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Abstract

Statistical Analysis of Complex Data in Survival and Event History Analysis

Hok Kan Ling

This thesis studies two aspects of the statistical analysis of complex data in survival and event

history analysis. After a short introduction to survival and event history analysis in Chapter 1, we

proposed a multivariate proportional intensity factor model for multivariate counting processes in

Chapter 2. In an exploratory analysis on process data, a large number of possibly time-varying co-

variates maybe included. These covariates along with the high-dimensional counting processes of-

ten exhibit a low-dimensional structure that has meaningful interpretation. We explore such struc-

ture through specifying random coefficients in a low dimensional space through a factor model.

For the estimation of the resulting model, we establish the asymptotic theory of the nonparametric

maximum likelihood estimator (NPMLE). In particular, the NPMLE is consistent, asymptotically

normal and asymptotically efficient with covariance matrix that can be consistently estimated by

the inverse information matrix or the profile likelihood method under some suitable regularity con-

ditions. Furthermore, to obtain a parsimonious model and to improve interpretation of parameters

therein, variable selection and estimation for both fixed and random effects are developed by penal-

ized likelihood. We illustrate the method using simulation studies as well as a real data application

from The Programme for the International Assessment of Adult Competencies (PIAAC). Chapter

3 concerns rare events and sparse covariates in event history analysis. In large-scale longitudinal

observational databases, the majority of subjects may not experience a particular event of interest.

Furthermore, the associated covariate processes could also be zero for most of the subjects at any

time. We formulate such setting of rare events and sparse covariates under the proportional in-

tensity model and establish the validity of using the partial likelihood estimator and the observed

information matrix for inference under this framework.
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Chapter 1: Introduction

Survival and event history analysis have been important tools in diverse disciplines, inlcuding

biostatistics, reliability theory, insurance, business, and social sciences, where one is interested

in the occurrence of events. Such events can be classified as survival events or recurrent events.

Examples of survival events are the time from birth to death, the time from disease onset to death

and the time from marriage to divorce. Examples of recurrent events are myocardial infarction,

cancer tumors and birth of child. This chapter will discuss some of the important concepts and

statistical models used in survival and event history analysis, where focus will be on the methods

based on event counts. Methods that are based on waiting or gap times will not be discussed here.

We also focus on the setting where events occur in continuous time.

In the rest of the following, we use a.s. to denote almost surely,
3→ to denote convergence in

distribution and
P→ to denote convergence in probability.

1.1 Survival Function and Hazard Function

We begin with survival data where we are interested in the survival time, which is the time

from the initiating event to the event of interest. Note that we use the term “survival" even though

the event of interest may not be death. Let ) denote this survival time. Then, ) is a nonnegative

random variable and its survival function is defined by

((C) := P() > C), C ≥ 0.

1



Assume now that ) is a continuous random variable with density function 5 . The hazard function

is defined as

_(C) := lim
ΔC↓0

1
ΔC
P(C ≤ ) < C + ΔC |) ≥ C)

= − 1
((C)

3

3C
((C)

=
5 (C)
((C) .

The interpretation of _ is that _(C)ΔC is the probability that the failure time occurs in the very small

interval [C, C + ΔC) given that the event has not occurred by time C. The function Λ(C) :=
∫ C

0 _(B)3B

is called the cumulative hazard function for ) .

1.2 Right-censored Survival Data

A common feature in survival data that is different from the usual data is that the survival time

could be censored and/or truncated. The most common type of censoring is right-censoring as

described below. Let * denote the censoring time variable. Instead of observing the survival time

) , we only observe ()̃ , X), where )̃ := min(),*) and X := � () ≤ *). In the random (right)

censorship model, * and )̃ are assumed to be independent or conditional independent given the

covariates in the presence of covariates. Let ( be the survival function of) and� be the distribution

function of *. Suppose that ) has density 5 that is parameterized by a parameter \ and * has

density 6 that does not depend on \ (noninformative censoring). The likelihood function for \

from the data ()̃8, X8), 8 = 1, . . . , =, is

! (\) =
=∏
8=1
{ 5 ()̃8 |\)� ()̃8)}X8 {(()̃8)6()̃8)}1−X8 ∝

=∏
8=1

5 ()̃8 |\)X8(()̃8)1−X8 .

2



Now, define a process # by specifying # (C) = 1 if )̃ ≤ C and X = 1 and # (C) = 0 otherwise. Then

it can be shown that the process " given by

" (C) := # (C) −
∫ C

0
� ()̃ ≥ D)_(D)3D

is a martingale provided that

lim
ΔC↓0

1
ΔC
P(C ≤ ) < C + ΔC |) ≥ C) = lim

ΔC↓0

1
ΔC
P(C ≤ ) < C + ΔC |) ≥ C,* ≥ C). (1.1)

The condition in (1.1) is called independent censoring. The process # is an example of a counting

process that will be described in the next section.

1.3 Counting Process and Martingales

Counting process is one of the notions that is central to survival and event history analysis. A

counting process is a stochastic process {# (C) : C ≥ 0} adapted to a filtration {FC : C ≥ 0} with

# (0) = 0 and # (C) < ∞ almost surely, and whose paths are with probability one right-continuous,

piecewise constant, and have only jump discontinuities, with jumps of size +1. With this definition,

# (C) − # (B) is the number of events occurring in the interval (B, C]. If # is the counting process

corresponding to the survival time ) , i.e., # (C) = 1 if C ≥ ) and # (C) = 0 otherwise, then the

hazard function can be written as

_(C) = lim
ΔC↓0

1
ΔC
P(# ((C + ΔC)−) − # (C−) = 1|# (C−) = 0), (1.2)

where # (C−) := limD↑C # (D). This is because {# ((C + ΔC)−) − # (C−) = 1} = {C ≤ ) < C + ΔC}

and {# (C−) = 0} = {) ≥ C}. The form in (1.2) will give us the motivation for the definition of

intensity function for general counting process as described in the next section.

One of the most important theorems in using counting process method for survival and event

history analysis is the Doob-Meyer decomposition, where the following version is from Theorem

3



2.2.3 in [19].

Theorem 1. Let - = {- (C) : C ≥ 0} be a nonnegative right-continuous FC-local submartingale

with localizing sequence {g=}, where {FC : C ≥ 0} is a right-continuous filtration. Then there exists

a unique increasing right-continuous predictable process � such that �(0) = 0 a.s., P(�(C) <

∞) = 1 for all C > 0, and - − � is a right-continuous local martingale.

As a result of Theorem 1, any counting process can be decomposed into the sum of a local mar-

tingale and a predictable increasing process. Alternatively, there exists a unique right-continuous

predictable increasing process � such that �(0) = 0 a.s., �(C) < ∞ a.s., for any C, and the pro-

cess " = # − � is a local martingale. The process � is called a compensator. Furthermore, if

E(�(C)) < ∞ for all C, then " = # − � is a martingale. In more complicated situation, we shall

assume for a particular compensator � that # − � is a martingale. This will be discussed in more

details in Section 1.8.

Statistics for counting process data are often of the form

*= =

=∑
8=1

∫
�83"8, (1.3)

where "8 = #8 − �8 are the compensated counting process. When �8 are locally bounded pre-

dictable processes,*= is a local square integrable martingale. The following theorem establish the

form of predictable variation and covariation processes for
∫
�83"8, 8 = 1, 2.

Theorem 2 (Theorem 2.4.3 in [19]). Assume that on a stochastic basis (Ω, F , {FC : C ≥ 0}, P):

(1) �8 is a locally bounded FC-predictable process;

(2) #8 is a counting process.

Then for the local martingales "8 = #8 − �8,〈∫
�13"1,

∫
�23"2

〉
=

∫
�1�23〈"1, "2〉,

4



that is, the process ∫
�13"1

∫
�23"2 −

∫
�1�23〈"1, "2〉

is a local martingale over [0,∞), where 〈"1, "2〉 is the predictable covariation process of "1

and "2.

The results in the following lemma are special cases of Lenglart’s inequality.

Lemma 1 (Lemma 8.2.1 in [19]). Let # be a univariate counting process with continuous com-

pensator �. Let " = # − �, and let � be a locally bounded, predictable process. Then for all

X, d > 0 and any C ≥ 0,

(a)

P(# (C) ≥ d) ≤ X

d
+ P(�(C) ≥ X).

(b)

P

(
sup

0≤H≤C

���� ∫ H

0
� (G)3" (G)

���� ≥ d) ≤ X

d2 + P
( ∫ C

0
�2(G)3�(G) ≥ X

)
.

The following theorem is a multivariate martingale central limit theorem that is useful in the

development of the asymptotic distribution of the statistic of the form (1.3), for example, the score

in the multiplicative intensity model.

Theorem 3 (Theorem 5.3.5 in [19]). Let ,∗1 , . . . ,,
∗
A be A dependent time-transformed Brownian

motion processes. Specifically, (,∗1 , . . . ,,
∗
A ) is an A-variate Gaussian process having compo-

nents with independent increments, ,∗
;
(0) = 0 a.s. and, for all 0 ≤ B ≤ C, E(,∗

;
(C)) = 0 and

E(,∗
;
(B),∗

; ′ (C)) = �;; ′ (C), where �;; ′ is a continuous function for all ;, ;′ ∈ {1, . . . , A}. Suppose

{# (=)
8

: 8 = 1, . . . , =} satisfies {# (=)
8,;

: 8 = 1, . . . , =, ; = 1, . . . , A} is a multivariate counting process

with stochastic basis (Ω, F , FC , %), the compensator �(=)
8,;

of # (=)
8,;

is continuous, and � (=)
8,;

is a lo-

cally bounded FC-predictable process. Consider the vector of local square integrable martingales

5



(* (=)1 , . . . ,*
(=)
A ) where, for ; = 1, . . . , A and for C ≥ 0,

*
(=)
;
(C) =

=∑
8=1

∫ C

0
�
(=)
8,;
(B)3{# (=)

8
(B) − �(=)

8
(B)}.

Suppose for each ;, ;′ ∈ {1, . . . , A} and for all C > 0:

〈* (=)
;
,*
(=)
; ′ 〉(C) =

=∑
8=1

∫ C

0
�
(=)
8,;
(B)� (=)

8,; ′ (B)3�
(=)
8
(B) (1.4)

P→ �;; ′ (C), as =→∞ (1.5)

and

〈* (=)
;,Y
,*
(=)
;,Y
〉(C) =

=∑
8=1

∫ C

0
{� (=)

8,;
(B)}2�{|� (=)

8,;
(B) | > Y}3�(=)

8
(B)

P→ 0 as =→∞ for any Y > 0.

Then

(* (=)1 , . . . ,*
(=)
A )

3→ (,∗1 , . . . ,,
∗
A ) in (� [0, g])A as =→∞.

1.4 Recurrent Event

As briefly mentioned in the introduction, we are often interested not only in a failure time but

event that could happen more than once. Such an event is called recurrent event. For instance, in a

carcinogenicty experiment on the times to the development of mammary tumors for rats ([21]), the

rats can develop more than one tumor. The data is then a collection of the times at which the tumors

are detected, denoted by {C8 9 : 8 = 1, . . . , 9 = 1, . . . , =8} for a sample size of =, where =8 is the total

number of tumors detected for rat 8. More examples are given in [9] and the references therein.

The information in C8 9 ’s can be summarized using the counting process notation by denoting #8 (C)

to be the number of events occur in [0, C] for any C.

Let {FC}C≥0 be a filtration where # is adapted to, where FC can be understood as the history of

6



the process (together with other processes that could influence it) accumulate up to and including

time C. As a generalization of hazard function defined in (1.2), the intensity function corresponding

to a generally counting process # can be defined as

_(C |FC−) = lim
ΔC↓0

1
ΔC
P(# ((C + ΔC)−) − # (C−) = 1|FC−).

In words, _(C |FC−) is the instantaneous probability of an event occurring at C, conditional on the

process history.

1.4.1 Likelihood for a Single Event Type

Given = events occur at times C1 < C2 < . . . < C= over the time interval [0, 1], the probability

density for a process with intensity function _(C |FC−) conditional on F0 is

=∏
9=1
_(C 9 |FC 9−) · exp

{
−

∫ 1

0

_(D |FD−)3D
}
. (1.6)

To see this, consider a partition 0 = D0 < D1 < . . . < D" = 1 of [0, 1], where each interval

[D8, D8+1] contains at most one event time and {C1, . . . , C=} ⊂ {D0, . . . , D"}. Then

P(# (D1) = =(D1), . . . , # (D") = =(D") |F0) (1.7)

=

"∏
8=0
P(# (D8) = =(D8) |FD8−)

=

"∏
8=0

{
P(Δ# (D8) = 1|FD8−)Δ# (D8)P(Δ# (D8) = 0|FD8−)1−Δ# (D8)

}
,

=

=∏
8=1
P(Δ# (C8) = 1|FC8−)

"∏
8=0:D8∉{C1,...,C=}

P(Δ# (D8) = 0|FD8−)1−Δ# (D8) .

7



where Δ# (D8) = # (D8+1−) − # (D8−) is the number of events in [D8, D8+1). From the definition of

intensity function and the assumption that events cannot occur simultaneously, we have

P(Δ# (D8) = 0|FD8−) = 1 − _(D8 |FD8−)ΔD8 + >(ΔD8).

P(Δ# (D8) = 1|FD8−) = _(D8 |FD8−)ΔD8 + >(ΔD8).

Therefore, (1.7) equals

"∏
8=0:D8∈{C1,...,C=}

{_(D8 |F (D8−))ΔD8 + >(ΔD8)}
"∏

8=0:D8∉{C1,...,C=}
{1 − _(D8 |FD8−)ΔD8 + >(ΔD8)}.

Dividing the above expression by
∏"
8=0:D8∈{C1,...,C=} ΔD8, we have

=∏
8=1

_(C8 |F (C8−))
"∏
8=0
{1 − _(D8 |FD8−)ΔD8 + >(ΔD8)}{1 + >(1))}.

Letting " → ∞ such that maxA ΔDA → 0, we have (1.6). Note that (1.6) holds for any = ≥ 0.

Therefore, in particular, the likelihood when there is no event in [0, 1] is

exp
{
−

∫ 1

0

_(D |FD−)3D
}
.

In the case when we have external covariate processes, we shall assume that f-algebra F0 have

already included them. See also [2] for a more general and rigorous derivation of the likelihood.

1.5 Multitype Recurrent Event

Now, suppose that we have more than one type of event, then each of them correspond to

a counting process. When we consider them jointly, we have a multivariate counting process.

Formally, a �-variate process {#1, . . . , #�} is called a multivariate counting process if each # 9 ,

9 = 1, . . . , �, is a counting process and no two component processes jump at the same time.

An important fact about a multivariate counting process with continuous compensators is that the

8



corresponding martingales "8 and " 9 are orthogonal as shown in the following theorem.

Theorem 4 (Theorem 2.5.2 in [19]). Let {#1, . . . , #�} be a multivariate counting process and for

9 = 1, . . . , �, let � 9 be the compensator of # 9 . Assume that each � 9 is a continuous process. Let

"8 = #8 − �8. Then 〈" 9 , " 9 〉 = � 9 and 〈"8, " 9 〉 ≡ 0 a.s. for 8 ≠ 9 .

1.5.1 Likelihood for Multitype Recurrent Event

Now, we consider the situation when we have � types of events. Let # (C) = (#1(C), . . . , #� (C))′,

where # 9 (C) denote the number of type 9 events occurring over the interval [0, C] be a multivari-

ate counting process adapted to the filtration {FC}. It should be noted that all the components of

the counting process are adapted to the common filtration {FC}. The intensity function for # 9 is

defined as

_ 9 (C |FC−) := lim
ΔC↓0

1
ΔC
P(# 9 ((C + ΔC)−) − # 9 (C−) = 1|FC−).

We also assume that at most one event can occur at any given time, with

P(Δ# 9 (C) = 1|FC−) = _ 9 (C |FC−)ΔC + >(ΔC),

P(Δ#·(C) = 0|FC−) = 1 −
�∑
9=1
_ 9 (C |FC−)ΔC + >(ΔC),

P(Δ#·(C) ≥ 2|FC−) = >(ΔC),

where Δ#·(C) :=
∑�
9=1 Δ# 9 (C). Let C 9 : , : = 1, . . . , = 9 denote the times of type 9 events over [0, 1]

for 9 = 1, . . . , �. To derive the likelihood of observing T := {C 9 : : : = 1, . . . , = 9 , 9 = 1, . . . , �},

consider a partition 0 = D0 < D1 < . . . < D" = 1 of [0, 1], where each interval [D8, D8+1] contains

9



at most one event time and T ⊂ {D0, . . . , D"}. Then

P(# (D1) = =(D1), . . . , # (D") = =(D") |F0) (1.8)

=

"∏
8=0
P(# (D8) = =(D8) |FD8−)

=

"∏
8=0

�∏
9=1

{
P(Δ# 9 (D8) = 1|FD8−)Δ# 9 (D8)P(Δ# 9 (D8) = 0|FD8−)1−Δ# 9 (D8)

}
,

=

�∏
9=1

= 9∏
:=1
P(Δ# 9 (C 9 : ) = 1|FC 9:−)

"∏
8=0:D8∉T

P(Δ# 9 ·(D8) = 0|FD8−).

=

�∏
9=1

= 9∏
:=1
{_ 9 (C 9 : |FC 9:−)ΔC 9 : + >(ΔC 9 : )}

"∏
8=0:D8∉T

{
1 −

�∑
9=1
_8 9 (D8 |FD8−)ΔD8 + >(ΔD8)

}
.

Now, dividing the last expression by
∏�

9=1
∏= 9

:=1 ΔC 9 : and taking the limit as " → ∞ such that

max8 ΔD8 → 0, we obtain

! =

�∏
9=1

= 9∏
:=1

_ 9 (C 9 : |FC 9:−) exp
{
−

�∑
9=1

∫ 1

0

_ 9 (D |FD−)3D
}
.

By writing

! =

�∏
9=1

[ = 9∏
:=1

_ 9 (C 9 : |FC 9:−) exp
{
−

∫ 1

0

_ 9 (D |FD−)3D
}]
,

we see that the type-specific intensity functions _ 9 ’s are functionally independent. If the intensity

functions do not share the same parameters, then estimation could be performed separately by

maximum likelihood.

As a result of the discussion above, the event processes are mutually independent (conditional

on the covariates). However, it is usually not the case that the covariates could explain all the

association between different event types. Furthermore, in many cases, there could be unobserved

covariate or latent effects in the processes. As discussed in [50], a routine use of random-effects

model for multivariate failure time data is recommended. Let \ denote the random effect. We

10



enlarge our original filtration FC by including \ in F0. In this way, the likelihood becomes

! =

∫
\

�∏
9=1

[ = 9∏
:=1

_ 9 (C 9 : |FC 9:−) exp
{
−

∫ 1

0

_ 9 (D |FD−)3D
}]
k(\; W)3\,

where k is the density of \ and W is its variance component. Thus, the event processes are no

longer independent conditional on the covariates and the type-specific intensity functions are no

longer functionally independent in the likelihood.

1.6 Poisson Process

The Poisson process is considered canonical when modeling count data over time. It can be

defined mathematically in various equivalent ways. Using intensity function, a Poisson process is

the one which satisfies

_(C |FC−) = d(C), C > 0,

for some nonnegative integrable function d. When d(C) ≡ d, the process is called homogeneous;

otherwise, it is called inhomogeneous. Let # be a counting process with intensity function d(·).

Define `(C) :=
∫ C

0 d(D)3D for C > 0. The Poisson process satisfies the following properties:

(i) # (C) − # (B) ∼ Poisson(`(C) − `(B)), for 0 ≤ B < C;

(ii) # (C1) − # (B1) and # (C2) − # (B2) are independent if (B1, C1] ∩ (B2, C2] = ∅.

For a counting process, we define the mean function by C ↦→ E(# (C)) and the rate function by

C ↦→ 3
3B
E(# (B)) |B=C . For a Poisson process, the mean function is `(C) and the rate function is equal

to the intensity function d(C). In general, the rate function is not equal to the intensity function as

3# (C) is not independent of FC−.

A result that is particular useful for simulating an inhomogeneous Poisson process is the fol-

lowing. Let {# (C) : C ≥ 0} be a Poisson process with mean function `(C). Define the time

change B = `(C) and define the process {#∗(B) : B ≥ 0} by #∗(B) = # (`−1(B)) for B > 0. Then

{#∗(B) : B ≥ 0} is a homogeneous Poisson process with rate function d∗(B) = 1.

11



1.7 Covariates

In survival and event history analysis, we are often interested in relating the process with co-

variates. In general, covariates have both fixed covariates and time-varying covariates. Examples

of fixed covariates are age, gender and indicator representing the group. Examples of time-varying

covariates are patient’s measurements at different times. We shall use - (·) to denote a vector of

covariate processes for fixed effects and / (·) to denote a vector of covariate processes for random

effects. An important distinction with a time-varying covariate is whether it is external or internal.

We define a time-varying covariate to be external if it is independent of the recurrent event process

under consideration. A time-varying covariate is internal if it is not external. Examples of inter-

nal covariate process are whether one experienced the event before time C and the total number of

events experienced before time C. See also Chapter 6 in [27] for more details.

1.8 Regression Models

1.8.1 Cox Proportional Hazards Model

For right-censored survival data with covariates, we observe ()̃ , X, -), where )̃ = min(),*)

is the minimum of a failure time and a censoring time, X = � () ≤ *) is the indicator of the event

that failure has been observed and - is a vector of covariates. Using counting process notation,

the information contained in ()̃ , X) is the same as that contained in # (C) = � ()̃ ≤ C, X = 1) and

. (C) = � ()̃ ≥ C). As a result, there are two approaches to censored data regression models. The

traditional approach, which is also used by [10], specifies that the conditional hazard function is

_(C |-) = lim
ΔC↓0

1
ΔC
P(C ≤ ) < C + ΔC |) ≥ C, -).

Hence, for small values of ΔC,

_(C |/)ΔC ≈ P(C ≤ ) < C + ΔC |) ≥ C, -).

12



The interpretation is that _(C |-)ΔC is approximately the conditional probability of observing a

failure in [C, C + ΔC) given - and no failure before C. The Cox proportional hazards model ([10])

assumes that

_(C |-) = _0(C)4V
) - .

As ((C |-) = 4−
∫ C
0 _(D |-)3D, the proportional hazards model in terms of the conditional survival

function is ((C |-) = {(0(C)}4
V) -

, where (0(C) = 4−
∫ C
0 _(D)3D.

