 21st century (23–

26) (Dimri et al., 2017; Kattel and Yao, 2013; Ren et al., 2017; Yang et al., 2011). We suggest 

that degree-day and energy balance models focused on accurately quantifying glacier responses 

to air temperature changes (including energy fluxes and associated feedbacks) will provide the 

most robust estimates of glacier response to future climate scenarios in the Himalayas. 

3.6 Materials and methods 

3.6.1 Hexagon 

U.S. intelligence agencies used KH-9 Hexagon military satellites for reconnaissance from 1973 

to 1980. A telescopic camera system acquired thousands of photographs worldwide, after which 

film recovery capsules were ejected from the satellites and parachuted back to Earth over the 

Pacific Ocean. With a ground resolution ranging from 6 to 9 m, single scenes from the mapping 

camera cover an area of approximately 30,000 km2 with overlap of 55 to 70%, allowing for 

stereo photogrammetric processing of large regions. Images were scanned by the U.S. 

Geological Survey (USGS) at a resolution of 7 μm and downloaded via the Earth Explorer user 

interface (earthexplorer.usgs.gov). Digital elevation models were extracted using the Hexagon 

Imagery Automated Pipeline methodology, which is coded in MATLAB and uses the OpenCV 

library for Oriented FAST and Rotated BRIEF (ORB) feature matching, uncalibrated stereo 

rectification, and semiglobal block matching algorithms (Maurer and Rupper, 2015). The 

majority of the KH-9 images here were acquired within a 3-year interval (1973–1976), and we 

processed a total of 42 images to provide sufficient spatial coverage (Figure S3.2). 

3.6.2 ASTER 

The ASTER instrument was launched as part of a cooperative effort between NASA and Japan’s 

Ministry of Economy, Trade and Industry in 1999. Its nadir and backward-viewing telescopes 
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provide stereoscopic capability at 15-m ground resolution, and a single DEM covers 

approximately 3600 km2. Approximately 26,000 ASTER DEMs were downloaded via the METI 

AIST Data Archive System (MADAS) satellite data retrieval system (gbank.gsj.jp/madas), a 

portal maintained by the Japanese National Institute of Advanced Industrial Science and 

Technology and the Geological Survey of Japan. To use all cloud-free pixels (including images 

with a high percentage of cloud cover), no cloud selection criteria were applied when 

downloading the images. We used the Data1.l3a.demzs geotiff product, which has a spatial 

resolution of 30 m. After downloading, the DEMs were subjected to a cleanup process: For a 

given scene, any saturated pixels (i.e., equal to 0 or 255) in the nadir band 3 (0.76 to 0.86 μm) 

image were masked in the DEM. Next, the SRTM dataset was used to remove any DEM values 

with an absolute elevation difference larger than 150 m (relative to SRTM), which effectively 

eliminated the majority of errors caused by clouds. While more sophisticated cloud masking 

procedures are possible, the ASTER shortwave infrared detectors failed in April 2008, making 

cloud detection after this time impossible using standard methods. We examined existing cloud 

masks derived using Moderate Resolution Imaging Spectroradiometer images as another option 

(tonolab.cis.ibaraki.ac.jp/ASTER/cloud/). However, these are not optimized for snow-covered 

regions and often misclassify glacier pixels as clouds. Instead, our large collection of 

multitemporal ASTER scenes, the SRTM difference threshold, and our robust linear trend fitting 

algorithm [see description of Random Sample Consensus (RANSAC) in the “Trend fitting of 

multitemporal DEM stacks” section] effectively excluded any remaining erroneous cloud 

elevations after the initial threshold. As a final step, all ASTER DEMs were coregistered to the 

SRTM using a standard elevation–aspect optimization procedure (Nuth and Kääb, 2011). We did 

not apply fifth-order polynomial correction procedures to the ASTER DEMs for satellite “jitter” 
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effects and curvature bias as done in some previous studies (Brun et al., 2017). We found that 

while these types of corrections may reduce the overall average elevation error in a scene, the 

polynomial fitting can be unwieldy and may introduce unwanted localized biases. By stacking 

many ASTER DEMs (with 20.5 being the average number of observations per pixel stack during 

the ASTER trend fitting, see Figure S3.3E) and using a robust fitting procedure, we found that 

biases do not correlate across overlapping scenes, and thus tend to cancel out one another. 

Furthermore, the elevation change results from this portion of our study overlap within 

uncertainties with Brun et al. (2017) (Supplementary Materials) who did perform polynomial 

corrections. This suggests that for a large-scale regional study using a high number of 

overlapping ASTER scenes, the satellite jitter and curvature bias corrections have a relatively 

minimal impact on the final results. 

3.6.3 Glacier polygons 

To delineate glaciers during all portions of the analysis, we used manually refined versions of the 

Randolph Glacier Inventory (RGI 5.0) (Arendt et al., 2015). Starting with the original RGI 

dataset, we edited the glacier polygons to reflect glacier areas during 1975, 2000, and 2016. For 

the 1975 edit, we used a combination of Hexagon imagery, the Global Land Survey (GLS) 

Landsat Multispectral Scanner mosaic (GLS1975), and glacier thickness change maps derived 

from differencing the Hexagon and modern ASTER DEMs, which are particularly useful for 

debris-covered glacier termini that often have spectral characteristics indistinguishable from 

surrounding terrain. Debris-covered areas for each glacier were delineated using a Landsat DN 

TM4/TM5 band ratio with a threshold of 2.0, and glaciers with ≥33% debris cover were assigned 

to the debris-covered category. For the 2000 edit, we used the GLS2000 Landsat Enhanced 

Thematic Mapper Plus mosaic, along with glacier thickness change maps derived from 
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differencing ASTER DEMs. For the 2016 edit, we used a custom mosaic of Landsat 8 imagery 

with acquisition dates spanning 2014–2016. The individually edited glacier polygons were used 

for all ice volume change and geodetic mass balance computations. The polygons were also used 

during alignment of the DEMs, where the shapefiles were converted to raster masks with a 

dilation (morphological operation) of 250 m on the binary rasters. This effectively excluded 

unstable terrain surrounding the glaciers during the DEM alignment process, such as steep 

avalanching slopes and unstable moraines. 

3.6.4 Trend fitting of multitemporal DEM stacks 

Glacier polygons were processed individually—all DEMs from a given time interval (1975–2000 

or 2000–2016) that overlap a polygon were selected and resampled to the same 30-m resolution 

using linear interpolation. The overlapping DEMs were sampled with a 25% extension around 

each glacier to include nearby stable terrain for alignment and uncertainty analysis (Figure S3.4). 

After ensuring that there is no vertical bias, the aligned DEMs were sorted in temporal order as a 

three-dimensional matrix, and linear trends were fit to every pixel “stack” (i.e., along the third 

dimension of the matrix) using the RANSAC method. During each RANSAC iteration, a random 

set of two elevation pixels per stack were selected. A linear trend was fit to these two values, and 

then all remaining elevation pixels were compared to the trend. Any elevation pixels within 15 m 

of the trend line were marked as inliers. This process was repeated for 100 iterations, and the 

iteration with the greatest number of inliers was selected. A final linear fit was performed using 

all inliers from the best iteration, and this trend was used for each pixel stack’s thickness change 

estimate. The thickness change maps were subjected to outlier removal using thresholds for 

maximum slope, maximum thickness change, minimum count per pixel stack, minimum 

timespan per pixel stack, maximum SD of inlier elevations per pixel stack, and maximum 
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gradient of the thickness change map (Figure S3.3). In addition, the thickness change pixels were 

separated into 50-m elevation bins, and pixels falling outside the 2 to 98% quantile range were 

excluded. Any bins with less than 100 pixels were removed and then interpolated using the two 

adjacent bins. Before computing ice volume change for the glaciers, the final thickness change 

maps were visually inspected, any remaining erroneous pixels (which occurred almost 

exclusively in low-contrast, snow-covered accumulation zones) were manually masked, and a 5 

× 5 pixel median filter was applied. We did not attempt to perform seasonality corrections, as no 

seasonal snowfall records are available and because nearly all the Hexagon DEMs were acquired 

during winter, thus minimizing any seasonality offsets between regions. For the 1975–2000 

interval, we used the Hexagon DEMs and sampled ASTER thickness change trends at the start of 

the year 2000. For regions with multiple overlapping Hexagon DEMs, we used the same 

RANSAC method. During the 1975–2000 interval, only two DEMs were available for most 

glaciers. In these cases, the RANSAC iterations were unnecessary, and we simply differenced 

the two available DEMs. We did not use SRTM for any thickness change estimates; thus, no 

correction for radar penetration was necessary. 

3.6.5 Mass changes 

To compute (mean annual) ice volume changes for individual glaciers, all thickness change 

pixels falling within a glacier polygon were transformed to an appropriate projected WGS84 

UTM coordinate system (zones 43 to 46, depending on longitude of the glacier). Pixel values (m 

year−1) were then multiplied by their corresponding areas (pixel width × pixel height) and 

summed together. The resulting ice volume change was then divided by the average glacier area 

to obtain a glacier thickness change. We used the average of the initial and final glacier areas for 

a given time interval and excluded slopes greater than 45° to remove any cliffs and nunataks. 
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Last, the glacier thickness change was multiplied by an average ice-firn density (Huss, 2013) of 

850 kg m−3 and then divided by the density of water (1000 kg m−3) to compute glacier geodetic 

mass balance in m w.e. year−1. Because of cloud cover, shadows, and low radiometric contrast, 

some glacier accumulation zones had gaps in the DEMs and resulting thickness change maps. 

This is particularly evident in the Hexagon DEMs for the Spiti Lahaul region owing to extensive 

cloud cover. To fill these gaps, we tested two different void-filling methods for comparison. In 

the first method, we defined a circular search area with a radius of 50 km around the center of a 

given glacier. All thickness change pixels from glaciers in this surrounding area were binned 

(into 50-m elevation bins, and following the same outlier-removal procedure given in the 

preceding section), and any missing data in the glacier were set to this “regional bin” mean value 

at the corresponding elevation. In the second method, we filled data gaps using an interpolation 

procedure, where voids in an individual glacier were linearly interpolated using bin values at 

upper and lower elevations relative to the missing data (those belonging to the same glacier), and 

assumed zero change at the highest elevation bin (headwall). Both methods yielded similar 

results (Table S3.1). In addition, no obvious trends were apparent when geodetic mass balance 

was plotted versus percent data coverage or glacier size (Figure S3.5). While smaller glaciers 

exhibited more scatter, the average mass balance was similar for all glacier sizes. These 

observations indicate that our representative sample of glaciers, while biased toward larger 

glaciers, adequately captures the statistical distribution of glacier mass balances in the 

Himalayas. 

    To calculate regional geodetic mass balances, we separated glaciers into four subregions (Spiti 

Lahaul, West Nepal, East Nepal, and Bhutan) as defined by Brun et al. (Brun et al., 2017). We 

then calculated the average mass balance for each of these four subregions, weighted by 
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individual glacier areas. Last, we calculated a final average mass balance for the Himalayas, 

weighted by the total glacierized area (from the RGI 5.0 database) in each of the four subregions, 

between 75° to 93° longitude. Because of the relatively homogeneous mass balance distribution, 

we found that this approach resulted in similar values (well within the uncertainties) compared to 

simply calculating the area-weighted average mass balance of the 650 measured glaciers. To 

obtain the total mass changes in Gt year−1, we multiplied each subregion mass balance by its 

total glacierized area and then summed the results from all subregions to get Himalaya-wide 

totals of −3.9 Gt year−1 for 1975–2000 and −7.5 Gt year−1 for 2000–2016. To calculate 

contributions to sea-level rise, we used a global ocean surface area of 361.9 × 106 km2 (Figure 

S3.4G). 

