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Abstract

Essays on Advertising

Woohyun (Jason) Choi

According to eMarketer, the total advertising spend in US alone was estimated to be over

$238 billion. Firms invest large amounts of money in advertising to promote and inform

consumers about their products and services, as well as to persuade them to purchase. The broad

theme of advertising has been examined from many different angles in the marketing literature,

ranging from empirically measuring effects of TV ads on sales to analytically characterizing the

key economic forces stemming from enhanced targetability in online advertising. The purpose of

my dissertation is to study some of the key questions which remain unaddressed in the advertising

literature. In the first essay, I examine firms’ choices of advertising content in a competitive

setting. I demonstrate that competitive forces sometimes induces firms to choose advertising

content that shifts consumers’ perception of product quality. While this strategy hurts firms in a

monopoly setting, it increases their profits under competition because it may increase the utility

of their offering in comparison with the competing offering. In the second essay, I investigate the

optimal mechanism for selling online ads in a learning environment. Specifically, I show that

when ad sellers, such as Google, design their ad auctions, it is optimal for them to favor new

advertisers in the auction in order to expedite learning their ad performance. In the third essay, I

study the impact of tracking consumers’ Internet activities on the online advertising ecosystem in

the presence of regulations that, motivated by privacy concerns, endow consumers with the choice

to have their online activity be tracked or not. I find that when ad effectiveness is intermediate,



fewer ads are shown to opt-in consumers, who can be tracked and have their funnel stages

inferred by advertisers, than to opt-out consumers, who cannot be tracked. In this case, consumers

trade-off the benefit of seeing fewer ads by opting-in to tracking (positive instrumental value of

privacy) with the disutility they feel from giving up their privacy (intrinsic cost of privacy).

Overall, these findings shed light on novel strategic forces that provide guidance for marketers’

advertising decisions in three distinct contexts.
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Chapter 1: Introduction

According to eMarketer, the total US ad spend in 2019 increased 6.84% year-over-year to

$238 billion.1 This growth has been partially driven by advances in information technology which

generated (i) a host of new media platforms beyond traditional TV and newspapers where firms

and consumers can interact (e.g., social media, search platforms, and streaming platforms), and (ii)

sophisticated mechanisms for matching the two parties with extraordinary efficiency (e.g., online

tracking, pay-per-click pricing, and real-time auctions) (Economist, 2006, 2015).

The burgeoning industry, however, is not without its challenges. Many issues deter marketers’

advertising efforts; for instance, marketers are concerned about (i) how to display relevant advertis-

ing content2, (ii) how to identify profitable advertising opportunities and which bidding strategies

to deploy3, and (iii) how to adjust their business to shifting regulatory landscapes (e.g., the Euro-

pean Union’s General Data Protection Regulation that empowers consumers to data privacy rights).

In my dissertation, I attempt to address important questions — motivated by these managerial

issues — pertaining to firms’ advertising strategies, which have received scant attention in the lit-

erature. I develop game-theoretic models to shed light on key economic forces that affect the play-

ers’ incentives and strategies, thereby providing guidance on marketers’ advertising strategies. In

Chapter 2, I describe a model of firms’ advertising content choice strategies in a competitive setting

and present, among others, the key finding that when consumers exhibit reference-dependent pref-

erences that yield concave utility functions (e.g., due to loss aversion), then the high-quality firm

sometimes displays reference-shifting advertising content that, surprisingly, reduces consumers’

1https://forecasts-na1.emarketer.com/584b26021403070290f93ac0/
5851918c0626310a2c186c0c

2https://marketingland.com/37-consumers-say-ads-placed-next-offensive-
content-impact-brand-perception-217504

3https://searchengineland.com/4-ways-to-determine-your-your-starting-bids-
144616.

1

https://forecasts-na1.emarketer.com/584b26021403070290f93ac0/5851918c0626310a2c186c0c
https://forecasts-na1.emarketer.com/584b26021403070290f93ac0/5851918c0626310a2c186c0c
https://marketingland.com/37-consumers-say-ads-placed-next-offensive-content-impact-brand-perception-217504
https://marketingland.com/37-consumers-say-ads-placed-next-offensive-content-impact-brand-perception-217504
https://searchengineland.com/4-ways-to-determine-your-your-starting-bids-144616
https://searchengineland.com/4-ways-to-determine-your-your-starting-bids-144616


absolute valuation of its offering. While this strategy lowers a monopolist’s profit, it can increase

the high-quality firm’s profit in a competitive setting because it increases the relative utility of its

offerings compared with the low-quality firm’s offerings. In Chapter 3, I show how learning incen-

tives in online advertising significantly impact the advertisers’ bidding strategies and the seller’s

auction mechanism. While previous literature suggests that advertisers should bid their truthful

valuation in a second-price auction, I demonstrate that this is not necessarily true for new adver-

tisers. That a new advertiser’s ad performance information is revealed to the search engine only

if it wins the auction incentivizes the new advertiser to bid above its valuation in early rounds of

the auction. In Chapter 4, I discuss the implications of tracking consumers’ online activities on

the advertising ecosystem, particularly in the context of recent privacy regulations. I find that en-

dowed with new privacy rights, consumers sometimes choose to opt-in to online tracking in order

to trade-off their privacy cost with the benefit of seeing fewer ads. Interestingly, my analysis sug-

gest that endogenous tracking choices may result in scenarios where displaying more effective ads

decreases the ad network’s profit.

2



Chapter 2: Persuasive Advertising in a Vertically Differentiated Market

2.1 Introduction

One of the key roles of advertisements besides conveying product information is to influence

consumers’ product evaluation in a way that is more favorable to the advertising firm. Advertise-

ments can aid in creating stronger preference, and thus enhanced market power for the advertising

firm. If ads indeed influence consumers, how should competing firms strategically choose their ad-

vertising messages? In this paper I study this question in the context of a vertically differentiated

market.

Consider the examples in Figure 2.1. An ad for Mercedes-Benz, a high-end automobile man-

ufacturer, reads “The best or nothing” (Figure 2.1a). Similarly, an ad for Verizon, a telecommuni-

cations company, boasts that it has the nation’s “largest 3G network” (Figure 2.1c). These two ads

seek to persuade buyers of cars and telecommunications services, respectively, that they should not

compromise on quality when making a purchase. In contrast, an ad for a car produced by Kia, a

car brand commonly associated with affordability, states that the car “was named Best Compact

Car for the Money” (Figure 2.1b). This statement emphasizes value for money rather than quality-

related features. Within the car category, while the ad by Mercedes-Benz succinctly underscores

the importance of quality, thereby inducing consumers to care less about price, the focus on “value

for money” in the Kia ad creates the opposite effect whereby consumers are called to trade off

quality against price. This example illustrates a typical difference in advertising content between

competing firms — high-quality firms typically emphasize quality while lower-quality firms often

focus on price-related features in their ads. Therefore, ads can affect consumers’ sensitivity for

quality.

Another effect that ads can have is that of shifting the reference point against which quality is

3



(a) (b)

(c)

Figure 2.1: Ads with Different Persuasive Effects

4



evaluated; i.e., ads can influence the internal benchmark quality level that consumers invoke when

evaluating quality by providing anchor points to consumers. For instance, the Verizon ad displays

a map with nearly complete network coverage (and explicitly compares this with its competitor’s

significantly lower network coverage), which can shift the standard against which potential phone

service buyers evaluate network coverage. The other two ads can also be argued to influence the

quality anchor albeit to a lesser extent (the Mercedes-Benz ad because it does not show or describe

a car, and the Kia ad because its message focuses primarily on the quality-price trade-off). Past

research on anchoring has demonstrated that across a wide range of domains, consumers’ evalu-

ations of products and experiences are heavily influenced by anchor points (Epley and Gilovich,

2001; Mussweiler and Strack, 2001). These anchor points have been shown to be malleable to

even subtle interventions that are unrelated to the task (e.g., Ariely et al. (2003) show that subjects’

evaluations of an experience were significantly affected by the recall of their social security num-

bers). Furthermore, the literature on context-dependent preferences suggests that quality-message

advertisements may shift consumers’ reference quality (Simonson and Tversky, 1992). Based on

these ideas, I posit that quality messages in ads can shift the “quality anchor” or reference quality

against which consumers evaluate quality.

The two types of advertising content effects discussed above (influencing the customers’ sen-

sitivity to quality, and influencing their reference point for quality) are characteristic of vertically

differentiated markets where firms offer products of different quality levels. My goal in this paper

is to understand the strategic impact of these different ad effects in a competitive setting. Also,

while a particular ad can be expected to have both effects simultaneously, ads can be designed that

have more of one effect than the other. I investigate and provide guidance on how firms should, un-

der different market conditions, optimally choose ad content corresponding to each type of effect.

Overall, my work falls under the umbrella of persuasive advertising in the context of vertically

differentiated markets.

The paper presents a game theory model in which two competing firms offering products of

different qualities decide their ad strategies — whether to show ads and, if yes, what their content
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should be — as well as prices. I assume that ad content can be of two types with different ef-

fects — shifting a consumer’s valuation of quality such that she values quality either more or less

relative to price (valuation shifting), and shifting a consumer’s perception of quality by altering the

reference point against which she evaluates quality (reference shifting). A representative consumer

has private knowledge about her marginal valuation of quality, has diminishing marginal utility for

quality, and evaluates quality relative to a reference point. Using this framework, I ask the follow-

ing two main questions: (1) If firms show ads, what type of content should they include in their

ads? (2) How does this affect firms’ pricing, profits and consumer surplus?

I start my analysis by considering a monopolist selling two products. I find that the monopolist

only chooses either ad content that increases consumer valuation of quality, or ad content that

lowers the reference quality; both of these strategies increase the consumer’s perceived surplus

from the product. Specifically, the monopolist never chooses ad content that increases the reference

quality because doing so would only reduce the consumers’ perceived value of quality.

However, the insights are quite different in a competitive setting. For instance, the low-quality

firm may choose valuation-shifting ad content that decreases consumers’ valuation of quality —

while this reduces the extractable surplus, it helps the lower quality firm attract more customers.

Furthermore, the high-quality firm may choose reference-shifting ad content to raise the refer-

ence quality, because even though this undermines consumers’ perceived value of quality, it in-

creases perceived product differentiation. Therefore, under competition, firms may counterintu-

itively choose ad strategies with apprently negative effects such as reducing the average valuation

of quality in the market and reducing the perceived quality of the product. These are strategies that

a monopolist would never choose.

I also derive implications for (perceived) consumer surplus. Standard economic theory sug-

gests that as competition intensifies, prices fall and consumer surplus increases. This reasoning,

however, rests on the premise that consumers’ quality preferences remain constant. In the context

of persuasive advertising, firms’ advertising strategies change consumers’ perceptions and product

valuations. I show that even if stronger competition lowers firms’ prices, a switch in advertis-
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ing regimes may cause consumers to value quality less such that the overall perceived consumer

surplus decreases.

A key assumption on which my results depend is that consumers have diminishing marginal

utility for quality, i.e., utility from quality is concave in quality. This assumption is supported

by Tversky and Kahneman (1979), who argue that Prospect Theory, which features a concave

value function in the gains domain, is applicable not only to monetary outcomes, but also “to

choices involving other attributes; e.g., quality.” In fact, in my main model, I operationalize the

concavity in the utility function by invoking components of Prospect Theory, specifically, reference

dependence and loss aversion. Furthermore, to the extent that quality can be viewed as a form of

stimulus experienced by the consumer (i.e., the perceived level of happiness the consumer feels

for a given level of quality), this property is also supported by the psychology literature, which

suggests that the marginal change in hedonic response to a stimuli “decreases with the distance

from the reference point” (Tversky and Kahneman, 1991; Frederick and Loewenstein, 1999).

My work is related to the literature on persuasive advertising, which is advertising that operates

by changing the consumers’ perceived utility function (Dixit and Norman, 1978; Bagwell, 2007).

Within this broad classification, my focus is on a competitive setting. A large body of research

has studied the “combative” role of advertising where horizontally differentiated firms decide the

level of spending on ads that shift consumer preferences (Von der Fehr and Stevik, 1998; Bloch

and Manceau, 1999; Tremblay and Polasky, 2002; Chen et al., 2009). Surprisingly, little attention

has been paid to the persuasive role of advertising in a vertically differentiated market. A couple

of notable exceptions are Tremblay and Martins-Filho (2001) and Tremblay and Polasky (2002).

Tremblay and Martins-Filho (2001) study demand-expansion effects of persuasive ads that change

consumer’s taste for quality, whereas I keep the market size fixed and allow for more flexibility in

the firms’ ad content choices. Tremblay and Polasky (2002) assume that “perceived quality equals

the amount of advertising,” whereas I study firms endowed with distinct quality levels advertising

to influence not only consumers’ perceptions of quality, but also their valuation for quality. Fur-

thermore, while the main object of interest in Tremblay and Martins-Filho (2001) and Tremblay
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and Polasky (2002) is advertising intensity, my focus is primarily on the types of ad content firms

choose, namely, valuation-shifting content and reference-shifting content.

My work is also related to Kopalle and Lehmann (1995), Kopalle and Assunção (2000) and

Kopalle and Lehmann (2006), who study the impact of setting reference quality on firm strategy,

albeit in a monopoly setting. The research on reference-dependent quality evaluations is also

related to my research; specifically, Hardie et al. (1993) and Kopalle et al. (1996) use the concept

of reference-dependent quality evaluations in the contexts of choice models and dynamic product

quality decisions, respectively.1

Finally, I note that a large literature studies the informative role of advertising through sig-

naling when consumers are not perfectly informed about the product (Nelson, 1974; Kihlstrom

and Riordan, 1984; Milgrom and Roberts, 1986; Mayzlin and Shin, 2011; Gardete, 2013). In

my framework, consumers know absolute quality and thus there is no information asymmetry.

Previous work that has examined the content of advertising also falls under the umbrella of the

informative role of advertising (e.g., Anderson and Renault (2006)).

The rest of the paper is organized as follows. In Section 2.2, I develop the basic model used in

my analysis. In Section 2.3, I examine the benchmark model in which a monopolist firm decides

its ad strategy — namely, it chooses whether or not to show an ad and what the ad content should

be — and price. In Section 2.4, I investigate the main model in which competing firms choose their

ad strategies and prices. In Section 2.5, I assess the robustness of the main results by examining

various extensions. Finally, in Section 2.6, I discuss managerial implications and conclude. For

ease of exposition, I relegate all proofs and lengthy expressions to the appendix.

2.2 Model

Firms

I assume that there are two firms, each producing one good of distinct quality level. I denote

the qualities of the high- and low-quality products by @� and @! , respectively, where @� > @! > 0.
1I note that this paper is distinct from research on the effects of reference prices on firm behavior (Kopalle and

Winer, 1996; DellaVigna, 2009; Baucells et al., 2011).
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I refer to the firm that produces the high-quality product as Firm �, and its low-quality counterpart

as Firm !. To focus on the role of advertising, I abstract from the quality-production decision and

assume that the quality of the firms’ products is exogenously determined. I normalize the marginal

costs of producing both quality levels to zero.2

Firms decide whether to show an ad or not. If a firm advertises, it also chooses its ad content.

The cost of showing an ad is : > 0. Firms then set prices in competition. I discuss all decisions

and their timings in detail as I develop the model.

Consumer

I assume that there is one representative consumer. The consumer’s utility from consuming

product quality @ 9 from Firm 9 ∈ {�, !} is

D(@ 9 ; \) = �(@ 9 ; \) + V�(@ 9 ; j) + Y 9 . (2.2.1)

The above function has three components; �(@ 9 ; \) and V�(@ 9 ; j) are deterministic components

and Y 9 is a random component. The deterministic components are “the absolute pleasure of con-

sumption” and “the sensation of gain and loss” relative to some reference point (?); I call these

components the absolute and comparative utilities, respectively.

�(@ 9 ; \) denotes the absolute utility, which measures the utility associated with the product’s

absolute quality level @ 9 . To model this, I invoke the standard linear utility function:

�(@ 9 ; \) = + + \ @ 9 .

+ > 0 denotes the quality-independent, intrinsic utility, and \ @ 9 deotes quality-dependent utility.

The parameter \ denotes the consumer’s marginal valuation or taste for quality; it is equal to \ℎ

with probability U, and equal to \; with probability 1 − U, where U ∈ (0, 1) and \ℎ > \; > 0.

For simplicity, I normalize \ℎ to 1. While U is common knowledge, only the consumer knows

2This assumption has been commonly used in models of vertical differentiation in the literature. See, for example,
Gardete (2013) and Zhu and Dukes (2017).
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her realization of \ ∈ {\ℎ, \;} and knows this before making a product choice (in that sense,

this component of utility is deterministic for the consumer). Note that parameter U can also be

interpreted as a preference heterogeneity parameter in a unit-mass consumer model.

�(@ 9 ; j) denotes the comparative utility with respect to some reference quality j (which will

be defined shortly). I assume that �(@ 9 ; j) is concave in @ 9 . The concavity can be modeled in

various ways. For example, it may be derived from the property of diminishing marginal utility of

quality (e.g., �(@ 9 ; j) = E(@ 9 − j) with E′′(·) < 0), or from a linear loss-aversion model (LAM)

where the utility in the loss domain is steeper than in the gains domain. While the main insights of

the paper hold regardless of the modeling choice,3 I choose to work with the LAM formulation as it

is (a) more convenient for exposition purposes, and (b) more widely used in the literature to model

reference-dependent utilities and loss aversion (e.g., Hardie et al., 1993; Bodner and Prelec, 1994;

Kivetz et al., 2004a,b; Orhun, 2009; Chen and Turut, 2013; Amaldoss and He, 2018). Therefore, I

specify the comparative utility as follows:

�(@ 9 ; j) =


@ 9 − j if @ 9 ≥ j,

−_(j − @ 9 ) if @ 9 < j.

The comparative utility, �(@ 9 ; j), represents the utility the consumer derives from comparative

evaluation of @ 9 with respect to the reference point j. Three key features of �(@ 9 , j) are: (i)

the reference quality lies between the attribute levels of the choice-set: j ∈ [@! , @�]; (ii) the

comparative utility is linear in the attribute level; and (iii) the consumer is loss-averse: _ > 1.

These properties constitute the linear LAM as discussed above.

The last component of the consumer’s utility, Y 9 , denotes the brand-specific preference shock

experienced by the consumer on buying Firm 9’s product. This can arise from various situational

factors unobserved by the firms, such as the subtle, behavioral influences of the unique purchase

environment associated with each firm (e.g., Schwartz and Clore, 1983; Payne and Johnson, 1993).

3In Section A.3 of the appendix, I provide a detailed analysis of an alternative formulation of concave utility with
�(@ 9 ; j) = E(@ 9 − j) where E′′(·) < 0.
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I assume that Y 9 −Y: ( 9 6= :) is distributed uniformly over [−f, f] for some large f > 0 (e.g., Sub-

ramanian et al., 2014; Gardete, 2013). This yields a tractable linear demand model that simplifies

the analysis of firms’ pricing strategies while preserving the essence of the model. In Section A.3

of the appendix, I present a model without the error structure and show that the qualitative insights

hold.

If a consumer purchases the product from Firm 9 , she pays price ? 9 which leads to a disutility

of ? 9 (i.e., utility of −? 9 ). Finally, there exists an outside option that yields utility D0 + Y0, where

D0 is normalized to zero; this would correspond to, say, not making any purchase. The consumer

compares the net utilities from the two products and the outside option, and chooses whichever

yields the highest.

Types of Advertising

As discussed in the introduction, I consider two effects of ads — valuation shifting and ref-

erence shifting. While an ad can have both types of effects, a particular ad can have content to

emphasize one type of effect more than the other. Based on this argument, I make a stylized as-

sumption for my main model that a particular ad can have only one type of effect. Therefore, for

my main model, I consider two qualitatively distinct types of persuasive ads: valuation-shifting ads

and reference-shifting ads. Making this assumption enables us to communicate the key insights

cleanly. In later analysis, I show that allowing ads to have both effects simultaneously does not

change the insights qualitatively.

Next, I discuss how I operationalize valuation-shifting and reference-shifting. A valuation-

shifting ad influences consumer’s marginal valuation of quality. Depending on the firm’s ad con-

tent, a valuation-shifting ad could either increase or decrease the likelihood of a consumer having

high valuation for quality, U. For instance, ads that emphasize the importance of quality (e.g., the

Mercedes-Benz ad in Figure 2.1a) would increase U by persuading the consumer to become more

concerned about (absolute) quality. I denote this type of valuation-shifting ad by +↑; its effect is to

increase U by a magnitude a↑.

On the other hand, ads that highlight value (e.g., the Kia ad in Figure 2.1b) have the effect of
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making consumers less concerned about absolute quality and more concerned about the quality-

price trade-off. I denote this type of valuation-shifting ad by +↓ and assume that it increases the

likelihood of a consumer having low valuation for quality by a magnitude a↓. In what follows,

I assume that a↑ = a↓ = a; this assumption is for analytical simplicity and does not alter the key

trade-offs captured and insights obtained by the model. If one firm chooses+↑ and the other+↓, the

advertising effects negate one another and the consumer’s valuation distribution does not change.

The second type of ad is a reference-shifting ad. This form of advertising alters consumers’

perception of quality by changing the reference point against which consumers evaluate quality

(e.g., the Verizon ad in Figure 2.1c); i.e., it influences the internal benchmark quality level that

consumers invoke when evaluating quality. As discussed earlier, this is motivated by the streams

of behavioral research on anchoring effects (Epley and Gilovich, 2001; Mussweiler and Strack,

2001; Ariely et al., 2003) and context-dependent preferences (Simonson and Tversky, 1992; Kivetz

et al., 2004a,b). By highlighting a particular quality level, reference-shifting ads induce consumers

to adjust their reference point closer toward the advertised quality level.

Reference point formation has been conceptualized as the centroid of the relevant character-

istics of all products considered (Bodner and Prelec, 1994) or a point in the “convex hull of the

existing alternatives” (Orhun, 2009). In a similar vein, Bordalo and Shleifer (2017) describe a

model of “memory-based reference point,” where the reference point is formed as a weighted av-

erage of previously observed attribute levels. Adapting theories of memory and recall, Bordalo

and Shleifer (2017) posit that larger weights are attached to quality levels that have been observed

more frequently.

I invoke such a characterization, and model the consumers’ reference quality as

j

(
0'� , 0

'
! , [� , [!

)
=
@� + @! + 0'

�
[� + 0'

!
[!

2 + 0'
�

+ 0'
!

, (2.2.2)

where 0'
9

is binary and equals 1 if Firm 9 ∈ {�, !} chooses reference-shifting ad, and 0 otherwise;

and [ 9 denotes the quality level communicated by Firm 9 in its reference-shifting ad. A firm can
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communicate any quality level in a reference-shifting ad.4 From a high level perspective, however,

I can boil down the reference-shifting ads to two types: one that communicates a high quality

level, thereby increasing the reference quality, and another that communicates a low quality level,

thereby decreasing the reference quality. For the rest of the paper, I use this simplified formulation.

Specifically, I consider two types of reference-shifting ads: '↑, which increases the reference

quality by magnitude X↑, and '↓, which decreases it by magnitude X↓.5 For further simplicity and

without losing any qualitative insights, I assume that X↑ = X↓ = X. The assumptions on the ranges

of the key model parameters are summarized in Section A.1 of the appendix. For the rest of the

paper, I will simply use j instead of j (·, ·, ·, ·)

I clarify that the firm’s motivation for communicating a certain quality level through reference-

shifting ads is unrelated to the signaling roles studied in games of information asymmetry (e.g.,

Milgrom and Roberts, 1986; Mayzlin and Shin, 2011; Gardete, 2013). In my paper, Firm 9’s com-

munication of quality level [ 9 through reference-shifting ad does not affect consumers’ inference

of the firm’s product quality, as there is no information asymmetry. Instead, Firm 9 seeks to strate-

gically manipulate the consumer’s reference point by communicating quality level [ 9 . Doing so

induces the consumer to put a larger weight on this quality level when forming her reference point.

As I will demonstrate in the main analysis, shifting consumer’s reference point in this manner will

have important implications for competitive strategies.

I can now combine into a single action the firm’s choice of whether to advertise or not, and if so,

4To help develop intuition for how reference-shifting ad affects the reference point in (2.2.2), I provide a few
illustrative examples using different (arbitrarily chosen) values of [ 9 : (a) The default reference quality when neither
firm chooses reference-shifting ad (i.e., 0'

�
= 0'

!
= 0) is simply the average of the quality levels in the choice-set:

j0 = @�+@!
2 ; (b) If only Firm � chooses reference-shifting ad and communicates the highest quality level (i.e., 0'

�
= 1,

0'
!

= 0, [� = @� ) then the reference point increases to j′ = 2@�+@!
3 ; (c) If only Firm ! chooses reference-shifting

ad and communicates the lowest quality level (i.e., 0'
�

= 0, 0'
!

= 1, [! = @!), then the reference point decreases
to j′ = @�+2@!

3 ; (d) If Firms � and ! both choose reference-shifting ad and communicate quality levels @� and @! ,
respectively (i.e., 0'

�
= 0'

!
= 1, [� = @� , [! = @!), then the reference point does not change: j′ = 2@�+2@!

4 = j0.
5The reference formation process (2.2.2) implies that the magnitude of the reference shift induced by a firm’s

reference-shifting ad depends on its competitor’s choice of reference-shifting ad. For example, Firm �’s reference-
shifting ad has a smaller impact on the reference point if Firm ! also chooses reference-shifting ad. This is because
the consumer distributes the weights of the reference point across both quality levels communicated by the firms.
While the reduced formulation '↑ and '↓ abstracts from this subtlety, it parsimoniously preserves the essence of
reference-shifting ads and thus suffices for the purposes of my analysis.
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which type of ad to display: that is, Firm 9 ∈ {�, !} chooses ad strategy 0 9 ∈ {+↑, +↓, '↑, '↓, ∅},

where ∅means no advertising. I assume that if the firm advertises, it incurs a cost : > 0, regardless

of the ad type. In Section 2.5 I relax two assumptions about ad-related actions — in Section 2.5.1,

I allow a single ad to contain both valuation-shifting and reference-shifting content, and in Sec-

tion 2.5.2, I allow a firm to implement both types of ad content simultaneously by allocating a fixed

budget across different ads. The results that I obtain generalize those in the main model.

Game Timing

The firms play a two-stage game. In the first stage, firms simultaneously decide ad strategy

0 9 ∈ {+↑, +↓, '↑, '↓, ∅} for 9 ∈ {�, !}. In the second stage, firms observe the decisions from the

first stage and simultaneously set prices. I use subgame-perfect Nash equilibrium (SPNE) as the

solution concept.

2.3 Benchmark: Monopoly

I begin my analysis with the monopoly case, which will serve as a useful benchmark to help

understand more nuanced results under competition. Consider a monopolist that offers two prod-

ucts of distinct quality, @� and @! , where @� > @! .6 The monopolist first decides the advertising

strategy 0" ∈ {+↑, +↓, '↑, '↓, ∅}, and then sets prices ?� and ?! for the high- and low-quality

products, respectively. If the monopolist advertises, then the consumer’s utility is changed accord-

ing to the advertising effects associated with the content. The consumer then evaluates the two

products, as well as the outside option, and purchases whichever yields the highest net utility.

To solve for the SPNE, I first solve the pricing subgame. I provide the details of the analysis

in the appendix (see proof of Proposition 1). The optimal pricing strategy is consistent with the

solution of the standard price discrimination problem for a monopolist, which has been extensively

studied in the market segmentation and product line design literature (e.g., Mussa and Rosen, 1978;

Moorthy, 1984, 1988).

6Another benchmark one could consider is a single-product monopoly. The strategic implications for this case are
relatively trivial and, therefore, I omit this analysis.
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Next, consider the advertising game stage. Recall the distinct effects of each type of advertis-

ing on the consumer’s utility: +↑ (+↓) increases (decreases) consumer’s taste for quality, and '↑

('↓) increases (decreases) the reference quality. Given this, what advertising strategy maximizes

the monopolist’s profit? The following proposition shows that while the monopolist may choose

advertising to increase consumer’s taste for quality or reduce the reference quality, it will never

choose a reference-shifting ad that increases the reference quality.

Proposition 1 (Monopolist Advertising Strategy). If the monopolist advertises, it either chooses a

valuation-shifting ad that increases the likelihood of the consumer having high taste for quality, or

a reference-shifting ad that lowers the reference quality (i.e., it only chooses either +↑ or '↓).

The intuition behind the monopolist’s advertising strategy is the following. Increasing con-

sumers’ marginal valuation of absolute quality means that, all else equal, consumers would be

willing to pay more for the products. The monopolist, therefore, may choose advertising content

to increase consumers’ valuation of quality and then extract the additional surplus through higher

prices. It may also choose reference-shifting ad that lowers the reference quality. The reason is that

a lower reference quality induces consumers to derive greater comparative utility from the prod-

ucts: with a lower quality benchmark, consumers perceive the high quality product to be much

superior, and the low quality product to be not as bad. Such a shift in the consumer’s quality

perception also increases consumers’ willingness-to-pay (WTP) for the monopolist’s products.

Conversely, raising the reference quality has the opposite effect of dampening consumer’s WTP

for quality. This is because consumers evaluate quality against a higher standard, and thus derive

less comparative utility. Figure 2.2 illustrates the decrease in consumer’s utility for both products

as a result of an upward shift in reference quality. Therefore, the monopolist will never choose to

increase the reference quality.

Corollary 1. The monopolist will never choose reference-shifting ad that increases the reference

quality (i.e., it will never choose '↑).

In the next section, I show that the intuitions and results from the monopoly case do not fully
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Figure 2.2: Reference-Shift and Consumer Utility for Quality

carry over when competition is introduced. Specifically, under monopoly I see only the ad strate-

gies +↑ and '↓ are used, while in competition I will see that all fmy ad strategies, i.e., +↑, +↓, '↑

and '↓ may be used, even though some of these strategies reduce the consumer’s total utility for a

given quality level.

2.4 Competition

In the duopoly scenario, Firm � offers the product with high quality, @� , and Firm ! offers

the product with low quality, @! , where @� > @! . Again, I solve by backwards induction, starting

from the pricing subgame.

Pricing Subgame

Throughout the discussion of the pricing subgame, I use the hat notation to denote post-

advertising parameters. For instance, Û is equal to U increased (decreased) by a if only one firm

chose +↑ (+↓) in Stage 1, and ĵ is equal to the default reference quality @�+@!
2 increased (de-

creased) by X if only one firm chose '↑ ('↓) in Stage 1. To simplify the analysis, I assume that the

intrinsic utility + from consuming any product quality is sufficiently large such that the market is

covered.
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Firm 9’s demand if it sets price ? 9 given competitor’s price ?: is

� 9 (? 9 , ?: ) =
∑

\∈{1,\;}
P{\} P{D(@ 9 ; \) − ? 9 > D(@: ; \) − ?: | \},

where the first probability represents the distribution of the consumer’s quality taste, and the second

probability is with respect to the distribution of the random shock preferences Y 9 and Y: embedded

in D(@ 9 ; \8) and D(@: ; \8). For example, by substituting the consumer’s utility in equation (2.2.1), I

obtain Firm �’s demand:

��(?� , ?!) = Û P{@� + V(@� − ĵ) − ?� + Y� > @! − _V(ĵ − @!) − ?! + Y!}

+ (1 − Û) P{\;@� + V(@� − ĵ) − ?� + Y� > \;@! − _V(ĵ − @!) − ?! + Y!},

which simplifies to 1
2f ((Û + (1 − Û)\;)(@� − @!) + V(@� − ĵ) + _V(ĵ − @!) + ?! − ?� + f). Solv-

ing for the best-response prices that maximize c 9 (? 9 , ?: ) = � 9 (? 9 , ?: ) ? 9 and computing the fixed

point yields the subgame equilibrium prices and profits

?∗� = f +
1
3
((Û + (1 − Û)\;) (@� − @!) + V(@� − ĵ) + _V(ĵ − @!)) , (2.4.1)

?∗! = f − 1
3
((Û + (1 − Û)\;) (@� − @!) + V(@� − ĵ) + _V(ĵ − @!)) , (2.4.2)

and

c∗� =
1

18f
(3f + (Û + (1 − Û)\;) (@� − @!) + V(@� − ĵ) + _V(ĵ − @!))2 , (2.4.3)

c∗! =
1

18f
(3f − (Û + (1 − Û)\;) (@� − @!) − V(@� − ĵ) − _V(ĵ − @!))2 . (2.4.4)

The profit expressions (2.4.3) and (2.4.4) make intuitive sense. Firm �’s profit increases with

the consumer’s likelihood of having higher taste for quality increases (higher Û), because more

high-valuation consumers will be drawn to the high-quality product, which in turn allows Firm � to

raise its price. Firm !’s profit decreases with Û for the opposite reason. Moreover, Firm !’s profit
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decreases with the reference quality, ĵ. This intuition is essentially the same as the monopoly case:

higher reference quality reduces consumer’s WTP for @! as consumers evaluate quality against a

higher standard.

However, the comparative statics for Firm �’s profit with respect to the reference quality is

less intuitive and different from the monopoly case. Specifically, Firm �’s profit increases with

the reference quality, even though consumer’s utility from @� decreases with the reference quality.

The intuition rests on the concavity of the utility function induced by consumer’s loss aversion.

Loss aversion implies that utility is more sensitive in the loss domain. Therefore, while a higher

reference point indeed reduces utility for both quality levels, the utility for the low quality product

declines disproportionately more steeply than does the utility for the high quality product. This

asymmetric devaluation is visualized in Figure 2.2 where |ΔD(@!)|> |ΔD(@�)|. As a consequence,

consumers perceive the low and high quality products to be more differentiated. Enlarged per-

ceived differentiation, in turn, allows Firm � to charge a higher premium above Firm !’s price:

m

mj

(
?∗� − ?∗!

)
=

2
3
V(_ − 1) > 0, (2.4.5)

where the positivity follows from _ > 1. Hence, Firm �’s profit increases with the reference

quality. I call this the premium effect. The following proposition summarizes the finding.

Proposition 2 (Premium Effect). The higher-quality firm’s profit increases with the reference qual-

ity. Furthermore, this premium effect becomes more pronounced as consumers: (i) care more about

comparative (vs. absolute) utility (i.e., high V), and (ii) exhibit stronger loss aversion, or have more

concave utility (i.e., high _).

As I will demonstrate in the analysis of the advertising game, the premium effect described

in Proposition 2 will form the basis for Firm �’s incentive to increase the reference quality via

reference-shifting advertising.7 I note that the premium effect is driven by diminishing marginal

utility from quality. In this formulation, it is driven by loss aversion because loss aversion causes
7Observe from (2.4.5) that the premium effect disappears if either consumers do not care about relative valuation

(i.e., V = 0), or consumers do not exhibit loss aversion (i.e., _ ≤ 1).
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the utility function to show diminishing marginal utility from quality. I find the premium effect,

and therefore the subsequent effects that it causes, in other formulations with utility that is concave

in quality (for instance, in the formulation in Section A.3 in the appendix).

Advertising Subgame

After solving for the pricing subgame equilibrium, I proceed to examine the firms’ equilibrium

advertising strategies in Stage 1. Following the discussions above, I can rule out certain dominated

strategies. Since Firm �’s profit increases in Û, Firm � will never choose advertising to diminish

the consumer’s taste for quality. Similarly, Firm ! will never choose a reference-shifting ad that

increases the reference quality, as doing so would only reduce its profit. In sum, Firm � will choose

advertising strategy from the set {+↑, '↑, ∅}, whereas Firm ! will choose from {+↓, '↓, ∅}. In other

words, if Firm � (Firm !) chooses valuation-shifting advertising it only chooses +↑ (+↓), and if

Firm � (Firm !) chooses reference-shifting advertising it only chooses '↑ ('↓). The tuple (0� , 0!)

denotes the ad strategies of the firms. The following proposition summarizes the equilibrium

advertising strategies.

Proposition 3 (Advertising Equilibrium). Let the thresholds _1, _2, _3, _4 and _5 and @1, @2 and

@3 be as defined in the proof.

1. If max
[
_1, 1 + (@�−@!)a(1−\;)

VX

]
< _ and @1 < @! , then both firms choose reference-shifting

advertising, i.e., (0� , 0!) = ('↑, '↓);

2. If max
[
_2, 1 + (@�−@!)a(1−\;)

VX

]
< _ < _3 and @! < @1, then Firm � chooses reference-

shifting advertising while Firm ! does not advertise, i.e., (0� , 0!) = ('↑, ∅);

3. If _4 < _ < 1 + (@�−@!)a(1−\;)
VX

and @! < @2, then both firms choose valuation-shifting

advertising, i.e., (0� , 0!) = (+↑, +↓);

4. If _ < min
[
_5, 1 + (@�−@!)a(1−\;)

VX

]
and @2 < @! < @3, then Firm � chooses valuation-shifting

advertising while Firm ! does not advertise, i.e., (0� , 0!) = (+↑, ∅); and
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5. Otherwise, neither firm advertises, i.e., (0� , 0!) = (∅, ∅).

Proposition 3, illustrated in Figure 2.3, sheds light on a number of important insights regarding

firms’ advertising strategies. Note that in the area above the solid line in Figure 2.3 only reference-

shifting advertising is done, either by both firms or by only Firm �. In the area below the solid

line, only valuation-shifting advertising is done, either by both firms or by only Firm �. In the

bottom right corner, neither firm advertises. In the following, I discuss the different regions in the

plot and the insights obtained from these results.

When consumers are highly loss averse (large _), firms choose reference-shifting advertising

(Regions I and II in Figure 2.3). Intuitively, the more loss averse the consumers are, the more

concave their utility function, and this strengthens the premium effect (see Proposition 2). Con-

sequently, Firm � chooses reference-shifting advertising to raise the reference point, thereby en-

hancing the perceived differentiation between the products. Firm ! also chooses reference-shifting

advertising, but one that lowers the reference point, in order to undo the adverse perception changes

that lead consumers to dislike the low-quality product disproportionately more.

Given a large value of _, Firm !’s incentive to adopt such “defensive” strategy is especially
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strong when @! is high (Region I). To see this, suppose @! is close to @� . Consumers perceive

the absolute valuations of @! and @� to be practically the same. Thus, consumers will base their

purchase decision more heavily on the comparative component. As discussed earlier, however,

concavity of the utility function implies that an increase in reference quality is disproportionately

more detrimental to Firm !’s comparative valuation. Therefore, when @! is high, Firm ! has strong

incentives to choose reference-shifting advertising to offset Firm �’s reference-shifting effect.

On the other hand, when _ is intermediate but @! is high (Region II), Firm �’s reference-

shifting ad does not reduce Firm !’s profit as much. The reason is that even though a higher

reference quality disadvantages Firm ! along the comparative dimension, consumers with low

valuation for quality will still opt for the cheaper, low-quality product. In this case, offsetting

Firm �’s reference-shifting advertising is not worth the advertising cost and thus, Firm ! foregoes

advertising.

When both _ is small, firms opt for valuation-shifting advertising (Regions III, IV, and V).

Moreover, both firms advertise at low @! (Region III), only Firm � advertises at intermediate @!

(Region IV), and neither firm advertises at high @! (Region V). Why do firms shift from reference-

shifting to valuation-shifting advertising when _ is small? Again, the mechanism pertains to the

curvature of the utility function. Note that a small _ corresponds to an increasingly linear utility

for quality. This reduced curvature dampens the premium effect for Firm � and thus diminishes its

returns from reference-shifting advertising. Thus, Firm � turns to valuation-shifting advertising

instead, which has relatively higher returns. This in turn motivates Firm ! to choose valuation-

shifting advertising to prevent consumers from being persuaded by Firm �’s ad to value quality

more, an outcome that would cast its low quality product in an unfavorable light. In total, in

Region III, where _ is small (i.e., the premium effect will be dampended) and @! is low (i.e.,

product differentiation is high), both firms seek to pull consumer’s preference toward their own

product using valuation-shifting ads. This can be viewed as a vertical analogue of “combative

advertising” in Chen et al. (2009) wherein firms shift consumer’s horizontal ideal points to their

favor.
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Next, consider the regions when _ is small (i.e., the premium effect will be dampended) and @!

is intermediate or high (i.e., product differentiation is not high) (Regions IV and V). In this case, the

returns on valuation-shifting advertising are small for both firms. Intuitively, lower product differ-

entiation invites a stronger competitive response. Therefore, as @! increases, firms withdraw from

valuation-shifting advertising (nor do they choose reference-shifting advertising because consumer

utility is not sufficiently concave, as _ is small, and therefore the premium effect is small). Note that

as @! increases, Firm ! withdraws from advertising first while Firm � continues to advertise (Re-

gion IV). This is because Firm �’s higher margin implies a higher return from valuation-shifting

advertising than Firm !. For large enough @! , neither firm advertises (Region V).