1.8.2 General Intensity-based Regression

A more general modeling approach is to based on the Doob-Meyer decomposition and by

modeling the compensator as follows. Define the right-continuous filtration {FC} by

FC := f{- (D), # (D), . (D+) : 0 ≤ D ≤ C}.

From the Doob-Meyer decomposition, there exists a unique predictable process � such that # − �

is a martingale. Therefore, heuristically, we have

E(3# (C) |FC−) = E(3�(C) |FC−) = 3�(C),

because � is predictable. From this equation, we see that 3�(C) is the rate of change for # condi-

tional on the information up to C−. If we assume that � is absolute continuous with

�(C) =
∫ C

0
; (B)3B

for some random function ;, then we can model ; instead. The process � and ; are called the

cumulative intensity function and intensity function for # respectively. The multiplicative intensity

model or the proportional intensity model specifies that

�(C) =
∫ C

0
4V

) - (B). (B)_0(B)3B,

13



where _0 is a so-called baseline intensity function. Note that as long as . and - are predictable, �

is predictable. In this case, the intensity function is therefore

_(C |FC−) = . (C)_0(C)4V
) - (C) .

This is the formulation used in [3]. Under some regularity conditions, we also have

lim
ΔC↓0

1
ΔC
P(# (C + ΔC) − # (C) |FC) = _(C+).

This provide an interpretation for the approach that models the compensator directly.

1.8.3 Semiparametric Models and Partial Likelihood

In the Cox proportional hazards model, the baseline function _0 is fully unspecified while

the regression coefficients belong to the Euclidean space, therefore, it is a semiparametric model.

Inference is usually based on the “partial likelihood". The partial likelihood could be derived as a

profile likelihood from the full likelihood which is described below. First, we consider the case of

right-censored survival data {()̃8, X8, -8) : 8 = 1, . . . , =} with hazard function _8 (C) = _8 (C |FC−) =

_0(C)4V
) -8 (C) and denote its corresponding survival function by (8. The likelihood is

=∏
8=1

_8 ()̃8)X8(8 ()̃8) =
=∏
8=1
{_0()̃8)4V

) -8 ()̃8)}X84−
∫ )̃8
0 4V

) -8 (C)3Λ(C) .

The maximum of this function does not exists if Λ(·) is restricted to be absolutely continuous.

Thus we allow Λ(·) to be any increasing right-continuous function and replace _(C) with the jump

size of Λ at time C, denoted by Λ{C}. We then maximize the modified log-likelihood function

log != (Λ, V) :=
=∑
8=1

X8 [logΛ{)̃8} + V)-8 ()̃8)] −
=∑
8=1

∫ )̃8

0
4V

) -8 (C)3Λ(C),
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over Λ and V. The maximizer of Λ can be seen to be a step function with jumps at -8’s. Hence,

∫ )̃8

0
4V

) -8 (C)3Λ(C) =
∑
9 :)̃ 9≤)̃8

Λ{)̃9 }4V
) -8 ()̃ 9 ) .

Therefore,

log != (Λ, V) =
=∑
8=1

X8 [logΛ{)̃8} + V)-8 ()̃8)] −
∑
9 :)̃ 9≤)̃8

Λ{)̃9 }4V
) -8 ()̃ 9 ) . (1.9)

Assume there are no ties in the data {)̃1, . . . , )̃=}. Denote Λ8 := Λ{-8}. Then,

m log != (Λ, V)
mΛ:

=
X:

Λ:
−

=∑
8=1

� ()̃8 ≥ )̃: )4V
) -8 ()̃: ) .

Setting m log ! (Λ,V)
mΛ:

= 0, we hobtain

Λ: =
X:∑=

8=1 � ()̃8 ≥ )̃: )4V
) -8 ()̃: )

. (1.10)

From (1.9) and (1.10), we have

log != (V) :=
=∑
8=1

X8

(
log

X8∑=
:=1 � ()̃: ≥ )̃8)4V

) -: ()̃8)
+V)-8 ()̃8)

)
−

=∑
8=1

∑
9 :)̃ 9≤)̃8

X 94
V) -8 ()̃ 9 )∑=

:=1 � ()̃: ≥ )̃9 )4V
) -: ()̃ 9 )

.

The second term on the RHS of the the above equation equals

=∑
8=1

∑=
9=1 � ()̃9 ≤ )̃8)X 94V

) -8 ()̃ 9 )∑=
:=1 � ()̃: ≥ )̃9 )4V

) -: ()̃ 9 )
=

=∑
9=1
X 9

∑=
8=1 � ()̃9 ≤ )̃8)4V

) -8 ()̃ 9 )∑=
:=1 � ()̃: ≥ )̃9 )4V

) -: ()̃ 9 )
=

=∑
9=1
X 9 .
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Therefore,

!= (V) = 4
−∑=

9=1 X 9
=∏
8=1

(
4V

) -8 ()̃8)∑=
:=1 � ()̃: ≥ )̃8)4V

) -: ()̃8)

)X8
∝

=∏
8=1

(
4V

) -8 ()̃8)∑=
:=1 � ()̃: ≥ )̃8)4V

) -: ()̃8)

)X8
.

The partial likelihood is

%! (V) :=
=∏
8=1

(
4V

) -8 ()̃8)∑=
:=1 � ()̃: ≥ )̃8)4V

) -: ()̃8)

)X8
.

Now, suppose we have recurrent event data {#8 (C), .8 (C), -8 (C) : 0 ≤ C ≤ g8, 8 = 1, . . . , =} with

intensity function _8 (C |FC−) = .8 (C)_0(C)4V
) -8 (C) . Let C8 9 ’s denote the event times. The likelihood is

! (Λ, V) =
=∏
8=1

=8∏
9=1
_8 (C8 9 )4−

∫ g8
0 4V

) -8 (C).8 (C)3Λ(C) .

Similarly to the case for right-censored survival data, we only consider right-continuous step func-

tions Λ with jumps at the event times. Then log-likelihood function is

log ! (Λ, V) =
=∑
8=1

=8∑
9=1
[logΛ{C8 9 } + V)-8 (C8 9 )] −

=∑
8=1

∫ g8

0
4V

) -8 (C).8 (C)3Λ(C). (1.11)

Let {B 9 : 9 = 1, . . . , =∗} be the set of all event times, where =∗ :=
∑=
8=1 = 9 . Then

∫ g8

0 .8 (C)4V
) -8 (C)3Λ(C) =∑

9 :B 9≤g8 .8 (B 9 )4V
) -8 (B 9 )Λ{B 9 }. Denote Λ: := Λ{B: }. Then,

m log ! (Λ, V)
mΛ:

=
1
Λ:
−

=∑
8=1
.8 (B: )4V

) -8 (B: ) .

Setting m log ! (Λ,V)
mΛ:

= 0, we obtain

Λ: =
1∑=

;=1.; (B: )4V
) -; (B: )

. (1.12)
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From (1.11) and (1.12), we have

log ! (V) =

=∑
8=1

=8∑
9=1

{
log

1∑=
;=1.; (C8 9 )4V

) -; (C8 9 )
+ V)-8 (C8 9 )

}
−

=∑
8=1

∑
9 :B 9≤g8

.8 (B 9 )4V
) -8 (B 9 )∑=

;=1.; (B 9 )4V
) -; (B 9 )

.

Note that
=∑
8=1

∑
9 :B 9≤g8

.8 (B 9 )4V
) -8 (B 9 )∑=

;=1.; (B 9 )4V
) -; (B 9 )

=

=∗∑
9=1

∑=
8=1.8 (B 9 )4V

) -8 (B 9 )∑=
;=1 4

V) -; (B 9 )
= =∗.

Hence, we have the partial likelihood

%! (V) :=
=∏
8=1

=8∏
9=1

4V
) -8 (C8 9 )∑=

;=1.; (C8 9 )4V
) -8 (C8 9 )

.

The log partial likelihood can be written as

log PL(V) =
=∑
8=1

∫ ∞

0

[
V)-8 (C) − log

{ =∑
:=1

.: (C)4V
) -: (C)

}]
3#8 (C).

The score function is

m log PL(V)
mV

=

=∑
8=1

∫ {
-8 (C) −

∑=
:=1.: (C)4V

) -: (C)-: (C)∑=
:=1.: (C)4V

) -: (C)

}
3#8 (C),

which can be written as

m log PL(V)
mV

=

=∑
8=1

∫ {
-8 (C) −

∑=
:=1.: (C)4V

) -: (C)-: (C)∑=
:=1.: (C)4V

) -: (C)

}
3"8 (C), (1.13)

where "8 (C) := #8 (C) − �8 (C) and �8 (C) :=
∫ C

0 _0(B)4V
) -8 (B).8 (B)3B. Note that "8 is a local

square-integrable martingale and the score process is a martingale transform. Therefore, mar-

tingale method is available for establishing the asymptotic theory for the proportional intensity
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model. With these notations, the score function can be written as

m log PL(V)
mV

=

=∑
8=1

∫ {
-8 (C) −

(
(1)
= (V, C)
(
(=)
0 (V, C)

}
3#8 (C).

The observed Fisher information is

−m
2 log PL(V)
mVmV)

=

∫ [
(
(2)
= (V, C)
((0) (V, C)

−
{
(
(1)
= (V, C)
(
(0)
= (V, C)

}2]
3#8 (C).

An important fact about the log partial likelihood is that it is a concave function in V. To see that,

define

+= (V, C) :=
(
(2)
= (V, C)
(
(0)
= (V, C)

−
{
(
(1)
= (V, C)
(
(0)
= (V, C)

}2

and

�= (V, C) :=
(
(1)
= (V, C)
(
(0)
= (V, C)

.

Note that += can be written as

+= (V, C) =
=−1 ∑=

8=1{-8 (C) − �= (V, C)}⊗2.8 (C)4V
) -8 (C)

(
(0)
= (V, C)

, (1.14)

where 0⊗2 = 00) for any vector 0. Therefore, the Hessian matrix of the log partial likelihood is

negative semidefinite and hence the log partial likelihood is concave.

1.8.4 Additive Models

An alternative to the Cox proportional hazards model or the multiplicative hazard model is the

additive hazards model. In fact, both models belong to a family of hazard-based regression models

where the conditional hazard function of the survival time ) takes the form

_(C |-) = ! (_0(C), V)- (C)),
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where _0(C) is a completely unspecified function and ! is a known function to be specified. The

choice of ! (G, H) = G4H yields the Cox proportional hazards model and the choice ! (G, H) = G + H

gives the following additive hazards model

_(C |-) = _0(C) + V)- (C).

The above model was studied by [4], [11], [43] and [32] among others. A related but fully non-

parametric additive hazards model was originally proposed by [1], where the conditional hazard

takes the form

_(C |-) = V(C))- (C);

[1] and others have developed least squares estimation of the integrated regression coefficients

�(C) =
∫ C

0
V(B)3B.

A class of general additive-multiplicative hazards models is also studied in [33]:

_(C |-,,) = 6(V), (C)) + _0(C)ℎ(W)- (C)),

where (,) , -) )) is a vector of covariates, (V) , W) )) is a vector of unknown regression regression

parameters, 6 and ℎ are known link functions and _0 is again an unspecified “baseline hazard

function" under 6 ≡ 0 and ℎ ≡ 1.

1.8.5 Marginal Models

In the proportional intensity model, it is assumed that

(a) E(3# (C) |FC−) = E(3# (C) |- (C));

(b) E(3# (C) |- (C)) = exp{V)0 - (C)}_0(C). (C)3C.
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The first assumption postulates that the influence of prior events on the future recurrence, if there

is any, depends only on the covariate process - at C and the second assumption specifies how

the covariate process affects the instantaneous rate of # . To relax Assumption (a), we can remove

Assumption (a) and take only Assumption (b). Such an estimation method is called a robust method

because it allows arbitrary dependence structure among recurrent events. For example, if the true

intensity function is given by

_(C |\) = \4V)0 / (C)_0(C),

where \ is an unobserved positive random effect with mean 1 that is independent of / . Then,

the proportional intensity model does not hold but Assumption (b) is satisfied. [31] provided a

rigorous justification of such robust procedures through empirical process theory. Another robust

method for analyzing recurrent events is the method based on multivariate failure time data (see

[48]).

1.8.6 Frailty Models and Random Effects Models

To accommodate heterogeneity across individuals, one may consider a model with random ef-

fects. For example, for a Poisson model with random effect, a conditional subject-specific intensity

function is

_8 (C |FC−, \8) = lim
ΔC↓0

1
ΔC
P(# ((C + ΔC)−) − # (C−) = 1|FC−, \8) = \8d8 (C),

where \8 is an unobserved random effect, assumed to have mean 1 and variance q. Let `8 (C) =∫ C

0 d8 (D)3D. Then,

E(#8 (C)) = `8 (C)

Var(#8 (C)) = `8 (C) + `2
8 (C)q

Cov(#8 (B1, C1), #8 (B2, C2)) = q`8 (B1, C1)`8 (B2, C2).
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Therefore, the (unconditional) event process is not a Poisson process. If \8 were observed, the

likelihood of the data (=8, C81, . . . , C8=8 , \8, .8) for subject 8 is

=8∏
9=1
{\8d8 (C8 9 )} exp

{
−

∫ ∞

0
.8 (B)\8d8 (B)3B

}
.

Because \8’s are unobserved, the observed likelihood is

∫ ∞

0

=8∏
9=1
{\8d8 (C8 9 )} exp

{
−

∫ ∞

0
.8 (B)\8d8 (B)3B

}
3� (\8; q).

More generally, if q is a random vector with distribution function � and parameter q and if

_8 (C |FC−, \8) = _0(C)4V
) - (C)+\)

8
/ (C) , (1.15)

where - and / are covariates, then the observed likelihood for = subjects is

=∏
8=1

∫ ∞

0

=8∏
9=1
{_0(C8 9 )4V)- (C8 9 ) + \)8 / (C8 9 )}

× exp
{
−

∫ ∞

0
.8 (B)_0(B)4V

) - (B)+\)
8
/ (B)3B

}
3� (\8; q).

Clearly, if we maximize the above likelihood over any function _0, the MLE does not exist. A

possible remedy for this is to consider only increasing right-continuous Λ and replace replace _(C)

with the jump size of Λ at time C as in the argument for obtaining the partial likelihood by profile

likelihood. In [51], a more general semiparametric transformation model with random effects is

considered:

Λ(C |-, /; \) = �
( ∫ C

0
_(B)4V) - (B)+\) / (B)3B

)
,

where� is a three times continuously differentiable and strictly increasing transformation function

with � (0) = 0 and � (∞) = ∞. When � (G) ≡ G, we have (1.15).

In general, marginal models and random-effects models are two distinct approaches to model
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event history data. However, random-effects models have several important advantages over marginal

models. First, with random-effects models, we can predict future events based on individual’s event

history. Secondly, we can make use of the nonparametric maximum likelihood estimation (see [50]

and [52]), which yields asymptotically efficient estimators. Thirdly, the dependence structure from

the random effects and the random effects themselves could be of scientific interest, as illustrated

in the multivariate proportional intensity factor model proposed in Chapter 2, where the factors

could have interpretation.
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Chapter 2: A Multivariate Proportional Intensity Factor Model for

Multivariate Counting Processes

2.1 Introduction

This chapter is motivated by the need for statistical modeling and analysis of process data,

which refer to sequences of events of different types and are commonly encountered in scientific

studies when a subject undergoes a series of the same and different types of events. Analyzing

such data is complex due to the dynamic nature of both the events of interest and the covariate

processes. Furthermore, the data are often heterogeneous and contain a large number of different

types of events and covariate processes. Our main goal of this article is to propose a model for the

joint analysis of such data, motivated by the emerging computed-based assessment in education.

Computer-based assessments, such as simulation-based or scenario-based assessments, that

involve interactive environments have become increasingly popular. For example, the Organiza-

tion for Economic Cooperation and Development (OECD) has been administrating interactive and

scenario-based questions in the Program for International Student Assessment (PISA) and the Pro-

gramme for the International Assessment of Adult Competencies (PIAAC). In the US, the National

Assessment of Educational Progress (NAEP) has been using interactive computer tasks in science

and in technology and engineering literacy in recent years [5]. At the same time, technical ad-

vances now allow the action sequences together with the timestamps of solving a problem to be

recorded in log-files. These process data could provide new insights on individual characteristics

as traditional task analysis and scoring normally focus only on the final task outcomes. These may

include, for example, test taker’s motivation, engagement, persistence and planning. Because of

the potential benefits and the additional information that could be obtained from analyzing process

data, research related to it has received considerable attention recently [23, 25, 54, 39, 34]. For
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instance, [29] used response times to filter for test taker motivation and [22] measured student en-

gagement in collaboration using process data. However, few approaches have considered the joint

statistical modeling of the process data that include all the events together with the timestamps.

Formally, a process data is of the form {(01, C1), . . . , (0<, C<)}, where 08 ∈ J is the 8th event,

C8 ∈ R+, with C8 < C8+1, is the corresponding timestamp, < is the number of events and J is a

discrete set. Without loss of generality, we can assume that J = {1, . . . , �} with � equals the total

number of possible event types. In this chapter, we are interested in the situation where we have

independent observations from = subjects.

A natural way for representing process data is the use of multivariate counting processes. There

are several methods available for analyzing multivariate event time data [46, 37, 48, 28, 30, 49, 45].

These methods mostly include the use of marginal models or frailty (or random effects) models.

On the other hand, in educational and psychological measurement, applications often make use

of factor analysis or multidimensional item response theory and find interpretation of the factors.

To handle more general multivariate event time data and to explore a low-dimensional structure

of the counting processes and covariates with the same spirit of factor models, we specify that the

intensity function of the 9 th event type of the 8th subject to be

_ 9 (C |-8 9 , /8 9 ; \8) = _ 90(C). ∗8 9 (C)4
V)
9
-8 9 (C)+\)8 �)9 /8 9 (C) , (2.1)

where 8 indexes subject, 9 indexes event types, _ 90 is the event-specific baseline hazard function

that is common to all subjects, . ∗
8 9

is an indicator process, -8 9 and /8 9 are !1 9 - and !2 9 -dimensional

covariate processes associated with the 9 th event type for the fixed and random effects respectively,

V 9 is a vector of regression coefficients for the event-specific fixed effects, \8 is the subject-specific

 -dimensional random effects, and � 9 is an event-specific !2 9 ×  factor loading matrix. When

 < !2 9 , dimension reduction of the random coefficients is achieved. Here, we assume the random

effects following a multivariate normal distribution: \ ∼ # (0,Σ), with density q(\; 0, W) where W

is the vector of the variance components.
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It is instructive to note that Model (2.1) contains many well-known models as special cases.

(i) When !2 = 0 and � = 1, it reduces to the standard univariate proportional hazard model [10]

_(C |-8) = _0(C)4V
) -8 (C) .

(ii) When !2 = 0, it reduces to the multivariate proportional hazard model

_ 9 (C |- 9 ) = _ 90(C)4V
)
9
-8 9 (C) .

(iii) When  = !2, � is the identity matrix, it reduces to a proportional hazard model with

random effects

_ 9 (C |-8, /8; \8) = _ 90(C)4V
) -8 9 (C)+\)8 /8 9 (C) , 9 = 1, . . . , �.

In particular, when _ 90(C) ≡ _0(C), it is a model for clustered survival data [45].

(iv) When !2 = 1, /8; (C) ≡ 1,  = 1, � = 1, it reduces to the standard frailty model [46]

_(C |-8; \8) = _0(C)4V
) -8 (C)+\8 = \̃8_0(C)4V

) -8 (C) ,

where \̃8 := 4\8 .

(v) When !2 = 1, /8; (C) ≡ 1,  = 1, it reduces to a shared frailty model

_ 9 (C |-8; \8) = _ 90(C)4V
)
9
-8 (C)+0 9\8 , 9 = 1, . . . , �.

(vi) When !1 = 0 and !2 = 1 with /8 (C) ≡ 1, it reduces to a factor model for multivariate

counting processes

_ 9 (C |-8; \8) = _ 90(C)40
)
9
\8 .
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In particular, when the baseline functions are all constant, it becomes a Poisson factor model;

see, for example, [47].

For inference of the parameters, we first discuss the method of nonparametric maximum like-

lihood estimator (NPMLE) in estimating the model parameters. We establish that the NPMLE is

consistent, asymptotically normal and asymptotically efficient with covariance matrix that can be

consistently estimated by the inverse information matrix or the profile likelihood method under

some suitable regularity conditions.

In practice, we do not know which covariates should be included as the fixed effects and be

loaded on which factors. Therefore, variable selection in both the fixed and random effects are

usually necessary. For variable selection, the best subset selection procedure along with various

information criteria, such as the Akaike information criterion and the Bayesian information cri-

terion, become computationally infeasible with even moderate number of parameters. The least

absolute shrinkage and selection operator (lasso) proposed by [44] has a much more tractable com-

putation method [20] and has been applied to various models. In the same spirit of lasso, penalized

likelihood with nonconcave penalty functions has been proposed to select significant variables [14,

15, 16, 53]. The resulting penalized estimators are shown to have the oracle properties. That is, the

estimators perform as well as if the correct model were known. In this paper, we adopt the same

approach by imposing a nonconcave penalty on the log-likelihood to select the significant variables

for both the fixed and random effects. Note that the literature mentioned above focuses on variable

selection of the fixed effects. For variable selection of the random effects, sparse estimation in the

factor loadings have been studied in [8], [36] and [26] for the factor analysis models and [42] for

the multidimensional item response theory models. The above papers study sparse factor loading

which deal mainly with continuous and binary data type while our proposed method deals with

process data, which is a much more complex data type.

Here is the outline of this chapter. In Section 2.2, we discuss nonparametric maximum likeli-

hood estimation. In Section 2.3, we establish a variable selection procedure via penalized likeli-

hood for parametric baseline intensity functions. Simulation studies are shown in Section 2.4. A
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real data application is given in Section 2.5. In Section 2.6, we conclude with some remarks and

extensions. All the technical proofs are relegated to the Appendix.

2.2 Nonparametric Maximum Likelihood Estimation

2.2.1 Setting

Recurrent event data are often subject to right-censoring. Therefore, we consider our model

when the data are possibly right-censored. For a random sample of size =, the data consist of

{#8 (C), .8 (C), -8 (C), /8 (C) : C ∈ [0, g], 8 = 1, . . . , =}, where they are all vector-valued processes.