    To estimate the total ice mass present in our region of study, we used ice thickness estimates 

from Kraaijenbrink et al. (2017), who used the Glacier bed Topography version 2 model to invert 

for ice thickness (Frey et al., 2014) with input from the SRTM DEM (acquired in February of 

2000). The ice thickness estimates from (Kraaijenbrink et al., 2017) did not include glaciers 

smaller than 0.4 km2, and to estimate the additional mass contribution from these smallest 

glaciers (along with any other glaciers that are missing thickness estimates), we fit a second-

order polynomial to the logarithm of glacier volumes versus the logarithm of glacier areas and 

evaluated this fit equation for any glaciers without volume data (Figure S3.6). We then converted 

glacier volume to mass using a density value of 850 kg m−3. Over our region of study, the ice 

volumes from the thickness data amounted to 649 Gt, with an additional contribution of 35 Gt 

from the fitting procedure, for a total of 684 Gt. 
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3.6.6 Uncertainty assessment 

We quantified statistical uncertainty for individual glaciers using an iterative random sampling 

approach. For a given glacier, the SD of elevation changes from the surrounding stable terrain 

(σz) was first calculated. For any missing thickness change pixels within the glacier polygon, we 

also included an extrapolation uncertainty σe. This accounts for additional error in regions with 

incomplete data, i.e., those glacier regions filled by extrapolating thickness changes from 

surrounding glaciers, or linear interpolation assuming zero change at the headwall, as described 

in the previous section. We found that in the Himalaya-wide altitudinal distributions, the 

maximum SD of thickness change in any 50-m elevation bin above 5000 m is 0.56 m year−1. 

Nearly all regions with incomplete data coverage are above this elevation, resulting from poor 

radiometric contrast for snow-covered glacier accumulation zones. We thus conservatively set σe 

equal to 0.6 m year−1. We then combined both sources of error to get σp for every individual 

thickness change pixel: 

 𝜎𝜎𝑝𝑝 = �𝜎𝜎𝑧𝑧2 + 𝜎𝜎𝑒𝑒2 (3.1) 
 

To account for spatial autocorrelation, we started with a normally distributed random error field 

(with a mean of 0 and an SD of 1) the same size as the thickness change map and then filtered it 

using an n-by-n moving window average to add spatial correlation, where n is defined as the 

spatial correlation range divided by the spatial resolution of the thickness change map. We used 

500 m for the spatial correlation range, which is a conservative value based on semivariogram 

analysis in mountainous regions from previous studies (Brun et al., 2017; Maurer et al., 2016; 

Rolstad et al., 2009). The resulting artificial error field En (now with spatial correlation) is scaled 

by the σp values and added to the thickness change map ΔH as follows, where (x, y) are pixel 

coordinates: 
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 𝛥𝛥𝐻𝐻𝐸𝐸(𝑥𝑥,𝑦𝑦) = 𝛥𝛥𝐻𝐻(𝑥𝑥, 𝑦𝑦) + 𝐸𝐸𝑛𝑛(𝑥𝑥,𝑦𝑦) ⋅
𝜎𝜎𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝜎𝜎𝑛𝑛

 (3.2) 

 

If thickness change data exist at a given pixel location (x, y) on the glacier, σn is the SD of the set 

of all En values where data exist (i.e., where σe is equal to zero). Conversely, if thickness change 

data do not exist at a given pixel location (x, y) on the glacier, σn is the SD of the set of all En 

values where data do not exist (i.e., where σe is equal to 0.6 m year−1). In this way, the second 

term of Eq. (3.2) assigns larger uncertainties to regions with incomplete data. Last, all glacier 

thickness change pixels in ΔHE were summed together to compute a volume change with the 

introduced error. This procedure was repeated for 100 iterations, and the volume change 

uncertainty σΔV was computed as the SD of the resulting distribution (Figure S3.4). For region-

wide volume change estimates, we conservatively assumed total correlation between glaciers and 

computed region-wide uncertainty as follows, where g is the total number of glaciers (~17,400) 

 𝜎𝜎𝛥𝛥𝛥𝛥 𝑒𝑒𝑒𝑒𝑟𝑟𝑖𝑖𝑣𝑣𝑛𝑛 = �𝜎𝜎𝛥𝛥𝛥𝛥

𝑟𝑟

1

 (3.3) 

 

For glaciers where thickness change data are not available, a measure of uncertainty is still 

required to factor into the final regional uncertainty estimate. For these glaciers, we estimated 

σΔV as (Rolstad et al., 2009): 

 𝜎𝜎𝛥𝛥𝛥𝛥 = �𝜎𝜎𝑧𝑧 𝑒𝑒𝑒𝑒𝑟𝑟𝑖𝑖𝑣𝑣𝑛𝑛2 ⋅
𝐴𝐴𝑐𝑐𝑣𝑣𝑒𝑒
5 ⋅ 𝐴𝐴

 (3.4) 

 

 𝐴𝐴𝑐𝑐𝑣𝑣𝑒𝑒 = 𝜋𝜋 ⋅ 𝐿𝐿2 (3.5) 
 

In this case, σz region is the region-wide SD of elevation change over stable terrain (0.42 m year−1) 

(Figure S3.7), Acor is the correlation area, L is the correlation range (500 m), and A is the glacier 
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area. Last, all σΔV and σΔV regjon estimates were combined with an area uncertainty (Paul et al., 

2013) of 10% and a density uncertainty (Huss, 2013) of 60 kg m−3 using standard uncorrelated 

error propagation. 

3.6.7 Sensitivity of region-wide glacier mass change estimates 

We further tested the sensitivity of our region-wide estimates to potential biases, including (i) the 

exclusion of small glaciers, (ii) incomplete data coverage for many glacier accumulation zones 

during 1975–2000, and (iii) void-filling technique. First, we note that our geodetic mass balance 

analysis only includes glaciers larger than 3 km2. This is because mass balance uncertainties 

increase with decreasing glacier size, and we find that uncertainties often exceed the magnitude 

of mass changes for glaciers smaller than ~3 km2. To test whether the neglected small glaciers 

appreciably affect the result, we also computed mass balances using all available glaciers (i.e., all 

glaciers with ≥33% data coverage, including those smaller than 3 km2). We find that including 

the full set of smaller glaciers changes the region-wide geodetic mass balance estimates by a 

maximum of 0.04 m w.e. year−1 (Figure S3.4G). Next, we note that the Hexagon DEMs in 

particular have poor data coverage over glacier accumulation zones (Figure S3.8 and Figure 

S3.9). However, the vast majority of thinning occurs in glacier ablation zones, and the amount of 

thinning decreases with elevation in a quasi-linear fashion, especially in mid- to upper regions of 

the glaciers where data gaps are most common. Thus, we hypothesize that we can extrapolate 

and interpolate with reasonable confidence over accumulation areas. To test the robustness of 

this assumption, we used the 2000–2016 glacier change data. The ASTER data over this interval 

have superior radiometric contrast and adequately capture elevation change trends for most 

accumulation zones. We first set all 2000–2016 thickness change pixels to be empty where the 

1975–2000 data are missing to simulate the same data gaps over accumulation zones as in the 
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1975–2000 data. We then performed the same geodetic mass balance calculations and found that 

the region-wide geodetic mass balance only changes by 0.01 m w.e. year−1 (Figure S3.4G, 

comparing test 3 to test 1). Last, we performed two separate void-filling methods for all tests (see 

the “Mass changes” section for descriptions of void-filling methods) and observed a maximum 

change in geodetic mass balance of 0.04 m w.e. year−1. Overall, the relatively small impact of 

each test suggests that our results are robust to the exclusion of small glaciers, incomplete data 

coverage over glacier accumulation zones, and void-filling technique. 
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3.8 Supplementary Materials 

3.8.1 Approximation of required temperature change 

We calculate the energy required to melt the observed mass losses during 1975-2000 and 2000-

2016, and approximate the atmospheric temperature change needed to supply this extra energy 

via longwave (LW) radiation to the glaciers using a simple energy balance approach. We assume 

that precipitation has remained constant, surface albedo feedbacks are small, and that energy 

supplied via increasing LW radiation is the dominant component in the energy balance (Ohmura, 
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2001) (i.e. shortwave solar radiation remains steady through time, and turbulent and latent heat 

fluxes are small compared to the radiative balance terms) (Rupper and Roe, 2008). 

    We start with our observed Himalayas-wide geodetic mass balances ( G ) in m w.e. yr-1 during 

1975-2000 and 2000-2016, and multiply by the density of water ( wρ ) and the corresponding 

period of mass change ( masst ) to calculate the total mass loss per unit area ( M ) during each 

interval (25 or 16 years, respectively): 

 𝑀𝑀 = 𝐺𝐺𝜌𝜌𝑤𝑤𝑡𝑡𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚 (3.6) 
 

We then divide by the latent heat of fusion ( fL ), and the estimated total time that melt occurs 

over the period of mass change ( meltt ) to calculate the imbalance of energy per unit time ( R∆ ), 

which we assume is supplied via changes in LW radiation (W m-2): 

 𝛥𝛥𝛥𝛥 =
𝑀𝑀

𝐿𝐿𝑓𝑓𝑡𝑡𝑚𝑚𝑒𝑒𝑣𝑣𝑝𝑝
 (3.7) 

 

Next we define the temperature change per unit change in LW radiation, which comes from the 

derivative of the Stefan-Boltzmann law: 

 𝜆𝜆 =
𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥

=
1

4𝜎𝜎𝜎𝜎𝛥𝛥𝑒𝑒3
 (3.8) 

 

where σ is the Stefan-Boltzmann constant, ε  is the emissivity of the atmosphere, and aT  is the 

atmospheric temperature at the time the perturbation to the system is applied (i.e. the temperature 

of the reference state). We also take surface albedo feedbacks into consideration, as these 

feedbacks are a significant source of increasing ice loss via melting for a given change in 

temperature on alpine glaciers.  We use a value of 50% to calculate the feedback factor ( λ1c ), 

which is proportional to the fraction of a system output fed back into the input (Roe, 2009). 
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Including the feedback factor, we estimate temperature change per unit change in LW radiation 

as: 

 𝛥𝛥𝛥𝛥 =
𝜆𝜆 ⋅ 𝛥𝛥𝛥𝛥

1 − 𝑐𝑐1𝜆𝜆
 (3.9) 

 

Note that in Equation (3.9) above, λ  is the reference-system sensitivity parameter defined in 

Equation (3.8), and remains unchanged by inclusion of the feedback (Roe, 2009). 

    The climate variables ( meltt , ε , and aT ) are derived from the ERA-Interim product (Dee et al., 

2011). ERA-Interim is a global atmospheric reanalysis from 1979 to present, which uses a data 

assimilation system to forecast a full range of climate variables. We calculate the reference 

temperature ( aT ) over the average period of melt (May 1-August 31 of each year) during 1979-

1985 (overlapping with the start of the satellite observation period) at the average elevation of 

the assumed area of melt (e.g. the lowest half of the glacierized area). Temperature lapse rates (

Γ ) are calculated at each grid point within ERA-Interim corresponding to a glacier, by fitting 

linear trends to atmospheric temperatures at each pressure level from the surface up to the 200 

hPa geopotential height. Γ is calculated for the climatology of each month, and the mean lapse 

rate over the period of melt is then used. The average duration of melt ( meltt ) is calculated at the 

average elevation of the melt area using average daily temperatures. Emissivity of the 

atmosphere (ε ) was derived from the temperature and downwelling longwave radiation at the 

surface, averaged over the glacierized area and the period of melt.  The average area of melt was 

assumed to range between the full glacierized area to one quarter of the glacierized area. These 

areas likely represent extreme end-members of possible areas of melt. However, as the assumed 

area of melt increases, the average number of days over which melt occurs decreases 

accordingly.  We note that there are significant uncertainties associated with input data from 
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ERA-Interim, scaling of temperatures from coarse reanalysis grids to specific glacier elevations, 

and the averaging of climate data over the glacierized region. As practical quantification of these 

uncertainties, we use the standard deviations of all inputs across the glacierized region to 

estimate of the range in possible input values.  