Interestingly, Proposition 3 shows that Firm !’s advertising strategy may be non-monotonic

in its product quality. Specifically, Firm ! may advertise at low and high @! , but not at inter-

mediate @! (e.g., for _ ≈ 1.22 in Figure 2.3). To understand this, observe that the returns from

valuation-shifting advertising decrease with @! as the absolute valuations of @� and @! become

similar. Conversely, the returns from reference-shifting advertising increase with @! . Intuitively,

for small quality differentials, comparative valuation with respect to the reference point becomes

increasingly important. Thus, Firm ! has much to gain from decreasing the reference quality,

thereby minimizing consumer’s perception of loss from consuming @! . Taken together, at low

(high) @! , returns from valuation- (reference-) shifting advertising are high, whereas at interme-

diate ranges of @! , returns from both advertising types are unprofitably low. Firm !, therefore,

foregoes advertising altogether at intermediate @! .

Firm !’s withdrawal from advertising at intermediate ranges of @! has interesting implications

for Firm �’s profit. I state the result in the following proposition.

Proposition 4. If _ is intermediate and @! low, then Firm �’s profit may increase in @! such that

both firms are better off under reduced product differentiation.

Standard economic theory asserts that as competing firms become less differentiated, price

competition intensifies, and as a result, profits fall. In contrast, Proposition 4 suggests that profits

of both firms may rise with less differentiation, in particular, in the absence of demand expansion

22



1.15 1.20 1.25 1.30
Quality of Firm L (qL )

2.48

2.50

2.52

2.54

2.56

Firm H's Profit

Firm L

Advertises

Firm L

Does Not Advertise

Figure 2.4: Firm �’s Equilibrium Profit; @� = 2, _ = 1.2, U = \; = 0.5, a = X = 0.25, f = 4, V =
2, : = 0.03

effects. The intuition behind this seemingly counter-intuitive result rests on Firm !’s withdrawal

from advertising for high @! . As illustrated in Figure 2.3, for low _ (e.g., _ ≈ 1.2 in the figure),

Firm ! chooses valuation-shifting advertising for low @! and then foregoes advertising for high @!

as returns fall. Such withdrawal increases the returns from Firm �’s valuation-shifting advertising,

which in turn results in a discrete, positive jump in Firm �’s profit (see Figure 2.4). In sum, Firm �

benefits from an increase in Firm !’s quality level due to a favorable shift in its competitor’s

advertising regime.

Finally, it is interesting to note that both firms may be worse off in the equilibrium wherein

both advertise (Regions I and III); they would have been better off had they cooperatively decided

not to advertise. This prisoner’s dilemma situation arises because even though advertising induces

consumers to evaluate the advertising firm’s product more favorably, when both firms advertise,

their advertisements effects offset one another. Overall, firms end up spending advertising budget

for zero net effect. Thus, if products are sufficiently differentiated or consumers exhibit sufficiently

high loss aversion, then persuasive advertising could be excessive from a social welfare perspec-

tive. Extending on the welfare analysis, I investigate how consumer surplus is affected by the

firms’ equilibrium behavior.

Consumer Surplus

In my framework, firms’ advertisements have a direct influence on consumers’ utility for quality;

namely, advertisements shift the consumers’ taste and reference point for quality. Thus, I expect
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advertisements to have implications for consumer surplus. As discussed in Dixit and Norman

(1978), in persuasive advertising the utility function of the consumer changes because of the ads.

Therefore, deriving implications for consumer surplus involves making a choice between using

pre-ad and post-ad utility functions for calculating post-ad consumer surplus. While there is no

clear consensus on this point, I follow Kotowitz and Mathewson (1979) and the arguments in

Bagwell (2007) and use post-ad utility functions for calculating post-ad consumer surplus.

Standard economic theory suggests that lower product differentiation implies more intense

price competition and, therefore, lower prices and higher consumer surplus. In the context of

competitive advertising that I describe, however, I find that this is not necessarily the case. While

the standard reasoning rests on the premise that consumer valuation of quality remains constant,

in my context, firms alter consumer valuation of quality through ads, which may affect consumer

surplus.

Consider an increase in the quality of the low-quality product from an intermediate to high

level. As discussed in Proposition 3, for a large enough _, a reduction in the quality differential

motivates firms to shift from valuation-shifting to reference-shifting ads as firms anticipate com-

parative utilities to factor more importantly in consumer’s purchase decision. In particular, Firm �

stops using the valuation-shifting ad that induces consumers to derive higher marginal utility from

quality and switches to reference-shifting ad that decreases perceived utility from both products.

This switch in Firm �’s advertising regime results in lower consumer surplus as consumers expe-
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rience less utility from the fixed quality levels offered in the market (see Figure 2.5). I summarize

this result in the proposition below.

Proposition 5. The expected consumer surplus may decrease as the average quality in the market

increases.

I conclude the discussion of the main model by highlighting how my equilibrium analysis may

inform advertising strategies in practice. At a high level, my findings underscore the importance

of adapting advertising content judiciously based on consumer characteristics and to settings of

varying product differentiation. Strategic nuances that arise from competition may make one type

of advertising content more suitable for certain consumer segments or markets than another. For

example, when facing intense product market competition, and when consumers have diminishing

marginal utility from quality, firms should seek to shift consumer’s reference point by focusing

on content that emphasizes a certain quality level.8. Furthermore, firms offering different prod-

ucts have the incentive to move the reference point lower or higher. However, in a market where

products are sufficiently differentiated along the vertical dimension, a potentially effective adver-

tising strategy for lower end manufacturers is to display content that underscores the importance

the quality/price trade-off, thereby persuading consumers to care less about absolute quality.

2.5 Extensions and Robustness

An assumption underlying the main model is that a firm can only choose one type of adver-

tising: either reference-shifting or valuation-shifting. In reality, however, both effects may be

operative in a single ad. For example, in Figure 2.1c, Verizon’s ad, which highlights its expansive

network coverage, may not only shift the consumers’ reference quality for network coverage, but

also enhance their marginal valuation for network coverage. Therefore, it is important to test the

robustness of my main insights when advertisement content is not as clear cut as posited in the

8A number of studies, such as Klapper et al. (2005) and Nicolau (2012) identify correlation between certain de-
mographic variables such as employment status, age, and household size and the degree of loss aversion, i.e., such
observables can be used to target specific segments ith different levels of concavity in utility.
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main model. In the first extension, I study this scenario. In the second extension, I consider the

possibility of firms running more than one advertising campaign with different campaigns having

different ad content. By allowing a firm to allocate a fixed advertising budget across the two types

of content, I examine how the results of my main model change when firms can endogenously

choose the mixture of advertisement content for a given advertising budget. Finally, I show the

robustness of my insights to an alternative model specification.

2.5.1 Multiple and Exogenous Ad Effects

In this section, I assume that a single ad has both reference-shifting and valuation-shifting

effects. I use the exogenous parameter F ∈ [0, 1] to determine the relative strengths of each effect

in a particular ad. Specifically, if Firm � (Firm !) advertises, then the reference quality increases

(decreases) by FX, and the likelihood of a consumer having high-valuation increases (decreases) by

(1−F)a. In other words, a large F corresponds to ads that predominantly influence the consumers’

reference quality, whereas a small F corresponds to those that predominantly shift valuations for

quality. Given these effects, firms make a binary decision whether to advertise or not, and then set

prices. The rest of the model specifications remain the same as the main model.

The following proposition characterizes the equilibrium advertising strategies when advertise-

ments can have joint effects.

Proposition 6. Let _̃1, _̃2, _̃3 and _̃4 be as defined in the proof.

1. If max[_̃1, _̃2] < _ < _̃3, then both firms advertise;

2. if max[_̃3, _̃4] < _ or _̃4 < _ < _̃2, then only Firm � advertises; and

3. otherwise, neither firm advertises.

Figure 2.6 plots the equilibrium outcomes characterized in Proposition 6. When products are

sufficiently differentiated (Figure 2.6a), firms advertise when F is low; i.e., valuation-shifting ef-

fect dominates. This reflects the insight from the main model wherein firms choose valuation-

shifting ad under high product differentiation in order to adjust consumer’s preferences in their
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favor. In addition, when _ and F are both high such that consumer’s utility is sufficiently concave

and advertising effect is predominantly reference-shifting, then both firms advertise. Intuitively,

Firm � advertises to capitalize on the premium effect, while Firm ! advertises to offset this effect

of being perceived as being disproportionately worse than the high quality product.

As illustrated by the marked reduction in the advertising region going from Figure 2.6a to

Figure 2.6b, when product differentiation is low, firms advertise less. This is because price com-

petition lowers the returns from advertising. Nevertheless, when consumer’s utility is sufficiently

concave (e.g., due to high loss aversion, _) and reference-shifting effect carries a large weight in

ads then, consistent with the results from the main model, both firms advertise to shift the con-

sumer’s comparative utility component in their favor.

2.5.2 Multiple and Endogenous Ad Effects

In this section, I allow firms to endogenously choose how much of each effect (valuation- and

reference-shifting) it wants to create through its ads. To operationalize this, I allow each firm to

allocate a fixed ad budget among the two forms of ads. Suppose firms can invest `E proportion of
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their budget in valuation-shifting ads and `A proportion in reference-shifting ads, where `E, `A ∈

[0, 1] and `E + `A ≤ 1. I assume that the effect of investing a certain proportion of the budget to

an ad type is linearly related to the associated ad effect discussed in the previous model. That is,

an investment of `E in valuation-shifting advertising changes the consumer’s likelihood of having

high valuation for quality by a magnitude of `Ea, and an investment of `A in reference-shifting

advertising changes the reference quality by `AX. I assume a convex marginal cost of ads, 2(`) =

:`2.9

I solve for the SPNE numerically. Figure 2.7 illustrates the equilibrium ad allocation levels for

both firms as a function of loss aversion (top panel) and the low quality level (bottom panel). I see

that, qualitatively, the equilibrium outcomes at extreme levels of _ coincide with that of the main

model. When _ is small, both firms allocate all of their budget to valuation-shifting advertising.

And when _ is large, both firms invest heavily in reference-shifting advertising, mirroring the

outcome from the main model. Therefore, broadly speaking, the underlying intuitions from the

main model carry over.

Nevertheless, an interesting feature of the equilibrium outcome in this extension model is the

partial budget allocations across different types of ads, which occur at intermediate ranges of _

and @! . Mixing advertising content allows firms to capitalize on the two distinct effects associated

with valuation- and reference-shifting advertising. Consider the top panel of Figure 2.7. When

_ is in the neighborhood of 1.2, firms distribute their ad budget partially across both types of

advertising. In this case, Firm � strikes an optimal balance between the premium effect generated

by the reference-shifting content, and the valuation-shifting effect which draws consumers toward

higher quality products.

Similarly, the bottom panel of Figure 2.7, which plots the optimal ad weights with respect to

@! , echoes the insights from the main model. As @! becomes increasingly close to @� , firms shift

their ad budget away from valuation-shifting ads and toward reference-shifting ads. This pattern

9This specification is consistent with the cost function of the main model with `’s constrained to {0, 1}. Another
consistent specification is a linear cost function such that 2(`) = :`. In the linear cost model, however, firms’ profits
become convex in the weight variables and the problem simplifies to the main model.
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is consistent with the previous finding that as @! increases, consumers care more about the com-

parative valuation component, and thus, returns on reference-shifting advertising increase. In sum,

while the flexibility afforded by the opportunity to allocate budgets across ad types “smoothens”

the discrete advertising outcome from the main model, the main underlying forces and hence qual-

itative insights remain the same.

2.5.3 Alternative Utility Model

As I have stressed before, a main characteristic of the utility function that drives my results

is that there are diminishing marginal returns to quality. In the main model, I have implemented

this concavity in consumption utility using a linear loss-aversion model, which also provided a

natural way to incorporate the quality reference point. In the appendix, I show the robustness of

my main insights by considering an alternative specification of the consumer utility. Specifically,

I model the concavity of consumer’s utility for quality by relaxing the behavioral assumption that

consumers exhibit loss aversion and simply considering a general concave utility function.

Furthermore, another way in which the alternative utility function in the appendix is different is
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that I assume it to be entirely deterministic. Note that, in the main model, I had included the random

component of utility to make the demand function smooth and simplify the pricing analysis. In the

appendix, I show that removing this simplification leads to the same insights, although the pricing

analysis is more complicated, essentially because the pricing equilibrium is in mixed strategies and

not in pure strategies.

While the details of the analysis are provided in the appendix, I highlight here that my main

insights are robust. Specifically, I find that a monopolist offering two products never chooses

reference-shifting advertising that increases the quality reference point, as doing so only dampens

consumer’s WTP. In a duopoly, the incentive of the low-quality firm is similar — it never chooses

to increase the reference quality. On the other hand, the high-quality firm may find it profitable to

choose reference-shifting advertising that increases the reference point. The underlying intuition is

analogous to the main model — due to the concavity of the utility function, an increase in the qual-

ity reference point induces a steeper decline in consumer’s valuation for the low-quality product

than it does for the high-quality product. This increases perceived quality differentiation between

the products which, in turn, generates the premium effect wherein the high-quality firm charges a

higher premium over its competitor’s price.

2.6 Conclusions and Discussion

I study a scenario in which firms offering products of different qualities can use persuasive

advertising to influence consumers’ perceptions, either by influencing their valuations for quality,

or by influencing their reference point for quality. I consider two qualitatively distinct forms of

advertising content that has different effects: (i) valuation-shifting effect, that changes the quality

valuations of consumers (by inducing a quality focus or a value focus in consumers’ minds), and

(ii) reference-shifting effect, that changes the reference point with respect to which consumers

evaluate quality (by influencing the quality anchor against which consumers evaluate quality). I

obtain a number of interesting insights regarding firms’ use of these two types of content in their

ads.
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I find that a monopolist, if it advertises, always chooses either valuation-shifting advertising

to increase consumer’s marginal valuation of quality, or reference-shifting advertising to reduce

the reference quality. Importantly, the monopolist never chooses reference-shifting advertising to

raise the reference quality, because doing so only reduces the consumer’s utility from the product,

which in turn reduces the monopolist’s profit.

Interestingly, this intuition does not carry over when competition is introduced. My analysis

of a duopoly situation reveals that a high-quality firm may choose reference-shifting advertising

to increase the consumers’ reference quality — even though doing so lowers the utility from the

product, due to the property of diminishing marginal utility of quality, it enhances the high-quality

product’s valuation relative to the low-quality product. This reference-shift-induced differentia-

tion is operative only when consumers have diminishing returns to quality (i.e., the utility func-

tion is concave), and are more pronounced the more concave the consumer’s utility for quality is

(e.g., when consumers exhibit strong loss aversion). I find that when product differentiation is

high between the two firms, the low-quality firm chooses valuation-shifting advertising to adjust

consumer’s quality taste towards its low-quality product. When product differentiation is low, it

switches to reference-shifting advertising. Intuitively, as products become less differentiated, con-

sumers rely more heavily on comparative utilities when making their purchase decisions. There-

fore, the low-quality firm seeks to lower the reference point via reference-shifting ads, thereby

alleviating the perception of loss consumers feel toward the low-quality product. Another coun-

terintuitive insight that I find is that smaller differentiation among firms’ qualities, even though it

intensifies competition, may lead to lower consumer surplus.

My work offers a number of testable hypotheses regarding firms’ choices of advertising content

and strategy in quality differentiated markets. First, as consumers exhibit stronger loss aversion,

or have steeply diminishing marginal utility of quality (i.e., _ increases), firms uses less valuation-

shifting content and more reference-shifting content in its advertising. Second, if the product

differentiation between competing firms is high (i.e., @! is low), then firms change their advertis-

ing content from reference-shifting to valuation-shifting content. Third, in markets characterized
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by intermediate levels of product differentiation and consumer utility concavity, firms prefer to

include both valuation-shifting and reference-shifting content in their advertising. To test these hy-

potheses, one could compare advertising in markets corresponding to different values of the model

parameters. For instance, to test the first hypothesis, one could compare advertising strategies in

markets corresponding to small and large _, respectively.

My work is a first step towards understanding persuasive advertising in vertically differentiated

markets, and presents many opportunities for further research. For example, it would be interesting

to investigate what happens when the reference-updating process is allowed to be dynamic. While

my model assumes that reference quality is determined primarily by ad exposure, the literature on

reference points suggests that prior consumption experiences may play an important role in refer-

ence point formation (Hardie et al., 1993; Kopalle et al., 1996). Therefore, future extensions could

explore how the interaction of ad content and consumption experience in the reference updating

process affects firms’ advertising decisions. Another possibility is to analyze how quality decisions

are affected by ad decisions that I study. While my model abstracts from firms’ quality choices

by imposing them to be exogenously endowed, future work may consider a quality decision stage

prior to the stage where firms choose their ad types.
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Chapter 3: Learning in Online Advertising

3.1 Introduction

Online advertising, with an annual spending of over $100B, has become the largest cate-

gory of advertising in the US.1 Online advertising inventory is sold using two pricing models:

performance-based and impression-based. In performance-based (e.g., pay-per-click) pricing, an

advertiser pays only if a consumer completes a pre-defined action (e.g., a click). In impression-

based pricing, the advertiser pays for its ad being shown to a consumer, regardless of whether the

impression leads to an action.

Understanding how an ad performs (e.g., how likely a consumer will take an action after view-

ing an ad) is crucial for publishers in performance-based pricing, and for advertisers in impression-

based pricing. For example, in pay-per-click pricing, it is more profitable for a publisher to accept

a payment of $1 per click for an ad with click-through rate (CTR) 10%, for an expected revenue

$0.10 per impression, than a payment of $2 per click for an ad with CTR 4%, for an expected rev-

enue $0.08 per impression. Similarly, the probability of action affects an advertiser’s willingness

to pay (WTP) for an impression in impression-based pricing. The advertiser is willing to pay more

per impression if it knows that the impression leads to a desired outcome with a higher probability.

Previous literature on online advertising primarily assumes that the probability of the pre-

defined action (e.g., CTR) is known to advertisers and publishers (Edelman et al., 2007; Katona

and Sarvary, 2010; Jerath et al., 2011). In practice, however, advertisers and publishers have to

learn this probability. For example, when a new advertiser joins the market, or when an existing

advertiser revamps its ad campaign, the CTRs of its ads are typically unknown to the publisher,

other advertisers, and the advertiser itself. They can at best have an expectation of the CTR based

1https://content-na1.emarketer.com/us-ad-spending
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on a few observable characteristics of the advertiser.2 The actual CTR becomes known only when

the ads are displayed to consumers enough number of times such that sufficient impression and

click data become available. In other words, learning is asymmetric: participating in advertising

auctions is not sufficient for the advertiser’s CTR to be learned; the advertiser has to win advertising

auctions sufficiently many times before the publisher and the advertisers can learn its CTR.

The learning dynamic can affect advertisers’ and publishers’ strategies in the market. In par-

ticular, winning in an advertising auction has two effects on an advertiser’s payoff. First, the

advertiser receives an immediate value from showing its ad to a consumer (the direct effect). Sec-

ond, winning reveals information about the performance of the ad to both the advertiser and the

publisher (the indirect effect); this improves the advertiser’s and the publisher’s estimate of the

true CTR of the ad. In performance-based pricing, this ad-performance information is used by the

publisher to determine the pricing and allocation of an ad slot, and in impression-based pricing,

it is used by the advertiser to determine the advertiser’s WTP. While the previous literature has

primarily studied the direct effect of winning in an advertising auction, my paper focuses on the

indirect effect.

These two effects give rise to interesting trade-offs for advertisers when a new advertiser joins

the publisher. I illustrate these trade-offs in the following example.

Example. Suppose an advertiser, �, is the only advertiser bidding on an advertising slot of pub-

lisher %. Suppose that the slot is sold in a pay-per-click second price auction, �’s bid is $1 per

click, and its CTR is 15%. Assume that � is a new advertiser who wants to advertise on the same

slot. �’s bid is also $1 per click, but its CTR is not known to anybody at the time of entry. For the

initial auctions, % assigns an average CTR estimate (e.g., based on the performance of advertisers

with similar characteristics) of, say, 10%.

However, % can eventually learn the new advertiser’s CTR after sufficient impression and click

data for the new advertiser become available. Furthermore, � can facilitate this learning process

2For instance, in pay-per-click pricing, Google assigns an average Quality Score to new advertisers based on the
performances of other advertisers using the same keyword. See https://searchengineland.com/didnt-
know-recent-quality-score-changes-259559.
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by bidding aggressively and thereby winning in the early rounds. Doing so allows % to observe

more click data for �’s ad which would in turn allow % to more accurately estimate �’s true CTR.

Importantly, in pay-per-click pricing, %’s estimate of �’s CTR directly affects the payment and

allocation of the advertisers. This is because publishers use effective bids, computed as advertisers’

submitted bids multiplied by their expected CTRs, to calculate payment and allocation.3 Given

this, would � prefer to have its CTR learned by % quickly or not?

If � privately knew its true CTR, then the answer would be evident. For example, if it knew

that its true CTR is 20% (i.e., higher than %’s estimate), then � would unambiguously prefer %

to quickly update its CTR from the 10% estimate to the true 20%. The reason is that updating its

CTR to a higher value would not only make �’s future effective bid more competitive against the

existing advertiser �, but also lower �’s cost-per-click when it wins. In particular, with its $1 bid

and 20% CTR, � will outrank �’s effective bid of $1 × 15% and win the auction for a cost-per-

click of $0.75; it would have lost the auction to � had its CTR remained at the average of 10% (see

Table 3.1). Conversely, �’s incentive to facilitate %’s learning its CTR would diminish if � knew

its true CTR is lower than %’s prior estimate. In this case, �’s long-term payoff would decrease

if its low CTR is learned quickly. In sum, � prefers % to update �’s CTR estimate more quickly

(slowly) if it privately knows that its CTR is higher (lower) than %’s prior estimate.

3In practice, effective bids can also include other factors such as landing page experience and advertiser’s reputa-
tion; however, for the purpose of this example, I only consider the expected CTR and the submitted bid that are the
two most important elements of effective bids.
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Advertiser �’s CTR

Not known (CTR=10%) Known (CTR=20%) Known (CTR=5%)

�
Has to bid (and pay) Wins at cost-per-click Has to bid (and pay)

$1 × 15%/10% = $1.5 to win $1 × 15%/20% = $0.75 $1 × 15%/5% = $3 to win

�
Wins at cost-per-click Has to bid (and pay) Wins at cost-per-click

$1 × 10%/15% = $0.66 $1 × 20%/15% = $1.33 to win $1 × 5%/15% = $0.33

Table 3.1: When the Publisher Knows vs. Does Not Know New Advertiser’s CTR

In reality, however, when � first enters the market, it does not know whether its true CTR is

lower or higher than an average advertiser with similar characteristics. Therefore, it is not clear

whether the new advertiser � should increase or decrease its bid to accelerate or slow down %’s

learning process if � wants to maximize its profit.

Similarly, for the existing advertiser �, %’s learning the new advertiser �’s CTR can be a

double-edged sword. If �’s CTR turns out to be higher than the estimated average, then � may

lose the ad slot; if it turns out to be lower, � can win the auction at a lower cost-per-click than

when �’s CTR is not known to % (from $0.66 to $0.33 in Table 3.1). Again, given that the existing

advertiser � can facilitate (hinder) %’s learning process by decreasing (increasing) its bids when �

joins, it is not clear which bidding strategy would maximize its profit.

In this paper, I study how the learning incentives affect the advertisers’ and the publisher’s

strategies. I use a game-theoretic model to analyze advertisers’ and publisher’s strategies in a

learning environment. To facilitate exposition, in the main body of the paper, I assume the publisher

uses performance-based pricing, which currently accounts for 62% of the online advertising market

in the US,4 and use pay-per-click terminology. In the extensions, I show that my results apply to

pay-per-impression pricing model as well. I are interested in answering the following research

questions.

4http://totalaccess.emarketer.com/chart.aspx?r=219092

36

http://totalaccess.emarketer.com/chart.aspx?r=219092


1. Does a new advertiser (entrant) benefit from its CTR being learned by the publisher? How

does this affect the entrant’s bidding strategy?

2. Does an existing advertiser (incumbent) benefit from the publisher learning the CTR of the

entrant? How does this affect the incumbent’s bidding strategy?

3. How does the lack of information about a new advertiser’s CTR affect the publisher’s rev-

enue? How do learning incentives affect the publisher’s optimal strategy?

In answering the first set of questions, I show that a new advertiser’s expected payoff when its

CTR is learned by the publisher is higher than when it is not. The higher payoff incentivizes the

new advertiser to bid aggressively to accelerate the learning process. As a result, the entrant should

always bid higher (sometimes even above its valuation) in the beginning when its CTR is unknown

to the publisher, than in the long run after its CTR becomes known. This finding is in line with

what industry experts commonly recommend new advertisers regarding starting bids — namely,

bid aggressively “into high positions” and “make adjustments after [accumulating] data.” Despite

the risk of paying a high initial cost, the experts explain that bidding high and thereby attaining top

positions early on could help improve the advertisers’ long-run profits.5

My result indicates that even for advertisers whose long-run equilibrium cost-per-click is low,

the initial cost-per-click (at the time of joining the market) may be above their valuation. In other

words, advertisers should be prepared to lose money in the beginning when they start advertising

with a publisher for the first time. Moreover, they should not be discouraged from using that

publisher even if the initial cost-per-clicks are higher than their WTP.

In answering the second set of questions, I find that an incumbent’s response to an entrant join-

ing the auction depends on the incumbent’s CTR. If the incumbent’s CTR is high, the incumbent

bids aggressively to impede the entrant’s CTR from being learned by the publisher. This is because

an incumbent with a high CTR does not want to risk earning a low margin (or worse, losing its ad

slot) in the event the entrant’s CTR turns out to be high.

5https://searchengineland.com/4-ways-to-determine-your-your-starting-bids-
144616.
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This “preemptive” strategy, however, is too expensive for an incumbent with a low CTR. As I

show, an incumbent with a low CTR lowers its bid when an entrant joins, so that the entrant’s CTR

is learned more quickly. Intuitively, competing with an advertiser whose CTR is unknown is too

costly for the weak incumbent; by accelerating the learning process, the incumbent hopes that the

entrant’s CTR will turn out to be lower than expectation.

In answering the third set of questions, interestingly, I find that the publisher may benefit from

not knowing the new advertiser’s CTR. The intuition is that the entrant, and sometimes the in-

cumbent as well, bids more aggressively when the entrant’s CTR is not known, which increases

the publisher’s revenue. Under certain conditions, however, the publisher’s ignorance could also

hurt its revenue. For instance, if the entrant’s CTR is high, the publisher misses clicks (and hence

opportunities for earning higher revenue) by not displaying the entrant’s ad in the beginning. The

negative effect becomes more pronounced when the incumbent’s CTR is high because a strong

incumbent bids aggressively to mask the entrant’s CTR. This deters the publisher from learning

the entrant’s potentially high CTR.

I find that the publisher can mitigate the loss of not knowing the entrant’s CTR by reducing the

reserve price of the entrant. By reducing the reserve price, the publisher increases the probability

of the entrant winning in the auction, thereby increasing the probability of learning the entrant’s

CTR. Furthermore, I characterize the optimal mechanism and show that, first, in the presence

of learning considerations, a variation of the standard second-price auction with optimal reserve

prices is sufficient to achieve the optimal revenue. Second, it is optimal for the publisher to favor

the entrant in the beginning, before the entrant’s CTR is learned. This manifests in a lower optimal

reserve price of the entrant when the publisher does not know the entrant’s CTR than when it

knows.

In addition, I discuss alternative mechanisms that can help the publisher mitigate its loss of

not knowing the entrant’s CTR. For example, Google provides $75 ad credit to new advertisers

when they spend $25 on AdWords.6 Facebook also offers ad credit to new accounts that have a

6https://www.google.com/ads/adwords-coupon.html
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sufficiently high audience engagement on their pages.7 While these programs have traditionally

been viewed as promotions to attract new advertisers, my research reveals new strategic incentives

beyond new customer acquisition that motivate publishers to offer ad credit.

Theoretical Contribution. While, from a managerial point of view, my work sheds light on

advertisers’ and publishers’ strategies regarding new entries, I also want to highlight two unique

aspects of my model from a theoretical point of view. First, in the context of online advertising,

I study the transition of a game from an incomplete information game to a full information one.

While the previous literature on online advertising assumes that the game is either always full infor-

mation (e.g., Edelman et al., 2007) or always incomplete information (e.g., Edelman and Schwarz,

2010), in practice, the level of information is constantly changing. My paper takes a first step

towards bridging this gap by analyzing the transition.8 I show that the advertisers’ and the publish-

ers’ strategies regarding the transition are qualitatively distinct from those in full information and

incomplete information games.

Second, my analysis demonstrates how some of the standard results from learning theory may

be reversed when the subjects of learning are not as “passive” as commonly assumed in the lit-

erature (e.g., Gittins and Jones, 1979; Katehakis and Veinott, 1987). For instance, exploration-

exploitation trade-off from standard learning theory suggests that knowing less about new adver-

tisers would only hurt the publisher’s revenue because the publisher must then learn about new

advertisers through costly exploration. In contrast, my model shows that the publisher may be

better off knowing less about the new advertiser due to the advertisers’ strategic responses during

the publisher’s learning process. In other words, when the subjects are strategic agents, exploration

could be profitable for the learner.

The rest of this paper is structured as follows. First, I discuss related literature. In Section 3.2,

I present the model. I analyze the model and discuss advertisers’ strategies in Section 3.3. The

publisher’s optimal strategy is discussed in Section 3.4. I explore extensions of the main model in

7http://www.digitalsitemap.com/free-facebook-ad-coupon/
8In fact, since new advertisers constantly join this market, and even existing advertisers frequently revamp their

campaigns, change their ad copies and landing pages, or change their ad agencies altogether, one could argue that this
market is always in transition.
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Section 3.5 to establish the robustness of my main results, and conclude in Section 3.6.

Related Literature

My work contributes to the vast literature on display advertising. Empirical works in this area

have assessed the effectiveness of display advertising in various contexts. Lambrecht and Tucker

(2013) demonstrate that retargeting may not be effective when consumers have not adequately re-

fined their product preferences. Hoban and Bucklin (2015) find that display advertising increases

website visitations for a large segment of consumers along the purchase funnel, but not for those

who had visited before. Bruce et al. (2017) examine the dynamic effects of display advertising

and show that animated (vs. static) ads with price information are the most effective in terms

of consumer engagement. On the theoretical front, Sayedi et al. (2018) study advertisers’ bid-

ding strategies when publishers allow advertisers to bid for exclusive placement on the website.

Sayedi (2018) analyzes the interaction between selling ad slots through real-time bidding and sell-

ing through reservation contracts. Zhu and Wilbur (2011) and Hu et al. (2016) study the trade-offs

involved in choosing between “cost-per-click” and “cost-per-action” contracts. Berman (2016)

explores the effects of advertisers’ attribution models on their bidding behavior and their profits.

Kuksov et al. (2017) study firms’ incentives in hosting the display ads of their competitors on their

websites.

Within online advertising, the increasing prevalence of search advertising has motivated a

growing body of empirical (e.g., Rutz and Bucklin, 2011; Yao and Mela, 2011; Haruvy and Jap,

2018) and theoretical papers. Katona and Sarvary (2010) and Jerath et al. (2011) study advertis-

ers’ incentives in obtaining lower vs. higher positions in search advertising auctions. Sayedi et al.

(2014) investigate advertisers’ poaching behavior on trademarked keywords, and their budget allo-

cation across traditional media and search advertising. Desai et al. (2014) analyze the competition

between brand owners and their competitors on brand keywords. Lu et al. (2015) and Shin (2015)

study budget constraints, and budget allocation across keywords. Zia and Rao (2017) look at the

budget allocation problem across search engines. Wilbur and Zhu (2009) find the conditions under
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which it is in a search engine’s interest to allow some click fraud. Cao and Ke (2017) model a

manufacturer and retailers’ cooperation in search advertising and show how it affects intra- and

inter-brand competition. Amaldoss et al. (2015a) show how a search engine can increase its profits

and also improve advertisers’ welfare by providing first-page bid estimates. Berman and Katona

(2013) study the impact of search engine optimization, and Amaldoss et al. (2015b) analyze the

effect of keyword management costs on advertisers’ strategies. Katona and Zhu (2017) show how

quality scores can incentivize advertisers to invest in their landing pages and to improve their con-

version rates.

Following Edelman et al. (2007), by arguing that players learn each others’ types after playing

the game repeatedly, the vast majority of this literature uses a full information setup to model

search advertising auctions. There are a few papers (e.g., Amaldoss et al., 2015a,b; Edelman and

Schwarz, 2010) that use an incomplete information setting for modeling search advertising. In

these papers, however, the game remains an incomplete information game; i.e., players do not

learn each others’ types. To the best of my knowledge, my paper is the first on online advertising

to model the learning process, wherein the game starts as an incomplete information game and, if

a new advertiser’s type is learned, transitions to a full information game.

Parts of my model may resemble the literature on games with asymmetric information. For

instance, in Jiang et al. (2011), a seller may want to hide its type from a publisher by pooling

with another type. Despite some similarities, my paper differs in that I do not model information

asymmetry. Although I allow players take certain actions to facilitate or hinder the revelation

of information, those actions do not signal their types. Furthermore, in signaling games, players

mimic other players’ strategies in order to hide or reveal information; in contrast, advertisers in my

model interfere with the publisher’s learning process in order to do so.

There are a few papers in Computer Science and Operations Research literature that address

dynamic learning in repeated auctions. Li et al. (2010) solve for an advertiser’s optimal bidding

strategy when it is uncertain about its CTR and faces an exogenous distribution of competing bids.

Hummel and McAfee (2016) characterize the search engine’s optimal bid on behalf of advertisers
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under uncertain CTRs in a repeated game, and Balseiro and Gur (2017) introduce adaptive bidding

strategies for budget-constrained advertisers in repeated auctions of incomplete information.

Closest to my paper within this stream is Iyer et al. (2014), which studies bidding strategies

of agents who learn their valuations. Under the assumption that the market size is infinitely large,

Iyer et al. (2014) adopt a mean-field approximation to solve for equilibrium strategies. They report

a similar finding that in a learning environment, an advertiser’s bid consists of the present expected

value of winning the ad slot and the “marginal future gain from one additional observation re-

garding [the advertiser’s] valuation.” The present paper, however, differs along several important

dimensions.

First, since I use performance-based pricing, the learning agent in my model is the publisher,

not the advertiser. The publisher receives new information about a new advertiser who wins, and

incorporates the information to the rules of the subsequent auctions. Thus, a new advertiser bids

strategically not to learn its own type per se, but to influence the publisher’s learning process.

Second, my paper sheds light on a novel incentive for existing advertisers to deter the publisher

from learning the new advertiser’s type. This is distinct from the idea of advertisers adopting

(symmetric) bidding strategies to learn their own types. The discrepancies in the incentives across

advertisers that are highlighted in my paper do not emerge in a mean-field equilibrium wherein all

agents behave in a symmetric manner. Finally, my paper analyzes a small, stylized market with

limited number of participants, which allows us to model fully rational behavior of all players. My

assumption of a small market is motivated by the fact that, due to the fine-grained targeting avail-

able in online advertising, most auctions have a small number of participants; as such, advertisers’

one-to-one interactions affect their optimal strategies. Papers that employ mean-field equilibrium

(e.g., Iyer et al., 2014; Balseiro et al., 2015) abstract away from advertisers’ one-to-one interac-

tions, and characterize an approximate equilibrium wherein agents are assumed to be boundedly

rational.
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3.2 Model

My model consists of a publisher and two advertisers, the incumbent and the entrant, indexed

by %, � and � , respectively. The publisher sells one ad slot in a second-price auction with reserve

price '.9 Each advertiser has an advertiser-specific CTR — 2� for the incumbent and 2� for the

entrant — that represents the average CTR of the advertiser if placed in the ad slot. In other words,

when an ad is displayed to a consumer, the consumer clicks on the incumbent’s (entrant’s) ad

with probability 2� (2� ). Parameters 2� and 2� depend on the advertisers’ ad copies, as well

as the relevance and strength of their brands with respect to the publisher’s webpage in display

advertising, or consumer’s search query in search advertising.

In my main model, I assume performance-based pricing, which currently accounts for 62%

of the online advertising market in the US,10 and use pay-per-click pricing terminology.11 In

Section 3.5.1, I show that, under some assumptions, my findings apply to impression-based pricing

as well. I first assume that both advertisers have the same valuation per click, which I normalize

to 1. This assumption is not necessary, but simplifies the discussion of advertisers’ strategies in

Section 3.3. I relax this assumption in Section 3.4 when analyzing the publisher’s strategy. The

incumbent (entrant) submits a bid 1�C (1�C), where C indexes the game stage. The bids indicate how

much the advertisers are willing to pay per click.

In performance-based pricing, publishers take advertisers’ expected performance into account

when determining payment and allocation. In pay-per-click pricing, publishers compute advertis-

ers’ effective bids as the product of their submitted bids and the estimated CTRs of their ads.12

Some publishers may also include other parameters such as landing page experience in the effec-

tive bids; however, to focus on the role of CTRs, I only take the submitted bids and the CTRs into

account, and assume that the two advertisers are the same along other dimensions that a publisher

9I consider a multiple-slot Generalized Second-Price auction in Section 3.5.
10http://totalaccess.emarketer.com/chart.aspx?r=219092
11Pay-per-click pricing is the most common form of performance-based pricing; nonetheless, my results can be

readily applied to other performance-based pricing models such as pay-per-conversion.
12For example, see https://www.facebook.com/business/help/430291176997542 and https:

//searchengineland.com/guide/ppc/how-the-ppc-ad-auction-works.
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may consider.13 Therefore, the effective bids of the incumbent and the entrant at stage C are 2�1�C

and 2�1�C , respectively. The advertiser with the higher effective bid wins the auction, provided

its effective bid is greater than or equal to the reserve price, '. The winner pays (per-click) the

minimum bid required to win the auction; i.e., if the incumbent wins, it pays max[2�1�C , ']/2�

and if the entrant wins, it pays max[2�1�C , ']/2� .

I assume that 2� is drawn from a differentiable cumulative distribution function (c.d.f.) �� .

Since the incumbent has been advertising with the publisher for an extended period of time, fol-

lowing Edelman et al. (2007) (and many other papers in the literature), I assume that its CTR, 2� ,

is common knowledge. On the other hand, the entrant’s CTR is not known at the time of entry

because the entrant has not advertised with the publisher in the past. When the entrant joins, the

publisher, the incumbent, and the entrant only know the distribution of the entrant’s CTR. 14 I

assume that 2� and `� , the expected value of 2� , are greater than the reserve price, so that the

incumbent and the entrant can beat the reserve price in expectation.

Before I proceed, I should elaborate on the meaning of the CTR parameters 2� and 2� . In my

model, these parameters represent the advertiser-specific CTRs which, as explained above, depend

on the advertisers’ ad copies and brand strengths among others. Advertiser-specific CTRs are

independent of position effects where higher ad slot position increases the ad’s click propensity.

Indeed, publishers only take into account advertiser-specific CTRs, controlling for position effects,

when computing advertisers’ effective bids.15 Position-specific CTRs will be incorporated in the

multi-slot extension in Section 3.5.4.

Next, I describe the timing of the game, which is depicted in Figure 3.1.

Stage 1: The entrant joins the market. The entrant’s CTR is initially unknown, and is therefore

13For a discussion of other parameters in advertisers’ effective bids in search advertising see Katona and Zhu (2017).
14Note that this model implies two important assumptions on the information structure of the game. First, the

assumption that 2� is common knowledge implies that the entrant and the publisher have the same level of information
about the incumbent. Second, I are implicitly assuming that the incumbent and the publisher have the same level
of information about the entrant. In practice, it is possible that large publishers such as Google and Facebook can
estimate advertisers’ CTRs more accurately than other advertisers based on their vast troves of data. I relax both of
these assumptions in Section 3.5.2 and establish the robustness of my results.

15https://support.google.com/google-ads/answer/1659696
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set to its expected value `� .16 The incumbent and the entrant simultaneously submit their bids 1�1

and 1�1 to the publisher. The incumbent’s effective bid is 2�1�1 whereas the entrant’s is `�1�1,

since the publisher does not know the entrant’s CTR yet. If the incumbent wins, it pays (per-click)

max[`�1�1, ']/2� , and if the entrant wins, it pays max[2�1�1, ']/`� . If the entrant wins, its CTR

becomes known to the publisher by the next stage; otherwise, it remains unknown.