For example, #8 (C) = (#81(C), . . . , #8� (C))) and .8 (C) = (.81(C), . . . , .8� (C))) . The process .8 9

is defined by .8 9 (C) = � (�8 ≥ C). ∗
8 9
(C) and #8 9 (C) = #∗

8 9
(C ∧ �8 9 ), where �8 9 is the censoring

time. Let g be the duration of the study. We assume that the conditional probability of �8 9 > C

given {-8 9 (B), /8 9 (B), #∗8 9 (B) : B ∈ [0, g]} and \ depends only on {-8 9 (B), /8 9 (B); B ≤ C} and is

noninformative about (U,A), where U is the collection of all the finite dimensional parameters and

A = (Λ1, . . . ,Λ�). In addition, we assume that the conditional distribution of {- (C), / (C)} given

{- (B), / (B), # (B), . (B) : B < C} is noninformative about (U,A) The first assumption is coarsening

at random and the second assumption, which implies that no information on the parameters can be

extracted from the covariate processes, is a standard assumption in any regression analysis.

Under the above two assumptions, the log-likelihood function for (U,A) is

log
=∑
8=1

∫
\

�∏
9=1

[∏
C≤g

{
_ 90(C)4V

)
9
-8 9 (C)+\)8 �)9 /8 9 (C)

}3#8 9 (C)
× exp

{
−

∫ g

0
4
V)
9
-8 9 (C)+\)8 �)9 /8 9 (C).8 9 (C)3Λ 90(C)

}]
q (\; 0, W)3\,

where 3#8 9 (C) = #8 9 (C) −#8 9 (C−) denotes the jump of #8 9 at C. The maximum of this function does

not exist if we allow Λ to be absolute continuous. Thus, we replace _ 90(C) with the jump size of
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Λ 90 at time C, denoted by Λ 90{C} and maximize the modified log-likelihood function

;= (U,A) = log
=∑
8=1

∫
\

�∏
9=1

[∏
C≤g

{
Λ 90{C}4V

)
9
-8 9 (C)+\)8 �)9 /8 9 (C)

}3#8 9 (C)
× exp

{
−

∫ g

0
4
V)
9
-8 9 (C)+\)8 �)9 /8 9 (C).8 9 (C)3Λ 90(C)

}]
q (\; 0, W)3\. (2.2)

Clearly, the maximizer of != (U, ·) must be step functions Λ 9 with jumps at the observed event

times C8 9< (8 = 1, . . . , =; 9 = 1, . . . , �;< = 1, . . . , =8 9 , where =8 9 = #8 9 (g)).

2.2.2 Theoretical Results

Denote (U0,A0) to be the true value of (U,A). Let 3 be the length of U. We impose the

following regularity conditions on the model and data structures.

(D1) U0 lies in the interior of a compact set Θ ⊂ R3 and Λ′0 9 (C) > 0 for all C ∈ [0, g], 9 = 1, . . . , �.

(D2) With probability one, -8 9 ; (·) and /8 9 ; (·) are of bounded variation in [0, g] and are left-

continuous with bounded left- and right-derivatives in [0, g], for 9 = 1, . . . , �, ; = 1, . . . , ! 9 .

(D3) With probability one, P(�8 ≥ g |-8, /8) > X0 > 0 for some constant X0.

(D4) For each 9 = 1, . . . , �, if there exists a vector ` and a deterministic function 6(C) such that

6(C) + `)-8 9 (C) = 0 with probability 1, then ` = 0 and 6(C) = 0; For each 9 , ; = 1, . . . , �, if

there exists a matrix � such that /)
8 9
(C)�/8; (B) = 0 with probability 1, then � = 0.

(D5) There exists  rows in � := (�)1 , . . . , �
)
�
)) such that they form the  ×  identity matrix.

Conditions (D1) and (D2) are standard assumptions in semiparametric regression models in sur-

vival analysis. Condition (D3) means that there is a positive probability for the events to be ob-

served over the whole interval [0, g]. Conditions (D4) and (D5) ensure the model is identifiable

and the information matrix is nonsingular. The first condition in (D4) is standard in regression

analysis; the second condition in (D4) is due to the random coefficients. These are satisfied when
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the covariates are linearly independent. Condition (D5) is a standard assumption in factor analy-

sis when the covariance matrix in the random effects is unrestricted. This condition prohibit any

orthogonal transformation between the factor loadings and the random effects.

The following theorem states the consistency of Û= and Λ̂ 9 , 9 = 1, . . . , �.

Theorem 5. Under Conditions (D1)-(D4), |Û= − U0 | +
∑�
9=1 supC∈[0,g] |Λ̂ 9 (C) − Λ0 9 (C) |

0.B.→ 0.

To describe the asymptotic distribution, we need addition notations. For any set ) , the space

;∞()) is defined as the set of all uniformly bounded, real functions on ) . Let �+ [0, g] denote the

set of functions with bounded total variations on [0, g]. DefineV = {E ∈ R3 : |E | ≤ 1} and Q :=

{ℎ : | |ℎ | |+ [0,g] ≤ 1, ℎ(0) = 0}, where | |ℎ | |+ [0,g] is the total variation of ℎ(·) in [0, g]. Then Λ̂= 9 can

be considered as a bounded linear functional in ;∞(Q) by defining Λ̂= 9 (ℎ) =
∫ g

0 ℎ(C)3Λ̂= 9 (C) for

ℎ ∈ Q. We identify (Û= −U0, Â= −A0) as a random element in ;∞(V ×&�) through the definition

(Û= − U0))E +
∑�
9=1

∫ g

0 ℎ 9 (B)3 (Λ̂ 90 − Λ0 90) (B) for E ∈ V and ℎ 9 ∈ &.

Theorem 6. Under Conditions (D1)-(D5),
√
=(Û= − U0, Â= − A0)

3→ G in ;∞(V × &�), where

G is a continuous zero-mean Gaussian process. Furthermore, the limiting covariance matrix of

=1/2(Û= − U0) attains the semiparametric efficiency bound.

By Theorem 6, we know that
√
=(U= − U0) and

√
=(Λ̂ 90 − Λ0 90) are asymptotically normal. To

estimate their asymptotic variance, we can view (2.2) as a parametric log-likelihood with U and

Λ 90{C8 9<}( 9 = 1, . . . , �, 8 = 1, . . . , =, < = 1, . . . , =8 9 ) the parameters. Then, the observed infor-

mation matrix �= is the negative of the Hessian matrix of (2.2) with respect to U and Λ 90{C8 9<}’s

evaluated at Û= and Λ̂ 90{C8 9<}’s. The asymptotic variance of
√
=E) (Û=−U0)+

∑�
9=1

∫ g

0 ℎ 9 (B)3 (Λ̂ 90−

Λ0 90) (B) equals that of
√
=E) (Û= − U0) +

∑�
9=1

∑=
8=1

∑=8 9

<=1 ℎ 9 (C8 9<)Λ̂ 90(C8 9<), which can be consis-

tently estimated by =(E) , ℎ)1 , . . . , ℎ
)

� )�−1
= (E) , ℎ

)

1 , . . . , ℎ
)

� )) , where ℎ 9 is the vector consisting of the

values of ℎ 9 (·) at the observed event times, as shown in Theorem 7 below.
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Theorem 7. Under Conditions (D1)-(D5), �= is invertible for all large enough =, and

sup
E∈V,ℎ1,...,ℎ� ∈Q

����=(E) , ℎ)1 , . . . , ℎ)� )�−1
= (E) , ℎ

)

1 , . . . , ℎ
)

� ))

−AVar
[√
=

{
E) (Û= − U0) +

�∑
9=1

∫
ℎ 93 (Λ̂ 9 − Λ0 9 )

}]���� P→ 0,

where AVar denotes asymptotic variance.

Theorem 7 allows us to make inference about U and A. An alternative approach to estimating

the asymptotic covariance matrix of Û= is to use the profile log-likelihood function with the negative

second-order numerical difference of the profile log-likelihood function at Û= as stated in Theorem

8.

Theorem 8. Let %!= (U) be the profile log-likelihood function for U. Under Conditions (D1)-(D5),

for any Y= = $% (=−1/2) and any vector E,

−%!= (Û= + Y=E) − 2%!= (Û=) + %!= (Û= − Y=)
=Y2

=

P→ E)Σ−1E,

where Σ is the limiting covariance matrix of
√
=(Û=−U0). Furthermore, 2{%!= (U=)−%!= (U0)}

3→

j2
3
.

2.3 Variable Selection via Penalized Likelihood

2.3.1 Method

In some applications, we may want to include a large number of covariates in both the fixed

and random coefficients parts of the model. It is then important and challenging to determine

a subset of significant variables effectively and efficiently. Furthermore, a sparse factor loading

matrix will usually provide a better interpretation of the factor. In such applications, to reduce

computational burden, we consider parametric baseline function _ 9 (·; [ 9 ), where [ 9 is a finite
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dimensional parameter, in this section. The log-likelihood is

;= (U) = log
=∑
8=1

∫
\

�∏
9=1

[∏
C

{
_ 9 (C; [ 9 )4V

)
9
-8 9 (C)+\)8 �)9 /8 9 (C)

}3#8 9 (C)
× exp

{
−

∫ g

0
_ 9 (C; [ 9 )4V

)
9
-8 9 (C)+\)8 �)9 /8 9 (C).8 9 (C)3C

}]
q (\; 0, W)3\,

where U denotes all the parameters. We consider the following penalized likelihood

;=,? (U) = ;= (U) − =
{ �∑
9=1

!∑
;=1

?W (V 9 ;) +
�∑
9=1

!∑
;=1

 ∑
:=1

?W (0 9 ;: )
}
, (2.3)

where ?W (·) is a penalty function and W is the penalty parameter, for both variable selection and

estimation. In both theory and practice, we can choose different penalty functions and parameters.

Here, for simplicity, we have assumed that all the parameters share the same penalty function

and penalty parameter W. Note that we do not penalize the parameters in the baseline intensity

function as well as the variance components in the random effects. The penalized estimator is

defined as Û= = arg maxU ;=,? (U). As discussed in [14], a good penalty function should result in

an estimator with the properties of unbiasedness, sparsity and continuity. The smoothly clipped

absolute deviation (scad) penalty ([14]) satisfies all the three requirements, which is defined by

?′W (G) = W
{
� (G ≤ W) + (0W − G)+(0 − 1)W � (G > W)

}
for some 0 > 2 and G > 0. We adopt this penalty function in the application and choose 0 = 3.7 as

suggested by [14].

2.3.2 Computation Algorithm

For a specific value of W, to maximize (2.3), we could, in principle, apply the expectation-

maximization algorithm [12] by treating \8, 8 = 1, . . . , =, as the missing data. In the E-step,

we compute the expectation of the complete data log-likelihood with respect to the conditional
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distribution of the missing data given the observed data. In the present case, there is no closed

form expression for this conditional expectation. Hence, numerical approximation of the E-step

or stochastic versions of the expectation-maximization algorithm could be used instead. Here,

we describe the estimating procedure using the stochastic expectation-maximization algorithm [7]

with Metropolis algorithm [35] in the simulation step. In the stochastic E-step, we simulate \8

from its conditional distribution given the observed data. In the M-step, the resulting complete

data log-likelihood using the simulated \8 is maximized. In this M-step, we apply the coordinate

descent algorithm that is developed for the estimation for the generalized linear models with convex

penalties [20]. The stochastic expectation-maximization algorithm iterates between the stochastic

E-step and M-step until convergence. The details are in the appendix.

2.3.3 Theoretical Results

Since we assume a parametric baseline intensity function in this section, we have the follow-

ing additional condition for the identifiability of the model, which simply says that the baseline

intensity function is uniquely parameterized.

(D6) If _ 9 (C; [ 9 ) = _ 9 (C; [0 9 ) for all C, then [ 9 = [0 9 .

Write U0 = (U)10, U
)
20)

) and Û= = (Û)1 , Û
)
2 ). Without loss of generality, assume that U20 = 0. Let

�1(U10) be the Fisher information matrix knowing U20 = 0. Let 0= = max{?′W= ( |0 90 |) : 0 90 ≠ 0}.

Theorem 9 shows that there exists a local maximizer of the penalized log-likelihood that converges

at the rate =−1/2 + 0=. With the scad penalty functions, such a local maximizer is
√
=-consistent if

W= → 0.

Theorem 9. Under Conditions (D1)- (D6), if lim=→∞max{|?′′W= ( |U 90 |) : U 90 ≠ 0} = 0, then there

exists a local maximizer Û= of ;=,? (U) such that | |Û= − U0 | | = $? (=−1/2 + 0=).

We need additional notations to describe the oracle property. Let B be the number of non-zero

component in U0. Denote

Σ̃ = diag{?′′W= ( |U10 |), . . . , ?′′W= ( |UB0 |)}
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and

1 = (?′W= ( |U10 |)sgn(U10), . . . , ?′W= ( |UB0 |)sgn(UB0))) .

Theorem 10. Under Conditions (D1)- (D6), if the penalty function satisfies

lim inf
=→∞

lim inf
G→0+

?′W= (G)/W= > 0,

where W= → 0 and
√
=W= → ∞ as = → ∞, then the

√
= consistent local maximizers Û= = (Û1, Û2)

in Theorem 9 satisfy P(Û2 = 0) = 1 and

√
=(�1(U10) + Σ̃) (Û1 − U10 + (�1(U10) + Σ̃)−11) 3→ # (0, �1(U10)).

As a result of Theorem 10, with the scad penalty functions, the
√
=-consistent local maximizer

will satisfy Û2 = 0 with probability tending to 1 and
√
=(Û1 − U10) being asymptotically normal

with covariance matrix �−1
1 (U10) if W= → 0 and

√
=W= →∞.

2.3.4 Choice of regularization parameter

Let G ∈ R3 . Define S(G) to be the binary vector S(G) = (� (G1 ≠ 0), . . . , � (G3 ≠ 0)). For choos-

ing the regularization parameters W, we apply the Bayesian information criterion ([38]). Specifi-

cally, for each value of W, we can obtain a penalized estimator ÛW= and and S(0̂W=). The Bayesian

information criterion at this value of W is computed as

BIC(W) = arg max
U:S(U)=S(ÛW= )

{−2;=,? (U) + log(=)?}, (2.4)

where ? is the number of parameters. In practice, BIC(W) is evaluated at a set of grid points, G,

that are uniformly spaced in log-scale. The proposed W is chosen as W∗ = arg minW∈G BIC(W).
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2.4 Simulation Study

In this section, we perform simulation studies under a setting that is similar to the one in the

real data example. Specifically, consider a test item where the test taker is required to evalu-

ate information in some websites. A sample item similar to this one and the real data could be

found on the PIAAC website of The Organisation for Economic Co-operation and Development

(OECD). Two screenshots of the sample item are shown in Figure 2.1 and Figure 2.2 (Source:

http://www.oecd.org/skills/piaac/Problem%20Solving%20in%20TRE%20Sample%20Items.pdf).

Figure 2.1 shows the first page the test takers will see. They are required to access and evaluate

information relating to job search in a simulated web environment that is similar to the one in

the real world. In particular, they can click on the links and perform actions like going back and

forward. If they click on the second link “Work Links", it will link to the page as shown in Figure

2.2. The test takers could then click the button “Learn More" to obtain further information.

In the simulation setting, for simplicity, assume that there are 3 such websites and in each

website there is a further web link to another website that provide additional information about the

website. In the item, one can click on these links, go back and forward in the browser. To answer

the question, the test taker needs to click on a pull-down menu and select one of the 3 websites

as the answer. The test taker can finish the item by clicking the “Next" button and confirm if he

really wants to finish the item by answering “OK" or “Cancel". In total, there are 15 event types

(see Table 2.4). An example of the process data from this setting is given in Table 2.1. The data

is generated from our proposed model with covariate processes that include the information of the

past two events. To be specific, for the 8th subject, let -8; (C) = 1, for ; = 1, . . . , 14, if the last event

happened before time C is the ;th event type and -8; (C) = 0 otherwise. Also, let -8,;+14(C) = 1, for

; = 1, . . . , 3, if the last event is Back and the second last event is W;, for ; = 1, . . . , 3. The same

covariate processes are used for the fixed effects, the random effects, and across different event

types. That is, -8 9 ; (·) ≡ /8 9 ; (·) ≡ -8; (·) for each 9 = 1, . . . , �, ; = 1, . . . , !. For instance, using the

example in Table 2.1, -W2(C) = 1 when C ∈ [15, 25), -Back(C) = 1 when C ∈ [25, 28) ∪ [36, 42)
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and -W2, Back(C) = 1 when C ∈ [25, 28), where the subscripts 8 are suppressed and the names of

the event type are used for clarity. In the simulation setting, there are 23 nonzero parameters for

the fixed effects and there are 3 dimensions in the random coefficients, with 13 nonzero factor

loadings.

The focus of the simulation study is to assess the performance of the penalized estimator ob-

tained from the stochastic expectation-maximization algorithm together with choosing the tuning

parameter using the Bayesian information criterion. We will first evaluate the recovery of the true

structure by using the following criteria:

1. �0 = 1 if there exists a tuning parameter W such that the { 9 : ÛW
9
≠ 0} = { 9 : U 90 ≠ 0} and

{ 9 : ÛW
9
= 0} = { 9 : U 90 = 0}.

2. �1 = 1 if the tunning parameter W chosen using the Bayesian information criterion gives

{ 9 : ÛW
9
≠ 0} = { 9 : U 90 ≠ 0} and { 9 : ÛW

9
= 0} = { 9 : U 90 = 0}.

3. True positive rate:

TPR =
|{ 9 : Û 9 ≠ 0, U 90 ≠ 0}|
|{ 9 : U 90 ≠ 0}| .

4. False discovery rate:

FDR =
|{ 9 : Û 9 ≠ 0, U 90 = 0}|
|{ 9 : U 90 = 0}| .

For computing TPR and FDR, the estimate Û 9 is the one with correspond to the minimum BIC.

Table 2.2 shows the results of these criteria averaged across 100 independent simulations. It can

be seen that when the sample size increases, the probability of BIC choosing the correct model

increases. Also, when the true model is not selected, the nonzero parameters are always estimated

nonzero and only very few parameters are estimated to be nonzero when they are actually zero.

We also evaluate the bias of the estimates, the accuracy of the standard error formula and

the coverage probability. In computing the bias and the standard error, we only make use of

the estimates that match the true structure. The results show that the bias is small except for a

35



few parameters. The standard error estimates are close to the sample standard deviation of the

estimates and yield reasonable coverages except when the biases are relatively large.

Event types and their meanings in the simulation studies
Event Type (Simulation) Meaning
W8 (8 = 1, . . . , 3) Click the link of the 8th webpage
W8_M (8 = 1, . . . , 3) Click the "More" link in the 8th webpage
Next Click the “Next" button
Next_Cancel Click the “Cancel" button in the pop-up window that will

appear after clicking the “Next" button
R_8 (8 = 1, . . . , 3) Choose the 8th website as answer
R_Open Click on the pull down menu for choosing an answer
R_Close Close the pull down menu for choosing an answer without

choosing an answer
Back Click the back arrow in the toolbar
Forward Click the forward arrow in the toolbar
Next_OK Click the “OK" button in the pop-up window that will ap-

pear after clicking the “Next" button (the terminating event)

Event W2 Back W1 W1_M Back Back W3 R_Open R_3 Next Next_OK
Time 15 25 28 34 36 38 42 45 50 52 53

Table 2.1: A hypothetical example of process data of a test taker in the simulation setting.

Evaluation critera
�0 �1 TPR FDR (×10−2)

n = 500 0.85 0.60 1.00 0.13
n = 1000 0.96 0.78 1.00 0.05
n = 2000 0.99 0.83 1.00 0.03

Table 2.2: �0 is the average of the number of times that there is a pair of tuning parameter that
results in the true model. �1 is the average of the number of times that the tuning parameter
selected by BIC results in the true model. TPR and FDR denote the average of the true positive
rates and false discovery rates from the models with tuning parameter selected by BIC respectively.

2.5 Application to PIAAC data

The Programme for the International Assessment of Adult Competencies (PIAAC) is a pro-

gramme of assessment and analysis of adult skills. The survey measures adults’ proficiency in key

information-processing skills - literacy, numeracy and problem solving in technology rich envi-

ronment (PSTRE) - and gathers information and data on how adults use their skills at home, at
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work and in the wider community. The time-stamped action sequences data were logged during

respondents’ problem solving process. The proposed method is illustrated using one item in the

PSTRE domain. The data used here consists of both response data and response process data of

3, 713 adults who answered all the items in the PSTRE domain from the United States, the England

and Northern Ireland, Ireland, Japan and the Netherlands. This item shares the similar structure as

the simulation settings, with a focus on evaluating respondents’ skills in seeking key information

through web pages

Table 2.3 summarizes the event types in the actual item and their corresponding meanings. Due

to the nature of the item, the last two events will have a large impact on the next event to happen.

Therefore, for the covariate processes, we include the information of the past two events. To be

specific, for the 8th subject, let -8; (C) = 1, for ; = 1, . . . , 24, if the last event happened before

time C is the ;th event type and -8; (C) = 0 otherwise. Also, let -8,;+24(C) = 1, for ; = 1, . . . , 5,

if the last event is Back and the second last event is W;, for ; = 1, . . . , 5. The same covariate

processes are used for the fixed effects, the random effects, and across different event types. That

is, -8 9 ; (·) ≡ /8 9 ; (·) ≡ -8; (·) for each 9 = 1, . . . , �, ; = 1, . . . , !. See also the simulation section for

an example. We shall use the notation 0 → 1 to represent the effect of the covariate processes 0

on the event type 1.

We choose  = 3 for the dimension of the random effects. As discussed in the previous

sections, to avoid possible rotation of the loading matrix �, we constrain three rows of A to be

loading on only one dimension. These constraints are imposed on the effects W2→ W2_A, W2

→ Back and W2, Back → W1. For example, the factor loading for W2 → W2_Author is not

penalized in the first dimension and the factor loadings in the second and third dimensions are set

to be 0. The first two constrains are set because these they represent different behaviors and are the

most frequent patterns after the event W2. Furthermore, the second website is the correct answer.

Hence, it will be of most interest to set the structure around the second website. The design for the

third dimension is motivated by the results obtained from fitting the model without random effects,

where the effects Wi, Back → Wj for different i and j have patterns that implies the test takers
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tend to go to the next webpage instead of going back the previous page. By incorporating random

effects and performing variable selection, we could see if these patterns are related across different

webpages.

We apply the method with a sequence of pairs of penalty parameters (W1, W2), where W1 is

for the fixed effects and W2 is for the random effects. The model with the smallest BIC occurs

at (0.000961, 0.00482), which are of different magnitude order. This suggests using two penalty

parameters may provide a better exploration of different models with this data.