3.8.2 Temperature trends 

We first summarize several studies which compile temperature records across large regions in 

HMA and South Asia (Figure 3.5A), and also highlight meteorological data from key high 

elevation weather stations in the Himalayas (Figure 3.5B), including two temperature records 

from individual stations located in close proximity to benchmark glaciers in the western 

Himalaya (Chhota Shigri glacier) and in the Everest region (Dingri station).  The longest analysis 

from Ren et al. (2017) is based on the quality-controlled and homogenized climate datasets 

LSAT-V1.1 and CGP1.0 recently developed by the China Meteorological Administration 

(CMA), using approximately 94 meteorological stations located throughout the Hindu Kush 

Himalayan region. The study finds a significant increasing trend in mean air temperature of 

0.104 °C/decade during 1901-2014.  Xu et al. (2017) present results derived from a similar CMA 

dataset (81 stations), but more focused in the eastern Tibetan Plateau.  They calculate an area-

weighted warming rate of 0.35 °C/decade during 1961-2015, with winter temperatures having 

the highest rates of warming, followed by autumn, spring, and summer (0.44, 0.38, 0.30, and 

0.30 °C/decade, respectively). Kattel et al. (2013) utilize three decades of temperature data from 

13 mountain stations located on the southern slopes of the central Himalayas to determine that 

the thermal regime likely shifted in the mid-1990's, and observe a dramatic increase in mean 

annual average and maximum temperatures after 1997.  Dimri et al. (2017) analyze trends in 

winter temperature (Dec-Feb) during 1985-2007 at three glacierized regions in the western 
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Himalayas; for a station near the Chhota Shigri glacier terminus (within our region of study), 

they calculate a positive trend of 0.6 °C/decade. Yang et al. (2011) present air temperature 

records in the Everest region, including a multi-decade record from Dingri meteorological 

station, and calculate an increase of 0.62 °C/decade in mean annual temperature during 1959-

2007, with a moderate warming trend in the mid-1980's and an accelerated warming trend after 

1998. Another study by Shekhar et al. (2010) includes an analysis of temperature data from three 

stations in the western Himalayas (Kanzalwan, Drass, and Patseo stations). They calculate 

increases of 1.1 °C and 0.5 °C/decade in maximum and minimum annual temperatures, 

respectively, during Nov-Apr of 1988-2007.  Yan and Liu (2014) analyzed temperatures during 

1961-2012 from 16 weather stations above 4000 m in the Tibetan Plateau and eastern Himalaya, 

and found the annual mean temperature increased by 0.24 °C/decade during 1961-2000, and 0.5 

°C/decade during 2001-2012.  A common pattern appears when these temperature records are 

plotted together (Figure 3.5).  Quasi-steady mean annual air temperatures are evident during the 

1960-80’s, with a clear warming trend beginning in the mid -1990's and continuing into the 

2000’s. This is true for both the regional HMA temperature compilations and high elevation 

station data located near Himalayan glaciers. In turn, our observations of more rapid ice loss 

across the Himalayas during 2000-2016 (relative to the 1975-2000 interval) correlate with the 

consistently warmer air temperatures during the 21st century. 

3.8.3 Precipitation trends 

Summer precipitation largely exceeds winter precipitation in the Himalayas, due to moisture 

advected northward from the Indian Ocean by the summer monsoon in late June through 

September (Palazzi et al., 2013). As a result of the monsoon, most Himalayan glaciers 

accumulate the majority of their snow during summer months (Ageta and Higuchi, 1984).  In situ 
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and satellite precipitation rate estimates face major challenges over the Himalayan range, due to 

the topographic complexity of the region, sparsity of high elevation weather stations, coarse 

resolution of gridded datasets, and difficulties in detecting the snow component of precipitation 

from satellite assessments.  Large precipitation gradients over short horizontal distances are 

common due to the extreme topography, and overall spatial heterogeneity of precipitation in the 

region is high (Immerzeel et al., 2014b).  Palazzi et al. (2013) analyzed mountain precipitation 

trends using several satellite, reanalysis, and gridded rain gauge datasets, and found averaged 

precipitation data over the Himalayas resulted in slightly negative summer daily precipitation 

trends for two of the longest observational datasets, specifically -0.01 mm yr-1 (APHRODITE) 

and -0.02 mm yr-1 (GPCC) over a 60 year interval; though the authors note difficulties with 

coarse resolution of the datasets, and inhomogeneities in the spatial and altitudinal distribution of 

the measuring sites.  On the other hand, Shrestha et al. (2000) analyzed precipitation records 

from 78 stations distributed across Nepal during 1959-1994, and found significant variability on 

annual and decadal timescales, yet no distinct long-term trends in precipitation.  Spectral analysis 

of some speleothem δ18O and instrumental records indicate nonstationary 30-60 year 

periodicities in monsoon strength (Bhutiyani et al., 2010; Sinha et al., 2015), a weakening of El 

Niño–Southern Oscillation (ENSO) teleconnections since the 1960’s (Krishnamurthy and 

Goswami, 2000), and a slight decreasing trend in monsoon precipitation over India during the 

last 50 years, possibly due to anthropogenic aerosol loading (Bollasina et al., 2011).  However, 

an extreme decrease in precipitation across the entire Himalayan range would be needed to 

explain the magnitude, acceleration, and spatial consistency of glacier changes we observe. 

Rupper et al. (2012) estimate that Bhutanese glaciers would require a precipitation decrease on 

the order of 500 mm to raise the ELA (equilibrium line altitude) by the same amount as would 
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occur from a 1 °C increase in air temperature, although the mass balance value of -1.4 m w.e. yr-1 

from that study appears to be too negative compared to recent remote sensing estimates. In 

general, energy and mass balance models indicate monsoon-dominated glaciers with high 

accumulation rates are much more sensitive to temperature than accumulation changes (Naito et 

al., 2001; Oerlemans and Fortuin, 1992; Rupper and Roe, 2008; Shea and Immerzeel, 2016), and 

a large widespread decrease in precipitation has not been observed across the Himalayas during 

the last four decades. 

3.8.4 Detailed comparison with prior studies in the Himalayas 

We compare our results with mass balances reported by previous remote sensing studies in the 

Himalayas, in order to evaluate similarities and differences between them. Many factors may 

contribute to the variation of results between studies, including different spatial resolutions of 

imagery, DEM alignment techniques, interpolation methods, definitions of glacier boundaries, 

spatial and temporal coverage, and ice/firn density assumptions. Yet we find that in general, 

estimates overlap within uncertainties.  In the eastern Himalayas, Maurer et al. (2015) calculated 

-0.17 ± 0.05 m w.e. yr-1 during 1974-2006, which was a conservative estimate because data gaps 

were filled assuming zero elevation change for regions of no data. Using additional Hexagon 

imagery and the improved methodology in this study, we now estimate a geodetic mass balance 

of -0.21 ± 0.08 m w.e. yr-1 for this same region during 1975-2000. Zhou et al. (2018) recently 

used declassified Hexagon imagery and SRTM data to estimate mass balances in various regions 

of HMA during 1975-2000. Their work encompasses several areas which our survey does not 

include, for example parts of the Karakoram, Kunlun Shan, and the Tibetan Plateau. In the 

Himalayas, our presented analysis provides a comparatively greater extent of measured glaciers 

(total area of 6100 km2, compared to 2271 km2), which is more representative of the region as a 
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whole. We find that restricting our results to more limited regions covered by Zhou et al. yields 

similar values, with the greatest differences in the Spiti Lahaul and West Nepal regions but still 

overlapping within uncertainties (Table S3.1A). In Spiti Lahaul, we estimate an average mass 

balance less negative than reported by Vijay and Braun (2016) during 2000-2012, and more 

negative than reported by Mukherjee et al. (2017) during 1971-1999 and 2000-2013 (Table 

S3.1D). 

    We also compare our 1975-2000 glacier change data to previous landmark studies at the 

individual glacier level in both the Everest (Bolch et al., 2011) and the Langtang Himal 

(Pellicciotti et al., 2015; Ragettli et al., 2016) regions.  In the Everest region, Bolch et al. (2011) 

used declassified Corona imagery and ASTER to estimate mass changes during 1970-2007 and 

2002-2007. After adjusting our mass changes for the 1970-2007 timespan (see footnote in Table 

S3.1) we find relatively good agreement during this interval, with most glacier mass change 

estimates overlapping within uncertainties. On the other hand, our average value of -0.48 ± 0.03 

m w.e. yr-1 (here ± is the standard error of the weighted mean of six glaciers) during 2000-2016 

is significantly different from the Bolch et al. estimate of -0.73 ± 0.24 m w.e. yr-1 during 2002-

2007. However this may be explained by the larger error bars resulting from their shorter 

timespan (2002-2007), and more recent studies are in agreement with our value for the Khumbu 

region (Gardelle et al., 2013; Nuimura et al., 2012). In the Langtang Himal, we compare our 

results for three separate glaciers with two prior analyses (Pellicciotti et al., 2015; Ragettli et al., 

2016) (Table S3.1F). While estimates vary significantly for individual glaciers, area-weighted 

mean values are similar across all three studies (-0.28 ± 0.12 m w.e. yr-1 during 1974-1999, -0.24 

± 0.06 m w.e. yr-1 during 1974-2006, and -0.25 ± 0.04 m w.e. yr-1 during 1975-2000). For the 

more recent interval, the weighted mean from the Ragettli et al. (2016) data during 2006-2015 is 
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-0.45 ± 0.09 m w.e. yr-1, which is comparable to our estimate of -0.58 ± 0.04 m w.e. yr-1 during 

2000-2016. 

    For the 2000-2016 interval we compare our results to prior remote sensing estimates over the 

Spiti Lahaul, West Nepal, East Nepal, and Bhutan regions (Table S3.1C).  These combined 

regions approximately match our study area, and include mass balances of -0.35 ± 0.08 m w.e. 

yr-1 from SRTM/SPOT5 during 1999-2011 (Gardelle et al., 2013), -0.42 ± 0.12 m w.e. yr-1 from 

ICESat during 2003-2008 (Kääb et al., 2015), and -0.36 ± 0.07 m w.e. yr-1 from ASTER during 

2000-2016 (Brun et al., 2017).  Our Himalayas-wide estimate of -0.43 ± 0.14 m w.e. yr-1 during 

2000-2016 is consistent with these prior estimates.  Compared to the values reported by Brun et 

al. (2017), our ASTER processing methodology yields more negative mass balances, but still 

overlapping within uncertainties. However, we multiply our mass balances by the smaller total 

glacierized area from our manually refined RGI inventory, while Brun et al. use the larger 

GAMDAM glacier inventory. Thus, both estimates arrive at similar region-wide ice mass 

changes of -7.5 ± 2.3 Gt yr-1 and -7.1 ± 1.4 Gt yr-1 using the same ASTER data. 

    Based on our manually edited glacier polygons for 1975 and 2016 (Materials and Methods), 

we find that the total area of the 650 largest glaciers decreased by approximately 5% over the 40-

year interval (0.13% per year). As expected this area change rate is smaller than reported by 

previous studies (Bajracharya et al., 2014; Bolch et al., 2012; Ojha et al., 2016; Racoviteanu et 

al., 2014). This may be explained by the omission of small glaciers in our dataset which tend to 

have the largest % changes in area (Ojha et al., 2016; Racoviteanu et al., 2014), and also because 

our manually edited polygons focus on capturing frontal variations of the large glaciers, rather 

than other factors such as decreasing snow cover. This supports the use of geodetic mass balance 

as the metric of ice loss for our purposes, rather than glacier area or length changes. 
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3.8.5 Supplementary Figures and Tables 
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Figure S3.1. Comparison of Himalayan temperature trends and regional mass balance with benchmark 
mid-latitude glaciers and a global average trend. (A) Five-year moving means of air temperature 
anomalies in the Himalayas and HMA (from Figure 3.5) and the Swiss Alps above 1000 m elevation 
(Begert and Frei, 2018) relative to the 1960-1975 mean. (B) Cumulative sum of air temperature anomalies 
in A. (C) Cumulative mass balances. Thick grey line is the WGMS global average from 30 reference 
glaciers with long-term glaciological measurements (Zemp et al., 2017). Yellow line is the WGMS area-
weighted average of glaciers located in the Alps. Corresponding yellow square symbols (c,d) are geodetic 
estimates from the Alps, assuming cumulative mass balances of zero in 1980 and 1985, respectively 
(Fischer et al., 2015; Paul and Haeberli, 2008), and blue square symbols (a,b) are geodetic estimates from 
this study, assuming a cumulative mass balance of zero in 1975. (D) Average mass balances (m w.e. yr-1) 
for each region during 1975-2000 and 2000-2016.  