To simplify the analysis, I assume that if the entrant wins a single auction (i.e., the auction in

Stage 1), then the publisher learns its CTR. In practice, the entrant would have to win sufficiently

many times for the publisher to accurately learn its CTR. Stage 1 in my model corresponds to

as many auctions as the entrant needs to win for the publisher to learn its CTR. Furthermore,

in practice, learning is continuous and gradual such that the publisher’s estimate of the entrant’s

CTR improves incrementally every time the entrant wins. My model can be viewed as a discrete

approximation of this learning process: the publisher either knows or does not know the entrant’s

CTR.

Stage 2: The advertisers submit their bids 1�2 and 1�2. The incumbent’s effective bid is 2�1�2.

The entrant’s effective bid depends on the outcome of the Stage 1 auction. If the entrant had won

in Stage 1, then its CTR becomes known to the publisher by Stage 2, and therefore, its effective

bid is 2�1�2. Otherwise, as in Stage 1, its CTR is not learned and its effective bid is `�1�2.17

I capture the relative weight of Stage 2 compared to Stage 1 with parameter X > 0. Note

that since the advertisers’ decisions in Stage 1 affects their payoffs in Stage 2, X affects how the

advertisers trade off short-term revenue (in Stage 1) for long-term revenue (in Stage 2).18

16In Google AdWords, new advertisers received an average Quality Score of 6. See https://
searchengineland.com/minimum-quality-score-can-save-money-adwords-226757. In Sec-
tion 3.5.3, I consider an extension in which, instead of using `� , the publisher strategically sets the entrant’s CTR.

17If the entrant wins the auction in Stage 1, the publisher learns 2� ; however, I do not make any assumptions on
whether the incumbent also learns 2� or not. Specifically, as I show in Lemma 1, the incumbent bids truthfully in
Stage 2 regardless of the outcome of Stage 1.

18One might argue that the publisher eventually learns the entrant’s CTR, even if the entrant does not win in Stage 1.
For instance, its CTR may be learned if the entrant’s ad is displayed on the second page of the search results for a
sufficiently long period of time. In this case, I could assume that the game has a Stage 3 in which, regardless of the
outcomes of Stages 1-2, 2� becomes learned by the publisher. It is easy to show that both advertisers bid truthfully
in Stage 3, and that the existence of Stage 3 does not affect the advertisers’ strategies in Stages 1-2. In this model, X
could be interpreted as the length of time required for the publisher to learn the entrant’s CTR if the entrant does not
win in Stage 1 (compared to when it wins in Stage 1).
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Figure 3.1: Game Timing

The incumbent’s expected profit is the sum of its first and second stage payoffs. That is, E[c�] =

c�1 + XE [c�2] where c�1 denotes the incumbent’s first stage payoff, and c�2 its second stage payoff

contingent on the realization of 2� , over which expectation is taken. Specifically,

c�1 =


2�

(
1 − max[`�1�1,']

2�

)
if 2�1�1 ≥ max[`�1�1, '],

0 otherwise,
c�2 =


2�

(
1 − max[2̃�1�2,']

2�

)
if 2�1�2 ≥ max[2̃�1�2, '],

0 otherwise,

where 2̃� is 2� if 2� is learned (i.e., entrant won in Stage 1 auction), and `� otherwise. Simi-

larly, the entrant’s expected profit is E[c� ] = E [c�1] + XE [c�2], where

c�1 =


2�

(
1 − max[2� 1�1,']

`�

)
if `�1�1 ≥ max[2�1�1, '],

0 otherwise,
c�2 =


2�

(
1 − max[2� 1�2,']

2̃�

)
if 2̃�1�2 ≥ max[2�1�2, '],

0 otherwise.

Finally, the publisher’s expected profit is E[c%] = E[c%1] + XE [c%2], where

c%1 =



max[`�1�1, '] if 2�1�1 ≥ max[`�1�1, '],

2�
max[2� 1�1,']

`�
if `�1�1 > max[2�1�1, '],

0 otherwise,

c%2 =



max[2̃�1�2, '] if 2�1�2 ≥ max[2̃�1�2, '],

2�
max[2� 1�2,']

2̃�
2̃�1�2 > max[2�1�2, '],

0 otherwise.

I use subgame perfect Nash equilibrium as the solution concept and solve by backward in-

duction. Finally, to ensure the existence of a weakly dominant strategy for the incumbent, I as-

sume that 2� + X
(
(2� − `� )+ −

∫1
0(2� −max[2� , '])+ 3��

)
≥ ', for which a sufficient condition is
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X ≤ 1
5� (')+�� (') .

19 This assumption is only needed to facilitate the exposition in Section 3.3, and

will be dropped in Section 3.4.

3.3 Advertisers’ Strategies

In this section, I analyze the advertisers’ bidding strategies and assume that the publisher’s

mechanism is exogenous. As a benchmark, in Section 3.3.1, I analyze the advertisers’ strategies in

a full information game. Then, in Section 3.3.2, I study how learning incentives in an incomplete

information game affect the advertisers’ bidding strategies.

3.3.1 Full Information Setting

As a benchmark, I first consider the case where the entrant’s CTR is common knowledge.

This corresponds to what most of the previous theoretical papers in online advertising literature

assume. Even though the auction is not a standard second-price auction because advertisers’ bids

are multiplied by their CTRs, truthful bidding (i.e., bidding the per-click valuation) is still a weakly

dominant strategy for both advertisers. The advertisers’ equilibrium strategies and their payoffs

under full information are summarized in the following proposition.

Proposition 7 (Bids and Payoffs Under Full Information). Under full information, truthful bidding

is a weakly dominant strategy for both advertisers. The payoffs of the incumbent, the entrant, and

the publisher, respectively, are c�
�

= (1 + X)(2� − max[2� , '])+, c�
�

= (1 + X)(2� − 2�)+, and

c�
%

= (1 + X) max[min[2� , 2� ], '], where G+ ≡ max[G, 0].

Proposition 7 shows that when the publisher knows the entrant’s CTR, both advertisers always

bid truthfully. This finding is not new to the literature and is presented here for the sake of com-

pleteness. Interestingly, in the next section, I show that truthful bidding is no longer an equilibrium

strategy when the publisher does not know the entrant’s CTR.

19This is not a restrictive assumption; for example, for �� (2) = 2, the condition holds for all X > 0 and 2� ≥ '. The
sufficient condition derives from the fact that 2� + X

(
(2� − `� )+ −

∫1
0(2� −max[2� , '])+ 3��

)
is equal to ' at 2� = ',

and then imposing that the former increases in 2� .
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3.3.2 Incomplete Information Setting

In practice, there is little information regarding the entrant’s CTR that is available to the pub-

lisher. Therefore, unlike the case for the incumbent’s CTR, the advertisers and the publisher have

at best only partial information about the entrant’s CTR.

I begin my analysis under incomplete information with the second stage bids. I focus on

dominant strategy equilibrium where advertisers play weakly dominant strategies. As I show in

Lemma 1, Stage 2 auction is straightforward: advertisers bid truthfully. This is because in the

last stage there are no strategic considerations of future payoffs; thus, the truthfulness property of

standard second-price auctions holds.

Lemma 1 (Bids in Stage 2 Under Incomplete Information). Regardless of the outcome in Stage 1,

bidding truthfully is a weakly dominant strategy for both advertisers in Stage 2.

In contrast, I find that in Stage 1, the advertisers’ bidding strategies are not always truthful.

Their bids can be either below or above valuation depending on their expectations of Stage 2

payoffs. The following lemma characterizes the advertisers’ first stage equilibrium bids.

Lemma 2 (Bids in Stage 1 Under Incomplete Information). In Stage 1, it is weakly dominant for

the incumbent and the entrant, respectively, to bid

1∗�1 = 1 +
X

2�

(
(2� − `� )+ −

∫ 2�

0
2� −max[2� , '] 3��

)
, (3.3.1)

1∗�1 = 1 +
X

`�

(∫1

2�

2� − 2� 3�� − (`� − 2�)+
)
. (3.3.2)

In general, truthful bidding is a weakly dominant strategy in a second-price auction even under

incomplete information. Expressions (3.3.1) and (3.3.2), however, show that the advertisers’ bids

are no longer truthful. What drives the change in advertisers’ strategies in my model is the adver-

tisers’ incentive (or lack thereof) to help the publisher learn the entrant’s CTR. The advertisers’

Stage 1 bids are shaped by their preference to play a Stage 2 game in which the entrant’s CTR is

`� vs. 2� , where 2� is randomly drawn from �� . For example, if the entrant’s expected payoff in
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Stage 2 is higher when its CTR is 2� (i.e., its CTR is learned), compared to when it is `� (i.e., its

CTR is not learned), the entrant would raise its Stage 1 bid.

But does the entrant prefer its CTR to be learned by the publisher? I find the answer to be

affirmative. For the entrant, the benefits of revealing its CTR are two-fold. First, it allows the

entrant to outrank the incumbent in Stage 2 with some probability even when `� ≤ 2� , a situation

in which the entrant would have surely lost in Stage 2 if its CTR were unknown and set to `�

by the publisher. Second, it provides an opportunity for the entrant to pay lower cost-per-click in

the event that its CTR turns out to be high, compared to the case when its CTR is assigned the

mean estimate `� . Evidently, there is also the risk of its CTR turning out to be low, in which case

the entrant would have been better off being assigned `� . The reward of a high CTR realization,

however, is disproportionately larger than the loss the entrant incurs for a low realization. The

reason is that while the gains for the entrant increase proportionally with high realizations of 2� ,

the loss of a low 2� is bounded from below by zero. Therefore, in expectation, the entrant prefers

its CTR to be learned by the publisher.

The following table shows this more formally for the case when `� > 2� :

Table 3.2: Entrant’s Stage 2 Profit

Publisher does not know 2� Publisher knows 2�

E[c�2] =
∫1

0 2� (1 − 2�/`� ) 3�� E[c�2] =
∫1

0 2� (1 − 2�/2� )+ 3��

E[c�2] = (1 − 2�/`� )
∫1

0 2� 3�� = (1 − 2�/`� )`� E[c�2] =
∫1
2�
2� (1 − 2�/2� ) 3��

E[c�2] = `� − 2� =
∫1

0 2� − 2� 3�� E[c�2] =
∫1
2�
2� − 2� 3��

From Table 3.2, I see that the entrant’s Stage 2 profit when the publisher does not know the

entrant’s CTR (left-hand side) is integrated over negative values as well (in the range 2� ∈ (0, 2�)).

This integral value is lower than that when the publisher knows 2� (right-hand side) where only

positive values are integrated. In sum, for any entrant CTR distribution �� , the entrant’s Stage 2
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profit is higher in expectation if the publisher learns its CTR. Therefore, the entrant bids aggres-

sively in Stage 1 in order to facilitate the publisher’s learning process.

The incumbent’s bidding strategy is slightly more nuanced: the incumbent underbids for low

2� and overbids for high 2� . Suppose 2� is not learned by the publisher in Stage 2. If 2� is close

to `� , then the incumbent either loses the Stage 2 auction or, even if it wins the auction, receives a

low Stage 2 payoff because the cost-per-click `�/2� is high. In this case, the incumbent is better

off shading its Stage 1 bid below valuation, thereby helping the entrant win the first stage auction.

The intuition is that by facilitating the revelation of the entrant’s CTR, the incumbent foregoes its

first stage payoff, but creates an opportunity to reap a large second stage payoff in the event 2�

turns out to be low. Thus, a weak incumbent has a strategic incentive to underbid.

On the other hand, if 2� is significantly greater than `� , then the incumbent’s Stage 1 strat-

egy switches from underbidding to overbidding. To illustrate, suppose 2� is high and compare

the incumbent’s Stage 2 payoff when 2� is concealed vs. revealed. Had 2� been concealed, the

incumbent would win in Stage 2 at a low cost-per-click of `�/2� , since 2� � `� . Conversely, had

2� been revealed, there are two possibilities: if 2� turns out to be low, the incumbent will pay an

even lower cost; if 2� turns out to be high, the incumbent will pay a high cost (if not lose the ad

position). However, the reward of a low 2� realization is outweighed by the risk of a high 2� real-

ization because the incumbent’s potential to reap larger margins for a low 2� realization is limited

by the reserve price. Therefore, the incumbent has incentive to conceal 2� when its CTR is high,

and thus bids above valuation in Stage 1. This can also be seen from the following expressions of

the incumbent’s Stage 2 profit when 2� > `� :
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Table 3.3: Incumbent’s Stage 2 Profit when 2� > `�

Publisher does not know 2� Publisher knows 2�

E[c�2] = 2�(1 − `�/2�) E[c�2] =
∫1

0 2�(1 −max[2� , ']/2�)+ 3��

E[c�2] = 2� − `� E[c�2] =
∫'

0 2�(1 − '/2�) 3�� +
∫2�
'
2�(1 − 2�/2�) 3��

E[c�2] =
∫1

0 2� − 2� 3�� E[c�2] =
∫'

0 2� − ' 3�� +
∫2�
'
2� − 2� 3��

From Table 3.3, I see that the incumbent’s Stage 2 profit when the publisher does not know

the entrant’s CTR (left-hand side) is 2� − 2� integrated over all values of 2� . When 2� is known

(right-hand side), for values of 2� ∈ (0, '), I have 2� − ' integrated; since ' > 2� , the incumbent

is better off when the publisher does not know 2� for this integration range. Within the integration

range of 2� ∈ (', 2�), the expressions on both sides are equal to 2� − 2� . Finally, within the range

2� ∈ (2� , 1), negative values are integrated on the left-hand side expression whereas the right-hand

side expression is zero. For this integration range, the incumbent is better off when the publisher

knows 2� . Overall, the negative effect of learning 2� on the incumbent’s profit (which happens

for 2� ∈ (0, ')) is constant as 2� increases, but the positive effect (which happens for 2� ∈ (2� , 1))

shrinks as 2� increases. Therefore, a weak incumbent with low 2� is better off in Stage 2 when

2� is learned, whereas a strong incumbent with high 2� is better off when 2� is not learned. This

incentivizes a weak (strong) incumbent to underbid (overbid) in Stage 1. I summarize these results

in the following proposition.

Proposition 8 (Advertisers’ Strategies in Stage 1 Under Incomplete Information). In Stage 1, the

entrant always bids above its valuation. The incumbent bids below its valuation if 2� is low, and

bids above its valuation if 2� is high. See Figure 3.2.

The advertisers’ bidding behavior outlined in Proposition 8 can also be understood from an

asymmetric learning perspective. Suppose that the publisher always learns the entrant’s CTR in

Stage 2, regardless of the Stage 1 outcome. In this hypothetical scenario, the advertisers’ Stage 2
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payoffs would be independent of the Stage 1 outcome. As a result, neither the incumbent nor the

entrant would have incentive to deviate from truthful bidding in Stage 1. In my model, however,

the fact that the publisher’s learning is asymmetric — that is, learning occurs if only if the entrant

wins in Stage 1 — creates an important interdependence between the two sequential auctions. This

interdependence, which is depicted in Figure 3.1, generates strategic incentives for advertisers to

deviate from truthful bidding.

Publisher’s Revenue

I turn to the implications of learning incentives on the publisher’s revenue. Is the publisher un-

equivocally better off knowing the entrant’s CTR? One may conjecture that being more informed

about the bidders can only benefit the publisher as it would allow for more efficient ad slot alloca-

tion. Surprisingly, I find that this is not always the case. Under certain conditions, not knowing the

entrant’s CTR increases the publisher’s revenue.20

The intuition revolves around two effects. First, the publisher’s ignorance of the entrant’s CTR

induces the entrant to bid more aggressively in Stage 1. As explained above, the incentive to bid

higher arises from the fact that the entrant’s expected payoff in Stage 2 is higher if the publisher

learns its CTR. This higher bid increases the incumbent’s payment if it wins, which results in

higher Stage 1 revenue for the publisher.

The second effect is subtler. Consider the publisher’s Stage 2 revenue when 2� > `� . Recall

20To be more precise, the common knowledge that the publisher does not know the entrant’s CTR may increase its
revenue.

52



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.4

0.5

0.6

0.7

0.8

Figure 3.3: Publisher Revenue; ' = 1
4 , X = 1

2 , �� (2) = 2

that the advertisers bid truthfully in Stage 2. If 2� is not known, the publisher’s expected revenue

in Stage 2 is (`�/2�)2� = `� . Using the definition of `� , this can be rewritten as

∫1

0
2� 3�� . (3.3.3)

If 2� is known, the publisher’s Stage 2 revenue depends on the realization of 2� and can be

written as ∫'

0
' 3�� +

∫ 2�

'

2� 3�� +
∫1

2�

2� 3�� . (3.3.4)

Comparing the two integral expressions (3.3.3) and (3.3.4), I see that within the integration

range 2� ∈ (0, '), Expression (3.3.4) is larger; within the range 2� ∈ (', 2�), the two expressions

are equal, and within the range 2� ∈ (2� , 1), Expression (3.3.3) is larger. Thus, if 2� is not too

high, then the publisher’s revenue when it does not know 2� (i.e., Expression (3.3.3)) is larger

than when it does (i.e., Expression (3.3.4)). Intuitively, since the benefit of a high realization of

2� is bounded from above by 2� , i.e., the publisher cannot fully reap the benefits of a high 2� , the

publisher’s Stage 2 revenue may be higher when 2� is not known than when it is. Taken together,

the publisher’s ignorance of the entrant’s CTR can be blissful for moderate values of 2� . This result

is formalized in the following proposition.

Proposition 9 (Publisher Revenue: Ignorance is Bliss). The publisher’s revenue is higher not

knowing the entrant’s CTR than knowing it if and only if (i) 2 < 2� < 2, or (ii) 2� ≤ `� and X < 1,

where 2 and 2 are defined in the appendix.
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Proposition 9 suggests that publishers do not always have to be concerned about not know-

ing the new advertisers’ types. In fact, not knowing the new advertisers’ CTRs can sometimes

increase the publisher’s revenue because ignorance induces advertisers to bid aggressively. How-

ever, Proposition 9 also reveals conditions under which the publisher’s ignorance can be a curse.

For instance, if the incumbent is strong (e.g., high 2� in Figure 3.3), then not knowing the entrant’s

CTR decreases the publisher’s revenue. This is because, when 2� is sufficiently high, the entrant,

who is the “price setter” in the auction, bids less aggressively. Furthermore, when 2� is high,

the publisher does not learn the entrant’s CTR in equilibrium due to the incumbent’s aggressive

bidding. As a result, it suffers from suboptimal allocation of the ad slot (i.e., missing out on a

potentially high 2� ).

Given that the publisher may incur a revenue loss for not knowing 2� , one may wonder what

strategies a publisher can deploy to mitigate this loss. In the next section, I characterize the pub-

lisher’s optimal strategy in a learning environment. I show that, in the presence of learning in-

centives, it is optimal for the publisher to favor the entrant in Stage 1 in order to increase the

probability of the entrant’s winning.

3.4 Publisher’s Strategy

In the previous section, I assumed that advertisers have the same, commonly known valuation

for the ad slot. Moreover, I focused primarily on the advertisers’ strategies, with the publisher pas-

sively implementing an exogenously fixed auction mechanism. In this section, I analyze a setting

where advertisers have stochastic, private valuations and, more importantly, the publisher optimally

chooses the mechanism that maximizes its profit.21 I show that, in the presence of learning incen-

tives, the publisher can achieve the optimal revenue using a variation of the standard second-price

auction with personalized (advertiser-specific) reserve prices. Additionally, the learning incentives

induce the publisher to favor the entrant in Stage 1.
21In order to characterize the optimal mechanism, I have to assume stochastic private valuations for the advertisers;

otherwise, the publisher’s optimal strategy is to set the reserve price of Stage 2 to 1, leaving no surplus for the adver-
tisers. Stochastic private valuation is a standard assumption in mechanism design literature; e.g., see Myerson (1981)
for a general setting, and Edelman and Schwarz (2010) for the context of online advertising.
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3.4.1 Optimal Mechanism

Suppose advertiser 9’s per-click valuation, E 9 , is drawn from a c.d.f. � 9 with support [0, E 9 ]

and is private information, for 9 ∈ {�, �}. Following the literature on auction theory (see Krishna,

2010), I impose the following assumption on � 9 .

Assumption 1 (Increasing Hazard Rate). Let 6 9 denote the density of� 9 . The hazard rate function
6 9 (G)

1−� 9 (G) is increasing in G for 9 ∈ {�, �}.22

Prior to Stage 1, the publisher sets the ad auction rules. In particular, it decides the allocation

rule (who wins the ad slot), and the payment rule (how much each bidder pays). The rest of the

game proceeds the same as in Section 3.3. The following lemma characterizes the publisher’s

optimal mechanism.23

Lemma 3 (Publisher’s Optimal Mechanism). The publisher’s optimal mechanism is as follows.

1. Compute the incumbent’s and entrant’s virtual bids, respectively, as

k�1(1�1) = 2�
(
1�1 −

1 − ��(1�1)
ℎ�(1�1)

)
and k�1(1�1) = `�

(
1�1 −

1 − �� (1�1)
ℎ� (1�1)

)
+ XΔ%,

(3.4.1)

and set the virtual reserve price to XΔ � .

2. Compute advertiser 9’s virtual bid as

k 92(1 92) = 2 9
(
1 92 −

1 − � 9 (1 92)
6 9 (1 92)

)
for 9 ∈ {�, �},24 (3.4.2)

and set the virtual reserve price to 0,

22Assumption 1 greatly facilitates the derivation of the optimal mechanism. A large class of distributions satisfy this
property; e.g., exponential, Weibull, modified extreme value, Gamma (with parameters U > 1, _ > 0), and truncated
normal (with “commonly accepted [parameters]”). See Barlow and Proschan (1965) and Brusset (2009) for details.

23The publisher’s optimal mechanism is not unique. In this paper, I choose the mechanism that is consistent with
the literature, in the sense that the publisher’s optimal virtual bid transformation in a learning environment converges
to the optimal virtual bid transformation in Myerson (1981) as the publisher’s learning incentive goes to zero.

24I are slightly abusing notation: “2�” in Stage 2 is 2̃� , which is 2� if 2� is learned, and `� otherwise.
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where � 9 (1 91) = � 9

(
1 91 −

XΔ 9

2 9

)
, Δ � = c�2(`� )−

∫1
0 c�2(2� ) 3�� , Δ� =

∫1
0 c�2(2� ) 3�� −c�2(`� ),

Δ% =
∫1

0 c%2(2� ) 3�� − c%2(`� ), and c 92(2′
�
) denotes the Stage 2 profit of player 9 ∈ {�, �, %}

under the optimal Stage 2 mechanism when the publisher assigns entrant’s CTR as 2′
�

.

Allocate the ad slot to the advertiser with highest virtual bid, provided it exceeds the virtual

reserve price. Payment (per-click) is equal to the minimum bid required for the winning advertiser

to win.

The details of the proof are provided in the appendix. I briefly discuss here the intuition behind

the optimal mechanism. Variables Δ 9 , 9 ∈ {�, �, %}, capture the difference in a full-information

Stage 2 vs. an incomplete-information Stage 2 in the players’ payoffs; i.e., Δ� measures the addi-

tional Stage 2 payoff the entrant gains from having its CTR learned by the publisher; Δ% measures

the additional Stage 2 payoff the publisher gains from learning the entrant’s CTR; and Δ � represents

the additional Stage 2 payoff the incumbent gains if the entrant’s CTR is not learned. Distributions

� 9 , 9 ∈ {�, �}, are similar to advertisers’ valuation distributions � 9 , except that they are shifted to

account for the advertisers’ incentives to have the entrant’s CTR learned or not learned.

The derivation of the optimal mechanism closely follows Myerson (1981). The optimal mech-

anism in Stage 2, where learning incentives are absent, is a direct application Myerson’s lemma.

Intuitively, the virtual bid transformation amounts to sorting advertisers based on the marginal rev-

enue they bring to the publisher (Krishna, 2010). Thus, allocating the ad slot to the advertiser with

the highest virtual bid maximizes the publisher’s profit.

In Stage 1, the presence of learning incentives (for both the advertisers and the publisher) dis-

torts the advertiser’s virtual bids compared to the standard format in Myerson (1981). Specifically,

I see from (3.4.1) that the publisher additively inflates the entrant’s virtual bid by XΔ%. This term

represents the additional Stage 2 payoff the publisher gains from learning the entrant’s CTR and is

proven to be always positive.25 Intuitively, since the publisher can only learn the entrant’s CTR if

25To see that Δ% is positive, it suffices to show c%2(2� ) =
∬

max [k�2(G�2 |2� ), k�2(G�2 |2� )]+ 3G is convex in
2� . The integrand is convex in 2� because it is the maximum of k�2(G�2 |2� )+, which is independent of 2� , and
k�2(G�2 |2� ) which is a linear function of 2� . And since any linear combination with positive weights of convex of
functions is also convex, I conclude c%2(2� ) is convex in 2� .
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the entrant wins in Stage 1, the publisher has an incentive to help the entrant win. The publisher

accomplishes this by increasing the entrant’s virtual bid in Stage 1.26

Lemma 3 also sheds light on the nature of the optimal virtual bids. For example, if the adver-

tisers’ valuations are uniformly distributed, then it is optimal for the publisher to compute virtual

bids by multiplying the advertisers’ bids with their expected CTRs (modulo an additive term). This

implies that publishers with diffuse priors about advertisers’ valuations can achieve near-optimal

revenues by ranking advertisers based on CTR × bid. Moreover, the fact that the CTR-multiplier

formula is also used in Stage 1 in the presence of learning dynamics attests to the robustness of

this particular virtual bid format.

Next, I discuss the advertisers’ bidding strategies under the optimal mechanism. Interestingly,

I find that the insights from Section 3.3 regarding bid adjustments carry over to the optimal mech-

anism setting. As shown in Figure 3.4, the entrant overbids in Stage 1. Its motivation closely

mirrors that of Section 3.3: its expected payoff in Stage 2 is greater if its CTR is learned by the

publisher because the downside risk of a low 2� draw is bounded.

A weak incumbent bids below its valuation and helps the entrant reveal its CTR. In contrast to

Section 3.3, however, the heterogeneity in advertisers’ valuations necessitates an additional condi-

tion for this result to hold. Namely, the valuation distributions � � and �� must be such that the

weak incumbent’s probability of winning in Stage 2 decreases sufficiently slowly in 2� . Roughly,

this is equivalent to the incumbent’s valuation distribution being more concentrated around higher

values than is the entrant’s valuation distribution. For then, even if the entrant’s CTR turns out to

be high in Stage 2, the incumbent, whose valuation is more heavily concentrated on higher values,

would still have a considerable chance of winning. This condition ensures the weak incumbent,

who effectively helps the entrant win in Stage 1, feels adequately “insured” against the risk of a

high 2� draw in Stage 2. The weak incumbent will then forego its Stage 1 profit and help reveal

the entrant’s CTR, as it creates an opportunity to earn higher profits against an entrant with a low

CTR draw.
26It can be easily verified that the Stage 1 virtual bids in (3.4.1) reduce to the standard format (Myerson, 1981) when

the learning dynamics are muted (e.g., X = 0).
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Finally, a strong incumbent may overbid under the optimal mechanism (see Figure 3.4). Again,

the intuition mirrors that from Section 3.3; however, the added necessary condition is that the

incumbent’s probability of winning in Stage 2 decrease steeply in the entrant’s CTR draw. In this

case, the incumbent deems the risk of revealing the entrant’s CTR in Stage 2 too high. Therefore, it

bids aggressively in Stage 1 and deters the publisher from learning the entrant’s CTR. I summarize

these findings in the following proposition.

Proposition 10 (Advertisers’ Strategies in Stage 1 Under Optimal Mechanism). Suppose the pub-

lisher implements the optimal mechanism characterized in Lemma 3. In Stage 1, the entrant always

bids above its valuation. The incumbent bids below its valuation if 2� is low and the valuation dis-

tributions � � and �� are such that the probability of the incumbent winning in Stage 2 decreases

sufficiently slowly in the entrant’s CTR draw. The incumbent bids above its valuation if 2� is high

and � � and �� are such that the incumbent’s probability of winning in Stage 2 decreases steeply

in the entrant’s CTR draw. The exact conditions are provided in the proof in Section B.1.4.

3.4.2 Optimal Reserve Prices

In this section, I delve deeper into a particular aspect of the optimal mechanism, the (effective)

reserve prices. I examine how the learning incentives affect the publisher’s optimal reserve prices

in Stage 1. Before I proceed, I should clarify two distinct units of reserve prices. Virtual reserve

price is defined in the virtual bids space, and measures the minimum virtual bid required for an

advertiser to participate. Effective reserve price is defined in the submitted bids space, and refers
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to the minimum submitted bid required for a particular advertiser to participate (Ostrovsky and

Schwarz, 2016). To illustrate, suppose the publisher sets a virtual reserve price $0.15 and an

advertiser bids 1. Suppose that the advertiser’s virtual bid is set to 0.1 × 1 by the publisher. The

advertiser will be considered in the auction if its virtual bid 0.1×1 is greater than or equal to $0.15.

Equivalently, the advertiser will be considered if its submitted bid 1 is greater than or equal to the

effective reserve price $0.15/0.1 = $1.5.

Although the optimal mechanism uses the same virtual reserve price for all advertisers, because

it applies different virtual bid transformations, advertisers experience different effective reserve

prices. In the following, I consider the effective reserve price as it is a more intuitive concept to

discuss advertisers’ payments.

My analysis shows that the optimal reserve price depends crucially on two countercurrent

forces. On the one hand, the entrant’s overbidding incentive exerts an upward force on the en-

trant’s reserve price. That is, the higher is the value that the entrant gains from the publisher

learning its CTR, the higher it bids in Stage 1. The publisher can, thus, extract more from the

entrant by setting a higher reserve price. Therefore, the reserve price increases with the entrant’s

overbidding incentive. The converse is true for the incumbent: the reserve price for the incumbent

increases with the incumbent’s value of deterring the publisher from learning the entrant’s CTR.

On the other hand, the publisher’s learning incentive pushes the entrant’s reserve price down-

ward. The higher is the value for the publisher if it learns the entrant’s CTR, the greater its incentive

to help the entrant win in Stage 1. This is accomplished by lowering the entrant’s reserve price.

Therefore, the reserve price decreases with the publisher’s learning incentive.

Figure 3.5 illustrates the dynamics of each advertiser’s optimal reserve price for particular

valuation distributions � � and �� . Interestingly, the entrant’s reserve price can be non-monotonic

in the Stage 2 weight parameter, X. When X is small, the publisher learning incentive dominates,

and as X increases, the publisher lowers the reserve price to facilitate learning the entrant’s CTR.

When X is large, however, the entrant overbidding incentive dominates. Here, as X increases, the

publisher increases the reserve price to extract more surplus from the entrant.
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So far, I have discussed the two countercurrent forces that induce the publisher to increase/decrease

the entrant’s reserve price in a learning environment. But what is the net effect of these forces on

the entrant’s reserve price? I conclude this section by presenting the conditions under which the

publisher sets a lower reserve price for the entrant when it does not know the entrant’s CTR than

under full information. While a closed-form characterization of the optimal reserve price with

respect to X is intractable, I can analytically delineate the conditions for when the publisher sets a

lower reserve price. In Proposition 11, I show that, for any X, the publisher sets a lower reserve

price for the entrant in a learning environment (compared to full information) if and only if the

increment in its Stage 2 profit from learning the entrant’s CTR is sufficiently high.

Proposition 11. The publisher sets a lower reserve price for the entrant when the publisher does

not know the entrant’s CTR than when it does if and only if Δ% > Δ � + `� d

X
(where Δ 9 is as defined

in Lemma 3 and d > 0 is as defined in the proof); i.e., the publisher’s gain in Stage 2 from learning

the entrant’s CTR is sufficiently high.

The results of Lemma 3 and Proposition 11 show that when the publisher’s learning incentives

are sufficiently strong, it is optimal for the publisher to favor the entrant. Favoring the entrant can

be implemented by increasing the entrant’s virtual bid as in Lemma 3, or decreasing the entrant’s

reserve price as in Proposition 11. In Section 3.5.3, I show that other mechanisms that favor the

entrant can create a similar effect. For example, giving free advertising credit to new advertisers, or

artificially inflating the “estimated” CTR of new advertisers can increase the publisher’s revenue.
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3.5 Extensions

I present fmy extensions of the main model to assess the robustness of my results. In Sec-

tion 3.5.1, I show that my results from the main model continue to hold under impression-based

pricing. In the main model, I assumed that the advertisers and the publisher have the same level of

information about the CTRs; in Section 3.5.2, I relax this assumption to establish the robustness of

my results. In Section 3.5.3, I explore other mechanisms that help the publisher increase its rev-

enue in a learning environment. I show that offering free ad credit to new advertisers, or artificially

inflating the “estimated” CTR of new advertisers can increase the publisher’s revenue. Finally, in

Section 3.5.4, I turn to the context of search advertising and discuss how my results change when

there are multiple ad slots.

3.5.1 Impression-based Pricing

Suppose the publisher sells a single ad slot through a cost-per-impression (CPM) auction in-

stead of cost-per-click. Consistent with practice, I assume that the publisher receives the advertis-

ers’ per-impression bids and assigns the slot to the highest bidder.27 The winning bidder pays the

minimum bid required to win the auction.

To model a CPM auction, it is important to recognize that the relevant performance metric for

advertisers is the consumers’ “estimated action rates” per ad impression. Consumer actions can

range from clicking a link to watching a video longer than a certain amount of time, or completing a

certain task on the advertiser’s website. For 9 ∈ {�, �}, let 0 9 ∈ [0, 1] denote the probability of ac-

tion of a consumer conditional on viewing advertiser 9’s ad. I normalize the value of a consumer’s

action to 1 for both advertisers. Put together, a single impression is worth 0 9 to advertiser 9 .

In the spirit of the main model, assume that the action probability associated with the entrant’s

ad, 0� , is known only up to its c.d.f. �̃ with mean 0̃� , while the incumbent’s action probability,

0� , is common knowledge.28 The true value of 0� can only be learned if the entrant wins the first
27This contrasts with rankings based on effective bids in CPC auctions, where publishers multiply the advertiser’s

bid with its Quality Score.
28For my analysis, I only need the incumbent’s WTP to be common knowledge; this is a standard assumption in
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stage auction; only then can the entrant accurately assess the likelihood of a consumer responding

to its ad with some pre-defined action. Similar to Section 3.3, I assume that the reserve price

is exogenously set at ', and is less than 0� and 0̃� . In addition, as in Section 3.3, I assume

0� + X
(
(0� − 0̃� )+ −

∫1
0(0� −max[0� , '])+ 3�̃

)
≥ ' to ensure the existence of weakly dominant

strategies. Analyzing the advertisers’ strategies yields the following proposition, which echoes the

results from the main model.

Proposition 12 (Advertisers’ Strategies in Stage 1 Under CPM). In Stage 1, the entrant always

bids above its valuation. The incumbent bids below its valuation if 0� , the action probability

associated with its ad, is low, and bids above valuation if 0� is high. See Figure 3.6.

Proposition 12 shows that advertisers’ strategies under impression-based pricing are similar to

those under performance-based pricing. However, there is an important difference in the advertis-

ers’ incentives between the two pricing models. Under performance-based pricing, the entrant does

not care about learning the CTR itself; it overbids so that the publisher learns the CTR. In contrast,

under impression-based pricing, since the CTR determines the entrant’s valuation per impression,

the entrant overbids so that the entrant itself learns its CTR. Similarly, under performance-based

pricing, the incumbent adjusts its bid to affect whether the publisher learns the entrant’s CTR or

not, whereas under impression-based pricing, the incumbent wants to affect whether the entrant

learns its own CTR or not. Despite discrepancies in the advertisers’ incentives across these two

pricing models, the mathematical expressions that capture the advertisers’ payoffs are relatively

similar: in performance-based pricing, the publisher includes the advertiser’s CTR in the effective

bid, whereas in impression-based pricing the advertiser includes the CTR in its submitted bid. As

such, I obtain the same strategic behavior under both pricing models.

3.5.2 Information Asymmetry

In this section, I test the robustness of my results when the information symmetry assumption

is relaxed. I examine two distinct cases. In Section 3.5.2, I demonstrate that the qualitative insights

papers with a full-information setting in online advertising, e.g.,Edelman et al. (2007).
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of the main model carry over when the entrant is at an informational disadvantage; i.e., the entrant

only knows the incumbent’s CTR up to some distribution, while the incumbent and the publisher

know the incumbent’s true CTR. In Section 3.5.2, I replicate the incumbent’s bidding pattern from

the main model in a setting where the incumbent only knows the distribution of the entrant’s CTR

up to a distribution, while the entrant and the publisher know the true distribution of 2� .

Entrant Does Not Know True 2�

In the main model, I assumed that the entrant, incumbent and the publisher possessed the same

level of information regarding the incumbent’s CTR. In reality, it could be argued that the entrant

may not be as knowledgeable about 2� as the incumbent and the publisher. In this section, I analyze

a model that captures this information asymmetry more realistically. My objective is to show that

the the entrant’s overbidding behavior is robust to the setting where the entrant is less informed

about 2� than the incumbent and the publisher.

To that end, suppose that the entrant does not know the true value of 2� , but knows that it

follows some distribution �� over the support [', 1]. On the other hand, the publisher and the

incumbent both know the true 2� . I find that the entrant’s overbidding pattern is robust to this

information setting. The following proposition summarizes the finding.

Proposition 13. Suppose the entrant does not know the true CTR of the incumbent, but only knows

its distribution. In Stage 1, the entrant always bids above its valuation.

I know from Section 3.3 that the entrant overbids for any given value of 2� . Intuitively, when
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the entrant only knows the distribution of 2� , it integrates over all possible values of 2� to calculate

its optimal bid. Since the optimal strategy for any value of 2� is to overbid, the optimal strategy

when 2� is not known (i.e., the outcome of the integration) is still to overbid. This is formalized in

the proof of Proposition 13.

Incumbent Does Not Know True Distribution of 2�

Another important case to consider is when the incumbent, as opposed to the entrant, is at

an informational disadvantage. How would the incumbent having less information about 2� than

the entrant and the publisher impact its bidding strategy?29 To address this question, I allow for

the possibility that the incumbent does not know the true distribution of 2� ; i.e., the incumbent

strategizes based on some prior belief over a range of possible distributions of 2� . The publisher

and the entrant, on the other hand, know the true distribution of 2� .

Suppose the incumbent believes that the true distribution of 2� is �G for some G ∈ X. Let %(G)

denote the c.d.f. of the incumbent’s prior over the class of distributions {�G}G∈X , and `G the mean

of �G . In addition, as in Section 3.3, assume that the condition for the existence of weakly dominant

strategies holds: 2� + X
∫
G∈X

(
(2� −max[`G , '])+ −

∫1
0(2� −max[2� , '])+ 3�G

)
3%(G) ≥ '. Then

there exists CTR thresholds such that a weak incumbent (i.e., with a low CTR) bids below its

valuation, whereas a strong incumbent (i.e., with a high CTR) bids above it. I state this as a

proposition.

Proposition 14. Suppose the incumbent does not know the true distribution of the entrant’s CTR.

There exists a pair of thresholds (2′, 2′) such that the incumbent bids below its valuation if 2� < 2′,

and bids above valuation if 2� > 2′.

The intuition for the result of Proposition 14 is similar to that of Proposition 13. For any dis-

tribution �G , I know from Section 3.3 that a weak incumbent underbids and a strong incumbent

overbids. When the incumbent does not know the entrant’s distribution, it integrates over all pos-

29Note that the entrant’s bidding strategy from the main model is unchanged because it is independent of the incum-
bent’s information structure — it depends primarily on the publisher’s information structure.
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sible distributions to calculate its optimal bid; however, the same pattern continues to exist. When

the incumbent is sufficiently weak it overbids and when it is sufficiently strong it overbids. This is

formalized in the proof of Proposition 14.

3.5.3 Other Mechanisms

In this section, I discuss two other mechanisms that can help publishers increase their revenue

in a learning environment.

Free Advertising Credit for New Advertisers

Publishers run promotions that provide free ad credit to new advertisers. For example, Google

offers ad coupons to new advertisers worth up to $75 which can be redeemed within 30 days

of spending the first $25 in advertising.30 Similarly, Facebook sends promotional codes to new

advertisers that a have sufficiently high user engagement on their pages. In this section, I study the

implications of offering ad credit on the advertisers’ bidding strategies and the publisher’s profit.

Suppose the publisher sets the ad credit U ≥ 0 prior to Stage 1, and then the incumbent’s CTR

is drawn from c.d.f. �� with support [', 1].31 The advertisers observe U and the rest of the game

proceeds identically as in the main model. The effect of the publisher’s ad credit is to transfer

free ad credit U to the entrant if it wins in Stage 1. Thus, the entrant’s Stage 1 payoff when the

publisher offers ad credit U is 2�
(
1 − max[2� 1�1,']

`�

)
+ U if it wins, and 0 otherwise. Next, I present

the advertisers’ bidding strategies when the publisher offers free ad credit.