For the fixed effects, partial results are given below:

_W1(C) = exp{−3.83 + . . . − 0.88W1, Back − 0.87W2, Back − 0.71W3, Back − 0.5W4, Back

+0.48W5, Back + . . .},

_W2(C) = exp{−5.75 + . . . + 0.89W1, Back − 2.12W2, Back − 1.95W3, Back − 1.42W4, Back

−0.3W5, Back + . . .},

_W3(C) = exp{−6.94 + . . . − 1.17W1, Back + 1.62W2, Back − 1.79W3, Back − 2.16W4, Back

−1.44W5, Back + . . .},

_W4(C) = exp{−6.59 + . . . − 3.12W1, Back − 0.34W2, Back + 2.26W3, Back − 1.35W4, Back

−0.78W5, Back + . . .},

_W5(C) = exp{−7.43 + . . . − 1.35W1, Back − 0.83W2, Back + 0W3, Back + 3.34W4, Back

−2.13W5, Back + . . .},

_Back(C) = exp{−9.6 + 6.12W1 + 7.34W1_M + 6.74W2 + 7.45W2_A + 6.9W3 +

7.74W3_A + 6.55W3_O1 + 6.69W3_O2 + 6.79W4 + 6.83W5 + 6.78W5_O

+ . . . + 7.41Web},

_Next(C) = exp{−6.454 + 4.78R1 + 5.29R2 + 5.23R3 + 5.28R4 + 4.97R5 + . . .},

_Web(C) = exp{−8.3 + . . . + 5.76Web + . . .}.

We see that the effects of clicking the links on the intensity of Back have large positive co-
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efficients. This is because one has to go back to the main page in order to click on other links.

In addition, we see that the coefficients for W1_M, W2_A and W3_A are slightly larger than the

that for the other web links. This could be explained by the fact that the information contained

in these three pages are much less than the other pages so that the test takers will finish reading

and perform Back quicker. The coefficients of R_1→ Next, . . ., R_5→ Next are all positive and

relatively large. This is because when the test takers have chosen an answer, they are much more

likely to click Next to submit it. For the covariate process Web, its strongest effects are on Back

and Web itself. This suggests that some test takers thought that Web will perform the action of

going to the previous page and so they tended to try clicking Web one more time or realized that

it will not work and performed Back instead. It is also interesting when we look at the coefficients

of W8, Back→W 9 , where 8, 9 = 1, . . . , 5, where a sequential pattern of the browsing behavior is

found. The coefficients of W8, Back→W 9 , where 8 = 1, . . . , 4 and 9 = 8 + 1, are all positive and

that when 8 = 1, . . . , 4, 9 ≠ 8 +1, are all negative (with one zero). Also ,the coefficient of W5, Back

→W1 is positive and those of W5, Back→W 9 are all negative for 9 = 2, . . . , 5.

For the random effects, partial results are given in Table 2.4. Recall that we constrain the

effect of W2 → W2_A to be related to the first dimension only. It turns out that in the first

dimension, many of the related relationships are of the same sign as the coefficient of W2 →

W2_A. These include W1 → W1_M, W3 → W3_A, W3 → W3_O1 and W3_O1 → W3_O2.

Also, the coefficients of these relationships are either 0 or very small in magnitude in the other two

dimensions. Furthermore, we also see from the coefficients of R_Open→ R_8, for 8 = 1, . . . , 5,

that the actions of checking for more details in the websites are positively related to choosing

the correct answer. Another interesting finding is that the coefficient of the relationship Next→

Next_Cancel is opposite to that of W2→W2_A, suggesting people are more confident when they

visit W1_M, W2_A, W3_A, W3_O1 and W3_O2. The second dimension is mainly related to the

event Back. In particular, it can be seen that the coefficients of W 9 → Back, for 9 = 1, . . . , 5 are

of similar magnitude and of the same sign. Finally, for the third dimension, it is mainly related to

the sequential pattern observed in the fixed effects. We see that W8, Back→W 9 are positive when
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9 = 8 + 1 for 8 = 1, . . . , 4 and are zero or negative when 9 ≠ 8 + 1. Hence, the sequential patterns

across different webpages are positively related.

Table 2.3: Event types and their meanings in real data
Event Type Meaning
W8 (8 = 1, . . . , 5) Click the link of the 8th webpage
W1_More Click the "More" link in the first webpage
W8_A (8 = 2, 3) Click the "Author" link in the 8th webpage
W3_O8 (8 = 1, 2) Click the 8th order link in the third webpage
W5_O Click the order link in the fifth webpage
Next Click the “Next" button
Next_Cancel Click the “Cancel" button in the pop-up window that will

appear after clicking the “Next" button
R_8 (8 = 1, . . . , 5) Choose the 8th website as answer
R_Open Click on the pull down menu for choosing an answer
R_Close Close the pull down menu for choosing an answer without

choosing an answer
Back Click the back arrow in the toolbar
Forward Click the forward arrow in the toolbar
Home Click the home button in the toolbar
Web Click the Web environment icon
Next_OK Click the “OK" button in the pop-up window that will ap-

pear after clicking the “Next" button (the terminating event)

2.6 Discussion

In this chapter, we proposed a multivariate proportional intensity factor model for multivariate

event time data. We develop the theory of nonparametric maximum likelihood estimation as well as

a variable selection and estimation method for the fixed effects and random effects simultaneously

using parametric baseline intensity functions. From the simulation studies, we see that using the

Bayesian information criterion provides a good choice of the tuning parameter and the whole

procedure essentially recovers the true structure of the parameter with small bias and accurate

standard errors. We further demonstrate the proposed method through a real data set from the

Survey of Adult Skills in PIAAC. Our method finds meaningful relationships among different types

of events that can help understanding both the task design and the behavior of subjects when solve

a problem. Furthermore, the proposed method can be applied to both exploratory and confirmatory
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analysis or a combination of them by controlling the number of constraints on the loading matrix.

Although we implicitly assume all the event types are recurrent, we can also allow some events

to be survival times. For the distribution of the random effects, the multivariate normal distribution

allows an unrestricted covariance structure between the random effects. However, other distribu-

tions can also be used and the theoretical results remain valid subject to some regularity conditions

on the random effect distributions; see [52] for more details. The proposed model can also be

easily extended to have a multilevel structure, where we could have, for example, a cluster level

above the subject level with cluster-specific random effects.

While we illustrate the method using educational assessment data, the method is widely appli-

cable. For example, in medical studies, for each person, we are often interested in several illnesses

at the same time. When the number of random coefficients is moderate to large, the proposed

model can achieve a parsimonious model.

2.7 Appendix

2.7.1 Sample Task

Figure 2.1: Screenshot of the sample item given in OECD website.
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Figure 2.2: Screenshot of the sample item given in OECD website.

2.7.2 Estimation algorithm

In this section, we give the details of the computation algorithm described in Section 2.3.2. Let

([(C) , V(C) , �(C) , W (C)) and \ (C) = (\ (C)1 , . . . , \
(C)
= ) denote the estimates and the simulated \8 at the Cth

iteration respectively. At the (C + 1)th iteration:

(1) Stochastic E-step via Metropolis Algorithm: for each 8 = 1, . . . , =,

(i) Sample \∗
8

from the proposal distribution # (\ (C)
8
, X2
8
), where X2

8
is the proposal variance.

(ii) Compute the acceptance ratio

A8 =
!2 (U(C) |#8, -8, /8, \∗8 )
!2 (U(C) |#8, -8, /8, \ (C)8 )

,
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where !2 (U |#8, -8, /8, \8) denotes the complete data likelihood for the 8th subject:

!2 (U |#8, -8, /8, \8)

=

�∏
9=1

[ =8 9∏
<=1

_ 9 (C8 9<; [ 9 )4V
)
9
-8 9 (C8 9<)+\)8 �)9 /8 9 (C8 9<) ×

exp
{
−

∫ g

0
_ 9 (D; [ 9 )4V

)
9
-8 9 (D)+\)8 �)9 /8 9 (D).8 (D)3D

}]
× q(\8; 0, W)

(iii) Sample*8 ∼ * (0, 1). Set \ (C+1)
8

= \∗
8

if*8 < A8 and \ (C+1)
8

= \ (C) otherwise.

(2) M-step via coordinate descent algorithm: maximize

=∑
8=1

log !2 (U |#8, -8, /8, \ (C+1)8
) − =

{ �∑
9=1

!∑
;=1

?W (V 9 ;) +
�∑
9=1

!∑
;=1

 ∑
:=1

?W (0 9 ;: )
}
. (2.5)

Denote

& 9 ([ 9 , V 9 , � 9 |\ (C+1)) =

=∑
8=1

[ =8 9∑
<=1

{
log_ 9 (C8 9<; [ 9 ) + V)9 -8 9 (C8 9<) + (\

(C+1)
8
)) �)9 /8 9 (C8 9<)

}
−

∫ g

0
_ 9 (D; [ 9 )4V

)
9
-8 9 (D)+\)8 �)9 /8 9 (D).8 (D)3D

]
It is clear that maximizing (2.5) is equivalent to maximizing the following terms separately:

& 9 ([ 9 , V 9 , � 9 |\ (C+1)) − =
{ !∑
;=1

?W (V 9 ;) +
!∑
;=1

 ∑
:=1

?W (0 9 ;: )
}
, for 9 = 1, . . . , �, (2.6)

and
=∑
8=1

log q(\ (C+1)
8

; 0, W).

To maximize (2.6), we apply the coordinate descent algorithm to update each parameter. In each

update, we form a quadratic approximation of & 9 with respect to that parameter at the current
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value. In addition, we apply local linear approximation [55] to the scad penalty:

?W ( |G |) ≈ ?W ( |G0 |) + ?′W ( |G0 |) ( |G | − |G0 |) for G ≈ G0.

The resulting univariate maximization problem has a closed form solution. Specifically, we first

update [ 9 by

[
(C+1)
9
← [

(C)
9
−
m[ 9& 9 ([(C)9 , V

(C)
9
, �
(C)
9
|\ (C+1))

m2
[ 9& 9 ([(C)9 , V

(C)
9
, �
(C)
9
|\ (C+1))

,

where m& 9 and m2& 9 denote the first and second derivatives of & with respect to the parameter

[ 9 , V 9 ; or 0 9 :; as labeled by the subscripts. Denote V(C,;)
9

= (V(C+1)
91 , . . . , V

(C+1)
9 ,;−1, V

(C)
9 ;
, . . . , V

(C)
9 ! 9
). To

maximize V 9 ; , Update V 9 ; by

V
(C+1)
9 ;
← −

((mV 9;& 9 ([(C+1)9
, V
(C,;)
9
, �
(C)
9
|\ (C+1)) − V(C)

9 ;
m2
V 9;
& 9 ([(C+1)9

, V
(C,;)
9
, �
(C)
9
|\ (C+1)), ?′W ( |V

(C)
9
|))

m2
V 9;
& 9 ([(C+1)9

, V
(C,;)
9
, �
(C)
9
|\ (C+1))

,

where ( is the soft threshold operator ([13]) defined as ((G, W) = sgn(G) ( |G | − W)+. The updating

procedure of U 9 ;: is similar to that of V 9 ; and is omitted.

2.7.3 Proofs for Theoretical Results

To prove Theorems 5-8, it suffices to verify Conditions (C1)-(C8) in [52] is satisfied under

our regularity conditions (D1)-(D5). Our Theorems 5-8 then follow from Theorems 1-4 in [52].

Denote � 9 = (V 9 , � 9 ). Denote

Ψ($8;U,A) =
∫
\

�∏
9=1
Ω8 9 (\; � 9 ,Λ 9 )q(\; W)3\,
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where

Ω8 9 (\; � 9 ,Λ 9 ) =
∏
C≤g

{
.8 9 (C)4V

)
9
-8 9 (C)+\) �)9 /8 9 (C)

}3#∗
8 9
(C)
4−@8 9 (g) ,

@8 9 (C) =

∫ C

0
.8 9 (B)4V

)
9
-8 9 (B)+\) �)9 /8 9 (B)3Λ 9 (B).

The likelihood can be written as

=∏
8=1

{ �∏
9=1

∏
C≤g

Λ 9 {C}'8 9 (C)3#
∗
8 9
(C)

}
Ψ($8;U,A).

Let ¤ΨU denote the derivative ofΨwith respect to U. Let ¤Ψ 9 [� 9 ] denote the derivative ofΨ($8;U,A)

along the path (Λ 9 +Y� 9 ), where � 9 belongs to the set of functions in which Λ 9 +Y� 9 is increasing

with bounded total variation. That is,

¤Ψ 9 [� 9 ] = lim
Y→0

Ψ($8;U,A + (0, . . . , Y� 9 , . . . , 0)) −Ψ($8;U,A)
Y

.

For easier reference, we list Conditions in (C1)-(C8) in [52] in terms of the current setting here.

(C1) The true value U0 lies in the interior of a compact set Θ, and the true functions Λ0 9 are

continuously differentiable in [0, g] with Λ′0 9 (C) > 0, 9 = 1, . . . , �.

(C2) With probability 1, P(infB∈[0,C] .8 9 (B) ≥ 1|-8 9 , /8 9 ) > X0 > 0 for all C ∈ [0, g].

(C3) There exist a constant 21 > 0 and a random variable A1($8) > 0 such that E(log A1($8)) < ∞

and for any U ∈ Θ and any finite Λ1, . . . ,Λ� ,

Ψ($8;U,A) ≤ A1($8)
�∏
9=1

∏
C≤g

{
1 +

∫ C

0
.8 9 (C)3Λ 9 (C)

}−3#∗
8 9
(C) {

1 +
∫ g

0
.8 9 (C)3Λ 9 (C)

}−21

almost surely. In addition, for any constant 22,

inf{Ψ($8, U,A) : | |Λ 9 | |+ [0,g] ≤ 22, 9 = 1, . . . , �, U ∈ Θ} > A2($8) > 0,
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where A2($8), which may depend on 22, is a finite random variable with E( | log A2($8) |) <

∞.

(C4) For any (U(1) , U(2)) ∈ Θ, and (Λ(1)1 ,Λ
(2)
1 ), . . . , (Λ

(1)
�
,Λ
(2)
�
), (� (1)1 , �

(2)
1 ), . . . , (�

(1)
�
, �
(2)
�
)

with uniformly bounded total variations, there exists a random variable F ($8) ∈ !4(P) and

� stochastic processes `8 9 (C;$8) ∈ !6(P), 9 = 1, . . . , � such that

|Ψ($8;U(1) ,A (1)) −Ψ($8;U(2) ,A (2)) | + | ¤ΨU ($8;U(1) ,A (1)) − ¤ΨU ($8;U(2) ,A (2)) |

+
�∑
9=1
| ¤Ψ 9 ($8;U(1) ,A (1)) [� (1): ] − ¤Ψ 9 ($8;U(2) ,A (2)) [� (2)9 ] |

+
�∑
9=1

���� ¤Ψ 9 ($8;U(1) ,A (1)) [� (1): ]
Ψ($8;U(1) ,A (1))

−
¤Ψ 9 ($8;U(2) ,A (2)) [� (2): ]
Ψ($8;U(2) ,A (2))

����
≤ F ($8)

[
|U(1) − U(2) | +

�∑
9=1

{ ∫ g

0
|Λ(1)

9
(B) − Λ(2)

9
(B) |3`8 9 (B;$8)

+
∫ g

0
|� (1)

9
(B) − � (2)

9
(B) |3`8 9 (B;$8)

}]
.

In addition, `8 9 (B;$8) is non-decreasing, and E[F ($8)`8 9 (B;$8)] is bounded and left-continuous

with uniformly bounded left- and right-derivatives for any B ∈ [0, g].

(C5) The model is identifiable. That is, if

∫
\

[ �∏
9=1

∏
C≤g
{_ 9 (C)4V

)
9
-8 9 (C)+\) �)9 /8 9 (C)}3#8 9 (C)4−

∫ g
0 4

V)
9
-8 9 (C)+\) �)

9
/8 9 (C).8 9 (C)3Λ 9 (C)

]
q(\; W)3\

=

∫
\

[ �∏
9=1

∏
C≤g
{_0 9 (C)4V

)
0 9-8 9 (C)+\

) �)0 9/8 9 (C)}3#8 9 (C)4−
∫ g
0 4

V)0 9 -8 9 (C)+\) �)0 9/8 9 (C).8 9 (C)3Λ0 9 (C)
]
q(\; W0)3\

almost surely, then we have (U,A) = (U0,A0).

Note that condition (C4) implies that the linear functional

� 9 ↦→ E
[ ¤Ψ 9 ($8;U,A)[� 9 ]

Ψ($8;U,A)

]
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is continuous from �+ [0, g] to R. Thus, there exists a bounded function [0 9 (B;U,A) such that

E

[ ¤Ψ 9 ($8;U,A)[� 9 ]
Ψ($8;U,A)

]
=

∫ g

0
[0 9 (B;U,A)3� 9 (B).

(C6) There exist functions Z0 9 (B;U0,A0) ∈ �+ [0, g], 9 = 1, . . . , �, and a matrix Z0U (U0,A0)

such that����E[ ¤ΨU ($8;U,A)Ψ($8;U,A)
−
¤ΨU ($8;U0,A0)
Ψ($8;U0,A0)

]
− Z0U (U0,A0) (U − U0)

−
�∑
9=1

∫ g

0
Z0 9 (B; \0,A0)3 (Λ 9 − Λ0 9 )

���� = > ©«|U − U0 | +
�∑
9=1
| |Λ 9 − Λ0 9 | |+ [0,g]

ª®¬ .
In addition, for 9 = 1, . . . , �,

�∑
9=1

sup
B∈[0,g]

����{[0 9 (B;U,A) − [0 9 (B;U0,A0)} − [0 9\ (B;U0,A0) (U − U0)

−
∫ g

0

�∑
9=1
[0 9< (B, C;U0,A0)3 (Λ< − Λ0<) (C)

���� = > ©«|U − U0 | +
�∑
9=1
| |Λ 9 − Λ0 9 | |+ [0,g]

ª®¬ ,
where [0 9< is a bounded bivariate function and [0 9U is a d-dimensional bounded function.

Furthermore, there exists a constant 23 such that

|[0 9< (B, C1;U0,A0) − [0 9< (B, C2;U0,A0) | ≤ 23 |C1 − C2 |

for any B ∈ [0, g] and any C1, C2 ∈ [0, g].

(C7) If for some E ∈ R3 and ℎ 9 ∈ �+ [0, g], 9 = 1, . . . , �

�∑
9=1

∫
ℎ 9 (C).8 9 (C)3#∗8 9 (C) +

¤ΨU ($8;U0,A0))E +
∑�
9=1
¤Ψ 9 ($8;U0,A0) [

∫
ℎ 93Λ0 9 ]

Ψ($8;U0,A0)
= 0

almost surely, then E = 0 and ℎ 9 = 0 for 9 = 1, . . . , �.
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(C8) There exists a neighborhood of (U0,A0) such that for (U,A) in this neighborhood, the first

and second derivatives of logΨ(O8;U,A) with respect to U and along the path Λ 9 + Y� 9

with respect to Y satisfy the inequality in (C4).

Proposition 1. The model is identifiable. That is, if

∫
\

[ �∏
9=1

∏
C≤g
{_ 90(C)4V

)
9
-8 9 (C)+\) �)9 /8 9 (C)}3#8 9 (C)4−

∫ g
0 4

V)
9
-8 9 (C)+\) �)

9
/8 9 (C).8 9 (C)3Λ 9 (C)

]
q(\; W)3\

=

∫
\

[ �∏
9=1

∏
C≤g
{_0 90(C)4V

)
0 9-8 9 (C)+\

) �)0 9/8 9 (C)}3#8 9 (C)4−
∫ g
0 4

V)0 9 -8 9 (C)+\) �)0 9/8 9 (C).8 9 (C)3Λ0 9 (C)
]
q(\; W0)3\

almost surely, then we have (U,A) = (U0,A0).

Remark 1. _ 90 and _0 90 are used to denote the general and true baseline intensity function for

event type 9 respectively while _ 9 is used to denote the intensity function for event type 9 .

Proof of Proposition 1. Fix :0 9 , :1 9 ∈ N. Consider . 9 ≡ 1 and event times {C 911, . . . , C 91:1} and

{C 91, . . . , C 9 :0} for event type 9 , for 9 = 1 . . . , �. Then,

∫
\

�∏
9=1

{ :1 9∏
:=1

_ 9 (C 91: |U,A, \)
:0 9∏
:=1

_ 9 (C 9 : |U,A, \)4−
∫ g
0 _ 9 (C |U,A,\)3C

}
q(\, W)3\

=

∫
\

�∏
9=1

{ :1 9∏
:=1

_ 9 (C 91: |U0,A0, \)
:0 9∏
:=1

_ 9 (C 9 : |U0,A0, \)4−
∫ g
0 _ 9 (C |U0,A0,\)3C

}
q(\, W0)3\.

Integrating C 911, . . . , C 91:1 9 from 0 to C 9 for 9 = 1, . . . , � and integrating C 911, . . . , C 9 :0 from 0 to g

for 9 = 1, . . . , �, we have

∫
\

�∏
9=1

[{ ∫ C 9

0
_ 9 (C |U,A, \)3C

}:1 9 { ∫ )

0
_ 9 (C |U,A, \)3C

}:0 9

4−
∫ g
0 _ 9 (C |U,A,\)3C

]
q(\, W)3\

=

∫
\

�∏
9=1

[{ ∫ C 9

0
_ 9 (C |U0,A0, \)3C

}:1 9 { ∫ )

0
_ 9 (C |U0,A0, \)3C

}:0 9

4−
∫ g
0 _ 9 (C |U0,A0,\)3C

]
q(\, W0)3\.

Multiply both sides by
∏�

9=1 [
(iB 9 ):1 9 !
:1 9 !

1
:0 9 ! ], where i is the imaginary number and B 9 ’s are arbitrary
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real numbers. Summing over :1 9 = 0, 1, 2, . . . and :0 9 = 0, 1, 2, . . ., we get

∫
\

�∏
9=1

4iB 9
∫ C 9
0 _ 9 (C |U,A,\)3Cq(\; W)3\ =

∫
\

�∏
9=1

4iB 9
∫ C 9
0 _ 9 (C |U0,A0,\)3Cq(\; W0)3\.