 

Figure S3.2. Coverage of glacierized area in the Himalayas.  (A) Footprints of KH-9 Hexagon images 
used in this study.  Box colors indicate acquisition dates, and black dots are locations of glaciers used in 
this study.  The small red box shows location of the inset, which is an oblique view of a Hexagon image 
acquired in 1975 on the Nepal-Sikkim border. (B) Coverage of glacierized area in the Himalayas during 
each respective interval. For the 1975-2000 interval the average individual glacier data coverage is 63% 
(min = 34%, max = 95%), and for 2000-2016 the average is 82% (min = 36%, max = 96%) for the 650 
glaciers common to both intervals. 
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 Figure S3.3. Trend fit examples for two large glaciers using ASTER DEMs during 2000-2016, 
histograms of ASTER pixel counts and timespans per stack (glacier averages), and outlier thresholds. (A) 
Thickness change map (m yr-1) for the Bara Shigri glacier (western Himalaya). Labels 1-5 correspond to 
plots on the right. (B) Corresponding RANSAC linear fits for individual pixels. Blue dots represent inlier 
elevations, dotted red lines represent the ±15 m outlier threshold, and red ‘x’ symbols are outliers detected 
and excluded by the RANSAC algorithm. (C, D) same, except for the Ngozumpa glacier (eastern 
Himalaya).  (E) This gives a sense of the number of ASTER DEMs used per glacier during the RANSAC 
trend fitting procedure for all glaciers in our region of study.  Computed by counting the number of 
elevation pixels in each pixel stack (after RANSAC exclusion), then taking the average over all pixel 
stacks for a given glacier.  The average number of ASTER elevation pixels used (per glacier) is 20.5.  (F) 
Similar to E, but gives a sense of the timespan of ASTER data for each glacier. (G) Outlier thresholds for 
computing trends.  
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Figure S3.4.  Illustration of uncertainty estimation procedure for a single iteration/glacier, and Himalaya-
wide sensitivity tests. (A) All raster DEMs are allowed a 25% extended border around each glacier, in 
order to provide sufficient stable terrain for uncertainty analysis. The 25% refers to the width and height 
of the glacier bounding box. The Bara Shigri glacier during 1975-2000 is used as an example. (B) Ice 
thickness change map in m yr-1, note missing data in high elevation accumulation zones. (C) Random 
error field with a mean of zero and standard deviation of one. (D) Random error field after filtering and 
scaling [see second term in Equation (3.2)] using an autocorrelation range of 500 m.  This random error 
field now has spatial autocorrelation, with greater amplitude of noise over incomplete data regions (see 
panel b).  (E) Ice thickness change map + filtered and scaled random noise field. This is 𝛥𝛥𝐻𝐻𝐸𝐸 in Equation 
(3.2). (F) Resulting distribution of volume change estimates for the glacier after 100 iterations, using a 
different random error field each time. The standard deviation of this distribution is used for the glacier’s 
1-sigma uncertainty estimate 𝜎𝜎𝛥𝛥𝛥𝛥. (G) Sensitivity tests for Himalaya-wide estimates to potential biases, 
including the exclusion of small glaciers, incomplete data coverage for many glacier accumulation zones 
during 1975-2000, and void-filling technique (Materials and Methods). 
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Figure S3.5. Geodetic mass balances during 1975-2000 and 2000-2016 plotted against various 
parameters. Circle sizes are proportional to glacier areas, and colors delineate clean-ice (blue), debris-
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covered (black), and lake-terminating (red) categories. Yellow trends are the (area-weighted) moving-
window mean, using a window size of 30 glaciers. Note that in this figure only, we include all glaciers 
available during the 2000-2016 interval, instead of only including glaciers with data available during both 
intervals as in most other portions of the study.  

 

Figure S3.6. Log-log plot of glacier volumes versus areas, used to estimate the total ice mass present in 
our region of study. Grey points are glaciers from Kraaijenbrink et al. which amount to a total of 763 km3 
(15), and blue points are glaciers which were missing ice thickness estimates, thus ice volumes were 
estimated using a 2nd order polynomial fit, contributing an additional 41 km3. 
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Figure S3.7. Analysis of elevation change for non-glacier pixels (stable terrain) during both intervals. (A) 
Elevation change histograms. The mean, median, standard deviation, and inter-quartile range of 
distributions are also given. (B) Density plots of elevation change along the longitudinal transect during 
1975-2016, separated into non-glacier (stable terrain) and glacier pixels. Colors indicate pixel counts at 
the given longitude and the y-axis represents elevation change (m yr-1). White lines are the mean trend fit 
using a smoothing spline. (C) Same, but for the 2000-2016 interval. 
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Figure S3.8. Thickness change maps used in the analysis. Thickness changes (m yr-1) are shown for three 
regions of the Himalayas for both 1975-2000 and 2000-2016 intervals. Glaciers used in the analysis are 
outlined in black, all other glaciers are outlined in blue. Note that the 2000-2016 data coverage is 
generally more comprehensive, and 1975-2000 data is particularly sparse in the Spiti Lahaul region (top 
panels). 
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Figure S3.9. Thickness change maps for the three remaining Himalayan regions.  
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Table S3.1. Geodetic mass balance comparisons with prior studies. For each comparison, we restrict our 
data to roughly the same general regions defined by each corresponding study. (A-D) Comparisons of 
regional averages. (E, F) Comparisons of individual glaciers in the Everest and Langtang Himal regions, 
respectively. Means (weighted by glacierized areas) are given in the last row of each table. 
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: Glacier retreat through the Younger Dryas in the European 

Alps and climatic implications 

The Late Glacial (LG) period (15-11 ka) was a dramatic interval of natural climate variability. 

Moraine chronologies around the globe preserve a record of glacier advances and stabilizations 

superimposed on a general pattern of recession, yet precise magnitude, timing, and climate 

drivers remain somewhat controversial. Here we present a high-precision 10Be chronology and 

geomorphic map from a sequence of well-preserved LG moraines in the Nendaz valley of the 

western European Alps, with the goal to shed light on the timing and magnitude of glacier 

responses in this region. Moraine boulders from the lower valley yield ages ranging from 13.3 ka 

to 12.7 ka corresponding to the early Younger Dryas, while boulders from the middle valley 

yield ages ranging from 12.1 to 11.4 ka corresponding to the late Younger Dryas. In an adjacent 

higher elevation tributary valley, boulders from an independent early Holocene terminal moraine 

and associated recessional moraine date to approximately 11.0 ka and 10.6 ka, respectively. 

These results bracket a coherent glacier recession through the Younger Dryas stadial similar to 

glacier records from the southern hemisphere and a new chronology from Arctic Norway, and 

provide insight into the relative influences of global radiative forcing versus abrupt AMOC-

induced climate events on summer temperatures and mid-latitude mountain glaciers. 

4.1 Introduction 

The study of glacial geomorphology in the European Alps has provided valuable insights into 

patterns of Quaternary glaciation in the Northern Hemisphere (Braumann et al., in review; Ivy-

Ochs, 2015; Krüger, 2013; Penck and Brückner, 1909; Protin et al., 2019; Schimmelpfennig et 

al., 2012). Modern advances toward high sensitivity 10Be surface exposure dating (SED) are 

progressing many traditional views about the timing, magnitude, and spatial patterns of glacier 
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responses to climate change in the past, and are providing a new framework for detailed 

investigation of paleoclimate drivers of glacier change. Particularly from the Last Glacial 

Maximum (LGM) (23-18 ka) to the current Holocene interglacial (the past 11.6 ky) these studies 

are opening new windows for viewing glacier configurations during a dramatic interval of 

natural climate variability. 

    Paleoclimate records show the transition from peak cold of the LGM to the ongoing warm 

Holocene was interrupted by an interval of cooling known the Late Glacial (LG) period (15–11 

ka). In the Southern Hemisphere for example, the Antarctic Cold Reversal (ACR) (14.5–13 ka) 

triggered advances of southern mid-latitude glaciers (García et al., 2012; Putnam et al., 2010; 

Sagredo et al., 2018). Prominent cold intervals also occurred in Northern Hemisphere during the 

LGM to Holocene transition, such as the Oldest Dryas (18.0–14.7 ka), Older Dryas (14.1 ka) and 

Younger Dryas (YD) (12.9 –11.6 ka) during which δ18O (water isotope) records from Greenland 

ice cores (North Greenland Ice Core Project members, 2004; Rasmussen et al., 2014) and other 

paleoclimate proxies (Heiri et al., 2014; Moreno et al., 2014) show excursions to cooler 

conditions. These abrupt cooling events have been linked to the slowdown of the Atlantic 

Meridional Overturning Circulation (AMOC) (McManus et al., 2004), superimposed on a 

general warming trend with increasing atmospheric greenhouse gas (GHG) concentrations (Clark 

et al., 2012; Shakun et al., 2012). Characterized by enhanced seasonality, numerous lines of 

evidence now suggest the colder temperatures during AMOC reduction primarily occurred 

during winter (Buizert et al., 2014; Buizert et al., 2018; Denton et al., 2005; Kelly et al., 2008) 

with summers remaining relatively warm (Schenk et al., 2018). As glaciers undergo the majority 

of melt during summer months, the relative influences of AMOC versus global GHG forcings on 

glacier mass balances during the LG are somewhat unclear. Significant uncertainties remain 
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regarding the precise timing of LG glacier fluctuations in the northern hemisphere, particularly in 

relation to these AMOC-triggered cooling events. Several recent studies are not entirely in tune 

with the view that glacier advances in the northern hemisphere were a direct response to YD 

cooling. Results from Greenland, the Scottish Isles, and Alaska suggest that glaciers attained 

their largest LG extent prior to or in the very early YD, with subsequent retreat through the YD 

(Bromley et al., 2018; Levy et al., 2016; Young et al., 2019). Following this line of reasoning, 

it’s possible that glaciers in these regions were more strongly influenced by global radiative 

forcing rather than the winter-biased AMOC signal as previously thought. 

    In the European Alps, moraines have been traditionally grouped into a number of different 

stages based on their physical characteristics, morphostratigraphic positions, and estimated ELA 

depressions (Ivy-Ochs, 2015). Modern SED studies have shown that most moraine ages tend to 

cluster around two of these stages, locally known as the Gschnitz and the Egesen (Reitner et al., 

2016). Moraines associated with the Gschnitz stage have been dated to approximately 17–16 ka, 

concomitant with Greenland Stadial 2 and Heinrich Event 1 within the Oldest Dryas (Boxleitner 

et al., 2019; Ivy‐Ochs et al., 2006). Moraines associated with the Egesen stage have usually been 

attributed to the Younger Dryas (Boxleitner et al., 2019; Federici et al., 2008; Ivy-Ochs et al., 

1996; Kelly et al., 2004; Protin et al., 2019), and the textbook paradigm that large moraines 

complexes across the Alps were formed as a result of YD cooling has become a mainstream 

view. Yet given the modern understand of AMOC seasonality and recent findings of glacier 

moraines dated to pre or early-YD in other locations, a detailed look at LG moraines and retreat 

patterns in the Alps may offer a deeper insight into this problem. Here we present a high-

precision 10Be chronology and geomorphic map from a sequence of LG moraines in the western 

Alps, with the goal to shed light on the timing and magnitude of glacier responses in this region. 
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We focus on a moraine complex located in the Tortin area of the Nendaz valley, Valais region, in 

the western Swiss Alps. This well-resolved sequence preserves fine structure of LG and early 

Holocene glacier fluctuations, and provides an experiment that offers new insights into glacier-

climate coupling. In turn, we compile previously published SED ages in the Alps to place the 

Nendaz valley results within a broader geographical context, and analyze characteristics of these 

Alpine glacier chronologies relative to cold pulses observed in other paleoclimate proxies. 