Proposition 15 (Advertisers’ Strategies with Ad Credit). If the publisher offers ad credit U ≥ 0 to

the entrant, then compared to the benchmark bids (3.3.1) and (3.3.2), the incumbent’s first stage

30https://www.google.com/ads/adwords-coupon.html
31I assume U is set before 2� is realized because publishers use the same amount of ad credit across many keywords

for which incumbents have different CTRs. That is, in practice, U is not a function of 2� . In addition, note that if U is
decided after 2� is realized, the truthfulness nature of these second-price auctions will break down. This is because the
incumbent would anticipate the publisher to set U high enough to extract all surplus from the incumbent’s bid, creating
incentives for the incumbent to shade its bid. Finally, the assumption that the ad credit is only available in Stage 1
reflects the fact that these promotions typically expire after a short period of time.
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bid remains unchanged, whereas the entrant’s bid increases by U
`�

to

1∗�1(U) = 1 +
U

`�
+
X

`�

(∫1

2�

2� − 2� 3�� − (`� − 2�)+
)
. (3.5.1)

The intuition behind advertisers’ bidding strategies is straightforward: the incumbent’s bidding

strategy does not change because U does not affect its underlying payment mechanism. However,

the ad credit increases the entrant’s payoff when it wins in Stage 1, and thus incentivizes the entrant

to bid more aggressively in the first stage.

I turn to the impact of ad credit on the publisher’s revenue. Given the first stage bids of the

incumbent and the entrant in (3.3.1) and (3.5.1), respectively, the publisher’s expected revenue as

a function of ad credit U is E[c%(U)] =
∫1
'
Π%(U, 2�) 3�� where

Π%(U, 2�)

=


`�1

∗
�1(U) + Xmin[2� , `� ] if 2�1∗�1 ≥ `�1

∗
�1(U),

max[2�1∗�1, '] − U + X
(∫2�

0 max[2� , '] 3�� + (1 − �� (2�))2�
)

if 2�1∗�1 < `�1
∗
�1(U).

(3.5.2)

Expression (3.5.2) reveals the three forces created by the ad credit U. The first is the cost of U

that is transferred from the publisher to the entrant when it wins; this has a negative effect on the

publisher’s revenue, and is represented by −U in the second case of Expression (3.5.2). The two

other forces have a positive effect on the publisher’s revenue, and are more nuanced; I discuss each

of these in turn.

Recall that the entrant’s bid increases in proportion to the ad credit U (see Proposition 15).

This implies that the incumbent’s payment upon winning increases with U. The publisher can thus

extract additional surplus from the incumbent by inflating its payment. I call this the extraction

effect.

The last effect of ad credit concerns the change in the publisher’s Stage 2 payoff. To illustrate,

suppose the incumbent’s CTR is high. In this case, knowing the entrant’s CTR leads to a higher

publisher revenue than that under ignorance (see Proposition 9). This is due to the more efficient

allocation of the ad slot as well as a higher expected payment of the winner. Since offering ad
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credit helps the entrant win, thereby facilitating the publisher learning its CTR, it could increase

the publisher’s Stage 2 revenue. I call this the learning effect.

These three effects summarize all the pros and cons of offering ad credit in my model.32

Inflating the Bid Multiplier

In this section, I analyze how the publisher’s profit would change if, instead of offering ad

credit (Section 3.5.3), the publisher artificially inflated the entrant’s effective bid by a multiplier

V ≥ 1. To begin, suppose that the publisher applies a boosting multiplier V such that for any bid

1� of the entrant, the entrant’s Stage 1 effective bid `�1� increases to V × `�1� . The rest of the

game proceeds as in the main model.

I find that the two policies — offering ad credit and multiplicatively boosting the effective

bid — have the same qualitative implications for the publisher’s profit. The intuition is as follows.

In the case of ad credit, the entrant increases its own effective bid by bidding high in anticipation

of the ad credit, whereas in the case of boosting multiplier, the publisher increases the effective

bid on behalf of the entrant. Thus, the resultant effective bids across the two policies are the same,

and the players’ payoffs are identical up to a constant. I formalize this finding in the following

proposition.

Proposition 16. The multiplicative boosting policy is isomorphic to the free ad credit policy, in the

sense that the publisher can replicate (up to a constant) its profit from one policy using the other.

In summary, I find that other mechanisms such as offering free ad credit or inflating the entrant’s

effective bid can increase the publisher’s revenue as they facilitate learning by favoring the entrant.

These mechanisms, however, are inefficient in the sense that they do always guarantee the publisher

the optimal profit. To see this, note that the optimal mechanism sometimes lowers the payment for

both the entrant and the incumbent at the same time (e.g., when the incumbent’s CTR is low). Such
32Note that I are not discussing the customer acquisition effect of offering free ad credit. Promotional incentives for

attracting new customers have been extensively studied in the literature (e.g., Jedidi et al., 1999; Nijs et al., 2001; van
Heerde et al., 2003). Instead, I focus on the extraction and learning effects of ad credit that are new to the literature.
I show that even if the free ad credit does not attract new advertisers, the publisher may still benefit from offering it
because of these two positive effects.
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an outcome cannot be produced by offering ad credit or inflating the entrant’s bid because these

instruments unilaterally benefit the entrant at the expense of the incumbent.

Another reason why these alternative mechanisms do not always yield the optimal profit per-

tains to the virtual bid transformations. Offering ad credit and inflating the entrant’s bid do not

take into account the advertisers’ valuation distributions in the allocation rule. Recall that the opti-

mal mechanism computes the marginal revenue each advertiser generates based on the advertisers’

valuation distributions and then allocates the ad slot accordingly. Such efficient allocation can-

not always be attained with artificial adjustment of the entrant’s effective bid, especially when the

valuation distributions are non-uniform.

3.5.4 Multiple Advertising Slots

Another assumption in the main model is that the publisher offers a single ad slot. In search

advertising, however, search engines typically sell more than one ad slot, which are allocated via

the Generalized Second-Price (GSP) auction. In this section, I test whether the main insights

derived from the base model carry over to the multiple-slot GSP setting.

I consider a two-slot, three-player game where two incumbents face an entry from a new ad-

vertiser. To simplify the analysis, I assume that the existing advertisers also learn 2� if the entrant

wins in Stage 1.33 As in Section 3.3, all advertisers share a common per-click valuation of 1, and

the reserve price ' is less than `� . I normalize the position-specific CTR of the first ad slot to 1

and denote that of the second slot as \ ∈ (0, 1). I index by 8 and � the incumbent with the lower and

higher CTR, respectively (i.e., 28 < 2�), and normalize 2� to 1.34 Since a weakly dominant strategy

equilibrium no longer exists, I use the lowest-revenue envy-free (LREF) Nash equilibrium (Edel-

man et al., 2007) for equilibrium selection.

My analysis shows that the main results are robust to multiple-slot settings under GSP auction.

33This could be justified by the fact that advertisers can estimate the effective bid of the advertisers below them by
observing the amount they are charged.

34The normalization can also be interpreted as assuming that the CTR of the average entrant does not exceed that
of the strong incumbent. This assumption simplifies expressions but is not necessary. The analysis without this
assumption is provided in the appendix.
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In particular, the entrant’s overbidding strategy carries over, but with the caveat that the reserve

price has to be sufficiently high. Moreover, the findings that (i) a weak incumbent prefers to reveal

the entrant’s CTR, and that (ii) a strong incumbent has incentives to mask the entrant’s CTR are

preserved in the multiple-slot extension. The next lemma summarizes the advertisers’ incentives

in Stage 1.

Lemma 4 (Multiple-Slot GSP Auction). The entrant and the incumbent with the lower CTR are

always better off in Stage 2 if the entrant’s CTR is learned. The incumbent with the higher CTR

is better off in Stage 2 if the entrant’s CTR is learned if and only if (i) `� < 28 and \ > \̂; or (ii)

28 ≤ `� and \ > 1
2 , where \̂ is defined in the appendix.

Lemma 4 shows that if the second ad slot generates very few clicks (i.e., \ is low), then the

incumbent with the higher CTR is better off masking the entrant’s CTR, thereby securing the top

ad position. The intuition resonates with the insights from the main model. Had the search engine

learned the entrant’s CTR and it turned out to be high, the strong incumbent would risk being

“downgraded” to the low-CTR slot below. Conversely, if the second ad slot generates almost as

many clicks as the first slot (i.e., high \), the strong incumbent benefits from the search engine

learning the entrant’s CTR. The reason is that the incumbent can capitalize on a potentially low 2�

realization, while its loss from possibly being driven down to the second ad slot against a high 2�

is mitigated by the high \.

Next, I examine the advertisers’ bidding strategies in Stage 1. Figures 3.7a and 3.8a depict

the entrant’s bid with respect to the weak incumbent’s CTR, 28. Observe that for high 28, the

entrant’s high bid mirrors the pattern from Section 3.3 (see Figure 3.2). Intuitively, if the competing

incumbent’s CTR is high, then the entrant can earn positive payoffs if and only if (i) its CTR is

learned by the search engine in Stage 2 and (ii) the realized CTR turns out to be higher than 28.

Therefore, when facing a strong incumbent, the entrant bids aggressively in Stage 1 in order to

create an opportunity to receive a positive payoff in Stage 2.

When facing a low 28, the entrant’s bidding strategy may diverge from the main model. In

contrast to the single-slot case, the entrant may lower its bid when the incumbent’s CTR is low
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Figure 3.7: Optimal bids in GSP without reserve prices; X = 1, \ = 1
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(see Figure 3.7a). The intuition revolves around the weak incumbent’s incentive to help the search

engine learn the entrant’s CTR. Figure 3.7b shows that a weak incumbent shades its bid in order to

help the entrant secure the second slot in Stage 1. The search engine can then learn the entrant’s

CTR, which in turn creates an opportunity for the weak incumbent to win in Stage 2. And since in

the LREF equilibrium the advertisers’ bids change in proportion to their competitors’, the entrant

also shades its bid for low 28.

However, when the search engine sets a sufficiently high reserve price, the weak incumbent

bids below the reserve price in the LREF equilibrium (see Figure 3.8b). As a result, the entrant’s

incentive to shade its own bid disappears, and I recover the overbidding pattern from the main

model (see Figure 3.8a). I formalize this finding in the next proposition.

Proposition 17. The entrant always bids (weakly) higher in the setting where the search engine

does not know (but can learn) the entrant’s CTR compared to the full-information setting if and

only if the reserve price is sufficiently high.

70



3.6 Conclusion

In this paper, I study learning in online advertising. I investigate how a publisher’s lack of

information about a new advertiser’s click-through rate affects the strategies of new and existing

advertisers, as well as the publisher. My theoretical analysis offers useful insights for several issues

of managerial importance.

Implications for New Advertisers. I show that when a new advertiser starts online advertising

with a publisher, it should bid aggressively in the beginning, sometimes even above its valuation.

The reason is that the new advertiser earns a higher expected future payoff when its CTR is learned

by the publisher than when it is not. The fact that the new advertiser’s CTR can only be learned

when the advertiser wins sufficiently many auctions provides strong incentives for the new adver-

tiser to bid aggressively until its CTR is learned.

My results also indicate that a new advertiser should be prepared to, temporarily, pay more than

its valuation per click in the beginning. If the advertiser’s CTR turns out to be high, the average

cost-per-click will decline over time. In other words, a new advertiser should not leave the market

even if the initial cost of advertising is high.

Implications for Existing Advertisers. The entry of a new advertiser has two negative effects

for an existing advertiser. First, if the new advertiser’s CTR turns out to be high, the existing

advertiser risks losing its ad slot to the new advertiser. Second, since the online advertising slots

are sold in auctions, entry of a new advertiser increases the payment of the existing advertiser. I

demonstrate that, in response to these entry effects, an existing advertiser with a high CTR — e.g.,

a trademark owner advertising on its branded keywords, or a manufacturer advertising on its own

product pages on an online retailer — should bid more aggressively to make it harder for the new

advertiser to reveal its CTR. On the other hand, an existing advertiser with a low CTR — e.g.,

lowest-slot advertisers —should lower its bid to make the revelation process easier. By doing so,

the existing advertiser foregoes its short-term profit, but creates an opportunity to earn a larger

long-term profit in the event that the new advertiser’s CTR turns out to be low.
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Implications for the Publisher. When a new advertiser enters the market, the publisher does not

know its CTR; the CTR can only be learned if the new advertiser’s ad is displayed to consumers

sufficiently many times. On the surface, it appears that this lack of information about the new

advertiser would lead to a suboptimal allocation of the ad slot, and thus lower the publisher’s

expected revenue. Surprisingly, my result shows that the ignorance may be a boon to the publisher:

its ignorance may incentivize the advertisers to bid more aggressively, which in turn may increase

the publisher’s revenue compared to the full information benchmark.

The publisher’s ignorance, however, is not always blissful. In particular, if the existing ad-

vertiser’s CTR is high, the lack of information about the new advertiser may hurt the publisher’s

long-term revenue. I show the publisher can mitigate this loss by favoring the new advertiser in

the auction. For example, by lowering the reserve price of, offering free ad credit to, or artificially

inflating the bid of the new advertiser, the publisher can increase the probability that the new ad-

vertiser wins. This allows the publisher to learn the new advertiser’s CTR more quickly, which in

turn increases the publisher’s long-term revenue. In fact, my results show that the optimal selling

mechanism favors the new advertiser in the early rounds of the auction.

Future Research. My work is a first step towards understanding how agents strategically re-

spond to a publisher’s learning process. Future research could explore other scenarios where agents

and publishers interact in a learning environment. For instance, a publisher may want to learn

sellers’ qualities of products for ranking purposes, or customers’ WTP for pricing purposes. In

addition, while I allow the transition from an incomplete to a full information game, I make sev-

eral simplifying assumptions in doing so. For example, the transition is discrete and binary in my

model. Analyzing the advertisers’ strategies in a model with gradual, continuous learning process

could lead to interesting additional insights. Finally, my model assumes that advertisers’ CTRs

are exogenously given. While this assumption is realistic for a given ad copy, it does not capture

advertisers’ constant efforts in improving their ad copies (e.g., through experimenting with new ad

copies). Modeling advertisers’ experiments in improving their CTRs, while the CTRs are being

learned by the publisher and the advertisers themselves, is another interesting avenue for future
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research.
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Chapter 4: Customer Purchase Journey, Privacy Choices, and Advertising

Strategies

4.1 Introduction

Advances in information technology have led to unprecedented levels of consumer tracking

on the Internet (Lerner et al., 2016; Macbeth, 2017; Manjoo, 2019). According to Schelter et al.

(2018), 355 third-party domains had installed trackers (e.g., cookies and web beacons) on over

90% of 41 million websites. Moreover, a recent study by Karaj et al. (2019) shows that 82% of the

monitored web traffic had third-party scripts owned by Google, making it the largest third-party

tracker by reach. These trackers allow firms to monitor not only which sites consumers visit, but

also their browsing behavior such as whether the consumers interacted with the firms’ ads (Roesner

et al., 2012). Firms track consumers’ online behavior for many reasons. Tracking helps firms (i)

analyze site traffic and browsing patterns in order to deliver personalized content (Goldfarb and

Tucker, 2011a; Bleier and Eisenbeiss, 2015), (ii) infer consumers’ product preferences to inform

pricing decisions (de Cornière and Nijs, 2016; Ichihashi, 2019; Montes et al., 2019; Taylor, 2004),

and (iii) target ads to particular consumer segments (Bergemann and Bonatti, 2011; Iyer et al.,

2005; Shen and Villas-Boas, 2018).

In particular, tracking helps advertisers to observe consumers’ online browsing and purchase

activities and infer their purchase journey stages. For instance, (Sahni et al., 2019) use consumer

tracking data to infer whether a consumer is a “product viewer” or a “cart creator” and target

ads accordingly. Google allows advertisers to use various tags to specify remarketing audiences

based on such inferences.1 Industry experts advocate that advertisers focus on targeting based on

consumers’ “stages in the decision journey” (Edelman and Schwarz, 2010). Empirical findings that

1https://support.google.com/google-ads/answer/6335506 (accessed December 2019)
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ad effects, as measured by sales (Johnson and Myatt, 2017; Lambrecht and Tucker, 2013; Seiler

and Yao, 2017) or website return visits (Hoban and Bucklin, 2015; Sahni et al., 2019), vary widely

across consumers’ journey stages further highlight the importance of considering the purchase

journey in developing advertising strategies (Todri et al., 2019).

While consumer tracking has benefited advertisers (Goldfarb and Tucker, 2011a; Johnson et al.,

2019), its rapid expansion has deepened consumers’ concerns about their online privacy (McDon-

ald and Cranor, 2010). For instance, 77% of US Internet users indicate that they are “concerned

about how tech/social media companies are using [their] online data ... for commercial purposes”

(eMarketer, 2019a), 64% of UK Instagram users say “it’s creepy how well online ads know me”

(eMarketer, 2018a) and 68% of US Internet users report feeling concerned about “social media

companies displaying ads based on their data” (eMarketer, 2018b).

In response to the growing outcry from consumers and privacy advocates, advertising organi-

zations and regulators worldwide have sought to curb practices that potentially infringe on privacy,

such as online tracking. Notably, in May 2018, the European Union (EU) enacted the General Data

Protection Regulation (GDPR). Compared to its predecessors (e.g., Privacy and Electronic Com-

munications Directive), the GDPR is considered the most stringent and comprehensive in terms

of geographic and legislative scope.2 Its hefty violation fines (maximum of $22.5 million and 4%

of annual global turnover) are forcing even large firms like Google and Facebook to take compli-

ance seriously.3 The California Consumer Privacy Act (CCPA), a US analogue of the GDPR, is

expected to go into effect in January 2020.4

One of the main tenets of the GDPR and the CCPA is the requirement that firms not only

inform consumers what data will be collected for what purposes, but also obtain explicit affirma-

2The regulation applies to all firms processing personal data of European subjects even if the firm operates outside
of Europe. Personal data is defined as “any information relating to an identifiable person who can be directly or
indirectly identified in particular by reference to an identifier” (https://eugdpr.org/the-regulation/
gdpr-faqs/; accessed May 2019).

3In January 2019, Google was fined $57 million “for not properly disclosing to users how data is collected
across its services ... to present personalized advertisements” (Satariano, 2019). Facebook revamped their privacy
settings in compliance with the GDPR (https://marketingland.com/what-marketers-need-to-
know-about-facebooks-updated-business-tools-terms-238140; accessed September 2019).

4See Future of Privacy Forum (2018) for a detailed comparison of the two regulations.
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tive consent to use their data. In other words, firms are not allowed to collect consumer data by

default; consumers themselves must opt-in to their data being collected and processed by firms.5

If consumers opt-out from tracking, then advertisers cannot monitor consumers’ behavior across

websites. Consequently, advertisers’ targeting capabilities are drastically undermined and ad im-

pressions could be potentially wasted (e.g., repeated exposure to consumers who had already pur-

chased).6 On the other hand, if consumers opt-in to tracking, advertisers can target ads to specific

audiences based on a set of behavioral criteria (e.g., consumers who previously interacted with the

ad but did not purchase).

The impact of privacy regulations on the advertising industry is a topic of ongoing debate

among practitioners, academics, and policymakers. On one hand, regulations are expected to

limit advertisers’ tracking capability, thereby reducing ad effectiveness (Aziz and Telang, 2016;

Goldfarb and Tucker, 2011b). This may have contributed to the 50% decline in bids coming

through sell-side ad platforms, and the 15% reduction in Google ad offerings via its ad exchange,

after the GDPR went into effect (Kostov and Schechner, 2018). On the other hand, there is evidence

suggesting that despite consumers’ stated aversion towards tracking, they appear not as reluctant

to allow tracking in practice.7 For example, Johnson et al. (2019) find that less than 0.26% of

US and EU consumers opt-out from behavioral targeting in the AdChoices program. Moreover,

67% of US and Canadian consumers report that they would feel “comfortable sharing personal

information with a company” if it transparently discloses how their data will be used (Ipsos, 2019).

These findings suggest that privacy regulations that endow consumers with the choice to being

tracked may not necessarily result in low opt-in rates. In this respect, the net effect of privacy

regulations may not be as detrimental to advertisers as they fear.

5While consumers were able to manually delete cookies even before the regulation, complete tracking prevention
was extremely costly, if not impossible. For example, data collectors often used flash cookies technology to re-spawn
cookies that were deleted by consumers (Stern, 2018; Angwin, 2010). Moreover, firms were able to purchase personal
data from third-party information vendors without consumers’ consent — such activities are now subject to GDPR
enforcement.

6https://www.blog.google/products/marketingplatform/360/privacy-safe-
approach-managing-ad-frequency/ (accessed October 2019)

7The overstatement of privacy concerns relative to revealed preferences is known as the “privacy paradox.” See
Norberg et al. (2007) and Athey et al. (2017) for details.
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The discussion above on the advancements in tracking technology and shifts in industry reg-

ulations raises important questions for marketers and regulators alike. Does consumer tracking,

which enables targeting based on a consumer’s inferred purchase journey stage, lead to higher or

lower levels of advertising intensity? How do advertising intensity and advertising effectiveness

influence consumers’ privacy choices of whether to allow being tracked? What are the implications

of consumers’ endogenous privacy choices on the ad network’s profit? Which market participants

benefit and lose from the regulation?

In this paper, I seek to shed light on these questions by developing a game theory model. I

consider a two-period model in which consumers visit content pages, and each consumer creates

one opportunity for an ad impression per period. An advertiser buys ad impressions from an ad

network that sells ad inventory supplied by the content pages. Motivated from the discussion

above, I assume that ad effects depend on the consumers’ journey states represented by a “funnel”

and that their purchase journey is influenced by advertising (Abhishek et al., 2017, 2018; Kotler

and Armstrong, 2012). Based on their preferences for ad exposure and privacy, consumers choose

whether to allow advertisers to track their online behavior.

Importantly, I model privacy as a multi-dimensional construct and assume that consumers

jointly consider two aspects of privacy: its intrinsic value and its instrumental value (Becker, 1980;

Posner, 1981; Farrell, 2012; Wathieu and Friedman, 2009). The intrinsic value of privacy refers

to the utility consumers derive from protecting privacy for its own sake. I assume that consumers

derive positive utility from protecting their privacy. On the other hand, the instrumental value

of privacy stems from the indirect effects of the consumers’ privacy choices (e.g., opting-in to

tracking may affect the consumers’ expected ad experiences). In contrast to the intrinsic aspect

of privacy, the instrumental aspect of privacy may be either positive or negative depending on the

firms’ strategic responses.

Before proceeding, note that in my model, the instrumental value of privacy stems from the

advertiser’s strategic responses to consumers’ purchase journey information (or lack thereof). To

the extent that this formulation captures the notion that an individual’s utility is dependent on the

77



actions of the recipient of the individual’s information, my conceptualization is largely consistent

with the literature. For example, Becker (1980) and Posner (1981) discuss scenarios in which a

job applicant’s utility is affected by her potential employer’s reaction to her criminal records, and

Farrell (2012) considers a case where a consumer’s utility is dependent on a firm’s discriminatory

pricing strategy in response to learning the consumer’s willingness-to-pay.

My analysis yields a number of interesting insights. First, I find that, under certain conditions,

consumers choose to opt-in to being-tracked because they expect to see fewer ads when advertis-

ers can track them and infer their funnel states. In particular, this is the case if ad effectiveness is

intermediate. Intuitively, the reason is the following. Consider an opt-out consumer who cannot

be tracked. To this consumer, the advertiser shows ads in both periods if ad effectiveness is inter-

mediate: ad effectiveness is high enough such that the first ad is worthwhile, and low enough that

the first ad does not render the second ad wasteful. In contrast, for opt-in consumers, the advertiser

shows a targeted ad in the second period only to selected consumer segments. Therefore, if ad

effectiveness is intermediate, some consumers trade-off their costs from the instrumental and in-

trinsic aspects of privacy; i.e., they trade-off the benefit of seeing fewer ads by opting-in to tracking

(positive instrumental value of privacy) with the disutility they feel from giving up their privacy

(intrinsic cost of privacy).8 Under other conditions, opting-in to tracking (weakly) increases the

number of ads seen, in which case there is no such trade-off and both aspects of privacy utility

induce consumers to opt-out from being tracked.

Second, I find that the consumers’ opt-in decisions have important implications for the ad

ecosystem. In particular, due to changes in consumers’ opt-in behaviors, the ad network’s profit

may decrease in ad effectiveness, even though higher effectiveness implies higher purchase con-

version probability. Intuitively, high ad effectiveness induces the saturation effect whereby the

8As firms comply with high standards of transparency enforced by privacy regulations, consumers will become
not only aware of the privacy choices they are entitled to, but increasingly knowledgeable about the downstream
consequences of their choices. For example, Figure C.1 in Appendix C.1 shows a sample privacy notice from Google
shown to consumers in Europe. It describes the potential changes in ad intensity that could result from consumers’
privacy choices. In practice, a significant fraction of ad slots indeed can be left unsold; for display ads, ad fill rates
(i.e., the ratio of the number of ad slots that are available to get filled to the number that actually get filled) typically
range from as low as 67% to 100% (Balseiro et al., 2014; Johnson et al., 2019).

78



marginal value of successive ads is diminished by previously shown ads. This causes the adver-

tiser to forego showing successive ads to opt-out consumers. In contrast, for opt-in consumers,

enhanced targeting efficiency induces the advertiser to show successive ads. Thus, consumers ex-

pect to see fewer ads under no tracking, which incentivizes them to opt-out from tracking. As

consumers opt-out, targeting efficiency falls, lowering ad valuations. Consequently, the ad net-

work’s profit can decrease as ads become more effective.

Third, privacy regulations increase consumer surplus and decrease the ad network’s profit com-

pared to a regime in which everyone can be tracked. Interestingly, however, if the advertiser is

privately informed about ad valuations, consumers opting out of tracking may be a boon to the ad

network. The ad network’s inability to track opt-out consumers serves as a commitment mecha-

nism that induces the ad network to sell untargeted ads that reach a larger consumer segment than

targeted ads. This supply-side “market thickening” effect sometimes induces the advertiser to bid

more aggressively for opt-out consumers than for opt-in consumers. Therefore, the ad network’s

profit may be higher if some consumers exercise their privacy rights and opt-out from tracking.

I have a number of extensions that relax some of the simplifying assumptions in the main

model. I consider cases with (i) information asymmetry between the advertiser and the ad net-

work, (ii) multiple competing advertisers, (iii) imperfect signals of purchase histories for opt-in

consumers, and (iv) an infinite time horizon where consumers arrive in overlapping generations.

Overall, I find that the main insights are not affected in these extensions, while I obtain certain

interesting new insights. For instance, I find from one of the extensions that more consumers may

opt-in to being tracked if the signal about purchase behavior is less accurate; as a result, the ad

network may be better off having lower signal precision.

In addition to being related to the papers referenced earlier, my paper contributes to two inter-

related streams of research: targeted advertising and online privacy. Extant literature on targeted

advertising studies various implications of targeting. For example, it examines the impact of target-

ing on ad supply, ad prices, advertising strategies, ad intensity and adoption of ad avoidance tools

(Athey and Gans, 2010; Aziz and Telang, 2017; Bergemann and Bonatti, 2011; Esteban et al.,
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2001; Iyer et al., 2005; Johnson et al., 2013; Shen and Villas-Boas, 2018). I extend the existing

literature in a novel and important way by modeling the consumer purchase journey, which allows

us to study funnel state-dependent ad effects. I show that modeling funnel considerations creates

a previously-unstudied link between the effectiveness of cross-period ads, which leads to novel

insights pertaining to the impact of tracking on advertising strategies.

I also contribute to the growing literature on online privacy. Research on price-discrimination

examines consumers’ implicit privacy decisions, whereby consumers strategically time their pur-

chase to control the disclosure of their preferences to the firm, thereby mitigating price-discrimination

(Taylor, 2004; Villas-Boas, 2004). Other papers investigate more explicit privacy decisions, whereby

consumers take (often costly) actions to control the amount of information disclosed to firms (Ac-

quisti and Varian, 2005; Conitzer et al., 2012; Ichihashi, 2019; Montes et al., 2019). de Cornière

and Nijs (2016) investigate the ad network’s incentive to disclose consumer information to ad-

vertisers, whereas in my paper, the consumers exercise their privacy rights to decide the flow of

their personal information. The mechanisms behind my results are orthogonal to market thick-

ness (Bergemann and Bonatti, 2011; Rafieian and Yoganarasimhan, 2018) and market structure

(Campbell et al., 2015) as I abstract from advertiser competition in the main model.

D’Annunzio and Russo (2019) study a similar setting to ours where consumers can endoge-

nously decide whether to be tracked or not. However, my paper is different in several important

ways. First, I explicitly model consumer tracking along the purchase journey; i.e., advertisers track

consumers’ progressions through the purchase journey after a series of ad exposures, rather than

tracking single- vs. multi-homing consumers across different publishers. Second, the consideration

of consumers’ transitions down the purchase journey by virtue of previously shown ads gives rise

to multi-period dynamics as advertisers consider retargeting consumers along the journey which

I explicitly model. On the other hand, D’Annunzio and Russo (2019) consider a reduced-form

effect of tracking in a static environment with a focus on publishers’ decisions (e.g., ad capacity

and outsourcing advertising to ad networks). Finally, while D’Annunzio and Russo (2019) assume

that the number of ads a consumer is exposed to is independent of her privacy choice, I explicitly
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incorporate potential changes in ad intensity as an instrumental aspect of the consumer’s privacy

choice. In my model, the consumer’s instrumental value of privacy is weighed against her intrinsic

value of privacy.

At a higher level, my research (i) advances the understanding of the impact of tracking on

the advertising ecosystem from a novel purchase journey perspective and (ii) contributes to the

ongoing debate on online privacy regulations. My findings suggest that assessing the impact of

privacy regulations on the advertising industry is a complex issue. Nevertheless, I identify several

robust theoretical insights that can inform various regulatory implications.

The rest of the paper is organized as follows. In Section 4.2, I describe the main model. In

Section 4.3, I present the main results including the impact of tracking on advertising intensity,

consumers’ opt-in behavior, and the implications of endogenous privacy choice on the ad network’s

profit. In Section 4.4, I assess the robustness of the main insights by analyzing fmy extensions. In

Section 4.5, I summarize the key results and conclude. All proofs are relegated to Section C.2 of

the appendix.

4.2 Model

The game consists of three players: consumers, an advertiser and an ad network. Consumers

sequentially visit content pages where the ad network enables showing ads to them. The advertiser

buys ad impressions from the ad network to reach consumers. Before I discuss each player’s

decisions and payoffs, I first explain a key feature of my model: the consumer purchase journey.

I describe the relationship between advertising and consumers’ progression down the purchase

funnel.

Purchase Journey and Ad Effects

I consider a stylized purchase journey consisting of three distinct states labeled top, middle, and

bottom (see Figure 4.1). For ease of exposition, I denote these states by ), " and �, respectively,

and the consumers in the respective states by 5 -consumers for 5 ∈ {), ", �}. I define funnel state
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Figure 4.1: Purchase Journey and Ad Effects

5 ∈ {), ", �} with a probability q 5 , which measures the likelihood of an 5 -consumer realizing a

product match. In each time period, an 5 -consumer (who has not purchased yet) realizes a product

match with probability (w.p.) q 5 , where 0 ≤ q) < q" < q� ≤ 1.9 The three funnel states can

be interpreted as follows: the top-funnel corresponds to “awareness” state, wherein the consumer

is aware of the product’s existence but is not seriously considering purchase; the mid-funnel cor-

responds to “consideration” or “interest” state, wherein the consumer is potentially considering

purchase; and the bottom-funnel corresponds to even higher consideration and purchase interest

by the consumer. I normalize q) and q� to 0 and 1, respectively.

If a consumer realizes a product match, she derives positive utility E from consuming the prod-

uct; otherwise, she derives zero utility. In accordance with the empirical literature, I assume that

ads affect consumers’ likelihood of realizing a match with the advertised product (e.g., Johnson

et al., 2016; Lee, 2002; Sahni, 2015; Shapiro et al., 1997; Xu et al., 2014); i.e., ads influence the

consumers’ progression through the funnel. Ads induce )-consumers to transition to funnel state

" w.p. ` ∈ [0, 1], and have no effect w.p. 1 − `. Similarly, ads induce "-consumers to transition

to funnel state � w.p. V ∈ [0, 1] and have no effect w.p. 1 − V.

Note that my model specifications allow for flexible ad response curvatures using the funnel

transition parameters `, V, and mid-funnel match probability q" . For instance, Figure 4.2 depicts

a convex ad response curve with small q" , and a concave ad response curve with large q" . Adver-

9Taylor (2004) calls this match probability the “intensity of taste for a particular class of goods” (pg. 635).
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Figure 4.2: Ad Response Shapes

tising strategies, consumer choices and welfare outcomes will depend crucially on the curvature of

the consumers’ ad responses.

I also note that my results will remain completely unaltered if I scale the effectiveness numbers

to vary between ranges different from 0 to 1. For instance, if I consider a sub-population of

consumers who potentially respond to ads while the other consumers do not, then the unconditional

effectiveness of ads shown to the whole population would be scaled down in proportion to the sub-

population of responsive consumers. Therefore, ad effectiveness numbers for the whole population

of consumers can be scaled to vary between, say, 0 and 0.05 (i.e., effectiveness rates between 0%

and 5%, which are arguably closer to empirical estimates), or any other range, rather than between

0 and 1 (i.e., effectiveness rates between 0% and 100%), without any impact on my results (see

Section C.3 of the appendix for more details). However, for model simplicity and expositional

clarity, I use the formulation with effectiveness numbers varying between 0 and 1.

Consumers

A unit mass of consumers visit two content pages (both of which are in the ad network), one

in each of Period C ∈ {1, 2}. Consumers are exposed to at most one ad impression per period from

the page they visit. As described above, these ad exposures influence the consumers’ progression

through the purchase journey. For now, I assume that the initial state of newly arriving consumers

is ) . In other words, new consumers who visit content pages for the first time are not consid-

ering purchase. This helps deliver the main insights more cleanly. In Section 4.4.4, I relax this
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assumption by allowing some fraction of consumers to arrive in funnel state " .

Consumer utility consists of two components, product utility and privacy utility. The product

consumption utility of an 5 -consumer (i.e., consumer in funnel state 5 ∈ {), ", �}) is

Dprod = Ẽ 5 − ?,

where Ẽ 5 represents the stochastic match valuation, which equals E w.p. q 5 , and 0 w.p. 1 − q 5 ,

and ? denotes the product price. If the consumer does not purchase, she derives the outside option

utility 0. Without loss of generality, I normalize the match utility E to 1. Therefore, the consumer

purchases if and only if she realizes a match and ? ≤ 1. Note that a consumer makes the purchase

decision after realizing her match value. I assume that a consumer purchases at most one unit.

Next, I turn to privacy utility. I assume that consumers dislike being tracked, and that they

are heterogeneous in their tracking disutility.10 This disutility is captured by the privacy cost

parameter \, which has cumulative distribution function �. I assume that consumers can decide

whether to opt-in or opt-out of being tracked. If a consumer opts-in, firms can track her identity

and online browsing behavior (across content pages and across sessions) for targeting purposes.

Later, I describe in more detail how tracking and targeting are implemented. The privacy utility of

a consumer with privacy cost \ is

Dpriv(G) = −[ @̃(G) − \G, (4.2.1)

where G denotes the consumer’s privacy decision, which equals 1 if she opts-in, and 0 if she opts-

out,11 @̃ the total number of ads she expects to see, [ the disutility she incurs per unit of ad im-

pression (Johnson et al., 2013; de Cornière and Taylor, 2014), and \ the disutility she incurs for

10Heterogeneity may stem from numerous factors such as differences in what consumers believe constitutes personal
information (Acquisti et al., 2016) and differences in consumers’ perception of their privacy control (Tucker, 2014).

11I clarify two implicit assumptions here. First, while consumers may modify their privacy decision at any time
in practice, I assume consumers make a one-time privacy decision at the beginning of the game. Second, following
the literature on endogenous privacy choices (e.g., Conitzer et al., 2012; Montes et al., 2019), I assume that privacy
decision is binary. In practice, consumers may choose varying degrees of information disclosure. These assumptions
keep the analysis simple without significantly changing the qualitative insights.
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allowing tracking. In sum, consumers’ privacy decisions are based on (i) the number of ads they

anticipate to see as a result of their privacy decisions, and (ii) the extent to which they value pri-

vacy for its own sake. These two components constitute the instrumental and intrinsic aspects of

privacy, respectively.

Advertiser

Depending on whether consumers can be tracked or not, the advertiser can buy different types

of ads. If tracking is prohibited, then the consumers’ identities cannot be matched across content

page visits. In this case, the advertiser can only buy untargeted impressions (e.g., ads displayed to

all website visitors independent of their browsing histories). In particular, even if an ad is shown

in Period 1 and shifts the distribution of consumers along the purchase journey, the advertiser is

not able to target ads in Period 2 based on the funnel states.

On the other hand, if consumer tracking is allowed, the advertiser can buy ad impressions at the

funnel-stage level. By installing tags on websites and embedding cookies on consumers’ browsers,

the advertiser can monitor the websites visited by the consumers, their browsing activity within the

websites, and their purchase behavior.12 Based on this information, the advertiser can specify the

target audience such that their ads are shown only to consumers who meet some pre-specified

criteria.13 For example, the advertiser can target ads to consumers who are inferred to be in funnel

state " and did not purchase. In each period, the advertiser decides which impressions to bid for

and the respective bid amounts.

The advertiser also sets product price ?C in Period C ∈ {1, 2}. I normalize the marginal cost of

the product to zero. Therefore, the advertiser’s margin per conversion in Period C is ?C .

12In Section 4.4.3, I a consider a general setting wherein consumers’ purchase histories are observed imperfectly,
and demonstrate that the main insights are preserved.

13For example, Facebook allows advertisers to target consumers “who engaged with any post or ad” or “clicked any
call-to-action button” (https://www.facebook.com/business/help/221146184973131?helpref=
page_content)
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Ad Network

The ad network sells ad impressions to advertisers via second-price auctions.14 It sets reserve

price ' 9C in Period C ∈ {1, 2}, where 9 indexes the type of ad impression (e.g., ads targeted to

"-consumers or untargeted ads for opt-out consumers). In my paper, this is equivalent to selling

through a posted price; however, I choose the auction format to be consistent with how a vast

majority of display ads are sold in the market.15 The ad network maximizes its total profit across

two periods, which consists of revenue and cost from ad impression sales. Costs may include

operational costs associated with ad inventory management, as well as maintenance costs related

to setting up ad auctions and delivering ads.16 I denote this per-impression cost by : ≥ 0.

Game Timing

The timing of the game is as follows.

14Note that, due to the revenue equivalence principle, my results would not change if I considered first-price auc-
tions, a mechanism to which some firms have recently transitioned (e.g., see https://support.google.com/
admanager/answer/9298211).

15In 2019, over 83.5% of total display ad spend in US were transacted through real-time auctions (eMarketer,
2019b).

16This model feature is motivated from my conversations with industry practitioners. In particular, they have in-
dicated that selling ad inventory entails very significant operational costs associated with, for example, (i) storing,
retrieving and relaying data to advertisers, and (ii) resolving the auction and announcing the outcome to all the bid-
ders.
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Period 0: Consumers decide whether or not to opt-in to being tracked.

Period 1: Ad network sets reserve prices for ads for opt-in consumers and ads for opt-out con-

sumers. Advertiser sets product price and bids for ad impressions.

• If ads are shown, some consumers transition through funnel.

• Consumers make purchase decisions.

Period 2: Ad network sets reserve prices for targeted ads for opt-in consumers, and untargeted ads

for opt-out consumers. Advertiser sets product price and bids for ad impressions.

• If ads are shown, some consumers transition through funnel.

• Consumers make purchase decisions.

I solve for the subgame-perfect equilibrium of the above game.

Before I proceed to the analysis, I note that, in Section 4.4, I consider a number of extensions

to address several simplifying assumptions that I have made in the main model. I analyze scenarios

in which (i) the advertiser has private information about its ad valuations, (ii) there are multiple,

competing advertisers, (iii) the purchase histories of opt-in consumers are not perfectly observable,

and (iv) consumers arrive in overlapping generations across an infinite time horizon. I also note

that the publishers that own the content pages are treated as passive in the model. However, insofar

as the ad network and the publishers share the same objective function of maximizing monetization

by showing ads and they split these revenues on a commission basis (which is typically the case17),

this is a reasonable assumption.