Since this holds for any B 9 , the distribution of {
∫ C 9

0 _ 9 (C;U,A, \)3C} 9=1,...,� and {
∫ C 9

0 _ 9 (C;U0,A0, \0)3C} 9=1,...,�

are the same, where \ ∼ # (0, W) and \0 ∼ # (0, W0). Therefore, {log_ 9 (C 9 ;U,A, \)} 9=1,...,� and

{log_ 9 (C 9 ;U0,A0, \0)} 9=1,...,� have the same distribution. By considering the mean of log_ 9 (C 9 ;U,A, \)

and log_ 9 (C 9 ;U0,A0, \0), we have _ 90(C 9 ) +V)9 - 9 (C 9 ) = _0 90(C 9 ) +V0 9
)- 9 (C 9 ). By Condition (D4),

we have _ 90(C) = _0 90(C) and V 9 = V0 9 for all 9 = 1, . . . , �. Then {\) �)
9
/ 9 (C 9 )} 9=1,...,� has the

same distribution as {\)0 �0 9
)/ 9 (C 9 )} 9=1,...,� . By considering the covariance matrices of these two

random vectors, we have for each 9 , ; = 1, . . . , �,

/)9 (C 9 )� 9Σ�); /; (C;) = /
)
9 (C 9 )�0 9Σ0�

)
0;/; (C;).

Let � = � 9Σ�
)
;
− �0 9Σ0�

)
0; . We have /)

9
(C 9 )�/; (C;) = 0. Condition (D4) then implies � = 0.

Hence, we have � 9Σ�); = �0 9Σ0�
)
0; for all 9 , ; = 1, . . . , �. This is equivalent to �Σ�) = �0Σ�

)
0 .

By Condition (D5), it is assumed that there is an  ×  identity matrix in �. Without loss of

generality, assume � = (�, �)2 )
) and �0 = (�, �)02)

) . Hence, we have

�Σ�) = �Σ0�
) (2.7)

and

�Σ�)2 = �Σ0�
)
02. (2.8)

Therefore, Σ = Σ0 and then �2 = �02, showing � = �0. �

Proposition 2. If for E ∈ R3 and ℎ 9 ∈ �+ [0, g], 9 = 1, . . . , �, the score function

�∑
9=1

∫ g

0
ℎ 9 (C).8 9 (C)3#∗8 9 (C) +

E) ¤ΨU ($8;U0,A0)
Ψ($8;U0,A0)

+
�∑
9=1

¤Ψ 9 ($8;U0,A0) [
∫
ℎ 93Λ0 9 ]

Ψ($8;U0,A0)
= 0.
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almost surely, then E = 0 and ℎ 9 = 0 for 9 = 1, . . . , �.

Proof. We shall show that the model with _ 9 (C) = _0 90(C)4V
)
0 9- 9 (C)+\

)
9
/ 9 (C) , \ = (\)1 , . . . , \

)
�
)� ∼

# (0, �0Σ0�
)
0 ), and �0 = (�)01, . . . , �

)
0�)

) satisfies the claim in this proposition. The result then

follows by noting such model is simply a reparameterization of the proposed model. By an abuse

of notation, we continue to denote the parameters in the distribution of \8 by W. Consider . 9 = 1

and observed event times C 91, . . . , C 9" for the 9 th event type for 9 = 1, . . . , �. From the score

equation, by straightforward algebra, we have

∫
\

�∏
9=1

"∏
<=1

4
V)0 9- 9 (C 9<)+\

)
9
/ 9 (C 9<)4−

∫ g
0 4

V)0 9 - 9 (B)+\
)
9
/ 9 (B)

3Λ0 90 (B)q(\; W0)

×
( �∑
9=1

"∑
<=1
{ℎ(C 9<) + -)9 (C 9<)EV 9 } +

q′(\; W0))EW
q(\; W0)

−
�∑
9=1

[ ∫ g

0
{ℎ 9 (B) + -)9 (C)EV 9 }4

V)0 9- 9 (B)+\
)
9
/ 9 (B)3Λ0 90(B)

]
3\ = 0.

Now, we perform the following operations on both sides of the above equation. First, multiply

both sides by
∏�

9=1
∏"
<=1 _0 90(C 9<) and integrate C 9< from 0 to C 9< for < = 1, . . . , <0 9 and from 0

to g for < = <0 9 + 1, . . . , " . Then, divide the resulting equation by (" − <0 9 )!. After we sum

over " − <0 9 = 0, 1, 2, . . ., we obtain

∫
\

�∏
9=1

<0 9∏
<=1

�2 9 (\, C 9<)q(\; W0)
( �∑
9=1

<0 9∑
<=1

�2 9 (\, C 9<) +
q′(\; W0))EW
q(\; W0)

)
3\ = 0, (2.9)

where

�2 9 (\, C) :=
∫ C

0
4
V)0 9- 9 (B)+\

)
9
/ 9 (C)3Λ0 90(B),

�2 9 (\, C) :=

∫ C

0 {ℎ 9 (B) + -
)
9
(B)EV0 9 }4

V)0 9- 9 (B)+\
)
9
/ 9 (B)3Λ0 90(B)∫ C

0 4
V)0 9- 9 (B)+\

)
9
/ 9 (B)3Λ0 90(B)

.

Letting C 9< has multiplicity : 9< and multiply both sides of the resulting equation by
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∏�
9=1

∏<0 9
<=1(iB 9<)

: 9</: 9<!, we have

∫
\

�∏
9=1

<0 9∏
<=1

(iB 9<): 9<
: 9<!

�2 9 (\, C 9<): 9<q(\; W0)
( �∑
9=1

<0 9∑
<=1

: 9<�2 9 (\, C 9<) +
q′(\; W0))EW
q(\; W0)

)
3\ = 0.

Summing over : 9< = 1, 2, . . . , for 9 = 1, . . . , �, < = 1, . . . , <0 9 , we have

∫
\

{ �∑
9=1

<0 9∑
<=1

iB 9<�2 9 (\, C 9<)�2(\, C 9<) +
q′(\; W0))EW
q(\; W0)

}
4
∑�
9=1

∑<0 9
<=1 iB 9<�2 9 (\,C 9<)q(\; W0)3\ = 0,

for any B 9<. By making the variable transformation {H 9< : 9 = 1, . . . , �, < = 1, . . . , ! 9 } =

{�2(\, C 9<) : 9 = 1, . . . , �, < = 1, . . . , ! 9 } and using the relationship between the Fourier trans-

form of a function and and the Fourier transform of its derivative, we see that

−
�∑
9=1

<0 9∑
<=1

�2(\, C 9<)�2(\, C 9<)q(\; W0) + q′(\; W0))EW = 0

almost everywhere. By letting C 9<’s go to 0, we obtain q′(\; W0))EW = 0. By the identifiability of

\ ∼ # (0, �0Σ0�
)
0 ), we have EW = 0. Then, (2.9) with only one C 9< is a homogeneous equation

for (ℎ 9 (C) + - 9 (C))EV 9 ). It is easy to see that the equation has only a trivial solution. Therefore,

ℎ 9 (C) + - 9 (C))EV 9 = 0. By Condition (D4), we have ℎ 9 = 0 and EV 9 = 0 for each 9 = 1, . . . , �. �

Now, we verify Conditions (C1)-(C8).

(i) Condition (C1) follows from Condition (D1)

(ii) Condition (C2) follows from Condition (D2)

(iii) To verify Condition (C3), note that

Ω8 9 (\; � 9 ,Λ 9 ) ≤ 4$ (1) (1+|\ |)#
∗
8 9
(g)
4−@8 9 (g) .

Note that there exist ` > 0 and ^ > 0 such that for any < ∈ N and 0 < G1 ≤ . . . ≤ G< ≤ H,
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we have
∏<
8=1(1 + G8)4−H ≤ `< (1 + H)−^. Thus,

Ω8 9 (\; � 9 ,Λ 9 ) ≤ 4$ (1) (1+|\ |)#
∗
8 9
(g)
`
#∗
8 9
(g)

∏
C≤g
{1 + @8 9 (C)}−3#

∗
8 9
(C){1 + @8 9 (g)}−^ .

Note that 4V
)
9
-8 9 (B)+\) �)9 /8 9 (B) ≥ 4−$ (1) (1+|\ |) . Hence,

1 + @8 9 (C) ≥ 4−<(1+|\ |)
{
1 +

∫ C

0
.8 9 (B)3Λ 9 (B)

}
so that

Ω8 9 (\; �,A) ≤ 4" (1+|\ |)#
∗
8 9
(g)
`
#∗
8 9
(g)

∏
C≤g

{
1 +

∫ C

0
.8 9 (B)3Λ 9 (B)

}−3#∗
8 9
(C) {

1 +
∫ g

0
.8 9 (B)3Λ 9 (B)

}−^
.

Therefore, condition (C1) holds with A1($8) = `
∑�
9=1 #

∗
8 9
(g) ∫

4
" (1+|\ |)∑�

9=1 #
∗
8 9
(g)
q(\; W)3\.

Clearly, E(log A1($8)) < ∞. To verify the second part of condition (C2), let �0 > 0 be a

fixed constant. Then, for | |Λ 9 | |+ [0,g] ≤ 22 , 9 = 1, . . . , �,

Ψ($8;U,A) =

∫
\

�∏
9=1
Ω8 9 (\; �,Λ 9 )q(\; W)3\

≥
∫
{| |\ | |≤�0}

�∏
9=1
Ω8 9 (\; �,Λ 9 )q(\; W)3\

≥ exp{−$ (1)#∗8 9 (g)}P( |\ | ≤ �0).

Therefore, the second part of condition (C2) is satisfied.

(iv) Note that for any � 9 , Ω8 9 (\; � 9 ,Λ 9 ) ≤ 4$ (1) (1+|\ |)#
∗
8 9
(g) and���� mmV 9Ω8 9 (\; � 9 ,Λ 9 )

���� =

����Ω8 9 (\; V 9 ,Λ 9 )
{ ∫

.8 9 (C)-8 9 (C)3#∗8 9 (C)

−
∫ g

0
.8 9 (B)4V

)
9
-8 9 (B)+\) �)9 /8 9 (B)-8 9 (B)3Λ 9 (B)

}����
≤ 4

$ (1) (1+|\ |) (1+#∗
8 9
(g))
.
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Similarly, we have ���� mm� 9Ω8 9 (\; � 9 ,Λ 9 )
���� ≤ 4" (1+|\ |) (1+#∗8 9 (g)) .

Also,���� mmΛ 9

Ω8 9 (\; � 9 ,Λ 9 ) [� 9 ]
���� =

���� −Ω8 9 (\; � 9 ,Λ 9 )
∫ g

0
.8 9 (B)4V

) /8 9 (B)+\) � 9 (B)/8 9 (B)3� 9 (B)
����

≤ 4
$ (1) (1+|\ |) (1+#∗

8 9
(g))
.

By the mean value theorem,

|Ω8 9 (\; �(1)9 ,Λ 9 ) −Ω8 9 (\; �(2)9 ,Λ 9 ) | =

���� mm� 9Ω8 9 (\; �∗9 ,Λ 9 )
����|�(1)9 − �(2)9 |

≤ 4
$ (1) (1+|\ |) (1+#∗

8 9
(g)) |�(1)

9
− �(2)

9
|,

and

|Ω8 9 (\; � 9 ,Λ(1)9 ) −Ω8 9 (\; � 9 ,Λ
(2)
9
) | =

���� mmΛ 9

Ω8 9 (\; � 9 ,Λ∗9 ) [Λ
(1)
9
− Λ(2)

9
]
����

≤ 4
" (1+|\ |)#∗

8 9
(g)

���� ∫ g

0
.8 9 (B)4V

) -8 9 (B)+\) � 9 (B)/8 9 (B)3 (Λ(1)
9
− Λ(2)

9
) (B)

����
≤ 4

$ (1) (1+|\ |) (1+#∗
8 9
(g))

∫ g

0
|Λ(1)

9
(B) − Λ(2)

9
(B) |3B,

where the last inequality follows from integration by parts and the assumption that -8 9 (·)

and /8 9 (·) have bounded variations. Also,

���� ∫
\

�∏
9=1
Ω8 9 (\; � 9 ;Λ 9 )q(\; W (1))3\ −

∫
\

�∏
9=1
Ω8 9 (\; � 9 ;Λ 9 )q(\; W (2))3\

����
≤

���� ∫ 4
$ (1) (1+|\ |)∑�

9=1 #
∗
8 9
(g) mq(\; W∗)

mW
3\

����|W (1) − W (2) |.
Using the same arguments, the other three terms in condition (C4) can be shown to satisfy

the required bound.
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(v) Condition (C5) is verified in Proposition 1.

(vi) To verify condition (C6), note that

[0 9 (B;U,A) = −E
[ ∫

\

∏�
<=1Ω8< (\; �<,Λ<)q(\; W)∫

\

∏�
<=1Ω8< (\; �<,Λ<)q(\; W)3\

.8 9 (B)4V
)
9
-8 9 (B)+\) /8 9 (B)3\

]
.

For (U,A) in a neighborhood of (U0,A0),����[0 9 (B;U,A) − [0 9 (B;U0,A0) −
m

mU
[0 9 (B;U0,A0)) (U − U0) −

�∑
<=1

m[0 9

mΛ<
(B;U0,A0) [Λ< − Λ0<]

����
= >

(
|U − U0 | +

�∑
<=1
| |Λ< − Λ0< | |+ [0,g]

)
.

Therefore, the second equation in (C6) will hold with [0 9< (B, C; \0,A0) being the derivative

of [0 9 with respect to Λ< along the direction Λ< −Λ0<, and [0 9U begin the derivative of [0 9

with respect to U. Straightforward calculation also yields the Lipschitz continuity of [0 9<.

The verification of the first part in (C6) is similar.

(vii) Condition (C7) is verified in Proposition 2.

(viii) The verification of (C8) is similar to that of (C4) and is omitted.

The proofs of Theorems 9 and 10 follow the same argument as in [14] as we are assuming a

parametric baseline intensity function in the penalized likelihood method. The only nonstandard

ingredients that are model-dependent are the identifiability of the model and the invertibility of the

information matrix, which can be verified as in Propositions 1 and 2 respectively.

2.7.4 Additional Simulation Results

Table 2.5 and Table 2.6 report the parameter setting, bias, average of the standard error esti-

mates, estimated standard deviation of the parameters and the empirical coverage percentage of

the 95% confidence interval.
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Table 2.4: Partial results of the factor loading in the real data. The numbers outside the brackets
are the estimated factor loadings and the numbers in the brackets are the estimated standard errors.

Covariate Event A1 A2 A3
Next Next_C 0.81 (0.17) -0.11 (0.19) 0.08 (0.23)
R_Open R_1 0.71 (0.17) 0 0.74 (0.15)
R_Open R_2 -0.79 (0.06) 0.39 (0.06) 0.16 (0.06)
R_Open R_3 0 0.04 (0.12) 0
R_Open R_4 0.51 (0.11) 0.57 (0.07) 0
R_Open R_5 0.52 (0.23) 0 0
W1 Back 0 0.48 (0.06) -0.1 (0.07)
W1 W1_M -1.31 (0.12) -0.03 (0.11) 0
W1, Back W2 0.29 (0.09) 0.06 (0.07) 0.3 (0.09)
W1, Back W3 0.75 (0.19) 0.03 (0.16) -0.82 (0.24)
W1, Back W4 0 0 -1.79 (0.35)
W2 Back 0 0.48 (0.04) 0
W2 W2_A -2.12 (0.2) 0 0
W2, Back W1 0 0 -1.02 (0.22)
W2, Back W2 -0.04 (0.21) 0 -0.12 (0.17)
W2, Back W3 0.97 (0.12) 0 0.41 (0.13)
W2, Back W4 0.96 (0.17) 0.35 (0.14) -0.33 (0.18)
W3 Back -0.03 (0.07) 0.57 (0.05) 0
W3 W3_A -2.55 (0.37) -0.37 (0.25) 0
W3 W3_O1 -1.14 (0.31) 0 0
W3, Back W2 -0.76 (0.22) 0 -1.31 (0.19)
W3, Back W4 0.75 (0.14) 0.21 (0.1) 0.45 (0.13)
W3_O1 W3_O2 -0.97 (0.39) 0 0
W4 Back -0.11 (0.06) 0.44 (0.05) 0.04 (0.07)
W4, Back W2 -0.34 (0.14) 0 -0.64 (0.15)
W4, Back W3 0 0 -1.46 (0.25)
W4, Back W5 0.27 (0.15) -0.05 (0.12) 1.14 (0.15)
W5 Back -0.14 (0.06) 0.45 (0.06) 0.06 (0.06)
W5, Back W1 0 0 0.17 (0.2)
W5, Back W2 -0.34 (0.09) -0.07 (0.08) 0
W5, Back W3 0 0 -1.09 (0.23)
W5, Back W4 0.53 (0.16) 0.34 (0.16) -0.99 (0.2)
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Table 2.5: Results of simulations. True, true value of the parameter; Bias, 100× {mean(V̂) - V0};
SE, 100× average of standard error estimates, SD, 100× sample standard deviation; CP, empirical
coverage percentage of the 95% confidence interval.

n = 500 n = 1000 n = 2000
True Bias SE SD CP Bias SE SD CP Bias SE SD CP

1 -4 -1.87 5.45 5.39 0.95 -0.47 3.67 3.74 0.96 0.31 2.56 2.41 0.95
2 -5 -0.57 6.80 5.74 0.98 -1.33 4.53 4.12 0.97 -0.16 3.12 3.08 0.94
3 -5 -1.55 8.96 7.62 0.98 -0.48 6.12 6.22 0.96 -0.68 4.24 4.64 0.96
4 -5 -0.62 7.61 6.24 1.00 -0.32 5.06 4.37 0.99 -0.18 3.49 3.33 0.96
5 -5 2.18 8.87 8.14 0.95 -0.64 6.11 6.04 0.97 -0.64 4.26 4.85 0.93
6 -4 -0.01 5.45 4.71 0.98 0.09 3.65 3.70 0.96 0.39 2.51 2.86 0.90
7 -7 1.81 7.58 6.15 0.98 -0.24 5.12 4.87 0.96 0.33 3.56 3.19 0.94
8 -4 -2.29 13.39 13.41 0.98 -1.69 9.01 8.76 0.95 -1.81 6.23 6.03 0.96
9 -5 0.69 10.36 9.62 0.95 -0.62 6.97 7.12 0.95 -0.38 4.84 4.81 0.94

10 -5 -0.11 10.35 7.78 0.98 0.46 7.01 6.98 0.92 -0.10 4.83 4.08 0.98
11 -5 11.63 9.99 11.91 0.77 2.08 7.46 9.24 0.88 0.87 5.47 5.68 0.94
12 -6 0.35 4.80 4.51 0.97 -0.03 3.30 3.13 0.97 -0.17 2.28 2.26 0.94
13 -5 -0.25 10.63 8.37 1.00 -1.54 7.05 6.52 0.97 -0.48 4.87 5.08 0.93
14 -7 0.45 20.88 16.57 0.98 2.41 14.33 13.19 0.99 -0.14 10.05 9.71 0.96
15 -2 1.04 4.75 3.75 0.98 0.43 3.25 2.92 0.97 -0.01 2.27 2.09 0.98
16 1 2.50 7.07 7.32 0.93 -0.14 4.79 4.95 0.97 -0.48 3.34 3.18 0.93
17 -2 1.30 14.70 12.33 0.98 0.60 9.72 9.07 0.95 -0.51 6.67 6.70 0.95
18 -1 -0.56 10.35 9.47 0.98 1.53 6.97 6.75 0.96 1.09 4.68 4.87 0.95
19 1 -2.12 10.84 10.70 0.95 -0.90 7.46 7.26 0.95 0.21 5.15 5.50 0.94
20 2 1.57 9.37 9.39 0.90 2.26 6.26 6.51 0.92 -0.63 4.29 4.56 0.93
21 -2 32.79 25.34 22.82 0.72 13.33 17.21 19.37 0.83 2.99 11.73 13.99 0.89
22 1 -8.78 12.58 16.41 0.83 -3.74 8.48 10.17 0.86 -1.56 5.81 7.16 0.92
23 -2 25.51 23.61 31.84 0.75 11.25 15.89 20.37 0.79 3.53 11.02 12.63 0.88
24 2 9.20 11.37 14.14 0.82 5.51 7.53 9.58 0.82 1.63 5.17 5.18 0.95
25 -2 38.53 25.53 31.90 0.60 20.07 17.65 24.47 0.72 4.69 11.97 16.64 0.84
26 4 -0.48 17.05 14.40 0.98 1.11 11.35 10.78 0.96 0.87 7.89 7.85 0.93
27 5 2.96 13.16 11.38 0.98 -0.51 8.93 9.58 0.95 -0.80 6.24 5.95 0.96
28 5 -2.32 13.21 10.89 0.98 -2.07 8.98 9.58 0.92 -0.11 6.22 6.57 0.95
29 5 1.54 12.34 10.61 0.98 0.92 8.40 8.90 0.94 -0.46 5.88 6.14 0.95
30 2 -2.10 12.75 12.61 0.95 0.23 8.78 7.78 0.96 0.69 6.07 6.32 0.96
31 2 -0.18 10.54 9.90 0.98 0.68 6.97 6.23 0.97 0.64 4.81 4.40 0.96
32 3 0.90 22.12 18.85 0.95 0.27 15.09 13.89 0.95 -0.13 10.62 10.80 0.96
33 5 -1.45 22.39 19.31 0.98 -2.31 15.15 13.94 0.99 0.38 10.64 10.34 0.96
34 3 1.76 22.22 17.56 0.98 -0.19 15.22 13.07 0.99 0.24 10.73 9.74 0.98
35 5 0.41 22.52 19.99 0.98 -1.89 15.25 14.43 0.95 0.99 10.83 10.80 0.95
36 3 -1.14 22.67 19.30 0.98 -1.32 15.45 14.19 0.97 -0.09 10.87 10.66 0.96
37 5 -0.51 22.08 19.59 0.98 -1.67 15.20 14.18 0.97 0.43 10.63 10.69 0.98
38 3 -1.82 21.38 17.93 0.98 -1.95 14.53 14.07 0.99 0.24 10.21 10.20 0.96
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Table 2.6: Results of simulations. True, true value of the parameter; Bias, 100× {mean(V̂) - V0};
SE, 100× average of standard error estimates, SD, 100× sample standard deviation; CP, empirical
coverage percentage of the 95% confidence interval.

n = 500 n = 1000 n = 2000
True Bias SE SD CP Bias SE SD CP Bias SE SD CP

39 2 1.60 12.59 11.25 0.97 1.54 8.27 8.11 0.96 -0.05 5.60 5.66 0.96
40 2 -3.05 14.11 12.52 0.97 -0.11 9.36 10.54 0.90 -0.08 6.45 6.37 0.95
41 2 -5.08 13.47 11.90 0.97 0.85 8.82 9.60 0.90 0.16 5.97 6.76 0.90
42 1 -26.27 11.35 27.92 0.45 -0.75 8.13 14.75 0.86 -0.93 5.88 6.07 0.96
43 1 -0.21 6.69 6.09 0.98 1.32 4.46 4.86 0.94 0.40 3.02 3.02 0.96
44 1 1.91 8.08 6.74 0.98 1.23 5.33 4.68 0.96 1.82 3.66 3.61 0.94
45 1 1.69 6.96 6.61 0.93 1.06 4.59 4.67 0.92 0.61 3.15 2.82 0.96
46 1 3.25 9.23 9.03 0.97 1.89 6.04 5.37 0.99 2.03 4.17 3.51 0.98
47 1 2.01 7.79 8.09 0.95 0.94 5.14 5.28 0.94 1.00 3.51 3.73 0.90
48 1 -0.63 8.12 7.23 1.00 0.87 5.46 5.70 0.91 1.16 3.69 3.60 0.96
49 1 2.66 10.52 9.10 0.98 1.27 7.00 6.50 0.97 -0.08 4.69 5.24 0.94
50 1 2.82 7.56 6.56 0.95 0.83 4.94 4.86 0.91 0.05 3.35 3.89 0.90
51 1 3.70 8.14 7.02 0.97 0.91 5.31 5.46 0.96 0.87 3.57 3.96 0.93
52 -0.30 -0.17 6.43 5.56 0.97 0.79 4.25 3.67 0.96 0.60 2.95 3.19 0.94
53 0.30 1.09 8.65 9.65 0.92 0.56 5.82 6.71 0.90 0.11 3.99 4.12 0.94
54 -0.30 0.07 8.02 7.20 0.97 0.81 5.16 6.29 0.92 0.76 3.60 4.34 0.90

Table 2.7: Simulation setting for the fixed effects. Each row represents an event type. The columns
are the corresponding covariate processes. The numbers are the regression coefficients. The dots
represent the regression coefficient is 0.

baseline W1 W1_M W2 W2_M W3 W3_M Next Next_C R_1
W1 -4 . . . . . . . . .