4.2 Setting and methods 

4.2.1 Study area 

Our study area is located in a typical Alpine valley in the Pennine Alps, in the municipality of 

Nendaz, Valais, Switzerland. The Nendaz valley has a S-N orientation (perpendicular to the main 

mountain chain) descending into the Rhône Valley. The LG moraine complex is situated below 

the peaks of Mont Gelé (3023 m), Mont Fort (3328 m), Bec des Etagnes (3231 m) and 

Rosablanche (3335 m), and the area is a popular tourist destination for hiking in summer and 

skiing in winter. These mountain peaks are surrounded by several cirque glaciers including the 

Tortin, Mont Fort, Petit Mont Fort, Etagnes, and Grand Désert. Our target moraines are located 

in the middle-upper section of the Nendaz valley, near Tortin and Siviez. The region lies in a 

climatic transition zone with competing influence from the Mediterranean, Continental, Atlantic, 

and Polar climatological regimes (Beniston, 2005; Sturman and Wanner, 2001). In winter the 

Alps are influenced by the Icelandic Low and related westerly airflows, interrupted by 

anticyclonic blocking due to the influence of the Azores High and cold Siberian High. In summer 

the Azores High extends northeastward and interacts with continental low pressure systems over 

the region (Sturman and Wanner, 2001). Over decadal timescales, the climate in the Alps is 

influence by the North Atlantic Oscillation (NAO), which is a large-scale alternation of 
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atmospheric pressure fields between the Icelandic Low and the Azores High. The latitudinal 

temperature and pressure gradients associated with the NAO strongly influence storm track 

positions, precipitation, and temperature patterns in the Alps, particularly during winter months 

(Beniston, 2005). Generally a positive phase of the NAO results in anomalously low 

precipitation and higher than average temperatures from late fall to early spring (Casty et al., 

2005), while a negative phase of the NAO results in inundation by cold continental air masses 

from the north and frigid winters in the Alps (Sturman and Wanner, 2001). Tectonically, this 

region is composed of the Pennenic (Siviez-Mischabel and Mont Fort) nappes, which are large 

thrust sheets with recumbent folds formed during continental collision between the Adriatic and 

Eurasian plates in Cenozoic times (Scheiber et al., 2013). Greenish grey to dark green schists 

comprise the morainic material (including sampled boulders) in the Nendaz valley, with the 

Métailler formation being the most likely provenance (Sartori et al., 2006). These foliated rocks 

have a greenschist metamorphic overprint (Scheiber et al., 2013), and are primarily composed of 

chlorite, amphiboles, albite, and muscovite, with veins and nodules of milky-white quartz 

common (Sartori et al., 2006). 

4.2.2 Field and laboratory methods 

Moraines were targeted using satellite imagery, aerial photos, and a high-resolution DEM 

provided by SwissTopo (Wiederkehr and Möri, 2013). Field mapping and sample collection 

were completed in June and August of 2016. We mapped the moraines based on 

morphostratigraphic positions, morphological character, continual extent of topographic relief, 

and cross-cutting relations. Large, well-embedded boulders in moraine ridge crests were sampled 

using a hammer and chisel on the boulder tops (Figure 4.1). Sampled boulder surfaces showed 

no evidence of recent post-depositional disturbance or surface erosion such as fresh-looking 
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surface breaks or lack of lichen cover, and precise boulder locations were measured using a 

handheld Trimble DGPS unit. Aerial imagery of the field area was aquired using a DJI Phantom 

quadcopter drone (Figure 4.2). Geochemical processing was performed at the Cosmogenic 

Nuclide Laboratory at LDEO following well-established standard protocols given in Schaefer et 

al. (2009), and AMS 10Be/9Be measurements were completed at the Purdue Rare Isotope 

Measurement (PRIME) Laboratory. Samples were measured relative to the 07KNSTD standard 

(10Be/9Be = 2.85e−12) (Nishiizumi et al., 2007). and corrected for 10Be using procedural blanks, 

which represent an average change of 0.5% in the 10Be concentrations. Analytical 1σ 

uncertainties ranged between 2 to 8% with an average of 3.9% (Table 4.1). Topographic 

shielding factors for cosmogenic rays were calculated using the open source code from 

TopoToolbox (Schwanghart and Kuhn, 2010). Exposure ages were calculated using the online 

exposure age calculator version 3, formerly known as the CRONUS-Earth online exposure age 

calculator (Balco et al., 2008) (http://hess.ess.washington.edu/). We used the production rate of 

Claude et al. (2014) from the independently dated Chironico landslide (southern Swiss Alps) and 

time-dependent Stone/Lal scaling scheme (Lm) (Borchers et al., 2016; Lal, 1991). For reference, 

we include ages based on the “St” scaling scheme (Lal, 1991) and compare with the default 

production ratio in the online exposure age calculator (Table 4.2). To place our results in a 

broader geographical context, we also compile a set of published LG and early Holocene 10Be 

glacier chronologies in the Alps with all ages recalculated using the same parameters in the 

exposure age calculator, with a specified SED threshold of 15 to 9 ka comprising 352 samples 

from 35 studies. 
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Figure 4.1. Representative boulders from areas sampled in the Nendaz valley field area. 
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Figure 4.2. Aerial images of the field area acquired using a quadcopter drone. Panel A is looking 
upvalley toward the Tortin glacier. See Figure 4.3 for locations of panels B through D on map. 

Table 4.1 Nendaz valley 10Be sample information. 

 

* Blank-corrected 

Sample ID Latitude 
(DD)

Longitude 
(DD)

Elevation 
(m)

Elevation 
Flag

Thickness 
(cm)

Density 
(g cm-3)

Shielding 
factor Erosion

10Be 
atoms*

10Be 
uncertainty

10Be 
standard

10Be blank 
correction

Qtz 
weight 

(g)

Carrier 
added (g)

10Be/9Be
10Be/9Be 

uncertainty

MTF-16-15 46.11259 7.29113 2310.4 std 2.75 2.7 0.969 0 259083 6327 07KNSTD 4970 10.5130 0.2022 1.956E-13 4.776E-15
MTF-16-54 46.13299 7.31343 1818.2 std 2.76 2.7 0.959 0 207812 5687 07KNSTD 4970 10.2577 0.2031 1.525E-13 4.173E-15
MTF-16-55 46.13270 7.31344 1818.9 std 2.16 2.7 0.958 0 215383 6066 07KNSTD 4970 10.1724 0.2034 1.565E-13 4.407E-15
MTF-16-68 46.11954 7.30508 2080.3 std 1.47 2.7 0.966 0 232152 6519 07KNSTD 4970 10.1026 0.2026 1.681E-13 4.722E-15
MTF-16-72 46.12539 7.31008 1900.9 std 0.87 2.7 0.961 0 199575 6742 07KNSTD 4970 10.0558 0.2037 1.432E-13 4.836E-15
MTF-16-73 46.12271 7.30979 1944.5 std 2.48 2.7 0.969 0 207115 7042 07KNSTD 4970 10.4164 0.2050 1.529E-13 5.198E-15
MTF-16-77 46.11290 7.29802 2236.1 std 0.96 2.7 0.970 0 244115 6995 07KNSTD 4970 10.0562 0.2037 1.750E-13 5.015E-15
MTF-16-05 46.10897 7.28853 2386.4 std 1.75 2.7 0.953 0 267386 6194 07KNSTD 1956 10.0436 0.2041 1.914E-13 4.434E-15
MTF-16-10 46.10916 7.29009 2366.7 std 3.75 2.7 0.963 0 251382 5452 07KNSTD 1956 10.1157 0.2045 1.809E-13 3.923E-15
MTF-16-16 46.11940 7.30572 2058.1 std 2.11 2.7 0.951 0 233729 5751 07KNSTD 1956 10.4578 0.2047 1.737E-13 4.274E-15
MTF-16-33 46.11206 7.30038 2180.5 std 2.59 2.7 0.953 0 250443 6357 07KNSTD 1956 8.8478 0.2042 1.579E-13 4.007E-15
MTF-16-36 46.11311 7.29814 2232.8 std 1.34 2.7 0.968 0 248742 6132 07KNSTD 1956 10.5630 0.2035 1.878E-13 4.631E-15
MTF-16-53 46.11151 7.29055 2314.8 std 2.22 2.7 0.961 0 288105 7072 07KNSTD 1956 10.1390 0.2035 2.088E-13 5.126E-15
MTF-16-11 46.11049 7.28919 2337.1 std 3.22 2.7 0.959 0 229683 10404 07KNSTD 13984 10.0799 0.1972 1.714E-13 7.762E-15
MTF-16-35 46.11311 7.29792 2236.0 std 2.07 2.7 0.974 0 230521 14630 07KNSTD 13984 10.18 0.2033 1.685E-13 1.069E-14
MTF-16-37 46.11272 7.29817 2237.8 std 2.65 2.7 0.961 0 252336 9950 07KNSTD 13984 10.0667 0.2009 1.844E-13 7.273E-15
MTF-16-39 46.11153 7.29737 2253.0 std 3.48 2.7 0.971 0 251165 11182 07KNSTD 13984 10.8029 0.2016 1.963E-13 8.738E-15
MTF-16-49 46.10799 7.28980 2374.6 std 1.42 2.7 0.951 0 245758 12949 07KNSTD 13984 10.1201 0.2004 1.811E-13 9.540E-15
MTF-16-50 46.10813 7.29002 2371.8 std 1.49 2.7 0.951 0 425079 24277 07KNSTD 13984 4.1757 0.1817 1.428E-13 8.158E-15
MTF-16-51 46.10843 7.28992 2367.8 std 2.97 2.7 0.954 0 248235 11037 07KNSTD 13984 10.052 0.2018 1.804E-13 8.021E-15
MTF-16-56 46.13193 7.31372 1819.4 std 0.64 2.7 0.961 0 223398 13775 07KNSTD 13984 4.8145 0.202 7.825E-14 4.825E-15
MTF-16-58 46.13144 7.31429 1809.8 std 1.58 2.7 0.959 0 192025 15067 07KNSTD 13984 3.5316 0.1825 5.502E-14 4.317E-15
MTF-16-75 46.13233 7.31335 1821.2 std 2.28 2.7 0.959 0 210689 10514 07KNSTD 13984 7.2096 0.2016 1.103E-13 5.505E-15
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4.3 Results 

4.3.1 Geomorphic map 

We first present a geomorphic map of the region to highlight key aspects of the glacial 

geomorphology (Figure 4.3). The Nendaz valley includes steep cliffs of exposed bedrock of the 

Col-de-Chassoure and Métailler formations, while valley floors are composed largely of 

undifferentiated glacial till and alluvial deposits. Higher sections along valley walls include 

remnants of LGM retreat such as kame terraces and associated ice contact margins. The target 

moraines are approximately 3 to 5 km downvalley from the existing Tortin glacier, where the 

eastern and western arms of the upper Nendaz valley converge. The most prominent moraines 

are a set of large, steep lateral ridges in Tortin, trending N-S parallel with the valley. The 

targeted left lateral moraine is around 1.75 km in length, with the crest extending from 1900 to 

2200 meters in elevation, and a vertical relief from the valley floor as high as 100 meters in its 

upper sections. Interior to the main lateral moraine ridges are two minor recessional lateral 

moraines. Located 0.5 to 1.5 km down-valley from the primary lateral ridges we find a series of 

older and less-prominent moraine ridges which have a more subdued appearance, typically with 

less than 10 meters of topographic relief. They appear to be lateral based on their orientation, 

although some individual ridges are aligned SW-NE and may represent a transition to terminal 

moraines. Boulders comprising these moraines have heavier lichen cover and appear more 

weathered compared to those from higher elevation landforms in the valley. To the west of the 

primary lateral ridges is smaller tributary valley where we mapped another moraine complex 

situated at 2200 to 2400 meters in elevation. This set contains a blocky terminal moraine with 

continuous transition to a left lateral moraine. Another smaller recessional moraine is located 700 

m inboard, and between these two moraines is hummocky terrain which may be due to past rock 
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glacier activity. To the northeast of this area along the valley wall are several additional rock 

glaciers. We note that the moraines in this higher elevation tributary valley are part of the same 

glacier complex, but were deposited independently from the older and larger Tortin moraines 

below. 

4.3.2 10Be surface exposure ages from the Nendaz valley 

A total of 23 10Be surface exposure ages were obtained in this study (Figure 4.3, Table 4.1, Table 

4.2) providing a chronology spanning from approximately the earliest YD into the early 

Holocene. In general the SED ages are in chronostratigraphic order within analytical 

uncertainties. In the lower part of the valley, four ages from the outermost moraine remnants 

range from 13.3 ka to 12.7 ka (mean=12.9 ka). In the middle portion of the valley (Tortin) an 

additional six sampled boulders yield relatively younger ages, ranging from 12.1 ka to 11.4 ka 

(mean=11.7 ka). These mid-valley samples included boulders from the large primary left lateral 

ridge. In the smaller tributary valley to the west of the primary lateral ridge, five large boulders 

sampled from the blocky terminal moraine yield ages ranging from 11.5 ka to 10.4 ka 

(mean=11.0 ka). Inboard of the blocky terminal moraine, boulders from the recessional moraine 

yielded the youngest ages ranging from 11.0 ka to 10.3 ka (mean=10.6 ka). An additional three 

boulders were sampled adjacent to a steep hillslope (also within the tributary valley) dating to 

12.3 ka, 11.2 ka, and 10.0 ka, respectively. The older 12.3 ka age is apparently inboard of the 

younger 11.2 ka age, although these three boulders may have undergone disturbance by adjacent 

rock glacier activity (Figure 4.3). 
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Table 4.2. Nendaz valley 10Be ages based on two commonly used scaling protocols, with 1σ 
analytical uncertainties. 