4.3 Analysis

First, note that the advertiser’s product pricing decision is trivial and the optimal product price

is always 1, which is the consumer’s product utility on obtaining a match. Thus, the advertiser’s

17For example, see https://support.google.com/adsense/answer/180195 and https://www.
adpushup.com/blog/the-best-ad-networks-for-publishers/.
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margin per conversion is 1. Intuitively, if ?C < 1, then the advertiser leaves money on the table,

and if ?C > 1, then no products are sold. Since ?∗C = 1 for C ∈ {1, 2}, the consumer purchases if and

only if she realizes a match. This implies that the consumer’s utility from product consumption is

always zero whether or not she purchases. Therefore, when discussing consumer utility, I hereafter

restrict attention to the privacy utility component.

To develop basic insights, I study the case of no tracking in Section 4.3.1 and full tracking

in Section 4.3.2. Then I discuss the main analysis with endogenous consumer tracking choice in

Section 4.3.3.

4.3.1 No Tracking

In this section, I analyze the case in which consumers cannot be tracked; i.e., advertisers cannot

distinguish consumers’ funnel states nor their purchase histories. My objective is to establish the

baseline forces that determine the equilibrium advertising outcomes in the absence of consumer

tracking. To solve for subgame perfect Nash equilibrium, I first analyze the advertiser’s bidding

problem in Period 2 and then proceed backwards. I assume that the advertiser plays weakly domi-

nant bids, in the sense that the bidding strategies are not affected by “trembles” in various auction

parameters, such as reserve prices and number of bidders.

Period 2

In Period 2, there are two possible subgames: one in which ads were shown in Period 1, and

another in which they were not. I index the former Period 2 subgame with the subscript “2|ad” and

the latter with “2|no ad.” Consider the first subgame, in which ads were previously shown. The

Period 2 distribution of consumers along the funnel can be characterized by three groups: (i) those

who were not impacted by the first ad and remained in ) , (ii) those who saw the ad, transitioned to

" , and purchased, and (iii) those who transitioned to " but did not purchase. Given that the first

ad induces interest w.p. `, the first group is of size 1 − `. Since "-consumers realize a product

match w.p. q" , the second group is of size `q" . Finally, "-consumers do not purchase if they do
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not realize a product match; therefore, the third group is of size `(1 − q"). While the advertiser

knows this Period 2 distribution, it cannot identify which consumer belongs to which group in the

absence of tracking.

To compute the advertiser’s weakly dominant bid for the Period 2 untargeted ad, the advertiser

compares its payoff when it wins vs. loses the ad auction. Let 'C denote the reserve price of

untargeted ads in Period C.18 If the advertiser bids 12 in Period 2, its payoff is

c�2|ad (12) =


(1 − `)`q" + `(1 − q")(V + (1 − V)q") − '2 if 12 ≥ '2,

`(1 − q")q" if 12 < '2.

(4.3.1)

Consider the advertiser’s payoff from winning the auction and displaying the ad, shown on the

top row of (4.3.1). The first term denotes the conversion of )-consumers induced by Period 2

advertising: of the 1 − ` fraction of consumers who had not been affected by the Period 1 ad, `

fraction transition to funnel state " , of which q" fraction realize a match and purchase. Similarly,

the second term denotes the conversion of "-consumers who had not converted in Period 1.

Note that if the advertiser bids below the reserve price and loses the auction, then its payoff is

not 0 but `(1−q")q" , as shown on the bottom row of (4.3.1). This is because even if no additional

ads are shown in Period 2, the non-purchasers in funnel state " — who were pushed down from

funnel state ) after seeing the Period 1 ad — may realize a product match in Period 2 w.p. q" and

purchase.

The payoffs of the second subgame in which ads were not shown in Period 1 can be analyzed

in a similar manner. The following lemma states the subgame outcomes in Period 2.

Lemma 5 (Period 2 Bid and Reserve Price Without Tracking).

• Suppose the advertiser showed ads in Period 1. The advertiser’s weakly dominant bid in

Period 2 is 1∗2|ad = (1 − `)`q" + `(1 − q")2V, and the ad network’s optimal reserve price

is '∗2|ad = max
[
:, 1∗2|ad

]
.

18For ease of exposition, I suppress the ad type index 9 for the reserve price as only one type of ads (i.e., untargeted
ads) is offered in the absence of tracking.
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• Suppose the advertiser did not show ads in Period 1. The advertiser’s weakly dominant

bid in Period 2 is 1∗2|no ad = `q" , and the ad network’s optimal reserve price is '∗2|no ad =

max
[
:, 1∗2|no ad

]
.

The first part of Lemma 5 provides important preliminary insights into the conditions under

which the advertiser buys successive ads in Period 2, conditional on having shown ads in Period 1.

The advertiser buys successive ads if and only if 1∗2|ad ≥ '
∗
2|ad, which simplifies to

(1 − `)`q" + `(1 − q")2V ≥ :. (4.3.2)

That is, the marginal effectiveness of the successive ad, expressed on the left-hand side of (4.3.2),

must be sufficiently large. Analyzing how this object changes with respect to the model primitives

reveals two key determinants of a successive ad’s marginal effectiveness.

The marginal effectiveness of the successive ad consists of two components: the marginal

conversion of )-consumers (denoted by (1−`)`q") and the marginal conversion of "-consumers

(denoted by `(1 − q")2V). It can be shown that (1 − `)`q" + `(1 − q")2V decreases with

respect to `, the probability of an ad inducing interest, if and only if ` > q"+V(1−q" )2

2q" . Moreover,

the marginal effectiveness of the successive ad decreases with respect to q" , the product match

probability of consumers in funnel state " , if and only if V, the probability of an ad inducing

action, is greater than 1−`
2(1−q" ) . The intuition for the first case is as follows. If ` is large, then the

first ad exposure causes the Period 2 distribution of consumers to shift toward " . This implies a

diminished role of successive ads in pushing )-consumers down to " in Period 2. Therefore, the

marginal effectiveness of successive ads decreases in ` for large `.

Consider the second case. If V is large, then the marginal effectiveness of successive ads

is largely determined by their potential to convert "-consumers. Now, increasing q" has two

effects. First, consumers are more likely to purchase after the first ad exposure such that there is a

small segment of non-purchasers in funnel state "-consumers in Period 2. Second, if q" is large,

those non-purchasers in funnel state " are likely to convert on their own without a successive ad
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exposure. Thus, increasing q" dampens the value of a successive ad.

Taken together, I see that an effective ad in Period 1 (i.e., large ` and q") may diminish the

marginal effectiveness of successive advertising in Period 2. I call this the saturation effect. It is

visualized by the concave ad response curve for large q" in Figure 4.2.

Period 1

The reserve prices '∗2|· from Lemma 5 imply that the advertiser’s Period 2 payoff is `(1 −

q")q" if the advertiser shows ads in Period 1, and 0 otherwise. Taking this into account, the

advertiser’s problem in Period 1 is to determine the bid 11 that maximizes

c�1 (11) =


`q" − '1 + `(1 − q")q" if 11 ≥ '1,

0 if 11 < '1,

where '1 is the reserve price for untargeted ads in Period 1. The following lemma states the

advertiser’s weakly dominant bid and the ad network’s optimal reserve price.

Lemma 6 (Period 1 Bid and Reserve Price Without Tracking). Let G+ ≡ max[G, 0]. The adver-

tiser’s weakly dominant bid in Period 1 is 1∗1 = `(2−q")q" , and the ad network’s optimal reserve

price is

'∗1 = max
[
: + (`q" − :)+ −

(
1∗2|ad − :

)+
, 1∗1

]
. (4.3.3)

I see from (4.3.3) that the ad network sometimes sets the Period 1 reserve price below the

marginal cost : , even if that implies the ad network earns a negative payoff in Period 1. This

occurs when showing successive untargeted ads in Period 2 is highly valuable for the advertiser;

i.e., when 1∗2|ad = (1 − `)`q" + `(1 − q")2V is high. Intuitively, by setting a low reserve price in

Period 1, the ad network helps the advertiser display ads, thereby creating an opportunity to extract

greater surplus from the advertiser in Period 2. This ad pricing strategy can be viewed as the ad

network capitalizing on the convexity of the ad response curve.
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Advertising Strategy Without Tracking

Given the equilibrium reserve prices and bids, I now characterize the conditions under which

the advertiser buys ads in (i) both periods, (ii) only Period 1, and (iii) neither period. The following

proposition summarizes the equilibrium advertising strategy across two periods.

Proposition 18 (Advertising Without Tracking). Suppose the advertiser cannot track consumers.

For thresholds Ṽ, V, V, `, and ` defined in the proof, the equilibrium advertising strategy is as

follows.

• Suppose q" < 1 −
√

(` − :)+/`. The advertiser buys ads in both periods if V ≥ Ṽ, and does

not buy any ads otherwise.

• Suppose q" ≥ 1 −
√

(` − :)+/`.

– if (i) V ≥ V and ` ≥ `, or (ii) V ≤ V < V and ` ≤ ` < `, then advertiser buys ads in

both periods;

– if (i) V < V or ` ≤ `, or (ii) V ≤ V < V and ` ≥ `, then advertiser buys ads only in

Period 1.

Consider the case of small q" , depicted in Figure 4.3a, where the advertiser either buys ads

in neither period or in both periods. This “all-or-nothing” pattern emerges when the ad response

curve is convex. Specifically, if q" is small, the first ad exposure does little in terms of increasing

the conversion probability. Thus, the advertiser does not find it worthwhile to advertise only in

Period 1. However, if V is sufficiently large, a successive ad is highly likely to bring "-consumers

in Period 2 down to � and induce purchase. This increase in effectiveness of successive ads

compensates for the low effectiveness of the ads shown in Period 1. Thus, if q" is small, the

advertiser either buys ads in neither period or in both.

In contrast, if q" is large, the total ad intensity across Periods 1 and 2 is more nuanced. In

particular, the total ad intensity may be non-monotonic in ` (see Figure 4.3b). To understand the

changes in ad intensity as ` increases, consider the cross-section of the plot represented by the large

92



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) Small q" (= 0.05)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Large q" (= 0.5)

Figure 4.3: Ad Audiences with No Tracking; : = 0.15

dashed line in Figure 4.3b for fixed V = 0.4. Along this line, as ` increases from 0 to ` (denoted

by the small dashed line), the ad intensity increases from 0 to 1 to 2 due to increasing effectiveness

of ads. Past the ` threshold, however, observe that Period 2 ads are foregone. This is because

the combination of large q" and ` implies a high purchase conversion after Period 1 ads are

shown. This diminishes the value of successive ads (i.e., Period 1 ads saturate) and consequently

the intensity of ads shown in Period 2 is reduced.

In total, these results highlight the significance of considering the purchase journey in the

analysis of advertising strategies, even when there is no trackability. In particular, modeling the

funnel sheds light on how ads may influence consumer distribution along different funnel states.

This distribution determines the marginal effectiveness of successive ads, which in turn affects ad

buying decisions across time.

4.3.2 Full Tracking

I now analyze how the ability to track consumers affects the advertiser’s strategy and the ad

network’s profit.
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Advertising Strategy With Tracking

Without tracking, the advertiser was restricted to buying untargeted ads. With consumer track-

ing, however, the advertiser can target ads along two dimensions — consumers’ positions in the

purchase funnel and their product purchase histories. Specifically, in Period 2, it can target (i)

)-consumers and (ii) "-consumers who did not purchase in Period 1 . In the Period 2 subgame

for which ads were shown in Period 1, the advertiser’s bidding strategy is a pair of bids
(
1)2 , 1

"
2

)
for ad impressions associated with consumer segments (i) and (ii). Given reserve prices ')2 and

'"2 for segments (i) and (ii), respectively, the advertiser’s expected payoff in Period 2 is

c�2|ad

(
1)2 , 1

"
2

)
=



(1 − `)
(
`q" − ')2

)
+ `(1 − q")

(
V + (1 − V)q" − '"2

)
if 1)2 ≥ '

)
2 , 1

"
2 ≥ '

"
2 ,

(1 − `)(`q" − ')2 ) + `(1 − q")q" if 1)2 ≥ '
)
2 , 1

"
2 < '"2 ,

`(1 − q")(V + (1 − V)q" − '"2 ) if 1)2 < '
)
2 , 1

"
2 ≥ '

"
2 ,

`(1 − q")q" if 1)2 < '
)
2 , 1

"
2 < '"2 .

The logic of solving for an equilibrium is similar to the case without no tracking, although

more complex. Due to space considerations I relegate the full backwards induction analysis to the

appendix. The following proposition characterizes the advertiser’s strategies in the presence of

consumer tracking.

Proposition 19 (Advertising With Tracking). Suppose the advertiser can track consumers along

the purchase funnel. Let ˜̀ = : (q"(2 − q") + (1 − q")(V(1 − q") − :)+)−1. The advertiser’s

equilibrium advertising strategy is as follows:

• if ` ≤ ˜̀, then do not buy any ads in either period;

• if ` > ˜̀, then show ads to all consumers in Period 1. Furthermore,

– if ` > :
q"

, then in Period 2, buy ads targeted to )-consumers, and

– if V > :
1−q" , then in Period 2, buy ads targeted to "-consumers who did not purchase.
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Figure 4.4: Ad Audiences With Tracking; q" = 0.5, : = 0.15

Figure 4.4 depicts the advertising strategies in the presence of consumer tracking. Before I

discuss this figure in detail, I note that a comparison with Figure 4.3 reveals that the advertis-

ing strategy with tracking is significantly different from the advertising strategy without tracking.

Proposition 19 shows that when the probability of the ad inducing interest is high, the advertiser

adopts a reach strategy, whereby it targets successive ads to )-consumers who are not considering

purchase. When the probability of the ad increasing purchase propensity is high, then the advertiser

adopts a frequency strategy, whereby successive ads are shown to "-consumers who are already

considering purchase.

Overall, Proposition 19 suggests that advertisers should be cognizant of the nuanced ad effects

in relation to the consumers’ journey down the funnel. As illustrated in Figure 4.4, the combination

of consumer trackability and funnel considerations gives rise to various conditions under which one

variant of advertising strategy is more profitable than another (e.g., reach vs. frequency).

Comparing No Tracking and Tracking Outcomes

A question of central interest that I can answer using this model is: how does consumer tracking

impact overall advertising intensity? My results show that the effect of tracking on ad intensity is
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Figure 4.5: Ad Intensity With and Without Tracking; q" = 0.5, : = 0.15

nuanced (see Figure 4.5). If the funnel transition probabilities ` and V are small, then ad effective-

ness is so low that no ads are shown to any consumers regardless of consumer trackability; hence,

tracking may not change ad intensity. Otherwise, if either ` or V is sufficiently large, tracking may

either increase or decrease the total intensity of ads.

When ad effectiveness is low, the average effectiveness of untargeted ads is low. With track-

ability, the advertiser can identify and bid for high-valuation impressions such that more ads are

shown with tracking. On the other hand, consider the case when ad effectiveness is intermediate.

Without tracking, untargeted ads are shown in both periods. However, some of the ads in Period 2

are wasted because they are shown to consumers who already purchased, which does not happen

with tracking. Thus, tracking allows the advertiser to reduce spending on wasteful ad impressions,

resulting in lower ad intensity with tracking than without.

While the above findings resonate with those from Esteban et al. (2001) and Iyer et al. (2005),

my results are different from these papers at high levels of ad effectiveness. Specifically, when

ad effectiveness is high, I find that the ad intensity differential reverses: more ads are shown

under tracking than without. The intuition is that without tracking, high ad effectiveness dampens

the value of successive ads, such that only first period ads are shown. On the other hand, when
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consumers can be tracked along the purchase journey, ads are targeted to (i) consumers who were

not impacted by the first ad and stayed in top-funnel and/or (ii) consumers who moved down to

mid-funnel but did not purchase. Therefore, more ads are shown under tracking than without. Put

differently, the interdependence between the marginal effectiveness of cross-period ads stemming

from funnel considerations reverses the ad intensity differential for high levels of ad effectiveness.

In sum, I establish a non-monotonic relationship between the impact of tracking on ad inten-

sities and ad effectiveness, which is proxied by the funnel transition parameter ` when the match

parameter q" is fixed. I summarize these results in the following proposition.

Proposition 20 (Ad Intensity). Consumer funnel tracking either increases or decreases the total

ad intensity compared to the no tracking case. Specifically, for thresholds Ṽ, V, V, `, and ` defined

in the proof,

• if (i) ` < ˜̀ and V < Ṽ or (ii) :
q" (2−q" ) < ` ≤

:
q"

and V ≤ :
1−q" , then the ad intensities are

the same;

• if q" > 1 −
√

(` − :)+/` and either (i) V > V and ` > `, or (ii) V ≤ V < V and ` ≤ ` < `,

then tracking reduces ad intensity;

• otherwise, tracking increases ad intensity.

Tracking and Ad Network Profit

How does consumer tracking impact the ad network’s profit? I find that tracking weakly in-

creases the ad network’s profit. Intuitively, consumer tracking endows the advertiser with more

information on which the advertiser can condition its bid. In this case, the ad network can se-

lectively supply ad impressions most highly valued by the advertiser while foregoing unprofitable

ones, thereby raising its profit compared to the regime without consumer tracking. I state this result

as a proposition.

Proposition 21 (Consumer Tracking and Ad Network Profit). Consumer funnel tracking weakly

increases the ad network’s profit.
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It is important to note that the tracking-induced improvement in the ad network’s profit hinges

on the assumption that the ad network is as knowledgeable about ad valuations as the advertiser.

In Section 4.4.1, I show that the result of Proposition 21 does not always carry over to a setting

where the advertiser has private information about ad valuations. Surprisingly, information asym-

metry between the ad network and the advertiser may result in consumer tracking lowering the ad

network’s profit.

4.3.3 Endogenous Tracking Choice

In the preceding analysis, I examined two distinct cases in which the advertiser was either

not able to track any consumers or able to track all consumers. In this section, I investigate the

impact of endowing consumers with the choice to be tracked. That is, I analyze how consumers

exercise their right to choose whether to allow tracking or not and how this decision affects the

ad ecosystem. As discussed in the introduction, the analysis is largely motivated by the recent

enactment of data privacy regulations that mandate affirmative consumer consent prior to acquiring

and processing consumer data.

Consumers’ Opt-In Behaviors

I first characterize the consumers’ equilibrium privacy choices given the advertising outcomes

under tracking and no tracking. Recall from the consumer privacy utility formulation in (4.2.1)

that consumers dislike seeing ads (instrumental aspect) and also dislike being tracked (intrinsic

aspect). This implies that consumers will choose to incur the privacy cost from opting-in to being

tracked only if they expect to see fewer ads from doing so; i.e., only if the positive instrumental

value outweighs the intrinsic cost of privacy. The following proposition summarizes the consumer

opt-in behavior.

Proposition 22 (Consumer Opt-In Behavior). Let @(0) and @(1) denote the total number of ads

consumers are exposed to when they opt-out and opt-in, respectively. The proportion of consumers

who opt-in to being tracked can be non-monotonic in the funnel transition probability `. In par-
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Figure 4.6: Proportion of Opt-In Consumers; q" = 0.05, V = 0.4, �(\) = \4, [ = 4, : = 0.15

ticular, for thresholds V, V, `, and ` defined in the proof, if either (i) V < V ≤ V and ` < ` < `,

or (ii) V > V and ` > `, then � ([ (@(0) − @(1))) consumers opt-in; otherwise, all consumers

opt-out.

The consumer opt-in pattern is driven by two forces. The first force stems from the changes

in number of ads shown to opt-out consumers in Period 2. Recall that in the absence of tracking,

for small q" , as ` increases, the advertiser’s strategy sometimes changes from not advertising in

either period to any consumer to advertising in both periods to all consumers (see Proposition 18).

This pattern emerges from the convexity of the ad response curve: while advertising only once is

never profitable, showing successive ads might be. Thus, as consumers expect high ad intensity for

large ` when they cannot be tracked, consumers are incentivized to opt-in to being tracked in order

to see fewer ads. Figure 4.6 depicts the increase in opt-in rate as ` increases past the threshold

` ≈ 0.63, after which the advertiser shows ads to all consumers in both periods under no tracking.

The second force relates to the advertiser’s targeting regime for opt-in consumers in Period 2.

To illustrate, suppose ` and V are large. In this case, the advertiser adopts the frequency strategy

in Period 2 such that successive ads are targeted to "-consumers (see Proposition 19). Now, as

the probability of an ad inducing interest increases, consumers are more likely to transition to

funnel state " after the first ad exposure, and hence become targets of Period 2 advertising. This

dampens consumers’ incentives to opting-in to being tracked. Figure 4.6 shows the associated
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decline in opt-in rate as ` increases in the neighborhood of ` ≈ 0.85.

Ad Network Profit

Next, I analyze how the consumers’ opt-in behaviors characterized above impact the ad net-

work’s profit. Interestingly, I find that consumers’ opt-in choices lead to non-monotonicities in

the ad network’s profit with respect to `. In particular, under certain conditions, the ad network’s

profit decreases in `, even though larger ` implies higher purchase conversion on average. To

understand this, recall from Proposition 21 that the ad network’s profit is (weakly) lower under no

tracking than under tracking. Since larger ` may result in more consumers opting-out from being

tracked (see Proposition 22), it follows that the ad network’s profit may decrease in `.

As described above, the change in the number of opt-in consumers can arise from two distinct

forces. First, even if consumers expect to see fewer ads under tracking and thus opt-in to being

tracked, if the ad intensity under tracking increases with `, then less consumers choose to opt-in as

` increases. This decline in opt-in rate induces a continuous decrease in the ad network’s profit, as

illustrated in the region marked � in Figure 4.7. Second, consumers also consider the instrumental

aspect of privacy: if consumers expect to see fewer ads without tracking, no consumer chooses to

opt-in. This leads to discrete jump in the ad network’s profit, as shown in the region marked � in

Figure 4.7. The following proposition summarizes this finding.
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Proposition 23 (Equilibrium Ad Network Profit). Let @∗(0) and @∗(1) denote the equilibrium ad

intensity without and with tracking, respectively, and let `′ and `′ be as defined in the proof. Sup-

pose consumers’ privacy costs \ are uniformly distributed on [0, 1]. Under endogenous tracking,

the ad network’s profit decreases in ` if and only if either

• @∗(0) = 2, @∗(1) = 1 + `(1 − q"), [(1 − `(1 − q")) < 1, and either ` < `′ or ` ≥ `′, or

• q" ≥ 1 −
√

(` − :)+/` and V ≤ V < V.

What does this mean for the ad network? Conventional wisdom suggests that the ad network

would be better off if ads were more effective: ads that yield high purchase conversion are asso-

ciated with high valuations, which allows the ad network to sell ad slots at higher prices. Propo-

sition 23 provides a countervailing argument. Privacy regulations that allow consumers to choose

between being tracked or not may result in more consumers opting-out from being tracked for

higher levels of ad effectiveness, in particular if higher ad effectiveness implies more ads being

shown to opt-in consumers. In this case, consumers choose to opt-out from tracking, thereby un-

dermining targeting efficiency. This means that ad slots may be sold at lower prices, lowering the

ad network’s profit.

Consumer Surplus

One of the main objectives of privacy regulations is to protect consumers. Consistent with

intuition, I find that giving consumers the choice to being tracked weakly improves consumer

surplus, compared to the full tracking benchmark. Intuitively, the regulations allow consumers to

make privacy decisions such that their individual surplus is maximized. And since their decision

does not impose externalities on other consumers, net consumer surplus weakly increases. I state

this as a proposition.

Proposition 24 (Consumer Surplus). Privacy regulations that allow consumers to choose whether

to be tracked or not increase overall consumer surplus compared to the full tracking case.
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In sum, my analysis provides three important takeaways. First, consumers sometimes choose

to opt-in to being tracked. Specifically, this happens if the effectiveness of the ads in inducing

product interest, `, is intermediate, where consumers trade-off the benefit of seeing fewer ads

(positive instrumental value of privacy) with the disutility of compromising their privacy (intrinsic

cost of privacy). Second, the ad network’s profit when consumers can choose to be tracked or

not may decrease in `, even if larger ` implies higher purchase conversion. The intuition is that

more consumers may choose to opt-out from being tracked as ` increases; this lowers targeting

efficiency, which ultimately reduces the ad network’s profit. Finally, consumer surplus always

increases and the ad network’s profit always decreases when consumers have the choice of being

tracked or not. As I show in the next section, however, allowing the advertiser to have private

information about their ad valuations may reverse the latter result. That is, the ad network’s profit

may be higher under endogenous tracking than under full tracking.

4.4 Extensions

In this section, I explore fmy extensions that demonstrate the robustness of the qualitative

insights obtained from the main model. I also describe some additional insights that emerge from

relaxing the assumptions from the main model.

4.4.1 Information Asymmetry about Ad Valuation

In the main model, I assumed that the advertiser’s ad valuation is known by the ad network.

Consequently, the ad network sets the reserve price such that the advertiser’s surplus is extracted

fully. In this information asymmetry extension, I allow the advertiser’s ad valuation to be private

information. In practice, ad valuations may not be fully known to the ad network for several rea-

sons. First, the ad network may not perfectly observe all of the consumers’ interactions with the

advertiser (e.g., offline interactions in the advertiser’s physical store) that may inform the adver-

tiser about consumer valuation. Second, even if the ad network possessed similar same levels of

information as the advertiser, it may have less ability to infer consumer’s willingness to pay for an
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Figure 4.8: Ad Intensity and Ad Network Profit Under Information Asymmetry

advertiser’s product (de Cornière and Nijs, 2016).

To that end, I assume that in each period, the advertiser’s ad valuation is drawn independently

from Uniform[0, 1] and is known privately to the advertiser. In contrast to the main model, in this

case the advertiser earns positive surplus. This adds interesting dynamics to the model because in

Period 1 the advertiser will anticipate how the Period 1 outcome affects its Period 2 payoff and

will bid accordingly.

While the patterns of ad intensity differential between the tracking and no tracking cases are

qualitatively unaffected by the advertiser’s bidding dynamics (see Figure 4.8a), the result pertain-

ing to the ad network’s profit is sometimes reversed. In particular, I find that under certain condi-

tions, the ad network may benefit from regulations that allow consumers to endogenously choose

to being tracked (see Figure 4.8b). This occurs when V is sufficiently high and ` intermediate.

The intuition is as follows. With tracking, the ad network has the option to sell select ad

impressions targeted to a subgroup of consumers (e.g., "-consumers who did not purchase in

Period 1). While such selective ad sales help the ad network to efficiently extract surplus from

the advertiser in Period 2, they hurt the advertiser by limiting the size of consumer segments

reached. However, as privacy regulations induce some privacy-conscious consumers to opt-out

from tracking, the ad network’s targetability is reduced. Thus, instead of selling targeted ads,

the ad network sells untargeted ads that reach a larger consumer base. I call this the supply-side
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“market thickening” effect. Untargeted ads that reach more consumers are more profitable for

the advertiser than, say, ads targeted to "-consumers. Thus, in anticipation of higher Period 2

payoffs for opt-out consumer segments, the advertiser bids more aggressively in Period 1 under

endogenous tracking than under full tracking. This ultimately leads to higher ad network profit.

The result that the ad network may benefit from consumers opting-out of tracking also informs

the policy debate regarding the default privacy choice. Specifically, it suggests that if there is a suf-

ficiently large segment of naive consumers who simply stick with the pre-selected, default privacy

settings19, then the ad network’s profit would increase as a result of regulations that mandate an

opt-out default. Thus, my model provides a rational explanation, besides the more common “mar-

ket share” argument20, for why large ad platforms such as Facebook have been enthusiastically

vouching for stringent privacy regulations.21

In sum, my analysis sheds light on a novel role of privacy regulations that allow endogenous

tracking choices: regulations can serve as a commitment device for the ad network to sell more ad

impressions.22 This in turn better aligns the incentives of the ad network and the advertiser. Under

certain conditions, privacy regulations can lead to higher profits for both parties compared to the

full tracking benchmark.

4.4.2 Competing Advertisers

I extend the main model by considering two competing advertisers indexed by 8 ∈ {1, 2}.

Consumers are heterogeneous in their product preferences: _ proportion of consumers are “loyal”

to Advertiser 1, and 1 − _ proportion to Advertiser 2. A consumer transitions down the purchase

funnel according to specifications of the main model (see Section 4.2) only if she sees an ad

from the advertiser to which she is loyal. Without loss of generality, I assume that _ > 1
2 ; i.e.,

19According to The Harris Poll (2019), 14% of US Internet user respondents indicated that they “have not taken any
action” to protect their personal information.

20https://www.wsj.com/articles/gdpr-has-been-a-boon-for-google-and-facebook-
11560789219

21https://www.ft.com/content/0ca8466c-d768-11e8-ab8e-6be0dcf18713
22Without such a commitment device, the advertiser would anticipate the ad network to sell only select profitable

impressions in Period 2. Thus, the advertiser would expect to gain little surplus in Period 2, such that the ad network
would not be able to charge high prices for Period 1 ads.
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Figure 4.9: Competing Advertisers: Ad Intensity With and Without Tracking; q" = 0.5, : =
0.15, _ = 0.66

Advertiser 1 is the dominant brand.23

I assume that opting-in to tracking reveals not only the consumers’ funnel states and purchase

histories, but also their ex ante product preferences; i.e, whether consumers are loyal to Adver-

tiser 1 or 2. For example, tracking consumers’ past visits to and browsing patterns within ad-

vertisers’ websites may help advertisers infer consumers’ product preferences.24 The rest of the

model specifications remain unchanged. Note that the extension model reduces to the main model

if _ = 1.

I find that the qualitative insights from the main model carry over for a large range of parameters

(see Figure 4.9). The results diverge if and only if either (a) the effectiveness of ads shown to )-

consumers is high (i.e., large `) or (b) product preference heterogeneity is sufficiently large (i.e., _

close to 0.5). The intuition is the following. Advertiser 2 has high incentive to advertise in Period 2

after Advertiser 1’s ads has been shown in Period 1 if Advertiser 2 knows either (a) that its first ad

exposure in Period 2 will be highly effective, or (b) that there is a large group of loyal consumers

23In the case of symmetry
(
_ = 1

2

)
, the only difference is that the first period outcome is randomly determined

between the two advertisers; otherwise, the logic of the analysis is equivalent to the asymmetry case.
24https://www.digitaltrends.com/computing/how-do-advertisers-track-you-

online-we-found-out/
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who will respond to Advertiser 2’s ad. While in the main model ad slots would have been left

unfilled in Period 2 due to the saturation effect, in this case the ad slots are filled by Advertiser 2

(Region B in Figure 4.9). Finally, to avoid seeing ads in both periods, consumers opt-in to tracking

for this parameter range. I summarize this finding in the following proposition.

Proposition 25 (Competing Advertisers). The advertising intensity differential between tracking

and no tracking regimes carries over from the main model if either ` is not too large or _ is not

too small. Otherwise, opt-out consumers are exposed to ads in both periods: from Advertiser 1 in

Period 1, and from Advertiser 2 in Period 2.

4.4.3 Imperfect Observability of Purchase History

In the main model, I assumed that for an opt-in consumer, both her funnel state 5 ∈ {), ", �}

and her purchase history were perfectly observable by the ad network. While this assumption

helped us deliver the main insights clearly, it may not always reflect the information flow in prac-

tice. For example, firms may not be able to perfectly merge a consumer’s identity across different

website sessions, or they may not be able to match the online identities of consumers who search

online but purchase offline. In this section, I relax the assumption that the purchase histories of

opt-in consumers are perfectly observable. I make the following assumption which nests the main

model as a special case: when an opt-in consumer arrives at a content page, the ad network and

the advertiser can infer the consumer’s funnel state 5 perfectly, but her purchase history only im-

perfectly. In particular, the ad network and the advertiser receive an imperfect signal about the

consumer’s purchase history.

To that end, let A denote the binary variable which equals 1 if the consumer purchased the

advertised product, and 0 otherwise. Let ( denote the binary signal that the ad network and the

advertiser receive. The signal’s accuracy is parametrized by d ∈
[ 1

2 , 1
]

where

d = P{( = A |A}
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Figure 4.10: Ad Intensity With and Without Tracking Under Imperfect Purchase Observability;
q" = 0.5, : = 0.15, d = 2

3

for A ∈ {0, 1}. Note that this extension collapses to the base model when d = 1.

The main departure from the main model is the Period 2 subgame for opt-in consumers when

an ad was shown in Period 1. With perfect observability, the ad network forewent selling ad

impressions for consumers who had already purchased. In contrast, under imperfect purchase

observability, the ad network decides ad supplies based on the signals it receives. In Period 2,

the ad network infers that 1 − ` fraction of consumers remain in funnel state ) , and ` fraction

move down to funnel state " . Of the ` fraction of "-consumers, q"d + (1 − q")(1 − d) are

associated with the signal that the consumers already purchased the product advertised in Period 1,

and q"(1 − d) + (1 − q")d are associated with the signal that the consumers did not purchase.

I find that under certain conditions, imperfect purchase observability changes the relative ad

intensity between opt-in vs. opt-out consumers. Specifically, when the purchase signal accuracy

d is low, and ads are highly effective (i.e., ` and V are large), the reduced targetability associated

with imperfect observability leads to ads being shown in both periods to all opt-in consumers.

The intuition is that if the ad network is uncertain about a consumer’s purchase history, then

even if it receives a signal that the consumer had already purchased, the ad network deems the false

positive probability to be sufficiently high that it puts up the ad impression for sale. Consequently,
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untargeted ads are shown to all opt-in consumers: those who are in state ) , those in state "

associated with “purchased” signal, and those in state " associated with “not purchased” signal.

This implies that the ad intensities across opt-in and opt-out consumers are the same for large `

and V (see top-right corner of Figure 4.10), whereas fewer ads are shown to opt-in consumers with

perfect observability (see Figure 4.5).

Next, I conduct comparative statics with respect to the signal accuracy d. What is the rela-

tionship between consumers’ opt-in choices and the accuracy of their purchase history signals?

Interestingly, I find that under certain conditions, more consumers choose to opt-in to tracking

when purchase signals are less accurate. As the purchase signals become more accurate, more

ads may be sold under tracking. Thus, the expectation of more intensive targeted ads motivates

consumers with high privacy cost to opt-out from tracking for higher levels of purchase signal

accuracy. Furthermore, the lower opt-in rate for high levels of signal accuracy may lower the ad

network’s profit due to a decline in targeting efficiency. The following proposition summarizes

these findings.

Proposition 26. Suppose `

`−: : < V, max
[
:
`
, 1 −

√
:
V

]
< q" < 1 − :

V
and @∗(0) = 2 (i.e., ads

are shown in both periods to all opt-out consumers). Then, the number of consumers opting-in to

tracking decreases with the accuracy of the purchase signal. Consequently, the ad network’s profit

may decrease in the signal accuracy.

Proposition 26 sheds light on a strategic force that goes against the lay intuition that accurate

information about consumers is beneficial for the ad network. Distinct from the “market thinning”

effect (Levin and Milgrom, 2010; Bergemann and Bonatti, 2011), less accurate signals about con-

sumers’ behaviors may induce consumers to expect fewer targeted ads should they opt-in to track-

ing, increasing the appeal of opting-in. And as more consumers opt-in to tracking, the targeting

efficiency of the the ad network increases, thereby increasing its profit.
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Figure 4.11: Advertising Strategy Without Tracking; : = 0.25, f = 0, X = 1 − 10−6

4.4.4 Infinite Horizon with Heterogeneous Overlapping Consumer Generations

I extend the game from the main model along two dimensions. First, I relax the assumption that

all newly arriving consumers are at funnel state ) . In particular, I allow f ∈ [0, 1] proportion of

newly arriving consumers to be in funnel state " , and 1−f in ) . Broadly, f can be interpreted as

the advertiser’s “brand strength:” the higher the f, the greater the extent to which the advertiser’s

product is a priori known and considered by consumers. Second, I extend the game horizon from

two-period to infinite-period. In each period, a unit mass of consumers —f mass of "-consumers

and 1−f mass of )-consumers — arrive and live for two periods. Thus, in any given period, there

are overlapping generations of consumers. The rest of the specifications remain the same as the

main model.

I solve for a Markov-perfect equilibrium (MPE) wherein an advertiser’s strategy depends only

on the payoff-relevant state in that period. The ad network compares the total discounted profit

(with discount factor X ∈ [0, 1)) obtained from inducing the different advertising outcomes, and

then chooses whichever yields the highest profit.
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Due to space considerations, I relegate the MPE derivation to Section C.4 of the appendix.

Here, I highlight how the qualitative insights obtained here compare to that of the main model.

First, Figure 4.11 shows that if consumer heterogeneity is muted (i.e., f = 0) and the discount

factor is close to 1, the equilibrium outcomes closely mirror that of the two-period model (see

Figure 4.3). In particular, the advertiser shows ads to all consumers in both periods if and only

if V is sufficiently large and ` is intermediate. The underlying mechanism revolves around the

saturation effect, and the qualitative insights remain essentially the same.

Second, I examine how the insights from the main model are moderated by two new parame-

ters: the “brand strength” parameter f, and the discount factor X. As illustrated in Figure 4.12, I

find that as either f increases or X decreases, the parametric region where the advertiser shows ads

to all consumers in both periods becomes smaller. The intuition is the following. As f increases, a

larger portion of newly arriving consumers are already mid-way down the funnel in state " . This

accentuates the saturation effect: since many newly arriving consumers are already in the consid-

eration phase and will likely convert without additional ad exposures, the value of a successive

ad diminishes (see Figure 4.12a). On the other hand, as X decreases, the advertiser places smaller

weight on the value of a successive ad, whose payoff materializes in the future. Therefore, the

incentive to buy successive ads decreases, even if convex ad response curves may have otherwise

justified showing successive ads (see Figure 4.12b).

4.5 Conclusion

In this paper, I study the impact of tracking consumers’ Internet activities on the online ad-

vertising ecosystem, and the impact of regulations that, motivated by privacy concerns, endow

consumers with the choice to have their online activity be tracked or not (e.g., the GDPR). In

particular, I model the consumer “purchase journey” and analyze the impact of consumers’ opt-in

decisions — co-determined by the intrinsic and instrumental aspects of privacy — on the strategies

and profits of advertisers and ad networks.

Among others, I establish the following insights from the analysis. First, when given a choice,
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Figure 4.12: Advertising Strategy Without Tracking; q" = 0.5, : = 0.25

some consumers will choose to opt-in to tracking because they expect to see fewer ads when

advertisers can track them and infer their funnel stages. Specifically when ad effectiveness is inter-

mediate, ad-averse consumers opt-in to tracking, thereby trading-off the benefit of seeing fewer ads

(positive instrumental value of privacy) with the disutility they feel from giving up their privacy

(intrinsic cost of privacy). Second, consumers’ opt-in behaviors have important implications for

the ad ecosystem. For example, due to changes in consumers’ privacy choices, the ad network’s

profit may decrease in ad effectiveness, even though higher ad effectiveness implies higher pur-

chase conversion. Finally, I show that privacy regulations improve overall consumer surplus and

reduce the ad network’s profit. Interestingly, however, if the advertiser has private information

about ad valuations, privacy regulations may increase the ad network’s profit as well. Intuitively,

as privacy-conscious opt-out from tracking, the ad network commits to selling untargeted ads that

reach a larger consumer segment than targeted ads. This in turn incentivizes the advertiser to bid

more aggressively for opt-out consumers, resulting in higher ad network profit compared to the

regime in which all consumers can be tracked.

The results obtained in this paper provide important managerial insights for marketers and reg-
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ulators alike. My findings suggest that under certain conditions, the ad network and the advertiser

could both earn higher profits if the ad network can credibly commit to not track consumers. Pri-

vacy regulations that allow consumer tracking only under affirmative consent can thus serve as a

commitment device that helps the advertiser and the ad network “coordinate” in a mutually prof-

itable manner. Furthermore, my results underscore the need for regulators to consider nuanced

approaches to data privacy regulations that are based on various market conditions such as the ac-

curacy of signals pertaining to consumers’ online behavior, the degree of information asymmetry,

consumer disutility for ads, their value of privacy, and the average effectiveness of ads.

My research generates a number of interesting hypotheses that could be empirically tested. For

instance, for ads with intermediate levels of effectiveness, my results suggest that compared to the

full-tracking regime prior to the enforcement of privacy regulations, the ad fill rates are likely to

increase when consumers have a choice to be tracked or not as more untargeted ads are shown to

consumers who choose to opt-out from tracking. In a similar vein, my analysis predicts that ad

prices will fall with the advent of privacy regulations due to declines in targeting efficiency asso-

ciated with consumers opting-out. It would be interesting to investigate these hypotheses across

different product categories that are associated with different levels of average ad effectiveness.