W1_M -5 . . . . . . . . .
W2 -5 . . . . . . . . .

W2_M -5 . . . . . . . . .
W3 -5 . . . . . . . . .

W3_M -4 . . . . . . . . .
Next -7 . . . . . . . 4 5

Next_C -4 . . . . . . . . .
R_1 -5 . . . . . . . . .
R_2 -5 . . . . . . . . .
R_3 -5 . . . . . . . . .

R_Open -6 . . . . . 2 . . .
R_Close -5 . . . . . . . . .

Back -7 3 5 3 5 3 5 . . .
Next_OK -2 . . . . . . . . .
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Table 2.8: Simulation setting for the fixed effects (continued)
R_2 R_3 R_Open R_Close Back W1..Back W2..Back W3..Back Next_OK

W1 . . . . 1 -2 -1 . .
W1_M . . . . . . . . .

W2 . . . . 1 2 -2 . .
W2_M . . . . . . . . .

W3 . . . . 1 -2 2 -2 .
W3_M . . . . . . . . .

Next 5 5 . . . . . . .
Next_C . . . . . . . . .

R_1 . . . . . . . . .
R_2 . . . . . . . . .
R_3 . . . . . . . . .

R_Open . . . . . . . 2 .
R_Close . . . . . . . . .

Back . . . . 3 . . . .
Next_OK . . . . . . . . .

Table 2.9: Simulation setting for the first dimension of the loading matrix
W1 W1_M W2 W2_M W3 W3_M Next Next_C R_1

W1 . . . . . . . . .
W1_M 2 . . . . . . . .

W2 . . . . . . . . .
W2_M . . 2 . . . . . .

W3 . . . . . . . . .
W3_M . . . . 2 . . . .

Next . . . . . . . . .
Next_C . . . . . . . . .

R_1 . . . . . . . . .
R_2 . . . . . . . . .
R_3 . . . . . . . . .

R_Open . . . . . . . . .
R_Close . . . . . . . . .

Back . . . . . . . . .
Next_OK . . . . . . . . .
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Table 2.10: Simulation setting for the first dimension of the loading matrix (continued)
R_2 R_3 R_Open R_Close Back W1..Back W2..Back W3..Back Next_OK

W1 . . . . . . . . .
W1_M . . . . . . . . .

W2 . . . . . . . . .
W2_M . . . . . . . . .

W3 . . . . . . . . .
W3_M . . . . . . . . .

Next . . . . . . . . .
Next_C . . . . . . . . .

R_1 . . . . . . . . .
R_2 . . . . . . . . .
R_3 . . 1 . . . . . .

R_Open . . . . . . . . .
R_Close . . . . . . . . .

Back . . . . . . . . .
Next_OK . . . . . . . . .

Table 2.11: Simulation setting for the second dimension of the loading matrix
W1 W1_M W2 W2_M W3 W3_M Next Next_C R_1

W1 . . . . . . . . .
W1_M . . . . . . . . .

W2 . . . . . . . . .
W2_M . . . . . . . . .

W3 . . . . . . . . .
W3_M . . . . . . . . .

Next . . . . . . . . .
Next_C . . . . . . . . .

R_1 . . . . . . . . .
R_2 . . . . . . . . .
R_3 . . . . . . . . .

R_Open . . . . . . . . .
R_Close . . . . . . . . .

Back 1 1 1 1 1 1 . . .
Next_OK . . . . . . . . .
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Table 2.12: Simulation setting for the second dimension of the loading matrix (continued)
R_2 R_3 R_Open R_Close Back W1..Back W2..Back W3..Back Next_OK

W1 . . . . . . . . .
W1_M . . . . . . . . .

W2 . . . . . . . . .
W2_M . . . . . . . . .

W3 . . . . . . . . .
W3_M . . . . . . . . .

Next . . . . . . . . .
Next_C . . . . . . . . .

R_1 . . . . . . . . .
R_2 . . . . . . . . .
R_3 . . . . . . . . .

R_Open . . . . . . . . .
R_Close . . . . . . . . .

Back . . . . . . . . .
Next_OK . . . . . . . . .

Table 2.13: Simulation setting for the third dimension of the loading matrix
W1 W1_M W2 W2_M W3 W3_M Next Next_C R_1

W1 . . . . . . . . .
W1_M . . . . . . . . .

W2 . . . . . . . . .
W2_M . . . . . . . . .

W3 . . . . . . . . .
W3_M . . . . . . . . .

Next . . . . . . . . .
Next_C . . . . . . . . .

R_1 . . . . . . . . .
R_2 . . . . . . . . .
R_3 . . . . . . . . .

R_Open . . . . . . . . .
R_Close . . . . . . . . .

Back . . . . . . . . .
Next_OK . . . . . . . . .

60



Table 2.14: Simulation setting for the third dimension of the loading matrix (continued)
R_2 R_3 R_Open R_Close Back W1..Back W2..Back W3..Back Next_OK

W1 . . . . . . . 1 .
W1_M . . . . . . . . .

W2 . . . . . 1 . . .
W2_M . . . . . . . . .

W3 . . . . . . 1 . .
W3_M . . . . . . . . .

Next . . . . . . . . .
Next_C . . . . . . . . .

R_1 . . . . . . . . .
R_2 . . . . . . . . .
R_3 . . . . . . . . .

R_Open . . . . . . . . .
R_Close . . . . . . . . .

Back . . . . . . . . .
Next_OK . . . . . . . . .
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Chapter 3: Event History Analysis With Rare Events and Dynamic Sparse

Covariates

3.1 Introduction

In recent years, event history analysis using large-scale longitudinal observational databases

such as electronic health records and health insurance databases are becoming more popular. These

include, for example, personalized treatment and identification of rare disease patients. A health

insurance claims database typically contains millions of people with person-level prescription and

medical diagnoses over a period of several years. An electronic health record of a person is a

digital version of the patient’s health information collected from all the clinicians involved in the

patient’s care. It includes a variety of information such as patient demographics, medications,

diagnoses, vital signs, immunization, laboratory data, radiology images and allergies. It is built to

share information across different health care providers. While electronic health records contain

more variety of the information about a patient’s medical history, claim databases may provide a

more accurate prescription data as each time the patient gets a refill, it will be in the record when

the patient files the claim. However, this is feasible only when the patient is insured. Therefore,

combining both sources of information may provide a more comprehensive and accurate medical

history of a patient. A common feature of these longitudinal observational data is that when our

event of interest, for example, occurrence of certain diseases or prescription of certain drugs, is

rare, a majority of the subjects do not experience any such event. Nevertheless, because of the size

of the databases, studies on rare diseases and their relationship with different covariates or drug

exposures are still feasible.

An example of analysis using the large-scale longitudinal observational databases is postmar-

keting drug safety surveillance, which is the continued monitoring of prescription drugs after they
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have been approved in the market, see for example [40] and [41]. In such application, we are inter-

ested in the relationship between different (recurrent) adverse events related to health conditions

and the drug exposures. Because of the scale of the data, to investigate the association between

time-varying exposures and outcome events, one may want to consider only the cases (i.e. the

subjects that experience the event of interest) to reduce computational complexity. One possible

method is to use the self-controlled case series (SCCS) method, originally developed in [17]. In

SCCS, the intensity function is assumed to be

_8 (C |FC−) = 4q8+V
) -8 (C) ,

where q8 is a subject-specific parameter representing the person-level heterogeneity, - (·) is a vec-

tor of external time-varying covariates. Clearly, we cannot consistently estimate q8. However, it

can be seen that the number of events =8 is a sufficient statistic for q8 as the likelihood can be

written as

4=8q8
=8∏
9=1

4V
) -8 (C8 9 ) × exp

{
− 4q8

∫ 18

08

4V
) -8 (D)3D

}
,

where C8 9 are event times. Hence, conditioning on =8 will remove q8 from the likelihood. The

resulting conditional likelihood contribution from subject 8 is

=8∏
9=1

4V
) - (C8 9 )∫ 18

08
4V

) - (C)3C
, (3.1)

and the inference of SCCS is based on this conditional likelihood. The benefit of using SCCS in

analyzing large-scale data is that the conditional likelihood only depends on the cases. As a result,

it greatly reduces the computational requirement. Another benefit of SCCS is that it can control

for the multiplicative fixed individual covariates q8. However, a key assumption in SCCS is that

event occurrence is conditional independent given the covariates. This is clearly violated in many

important examples where the occurrence of the first event can alter the risk of having another

one. For example, it is known that patients with a myocardial infarction is more likely to have a
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subsequent one. To relax such assumption, [40] proposed a positive event dependence model for

SCCS by specifying the intensity function as

_8 (C |FC−) = {4q8 + X#8 (C−)}4V
) -8 (C) , (3.2)

where X ≥ 0. Clearly, when X > 0, the intensity function depends positively on the number of

previous event and so event occurrence is no longer conditional independent given the covariates.

Similarly to SCCS, =8 is still a sufficient statistic for q8 for the model in (3.2). Hence, the com-

putational benefits and self-control nature of SCCS using the conditional likelihood are retained

while (3.2) allows a flexibility that the intensity depends on the number of previous event through

the term X#8 (C−) for X > 0.

For a more general intensity with external time-varying covariates - (·), the conditional likeli-

hood for subject 8 on the number of events =8 is

=8∏
9=1

_8 (C8 9 |-8){ ∫ 18

08
_8 (C |-8)3C

}= .
[18] showed that this case series method may be used with rare non-recurrent events. Let _8 (C |-8)

be the conditional hazard function for the rare non-recurrent event. The rare event setting is for-

mulated by assuming _8 (C |-8) = ia8 (C |-8) and then letting i ↓ 0. The conditional likelihood for

subject 8 given -8 with an event at C8 ∈ (08, 18] is

(8 (C8 |-8)_8 (C8 |-8)
((08 |-8) − ((18 |-8)

.

It is straightforward to see that limi↓0 (8 (C8 |-8) = 1 and

lim
i↓0

((08 |-8) − ((18 |-8)∫ 18

08
_8 (C |-8)3C

= 1.
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Hence,

lim
i↓0

(8 (C8 |-8)_8 (C8 |-8)
((08 |-8) − ((18 |-8)

=
_8 (C8 9 |-8)∫ 18

08
_8 (C |-8)3C

and in this sense, the case series method can be used with rare non-recurrent events.

Another setting of rare events is formulated in [6]. Motivated by the prostate, lung, colorectal,

and ovarian (PLCO) cancer screening trial conducted by the National Cancer Institute, [6] studied

a class of weighted log-rank tests for survival data when the event is rare. [6] showed that the

popular �d fmaily of weighted log-rank statistics essentially reduces to the special case of the

unweighted log-rank statistics under the rare event setting. They proposed a simple modification to

the �d family and formulated a mathematical setting of rare event where the asymptotic properties

of the statistics under both null and contiguous alternatives are studied. Since their setting is for

comparing two distribution functions without covariates, the rare event setting is formulated in

terms of the distribution functions as follow. First, the notion of rare event must be relative to the

sample size. Hence, for each =, the underlying distribution function is � (=)
:

and is assumed to be

�
(=)
:
(C) = 1

<=
�̃: (C), C ∈ [0, g],

where <= → ∞ and �̃: ’s are some increasing function for : = 1, 2. However, <= cannot be

arbitrarily large. Otherwise, we do not have enough number of events for consistency. Therefore,

it is assumed that =/<= → ∞ so that the number of events also go to ∞. Informally, =/<= is

approximately proportional to the the information contained in the data.

Apart from having rare event, we could also have sparse covariates. Consider the case when

the covariate is a process indicating whether a subject has taken certain drug in the last 30 days,

that is, - (C) = 1 if the subject has taken that drug in the period [C − 30, C). If a patient only takes

the drug when he/she has certain rare diseases, then we expect that - (C) = 0 for the majority of the

subjects at any time C. It is in this sense that the covariate is sparse. Another situation is that if we

have a dynamic covariate that depends on the history of the event of interest, then such dynamic

covariate could also be sparse when the event is rare. Note that this is different from a sparse
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regression model in which case we have a lot of covariates but only a few of them have regression

coefficients different from 0. Returning to the discussion of dynamic covariate, a popular model

that captures a specific type of dynamic covariate is the Hawkes process, named after [24]. The

defining characteristics of them is “self-excite", meaning that previous event increases the rate of

having another future event. It is particularly suitable for modeling cluster events like earthquake

and financial data. Mathematically, the intensity function for a Hawkes process is

_(C) = _ +
∫ C

0
`(C − D)3# (D) = _ +

∑
C8<C

`(C − C8),

where # is the underlying counting process, _ > 0 and ` : (0,∞) → [0,∞) are called the

background intensity and excitation function respectively. Since ` is positive, any previous event

will increase the intensity and hence it is self-excited. A common choice of the excitation function

is the exponential decay, where `(C) = U4−VC , for some U, V > 0. For a �-variate counting process,

the mutually exciting Hawkes process has intensity function

_ 9 (C) = _ 9 +
�∑
8=1

∫ C

0
` 98 (C − `)3# 9 (D), 9 = 1, . . . , �,

where _8 > 0, ` 98 : (0,∞) → [0,∞).

In Section 3.2, a mathematical formulation for the proportional intensity model with rare events

is given. In Section 3.3, we establish the asymptotic theory of the maximum partial likelihood

estimator under general conditions and illustrate the application to the cases when we have rare

events and sparse covariates in Section 3.4. Simulation studies are given in Section 3.5. Some of

the proofs are relegated to the Appendix

3.2 Setting and Notation

In this section, we first formalize the idea of rare events in a proportional intensity model. The

data consists of {# (=)
8
(·), - (=)

8
(·), . (=)

8
(·) : 8 = 1, . . . , =}. It is assumed that the counting process
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#
(=)
8
(·), 8 = 1, . . . , = has intensity function

_(=) (C |FC−) = _0(C)42=+V
) -
(=)
8
(C). (=)

8
(C), (3.3)

where 2= → −∞, _0(·)42= is the baseline intensity function, V is the vector of regression parameters

of interest, - (=)
8
(·) is a vector of predictable covariate processes and . (=)

8
(·) is the at-risk indicator

process. As the notion of rare event is relative to the sample size, we explicitly write down the

dependence on = in these quantities. Let g be the duration of study. Since 2= → −∞, the intensity

function converges to 0 almost surely at any fixed C as = → ∞. Hence, event occurrence becomes

more rare as = increases. On the other hand, 2= cannot go to −∞ arbitrarily fast. We require

=42= → ∞ so that we have enough events for the consistency estimation V. Informally, =42= is

proportional to the observed Fisher information matrix and we require the information to go infinity

for establishing consistency. If {2=} is a constant sequence, (3.3) becomes the usual proportional

intensity model. It is straightforward to see that the same argument leading to the partial likelihood

in the proportional intensity model also applies in the case under (3.3). Hence, the estimator of V

is obtained by maximizing the log partial likelihood function:

log PL(V) =
=∑
8=1

[ ∫ g

0
V)-

(=)
8
(C) − log

{ =∑
:=1

.
(=)
:
(C)4V) -

(=)
:
(C)

}]
3#
(=)
8
(C).

That is, we define V̂= := arg maxV log PL(V). Let V0 denote the true value of V. To facilitate the

proofs in this section, define

(
(0)
= (V0; B) :=

1
=

=∑
8=1
.
(=)
8
(B)4V)0 -

(=)
8
(B) ,

(
(1)
= (V0; B) :=

1
=

=∑
8=1
.
(=)
8
(B)- (=)

8
(B)4V)0 -

(=)
8
(B) ,

(
(2)
= (V0; B) :=

1
=

=∑
8=1
.
(=)
8
(B)- (=)

8
(B)- (=)

8
(B))4V)0 -

(=)
8
(B) .
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Let

+= (V, B) :=
(
(2)
= (V; B)
(
(0)
= (V; B)

−
(
(
(1)
= (V; B)
(
(0)
= (V; B)

)⊗2
.

Define " (=)
8

:= # (=)
8
− �(=)

8
, where # (=)

8
is the compensator of �(=)

8
given by

�
(=)
8
(C) :=

∫ C

0
{V)- (=)

8
(D) − log ((0)= (V; D)}. (=)

8
(D)_0(D)42=4V

)
0 -
(=)
8
(D)3D.

The score process is

*= (V0, C) :=
∫ C

0

{
-
(=)
8
(D) − (

(1)
= (V0, D)
(
(0)
= (V0, D)

}
3#
(=)
8
(D) =

∫ C

0

{
-
(=)
8
(D) − (

(1)
= (V0, D)
(
(0)
= (V0, D)

}
3"
(=)
8
(D).

The observed Fisher information matrix is

�= (V) :=
∫ g

0

{
(
(2)
= (V; D)
(
(0)
= (V; D)

−
(
(
(1)
= (V; D)
(
(0)
= (V; D)

)⊗2}
3#
(=)
8
(D).

3.3 Asymptotic Theory under General Setting

In this section, we show the consistency and asymptotic normality of the partial likelihood

estimator under general conditions on the score equation and the observed Fisher information. We

shall verify the these conditions under various settings, in particular, including the setting when we

have both rare events and sparse covariates.

Assumption 1. (i) There exists a sequence of invertible deterministic matrices {�=} with | |�−1
= | | →

0 as =→∞ such that �−1
= �= (V0) (�−1

= ))
P→ �.

(ii) �−1
= *= (V0)

3→ # (0, �).

(iii) Let D ∈ R3 . Using multi-index notation, for |U | = 3,

sup
V∈�(V0,| |�−1

= D | |)

����m!= (V)mU
(�−1

= D)U
���� = >% ( | |D | |2),
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where �(V0, X) := {V : | |V − V0 | | ≤ X}.

(iv) For any consistent estimator Ṽ= of V0, �−1
= �= ( Ṽ=) (�−1

= ))
P→ � and �

1
2
= ( Ṽ=) (�−1

= ))
P→ �.

Lemma 2. Assumptions 1 ((i)) and ((iv)) are implied by the following conditions with �= = �̃
1
2
= :

(i’) There exists a sequence of deterministic positive definite matrices {�̃=} with | |�̃−1
= | | → 0

such that �̃−1
= �= (V0)

P→ �.

(iv’) For any consistent estimator Ṽ= of V0, �̃−1
= �= ( Ṽ=)

P→ �.

Proof. The proof of the implication is seen by the two linear algebra results (see Lemmas 3 and

4) and the characterization of convergence in probability that ,=

P→ , if and only if every subse-

quence has a further subsequence along which,=

0.B.→ , . �

Assumption 1 ((i)) is required so that the observed Fisher information suitably normalized will

converge to a nondegenerate limit. Assumption 1 ((ii)) is usually a consequence of ((i)), which

can be proved using the martingale central limit theorem under a suitable Linderberg condition.

Assumption 1 ((iii)) is assumed to ensure the remainder terms in the Taylor’s expansion of the log-

likelihood is of smaller order and is easily satisfied. Assumption 1 ((iv)) is to ensure that inference

based on the observed Fisher information is valid; see Theorems 12 and 13.

Theorem 11 (Consistency). Under Assumption 1 ((i)) - ((iii)), we have | | V̂=− V0 | | = $% ( | |�−1
= | |) =

>% (1).

Proof. By Taylor’s theorem and Assumptions 1 ((i)) - ((iii)), we have

!= (V0 + �−1
= D) − != (V0) = D)�−1

= *= (V0) −
1
2
D)�−1

= �= (V0)�−1
= D +

∑
|U |=3

1
U!
m!= (V∗=)
mU

(�−1
= D)U

= D)$% (1) −
1
2
| |D | |2(1 + >% (1)) + >% ( | |D | |2),

where V∗= lies on the segment between V0 and V0 + �−1
= D. Hence, for all Y > 0, there exists �0 > 0
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such that for all large enough =,

P

(
sup

D:| |D | |=�0

{!= (V0 + �−1
= D) − != (V0)} < 0

)
≥ 1 − Y.

This implies that there is a local maximizer in {V0 + �−1
= D : | |D | | ≤ �0} with a probability at least

1 − Y for all large enough =. Since != is concave, the local maximizer is the global maximizer V̂=.

Therefore, for all large enough =, P( | | V̂= − V0 | | ≤ | |�−1
= | |�0) ≥ 1 − Y and the claim follows. �

Theorem 12 (Asymptotic Normality). Under Assumptions 1 ((i)) - ((iv)), we have

�
1
2
= ( V̂=) ( V̂= − V0)

3→ # (0, �). (3.4)

Proof. By Taylor’s theorem, there exists a V∗= on the line segment between V0 and V̂= such that

0 = *= ( V̂=) = *= (V0) − �= (V∗=) ( V̂= − V0).