 

 

Sample ID
St age 
(ka)

1σ uncertainty 
(ka)

Lm age 
(ka)

1σ uncertainty 
(ka)

MTF-16-15 10.97 0.27 11.15 0.27
MTF-16-54 12.59 0.35 12.64 0.35
MTF-16-55 12.98 0.37 13.00 0.37
MTF-16-68 11.45 0.32 11.60 0.33
MTF-16-72 11.19 0.38 11.35 0.39
MTF-16-73 11.31 0.39 11.47 0.39
MTF-16-77 10.71 0.31 10.90 0.31
MTF-16-05 10.85 0.25 11.03 0.26
MTF-16-10 10.40 0.23 10.62 0.23
MTF-16-16 11.95 0.30 12.06 0.30
MTF-16-33 11.79 0.30 11.91 0.30
MTF-16-36 11.00 0.27 11.18 0.28
MTF-16-53 12.22 0.30 12.31 0.30
MTF-16-11 9.70 0.44 9.95 0.45
MTF-16-35 10.17 0.65 10.39 0.66
MTF-16-37 11.32 0.45 11.49 0.45
MTF-16-39 11.11 0.50 11.29 0.50
MTF-16-49 10.05 0.53 10.28 0.54
MTF-16-50 17.45 1.00 17.26 0.99
MTF-16-51 10.29 0.46 10.51 0.47
MTF-16-56 13.26 0.82 13.26 0.82
MTF-16-58 11.59 0.91 11.72 0.92
MTF-16-75 12.68 0.64 12.72 0.64
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Figure 4.3. Geomorphic map of the Nendaz valley study area and 10Be ages. Ages in italics are 
those we consider to be influenced by inheritance. Mapped features are based on field 
investigations, analysis of satellite and aerial imagery, and DEM topographic relief. Approximate 
boundaries of glacial till from Swiss geological maps (Swisstopo, 2012).  White arrow symbols 
(labeled B through D) indicate location and camera direction of the aerial images in Figure 4.2. 

4.3.3 Alps-wide compilation of published 10Be surface exposure ages 

We now compare our 10Be ages with those from previous studies in the Alps. A histogram plot of 

the Alps-wide compilation shows samples ages spread throughout the LG and early Holocene, 

roughly centered on the YD-early Holocene transition (mean = 11.9 ka, median = 11.7 ka, std = 
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1.3 kyrs) (Figure 4.4). Out of the 352 samples, 84 yield ages older than the onset of the YD (12.9 

ka), 105 samples yield ages falling within the YD, and 163 samples yield ages falling after the 

termination of the YD (11.6 ka). Of the 105 samples within the YD, 48 samples fall within the 

first half of the stadial, and 57 samples fall within the second half of the stadial. 

 

Figure 4.4. Compilation of published LG and early Holocene 10Be SED samples in the Alps, 
arranged by publication date from earliest (bottom) to latest (top). Horizontal grey bars represent 
1σ analytical error. CE-1 cold pulse from Hass et al. (1998). Also included is a recent glacier 
chronology from Norway (Wittmeier et al., in press). We note that the primary signal in the Alps 
is one of glacier recession, with younger moraines generally inboard and/or upvalley of older 
moraines. 
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4.4 Discussion 

4.4.1 Summary of glacier chronology in the Nendaz valley 

The presented geomorphic map and moraine chronology from Nendaz valley provide a 

comprehensive view of the glacier system response during the LG and early Holocene. The 

13.3–12.7 ka moraines in the lower part of the valley are evidence of the larger glacier 

configuration during this earlier time, near the beginning of the YD. In the middle valley, the 

12.1–11.4 ka ages of the primary lateral ridges suggest that the glacier was actively building 

these moraines toward the end of the YD. Their topographic prominence may be due to various 

factors such as a plentiful supply of rock debris, a long duration of stable glacier extent during 

formation, or multiple intervals of building (composite moraine). This robust chronology with 

early and late YD moraine positions within a single valley suggest that the glacier underwent 

significant retreat through the YD stadial, and that climatic conditions during the early YD were 

more favorable for glacier growth compared to the late YD. In the side valley to the west of the 

primary lateral ridges, terminal moraine boulder ages ranging from 11.5–10.4 ka indicate that 

this moraine was formed during the early Holocene, and the 11.0–10.3 ka innermost recessional 

moraine suggests another brief period of stabilization. Previous studies finding similar early 

Holocene ages in the Alps have hypothesized an association with the Preboreal Oscillation and 

the CE-1 cold pulse (Boxleitner et al., 2019; Braumann et al., in review; Haas et al., 1998; Ivy-

Ochs, 2015).  

4.4.2 Contrasting views of glacier responses leading into the Younger Dryas 

Contrasting views exist in the literature regarding glacier behavior during the interval 

immediately preceding the YD (Balco, 2020), during which the Bølling-Allerød (BA) 

interstadial and the Antarctic Cold Reversal (ACR) occurred in the northern and southern 



143 
 

hemispheres, respectively. Published 10Be ages falling within this interval are occasionally 

attributed to SED error, and some studies suggest that the Alps were largely ice-free during this 

time (Ivy-Ochs, 2015). On the other hand, pollen, chironomid, δ18O, and other paleoecological 

records (Lotter et al., 1992; Lotter et al., 2012) suggest that the Alps experienced two brief cold 

pulses during the BA (the Older Dryas and Intra-Allerød stadials), during which Egesen-like 

glacier configurations may have been reached. For example, Ohlendorf (1998) hypothesized that 

glacier dimensions comparable to the YD may have existed during the Older Dryas (known 

locally as the Aegelsee oscillation) based on an analysis of annually laminated sediments from 

alpine glacier lakes in southeastern Switzerland. Some evidence also exists for an intermediate 

glacier stage between the Gshnitz and the Egesen known as the “Daun”, which may correspond 

to the Older Dryas cold pulse (van Husen, 2000). Moraines from this stage are often described as 

having subdued morphology, a clear solifluction overprint, and are poor in boulders (Ivy-Ochs, 

2015; Ivy‐Ochs et al., 2008). Such moraines are conspicuously difficult to exposure date, and 

recent studies have suggested that evidence for the Daun is too scant to establish it as an 

independent stage (Boxleitner et al., 2019; Reitner et al., 2016). 

4.4.3 Evidence for glacier advances before the onset of the Younger Dryas 

In addition to the previously-noted paleoclimate records in the Alps, other northern hemisphere 

glacier and ice sheet chronologies give credibility to pre-YD advances. SED ages from moraine 

boulders and varve sequences from glacial lakes in the White Mountains of New Hampshire 

indicate that the Laurentide ice sheet readvanced during the Older Dryas (Bromley et al., 2015; 

Thompson et al., 2017). In western Canada, results from Menounos et al. (2017) suggest early 

BA warmth caused significant mass loss of the ice sheet, followed by readvances during both the 

BA and YD. Briner et al. (2014) showed that classical Lysefjorden moraines deposited by the 
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Scandinavian ice sheet (which were earlier thought to be entirely of YD age) can be attributed to 

at least two advances of distinctly different ages, with the first advance (outermost moraines) of 

Older Dryas age, and later advance (innermost moraines) deposited near the end of the YD. The 

timing of sea level fluctuations in western Norway also imply that ice sheet expansion 

commenced during the Allerød rather than the YD as initially thought (Lohne et al., 2007). In 

Greenland, SED ages indicate that an outlet glacier of the ice sheet and an independent ice cap 

receded together during the YD (Levy et al., 2016). Young (2019) constrained the age of a LG 

terminal moraine in southern Alaska, and showed that a glacier culmination occurred in the 

early-to-mid YD followed by recession through the remainder of the YD. In Norway, 

radiocarbon data suggest that most glaciers reached their maximum LG extent during the Allerød 

and earliest YD, followed by net retreat (Andersen et al., 1995). In the Scottish Highlands, a 14C 

chronology indicates that the last pulse of glaciation peaked during the earliest part of the YD, 

with subsequent deglaciation through the ensuing stadial (Bromley et al., 2018). Bromely et al. 

(2018) also discuss the improbability of accumulation, peak, and deglacation all within the few 

centuries of the YD, with the most likely explanation being a glacier advance largely predating 

the YD. This argument applies to our Nendaz valley results as well – the 13.3 to 12.7 ka moraine 

ages suggest that a preceding glacier buildup must have occurred before the onset of the YD. 

Most recently, a new glacier chronology from Norway shows that a glacier maxima was reached 

prior to the YD, followed by considerable retreat through the first part of the YD, brief 

restabilization in the mid-YD, and slower oscillatory retreat through the latter part of the YD 

(Wittmeier et al., in press). 
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4.4.4 Implications for Late Glacial climate drivers 

Our results from the Nendaz valley support the occurrence of a LG glacier advance largely 

predating the YD with subsequent retreat through the YD, which has broad implications for 

interhemispheric climate, seasonality, and drivers of glacier change. Emerging glacier 

chronologies around the globe support the hypothesis that glaciers more closely followed 

summer temperatures extracted by Buizert et al. (2018) from Greenland ice core records and 

transient climate model simulations, rather than annually-averaged temperature proxies thought 

to be influenced by extreme winter cooling during AMOC slowdowns. Largely similar moraine 

chronologies in both hemispheres strengthen the hypothesis of interhemispherically synchronous 

summer temperatures during the LG, which highlights a correlation with CO2 records and 

mirrors modern observations of near-global acceleration of ice loss due to increasing 

anthropogenic GHG emissions (Zemp et al., 2015). Additional research is needed to further test 

this hypothesis, including synoptic global analysis of published exposure ages (Balco, 2020), 

targeting and sampling of relevant moraines for future analysis, correlation of glacier 

chronologies with other paleoclimate proxies, and integration with climate models. 

4.5 Conclusion 

Geomorphic analysis and SED ages from glacier moraines in the Nendaz valley provide a 

coherent glacier chronology spanning from the early YD to the early Holocene. Results show 

extended glaciers already existed in the earliest YD, followed by an overall pattern of glacier 

retreat through the YD in the main valley. This is similar to moraine records from the southern 

hemisphere and agrees with an emerging pattern in the northern hemisphere, including a new 

record from Norway (Wittmeier et al., in press). We hypothesize that the observed wide spread 

of compiled 10Be ages reaching into the BA interval may not be solely a result of SED error. 
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Especially when viewed in a global context (Balco, 2020) Egesen-like moraines with pre-YD 

ages in the Alps need not be directly attributed to YD cooling. Alpine glaciers may have attained 

Egesen-like configurations significantly before the onset of the YD, with subsequent retreat 

through the YD punctuated by brief periods of stability and moraine building. This implies a 

glacier buildup occurred during the BA interstadial, which broadly agrees with recent summer 

temperature reconstructions during the most recent deglaciation (Buizert et al., 2018), and is in 

line with the concept of global radiative GHG forcing as a significant energy balance component 

for alpine glaciers during the LG. 
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 Dynamic modeling of regional glacier change and 

spatiotemporal variability 

5.1 Introduction 

Accurate quantification of glacier responses to climate change is important for current and future 

water supply, sea level rise, ecosystems, hydropower, and natural hazards across vulnerable 

mountain regions (Carrivick and Tweed, 2016; Kaser et al., 2010; Kraaijenbrink et al., 2017; 

Marzeion et al., 2012; Zemp et al., 2015). Robust understanding requires study of glacier change 

over different timescales – this includes long term baseline glacier fluctuations due to natural 

climate variability, as well as the more recent superimposed signal of anthropogenic climate 

change (Marzeion et al., 2014; Roe et al., 2017). Modern scientific advances have made the 

study of glacier change across different timescales possible with techniques such as satellite 

imagery analysis, surface exposure dating (SED), and numerical modeling. Yet contrasting 

viewpoints exist in the literature regarding glacier observations spanning relatively short-term 

modern (decades) versus long-term paleo (centuries or millennia) timescales. Annual to multi-

decadal studies of glacier change often highlight complex spatial patterns of ice loss and 

significant glacier-to-glacier variability (Brun et al., 2017; Foresta et al., 2018; Menounos et al., 

2019; Paul and Haeberli, 2008; Scherler et al., 2011; Zheng et al., 2018), while centennial to 

millennial studies suggest largely synchronous glacier changes across regions and hemispheres 

in response to long-term natural climate variability (Bromley et al., 2018; García et al., 2012; 

Putnam et al., 2010; Schaefer et al., 2006; Young et al., 2019).  