I acknowledge several limitations of the paper. First, my model does not account for flexible

product pricing decisions by the advertiser because consumers’ product utilities assume a “binary”

functional form. While this assumption allowed us to focus on the advertising strategies, it would

be interesting to consider a finitely elastic product demand that would allow for richer pricing

strategies. Second, I implicitly assumed that the advertiser shows the same ad content to all con-

sumers. In practice, advertisers may tailor their messages to consumers in different stages of the

journey, insofar as consumers can be tracked (e.g., entice consumers lower down the funnel with

price promotions). Thus, another fruitful avenue for future research would be to investigate how

personalized ads for opt-in consumers may impact the funnel-transition probabilities. Finally, it

would be interesting to examine a more active role of publishers. For example, one could consider

publishers acting as information gateways and study the forces that affect the publishers’ incentives
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to disclose or withhold consumers’ information to the ad network.
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Conclusion

Advances in information technology in the past few decades have generated a plethora of

new opportunities and challenges for the advertising industry. While the vast literature on

advertising has examined an extensive array of research questions, still many important questions

regarding advertising strategies remain unaddressed. In a collection of three essays, my

dissertation seeks to advance our understanding of advertising in three distinct contexts.

Essay 1 shows that when consumers exhibit reference-dependent preferences that yield

concave utility functions (e.g., due to loss aversion), then the high-quality firm sometimes

displays reference-shifting advertising content that, surprisingly, reduces consumers’ absolute

valuation of its offering. While this strategy lowers a monopolist’s profit, it can increase the

high-quality firm’s profit in a competitive setting because it increases the relative utility of its

offerings compared with the low-quality firm’s offerings. Essay 2 characterizes the optimal

strategies of advertisers and ad sellers in online advertising in a learning environment. In

particular, I demonstrate that due to asymmetric learning effects, new advertisers should bid

above their valuations in early rounds of the auction. Furthermore, the ad seller should favor new

advertisers in the auctions by boosting their bid multipliers in order to learn their ad performances

more quickly. Finally, Essay 3 discusses the impact of tracking consumers’ online activities on

the advertising ecosystem, particularly in the context of recent privacy regulations. Even though

consumers incur a privacy cost for opting-in to tracking and disclosing their personal information,

they sometimes choose to do so expecting to see fewer ads. A surprising result that follows from

consumers’ endogenous opt-in decisions is that the ad network’s profit may decrease from

displaying more effective ads.
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Appendix A: Essay 1

A.1 Assumptions on Parameters

Advertisement Effects (a and X)

We assume that a ≤ min[U, 1−U] to ensure that the post-valuation-shift probability of a consumer

having high valuation for quality is well-defined. In addition, we assume that X ≤ @�+@!
2 to ensure

that the resultant (post-advertising) reference point lies in the convex hull of the quality levels of

the offerings, consistent with the literature.

Advertising Cost (:)

We assume that

: <
a(1 − \;)@�(6f − @�((1 − \;)(2U + a) + V_ + V + 2\;))

18f
(A.1.1)

to ensure that +↓ is not dominated by ∅ for Firm ! when Firm � chooses +↑.

Preference Shock Parameter (f)

We assume

f >
1 + _V

3
(@� − @!) (A.1.2)

to ensure interior price solutions.

Intrinsic Utility (+)

We assume that even if the preference shocks are realized most favorably towards the outside

option, the intrinsic utility + is sufficiently high that all consumer types prefer to buy either of the

products under the competitive equilibrium prices. A sufficient condition can be easily derived as

+ > 2f + 1
3 max [−@�(\; − 2V_) − 2@!(V_ + \;), @�(V_ − 3\; + 1) − @!(V_ + 1)].
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A.2 Proofs

A.2.1 Proof of Proposition 1

The demand for product @ 9 is

�
9

"
(? 9 , ?: ) = P{D(@ 9 ; \) − ? 9 > D(@: ; \) − ?: , D(@ 9 ; \) − ? 9 > Y0},

where 9 6= : ∈ {�, !}, D(@ 9 ) and D(@: ) share the same brand-specific error Y" , and Y" −

Y0 ∼ *[−f, f]. Thus, the monopolist sets prices ?� and ?! that maximizes c"(?� , ?!) =

��
"

(?� , ?!) ?� + �!
"

(?! , ?�) ?! . The monopolist cannot observe the consumer’s preference

(i.e., quality taste \). We find that the monopolist adopts one of two pricing schemes: it either

(i) sets discriminatory prices such that the high-(low-)valuation consumers self-select to choose

between @� (@!) and the outside option, or it (ii) sets a sufficiently low price for @� such that both

consumer segments choose between @� and the outside option.1

The demand for the high-quality product is

�" (@� ) = ÛP{+ + @� + V(@� − ĵ) − ?� + Y" > + + @! − V_(ĵ − @!) − ?! + Y" ,

+ + @� + V(@� − ĵ) − ?� + Y" > 0 + Y0}

+ (1 − Û)P{\;@� + V(@� − ĵ) − ?� + Y" > \;@! − V_(ĵ − @!) − ?! + Y" ,

+ + \;@� + V(@� − ĵ) − ?� + Y" > 0 + Y0},

which simplifies to

Û I{@�−@!+V(@�−ĵ)+V_(ĵ−@!)−?�+?!>0}
1

2f
(+ + @� + V(@� − ĵ) − ?� + f)

+ (1 − Û)I{\;(@�−@!)+V(@�−ĵ)+V_(ĵ−@!)−?�+?!>0}
1

2f
(+ + \;@� + V(@� − ĵ) − ?� + f) .

Similarly, we obtain the demand for the low-quality product, �"(@!), as follows:

Û I{@�−@!+V(@�−ĵ)+V_(ĵ−@!)−?�+?!<0}
1

2f
(+ + @! − V_(ĵ − @!) − ?! + f)

+ (1 − Û)I{\;(@�−@!)+V(@�−ĵ)+V_(ĵ−@!)−?�+?!<0}
1

2f
(+ + \;@! − V_(ĵ − @!) − ?! + f) .

1Note that due to the firm-specific preference shock Y" , consumers may sometimes opt for the outside option even
when the monopolist price discriminates to induce them to self-select to a particular product.
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From the indicator functions, we can see that the monopolist has three pricing strategies at

hand: (a) set ?� high and ?! low such that @� is dominated for all consumer types; (b) set ?�

low and ?! high such that @! is dominated for all consumer types, or (c) set intermediate prices

such that @! is dominated for the high-type consumers, and @� is dominated for the low-type

consumers. Since consumer WTP for @� is larger than that for @! , it follows immediately that (b)

dominates (a). We thus focus on strategies (b) and (c).

Under (b), the monopolist’s profit is c1
"

(?�) = 1
2f (ÛDℎ + (1− Û)D

ℎ
− ?� +f)?� , where D 9 (D

9
)

denotes the high(low)-type consumer’s deterministic utility for @ 9 (e.g., D
�

= + + \;@� + V(@� − ĵ)

and D! = + + @! − V_(ĵ − @!)). FOC yields the optimal price and profit ?1∗
�

= ÛD�+(1−Û)D�+f
2 and

c1∗
"

= 1
2f

(
ÛD�+(1−Û)D�+f

2

)2
.

Under (c), the monopolist’s profit is c2
"

(?� , ?!) = Û
2f (D� − ?� +f)?� + 1−Û

2f (D
!
− ?! +f)?! ,

subject to the IC constraints D� − ?� > D! − ?! and D
!
− ?! > D

�
− ?� . Given ?! , the

“best-response” ?� is max
[
D
�
− D

!
+ ?! ,min

[
D� − D! + ?! , D�+f

2

] ]
, and given ?� , the “best-

response” ?! is max
[
D! − D� + ?� ,min

[
D
!
− D

�
+ ?� ,

D!+f
2

] ]
. Algebraic manipulations yield

the following equilibrium candidate prices and profits:

1. if D�−D!
2 ∈

(
0, D

�
− D

!

)
, then ?∗

�
= D�+f

2 and ?∗
!

= D! − D� + ?∗
�

for a profit of

(A.2.1)c
(1)
"

=
Û

2f

(
D� + f

2

)2
+

1 − Û
2f

(
D
!
−D! +

D� + f
2

) (
D! −D� +

D� + f
2

)
2. if D�−D!

2 ∈
[
D
�
− D

!
, D� − D!

)
, then

(A.2.2)c
(2)
"

=
Û

2f

(
D� + f

2

)2
+

1 − Û
2f

(
D
!

+ f
2

)2

3. if D�−D!
2 ∈ [D� − D! ,∞), then

(A.2.3)c
(3)
"

=
Û

2f

(
D! −

D
!
− f
2

) (
D� − D! +

D
!

+ f
2

)
+

1 − Û
2f

(
D
!

+ f
2

)2
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Therefore, we have

c2∗" =



c
(1)
"

if D�−D!
2 ∈

(
0, D

�
− D

!

)
,

c
(2)
"

if D�−D!
2 ∈

[
D
�
− D

!
, D� − D!

)
,

c
(3)
"

if D�−D!
2 ∈ [D� − D! ,∞) .

In total, the monopolist’s optimal profit is c∗
"

= max
[
c1∗
"
, c2∗

"

]
.

Next, we show that c∗
"

is increasing in Û and decreasing in ĵ. To show the first part, it

suffices to show that c1∗
"

and c2∗
"

are both increasing in Û. But c1∗
"

increases with Û because D� >

D
�

. Similarly, c2∗
"

increases with Û because every possible profit expressions (A.2.1), (A.2.2),

and (A.2.3) are increasing in Û. To see this, note that D�+f
2 >

D�+f
2 − (D! − D!) and D�+f

2 >

D�+f
2 − (D� − D!), which shows that

mc
(1)
"

mÛ
> 0; D�+f

2 >
D!+f

2 , which shows that
mc

(2)
"

mÛ
> 0; and

D! −
D!−f

2 >
D!+f

2 ⇐⇒ D! > D! and D� − D! + D!+f
2 >

D!+f
2 , which shows that

mc
(3)
"

mÛ
> 0. Thus,

mc∗
"

mÛ
> 0.

To show the second part, we check the derivatives for all possible profit expressions above with

respect to ĵ. Since D� and D
�

are both decreasing in the reference quality, it follows immediately

that
mc1∗

"

m ĵ
< 0. Next, consider c2∗

"
. The prices and expected demands for each consumer segment

for each profit expressions (A.2.1), (A.2.2), and (A.2.3) can be shown to be decreasing in ĵ. The

only non-trivial case is
mc

(3)
"

m ĵ
, which we analyze more explicitly here. First, note that m

m ĵ

(
D!+f

2

)
=

−1
2 V_ < 0, which implies that the profit from the low-type consumers decreases with ĵ. Second,

consider the derivative of the profit from the high-type consumers:

m

m ĵ

(
D! −

D
!
− f
2

) (
D� − D! +

D
!

+ f
2

)
= −1

2
V_

(
D� − D! +

D
!

+ f
2

)
−

(
D! −

D
!
− f
2

)
V

(
1− _

2

)
.

(A.2.4)
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If _ ≤ 2, then both terms are negative and we obtain that
mc

(3)
"

m ĵ
< 0, as desired. If _ > 2, then

(�.2.4) = V
(
−1

2
_

(
D� − 2D! + D

!
+ f

)
−

(
D! −

D
!

+ f
2

))
< −V

( (
D� − 2D! + D

!
+ f

)
+

(
D! −

D
!

+ f
2

))
= −V

(
D� − D! +

D
!

+ f
2

)
< 0.

Therefore, c∗
"

is decreasing in ĵ.

A.2.2 Proof of Corollary 1

This follows immediately from the last part of the proof of Proposition 1.

A.2.3 Proof of Proposition 2

We have
mc∗

�

m ĵ
=

1
9f

(V(_ − 1)ĵ + �) × V(_ − 1) (A.2.5)

where � = 3f + (Û + (1 − Û)\;)(@� − @!) + V@� − _V@! is positive by Assumption A.1.2. This

proves the first part of the proposition. The second part follows from the fact that each of two

multiplicative terms in (A.2.5) is increasing in V and _.

A.2.4 Proof of Proposition 3

From profit expressions (2.4.3) and (2.4.4), we see that the term inside the paratheses are in-

creasing in Û for Firm � (since \; < 1), and decreasing in Û for Firm !. Similarly, the term is

increasing in ĵ for Firm � and decreasing for Firm !. Combined with the interior-price condition

(Assumption A.1.2), this proves that Firm � (!)’s profit increases (decreases) in Û and increases

(decreases) in ĵ. Therefore, we obtain that +↓ and '↓ are dominated for Firm �, and +↑ and '↑

are dominated for Firm !.
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We are left with 3 × 3 = 9 equilibrium candidates. Of these, we show below that
(
∅, +↓

)
,(

∅, '↓
)
,
(
'↑, +↓

)
, and

(
+↑, '↓

)
cannot be an equilibrium.

(
∅, +↓

)
Cannot Be Equilibrium

For
(
∅, +↓

)
to constitute an equilibrium, it must be that c!(∅, +↓) > c!(∅, ∅) and c�(∅, +↓) >

c�(+↑, +↓). We will show that these two conditions cannot be jointly satisfied for any _ > 1. First,

we simplify these inequalities in terms of _. For the first inequality, we have

m

m_

(
c!(∅, +↓) − c!(∅, ∅)

)
= − Va(1 − \;)(@� − @!)2

18f
< 0. (A.2.6)

Therefore, c!(∅, +↓) − c!(∅, ∅) > 0 if and only if _ is less than _0 which solves c!(∅, +↓) =

c!(∅, ∅).

Similarly, for the second inequality, we have m
m_

(
c�(+↑, +↓) − c�(∅, +↓)

)
= Va(1−\;)(@�−@!)2

18f >

0, so that c�(+↑, +↓) < c�(∅, +↓) simplifies to _ being less than _4 which solves c�(+↑, +↓) =

c�(∅, +↓).

Next, we show that min[_0, _4] < 1 so that there is no _ ≥ 1 that jointly satisfies the two

inequalities above. To that end, note that min[_̃2, _̃3] simplifies to

min(I,−I)
a(1−\;) − ](@� − @!)2

V(@� − @!)2 , (A.2.7)

where ] = (2Û − a)(1 − \;) + V + 2\; and I = 6f(3: − a(1 − \;)(@� − @!). Since min[I,−I] ≤ 0

for all I, this implies that (A.2.7)is less than − ]
V
. But − ]

V
< 1 implies that

(
∅, +↓

)
cannot be an

equilibrium.

(
∅, '↓

)
Cannot Be Equilibrium

For
(
∅, '↓

)
to constitute an equilibrium, it must be that c�('↑, '↓) < c�(∅, '↓) and c!(∅, '↓) >

c!(∅, ∅). Again, we will show that these two conditions cannot be jointly satisfied for any _.

Consider the first inequality. We have m2

m_2

(
c�('↑, '↓) − c�(∅, '↓)

)
= V2X(@�−@!−X)

9f > 0; there-
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fore, the difference is convex in _. We will show that the difference is increasing at _ = 1,

so that it is increasing for all _ > 1. To that end, consider m
m_

(
c�('↑, '↓) − c�(∅, '↓)

)
=

VX(VX(1−_)+(@�−@!)(U+V_+(1−U)\;)+3f
9f , which is equal to VX((@�−@!)(U+V+(1−U)\;)+3f)

9f at _ = 1. Since this

is positive, the difference is increasing in _. Therefore, we can simplify the inequality c�('↑, '↓) <

c�(∅, '↓) as _ < _1 where _1 solves c�('↑, '↓) = c�(∅, '↓), and is equal to

√
d − X(VX + U + (1 − U)\;)(@� − @!) + 3f)

VX(@� − @! − X)
(A.2.8)

where

d = X
(
9Xf(f − 2:) + 6f(@� − @!)(X(U + V + (1− U)\;) + 3:) + X(@� − @!)2(U + V + (1− U)\;)2

)
.

Next, the second inequality can be simplified in a similar manner, recognizing that

m

m_

(
c!(∅, '↓) − c!(∅, ∅)

)
=
VX(VX(_ − 1) − (@� − @!)(U + V_ + (1 − U)\;) + 3f)

9f
, (A.2.9)

which is positive because (1+V_)(@�−@!) > (U+(1−U)\;+V_)(@�−@!) and 3f > (1+V_)(@�−@!)

by Assumption A.1.2. Therefore, the inequality c!(∅, '↓) > c!(∅, ∅) simplifies to _ > _′4, where

_′4 solves c!(∅, '↓) = c!(∅, ∅) and is equal to −
√
l+X(VX+(U(1−\;)+\;)(@�−@!)−3f)

VX(@�−@!−X) , where

l = X
(
9Xf(2: + f) − 2@�

(
3Xf(U + V + (1 − U)\;) + 9:f + X@!(U + V + (1 − U)\;)2

)
+ 6@!f(X(U + V + (1 − U)\;) + 3:) + X@2

�(U + V + (1 − U)\;)2 + X@2
!(U + V + (1 − U)\;)2

)
.

Next, we show that _′4 > _1, which would imply that the two inequalities above cannot be satisfied

for any _. Consider _′4 − _1, which simplifies to

6VXf − VX
(√

(3f + (@� − @!)(U + V + (1 − U)\;))2 + F +
√

(3f − (@� − @!)(U + V + (1 − U)\;))2 − F
)
,

(A.2.10)

where F = 18:f(@�−@!−X)
X

. Since the function
√

(G + H)2 + I +
√

(G − H)2 − I is decreasing in I for

all I > −2GH, we obtain that√
(3f + (@� − @!)(U + V + (1 − U)\;))2 + F +

√
(3f − (@� − @!)(U + V + (1 − U)\;))2 − F
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attains its maximum at the lowest value of F, but since F = 18:f(@�−@!−X)
X

is bounded from below

by zero, the maximizing F is zero. At F = 0, we have√
(3f + (@� − @!)(U + V + (1 − U)\;))2 + 0 +

√
(3f − (@� − @!)(U + V + (1 − U)\;))2 − 0 = 6f.

Therefore, for all F = 18:f(@�−@!−X)
X

> 0, the inequality (A.2.10) holds. This proves that _′4 > _1,

and we are done.

(
'↑, +↓

)
Cannot Be Equilibrium

For ('↑, +↓) to be an equilibrium, it must be that c�('↑, +↓) > c�(+↑, +↓) and c!('↑, +↓) >

c!('↑, '↓). Consider the first inequality. We have

m2

ma2

(
c�(+↑, +↓) − c�('↑, +↓)

)
= − (\; − 1)2(@� − @!)2

9f
< 0; (A.2.11)

i.e., the difference is concave in a. We will show that the difference is increasing for all a < 1

by showing that the maximizer a∗ lies beyond 1. The maximizer a∗ can be easily derived from

FOC: a∗ = 2VX(_−1)+(@�−@!)(2U(1−\;)+V_+V+2\;)+6f
2(1−\;)(@�−@!) . Furthermore, it can be easily verified that a∗

is increasing in U, V and \; . Therefore, the smallest value of a∗ occurs at U = V = \; = 0,

which yields a∗ = 3f
@�−@! . But this is strictly greater than 1 because 3f > (1 + _V)(@� − @!) by

Assumption A.1.2. Therefore, the difference is strictly increasing in a for all a < 1. We can thus

simplify the inequality as a < VX(_−1)
(1−\;)(@�−@!) where VX(_−1)

(1−\;)(@�−@!) solves c�('↑, +↓) = c�(+↑, +↓).

Re-arranging in terms of _ yields _ > 1 + (@�−@!)a(1−\;)
VX

.

Now, consider the second inequality. The difference c!('↑, '↓) − c!('↑, +↓) is concave with

respect to _ and has two roots, A1 = 1 + (@�−@!)a(1−\;)
VX

and A2 = VX−(@�−@!)((2U−a)(1−\;)+V+2\;)+6f
V(X+@�−@!) .

Assumption A.1.2 imposes an upper-bound on _; namely, _ < 3f−(@�−@!)
V(@�−@!) . But the second root

A2 cannot be less than this upper-bound: to see this, it suffices to show that A2 − 3f−(@�−@!)
V(@�−@!) is

positive. Now, this difference can easily verified to be decreasing in both U and \; . Therefore,

the minimum value of this difference occurs at U = \; = 1, where the difference simplifies to

(@�−@!−X)(3f−(V+1)(@�−@!))
(@�−@!)(X+@�−@!) . And since X < @�−@!

2 and 3f > (1 + V_)(@� − @!) > (1 + V)(@� − @!),
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we obtain the desired positivity. This means that if A1 is greater than A2, both roots lie beyond

the upper-bound of _ such that for all parametric regions of our interest, the profit difference

c!('↑, '↓) − c!('↑, +↓) is negative. On the other hand, if A1 is less than A2, then the difference is

negative if and only if _ < A1. Under the assumption that _ < 3f−(@�−@!)
V(@�−@!) , these two cases under

which the profit difference is negative is equivalent to _ < 1 + (@�−@!)a(1−\;)
VX

. This contradicts the

necessary condition derived from the first inequality above: _ > 1 + (@�−@!)a(1−\;)
VX

. Therefore, we

conclude that ('↑, +↓) cannot be an equilibrium.

(
+↑, '↓

)
Cannot Be Equilibrium

For (+↑, '↓) to constitute an equilibrium, it must be that

c�(+↑, '↓) > c�('↑, '↓) (A.2.12)

and

c!(+↑, '↓) > c!(+↑, +↓). (A.2.13)

From the analysis above, we have that the first inequality is equivalent to _ < 1 + (@�−@!)a(1−\;)
VX

.

Consider the second inequality. The difference c!(+↑, '↓) − c!(+↑, +↓) is concave in _. And the

slope of this difference at the largest value of _, which is _ = 3f−(@�−@!)
(@�−@!)V is positive. To see this,

the slope at this maximum _ is

− V(−6X2f−a(1−\;)@3
�

+(1−\;)@2
�

(2X(U+a−1)+3a@!)+@� ^+@3
!
a(1−\;)+2X(1−\;)@2

!
(U+a−1)−2(V+1)X2@!)

18f(@�−@!) ,

(A.2.14)

where ^ =
(
2(V + 1)X2 − 3a(1 − \;)@2

!
− 4X(1 − \;)@!(U + a − 1)

)
. It can be easily verified that

(A.2.14) is decreasing in U and increasing in a. Therefore, (A.2.14) is minimized at U = 1 and

a = 0. Then, substituting these values simplifies the slope expression to VX2(3f−(V+1)(@�−@!))
9f(@�−@!) , which

is, again, positive by Assumption A.1.2. Therefore, the difference c!(+↑, '↓) − c!(+↑, +↓) is

increasing for all _ <
3f−(@�−@!)

(@�−@!)V . We thus obtain that the difference is positive if and only if
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_ > 1 + a(1−\;)(@�−@!)
VX

. This contradicts the first necessary condition.

We are thus left with five equilibrium candidates: ('↑, '↓), ('↑, ∅), (+↑, +↓), (+↑, ∅), and (∅, ∅).

We derive necessary and sufficient conditions for each of these in turn.

Equilibrium Condition for ('↑, '↓)

• Non-deviation conditions for Firm �

– c�('↑, '↓) > c�(+↑, '↓): The difference c�(+↑, '↓) − c�('↑, '↓) is concave with re-

spect to _ because its second-derivative is V2X(X−@�+@!)
9f < 0. And at _ = 1, the difference

is positive: (@� −@!)(2U(1−\;)+2V−a\; +a+2\;)+6f > 0. Therefore, the difference

is negative if and only if _ is greater than the larger root of c�('↑, '↓) = c�(+↑, '↓).

Since the two roots are a(1−\;)(@�−@!)
VX

+ 1 and − VX+(@�−@!)((1−\;)(2U+a)+V+2\;)+6f
V(@�−@!−X) , where

the second root is negative, we obtain that c�('↑, '↓) > c�(+↑, '↓) if and only if

_ > 1 + a(1−\;)(@�−@!)
VX

.

– c�('↑, '↓) > c�(∅, '↓): _ > _1 from computations above.

• Non-deviation conditions for Firm !

– c!('↑, '↓) > c!('↑, ∅): The derivative of the difference c!('↑, '↓) − c!('↑, ∅) with

respect to @! is
VX(_ − 1)(2U(1 − \;) + V_ + V + 2\;)

18f
> 0. (A.2.15)

Therefore, the difference is positive if and only if @! is greater than the root of the

difference, which is equal to

@1 =
VX(_ − 1) − 6f

2U(1 − \;) + V_ + V + 2\;
+

18:f
VX(_ − 1)(2U(1 − \;) + V_ + V + 2\;)

+@� .

– c!('↑, '↓) > c!('↑, +↓): _ > 1 + (@�−@!)a(1−\;)
VX

from computations above.

Equilibrium Condition for ('↑, ∅)

• Non-deviation conditions for Firm �
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– c�('↑, ∅) > c�(+↑, ∅): At _ = 1, the difference c�('↑, ∅) − c�(+↑, ∅) is equal to

− (@�−@!)a(1−\;)((@�−@!)((1−\;)(2U+a)+2V+2\;)+6f)
18f < 0. Moreover, the second derivative of

the difference with respect to _ is V2X(X+@�−@!)
9f > 0. Therefore, the difference is positive

if and only if _ is greater than the larger of the two roots of the difference. The two roots

are 1+ a(1−\;)(@�−@!)
VX

and VX−(@�−@!)((1−\;)(2U+a)+V+2\;)−6f
V(X+@�−@!) , but the second root is negative.

This is because Assumption A.1.2 implies 6f > 2(1 + _V)(@� − @!) > 2V(@� − @!) >

V
@�−@!

2 > VX. Therefore, the difference is positive if and only if _ > 1 + a(1−\;)(@�−@!)
VX

.

– c�('↑, ∅) > c�(∅, ∅): The difference c�('↑, ∅) − c�(∅, ∅) is convex in _ and negative

at _ = 1; therefore, the difference is positive if and only if _ is greater than larger of the

two roots of the difference, which is

_2 =
VX2 − 3Xf +

√
Z − X((1 − U)\; + U)(@� − @!)
VX(X + @� − @!)

. (A.2.16)

where

Z = X
(
9Xf(2: + f) + 6f(@� − @!)(X((1 − U)\; + U + V) + 3:)

+ X(@� − @!)2((1 − U)\; + U + V)2
)
.

• Non-deviation conditions for Firm !

– c!('↑, ∅) > c!('↑, '↓): @! < @1 from complement of above.

– c!('↑, ∅) > c!('↑, +↓): the derivative of the difference with respect to _ is

− Va(1 − \;)(@� − @!)(2X + @� − @!)
18f

< 0. (A.2.17)

Therefore, the difference is positive if and only if _ is smaller than the root of the

difference, which is _3 =
2VX− 18:f

a(1−\; )(@� −@! )−(@�−@!)((1−\;)(2U−a)+V+2\;)+6f
V(2X+@�−@!) .

Equilibrium Condition for (+↑, +↓)

• Non-deviation conditions for Firm �
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– c�(+↑, +↓) > c�('↑, +↓): _ < 1 + (@�−@!)a(1−\;)
VX

from computations above.

– c�(+↑, +↓) > c�(∅, +↓): _ > _4 from computations above.

• Non-deviation conditions for Firm !

– c!(+↑, +↓) > c!(+↑, '↓): _ < 1 + (@�−@!)a(1−\;)
VX

from the computations above.

– c!(+↑, +↓) > c!(+↑, ∅): the the difference c!(+↑, +↓) − c!(+↑, ∅) is concave in @! .

For simplicity, we assume that ad cost : is sufficiently low such that Firm ! prefers to

choose +↓ over not advertising when Firm � chooses +↑ (Assumption A.1.1). Then by

concavity, we have that the difference is positive if and only if @! is less than the larger

of the two roots of the difference, which is @2 = @�−

3a(1 − \;)f − 3
√
f
√
a(1 − \;)(a(1 − \;)f − 2:((1 − \;)(2U + a) + V(_ + 1) + 2\;))

a(1 − \;)((1 − \;)(2U + a) + V(_ + 1) + 2\;)
.

(A.2.18)

Equilibrium Condition for (+↑, ∅)

• Non-deviation conditions for Firm �

– c�(+↑, ∅) > c�('↑, ∅): _ < 1 + a(1−\;)(@�−@!)
VX

from the complement of above.

– c�(+↑, ∅) > c�(∅, ∅): the derivative of the difference with respect to @! is

− a(1−\;)((@�−@!)((1−\;)(2U+a)+V(_+1)+2\;)+3f)
9f < 0, and the second derivative with respect

to @! is a(1−\;)((1−\;)(2U+a)+V(_+1)+2\;)
9f > 0. Therefore, the difference is positive if and

only if @! is less than the smaller of the two roots of the difference, which is equal to

@3 = @�−

6:
√
f

a(1 − \;)
√
f +
√
a
√

1 − \;
√
a(1 − \;)f + 2:(2(U + a)(1 − \;) + V(_ + 1) + 2\;)

.

(A.2.19)

• Non-deviation conditions for Firm !
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– c!(+↑, ∅) > c!(+↑, +↓): @! > @2 from the complement of above.

– c!(+↑, ∅) > c!(+↑, '↓): the second derivative of the difference c!(+↑, '↓) − c!(+↑, ∅)

with respect to _ is V2X(X−@�+@!)
9f < 0 and the first derivative with respect to _ is

VX(VX(_−1)+(@�−@!)((1−\;)(−(U+a))+V_+\;)+3f)
9f , which is positive due to Assumption A.1.2.

Therefore, the difference is negative if and only if _ is less than _5, the smaller of the

two roots, which is equal to VX2−3Xf+
√
k+X(@�−@!)((1−U)\;+U+a(1−\;))
−VX(@�−@!−X) , where

k = X
(
(@� − @! − X)

(
V2X2 − 6VXf − 18:f

+ VX(@� − @!)(2U(1 − \;) + V + 2((1 − a)\; + a))
)

+ X(VX + (@� − @!)((U + a)(1 − \;) + \;) − 3f)2
)
.

Equilibrium Condition for (∅, ∅)

Complement of the union of all other equilibrium sets above.

A.2.5 Proof of Proposition 4

Consider the region _ ∈
(
_4,min

[
_5, 1 + (@�−@!)a(1−\;)

VX

] )
and @! < @3, wherein Firm �

chooses +↑, and Firm ! either +↓ or ∅ in equilibrium. As @! increases above @2, Firm ! changes

its advertising strategy from +↓ to ∅. Therefore, Û jumps discretely upward from U to U + a, when

@! passes the threshold @! .

Since Firm �’s profit is continuous in @! , we can find a small n > 0 such that, all else equal,

Firm �’s profit decreases by no more than n as @! increases from @2 − n to @2 + n . While the profit

change due to increase in @! is infinitesimally small by construction, the discrete jump in Û leads

to an discrete positive jump in Firm �’s profit.

Firm !’s equilibrium profit increases with @! as well because in this region, its equilibrium

profit is

max
[

1
18f

(
3f − (U + (1 − U)\; + V) (@� − @!) − V

(@� + @!
2

)
(_ − 1)

)2
− :,

1
18f

(
3f − (U + a + (1 − U − a)\; + V) (@� − @!) − V

(@� + @!
2

)
(_ − 1)

)2
]
,
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from which it is evident that the profit is increasing in @! .

A.2.6 Proof of Proposition 5

Consider the region _ < min
[
_5, 1 + (@�−@!)a(1−\;)

VX

]
and @2 < @! , where Firm ! does not

advertise and Firm � chooses +↑ for low @! < @3 and does not advertise for high @3 < @! .

Therefore, Û jumps discretely downward from U + a to U, when @! passes the threshold @! .

Now, consider the consumer surplus:

�( = + + Û
( (@! − V_(ĵ − @!) − ?!)(f − (−?� + ?! + Δ@ + V(@� − ĵ) + V_(ĵ − @!)))

2f

+
(@� + V(@� − ĵ) − ?�)(−?� + ?! + Δ@ + V(@� − ĵ) + V_(ĵ − @!) + f)

2f

)
+ (1 − Û)

( (\;@! − V_(ĵ − @!) − ?!)(f − (−?� + ?! + \;Δ@ + V(@� − ĵ) + V_(ĵ − @!)))
2f

+
(\;@� + V(@� − ĵ) − ?�)(−?� + ?! + \;Δ@ + V(@� − ĵ) + V_(ĵ − @!) + f)

2f

)
(A.2.20)

where Δ@ = @� − @! .

If f is sufficiently large, then the expected consumer surplus increases in Û. To see this, note

that the derivative of (A.2.20) with respect to Û is increasing in ĵ and V and decreasing in Û,

because m2(�.2.20)
mÛm ĵ

∝ 2Δ@V(_ − 1) > 0, m2(�.2.20)
mÛmV

∝ 2(@� − ĵ + _(ĵ − @!)) > 0, and m2(�.2.20)
mÛmÛ

∝

−16Δ2
@(1 − \;) < 0. Therefore, the derivative is minimized at ĵ = @! , V = 0, and Û = 1, which

upon substitution yields (9\; − 7)Δ2
@ + 9f(@� + @!). This is positive if and only if

f >

7
9 − \;
@� − @!

. (A.2.21)

Suppose (A.2.21) holds. Since the consumer surplus is continuous in @! , we can find a small

n > 0 such that, all else equal, the consumer surplus decreases by no more than n as @! increases

from @3 − n to @3 + n . By construction, the change in consumer surplus due to increase in @!

is infinitesimally small. However, the change in equilibrium advertising regime as @! increases
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induces a discrete negative jump in U. This in turn results in a discrete negative jump in the

consumer surplus.

A.2.7 Proof of Proposition 6

(∅, �) Cannot Be Equilibrium

For (∅, �) to constitute an equilibrium, it must be that c�(∅, �) > c�(∅, �) and c!(∅, �) >

c!(∅, ∅). These two inequalities, respectively, simplify to : > 1
18f �(6f+�) and : < 1

18f �(6f−�)

where � = a(1−\;)(1−F)(@�−@!)+VX(_−1)F and � = (@�−@!)(V_+V+2\;+(1−\;)(2U−a(1−

F))) − VX(_ − 1)F. Since � > 0, the two inequalities cannot hold simultaneously if � > 0. But

since X ≤ @�−@!
2 , we have � ≥ (@� −@!)(V_+ V+2\; +(1− \;)(2U− a(1−F)))− V @�−@!2 (_−1)F =

(@� − @!)
(
V_

(
1 − F

2
)

+ VF

2 + V + 2\; + (1 − \;)(2U − a(1 − F))
)
> 0. This completes the proof.

Equilibrium Condition for (�, �)

• Non-deviation condition for Firm �

c�(�, �) > c�(∅, �): The derivative of the difference c�(�, �) − c�(∅, �) with respect

to _ is increasing in U and a because m2

m_mU
= 2(@� − @ − !)FX(1 − \;) and m2

m_ma
= (@� −

@!)(1 − F)(@� − @! − 2FX)(1 − \;) > 0. Therefore, the derivative is minimized at U = 0 and

a = 0, which after substitution yields 2XF((@� − @!)(V_ + \;) + 3f − FVX(_ − 1)). Now,

using the fact that X ≤ @�−@!
2 , we obtain 2XF((@� − @!)(V_ + \;) + 3f − FVX(_ − 1)) >

2XF
(
(@� − @!)(V_ + \;) − F

2 V(_ − 1)(@� − @!) + 3f
)
. This in turn is equal to 2XF(@� −

@!)
(
3f +

(
\; + V_

(
1 − F

2
) )

+ VF

2

)
> 0. Therefore, the derivative is always positive. Com-

bined with the fact that the difference is convex in _, we obtain that the difference is positive

if and only if _ is greater than the larger of the two roots of the difference, which we denote

by _̃1.

• Non-deviation condition for Firm !

c!(�, �) > c!(�, ∅): the derivative of the difference c!(�, �)−c!(�, ∅) with respect to _ is
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− V
2XF(@�−@!+XF)

9f < 0. Therefore, the difference is positive if and only if _ ∈ (_̃2, _̃3) where

_̃2 is the smaller and _̃3 the larger of the two roots of the difference.

Equilibrium Condition for (�, ∅)

• Non-deviation condition for Firm �

c�(�, ∅) > c�(∅, ∅): The derivative of the difference c�(�, ∅) − c�(∅, ∅) with respect to

_ is increasing in U and a because m2

m_mU
(c�(�, ∅) − c�(∅, ∅)) = 2(@� − @!)FX(1 − \;) > 0

and m2

m_ma
(c�(�, ∅) − c�(∅, ∅)) = (@� − @!)(1 − F)(@� − @! + 2FX)(1 − \;) > 0. Therefore,

m
m_

(c�(�, ∅) − c�(∅, ∅)) is minimized at U = 0 and a = 0, which upon substitution yields

2XF((@�−@!)(V_+\;)+3f+VX(_−1)F) > 0. Therefore, the difference is strictly increasing

in _. Moreover, second derivative of the difference is V2XF(@�−@!+XF)
9f > 0; therefore, the

difference is positive if and only if _ is greater than the larger root of the difference, which

we denote by _̃4.

• Non-deviation condition for Firm !

c!(�, ∅) > c!(�, �): _ < _̃2 or _ > _̃3 from the complement of above.

Equilibrium Condition for (∅, ∅)

Complement of the union of all other equilibrium sets above.

A.3 Alternative Utility Model

A main characteristic of the consumer utility function that drives our results is that there are

diminishing marginal returns to quality. In the main model in the paper, we have implemented this

concavity in consumption utility using a linear loss-aversion model, which also provided a natural

way to incorporate the quality reference point. Here, we show the robustness of our main insights

by considering an alternative specification of the consumer utility. Specifically, we model the

concavity of consumer’s utility for quality by relaxing the behavioral assumption that consumers

exhibit loss aversion and simply considering a general concave utility function.
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Furthermore, another way in which the alternative utility function assumed here is different

from that in the main model is that we assume it to be entirely deterministic. Note that, in the main

model, we had included the random component of utility to make the demand function smooth

and simplify the pricing analysis. Here, we show that removing this simplification leads to the

same insights, although the pricing analysis is more complicated, essentially because the pricing

equilibrium is in mixed strategies and not in pure strategies.

Qualitatively, the key insights that we obtain here are the same as those in the main model.

Specifically, we find that a monopolist offering two products never chooses reference-shifting ad-

vertising that increases the quality reference point, as doing so only dampens consumer’s WTP. In a

duopoly, the incentive of the low-quality firm is similar — it never chooses to increase the reference

quality. On the other hand, the high-quality firm may find it profitable to choose reference-shifting

advertising that increases the reference point. The underlying intuition is analogous to the main

model — due to the concavity of the utility function, an increase in the quality reference point

induces a steeper decline in consumer’s valuation for the low-quality product thn it does for the

high-quality product. This increases perceived quality differentiation between the products which,

in turn, generates the premium effect wherein the high-quality firm charges a higher premium over

its competitor’s price. We now proceed with the details.

A.3.1 Model

We assume that the consumer utility function is given by

D(@ 9 ) = \E(@ 9 − j),

where E(·) represents the consumer’s valuation function with the properties E′(·) > 0 and E′′(·) < 0,

that is, the marginal utility for quality diminishes with increasing quality. We assume that the utility

is zero for qualities lower than the references point. For setting the reference point, we assume the
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following specification, which is similar to that in the main model:

j

(
0'� , 0

'
! , [� , [!

)
=
00X0 + 0'

�
[� + 0'

!
[!

00 + 0'
�

+ 0'
!

,

where X0 ≤ @! is the reference quality without ads. We assume that values of [ 9 are such that

j ≤ @! .

The rest of the model specification remains the same as the main model in Section 2.2 of the

main paper.

A.3.2 Monopoly

Proposition 27 (Monopolist). If a monopolist offering two products with distinct quality levels

advertises, it never chooses reference-shifting advertising that increases the reference quality.

Proof. Let the hat notations denote the post-advertising variables. The monopolist’s profit can be

either (i) ÛE(@� − ĵ), (ii), Û(E(@� − ĵ) − E(@! − ĵ) + \;E(@! − ĵ)) + (1 − Û)\;E(@! − ĵ), or (iii)

\;E(@! − ĵ). Of the three possibilities, if either E(@! − ĵ) or ÛE(@� − ĵ) is the highest, then the

monopolist’s profit decreases with ĵ. Therefore, it will never choose '↑, let alone at a cost : .

Suppose Û(\ℎ(E(@� − ĵ)− E(@! − ĵ)) + E(@! − ĵ)) + (1− Û)E(@! − ĵ) is the highest profit (i.e.,

the monopolist offers both products and sets prices such that the ℎ-type’s incentive compatibility

constraint binds, and ;-type’s rationality constraint binds). We will show that the fact that Û(E(@�−

ĵ) − E(@! − ĵ) + \;E(@! − ĵ)) + (1 − Û)\;E(@! − ĵ) is higher than the other two profits will imply

'↑ is dominated.

First, note that

Û(E(@� − ĵ)− E(@! − ĵ) + \;E(@! − ĵ)) + (1− Û)\;E(@! − ĵ) > ÛE(@� − ĵ) ⇐⇒ Û < \; (A.3.1)
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and

Û(E(@�− ĵ)−E(@!− ĵ)+\;E(@!− ĵ))+(1−Û)\;E(@!− ĵ) > \;E(@!− ĵ) ⇐⇒ E(@�− ĵ) > E(@!− ĵ).