Note that under Assumptions 1 ((i))-((iii)), V̂= is consistent. Then, by Assumptions 1 ((ii)) and

((iv)), and Slutsky’s theorem, we have

�
1
2
= ( V̂=) ( V̂= − V0) = �

1
2
= ( V̂=)�−1

= (V∗=)*= (V0)

= �
1
2
= ( V̂=)�−1

= {�=�
−1
= (V∗=)�=}�−1

= *= (V0)
3→ # (0, �).

�

As a result of Theorem 12, we have V̂= − V0 ≈ # (0, �−1
= ( V̂=)). Therefore, inference can be

based on the observed Fisher information matrix. Formally, we have the Wald test.
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Theorem 13 (Wald Test). Under Assumptions 1 ((i)) - ((iv)), we have

V̂= 9 − V0 9√
(�−1
= ) 9 9

3→ # (0, 1), (3.5)

where (�−1
= ) 9 9 is the ( 9 , 9)-th element of �−1

= . Let 6 : R? → RA , A ≤ ?, be a continuously differen-

tiable function where the Jacobian �6 has rank A . Then,

{6( V̂=) − 6(V0)}) {�6 ( V̂=)�−1
= ( V̂=)�)6 ( V̂=)}−1{6( V̂=) − 6(V0)}

3→ j2(A), (3.6)

where j2(A) denotes the chi-square distribution with A degrees of freedom.

Proof. We first prove (3.5). Let 4 9 = (0, . . . , 1, . . . , 0)) , where the 9 th element is 1 and the other

elements are 0. Then,

V̂= 9 − V0 9√
(�−1
= ) 9 9

= {4)9 �−1
= ( V̂=)4 9 }−

1
2 4)9 ( V̂= − V0) = [{4)9 �−1

= ( V̂=)4 9 }−
1
2 4)9 �

− 1
2

= ( V̂=)]{�
1
2
= ( V̂=) ( V̂= − V0)}.

Let 0)= = {4)9 �
− 1

2
= ( V̂=)4 9 }−14)

9
�
− 1

2
= ( V̂=). Then 0)=0= = 1. Hence, 0= is bounded and every sub-

sequence {=: } has a further subsequence {=:; } along which it converges to 0, which is possibly

random. By Skorokhod representation theorem, there is another probability space and random

variables,= such that,=
3
= �

1
2
= ( V̂=) ( V̂= − V0) and,=

0.B.→ # (0, �). By arguing along subsequences,

we see that 0)=,=

0.B.→ 0)# (0, �) = # (0, 0)0) = # (0, 1). Therefore,

0)= {�
1
2
= ( V̂=) ( V̂= − V0)}

3→ # (0, 1). (3.7)

To show (3.6), note that

{�6 ( V̂=)�−1
= ( V̂=)�)6 ( V̂=)}−

1
2 {6( V̂=) − 6(V0)}

= {�6 ( V̂=)�−1
= ( V̂=)�)6 ( V̂=)}−

1
2 �6 ( V̂∗=)�

− 1
2

= ( V̂=){�
1
2
= ( V̂=) ( V̂= − V0)},
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where V∗= lies on the line segment between V0 and V̂=. Let �= = {�6 ( V̂=)�−1
= ( V̂=)�)6 ( V̂=)}−

1
2 �6 ( V̂∗=)�

− 1
2

= ( V̂=).

By the consistency of V̂= and the continuity of �6, we see that �=�)=
P→ �A , where �A is an

A × A identity matrix. Hence, every subsequence {=: } has a further subsequence {=:; } along

which �=�
)
= → �A almost surely. We may assume �=:;

converges to � almost surely; other-

wise argue along subsequences. Then �=:;,=:;

0.B.→ �# (0, �?) = # (0, ��) ) = # (0, �A). Hence,

�=,=

P→ # (0, �A). As a result,

{�6 ( V̂=)�−1
= ( V̂=)�)6 ( V̂=)}−

1
2 {6( V̂=) − 6(V0)}

3→ # (0, �A),

which implies (3.6). �

Let

)= := 6( V̂=)) {�6 ( V̂=)�−1
= ( V̂=)�)6 ( V̂=)}−16( V̂=)

3→ j2(A).

Under the null hypothesis that 6(\0) = 0, we reject the null hypothesis when )= > �−1
A (1 − U),

where �A is the distribution function of j2(A) and U is the significance level. A confidence region

for V0 can be found inverting the Wald test.

Lemma 3. Let {�=} be a sequence of ? × ? nonnegative definite matrices and {�=} be a sequence

of ? × ? symmetric matrices, where ? ∈ N. Then �=�= → � as =→ ∞ implies that �
1
2
=�=�

1
2
= → �

as =→∞.

Proof. Apply the eigendecomposition to �= so that �= = �=Λ=�)= , where �= is orthornomal and

Λ= is a diagonal matrix. Since �=�= → � and �= is bounded

Λ=�
)
=�=�= − � = �)= (�=Λ=�)=�= − �)�= → 0.

Let �̃= := Λ= ≥ 0 and �̃= := �)=�=�=. We have �̃=�̃= → �. Write �̃= = diag(1=,1, . . . , 1=,?) and

�̃= = {2=,8 9 }8, 9=1,...,?. Thus,

1=, 92=, 9 9 → 1, for all 9 = 1, . . . , ?
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and

1=, 92=, 98 → 0, for all 8, 9 = 1, . . . , ?.

Note that �̃= is symmetric as �= is, so 2=, 98 = 2=,8 9 and thus

max{1=, 92=, 98, 1=,82=,8 9 } = max{1=, 9 , 1=,8}2=,8 9 → 0.

Now, the diagonal elements in �̃
1
2
= �̃=�̃

1
2
= are simply 1=, 92=, 9 9 → 1 and the off-diagonal elements

are
√
1=,811, 92=,8 9 ≤ max{1=, 9 , 1=,8}2=,8 9 → 0. Therefore, we have shown that

Λ
1
2
=�

)
=�=�=Λ

1
2
= → � .

This implies that

�
1
2
=�=�

1
2
= − � = �= (Λ

1
2
=�

)
=�=�=Λ

1
2
= − �)�)= → 0.

�

Remark 2. (i) The converse of Lemma 3 is not true, even when �= is positive definite. For a

counterexample, let

�= =
©«

1
=

0

0 1
=2

ª®®¬ and �= =
©«

= =1.1

=1.1 =2

ª®®¬
Then �= is positive definite, �

1
2
=�=�

1
2
= → � but

�=�= →
©«

1 ∞

∞ 1

ª®®¬ .
Note that even when 2=,12 = =, this is not true. A sufficient condition in this case is that

2=,8 9 = >(min(2=,88, 2=, 9 9 )).

(ii) In the proof of Lemma 3, we do not assume �= or �= are bounded and the result holds

for general �= and �=. In fact, in our applications, the elements in the observed Fisher
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information are indeed unbounded.

Remark 3. If {�=} is a sequence of diagonal positive definite matrices and {�=} is a sequence

of positive definite matrices, then �=�= does not necessarily converge to a matrix of the form ��

where � is diagonal and � is nonnegative definite. For example,

©«
1
=

0

0 1
=2

ª®®¬
©«
= =

= =2

ª®®¬→
©«

1 1

0 1

ª®®¬ .
Lemma 4. Let {�=} and {�=} be sequences of nonnegative definite matrices. Suppose that �= =

�=�= for each =. Then �=�)= → � as =→∞ if and only if �= → � as =→∞.

Proof. To show the forward implication, apply the eigendecomposition to �= so that �= = �=Λ=�)= ,

where �= is orthornomal and Λ= is a diagonal matrix. �= = �=Λ=�)= . Then

�=�
)
= = �=Λ=�

)
=�=�=�=Λ�

)
= = �=Λ(�)=�=�=) (�)=�=�=)Λ�)=

= �=�̃=�̃=�̃
)
= �̃=�

)
= ,

where �̃= := Λ= ≥ 0 because �= ≥ 0 and �̃= := �)=�=�= ≥ 0 because �= ≥ 0. Since �= is

bounded, we have �)= {�=�̃=�̃=�̃)= �̃=�)= }�= → � and so

�̃=�̃=�̃=�̃= → � .

Let �̃= := �̃=�̃=. We then have �̃= �̃)= → �, where �̃= and �̃= are both nonnegative definite. Now,

because �̃= �̃)= → �, the elements in �̃= are bounded. Therefore, �̃= → � for some � along a

subsequence. We can assume the whole sequence converges; otherwise argue along subsequences.

As ��) = �, � is orthonormal. This result together with the facts that �̃= ≥ 0 is diagonal and

�̃= ≥ 0 imply that �̃=�̃= converges to ��, where � is again diagonal and � is nonnegative definite.

Since � is orthonormal, the row vectors in � are orthogonal and hence �� = �, where � > 0 is

a diagonal matrix. As � is nonnegative definite, � must be the unique nonnegative definite square
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root matrix of �, i.e., � = �
1
2 , implying � is also a diagonal matrix. As � = ��, which is a

product of two nonnegative definite diagonal matrices, � is a nonnegative definite diagonal matrix.

Then �� = � implies � = �. Therefore, �̃= → �. Finally,

�= − � = �=Λ=�)=�= − � = �= ( �̃= − �)�)= → 0.

The other direction of implication is trivial. �

Remark 4. (i) By setting �= = �
1
2
=�

1
2
= in Lemma 4, we have �

1
2
=�=�

1
2
= → � if and only if

�
1
2
=�

1
2
= → � provided {�=} and {�=} are sequences of nonnegative definite matrices.

(ii) In the proof of Lemma 4, we do not assume �= or �= are bounded and the result holds

for general �= and �=. In fact, in our applications, the elements in the observed Fisher

information are indeed unbounded.

3.4 Applications

3.4.1 Proportional Intensity Model

In this section, we verify Assumption 1 under the proportional intensity model with setting

following Chapter 8 in [19]:

Assumption 2. (i)
∫ g

0 _0(C)3C < ∞.

(ii) There exists a neighborhood # (V0) of V0 and function B( 9) such that, for 9 = 0, 1, 2,

sup
C∈[0,g],V∈# (V0)

| |(( 9)= (V, C) − B( 9) (V, C) | |
P→ 0,

where for a scalar 1, | |1 | | := |1 |, for a vector 1 = (11, . . . , 1?)) , | |1 | | := max8=1,...,? 18 and

for a matrix B = {08 9 }, | |B| | := max8, 9 |18 9 |.
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(iii) There exists a X > 0 such that

=−1/2 sup
1≤8≤=,0≤C≤g

|- (=)
8
(C) |. (=)

8
(C)�{V)0 -

(=)
8
(C) > −X | |- (=)

8
(C) | |} P→ 0.

(iv) Let 4 = B(1)/B(0) and E = B(2)/B(0) − 4⊗2. For all V ∈ # (V0) and 0 ≤ C ≤ g,

m

mV
B(0) (V, C) = B(1) (V, C),

m2

mV2 B
(0) (V, C) = B(2) (V, C).

(v) The functions B( 9) are bounded above and B(0) is bounded away from 0 on # (V0) × [0, g];

for 9 = 0, 1, 2, the family of functions B( 9) (·, C), 0 ≤ C ≤ g, is an equicontinuous fmaily at V0.

(vi) The matrix

Σ(V0) =
∫ g

0

[
B(2) (V0, C)
B(0) (V0, C)

−
{
B(1) (V0, C)
B(0) (V0, C)

}⊗2]
B(0) (V0, C)_0(C)3C

is positive definite, where for a vector 1, 1⊗2 = 11) denotes the outer product of 1 with itself.

Take �= = Σ
1
2=

1
2 . Clearly, | |�−1

= | | → 0. Under Assumption 2, by Theorem 8.2.1 in [19],

=−
1
2*= (V0)

3→ # (0,Σ(V0)) and for any consistent estimator Ṽ= of V0, =−1�= ( Ṽ=)
P→ Σ. It is then

straightforward to see that Assumptions 1 (i), (ii) and (iv) are satisfied. Assumption 1 (iii) is also

satisfied supV∈# (V0) |
1
=

m!= (V)
mU
| is easily seen to be $% (1).

3.4.2 Proportional Intensity Model with Rare Events

In this section, we verify Assumption 1 under the proportional intensity model with rare events

as specified by (3.3) and Assumption 3.

Assumption 3. (i)
∫ g

0 _0(C)3C < ∞.
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(ii) There exists a neighborhood # (V0) of V0 and function B( 9) such that, for 9 = 0, 1, 2,

sup
C∈[0,g],V∈# (V0)

| |(( 9)= (V, C) − B( 9) (V, C) | |
P→ 0,

where for a scalar 1, | |1 | | := |1 |, for a vector 1 = (11, . . . , 1?)) , | |1 | | := max8=1,...,? 18 and

for a matrix B = {08 9 }, | |B| | := max8, 9 |18 9 |.

(iii) There exists a X > 0 such that

4−
2=
2 =−1/2 sup

1≤8≤=,0≤C≤g
|- (=)
8
(C) |. (=)

8
(C)�{V)0 -

(=)
8
(C) > −X | |- (=)

8
(C) | |} P→ 0.

(iv) Let 4 = B(1)/B(0) and E = B(2)/B(0) − 4⊗2. For all V ∈ # (V0) and 0 ≤ C ≤ g,

m

mV
B(0) (V, C) = B(1) (V, C),

m2

mV2 B
(0) (V, C) = B(2) (V, C).

(v) The functions B( 9) are bounded above and B(0) is bounded away from 0 on # (V0) × [0, g];

for 9 = 0, 1, 2, the family of functions B( 9) (·, C), 0 ≤ C ≤ g, is an equicontinuous fmaily at V0.

(vi) The matrix

Σ(V0) =
∫ g

0

[
B(2) (V0, C)
B(0) (V0, C)

−
{
B(1) (V0, C)
B(0) (V0, C)

}⊗2]
B(0) (V0, C)_0(C)3C

is positive definite, where for a vector 1, 1⊗2 = 11) denotes the outer product of 1 with itself.

(vii) 2= → −∞ and =42= →∞.

Condition ((i))-((vi)) are regular conditions for establishing the asymptotic theory in the pro-

portional intensity model (see Ch.8 in [19]). Condition ((vii)) is the setting of rare event where the

condition =42= →∞ is necessary so that we have enough data for the consistency of the estimator.
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Lemma 5. Under Assumption 3, we have

(a)

4−
2=
2 =−

1
2*= (V0)

3→ # (0,Σ(V0)); (3.8)

(b)

4−2==−1�= ( Ṽ=)
P→ Σ(V0), (3.9)

for any consistent estimator Ṽ= of V0.

Proof. See the appendix for details. �

Corollary 1. Under Assumption 3, (3.4), (3.5) and (3.6) hold.

Proof. It suffices to verify Assumption 1. Take �= = Σ
1
2=

1
2 4

2=
2 . By Assumption 3 ((vii)), | |�−1

= | | →

0. By Lemma 5, we can see that Assumptions 1 (i), (ii) and (iv) are satisfied. Assumption 1 (iii)

is also easily seen to be satisfied; we shall give the details in the more complicated case in Section

3.4.3. �

3.4.3 Proportional Intensity Model with Rare Events and Dynamic Sparse Covariates

In Section 3.4.2, we established the asymptotic theory of the maximum partial likelihood esti-

mator in the proportional intensity model with rare events. In this section, in addition to rare events,

we also consider the case we have sparse covariates. Informally, sparse covariates means that most

of the covariates are 0. This arises when the covariates are for example indicating whether there

was a certain rare event happen before. In particular, that event considered in the covariate could

be the same as the event of interest that is being modeled, resulting a dynamic covaraite. Another

example is that - (C) = 1 if the subject has taken a certain drug in the past 14 days before C. If the

drug is very uncommon, then for most of the people, - (C) = 0.

The setting is similar to that in Section 3.4.2 except that we now expect

=∑
8=1
.
(=)
8
(B)- (=)

8
(B)4V) -

(=)
8
(B) = >%

( =∑
8=1
.
(=)
8
(B)4V) -

(=)
8
(B)

)
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and for some ;, ;′ ∈ {1, . . . , ?} with ; ≠ ;′,

=∑
8=1
.
(=)
8
(B)- (=)

8;
(B)4V) -

(=)
8
(B) = >%

( =∑
8=1
.
(=)
8
(B)- (=)

8; ′ 4
V) -

(=)
8
(B)

)
,

corresponding to sparse covariates and highly unbalanced covariates. Again, we will estimate

V using the maximum partial likelihood estimator. Assumption 4 below specifies the regularity

conditions for the consistency and asymptotic normality of V̂=.

Assumption 4. (i)
∫ g

0 _0(C)3C < ∞.

(ii) There exists a neighborhood # (V0) of V0 and functions B( 9) such that, for 9 = 0, 1, 2,

sup
C∈[0,g],V∈# (V0)

| |((0)= (V, C) − B(0) (V, C) | |
P→ 0,

sup
C∈[0,g],V∈# (V0)

| |diag(W=1, . . . , W=?)((1)= (V, C) − B(1) (V, C) | |
P→ 0,

sup
C∈[0,g],V∈# (V0)

| |diag(W=1, . . . , W=?)((2)= (V, C)diag(W=1, . . . , W=?) − B(2) (V, C) | |
P→ 0,

where W= 9 > 0 and diag(W=1, . . . , W=?) denotes the diagonal matrix with elements W=1, . . . , W=?.

Let E = B(2)/B(0) .

(iii) The covariate processes are bounded. That is, there exists a " > 0 such that

sup
8=1,...,=,0≤C≤g

| |- (=)
8
(C) | | ≤ ".

(iv) The functions B( 9) are bounded and B(0) is bounded away from 0 on # (V0) × [0, g]; for

9 = 0, 1, 2, the family of functions B( 9) (·, C), 0 ≤ C ≤ g, is an equicontinuous fmaily at V0.

(v) The matrix

Σ(V0) =
∫ g

0
B(2) (V0, C)_0(C)3C

is positive definite.
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(vi) =42= (max 9=1,...,? W= 9 )−1 →∞ as =→∞.

Condition ((i))-((v)) are regular conditions for establishing asymptotic theory in the propor-

tional intensity model (see Ch.8 in [19]). Condition ((vi)) is needed so that we have enough data

for the consistency of the estimator. For simplicity, we shall also use diag(W=), diag(√W=) and

diag(W−
1
2

= ) to denote diag(W=1, . . . , W=?), diag(√W=1, . . . ,
√
W=?) and diag(W−

1
2

=1 , . . . , W
− 1

2
=? ) respec-

tively, where W= = (W=1, . . . , W=?)) .

Lemma 6. Under Assumption 4, we have

(a)

4−2=/2=−1/2diag(√W=)*= (V0)
3→ # (0,Σ(V0)); (3.10)

(b) For any consistent estimator Ṽ= of V0,

4−2==−1diag(√W=)�= ( Ṽ=)diag(√W=)
P→ Σ(V0). (3.11)

Proof. See the appendix for details. �

Corollary 2. Under Assumption 4, (3.4), (3.5) and (3.6) hold.

Proof. Take �= = 4
2=
2 =

1
2 diag(W−

1
2

= )Σ
1
2 . Then, | |�−1

= | | → 0 as = → ∞ by Assumption 4 ((vi)).

By Lemma 6, for any consistent estimator Ṽ= of V0, we see that �−1
= �= ( Ṽ=) (�−1

= ))
P→ � and

�−1
= *= (V0)

3→ # (0, �). To verify Assumption 1 (iii), let

(
(3)
=, 9 :;
(V0, D) :=

1
=

=∑
8=1
.
(=)
8
(D)- (=)

8 9
(D)- (=)

8:
(D)- (=)

8;
(D)4V)0 -

(=)
8
(D)
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and fix U = ( 9 , :, ;). Then

���� m3!= (V)
mV 9mV:mV;

���� =

���� =∑
8=1

∫ g

0

{
− 2

(
(1)
=, 9
(D)((1)

=,:
(D)((1)

=,;
(D)

{((0)= (D)}3
−
(
(3)
=, 9 :;
(D)

(
(0)
= (D)

+
(
(2)
=, 9 ;
(D)((1)

=,:
(D) + ((1)

=, 9
(D)((2)

=,:;
(D) + ((2)

=, 9 :
(D)((1)

=,;
(D)

{((0)= (D)}2

}
3#
(=)
8
(D)

����
≤

=∑
8=1

#
(=)
8
(g)

[
2 sup

D

����((1)=, 9 (D)((1)=,: (D)((1)=,; (D){((0)= (D)}3

���� + sup
D

����((3)=, 9 :; (D)
(
(0)
= (D)

����
+ sup

D

����((2)=, 9 ; (D)((1)=,: (D) + ((1)=, 9 (D)((2)=,:; (D) + ((2)=, 9 : (D)((1)=,; (D){((0)= (D)}2

����] , (3.12)

where the argument V is suppressed in the integrand for simplicity. Note that

sup
D

|√W= 9((1)=, 9 (D) | ≤ W
− 1

2
= 9

sup
D

{|W= 9((1)=, 9 (D) − B
(1)
9
(D) | + |B(1)

9
(D) |} P→ 0,

sup
D

|√W= 9W=:((2)=, 9 : (D) | ≤ W
− 1

2
= 9
W
− 1

2
=:

sup
D

{|=W 9=W:((2)
=, 9 :
(D) − B(2)

9 :
(D) | + |B(2)

9 :
(D) |} P→ 0,

sup
D

����√W= 9W=:((3)=, 9 :; (V0, D)
���� ≤ " sup

D

|√W= 9W=:((2)=, 9 : (V0, D) |
P→ 0, (3.13)

by Assumption 4 ((ii)) and ((iii)). Note that

(�−1
= D)U = $ (=−

1
2 4−

2=
2
√
W= 9W=:W=; | |D | |3) = >(

√
W= 9W=: | |D | |3) (3.14)

Hence, by (3.12), (3.13), (3.14), the fact that =−14−2=
∑=
8=1 #

(=)
8
(g) = $% (1), and Assumption 4

((iv)), we have ∑
|U |=3

1
U!
m!= (V=)
mU

(�−1
= D)U = >P( | |D | |3). (3.15)

Finally, we verify �= ( Ṽ=)
1
2 (�−1

= ))
P→ �. Let �= := 4

2=
2 =

1
2 diag(W−

1
2

= ) and �= := �= ( Ṽ=)
1
2 . Let

�= = �=�=. Note that we have �=�)=
P→ Σ. It suffices to show that �=

P→ Σ
1
2 . Now, every

subsequence has a further subsequences along which �=�
)
= → Σ almost surely. Assume that

�=�
)
= → Σ; otherwise argue along subsequences. Let 1= 9 ’s be the diagonal elements in �=.
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Without loss of generality, assume that 1=1 ≥ . . . ≥ 1=?. It is not hard to see that the limit Σ must

be a block diagonal matrix, where the elements corresponding to the covariates with the same order

are grouped in the same block. Since �=�)= → Σ, �= is bounded, we can assume that �= → �

for some �; otherwise argue along subsequences. Let 0 9 be the rows of �. The fact that Σ is

a block diagonal matrix implies that 〈08, 0 9 〉 = 0 if 8 and 9 are not in the same block. We only

consider the case when 1= 9 ’s do not all have the same order of going to ∞ as the case when they

are of the same order is straightforward to show. Let 0 9∗ , . . . , 0? be the rows corresponding to the

smallest order of 1=’s. Note that 1=8�=,8 9 = 1=8�=, 98 = 1=8$ (1= 9 ) = >(1) for 8 = 9∗, . . . , ? and

9 = 1, . . . , 9∗ − 1. Therefore, we see that (�=)8, 9= 9∗,...,? (�=)8, 9= 9∗,...,? converges to �∗, where �∗ is

positive definite. Using the orthogonality of the rows in � across different blocks, we must have

08 9 = 0 for 8 = 1, . . . , 9∗ − 1, 9 = 9∗, . . . , ?. Repeating this argument, we see that � is a positive

definite block diagonal matrix. Since Σ is positive definite, it has an unique nonnegative definite

square root matrix. Thus, � = Σ
1
2 . �

3.5 Simulation Studies

In this section, we perform simulations to illuminate the theoretical results. We consider the

proportional intensity model with rare events and two sparse covariates by specifying the intensity

function as:

_= (C |FC−) = 42=+V0+V1-
(=)
1 +V2-

(=)
2 .