This apparent contrast elicits a question: for a typical population of mountain glaciers, what 

statistical spread of ice thickness change might we expect under a spatially uniform climate 

forcing, and how does it change through time as the glaciers approach a new equilibrium? The 
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final section of this dissertation addresses this issue in light of new findings. We first summarize 

relevant key points from preceding chapters with a specific focus on spatiotemporal variability, 

and outline differences between short-term glaciological observations versus long-term 

geomorphological and cosmogenic studies of glacier change. In turn, we use a numerical model 

to help bridge the time gap, by simulating the spatial variability of glacier mass balance across a 

region as a function of the observational timespan. 

5.1.1 Societal relevance of glacier processes over various timescales 

Mountain glacier processes operate over a wide range of timescales, from catastrophic releases 

of water which occur in a matter of minutes to the shaping of mountain topography over millions 

of years. With rapidly growing downstream populations and expanding hydropower-dependent 

economies in mountain regions such as the Himalayas, shorter-timescale glacier events are 

intensely studied as they present direct threats to the safety and welfare of local inhabitants. Such 

events in recent years include the sudden collapse of a glacier in Tibet (Kääb et al., 2018), 

surging glaciers in the Karakoram (Quincey et al., 2011), and glacial lake outburst floods 

(GLOFs) which are a significant hazard in many regions (Carrivick and Tweed, 2016). As 

triggers for these events are chaotic and unpredictable, efficient early warning systems are 

crucial for maximizing warning time and minimizing loss. Efforts to improve early warning 

systems are ongoing; Chapter 1 for example demonstrated how a real-time seismic monitoring 

system could potentially detect events such as GLOFs from many kilometers away, and would 

enhance the efficiency and reliability of existing automatic water level sensor systems.  

    Over multi-decadal timescales, the primary societal concern regarding glacier change is 

depleted water supply for downstream inhabitants in the near future (Kaser et al., 2010). This is 

particularly true for arid regions in South Asia such as the Indus watershed, where a significant 
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portion of seasonal meltwater is supplied by glacier melt from the Himalayan and Karakoram 

ranges (Azam et al., 2018; Kraaijenbrink et al., 2017). As a result, many recent studies have 

focused on quantifying glacier change across the larger High Mountain Asia region (Brun et al., 

2017; Kääb et al., 2015; Maurer et al., 2019; Zhou et al., 2018). Toward this end, Chapters 2 and 

3 utilized declassified spy satellite imagery to investigate glacier responses to climate change in 

the Himalayas over the past 40 years. The large sample size and multi-decade timespan of these 

analyses provided a unique perspective on the spatiotemporal variability of glacier change 

between sub-regions and individual glaciers over two distinct timespans, from 1975 to 2000 and 

from 2000 to 2016. Overall a similar average magnitude and acceleration of ice loss was 

observed across the 2000 km transect, yet significant glacier to glacier variability was also 

evident within subregions. Glaciers during the more recent interval were subject to more intense 

climate forcing and lost ice at a rate approximately twice the 1975-2000 rate, and the standard 

deviation (SD) of individual glacier mass balances increased from 0.15 m w.e. year-1 during 

1975-2000 to 0.24 m w.e. year-1 during 2000-2016. The increase in SD suggests some correlation 

between 1) characteristics of the later interval (shorter timespan measured, stronger climate 

forcing, and greater rate of ice loss) and 2) a greater spatial variability of ice loss. This important 

detail will be the subject of further analysis and compared with model output in this study. 

    Observations of glacier change over centennial to millennial timescales are vital for 

quantifying past glacier responses to natural climate variability. The inverse is also true, in that 

moraine chronologies provide valuable insight into regional and global climate patterns. By 

linking glacier responses to long-term climate change in this way, a baseline is established which 

provides context for the superimposed anthropogenic forcing in modern times. For example, 

Chapter 4 investigated a glacier complex in the western Alps during the Late Glacial (LG) (11-
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15 ka), an important interval of natural climate variability. While previous studies attributed LG 

glacier advances to Younger Dryas (YD) cooling in the European Alps (Boxleitner et al., 2019; 

Federici et al., 2008; Ivy-Ochs et al., 1996; Kelly et al., 2004; Protin et al., 2019), recent 

publications suggest that glacier culminations occurred in Greenland, the Scottish Isles, and 

Alaska prior to, or in the very early YD (Bromley et al., 2018; Levy et al., 2016; Young et al., 

2019). Chapter 4 gave further credibility to this idea, via SED evidence suggesting substantial 

glacier retreat through the YD in the Nendaz valley in the European Alps, combined with a 

compilation of published 10Be data across the region showing a considerable percentage of pre-

YD ages. This emerging picture resembles the global CO2 curve and existing glacier record in 

the southern hemisphere, where evidence from midlatitude glaciers in New Zealand and 

Patagonia suggests a synchronous advance occurred during the Antarctic Cold Reversal (García 

et al., 2012; Kaplan et al., 2010; Kaplan et al., 2013; Putnam et al., 2010; Sagredo et al., 2018). 

Taken together, these interhemispheric glacier records strengthen the hypothesis that the YD 

stadial was primarily a North Atlantic winter phenomenon, and that glaciers (sensitive to summer 

temperatures) in both hemispheres may have experienced near-synchronous retreat through the 

LG period. 

5.1.2 Different viewpoints of glacier change 

These aforementioned studies highlight an apparent difference between observations over 

decadal versus centennial to millennial durations. In recent decades, field-based glaciologists 

have intensely monitored glacier mass balances over annual to multi-decadal timespans using 

methods such as ablation stakes, snow pits, photogrammetry, and automatic weather stations. 

Through the satellite era, remote sensing experts have also quantified glacier area changes and 

geodetic mass balances using satellite and airborne sensors. Both field-based and satellite-based 
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studies oftentimes show highly variable mass changes from glacier to glacier, even those 

adjacent to one another within the same climate setting. Conversely, mountain glacier studies 

spanning longer timescales tend to highlight overall homogeneity of glacier response. These are 

usually based on moraine morphostratigraphy and SED with some constraints provided by 

numerical simulations. Results from basic inverse models often indicate similar ELA depressions 

for moraines across many valleys, and precision SED of moraine boulders yield mostly 

consistent ages. Modern high-resolution satellite imagery (such as in Google Earth) also clearly 

show a near-worldwide occurrence of prominent Little Ice Age (LIA) moraines, suggesting a 

globally similar spatiotemporal glacier response during the past few centuries. Together with 

emerging evidence of similar glacier fluctuations in both hemispheres during the LG and 

established near-synchronous interhemispheric termination of the Last Glacial Maximum (LGM) 

in mid-latitudes, the long-term picture shows a largely near-synchronous pattern of glacier 

change through time. This apparent contrast between short-term complexity versus long-term 

simplicity highlights a key conceptual disparity and provides a focal point for further analysis. 

Here we address this question by modeling glacier dynamics in the Ötztal Alps, a typical mid-

latitude alpine region with consistent instrumental temperature records and detailed glacier 

change observations extending back to the 1850’s. This is accomplished by using the shallow ice 

approximation (SIA) equations to model ice thickness distributions across the region through 

time, with a subsequent analysis of spatial heterogeneity of change over different observational 

timespans. We emphasize that our goal here is not to precisely reproduce the historical record of 

glacier change in this specific region, but rather to use a basic modeling framework in typical 

alpine terrain to highlight and demonstrate key characteristics of glacier response. In so doing we 
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aim to clarify how glacier dynamics dictate spatial variability of glacier change over multi-

decadal timescales, and help strengthen the connection between geomorphology and glaciology. 

5.2 Methods 

To model glacier dynamics we implement the shallow ice approximation (SIA) (Fowler and 

Larson, 1978; Hutter, 1981; Hutter, 1983) which treats ice as a viscous and incompressible non-

Newtonian fluid (Cuffey and Paterson, 2010), and is based on the assumption that longitudinal 

stresses are negligible relative to vertical shear stresses: 

 𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

+ ∇ · 𝒒𝒒 = �̇�𝑏 (5.1) 

 

 𝒒𝒒 = −𝐷𝐷∇𝑠𝑠 (5.2) 
 

 𝐷𝐷 = 𝛤𝛤ℎ𝑛𝑛+2|∇𝑠𝑠|𝑛𝑛−1 + 𝛤𝛤𝑚𝑚ℎ𝑛𝑛|∇𝑠𝑠|𝑛𝑛−1 (5.3) 
 

  𝛤𝛤 =
2𝐴𝐴(𝜌𝜌𝜌𝜌)𝑛𝑛

𝑛𝑛 + 2
 (5.4) 

 

 𝛤𝛤𝑚𝑚 = 𝐴𝐴𝑚𝑚(𝜌𝜌𝜌𝜌)𝑛𝑛 (5.5) 
 

where ℎ is ice thickness, 𝑡𝑡 is time, ∇ is the 2D gradient operator, 𝒒𝒒 is horizontal ice flux, �̇�𝑏 is 

surface mass balance rate, 𝐷𝐷 is the diffusivity (i.e. diffusion coefficient in a parabolic partial 

differential equation), 𝑠𝑠 is the ice surface elevation, 𝑛𝑛 is Glen’s flow law exponent, 𝐴𝐴 is Glen’s 

flow law coefficient, 𝜌𝜌 is ice density, 𝜌𝜌 is the gravitational constant, and 𝐴𝐴𝑚𝑚 is a sliding law 

coefficient. The primary advantage of the SIA over higher-order models (such as a full Stokes 

formulation) is simplicity of implementation and computational efficiency. The use of a more 

complex models of glacier physics is also not justified in this case, as it would require 

unavailable parameters such as ice temperatures and glacier bed conditions. Lower order 
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solutions such as the SIA has been shown to reasonably approximate ice thickness distributions 

of mountain glaciers (Leysinger Vieli and Gudmundsson, 2004), and comparisons of model 

hierarchies suggest higher order stresses do not play a large role in capturing basic glacier 

responses to warming (Christian et al., 2018). As the goal of this study is to demonstrate basic 

glacier dynamics over a representative range of glacier sizes and hypsometries across a region, 

the use of the SIA is an ideal compromise which allows for reasonably accurate simulation at the 

required spatiotemporal resolution while meeting practical computational limitations. To avoid 

spurious violations of mass conservation in this region of complex terrain, we modify 

diffusivities using the flux-limiting scheme from Jarosch et al. (2013), and solve Equation (5.1) 

using a semi-implicit time-stepping scheme (Hindmarsh, 2001) with a constant time step of one 

month and a horizontal grid resolution of 180 meters. All model parameter values are given in 

Table 5.1, and numerical benchmark tests confirm that the model is performing as expected 

(Figure 5.1) (Bueler et al., 2005; Jarosch et al., 2013). For bedrock elevation input, we use the 

ALOS 30 m global DEM (Tadono et al., 2014) in a projected coordinate system (WGS 84 / 

UTM 32N) resampled to the 180 m resolution model grid, and subtract existing glacier ice 

surfaces from the DEM using spatial ice thickness distributions from the third Austrian Glacier 

Inventory (Helfricht et al., 2019). For the surface mass balance rate (�̇�𝑏) we define: 

 �̇�𝑏 = min �𝛽𝛽(𝑠𝑠 − 𝑠𝑠𝐸𝐸𝐸𝐸𝐸𝐸), �̇�𝑏𝑚𝑚𝑒𝑒𝑒𝑒� (5.6) 
 

where 𝛽𝛽 is the balance rate gradient, 𝑠𝑠𝐸𝐸𝐸𝐸𝐸𝐸 is the equilibrium line altitude (ELA), and �̇�𝑏𝑚𝑚𝑒𝑒𝑒𝑒 is a 

maximum ice accumulation rate. 
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Table 5.1 SIA model parameters 

 

    We use the SIA model to simulate glacier response in the Ötztal region in two distinct 

scenarios. In model run 1 (R1) we demonstrate a simple instantaneous climate forcing, while in 

model run 2 (R2) we use instrumental temperature data as input. To establish initial conditions in 

both runs, the glacier model is first allowed to reach a near-equilibrium state with a specified 

ELA. In R1, we subsequently apply an instantaneous ELA change of +100 m and run the model 

forward for an additional 200 years. In R2, a simple linear relationship between an 1850-2018 

instrumental air temperature record and the regional ELA is used. We use the HISTALP mean 

monthly homogenized series from the Obergurgl-Vent station located at approximately 11.03°E, 

46.87°N (1930 m elevation) within the study area (Auer et al., 2007). We note that the Ötztal 

Alps were chosen as an ideal region for this study with typical variation in glacier size and 

hypsometry, exceptional historical records of air temperature and glacier area changes, and 

accurate estimates of modern glacier ice thickness. An example of the SIA output illustrates the 

simulated ice thickness distributions across the region over a 100-year timespan (Figure 5.2). 