(A.3.2)

Therefore, m
m ĵ
Û(E(@� − ĵ) − E(@! − ĵ) + \;E(@! − ĵ)) + (1 − Û)\;E(@! − ĵ) is equal to

Û
mE(@� − ĵ)

m ĵ︸         ︷︷         ︸
−

+ (\; − Û)︸   ︷︷   ︸
+ by (�.3.1)

mE(@! − j)
mj︸        ︷︷        ︸
−

< 0

which implies that '↑ only reduces profit. This completes the proof. �

A.3.3 Duopoly

When there are no error terms in the consumer utility, there is no pure strategy equilibrium in

the pricing subgame. Instead, firms play mixed strategies as specified in the following lemma.

Lemma 7 (Mixed Strategy Price Equilibrium). There does not exist a pure strategy equilibrium.

There exists a unique mixed strategy equilibrium characterized by the cumulative distributions

functions:

�∗�(?) =



0 if ? < ?
�
,

1
Û
− (1−Û)\;E(@!−ĵ)
Û(?−(E(@�−ĵ)−E(@!−ĵ))) if ?

�
≤ ? < ?� ,

1 if ?� ≤ ?,

and �∗!(?) =



0 if ? < ?
!
,

?−(1−Û)\;E(@!−ĵ)
?+(E(@�−ĵ)−E(@!−ĵ)) if ?

!
≤ ? < ?! ,

1 if ?! ≤ ?,

where ?
�

= E(@�− ĵ)−E(@!− ĵ)+(1−Û)\;E(@!− ĵ), ?� = E(@�− ĵ)−E(@!− ĵ)+\;E(@!− ĵ), ?
!

=

(1 − Û)\;E(@! − ĵ) and ?! = \;E(@! − ĵ).
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Proof. We first show that there does not exist a pure strategy equilibrium. Suppose, towards a

contradiction, there exists one, and denote it by (?∗
�
, ?∗

!
). Since all ?! beyond E(@! − ĵ) lead to

zero demand, they must be dominated. Thus, it must be that ?∗
!
∈ [0, E(@! − ĵ)). Secondly, due to

the assumption in Section A.3.4, Firm � will not lower its price from E(@� − ĵ)−E(@! − ĵ)+ ?! to

min[\;(E(@� − ĵ) − E(@! − ĵ)) + ?! , \;E(@� − ĵ)] to serve the whole market. Therefore, Firm �’s

best response to ?! is

?�(?!) = E(@� − ĵ) − E(@! − ĵ) + ?! , (A.3.3)

which is the highest price Firm � can charge the ℎ-segment without inducing them to switch to

Firm !. Given Firm �’s best response (A.3.3), however, Firm ! has an incentive to undercut

its price and attract the Û-size ℎ-segment. Firm ! has incentive to undercut Firm � so long as

?∗
!
> 0. Since this implies that the only equilibrium candidate is ?∗

!
= 0 and ?∗

�
= ?�(0) =

E(@� − ĵ)−E(@! − ĵ), this must constitute the hypothesized pure strategy equilibrium. In this case,

however, Firm ! can again increase its profit by unilaterally deviating to ?! = \;E(@! − ĵ). This

positive deviation contradicts that (?∗
�
, ?∗

!
) constitutes an equilibrium.

Next, we construct the unique mixed strategy equilibrium. To that end, we first establish the

equilibrium support by eliminating dominated strategies. As explained above, Firm !’s price in

the interval (E(@! − ĵ),∞) yields zero demand and is thus dominated. Now suppose there exists

a non-empty set P0
!

of non-dominated prices on the interval (\;E(@! − ĵ), E(@! − ĵ)]. By non-

emptiness, we can pick the largest non-dominated price for Firm !, which we denote by ?! =

max{?! : ?! ∈ P0
!
}. This implies the largest non-dominated price for Firm � can be at most

?� = E(@�− ĵ)−E(@!− ĵ)+?!: this is the price at which the ℎ-type consumer is indifferent between

buying from Firm ! and Firm �; any higher price will yield zero demand. However, if ?� ≤ ?� ,

then ?! = ?! yields zero profit for Firm !, while ?! = \;E(@!− ĵ) yields a positive payoff of either

\;E(@! − ĵ) (if E(@� − ĵ)− E(@! − ĵ)+ \;E(@! − ĵ) < ?ℎ ≤ E(@� − ĵ)− E(@! − ĵ)+ ?! such that all

consumers buy from Firm !) or (1−Û)\;E(@!− ĵ) (if ?� ≤ E(@�− ĵ)−E(@!− ĵ)+\;E(@!− ĵ) such

that ;-type consumers buy from Firm !). In other words, ?! = \;E(@! − ĵ) dominates ?! = ?! .

This is a contradiction because ?! was a non-dominated price. Therefore, it must be that the non-
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emptiness assumption of P0
!

is false; i.e., there do not exist non-dominated prices on the interval

(\;E(@! − ĵ),∞).

The remaining set of non-dominated prices is [0, \;E(@! − ĵ)]. But we can reduce Firm !’s

support further by arguing as follows: if ?! ∈ [0, \;E(@! − ĵ)], then Firm � sets price on the

interval [E(@� − ĵ) − E(@! − ĵ), E(@� − ĵ) − E(@! − ĵ) + \;E(@! − ĵ)]. This, in turn, implies that

any price ?! below (1 − Û)\;E(@! − ĵ) is dominated by ?! = \;E(@! − ĵ). To see this, note that

when Firm ! sets price ?! = \;E(@! − ĵ), it exclusively attracts the ;-type consumers for a profit

of (1 − Û)\;E(@! − ĵ), regardless of Firm �’s price. Thus, any prices that yield payoff less than

(1 − Û)\;E(@! − ĵ) will be dominated. On the other hand, the maximum profit that Firm ! can

receive for ?! ∈ [0, (1 − Û)\;E(@! − ĵ)], even if Firm ! manages to attract the whole market, is

(1 − Û)\;E(@! − ĵ); hence the result.

The equilibrium supports of Firms � and ! simplify, respectively, to

P� = [(1 − Û)\;E(@! − ĵ) + E(@� − ĵ) − E(@! − ĵ), \;E(@! − ĵ) + E(@� − ĵ) − E(@! − ĵ)],

P! = [(1 − Û)\;E(@! − ĵ), \;E(@! − ĵ)].

The standard mixed equilibrium indifference conditions over these equilibrium supports yield

the stated price distributions. �

Given the equilibrium price distributions above, the subgame equilibrium profits of Firms �

and ! are, respectively,

c∗� = Û (E(@� − ĵ) − E(@! − ĵ) + (1 − Û)\;E(@! − ĵ)) − :̂ , (A.3.4)

c∗! = (1 − Û)\;E(@! − ĵ) − :̂ , (A.3.5)

where :̂ is : if the firm advertises and 0 otherwise.

From these profit expressions, we can characterize the firms’ incentives to choose particular

advertising strategies.
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Proposition 28 (Premium Effect). While Firm ! never chooses reference-shifting advertising that

increases the reference quality, Firm � may find it profitable to do so if the premium effect, E′(@! −

ĵ) − E′(@� − ĵ), is sufficiently large.

Proof. From (A.3.5), we can see that c! decreases as the reference quality increases; therefore,

Firm ! will never choose '↑. On the other hand, Firm �’s profit may increase in the reference

quality if mc�
m ĵ

= Û(E′(@! − ĵ)− E′(@� − ĵ)− (1− Û)\;E′(@! − ĵ)) is sufficiently large. In particular,

this happens when E′(@! − ĵ)−E′(@� − ĵ) is sufficiently large. This difference in the rates at which

the valuations for products @� and @! fall as a result of a reference-shift captures the premium

effect discussed in the main model. Note that this effect depends crucially on the concavity of the

utility function. The effect disappears if E(·) is linear. �

A.3.4 Parameter Space for Duopoly Analysis

To simplify analysis, we restrict attention to the parameter space for which Firm � is not always

better off serving the whole market at a low price than serving ℎ-type consumers at a high price. To

derive a sufficient condition for this, we impose that for all non-dominated price range of Firm !

and for all first stage ad decisions, Firm �’s maximum attainable profit when it serves the ℎ-type

is greater than that when it serves the whole market. Given Firm !’s price ?! , Firm �’s profit

maximizing prices for each of these cases are, respectively, ?
ℎ-only = E(@� − j) − E(@! − j) + ?!

and ?whole = min[\;(E(@� − j) − E(@! − j)) + ?! , \;E(@� − j)]. Thus, we want to impose that

min
?!∈P!

c�(?
ℎ-only) − c�(?whole) ≥ 0,
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where P! denotes the set of Firm !’s non-dominated prices. Writing out the expression for

c�(?
ℎ-only) − c�(?whole), we obtain that the difference is equal to


U(E(@� − j) − E(@! − j) + ?!) − \;(E(@� − j) − E(@! − j)) − ?! if ?! ≤ \;E(@! − j),

U(E(@� − j) − E(@! − j) + ?!) − \;E(@� − j) if ?! > \;E(@! − j).
(A.3.6)

And since this difference is (i) continuous in ?! , (ii) decreasing in ?! for ?! ≤ \;E(@!−j), and (iii)

increasing in ?! for ?! > \;E(@! − j), we obtain that the minimum is attained at ?! = \;E(@! − j),

which upon substitution yields

(A.3.7)min
?! ∈P!

c�(?
ℎ-only) − c�(?whole) = (U − \;)E(@� − j) − U(1 − \;)E(@! − j)

But (A.3.7) is increasing in j because the derivative with respect to j is greater than E′(@! −

j)\;(1 − U) > 0. Thus, (A.3.7) is minimized at the lowest value of j which is @! . At j = @! ,

(A.3.7) is (U − \;)E(@� − @!), which is positive if and only if U < \; .
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Appendix B: Essay 2

B.1 Proofs

B.1.1 Proof of Proposition 7

Proof. The incumbent’s Stage 2 payoff is 2�
(
1 − max[2�1�2,']

2�

)
if 2�1�2 ≥ max[2�1�2, '], and zero

otherwise. Suppose the incumbent bids below valuation such that 2�1�2 < 2� . If max[2�1�2, '] ≤

2� , then truthful bidding ensures a positive payoff of 2� − max[2�1�2, '] whereas bidding below

valuation yields either the same payoff (if max[2�1�2, '] ≤ 2�1�2 < 2�), or a lower payoff of zero

(if 2�1�2 < max[2�1�2, '] < 2�). And both strategies yield zero payoff if 2� < max[2�1�2, '].

Therefore, truthful bidding weakly dominates underbidding.

Suppose the incumbent bids above valuation such that 2�1�2 > 2� . If max[2�1�2, '] ≤ 2� , then

both strategies yield the same positive payoff of 2�−max[2�1�2, '], and if 2�1�2 < max[2�1�2, '],

then both strategies yield zero payoff as the incumbent loses the auction. On the other hand,

if 2� < max[2�1�2, '] ≤ 2�1�2, then truthful bidding yields zero payoff whereas overbidding

yields a negative payoff of 2� − max[2�1�2, ']. Therefore, truthful bidding weakly dominates

overbidding.

The incumbent’s Stage 1 payoff is

c�1(1�1 |1�1) =


2�

(
1 − max[2�1�1,']

2�

)
+ Xc�2(1�2 = 1|1�2) if 2�1�1 ≥ max[2�1�1, '],

Xc�2(1�2 = 1|1�2) if 2�1�1 < max[2�1�1, '],

where c�2(1�2 = 1|1�2 = 1) denotes the Stage 2 payoff. Since the incumbent’s Stage 2 payoff

is the same regardless of the outcome of the Stage 1 auction, it is immaterial when the incumbent

determines its Stage 1 bid. Therefore, by the same reasoning as above, we can show that a weakly
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dominant strategy in Stage 1 is also truthful bidding. The weak dominance of truthful bidding

strategy for the entrant can be shown in a similar manner and is omitted.

Finally, consider the publisher’s revenue. In any stage, the publisher receives 2� (max[2� , ']/2�)

if the incumbent wins, and 2� (2�/2� ) if the entrant wins. The publisher receives nothing if both

advertisers’ effective bids are below the reserve price. The result follows. �

B.1.2 Proof of Proposition 8

We state two intermediary results which will be used for the proof (see Online Appendix for

proofs).

Claim 1. Suppose a differentiable function 5 (G) is single-peaked on the interval [0, 1] (i.e., there

exists some b ∈ (0, 1) such that 5 ′(G) ≥ 0 for all G ≤ b and 5 ′(G) ≤ 0 for all G ≥ b) and

5 (0) < 0 < 5 (1). Then there exists a pair G̃1 ≤ G̃2 in (0, 1) such that (i) 5 (G) < 0 for all G ∈ [0, G̃1),

(ii) 5 (G) = 0 for all G ∈ [G̃1, G̃2], and (iii) 5 (G) > 0 for all G ∈ (G̃2, 1].

Claim 2. If �� is continuous, then m
m2�

∫1
2�

1 − 2�
2�
3�� = 1

22
�

∫1
2�
2� 3�� .

Proof of Proposition 8. Whether the incumbent’s bid is below or above valuation depends on the

sign of 6(2�) ≡
(
1 − `�

2�

)+
−�� (')

(
1 − '

2�

)+
−
∫1
'

(
1 − 2�

2�

)+
3�� . If 0 ≤ 2� ≤ ', then 6(2�) = 0, so

the incumbent bids truthfully. If ' < 2� ≤ `� , then 6(2�) = −�� (')
(
1 − '

2�

)
−
∫2�
'

1− 2�
2�
3�� . And

since 0 < P{2� ≤ '}, we have 6(2�) < 0, which means that the incumbent bids below valuation.

Finally, if `� < 2� ≤ 1, then

6(2�) =
(
1 − `�

2�

)
− �� (')

(
1 − '

2�

)
−

∫ 2�

'

1 − 2�
2�
3�� . (B.1.1)

We will show that (B.1.1) satisfies the properties of Claim 1, thereby proving that there exists

a pair of thresholds 2̃1 ≤ 2̃2 in (`� , 1) that satisfies the properties stated in the proposition.
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Differentiability:

6′(2�) =
m

m2�

(
1 − `�

2�
−

∫'

0
1 − '

2�
3�� −

∫ 2�

'

1 − 2�
2�
3��

)
= − 1

22
�

∫1

0
max[' − 2� , 0] 3�� +

m

m2�

∫1

2�

1 − 2�
2�
3�� (∵ ' < 2�)

= − 1
22
�

∫1

0
max[' − 2� , 0] 3�� +

1
22
�

∫1

2�

2� 3�� , (B.1.2)

where the last equality follows from Claim 2. Since the derivative is well-defined for all 2� ∈

(0, 1), we conclude that 6(2�) is differentiable.

Single-peakedness: From (B.1.2), it follows that the sign of 6′(2�) is equal to the sign of

ℎ(2�) ≡
∫1
2�
2� 3�� −

∫1
0 max[' − 2� , 0] 3�� . At 2� = 0+1, ℎ is positive because

∫1
2�
2� 3�� −∫1

0 max[' − 2� , 0] 3�� =
∫1

0+ 2� 3�� −
∫1

0 max[' − 2� , 0] 3�� =
∫1

0 2� − max[' − 2� , 0] 3�� ≥∫1
0 2� −' 3�� = `� −' > 0. At 2� = 1, ℎ is negative because

∫1
2�
2� 3�� −

∫1
0 max['−2� , 0] 3�� =∫1

1 2� 3�� −
∫1

0 max['− 2� , 0] 3�� = −
∫1

0 max['− 2� , 0] 3�� < 0. Finally, ℎ(2�) is non-increasing

because for any X > 0, ℎ(2� + X) − ℎ(2�) =
∫1
2�+X

2� 3�� −
∫1
2�
2� 3�� = −

∫2�+X
2�

2� 3�� ≤ 0.

In total, since ℎ(2�) is non-increasing in [0, 1], ℎ(0+) ≥ 0, and ℎ(1) ≤ 0, by the IVT, there exists

a b ∈ (0, 1) such that ℎ(2�) ≥ 0 for all 2� ≤ b and ℎ(2�) ≤ 0 for all 2� ≥ b. By the sign equivalence,

we have 6′(2�) ≥ 0 for all 2� ≤ b and 6′(2�) ≤ 0 for all 2� ≥ b.

Endpoint values: We have 6(`� ) = −�� (')
(
1 − '

`�

)
−

∫`�
'

(
1 − 2�

`�

)
3�� < 0 and 6(1) =

1 − `� − �� (') (1 − ') −
∫1
'

1 − 2� 3�� =
∫'

0 ' − 2� 3�� > 0.

Therefore, 6(2�) satisfies the properties of Claim 1, which implies that there exists a pair 2̃1 ≤

2̃2 in (`� , 1) such that 6(2�) < 0 for all 2� ∈ (`� , 2̃1), 6(2�) = 0 for all 2� ∈ [2̃1, 2̃2], and 6(2�) > 0

for all 2� ∈ (2̃2, 1]. This, in turn, implies that the incumbent bids below valuation, truthfully, and

above valuation for 2� ∈ (`� , 2̃1], 2� ∈ [2̃1, 2̃2], and 2� ∈ (2̃2, 1], respectively.

Second, whether the entrant bids below or above valuation depends on the sign of :(2�) ≡∫1
2�
(2� − 2�) 3�� − (`� − 2�)+. If `� ≤ 2� , then :(2�) =

∫1
2�
2� − 2� 3�� ≥ 0. If `� > 2� , then

:(2�) =
∫1
2�
(2� − 2�) 3�� − (`� − 2�)+ = −

∫2�
0 2� − 2� 3�� > 0. �

1We evaluate at the right-limit 0+ because 6′(2� ) is undefined at 2� = 0.
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B.1.3 Proof of Proposition 9

Proof. Consider the difference in effective bids ��(2�) ≡ 2�1∗�1(2�) − `�1∗�1(2�). If 2� ≤ ', then

��(2�) = 2� − `� + X
(
`� − ' −

∫1

'

2� − ' 3��
)

= 2� − `� + X
(∫1

0
2� − ' 3�� −

∫1

'

2� − ' 3��
)

= −(`� − 2�) − X
∫'

0
' − 2� 3�� < 0.

Therefore, the entrant wins the Stage 1 auction for all 2� ≤ '. Note that the entrant also beats the

reserve price because 1∗
�1(2�) ≥ 1 (cf. Lemma 2) and `� > '.

If ' < 2� < `� , then ��(2�) =

2� − `� − X
∫1

2�

2� − 2� 3�� + X
(
2� − `� −

∫1

0
(2� −max[2� , '])+ 3��

)
< 0. (B.1.3)

Therefore, the entrant wins the first stage auction in this interval as well.

Finally, if `� ≤ 2� ≤ 1, then

��(2�) = (1 + X)(2� − `� ) − X
∫1

2�

2� − 2� 3�� − X
∫1

0
(2� −max[2� , '])+ 3�� . (B.1.4)

Thus,

�′�(2�) = 1 + X(1 − �� (2�)) + X
(
1 − m

m2�

∫1

0
(2� −max[2� , '])+ 3��

)
, (B.1.5)

which simplifies to 1+X(1−�� (2�))+X (1 − 1) if 2� ≥ max[2� , '], and 1+X(1−�� (2�))+X (1 − 0),

otherwise. In either case, the derivative is positive. Therefore, ��(2�) is strictly increasing in the

interval [`� , 1]. Combined with the fact that

��(`� ) = −X
∫1

`�

2� − `� 3�� − X
∫
(`� −max[2� , '])+ 3�� < 0 (B.1.6)
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and ��(1) = 1− `� + X
(
1 − `� −

∫
1 −max[2� , '] 3��

)
= 1− `� + X

∫
max[2� , ']− 2� 3�� > 0,

we have, by the IVT, a unique 2̂ ∈ (`� , 1) such that ��(2�) < 0 for all 2� < 2̂ and ��(2�) > 0 for

all 2� > 2̂. More generally, combining the results from the intervals above yield that the entrant

wins the Stage 1 bid for all 2� < 2̂ and the incumbent wins for all 2� ≥ 2̂.

Next, we characterize the publisher’s expected payoff when it knows the entrant’s CTR. If the

entrant’s CTR is known, then advertisers bid truthfully. Therefore, the publisher’s total expected

revenue is E[c�
%
] = (1 + X)

(∫1
2�
2� 3�� +

∫2�
0 max[2� , '] 3��

)
. On the other hand, if 2� is a priori

unknown, then the publisher’s expected revenue is

E[c%] =


`�1

∗
�1 + Xmax[min[2� , `� ], '] if 2�1∗�1 ≥ `�1

∗
�1,

max[2�1∗�1, '] + X
(∫1
<
< 3�� +

∫<
0 max[2� , ']I{2�≥max[2� ,']} 3��

)
if 2�1∗�1 < `�1

∗
�1.

(B.1.7)

Next, define the difference �c(2�) ≡ E[c%] − E[c�
%
]. If ' < 2� ≤ `� , then

�c(2�) = max
[
2� − X

∫ 2�

0
2� −max[2� , '] 3�� , '

]
−

(∫ 2�

0
max[2� , '] 3�� +

∫1

2�

2� 3��

)
,

which is positive iff 2�−
∫2�
'
2� 3��−

∫1
2�
2� 3��−

∫'
0 ' 3��−X

(∫2�
'
2� − 2� 3�� +

∫'
0 2� − ' 3��

)
>

0. But the expression on the left-hand side is 0 at 2� = ', and its derivative with respect to 2� is

(1 − X)�� (2�). This implies that if X < 1, then �c(2�) > 0 for all ' < 2� ≤ `� , and if X > 1, then

�c(2�) < 0 for all ' < 2� ≤ `� .

If `� < 2� < 2̂, then �c(2�) =

max
[
2� + X

(
2� − `� −

∫ 2�

0
2� −max[2� , '] 3��

)
, '

]
−

(∫ 2�

0
max[2� , '] 3�� +

∫1

2�

2� 3��

)
,

which is positive if and only if

2� −
∫ 2�

'

2� 3�� −
∫1

2�

2� 3�� −
∫'

0
' 3�� + X

(
2� − `� −

∫ 2�

'

2� − 2� 3�� −
∫'

0
2� − ' 3��

)
> 0.

Now, the left-hand side is strictly increasing in 2� because m
m2�
!�( = �� (2�)+X(1−�� (2�)) > 0.

Furthermore, the difference is negative and positive at 2� = ' and 2� = 1, respectively: �c(') =
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X('−`� ) < 0 and �c(1) = 1−
∫1
'
2� 3��−

∫'
0 ' 3��+X

(
1 − `� −

∫1
'

1 − 2� 3�� −
∫'

0 1 − ' 3��
)

=

1−
∫1

0 max[2� , '] 3�� +X
∫1

0 max[2� , ']−2� 3�� > 0. Therefore, by the IVT, there exists a unique

2̃1 ∈ (A, 1) such that �c(2�) < 0 for all 2� ∈ (', 2̃1) and �c(2�) > 0 for all 2� ∈ (2̃1, 1). However,

the interval in question here is (`� , 2̂), so we re-define the threshold as 2 ≡ max[`� ,min[2̂, 2̃1]].

Finally, if 2̂ ≤ 2� ≤ 1, then the incumbent wins the first stage auction and the difference in

payoffs between the uncertain and full information cases is

�c(2�) = (1 + X)
(
`� −

(∫'

0
' 3�� +

∫ 2�

'

2� 3�� +
∫1

2�

2� 3��

))
+ X

∫1

2�

2� − 2� 3�� .

Similarly as above, we invoke the IVT to prove the unique existence of a root. We have

�′c(2�) = −(1 + 2X)(1 − �� (2�)) < 0, �c(`� ) = (1 + X)
(∫`�
'
`� − 2� 3�� +

∫'
0 `� − ' 3��

)
+

X
∫1
`�
2�−`� 3�� > 0, and �c(1) = (1+X)

(
`� −

∫1
'
2� 3�� −

∫'
0 ' 3��

)
= (1+X)

∫'
0 2�−' 3�� <

0. Therefore, by the IVT, there exists a unique 2̃2 ∈ (`� , 1) such that �c(2�) > 0 for all 2� ∈

(`� , 2̃2) and �c(2�) < 0 for all 2� ∈ (2̃2, 1). However, the interval in question here is [2̂, 1], so we

bound the threshold as 2 ≡ max[2̂, 2̃2]. Putting together all the sets for which �c > 0 yields the

result. �

B.1.4 Proof of Proposition 10

Proof. The entrant overbids iff Δ� > 0; i.e., the entrant earns a higher Stage 2 profit if the publisher

learns its CTR. It suffices to show that the entrant’s Stage 2 profit is convex in its true CTR, for

then Jensen’s inequality would imply the desired result. To that end, consider the entrant’s Stage 2
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profit when the publisher assigns it its true CTR:

c�2(2� ) =
∫ E�

0
*� (G� |2� ) 3��

=
∫ E�

0
2�

∫ G�
0
@∗�2(C� )6� (C� ) 3C� 3��

=
∫ E�

0
2�@

∗
�2(C� )(1 − �� (C� )) 3�� (C� )

=
∫ E�

'∗
�2

∫ E�

0
2� I{2�>j(G� ,G� |2� )}(1 − �� (G� )) 3� � 3��

where '∗
�2 = inf

{
1 ≥ 0 : 1 − 1−�� (1)

6� (1) ≥ 0
}
, I{E} is the indicator function which is equal to 1 if E

is true, and 0 otherwise, and

j(G� , G� |2�) = 2�
(
G� −

1 − � �(G�)
6�(G�)

)
/

(
G� −

1 − �� (G� )
6� (G�1)

)
. (B.1.8)

Since j is independent of 2� , we obtain that for any given G� and G� , 2� I{2�>b(G� ,G� |2� )} is convex

in 2� . And since any linear combination with positive weights of convex functions is also convex,

we conclude that c�2(2� ) is convex in 2� .

Next, we turn to the incumbent. We will work with the following subgradient argument:

Claim 3. Let E[-] = `. If a function 5 (G) that is differentiable at G = ` satisfies 5 (G) ≥ 5 ′(`)(G −

`) + 5 (`) ≥ 5 (G) for all G, then E[ 5 (-)] ≥ 5 (E[-]).

This follows immediately from E[ 5 (-)] ≥ E[ 5 ′(`)(- − `) + 5 (`)] = 5 ′(`)E[- − `] + 5 (`) =

5 (`).

The incumbent’s Stage 2 profit when the publisher assigns 2� is

c�2(2� ) =
∫ E�

0
*�(G� |2� , 2�) 3� �

=
∫ E�

0
2�

∫ G�
0
@∗�2(C�)6�(C�) 3C� 3� �

=
∫ E�

0
2�@
∗
�2(G�)(1 − � �(G�)) 3� � ,
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which simplifies to


∫E�
'∗
�2
2�(1 − � �(G�))I

(
2� [� (G� )
2�

)
3� � if 2� E�

E�
< 2� ,∫ℎ−1

�

(
2� E�
2�

)
'∗
�2

2�(1 − � �(G�1))I
(
2� [� (G� )
2�

)
3� � +

∫E�
ℎ−1
�

(
2� E�
2�

) 2�(1 − � �(G�)) 3� � otherwise,

where I(H) = ��

(
[−1
�

(H)
)
, and [ 9 (G) = G − 1−� 9 (G)

6 9 (G) for 9 ∈ {�, �}.

Suppose 2� <
E� `�
E�

such that at c�2(`� ) =
∫E�
'∗
�2
2�(1 − � �(G�))I

(
2� [� (G� )
`�

)
3� � and c′

�2(`� ) =∫E�
'∗
�2
2�(1 − � �(G�))I′

(
2� [� (G� )
`�

) (
− 2� [� (G� )

`2
�

)
3� � . By Claim 3, it suffices to show that

c�2(2� ) ≥ c′�2(`� )(2� − `� ) + c�2(`� ) for all 2� . (B.1.9)

Note that I(·) ≤ 1, which implies that∫ E�

ℎ−1
�

(
2� E�
2�

) 2�(1 − � �(G�)) 3� � ≥
∫ E�

ℎ−1
�

(
2� E�
2�

) 2�(1 − � �(G�))I
(
2�[�(G�)
2�

)
3� �

for all 2� . Therefore, a sufficient condition for (B.1.9) is that for all 2� ,∫ E�

'∗
�2

(1 − � �(G�))I
(
2�[�(G�)
2�

)
3� � ≥

∫ E�

'∗
�2

(1 − � �(G�))

(
I′

(
2�[�(G�)
`�

) (
−2�[�(G�)

`2
�

)
(2� − `� )

+ I
(
2�[�(G�)
`�

))
3� � .

(B.1.10)

Finally, a sufficient condition for (B.1.10) is that
∫E�
'∗
�2

(1 −� �(G�))I
(
2� [� (G� )
2�

)
3� � be convex in 2�

for all 2� . The convexity condition simplifies to

∫ E�

'∗
�2

(1 − � �(G�))I′′
(
2�[�(G�)
2�

)
3� � ≥ 0 for all 2� . (B.1.11)

Note that I
(
2� [� (G� )
2�

)
= P{2�[� (G� ) ≤ 2�[�(G�)}, which is the probability that the entrant’s val-

uation draw is such that the incumbent wins in Stage 2. This probability can be easily verified to be

decreasing in 2� . Now, condition (B.1.11) can be interpreted as this probability being “sufficiently
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convex” for all G� . This is equivalent to the condition that the rate of decline of the incumbent’s

winning probability in 2� be sufficiently low.

Finally, the sufficient condition for overbidding around the neighborhood of 2� = 1 follows

immediately from Claim 3 and the continuity of c�2(2� ) with respect to 2� :

c�2(2� ) ≤ c′�2(`� )(2� − `� ) + c�2(`� ) (B.1.12)

This means that the incumbent’s Stage 2 profit when 2� turns out to be high is considerably low;

i.e., the risk of revealing the entrant’s CTR is high.2 �

B.1.5 Proof of Proposition 11

Proof. Let '�
�

be the entrant’s reserve price under full information. '�
�

satisfies

'�� −
1 − �� ('�

�
)

6� ('�
�
)

= 0. (B.1.13)

When the publisher does not know the entrant’s CTR, the optimal reserve price '� satisfies '� −(
1 − ��

(
'� − XΔ�

`�

))
/6� ('� − XΔ�

`�
) = X

`�
(Δ � − Δ%). Now Assumption 1 implies that for all

', ' −
(
1 − ��

(
' − XΔ�

`�

))
/6� (' − XΔ�

`�
) < ' − (1 − �� (')) /6� ('). Therefore, the condition

'� < '
�
�

is equivalent to

X

`�
(Δ � − Δ%) < '�� −

1 − ��

(
'�
�
− XΔ�

`�

)
6� ('�

�
− XΔ�

`�
)

. (B.1.14)

Using (B.1.13), the right-hand side simplifies to

(
1 − �� ('�� )

)
/6� ('�� ) −

(
1 − ��

(
'�� −

XΔ�

`�

))
/6� ('�� −

XΔ�

`�
), (B.1.15)

2Numerical analyses suggest that conditions (B.1.11) and (B.1.12) are satisfied for a large class of valuation distri-
butions � 9 . For instance, if �� (G� ) = G� , condition (B.1.11) holds for any � � , and condition (B.1.12) holds for � �
that is relatively skewed to the left; i.e., the incumbent is “strong” in the sense that it is likely to have high valuation

(see Figure 3.4). This includes the “power distributions” � � (G� ) =
(
G�
E �

)3
for all E� ≥ 3/2.
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which is negative by Assumption 1. Labeling this negative object as −d simplifies (B.1.14) to

Δ% > Δ � + `� d

X
. �

B.1.6 Proof of Proposition 12

The entrant’s payoff is 0̃� −max[1� , '] + X
∫1
0�
0� − 0� 3�̃ if 1� > max[1� , '], and X(0̃� − 0�)+

otherwise. The entrant’s weakly dominant bid is 1∗
�

= 0̃� + X
(∫1

0(0� − 0�)+ 3�̃ − (0̃� − 0�)+
)
.

Since (0� −0�)+ is convex in 0� , Jensen’s inequality implies that
∫1

0(0� −0�)+ 3�̃− (0̃� −0�)+ ≥ 0;

therefore, the entrant bids above its average Stage 1 per-impression valuation, 0̃� .

Finally, consider the incumbent’s payoff:

c� =



0� − 1� + X(0� − 0̃� )+ if 1� ≥ max[1� , '],

0 + X
∫1

0(0� −max[0� , '])+ 3�̃ if 1� < max[1� , '], 1� ≥ ',

0 + X(0� − 0̃� )+ if 1� < max[1� , '], 1� < '.

(B.1.16)

Following the reasoning from the proof of Lemma 2 in Section ??, we obtain that the incum-

bent’s weakly dominant bid is 1∗
�

= 0� +X
(
(0� − 0̃� )+ −

∫1
0(0� −max[0� , '])+ 3�̃

)
. First, note that

if 0� ≤ 0̃� , then 1∗
�

= 0� − X
∫1

0(0� −max[0� , '])+ 3�̃ ≤ 0� ; i.e., the incumbent underbids for low

0� . Second, consider 0� > 0̃� . We have that 1∗
�

is strictly increasing in 0� in this region because
m1∗

�

m0�
= m
m0�

(
0� + X

(
0� − 0̃� −

∫1
0(0� −max[0� , '])+ 3�̃

))
= 1 + X(1 − �̃(0�)) > 0.

Finally, 1∗
�
> 0� at 0� = 1, because 1

X
(1∗
�
− 0�) is equal to (1 − 0̃� ) −

∫1
0(1 −max[0� , '])+ 3�̃ =

1 − 0̃� −
∫'

0 1 − ' 3�̃ −
∫1
'

1 − 0� 3�̃ = 1 −
(∫'

0 1 + 0� − ' 3�̃ + (1 − �̃('))
)

= �̃(') −
∫'

0 1 +

0� − ' 3�̃ ≥ �̃(') − (1 + ' − ')�̃(') = 0. In sum, 1∗
�

is less than 0� at 0� = 0̃� , greater than 0� at

0� = 1, and strictly increasing in 0� . Therefore, by the IVT, there exists a unique root 0̃ ∈ (0̃� , 1)

such that 1∗
�
< 0� for all 0� < 0̃, and 1∗

�
> 0� for all 0� > 0̃.

B.1.7 Proof of Proposition 13

The entrant’s Stage 1 payoff is `�
(
1 − max[2̃� 1� ,']

`�

)
+ X

∫1
'

(∫1
2�
2� − 2� 3��

)
3�� if `�1� >

2̃�1� , and X
∫1
'
(`� − 2�)+ 3�� otherwise, where 2̃� ∼ �� . Even if the entrant does not know the
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realization of 2̃� , its weakly dominant bid is 1∗
�

= 1 + X
`�

∫1
'

(∫1
0(2� − 2�)+ 3��

)
− (`� − 2�)+ 3�� .

And since (2� − 2�)+ is convex in 2� for all realizations of 2� , Jensen’s inequality implies that∫1
0(2� − 2�)+ 3�� − (`� − 2�)+ ≥ 0 for all 2� . Hence, 1∗

�
≥ 1; i.e., the entrant overbids.

B.1.8 Proof of Proposition 14

Proof. Following the argument in the main model, whether the incumbent bids below or above val-

uation depends on the sign of
∫
G∈X

(
(2� −max[`G , '])+ −

∫1
0(2� −max[2� , '])+ 3�G

)
3%(G). But

we have shown in the main model that for any distribution �G of 2� , there exists a pair of thresholds

(2̃1(G), 2̃2(G)) such that the incumbent underbids for all 2� < 2̃1(G) and overbids for all 2� > 2̃2(G)

(see proof of Proposition 8 in Section B.1.2). It follows that the integral above is negative for all

2� < 2
′ ≡ infG∈X 2̃1(G) and positive for all 2� > 2′ ≡ supG∈X 2̃2(G). This completes the proof. �

B.1.9 Proof of Proposition 15

Proof. From (??), the entrant’s payoff is `�
(
1 − max[2� 1�1,']

`�

)
+ X

∫1
2�
2�

(
1 − 2�

2�

)
3�� +U if 1�1 >

max[2� 1�1,']
`�

, and X`�

(
1 − 2�

`�

)+
otherwise. Thus, a weakly dominant Stage 1 bid is 1∗

�1(U) =

1 + X
`�

(∫1
2�
2� − 2� 3�� − (`� − 2�)+

)
+ U
`�

. �

B.1.10 Proof of Proposition 16

Proof. First, we establish that from the publisher’s profit perspective, offering ad credit U is equiv-

alent to artificially increasing the entrant’s effective bid by U.

Consider the latter mechanism. The Stage 2 outcomes are identical for both cases. In Stage 1,

the advertisers’ weakly dominants can be easily verified to be the same as the main model; i.e.,

the entrant bids 1∗
�1 as in (3.3.2) and the incumbent bids 1∗

�1 as in (3.3.1). Note that this implies

that the effective bids are the same as the former mechanism where the publisher gives free ad

credit U if the entrant wins. To see this, under the former mechanism, the entrant’s effective bid is

`�1
∗
�1(U) as in (3.5.1). But from (3.5.1), we have `�1∗�1(U) = `�1

∗
�1 + U, which is equivalent to

entrant’s effective bid under the artificial additive boosting mechanism. The incumbent’s effective
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bids are trivially the same. Therefore, the mechanisms have the same allocation rule.

Moreover, the payoffs of the two mechanisms are identical. If the incumbent wins in Stage 1,

the publisher’s Stage 1 profit is `�1∗�1 +U in both cases, and if the entrant wins, it is max[2�1∗�1]−U

in both cases. In sum, the two mechanism yield the same profit for the publisher.

Now, consider the boosting multiplier V. For any given additive term U, if the publisher sets

V(U) = 1 + U
`�1

∗
�1

, then the advertisers’ effective bids are the same as in the mechanism wherein

the publisher adds U to the entrant’s effective bid. Therefore, the two mechanisms have the same

allocation rule.

Furthermore, note that the advertisers’ bids are the same for both mechanisms: the incumbent

(entrant) bids 1∗
�1 (1∗

�1). This means that both mechanisms can be cast as a “direct mechanism”

where advertisers bid their true “type.” Therefore, by the Revenue Equivalence principle (Myerson,

1981), the two mechanisms yield the same expected profit up to a constant. �

B.1.11 Proof of Proposition 17

Proof. From the derivation of the LREF Stage 1 bids (see Section ?? of the online appendix), we

see that an important condition that shapes the outcome of the auction is

X

(
E[c;� ] −

(
E[c0

8 ] − E[c;8 ]
))
≤ \(28 − `� ). (B.1.17)

We can write this condition in terms of the reserve price '. First, note that E[c;
�
] =

∫2�
28
\(2� −

28) 3�� +
∫2�
28

(2� − 2�) + \(2� − 28) 3�� is independent of ', and

E[c0
8 ] − E[c;8 ] = 2� − `� −

∫1

0
(28 −max[2� , '])+ 3�� =

∫'

0
' − 2� 3�� −

∫1

28

2� − 28 3�� .

(B.1.18)

Second, since (B.1.18) is strictly increasing in ', we obtain that (B.1.17) is equivalent to ' ≥ '̂,

where '̂ solves X
(
E[c;

�
] −

(
E[c0

8
] − E[c;

8
]
) )

= \(28 − `� ).

Suppose `� ≤ 28 < 2� . Following the derivation of LREF bids in Section ??, if ' > '̂, then the

LREF equilibrium is [�, 8, 4] and the entrant bids 1∗
�
(X) = 1 + X

\`�
E[c;

�
]. Therefore, 1∗

�
(X) ≥ 1∗

�
(0)
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for all X > 0. For the weak incumbent, we obtain 1∗
8
(X) = 1−\+ \`�

28
1∗
�
(X); therefore, 1∗

8
(X) > 1∗

8
(0).

If ' < '̂, then the LREF equilibrium is [�, �, 8] and 1∗
�
(X) = 1 − \ + \

`�
max[281∗8 (X), '] and

1∗
8
(X) =

(
1 + X

\28

(
E[c0

8
] − E[c;

8
]
) )+

. To determine whether the advertisers bid below or above their

learning-free benchmarks, we need to determine the sign of E[c0
8
] − E[c;

8
]. Since (i) m(�.1.18)

m'
> 0,

(ii) (�.1.18) = −
∫1
28
2�−28 3�� < 0 at ' = 0, and (iii) (�.1.18) = 28−`� > 0 at ' = 28, there exists

a unique '̃ ∈ (0, 28) such that E[c0
8
]−E[c;

8
] < 0 for all ' < '̃ and E[c0

8
]−E[c;

8
] > 0 for all ' > '̃.