That is, the intensity function has a constant baseline with _0(C) = 42=+V0 . The two covariates take

value 0 or 1 with their joint probabilities specified in Table 3.5, where U1, U2, U3 > 0. Clearly,

P(- (=)1 = 0) → 1 and P(- (=)2 = 0) → 1. The correlation between - (=)1 and - (=)2 is

Corr(- (=)1 , -
(=)
2 ) =

1
=U3 − ( 1

=U1 + 1
=U3 ) ( 1

=U2 + 1
=U3 )√

( 1
=U1 + 1

=U3 ) (1 − 1
=U1 − 1

=U3 ) ( 1
=U2 + 1

=U3 ) (1 − 1
=U2 − 1

=U3 )

∼
1
=U3 − ( 1

=U1 + 1
=U3 ) ( 1

=U2 + 1
=U3 )√

( 1
=U1 + 1

=U3 ) ( 1
=U2 + 1

=U3 )
.
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We consider the following two settings:

(1) U1 = U3 < U2: The correlation is asymptotically equivalent to

1
=U3√
2
=U3

1
=U3

=

√
2

2
.

To find the asymptotic variance, first note that

E(- (=)1 4V1-
(=)
1 +V2-

(=)
2 ) =P(- (=)1 = 1, - (=)2 = 1)4V1+V2 + P(- (=)1 = 1, - (=)2 = 0)4V1

=
10
=U3

4V1+V2 + 10
=U1

4V1 =
10
=U1
(4V1+V2 + 4V1),

E(- (=)2 4V1-
(=)
1 +V2-

(=)
2 ) =P(- (=)1 = 1, - (=)2 = 1)4V1+V2 + P(- (=)1 = 1, - (=)2 = 0)4V2

=
10
=U3

4V1+V2 + 10
=U2

4V2 ∼ 10
=U1

4V1+V2 ,

E(- (=)1 -
(=)
2 4V1-

(=)
1 +V2-

(=)
2 ) =P(- (=)1 = 1, - (=)2 = 1)4V1+V2 =

10
=U1

4V1+V2 .

Note that

(i)

(
(0)
= (V, B)

P→ 1 =: B(0) (V, B).

(ii)

diag(=U1 , =U1)((1)= (V, B)
P→

©«
10(4V1+V2 + 4V1)

104V1+V2

ª®®¬ =: B(1) (V, B).

(iii)

diag(=U1/2, =U1/2)((2)= (V, B)diag(=U1/2, =U1/2) P→
©«

10(4V1+V2 + 4V1) 104V1+V2

104V1+V2 104V1+V2 .

ª®®¬ =: B(2) (V, B).
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The asymptotic variance of =1/2−2=/2diag(=U1/2, =U1/2) ( V̂= − V0) is

{ ∫ g

0
B(2) (V, B)_0(B)3B

}−1
=

4
V0g

©«
10(4V1+V2 + 4V1) 104V1+V2

104V1+V2 104V1+V2 .

ª®®¬

−1

In this case, the off-diagonal elements of the asymptotic variance matrix are non-zero.

(2) U2 < U1 = U3: The correlation is asymptotically equivalent to

1
=U3√
2
=U3

1
=U2

→ 0.

To find the asymptotic variance, first note that

E(- (=)1 4V1-
(=)
1 +V2-

(=)
2 ) =P(- (=)1 = 1, - (=)2 = 1)4V1+V2 + P(- (=)1 = 1, - (=)2 = 0)4V1

=
10
=U3

4V1+V2 + 10
=U1

4V1 =
10
=U1
(4V1+V2 + 4V1),

E(- (=)2 4V1-
(=)
1 +V2-

(=)
2 ) =P(- (=)1 = 1, - (=)2 = 1)4V1+V2 + P(- (=)1 = 1, - (=)2 = 0)4V2

=
10
=U3

4V1+V2 + 10
=U2

4V2 ∼ 10
=U2

4V2 ,

E(- (=)1 -
(=)
2 4V1-

(=)
1 +V2-

(=)
2 ) =P(- (=)1 = 1, - (=)2 = 1)4V1+V2 =

10
=U1

4V1+V2 .

Note that

(i)

(
(0)
= (V, B)

P→ 1 =: B(0) (V, B).

(ii)

diag(=U1 , =U2)((1)= (V, B)
P→

©«
10(4V1+V2 + 4V1)

104V2

ª®®¬ .
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(iii)

diag(=U1/2, =U2/2)((2)= (V, B)diag(=U1/2, =U2/2) P→
©«

10(4V1+V2 + 4V1) 0

0 104V2 .

ª®®¬ =: B(2) (V, B).

The asymptotic variance of =1/2−2=/2diag(=U1/2, =U2/2) ( V̂= − V0) is

{ ∫ g

0
B(2) (V, B)_0(B)3B

}−1
= 4−V0g−1 ©«

10−1(4−(V1+V2) + 4−V1) 0

0 10−14−V2

ª®®¬ .
In this case, the off-diagonal elements of the asymptotic variance matrix are zero and V1 and V2

are asymptotically independent.

In the simulation, we set 2= = −0.1 log = → −∞, V0 = −6, V1 = 1, V2 = 1.5 and consider

two sets of U 9 ’s as shown in the last two columns in Table 3.5. As a remark, when the covariates

are sparse, they correlation cannot be negative asymptotically because there are too many 0’s. We

estimate the parameters with sample size 100 × 2 9 , for 9 = 0, . . . , 20. For each sample size, we

simulate 500 independent datasets.

In Figure 3.1, we compare the standard errors from the normalized observed Fisher information

(purple line) for V̂1 and the estimated standard deviations of the normalized V̂1 (black line) with

the asymptotic standard deviation from theoretical calculation (red line) under Setting 1. Figure

3.2 shows the corresponding results for V̂2 under setting 1. The corresponding results for V̂1 and

V̂2 under Setting 2 are shown in Figures 3.4 and 3.5. In Figure 3.3, the standard errors of V̂1 and

V̂2, and the estimated Cov( V̂1, V̂2) from the observed Fisher information are compared with the

corresponding estimated true quantities. The corresponding results in Setting 2 are shown in 3.6.
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Prob Setting Setting 1 Setting 2

P(- (=)1 = 1, - (=)2 = 0) 10=−U1 10=−1/2 10=−3/4

P(- (=)1 = 0, - (=)2 = 1) 10=−U2 10=−3/4 10=−1/2

P(- (=)1 = 1, - (=)2 = 1) 10=−U3 10=−1/2 10=−3/4

Table 3.1: Simulation Setting
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Figure 3.1: Comparison of the standard errors of the normalized V1 in setting 1
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Figure 3.2: Comparison of the standard errors of the normalized V2 in setting 1
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Figure 3.3: Comparison of the covariance matrix of V̂ in setting 1
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Figure 3.4: Comparison of the standard errors of the normalized V1 in setting 2
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Figure 3.5: Comparison of the standard errors of the normalized V2 in setting 2
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Figure 3.6: Comparison of the covariance matrix of V̂ in setting 2

3.6 Appendix

Proof of Lemma 5. (a) We shall apply the martingale central limit theorem (see Theorem 5.3.5

in [19]). Let * (=) (C) := 4−
2=
2 =−

1
2*= (V0, C) be the normalized score process. For any pair

(;, ;′), the predictable variation process

〈* (=)
;
(V0, ·),* (=); ′ (V0, ·)〉(C)

= 4−2=
∫ C

0

1
=

=∑
8=1

[{
-8; (B) −

(
(1)
=,;
(V0, B)

(
(0)
= (V0, B)

}{
-
(=)
8; ′ (B) −

(
(1)
=,; ′ (V0, B)

(
(0)
= (V0, B)

}
_0(B)42=. (=)8

(B)4V)0 -
(=)
8
(B)

]
3B

=

∫ C

0
+=,;; ′ (V0, B)((0)= (V0, B)_0(B)3B

P→
∫ C

0
E;; (V0, B)B(0) (V0, B)_0(B)3B,

where ((1)
=,;

denotes the ;th component of ((1)= , +=,;; ′ denotes the (;, ;′) element of += and the

last convergence holds by Assumption 3 ((i)), ((ii)) and ((v)). Next, we verify the Lindeberg

condition in the martingale central limit theorem. Define

�
(=)
8;
(B) := -

(=)
8;
(B) −

(
(1)
=,;
(V0, B)

(
(0)
= (V0, B)
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and

�̃
(=)
8;
(B) := 4−

2=
2 =−1/2� (=)

8;
(B).

For Y > 0, let

*
(=)
;,Y
(V, C) :=

=∑
8=1

∫ C

0
�̃
(=)
8;
(B)�{|�̃ (=)

8;
(B) | ≥ Y}3" (=)

8
(B),

Then,

〈* (=)
;,Y
,*
(=)
;,Y
〉(C)

=

=∑
8=1

∫ C

0
{�̃ (=)

8;
(B)}2�{|�̃ (=)

8;
(B) ≥ Y}. (=)

8
(B)4V)0 -

(=)
8
(B)_0(B)42=3B

=
1
=

=∑
8=1

∫ C

0
�2
8; (B)�{4

− 2=2 =−1/2 |�8; (B) | ≥ Y}. (=)8
(B)4V)0 -

(=)
8
(B)_0(B)3B. (3.16)

Let

�= (V0, C) :=
(
(1)
= (V0, C)
(
(0)
= (V0, C)

.

Using the inequality

|0 − 1 |2�{|0 − 1 | > Y} ≤ 4|0 |2�{|0 | > Y/2} + 4|1 |2�{|1 | > Y/2}, for any 0, 1 ∈ R,

(3.16) is bounded above by )=1 + )=2, where

)=1 :=
4
=

=∑
8=1

∫ g

0
|- (=)
8;
(D) |2�{4−

2=
2 =−1/2 |- (=)

8;
(D) | ≥ Y/2}. (=)

8
(D)4V)0 -

(=)
8
(D)_0(D)3D

)=2 :=
4
=

=∑
8=1

∫ g

0
|�=,; (V0, D) |2�{4−

2=
2 =−1/2 |�=,; (V0, D) | ≥ Y/2}. (=)8

(D)4V)0 -
(=)
8
(D)_0(D)3D.

For )=1, write

{4−
2=
2 =−1/2 |- (=)

8;
(C) | > Y/2} = �=,;1,8 (C)

⋃
�
=,;

2,8 (C),
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where

�
=,;

1,8 (C) := {4−
2=
2 =−1/2 |- (=)

8;
(C) | > Y/2, V)0 -

(=)
8
(C) > −X | |- (=)

8
(C) | |},

�
=,;

2,8 (C) := {4−
2=
2 =−1/2 |- (=)

8;
(C) | > Y/2, V)0 -

(=)
8
(C) ≤ −X | |- (=)

8
(C) | |}.

Fix Y′ > 0. By Condition ((iii)), with a probability more than 1 − Y′/2, for all large =, we

have �{�=,;1,8 (D)}.
(=)
8
(D) = 0 for all 0 ≤ D ≤ g, 1 ≤ 8 ≤ =. Hence,

1
=

∫ g

0
|- (=)
8;
(D) |2�{�=,;1,8 (D)}.

(=)
8
(D)4V)0 -

(=)
8
(D)_0(D)3D

P→ 0.

Note that

1
=

∫ g

0
|- (=)
8;
(D) |2�{�=,;2,8 (D)}.

(=)
8
(D)4V)0 -

(=)
8
(D)_0(D)3D

≤ 1
=

∫ g

0
|- (=)
8;
(D) |2�{|- (=)

8;
(D) > =1/24

2=
2 Y/2}. (=)

8
(D)4−X | |-

(=)
8
(D) | |_0(D)3D

P→ 0,

as sup8=1,...,= |-
(=)
8;
(D) |2�{|- (=)

8;
(D) > =1/24

2=
2 Y/2}4−X | |-

(=)
8
(D) | | → 0 as = → ∞. For )=2, by

Condition ((ii)) and ((v)), with a probability more than 1−Y′/2, for all large =, �{4− 2=2 =−1/2 |�=,; (V0, D) | ≥

Y/2} = 0. Hence, )=2
P→ 0. Therefore, we have shown that 〈* (=)

;,Y
,*
(=)
;,Y
〉(C) P→ 0 for

all C ∈ [0, g]. Hence, by the martingale central limit theorem, * (=) converges weakly in

� [0, g] ? to a mean zero ?-variate Gaussian process such that each component process has

independent increments and the covariance function at C for components ; and ;′ is

Σ;; ′ (V0, C) =
∫ C

0
E;; ′ (V0, D)B(0) (V0, D)_0(D)3D.

In particular, (3.8) holds.
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(b) To show (3.9), note that for any consistent estimator Ṽ= of V0,��������4−2==−1�= ( Ṽ=) − Σ(V0)
�������� ≤ �=1 + �=2 + �=3 + �=4,

where

�=1 :=
�������� ∫ g

0
{+= ( Ṽ=; C) − E( Ṽ=; C)}4−2==−13

( =∑
8=1

#
(=)
8
(C)

)��������
�=2 :=

�������� ∫ g

0
{E( Ṽ=; C) − E(V0; C)}4−2==−13

( =∑
8=1

#
(=)
8
(C)

)��������
�=3 :=

�������� ∫ g

0
E(V0; C)3

(
4−2==−1

=∑
8=1

#
(=)
8
(C) − =−1

∫ C

0

=∑
8=1
.
(=)
8
(B)4V)0 -

(=)
8
(B)_0(B)3B

)��������
�=4 :=

�������� ∫ g

0
E(V0; C){((0)= (V0; C) − B(0) (V0; C)}_0(C)3C

We shall show that these terms all converge to 0 in probability. We first observe that

4−2==−1
=∑
8=1

#
(=)
8
(g) = $% (1). (3.17)

To see this, by Lemma 8.2.1 (1) in [19]

P

(
4−2==−1

=∑
8=1

#
(=)
8
(C) > 2

)
= P

( =∑
8=1

#
(=)
8
(C) > 42==2

)
≤ 42==X

42==2
+ P

( ∫ g

0

=∑
8=1
.
(=)
8
(D)4V)0 -

(=)
8
(D)_0(D)42=3D > 42==X

)
=

X

2
+ P

( ∫ g

0
(
(0)
= (V0; D)_0(D)3D > X

)
.

Hence, by Assumption 3 ((ii)),

lim sup
=→∞

P

(
4−2==−1

=∑
8=1

#
(=)
8
(C) > 2

)
≤ X
2
+ P

( ∫ g

0
B(0) (V0; D)_0(D)3D > X

)
.
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Then, the claim in (3.17) follows by taking X >
∫ g

0 B(0) (V0; D)_0(D)3D. Next, note that

�=1 ≤ sup
0≤D≤g

| |+= ( Ṽ=; D) − E( Ṽ=; D) | |4−2==−1
=∑
8=1

#
(=)
8
(g) P→ 0,

by Assumption 3 ((ii)), ((v)) and (3.17). For �=2, we have

�=2 ≤ sup
0≤D≤g

| |E( Ṽ=; D) − E(V0; D) | |4−2==−1
=∑
8=1

#
(=)
8
(g) P→ 0,

by Assumption 3 ((v)), the consistency of Ṽ= and (3.17). To show �=3 converges to 0 in

probability, note that for any pair 9 , : , by Lemma 8.2.1 (2) in [19],

�=3, 9 : := P

(���� ∫ g

0
4−2==−1E(V0; D)3" (=)

8
(D)

���� ≥ d)
≤ P

(
sup

0≤C≤g

���� ∫ C

0
4−2==−1E(V0; D)3" (=)

8
(D)

���� ≥ d)
≤ X

d2 + P
( ∫ g

0
4−22==−2E2(V0; D)

=∑
8=1
.8 (C)4V

)
0 -
(=)
8
(C)_0(C)42=3C ≥ X

)
=

X

d2 + P
(
4−2==−1

∫ g

0
E2(V0; D)((0)= (V0; D)3D ≥ X

)
.

Hence,

lim
=→∞
P

(���� ∫ g

0
4−2==−1E(V0; D)3" (=)

8
(D)

���� ≥ d) ≤ X

d2 .

Since X > 0 is arbitrary, �=3, 9 : → 0. Therefore, �=3
P→ 0. Finally,

�=4 ≤ sup
0≤D≤g

| |((0)= (V0; D) − B(0) (V0; D) | |
∫ g

0
E(V0; D)_0(D)3D

P→ 0.

�

Proof of Lemma 6. The proof is similar to the proof of Lemma 5 and we only outline part of it.

(a) Let * (=) (C) := 4−
2=
2 =−

1
2 diag(√W=)*= (V0, C) be the normalized score process. Its predictable
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variation process is

〈* (=)
;
(V0, ·),* (=); ′ (V0, ·)〉(C)

= 4−2=
∫ C

0

√
W=;W=; ′

=

=∑
8=1

{
-
(=)
8;
(B) −

(
(1)
=,;
(V0, B)

(
(0)
= (V0, B)

}{
-
(=)
8; ′ (B) −

(
(1)
=,; ′ (V0, B)

(
(0)
= (V0, B)

}
×. (=)

8
(B)4V)0 -

(=)
8
(B)_0(B)42=3B

=
√
W=;W=; ′

∫ C

0
+=,;; ′ (V0, B)((0)= (V0, B)_0(B)3B

P→
∫ C

0
E;; ′ (V0, B)B(0) (V0, B)_0(B)3B,

where ((1)
=,;

denotes the ;th component of ((1)= and the last convergence holds by Assumption

4 ((i)), ((ii)) and ((iv)). Next, we verify the Lindeberg condition in the martingale central

limit theorem. Define

�
(=)
8;
(B) := -

(=)
8;
(B) −

(
(1)
=,;
(V0, B)

(
(0)
= (V0, B)

and

�̃
(=)
8;
(B) := 4−

2=
2 =−1/2√W=;� (=)8; (B).

For Y > 0, let

*
(=)
;,Y
(V, C) :=

=∑
8=1

∫ C

0
�̃
(=)
8;
(B)�{|�̃ (=)

8;
(B) ≥ Y}3" (=)

8
(B),

The rest is essentially the same as in the proof of Lemma 5.

(b) To show (3.10), note that for any consistent estimator Ṽ= of V0,��������4−2==−1diag(√W=)�= ( Ṽ=)diag(√W=) − Σ(V0)
�������� ≤ �=1 + �=2 + �=3 + �=4,
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where

�=1 :=
�������� ∫ g

0
{diag(√W=)+= ( Ṽ=; C)diag(√W=) − E( Ṽ=; C)}4−2==−13

( =∑
8=1

#
(=)
8
(C)

)��������
�=2 :=

�������� ∫ g

0
{E( Ṽ=; C) − E(V0; C)}4−2==−13

( =∑
8=1

#
(=)
8
(C)

)��������
�=3 :=

�������� ∫ g

0
E(V0; C)3

(
4−2==−1

=∑
8=1

#
(=)
8
(C) − =−1

∫ C

0

=∑
8=1
.
(=)
8
(B)4V)0 -

(=)
8
(B)_0(B)3B

)��������
�=4 :=

�������� ∫ g

0
E(V0; C){((0)= (V0; C) − B(0) (V0; C)}_0(C)3C

��������.
Each of these terms converges to 0 in probability as in the proof of Lemma 5.

�
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Chapter 4: Discussion

In Chapter 2, we proposed a multivariate proportional intensity factor model for multivariate

event time data. We develop the theory of nonparametric maximum likelihood estimation as well as

a variable selection and estimation method for the fixed effects and random effects simultaneously

using parametric baseline intensity functions. From the simulation studies, we see that using the

Bayesian information criterion provides a good choice of the tuning parameter and the whole

procedure essentially recovers the true structure of the parameter with small bias and accurate

standard errors. We further demonstrate the proposed method through a real data set from the

Survey of Adult Skills in PIAAC. Our method finds meaningful relationships among different types

of events that can help understanding both the task design and the behavior of subjects when solve

a problem. Furthermore, the proposed method can be applied to both exploratory and confirmatory

analysis or a combination of them by controlling the number of constraints on the loading matrix.

Although we implicitly assume all the event types are recurrent, we can also allow some events

to be survival times. For the distribution of the random effects, the multivariate normal distribution

allows an unrestricted covariance structure between the random effects. However, other distribu-

tions can also be used and the theoretical results remain valid subject to some regularity conditions

on the random effect distributions; see [52] for more details. The proposed model can also be

easily extended to have a multilevel structure, where we could have, for example, a cluster level

above the subject level with cluster-specific random effects.

While we illustrate the method using educational assessment data, the method is widely appli-

cable. For example, in medical studies, for each person, we are often interested in several illnesses

at the same time. When the number of random coefficients is moderate to large, the proposed

model can achieve a parsimonious model.

In Chapter 3, we establish the consistency, asymptotic normality and the validity of the usual
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inference procedure using the maximum partial likelihood estimator in the proportional intensity

model under general conditions. We verify these conditions under setting with rare events and

sparse covariates which are common in large-scale observational databases. A future direction is

to study the corresponding results in a multivariate model with random effects, which is a more

realistic setting because of the unobserved covariates that induces dependence between different

events.
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