Parameter Symbol Value Units
Glen's flow law exponent n 3

Glen's flow law coefficient A 1E-24 Pa-3s-1

Ice density ρ 910 kg m-3

Gravitational constant g 9.81 m s-2

Sliding law coefficient As 1E-19 Pa-3m2s-1

Balance rate gradient β 2.1E-10 s-1

Max ice accumulation rate 6.3E-08 m s-1
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Figure 5.1. Numerical benchmark tests confirming the glacier model is performing as expected 
(Bueler et al., 2005; Jarosch et al., 2013). Thick grey and red lines are exact (analytical) solutions 
for the isothermal shallow ice sheet equation at the beginning and end of model runs, 
respectively. The thin dashed lines are from the SIA model output used in this study (at 1000-year 
intervals). A through C are tests on flat horizontal beds (Bueler et al., 2005), while D is on a 
bedrock step designed to test mass conservation of flux-limiting schemes (Jarosch et al., 2013). 

 

Figure 5.2. Modeled ice thickness (m) and ice thickness change (m) over a 100-year timespan in 
the Ötztal Alps region. 
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5.3 Results 

We first present results from the model driven by a step-function with an instantaneous 100 m 

increase in ELA, and show the time-dependent response of the glaciers as they approach a new 

equilibrium (Figure 5.3). Both the volume and area curves exhibit the greatest rates of change 

initially, with rates lessening through time as the curves asymptote to new steady-state values. 

We also quantify the spatial variability of mean annual ice thickness change (m yr-1) as a 

function of the observational timespan. This is accomplished by computing the difference in ice 

surface elevations between two given instances in time, performed for timespans ranging from 1 

to 200 years (each beginning at year zero, see Figure 5.3A inset). We subsequently calculate the 

regional mean, median, and interquartile range (IQR) of ice thickness change for each timespan. 

Plotting these statistics versus the length of the timespan (Figure 5.3B) illustrates 1) the mean 

annual ice thickness change is more negative for shorter, earlier timespans (near the beginning of 

the response) and becomes less negative when computed over longer timespans, 2) the spatial 

variability of the change (measured by the IQR) is greater for shorter, earlier timespans (near the 

beginning of the response) and becomes smaller when computed over longer timespans. We also 

plot ice thickness change histograms for specific timespans of 5, 10, 20, 50, and 100 years 

(Figure 5.3C) to further illustrate characteristics of the respective distributions. We note the 5-

year distribution has the widest spread and strongest negative skew, while the 100-year 

distribution has the smallest spread and weakest negative skew. Lastly, we plot ice thickness 

change versus elevation separated in to 100 m elevation bins (Figure 5.3D). The 5-year profile is 

the steepest with the greatest thinning rates at lower elevations, and the profile steepness 

decreases with longer timespans. 
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Figure 5.3. Glacier model response, driven by a step-function with an instantaneous 100 m 
increase in ELA at time = 0. A) Glacierized area and volume through time. B) Distributions of ice 
thickness change (m yr-1) versus observational timespans, ranging from 1 to 200 years in length 
(each year beginning at zero). The red line is the median, blue line is the mean, and the grey area 
(IQR) is bounded by the first and third quartiles of ice thickness change. C) Distributions of ice 
thickness change corresponding to five distinct timespans of 5, 10, 20, 50, and 100 years. D) 
Mean ice thickness change (m yr-1) versus elevation for the same timespans as in C. 

    We next discuss results from the second model run, driven by the HISTALP 1851-2018 

instrumental temperature record. In contrast to the previous example of an instantaneous step-

change, this climate forcing here is time-dependent. The glaciers are always moving towards 

equilibrium with the instantaneous climate state; however, the state is constantly changing, and 

the glaciers are essentially acting as a low-pass filter (Roe, 2011). The overall increase in air 

temperatures over the 167 year interval results in a generally decreasing ice volume trend, with 

some decades experiencing greater rates of change than others (Figure 5.4A). During the 20th 
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century for example, the most rapid ice losses are evident during the late 1940’s to early 1950’s 

and from the 1980’s to present day, while more stable conditions prevailed during the 1960’s to 

1970’s. Similar to the previous model run, we compute the regional mean, median, and IQR of 

ice thickness change (m yr-1) and plot the statistics versus the length of the respective timespan 

(Figure 5.4B). However, in this case the timespans are measured from the year 2018, extending 

backward in time rather than forward (see Figure 5.4A inset). This is to allow comparison with 

observational mass balance records, the vast majority of which have been obtained during the 

latter half of the 20th and into the 21st centuries. Figure 5.4B illustrates 1) the mean annual ice 

thickness change is most negative during the shorter, more recent timespans (in this case on the 

right side of Figure 5.4B) and becomes less negative when the start-year of the timespan is 

moved backward in time, 2) the spatial variability of the change (shown by the IQR) is greatest 

during the shorter, more recent timespans and becomes smaller when the start-year of the 

timespan is moved backward in time. Ice thickness change histograms and elevation profiles also 

show a similar pattern (Figure 5.4C and Figure 5.4D) with the shorter, more recent timespans 

exhibiting stronger negative skews and steeper “thickness change versus elevation” profiles, 

respectively. 
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Figure 5.4. Glacier model response, driven by the HISTALP 1851-2018 instrumental temperature 
record. Panels are the same as described in Figure 5.3, except here the timespans are measured 
from the year 2018, extending backward in time rather than forward.  

5.4 Discussion 

5.4.1 Glacier dynamics 

Changes in ice thickness at any given point on a land-terminating mountain glacier surface are 

controlled primarily by: 1) the surface mass balance, and 2) internal ice flux from higher to lower 

elevations due to gravity-induced pressure gradients, including ice deformation and sliding. 

Glacier surface mass balance is correlated with elevation due to the atmospheric lapse rate, with 

warmest temperatures, greatest ablation, and most negative specific mass balances generally 

occurring at the glacier terminus. In response to a climate forcing such as atmospheric warming, 
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a glacier will lose relatively more ice at lower elevations; in turn, this effectively increases the 

gradient of the glacier surface, and the steepened gradient drives ice flux, i.e. over time mass loss 

at lower elevations will be compensated by ice flowing down from higher elevations. However, 

surface mass balance and ice flow occur at different rates – ablation occurs in lockstep with the 

atmospheric warming, while the subsequent dynamic adjustment of the glacier takes much 

longer, on the order of decades. Roe (2011) described this concept from a spectral analysis 

viewpoint, noting that a dynamic flowline glacier length model yields relatively higher 

autocorrelations for lags shorter than ~15 years, compared to a simple linear model. This concept 

is often referred to as glacier “disequilibrium”, i.e. the difference between transient and 

equilibrium glacier states (Christian et al., 2018). Because it takes time for mass to travel to the 

glacier terminus following a climate perturbation, less internal ice flux will have occurred if the 

observational timespan is shorter. This results in a steeper “ice thickness change versus 

elevation” profile because the glacier had less time to dynamically adjust to a new equilibrium. 

Figure 5.3D illustrates this effect, with steeper profiles for short timespans versus more gradual 

profiles for longer ones. It follows that ice thickness change distributions in a given region will 

also have stronger negative skews and wider IQRs over shorter observational timespans – 

because the distributions include the strongly negative mass losses at lower elevations which 

have not yet been compensated by internal ice flux.  

5.4.2 Relationship between glacier disequilibrium and spatial variability of ice thickness 

change 

Glacier dynamics dictate that for a given climate forcing over annual to multi-decade durations, 

shorter observational timespans (particularly those focused on periods during which glaciers are 

further from equilibrium, and are hence undergoing the most rapid change) will tend to exhibit 
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greater spatial variability (wider IQR) of mean annual ice thickness changes. Conversely, longer 

timespan measurements will tend to have less spatial variability (smaller IQR) due to the 

characteristic asymptotic approach toward an equilibrium state (i.e. both the mean and IQR of 

annual thickness change gradually decrease with time as steady-state is approached). This is 

shown in both model runs: 1) after an instantaneous climate perturbation, when the widest IQRs 

were observed for the shortest and earliest timespans during which the glaciers were furthest 

from steady-state and 2) in the HISTALP run, where the widest IQRs were observed for the 

shortest and most recent timespans, again during which glaciers are strongly out of equilibrium 

(Figure 5.5). For timespans which extend further back to include decades with more stability 

(such as during the mid-1950’s to 1970’s), the degree of spatial variability is lessened. This 

highlights a positive correlation between glacier disequilibrium and spatial variability of annual 

ice thickness changes, which should be taken into account in regional glacier mass balance 

studies, particularly when analyzing and discussing spatial patterns of ice loss.  

 

Figure 5.5. IQR of ice thickness change (m yr-1) versus observational timespan for both an 
instantaneous climate perturbation (measured forward from year zero) and the HISTALP 
temperature forcing (measured backward from year 2018). Note each model run exhibits widest 
IQRs for shorter timespans, during which glaciers are also furthest from equilibrium. 
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5.4.3 Relevance for modern observations of glacier change 

Modern observations of glacier change often utilize satellite-derived elevation models to 

estimate ice thickness changes over time across mountain regions, and most of these studies 

focus on glacier changes during the 21st century. Such studies often highlight complex spatial 

patterns of ice loss and highly variable mass balances between glaciers. In the Himalayas for 

example, ongoing research is investigating how spatially varying factors such as precipitation, 

surface debris cover, topographic shading, and anthropogenic black carbon emissions may 

influence patterns of glacier change (Gertler et al., 2016; Olson and Rupper, 2019; Salerno et al., 

2015; Scherler et al., 2011). Results presented here highlight the importance of including effects 

of internal glacier dynamics in addition to these other factors. During the past four decades in the 

Himalayas for example (Chapter 3), the average rate of ice loss increased, the steepness of the 

“thickness change versus elevation” profile increased, and spatial variability of ice loss 

increased. All these observations are consistent with what would be expected dynamically under 

a uniform climate forcing, and support the idea of glacier dynamics contributing to “scatter” in 

regional geodetic mass balance studies over annual to multi-decadal timescales. 

5.4.4 Broader outlook and proposed avenues for future research 

The positive correlation between glacier disequilibrium and spatial variability of ice thickness 

change is a simple yet useful concept for understanding patterns of glacier change, and is capable 

of explaining some degree of scatter in regional mass balance compilations, particularly over 

annual to multi-decadal timescales during the 21st century. Recent global mass balance 

compilations suggest that global glacier decline in the early 21st century is historically 

unprecedented (Zemp et al., 2015), near-global retreat of glaciers during the last century is 

statistically robust evidence of climate change (Roe et al., 2017), and modern glaciers around the 



163 
 

globe are currently in a state of strong disequilibrium (Christian et al., 2018). As a result, the 

apparent contrast between short-term heterogeneity of satellite and field observations versus the 

long-term homogeneity of geomorphic and cosmogenic studies is predictable and an expected 

outcome of glacier dynamics. Multi-decadal regional observations from the Himalayas (Chapter 

3) are consistent with this hypothesis, and future compilations of glacier change in other regions 

will provide a more robust global test.  

    Over the coming decades, the degree of glacier disequilibrium will largely depend on future 

emissions and resultant warming, and accurate quantification of glacier dynamics will be critical 

for understanding and predicting regional mass balance trends. The approach outlined here (with 

some modifications) could be used to further explore related topics in glaciology and 

paleoclimate, such as dynamics of clean-ice versus debris-covered glaciers, projections of glacier 

change and hydrological impacts in vulnerable regions, and variability of ELA-based 

paleoclimate reconstructions from individual glaciers situated in different topographic and 

climatic settings.  
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