Thus, ' < '̃ ⇒ 1∗
�
(X) ≤ 1∗

�
(0) and 1∗

8
(X) ≤ 1∗

8
(0) for all X > 0; and ' > '̃ ⇒ E[c0

8
] − E[c;

8
] > 0,

so that 1∗
�
(X) ≥ 1∗

�
(0) and 1∗

8
(X) ≥ 1∗

8
(0) for all X > 0.

Suppose 28 < `� ≤ 2� . The LREF equilibrium is [�, �, 8]. The EF conditions for the strong

incumbent and the entrant are 2�(1 − max[`�1� , ']/2�) + XE[c;
8
] ≥ \2�(1 − max[2818, ']/2�) +

XE[c;
8
] ⇐⇒ `�1� ≤ (1 − \)2� + \max[2818, '] and `� (1 − max[`�1� , ']/`� ) + XE[c;

�
] ≤

\`� (1 − max[2818, ']/`� ) + XE[c;
�
] ⇐⇒ `�1� ≥ (1 − \)`� + \max[2818, ']. Therefore, the

entrant’s LREF bid is 1∗
�
(X) = 1 − \ + \

`�
max[281∗8 , '].

The EF conditions for the the weak incumbent and the entrant are \28(1 − max[2818, ']/28) +

XE[c0
8
] ≤ XE[c;

8
] ⇐⇒ \28 − XE[c;

8
] ≤ \max[2818, '] and \`� (1 −max[2818, ']/`� ) + XE[c;

�
] ≥

XE[c0
�
] ⇐⇒ \max[2818, '] ≤ \`� + X(E[c;

�
] − E[c0

�
]). Since the LREF bid binds at the lower-

bound, we have max[281∗8 , '] = 28 − X
\
E[c;

8
]. Thus, ' < 28 − X

\
E[c;

8
] ⇒ 1∗

8
(X) = 1 − X

\28
E[c;

8
] and

1∗
�
(X) = 1 − \ + \

`�

(
28 − X

\
E[c;

8
]
)
, such that 1∗

�
(X) ≤ 1∗

�
(0) and 1∗

8
(X) ≤ 1∗

8
(0) for all X > 0.

On the other hand, if ' ≥ 28 − X
\
E[c;

8
], then the lowest bid 18 that satisfies the EF condition,

28 − X
\
E[c;

8
] ≤ max[2818, '] ≤ `� + X

\
(E[c;

�
] − E[c0

�
]), is 1∗

8
= 0. In this case, the LREF bids are

1∗
�
(X) = 1 − \ + \

`�
' and 1∗

�
(X) = 0, such that the bids are the same across environments with and

without learning. For this to hold for all X > 0, we must have ' ≥ 28.

Taken together, we can define the threshold for the reserve price ' above which the stated result

holds: ' equals min
[
'̂, '̃

]+ if `� ≤ 28, and equals 28 otherwise. �
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Appendix C: Essay 3

C.1 Sample Privacy Notice

Figure C.1: Google’s Privacy Notice in Europe (July 2019)

C.2 Proofs

C.2.1 Statement and Proof of Claim 4

Claim 4. Suppose a player’s payoff from bidding 1 in an auction parametrized by tuple (G, H, I, ?)

is

c(1) =


G − H ? if 1 ≥ ?,

I if 1 < ?,
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where H > 0 and ? > 0. Then the player’s weakly dominant bid (i.e., robust to any ?) is 1∗ =

(G − I)+/H.

Proof. First, if I ≥ G, then winning leads to strictly lower profit than losing. Therefore, the optimal

bid is to lose for any ?; hence 1∗ = 0.

Second, suppose G > I. We show that there is no strictly dominant deviation strategy for

1∗ = (G − I)+/H. To that end, consider a deviation 1′ that is strictly less than G−I
H

. Then for

? ∈
(
1′, G−I

H

)
, we have c(1′) = I = G − H

(
G−I
H

)
< G − H? = c(1∗). For all other ranges of ?, the two

strategies yield the same payoff. Therefore, 1∗ weakly dominates 1′.

Next, consider another deviation 1′′ that is strictly greater than G−I
H

. Then for ? ∈
(
G−I
H
, 1′′

)
,

we have c(1′) = G − H? < G − H
(
G−I
H

)
= I = c(1∗). Again, the two strategies yield the same payoff

for all other ranges of ?. This completes the proof. �

C.2.2 Statement and Proof of Claim 5

Claim 5. Let 5 (G) = max[G, 0] for all G ∈ R. Then 5 (G) + 5 (H) ≥ 5 (G + H) for all G, H ∈ R.

Proof.

1
2
( 5 (G) + 5 (H)) = 5

(G
2

)
+ 5

( H
2

)
≥ 5

(G
2

+
H

2

)
=

1
2
5 (G + H)

where the equalities are due to linearity and inequality due to convexity. �

Proof of Lemma 5

Proof. Consider the first subgame wherein the advertiser had shown ads in Period 1. Following

Claim 4, the advertiser’s weakly dominant bid (against any reserve price '2) in Period 2 is

1∗2|ad = (1 − `)`q" + `(1 − q")(V + (1 − V)q") − `(1 − q")q"

= (1 − `)`q" + `(1 − q")2V.
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Similarly, the advertiser’s weakly dominant Period 2 bid in the second subgame, wherein it did not

advertise in Period 1, is 1∗2|no ad = `q" . For each of the Period 2 subgames described above, the

ad network sets '2 as high as 1∗2, provided it is larger than : . Thus, we obtain the optimal Period 2

reserve prices '∗2|ad = max
[
:, 1∗2|ad

]
and '∗2|no ad = max

[
:, 1∗2|no ad

]
. �

C.2.3 Proof of Lemma 6

Proof. The advertiser’s weakly dominant bid 1∗1 in Period 1 follows directly from Claim 4. For the

ad network’s optimal reserve price, consider its Period 1 payoff:

c# ('1) =


'1 − : + (1∗2|ad − :)+ if '1 ≤ 1∗1,

0 + (1∗2|no ad − :)+ otherwise.

It follows that '∗1 = 1∗1 if 1∗1 − : + (1∗2|ad − :)+ ≥ (1∗2|no ad − :)+, and '∗1 ∈ (1∗1,∞) otherwise. The

reserve price stated in the lemma satisfies this property. �

C.2.4 Proof of Proposition 18

Proof. Given the reserve prices derived above, the ad network’s profit in Period 2 if ads were shown

in Period 1 is (1−`)`q"+`(1−q")(V+(1−V)q")−`(1−q")q"−: = (1−`)`q"+`(1−q")2V−: ,

if the ad network sells Period 2 ads, and 0 otherwise. Therefore, the ad network’s Period 2 profit

given ads were shown in Period 1 is
(
(1 − `)`q" + `(1 − q")2V − :

)+. Similarly, if ads were not

shown in Period 1, then the ad network’s Period 2 profit is (`q" − :)+.

Thus, the ad network’s total profit from setting reserve price '1 in Period 1 is

c# ('1) =


'1 − : +

(
(1 − `)`q" + `(1 − q")2V − :

)+ if '1 ≤ 1∗1,

0 + (`q" − :)+ if '1 > 1
∗
1,
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from which we obtain

'∗1 =


1∗1 if 1∗1 − : +

(
(1 − `)`q" + `(1 − q")2V − :

)+ ≥ (`q" − :)+ ,

(1∗1,∞) otherwise.

Since '∗1 can be any number greater than 1∗1 when

1∗1 < : + (`q" − :)+ −
(
(1 − `)`q" + `(1 − q")2V − :

)+
, (C.2.1)

we can write

'∗1 = max
[
: + (`q" − :)+ −

(
(1 − `)`q" + `(1 − q")2V − :

)+
, `q" + `(1 − q")q"

]
.

Next, we derive the conditions under which the advertiser’s weakly dominant bids exceed the

optimal reserve prices set by the ad network.

Ads Shown Only in Period 2

We first show that showing ads only in Period 2 is never an equilibrium outcome. Towards a

contradiction, suppose the conditions for such an equilibrium hold; i.e., 1∗1 < '
∗
1 and `q" − : ≥ 0.

But `q" − : ≥ 0 implies that

'∗1 = max
[
: + (`q" − :) −

(
(1 − `)`q" + `(1 − q")2V − :

)+
, `q" + `(1 − q")q"

]
,

(C.2.2)

which simplifies to

max
[
`q" −

(
(1 − `)`q" + `(1 − q")2V − :

)+
, `q" + `(1 − q")q"

]
. (C.2.3)
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This is strictly greater than 1∗1 = `q" + `(1 − q")q" if and only if `q" + `(1 − q")q" <

`q" −
(
(1 − `)`q" + `(1 − q")2V − :

)+, which is equivalent to

`(1 − q")q" < −
(
(1 − `)`q" + `(1 − q")2V − :

)+
. (C.2.4)

Since the left-hand side is strictly positive while the right-hand side is non-positive, this inequality

never holds. A contradiction.

Ads Shown in Periods 1 and 2

The advertiser buys untargeted ads in both periods if and only if 1∗1 ≥ '∗1 and 1∗2|ad ≥ '∗2|ad,

which are equivalent to

`q" + `(1 − q")q" ≥ : + (`q" − :)+ −
(
(1 − `)`q" + `(1 − q")2V − :

)+
(C.2.5)

and

(1 − `)`q" + `(1 − q")2V ≥ :, (C.2.6)

respectively. Note that (C.2.6) implies that (C.2.5) simplifies to

(1 − `)`q" + `(1 − q")2V − : ≥ : + (`q" − :)+ − (`(2 − q")q") , (C.2.7)

which can be re-arranged in terms of V as

V ≥ Ṽ ≡ 2: + (`q" − :)+ − `(3 − ` − q")q"
`(1 − q")2 .

The intersection of conditions (C.2.6) and (C.2.7) simplifies to (C.2.6) if ` > :
q" (2−q" ) , and to

(C.2.7) if ` < :
q" (2−q" ) . These branching conditions in turn can be re-written as q" > 1−

√
(`−:)+
√
`

and q" < 1 −
√

(`−:)+
√
`

, respectively.
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Ads Shown Only in Period 1

The advertiser buys only Period 1 ads if and only if 1∗1 ≥ '∗1 and 1∗2|ad < '∗2|ad. But if the

second condition holds, the first simplifies to

`q" − : + `(1 − q")q" ≥ (`q" − :)+ , (C.2.8)

which holds if `q" ≥ : . If `q" < : , then (C.2.8) simplifies to : ≤ `q"(2 − q"). This last

inequality can be re-arranged in terms of q" as q" ≥ 1 −
√

(`−:)+
√
`

. In total, the intersection of the

two conditions simplifies to q" ≥ 1 −
√
`(`−:)+

`
and (1 − `)`q" + `(1 − q")2V < : . The latter

condition can be simplified using its concavity. To that end, let

` =
q" + V(1 − q")2 −

√(
V(1 − q")2 + q"

)2 − 4:q"
2q"

,

` =
q" + V(1 − q")2 +

√(
V(1 − q")2)2 − 4:q" + q"
2q"

be the two roots of (1 − `)`q" + `(1 − q")2V = : . The larger root ` is greater than 1 for all V

greater than V = :

(1−q" )2 , and the roots do not exist for all V smaller than V = 2
√
:q"−q"

(1−q" )2 . Algebraic

manipulations yield the conditions stated in the proposition.

�

C.2.5 Proof of Proposition 19

Proof. We derive the equilibrium strategies for two subgames: one in which the advertiser showed

its ad in Period 1, and the other in which it did not.

First, consider the advertiser’s Period 2 bidding problem when it has shown ads in Period 1.

Let '82 be the reserve prices for impression type 8 ∈ {), ",)"}. Impression type ) (") denotes

the impression for which the consumer is in funnel state ) ("), and )" denotes the impression

for which the consumer is in either funnel state ) or " .
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Suppose the advertiser submits bid 182 for impression type 8. The advertiser’s payoff is c2 =



(1 − `)
(
`q" − ')2

)
+ `(1 − q")

(
V + (1 − V)q" − '"2

)
if 1)2 ≥ '

)
2 , 1

"
2 ≥ '

"
2 ,

(1 − `)(`q" − ')2 ) + `(1 − q")q" if 1)2 ≥ '
)
2 , 1

"
2 < '"2 ,

`(1 − q")(V + (1 − V)q" − '"2 ) if 1)2 < '
)
2 , 1

"
2 ≥ '

"
2 ,

`(1 − q")q" if 1)2 < '
)
2 , 1

"
2 < '"2 .

Whether 1"2 ≥ '"2 or 1"2 < '"2 , the weakly dominant bid for the )-impression is 1)2
∗ = `q" .

And regardless of 1)2 , the weakly dominant bid for the "-impression is 1"2
∗ = V(1 − q").

Next, consider the advertiser’s payoff from bidding for )": c�2|ad

(
1)"2

)
=


(1 − `)`q" + `(1 − q") (V + (1 − V)q") − ((1 − `) + `(1 − q")) ')"2 if 1)"2 ≥ ')"2 ,

`(1 − q")q" if 1)"2 < ')"2 .

It follows that 1)"2
∗ = (1−`)`q"+`(1−q" )2V

(1−`)+`(1−q" ) .

The ad network anticipates 182
∗ for 8 ∈ {), ",)"} and sets '82 that maximizes its Period 2

profit. There are four candidates that the ad network considers:

(
')2 , '

"
2 , '

)"
2

)
=



(max[:, `q"],∞,∞) induces )-ad sales,

(∞,max[:, V(1 − q")],∞) induces "-ad sales,

(max[:, `q"],max[:, V(1 − q")],∞) induces )- and "-ad sales,(
∞,∞,max

[
:,

(1−`)`q"+`(1−q" )2V
(1−`)+`(1−q" )

] )
induces )"-ad sales.

If the ad network chooses the first candidate, then only Period 2 impressions for consumers in

funnel state ) are potentially sold. Since the size of )-consumers in Period 2 is 1 − `, this strat-

egy yields ad network profit (1 − `)(`q" − :)+. Similarly, the second candidate yields profit

`(1 − q")(V(1 − q") − :)+, the third (1 − `)(`q" − :)+ + `(1 − q")(V(1 − q") − :)+, and
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the fourth ((1 − `)(`q" − :) + `(1 − q")(V(1 − q") − :))+. From Claim 5, it follows that the

third candidate
(
')2 , '

"
2 , '

)"
2

)
= (max[:, `q"],max[:, V(1 − q")],∞) yields the highest payoff.

Therefore, provided ads are shown in Period 1, ads are shown to )-consumers in Period 2 if and

only if `q" ≥ : , and ads are shown to "-consumers if and only if V(1 − q") ≥ : .

Next, consider the second subgame wherein the advertiser did not show ads in Period 1. Then

in Period 2, the advertiser’s payoff from bidding 12, given reserve price '2 is

c�2|no ad(12) =


`q" − '2 if 12 ≥ '2

0 if 12 < '2.

By similar reasoning as above, it follows that 1∗2 = `q" and '∗2 = max[:, `q"]. The ad network’s

Period 2 payoff in this subgame is (`q" − :)+.

With the subgame results at hand, we can solve for the Period 1 game. The advertiser’s total

payoff from bidding 11 in Period 1, given reserve price '1, is

c�(11) =


`q" − '1 + `(1 − q")q" if 11 ≥ '1,

0 if 11 < '1,

where the term `(1 − q")q" represents the advertiser’s Period 2 payoff when it shows ads in

Period 1. Claim 4 implies that the advertiser’s weakly dominant bid is 1∗1 = `q" + `(1 − q")q" .

The ad network anticipates this and sets the reserve price as high as 1∗1, provided '1 − : + (1 −

`)(`q" − :)+ + `(1 − q")(V(1 − q") − :)+ ≥ (`q" − :)+; i.e.,

'∗1 = max
[
: −

(
(1 − `)(`q" − :)+ + `(1 − q")(V(1 − q") − :)+) + (`q" − :)+, 1∗1

]
.
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Therefore, Period 1 ads are shown if and only if 1∗1 ≥ '
∗
1, which is equivalent to

`q" + `(1 − q")q" ≥ : −
(
(1 − `)(`q" − :)+ + `(1 − q")(V(1 − q") − :)+) + (`q" − :)+.

(C.2.9)

Suppose `q" ≥ : . Then (C.2.9) simplifies to

`(1 − q")q" ≥ −
(
(1 − `)(`q" − :) + `(1 − q")(V(1 − q") − :)+) , (C.2.10)

which is true. Suppose `q" < : . Then (C.2.9) simplifies to

` ≥ ˜̀ ≡ :
(
q"(2 − q") + (1 − q")(V(1 − q") − :)+)−1

. (C.2.11)

Thus, Period 1 ads are shown if and only if either ` ≥ :
q"

or ˜̀ ≤ ` < :
q"

. Since :
q"
≥ ˜̀ ⇔

q" ≤ q"(2 − q") + (1 − q")(V(1 − q") − :)+ ⇐ q" ≤ q"(2 − q") ⇔ 1 ≤ 2 − q" , which is

true for all q" ∈ [0, 1], we obtain that Period 1 ads are shown if and only if ` ≥ ˜̀. �

C.2.6 Proof of Proposition 20

Proof. Let @∗(0) and @∗(1) denote the equilibrium ad intensities without and with tracking, re-

spectively. We being the proof with three observations. First, note that @∗(1) < 2 because with

tracking, ads are not shown to consumers who had already purchased. Second, if @∗(0) > 0, then

@∗(1) > 0. To see this, suppose that @∗(0) = 1. Then under tracking, the ad network can replicate

this no-tracking payoff by showing ads only in Period 1. Similarly, if @∗(0) = 2, then under track-

ing, the ad network can generate a weakly higher profit by showing ads to all consumers except

those who already purchased. In either case, the ad network’s profit under tracking when it shows

ads is higher than not showing any ads, because @∗(0) > 0 implies showing ads generates positive

surplus. Therefore, @∗(0) > 0 implies @∗(1) > 0.

Put together, we obtain that @∗(0) > @∗(1) if and only if @∗(0) = 2. The condition for @∗(0) = 2

is given in Proposition 18. Moreover, @∗(0) = @∗(1) if and only if either @∗(0) = @∗(1) = 0 or
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@∗(0) = @∗(1) = 1. The ad intensities are both zero if and only if ` < ˜̀ (such that @∗(1) = 0) and

V < Ṽ and q" < 1 −
√

(`−:)+
√
`

(such that @∗(0) = 0). But ` < ˜̀ implies q" < 1 −
√

(`−:)+
√
`

, so the

condition for @∗(0) = @∗(1) = 0 simplifies to ` < ˜̀ and V < Ṽ.

Next, we derive the conditions under which the ad intensities are 1 in either tracking scenario.

First, note that if @∗(1) = 1, then @∗(0) < 2. This is because @∗(1) = 1 implies that not showing ads

in Period 2 under tracking is better than showing. And since showing ads in Period 2 with tracking

yields weakly higher profit than showing ads in Period 2 without tracking, we obtain by transitivity

that without tracking, not showing ads in Period 2 is more profitable than showing ads. Therefore,

the condition @∗(1) = 1 and @∗(0) = 1 are jointly satisfied if and only if ˜̀ < ` ≤ :
q"

(such that

@∗(1) = 1) and ` > :
q" (2−q" ) (such that @∗(0) is either 1 or 2). In total, @∗(0) = @∗(1) = 1 if and

only if :
q" (2−q" ) < ` ≤

:
q"

and V ≤ :
1−q" . �

C.2.7 Proof of Proposition 21

Proof. If ads are not shown in Period 1, then the ad network’s Period 2 payoffs with and without

tracking are the same at (`q" − :)+. On the other hand, if ads are shown in Period 1, then the

Period 2 subgame under tracking yields the following ad network payoff c#2|ad = (1 − `)(`q" −

:)+ + `(1 − q")(V(1 − q") − :)+. The ad network’s payoff under no tracking is c#2|no ad = ((1 −

`)`q" + `(1 − q")V(1 − q") − :)+. But we have

c#2|no ad = ((1 − `)`q" + `(1 − q")V(1 − q") − :)+

≤ ((1 − `)(`q" − :) + `(1 − q")(V(1 − q") − :))+

≤ (1 − `)(`q" − :)+ + `(1 − q")(V(1 − q") − :)+

= c#2|ad.

Finally, in Period 1, the ad network faces the same problem with and without tracking, except that

it anticipates a higher Period 2 payoff with tracking if ads are shown in Period 1. Therefore, the

total profit is weakly greater with tracking than without. �
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C.2.8 Proof of Proposition 22

Proof. Consumers opt-in to tracking only if @∗(0) > @∗(1). But recall from from Proposition 20

that @∗(0) > @∗(1) if and only if @∗(0) = 2. Therefore, the necessary condition for opting-in is

@∗(0) = 2. The sufficient condition is that the consumer’s privacy cost is low enough that the

benefit of seeing fewer ads outweighs the privacy cost of opting-in. The marginal consumer is the

consumer with cost min[1, \̃] such that −[@∗(1) − \̃ = −[@∗(0). �

C.2.9 Proof of Proposition 23

Proof. Ad network’s profit can decrease in ` due to two and only two reasons: (a) higher ` implies

lower opt-in rate such that ad network profit decreases towards the opt-out profit, which is lower

than opt-in profit, and (b) large ` implies higher ad intensity under tracking such that consumers

opt-out.

The first part occurs if and only if @∗(0) = 2 and @∗(1) = 1 + `(1 − q"); i.e., under tracking,

ads are only shown to "-consumers. If ads were shown to )-consumers as well, @∗(1) would de-

crease in ` such that opt-in rate increases with `. The opt-in rate is � ([ (2 − (1 + `(1 − q")))) =

� ([ (1 − `(1 − q"))), which decreases in ` if and only if [ (1 − `(1 − q")) ∈ (0, 1). For the

uniform distribution �(\) = \, the ad network’s profit is

(C.2.12)c# = `q" + `(1 − q")(V + (1 − V)q") − (1 + `(1 − q")):
+ (1 − [(1 − `(1 − q"))) ((1 − `)`q" − (1 − (1 − `)q"):) .

We want to find the conditions under which (C.2.12) decreases in `. Note that

mc#

m`
= V+2[:(`−1)−q"

(
2V+[

(
4:`−2: +3`2−4`+1

)
+2`−3

)
+q2

"(V+[`(2: +3`−2)−1).

Since the second derivative of the above is −6(1 − q")q" < 0, we have that the derivative is

concave in `. Therefore, (C.2.12) is decreasing in ` for ` < `′ and ` > `′ where the thresholds

are respectively given by the two roots of (C.2.12) in increasing order.

The second part follows from Proposition 22: if q" > 1 −
√

(` − :)+/` and V ≤ V < V,

then for ` = `−, consumers opt-in, and for ` = `+, consumers opt-out. The efficiency loss
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associated with the increase in opt-out rate creates downward jump in the ad network’s profit (cf.

Proposition 21). �

C.2.10 Proof of Proposition 24

Proof. Denote by @(1) and @(0) the total expected ad intensity with and without tracking, re-

spectively. Furthermore, denote by �((1) and �((4) the total consumer surplus with full and

endogenous tracking, respectively. Let \̃ = max[0,min[1, [(@(0) − @(1))]]. Then the result follows

from

�((4) =
∫ \̃

0
−[@∗(1) − \ 3� +

∫1

\̃

−[@∗(0) 3� ≥
∫ \̃

0
−[@∗(1) − \ 3� +

∫1

\̃

−[@∗(1) − \ 3� = �((1).

�

C.2.11 Proof of Proposition 25

Proof. We first show that opting-out of tracking does not signal the consumer’s types. Let d8 and

d 9 denote advertiser 8 and advertiser 9’s beliefs, respectively, that the consumer behind the opt-out

impression is type 8. By Bayes’ rule, the beliefs must satisfy

d8 =
_(8(d8, d 9 )

_(8(d8, d 9 ) + (1 − _)( 9 (d8, d 9 )
,

where (8(d8, d 9 ) denotes the mass of type 8 consumers who choose to opt-out given advertisers’

beliefs d. But a type 8 consumer will opt-out if and only if

−\ − [ @8(1) < −[ @8(0; d8, d 9 ),

where @8(1) and @8(0; d8, d 9 ) is the total number of ads a type 8 consumer expects to see if she

opts-in and -out, respectively. But @8(1) is independent of consumer’s type 8 because if a consumer

opts-in to tracking, the number of ads she expects to see depends only on the parameters `, V and
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q" . Similarly, @8(0; d8, d 9 ) is independent of consumer’s type 8 because by definition, advertisers

cannot base their strategies on consumers’ types if they opt-out. Therefore, we obtain

(8(d8, d 9 ) = |{\ : −\ − [ @8(1) < −[ @8(0; d8, d 9 )}|≡ ((d8, d 9 ),

which implies

d∗8 =
_((d∗

8
, d∗

9
)

_((d∗
8
, d∗

9
) + (1 − _)((d∗

8
, d∗

9
)

= _.

Next, we derive the conditions under which the advertising outcomes diverge from the single-

advertiser main model. Since advertiser 8 has more loyal consumers, the only new outcome that

is possible is the following: in the opt-out market, advertiser 8 advertises in Period 1 and then

advertiser 9 advertises in Period 2. This occurs if and only if the following three conditions hold:

1. advertiser 9’s Period 2 bid, conditional on advertiser 8’s ad begin shown in Period 1, (a)

exceeds that of advertiser 8 and (b) is greater than or equal to the reserve price,

2. advertiser 8’s bid in Period 1 exceeds the reserve price, and

3. the ad network’s profit is higher selling Period 1 ads that not selling them.

Condition 1(a) is equivalent to (1 − _)`q" > _
(
(1 − `)`q" + `(1 − q")2V

)
. But the dif-

ference (1 − _)`q" − _
(
(1 − `)`q" + `(1 − q")2V

)
is convex with with respect to ` with two

roots 0 and − 1
_

+ V
(
q" + 1

q"
− 2

)
+ 2. And since _ > 1

2 implies − 1
_

+ V
(
q" + 1

q"
− 2

)
+ 2 >

V

(
q" + 1

q"
− 2

)
+ 2 − 2 = V

(
q" + 1

q"
− 2

)
> 0, we obtain that Condition 1(a) simplifies to

` > − 1
_

+ V
(
q" + 1

q"
− 2

)
+ 2.

Condition 1(b) is equivalent to (1−_)`q" ≥ : , which, combined with _ > 1
2 , implies _`q" ≥

:; this in turn implies Condition 2. Finally, Condition 3, provided Conditions 1 and 2, is equivalent

to _`q" + _`(1− q")q" − : + (1− _)`q" − : > _`q" − : . This simplifies to (1− _)`q" − : +

_`(1 − q")q" > 0, which is implied by Condition 1(b): (1 − _)`q" ≥ : ⇐⇒ _ < 1 − :
`q"

.

In sum, the conjunction of Conditions 1 through 3 simplify to ` > − 1
_
+V

(
q" + 1

q"
− 2

)
+2 ≡ ˜̀

and _ < 1 − :
`q"
≡ _̃. �
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C.2.12 Proof of Proposition 26

Proof. Next, it suffices to characterize the conditions under which (i) ads are shown to all opt-out

consumers in both periods, and (ii) the ad intensity for opt-in consumers increases with signal

accuracy d. If both conditions hold, then fewer ads are shown under tracking, and more con-

sumers opt-out from tracking as d increases. The first condition is derived from Proposition 18.

For the second condition, we begin by characterizing the ad network’s ad supply decisions for

opt-in consumers with imperfect purchase observability. For expositional ease, denote by #- and

%-impressions the impressions associated with “not purchased” and “purchased” signals, respec-

tively.

Given the advertiser’s weakly dominant bids for )-, #-, and %-impressions, the ad network’s

profits from selling each type of impressions are `q" − : , (1−q" )(1−d)
q" d+(1−q" )(1−d) V(1 − q") − : , and

(1−q" )d
q" (1−d)+(1−q" )d V(1 − q") − : , respectively. The ad network sells whichever ad impressions yield

positive profit.

Note that it is never profitable for the ad network to sell %-impressions but not #-impressions.

The reason is that the fact that signals are at least partially informative imply #-impressions are

valued more by the advertiser than %-impressions are.

First, note that (1−q" )(1−d)
q" d+(1−q" )(1−d) ≤

(1−q" )d
q" (1−d)+(1−q" )d for all 1

2 ≤ d ≤ 1, because (1−q" )d
q" (1−d)+(1−q" )d −

(1−q" )(1−d)
q" d+(1−q" )(1−d) = (2d−1)(q"−1)q"

((2d−1)q"−d)(−d+(2d−1)q"+1) and the latter term’s sign is equivalent to that of

1−q"
d+(1−2d)q" . Now, the denominator d + (1− 2d)q" is always positive because it is a linear function

of d and is positive at each endpoint d = 1
2 and d = 1.

Second, note that

m

md

(1 − q")(1 − d)
q"d + (1 − q")(1 − d)

= − (1 − q")q"
(−d + (2d − 1)q" + 1)2 < 0 (C.2.13)

and
m

md

(1 − q")d
q"(1 − d) + (1 − q")d

=
(1 − q")q"

(d − 2dq" + q")2 > 0. (C.2.14)

174



Third, since the bounds (1−q" )(1−d)
q" d+(1−q" )(1−d) V(1 − q") and (1−q" )d

q" (1−d)+(1−q" )d V(1 − q") coincide at

d = 1
2 , at which point the bounds equal V(1 − q")2, we obtain the following:

1. If `q" ≥ : , and : > V(1 − q")2, then as d increases from 1
2 to 1, the regime changes from

: >
(1−q" )d

q" (1−d)+(1−q" )d V(1−q") to (1−q" )(1−d)
q" d+(1−q" )(1−d) V(1−q") < : < (1−q" )d

q" (1−d)+(1−q" )d V(1−q");

i.e., only)-impressions are shown for low d, and then #-impressions are also shown for high

d.

2. If `q" < : , and : > V(1 − q")2, then as d increases from 1
2 to 1, the regime changes from

: >
(1−q" )d

q" (1−d)+(1−q" )d V(1−q") to (1−q" )(1−d)
q" d+(1−q" )(1−d) V(1−q") < : < (1−q" )d

q" (1−d)+(1−q" )d V(1−q");

i.e., no impressions are shown for low d, and then #-impressions are shown for high d.

This constitutes the second condition (i.e., the ad intensity for opt-in consumers increases with

signal accuracy d).

However, the conditions `q" < : and : > V(1 − q")2 cannot hold jointly with @∗(0) = 2,

which requires (1 − `)`q" + `(1 − q")2V > : . To see this, it suffices to show that (1 − `)`q" +

`(1 − q")2V ≤ max[V(1 − q")2, `q"], which holds because the left-hand side of the inequality

is a linear combination of `q" and V(1 − q")2, so it must be smaller than the larger of `q" and

V(1 − q")2. Therefore, for the conditions (i) and (ii) above to hold simultaneously, it must be that

`q" ≥ : , and : > V(1 − q")2.

Finally, to ensure that the threshold of d past which the advertising regime changes from fewer

to more advertising is between 1
2 and 1, we must bound : by the largest value attained by the upper

bound (1−q" )d
q" (1−d)+(1−q" )d V(1 − q"), which occurs at d = 1 and equals V(1 − q").

Re-arranging the condition V(1 − q")2 < : < min [`q" , V(1 − q")] with respect to q" and

V yields the conditions in the proposition. �

C.3 Parameter Scaling

We demonstrate the robustness of our main insights to smaller values of advertising effective-

ness. To that end, suppose there exist two consumer segments: a potentially responsive segment
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and a non-responsive segment, whose sizes are given by U and 1 − U, respectively, for some small

U ∈ (0, 1). We assume that the potentially responsive consumers respond to ads in the manner de-

scribed in the main model, while the non-responsive consumers always ignore ads; i.e., they never

respond to ads.

Without consumer tracking, the advertiser cannot distinguish between these segments, while

with tracking, it can. Therefore, the ad intensity under no tracking is

• 2 if U (`q" + `(1 − q")q") − : + U
(
(1 − `)`q" + `(1 − q")2V

)
− : ≥ (U`q" − :)+ and

U
(
(1 − `)`q" + `(1 − q")2V

)
− : ≥ 0,

• 1 if U (`q" + `(1 − q")q") − : ≥ (U`q" − :)+ and U
(
(1 − `)`q" + `(1 − q")2V

)
− : <

0, and

• 0 otherwise.

Similarly, the ad intensity under tracking is

• 1 + U(1 − `)I{`q"−:≥0} + U`(1 − q")I{V(1−q" )−:≥0} if

U (`q" + `(1 − q")q") − : + U ((1 − `)(`q" − :)+ + `(1 − q")(V(1 − q") − :)+) ≥ 0,

and

• 0 otherwise.

Note that if we let :′ = :/U, then the ad intensity under no tracking is equivalent to the main

model with ad cost :′, and the ad intensity under tracking is either 0, 1 or between 1 and 2 under

the same conditions as the main model. Thus, the conditions for the ad intensity differential are

preserved from the main model.

As illustrated in Figure C.2, we can replicate the advertising intensity differential patterns of

the main model (Figure 4.5) for small values of U, q" , and : . Since the main insights rest on

the ad intensity differential pattern, this suffices to show that the insights are robust to parameter

scaling.
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Figure C.2: Ad Intensity with Parameter Scaling; U = 0.001, q" = 0.005, : = 1.5 × 10−6

C.4 Markov-Perfect Equilibrium

For any given Period C, define “old generation” as the mass of consumers who arrived in Pe-

riod C − 1, and “new generation” as those who arrive in Period C. In our setting, the payoff-relevant

states can be fully characterized by the distribution of old generation non-converters in funnel states

) and " . Consider the no tracking case where the advertiser cannot target ads based on the con-

sumers’ funnel states, nor their purchase history. Let _old
5

denote the proportion of old-generation

non-converters in funnel state 5 ∈ {), "}. There are two possible states in each period: one in

which the advertiser showed ads in the previous period, and another in which it did not show ads

in the previous period.

To elaborate, suppose the advertiser showed ads in Period C−1. The old generations in Period C−

1 (i.e., those who arrived in Period C − 2) leave by Period C because consumers only live for two

periods. Therefore, these consumers are irrelevant in the analysis of determining the successive

distribution of old generation non-converters in Period C. Of the 1−f )-consumers who arrived in

Period C − 1, 1− ` fraction are not influenced by the ad and stay in ) , ` fraction transition to " , of

which q" convert and 1−q" do not. Moreover, of the f "-consumers who joined in Period C−1,

1 − V stay in " , and still 1 − q" of those f(1 − V) "-consumers do not convert. Therefore, the
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distribution of old generation non-converters in Period C would be

(
_old
) , _old

"

)
= ( (1 − f)(1 − `), ((1 − f)` + f(1 − V))(1 − q") ) .

We label this state as _1, where the subscript 1 indicates the advertiser showed ads in the previous

period.

On the other hand, suppose the advertiser did not show ads in Period C − 1. Without any ad

exposures, the 1 − f )-consumers who arrived in Period C − 1 would all remain in ) by Period C.

However, q" fraction of f "-consumers convert and 1 − q" fraction remain in " in Period C.

Therefore, the distribution of old-generation non-converters in this case is

(
_old
) , _old

"

)
= ( 1 − f, f(1 − q") ) .

We label this state as _0, where the subscript 0 indicates the advertiser did not show ads in the

previous period.

Given two states and two possible advertising strategies at each state (i.e., advertise or not ad-

vertise), there are four Markov-perfect equilibrium (MPE) candidates: (i) always advertise regard-

less of the state; (ii) advertise only when the state is _0, which is equivalent to “pulse advertising”

(i.e., alternate advertising with a single-period break in between; (iii) advertise only when the state

is _1, which is effectively equivalent to (i); and (iv) never advertise. We compare the ad network’s

profits for the respective strategies.

I. Always advertise

For always advertising to be MPE, the advertiser’s payoff from buying untargeted ads in

Period C, given the state is either _1 ≡ ((1 − f)(1 − `), ((1 − f)` + f(1 − V))(1 − q")) or

_0 ≡ (1 − f, f(1 − q")), should be greater than that from not buying:

(1 − f)(1 − `)`q" + ((1 − f)` + f(1 − V))(1 − q")(V + (1 − V)q") + (1 − f)`q" − 2'1 + X+1
≥ ((1 − f)` + f(1 − V))(1 − q")q" + X+0,
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and

2(1 − f)`q" + (f(1 − q") + f)(V + (1 − V)q") − 2'0 + X+1 ≥ f(1 − q")q" + fq" + X+0,

where +1 is the continuation value from having shown ads in the previous stage, and +0 is the

continuation value from not having shown any ads in the previous stage. In equilibrium, the ad

network will set reserve prices '1 and '0 such that these conditions bind; otherwise, it leaves

money on the table. Therefore, from the second condition, we obtain

2'0∗ = 2(1 − f)`q" + (f(1 − q") + f)V(1 − q") + X(+1 −+0).

But if the second condition holds, it must be that the continuation value from not showing ads is

the continuation value from showing ads, such that

+0 = 2(1 − f)`q" + (f(1 − q") + f)(V + (1 − V)q") − 2'∗0 + X+1.

Then, substituting '∗0 yields +0 = f(1 − q")q" + fq" + X+0, which in turn implies

+0 =
f(2 − q")q"

1 − X .

Similarly, after substituting +0 = f(2−q" )q"
1−X into the first condition and letting it bind, we obtain

2'∗1 = (1 − f)(1 − `)`q" + ((1 − f)` + f(1 − V))(1 − q")(V + (1 − V)q")
+ (1 − f)`q" + X+1 − (((1 − f)` + f(1 − V))(1 − q")q" + X+0) ,

which simplifies to

2'∗1 = (1 − f)(2 − `)`q" + ((1 − f)` + f(1 − V))(1 − q")2V + X+1 − X
f(2 − q")q"

1 − X .

Since the continuation value of having shown ads is the continuation value from showing ads, we

obtain

+1 = (1−f)(1− `)`q" + ((1−f)` +f(1− V))(1− q")(V + (1− V)q") + (1−f)`q" − 2'∗1 + X+1
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which, upon substitution of '∗1 yields +1 = ((1 − f)` + f(1 − V))(1 − q")q" + Xf(2−q" )q"
1−X .

Therefore,

2'∗1 = (1 − f)(2 − `)`q" + ((1 − f)` + f(1 − V))(1 − q")2V

+ X
(
((1 − f)` + f(1 − V))(1 − q")q" + X

f(2 − q")q"
1 − X

)
− Xf(2 − q")q"

1 − X .

Since this strategy induces the state to be perpetually _1, the ad network’s total profit is

c�# =
1

1 − X

(
(1 − f)(2 − `)`q" + ((1 − f)` + f(1 − V))(1 − q")2V

+ X
(
((1 − f)` + f(1 − V))(1 − q")q" + X

f(2 − q")q"
1 − X

)
− Xf(2 − q")q"

1 − X − 2:
)
.

II. Advertise Only When State is _0 = (1 − f, f(1 − q"))

For this pulsing strategy to be MPE, we need advertiser’s payoff to be higher buying ads given

(1−f, f(1−q")), and not buying ads given ((1−f)(1− `), ((1−f)`+f(1− V))(1−q")), which

respectively translate to:

2(1 − f)`q" + (f(1 − q") + f)(V + (1 − V)q") − 2'0 + X+1 ≥ (f(1 − q") + f)q" + X+0

and

(((1−f)`+f(1−V))(1−q")+f)q"+X+0 ≥ 2(1−f)`q"+(f(1−q")+f)(V+(1−V)q")−2'1+X+1.

The ad network sets '1 = ∞ (such that no ads are bought at state _1) and 2'∗0 = 2(1 − f)`q" +

(f(1 − q") + f)(1 − q")V + X(+1 − +0). This implies +0 = f(2 − q")q" + X+0, which means

+0 = f(2−q" )q"
1−X . Similarly, since +1 = (((1 − f)` + f(1 − V))(1 − q") + f)q" + X+0, we have

2'∗0 = 2(1 − f)`q" + (f(1 − q") + f)(1 − q")V

+ X
((

(((1 − f)` + f(1 − V))(1 − q") + f)q" + X
f(2 − q")q"

1 − X

)
− f(2 − q")q"

1 − X

)
.

Since this strategy yields alternating states, the ad network’s profit under this strategy is

c� �# =
1

1 − X2

(
2(1 − f)`q" + (f(1 − q") + f)(1 − q")V

+ X
((

(((1−f)` +f(1− V))(1− q") +f)q" + X
f(2 − q")q"

1 − X

)
− f(2 − q")q"

1 − X

)
− 2:

)
.
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III. Advertise Only When State is _1 = ( (1 − f)(1 − `), ((1 − f)` + f(1 − V))(1 − q") )

Same as strategy I: set '∗0 = ∞ and the rest follows.

IV. Never advertise

This strategy yields 0 payoff.

Finally, comparing the payoffs c�
#

, c� �
#

and 0 yield the presented equilibrium regions.
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