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Abstract

Path integral techniques and Gröbner basis approaches for stochastic response analysis and

optimization of diverse nonlinear dynamic systems

Ioannis Petromichelakis

This thesis focuses primarily on generalizations and enhancements of the Wiener path

integral (WPI) technique for stochastic response analysis and optimization of diverse non-

linear dynamic systems of engineering interest. Concisely, the WPI technique, which has

proven to be a potent mathematical tool in theoretical physics, has been recently extended

to address problems in stochastic engineering dynamics. Herein, the WPI technique has been

significantly enhanced in terms of computational efficiency and versatility; these results are

presented in Chapters 2-5.

Specifically, in Chapter 2 a brief introduction to the standard WPI solution approach is

outlined. In Chapter 3, a novel methodology is presented, which utilizes theoretical results

from calculus of variations to extend the WPI for determining marginalized response PDFs of

n-degree-of-freedom (n-DOF) nonlinear systems. The associated computational cost relates

to the dimension of the PDF and is essentially independent from the dimension n of the sys-

tem. In several commonly encountered cases, the aforementioned methodology improves the

computational efficiency of the WPI by orders of magnitude, and exhibits a significant ad-

vantage over the commonly utilized Monte-Carlo-simulation (MCS). Moreover, in Chapter 4,

an extension of the WPI technique is presented for addressing the challenge of determining

the stochastic response of nonlinear dynamical systems under the presence of singularities in



the diffusion matrix. The key idea behind this approach is to partition the original system

into an underdetermined system of SDEs corresponding to a nonsingular diffusion matrix

and an underdetermined system of homogeneous differential equations; the latter is treated

as a dynamic constraint that allows for employing constrained variational/optimization so-

lution methods. In Chapter 5, this approach is applied for the stochastic response analysis

and optimization of electromechanical vibratory energy harvesters.

Next, in Chapter 6, a technique from computational algebraic geometry has been devel-

oped, which is based on the concept of Gröbner basis and is capable of determining the entire

solution set of systems of polynomial equations. This technique has been utilized to address

diverse challenging problems in engineering mechanics. First, after formulating the WPI as

a minimization problem, it is shown in Chapter 7 that the corresponding objective function

is convex, and thus, convergence of numerical schemes to the global optimum is guaranteed.

Second, in Chapter 8, the computational algebraic geometry technique has been applied to

the challenging problem of determining nonlinear normal modes (NNMs) corresponding to

multi-degree-of-freedom dynamical systems as defined in [1], and has been shown to yield

improvements in accuracy compared to the standard treatment in the literature.
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Chapter 1: Introduction

1.1 Wiener path integral (WPI) technique

Accurate response analysis of engineering dynamical systems necessitates an increasingly

sophisticated modeling of the system behavior and of the associated excitations. This in-

cludes consideration of strong nonlinearities, complex hysteresis, stochastic loads, as well as

a relatively high dimensionality of the system response vector. Despite their versatility and

implementation simplicity, the performance of purely numerical solution techniques, such as

various Monte Carlo simulation (MCS) schemes (e.g., [2, 3, 4, 5, 6, 7]), for determining the

system stochastic response is often hindered by the related excessive computational cost, and

thus, there is merit in developing alternative efficient semi-analytical solution techniques. In

this regard, indicative techniques developed over the past few decades include statistical

linearization, stochastic averaging, perturbation approaches, discrete Chapman-Kolmogorov

equation schemes, Fokker-Planck equation solution techniques, probability density evolution

methods, and polynomial chaos expansions. The interested reader is directed to various

standard books in the field for a detailed presentation (e.g., [8, 9, 10, 11, 12, 13]).

Recently, a novel semi-analytical technique based on the concept of Wiener path integral

(WPI) (e.g., [14, 15]) has been developed in the field of stochastic engineering dynamics for

determining the stochastic response of diverse nonlinear structural and mechanical systems

(e.g., [16, 17]). In fact, the technique, which relies on functional integration concepts and on

calculus of variations tools, exhibits both computational efficiency and satisfactory accuracy

in evaluating the system joint response probability density function (PDF) (e.g., [18, 19, 20,

21]). Further, the WPI technique exhibits versatility in addressing diverse system behaviors,

including hysteresis and fractional derivative modeling (e.g., [22, 23]), and in accounting for
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various rather sophisticated descriptions of stochastic excitations [24].

An integral part of the standard implementation of the WPI technique relates to a vari-

ational treatment for deriving a functional minimization problem, which may be solved by

either resorting to the corresponding Euler–Lagrange (E-L) equations, or by directly for-

mulating an ordinary optimization problem in accordance with the Rayleigh–Ritz solution

technique [22]. Either of these approaches yields the most probable path, which is used

for evaluating a specific point of the joint response PDF (e.g., [17]). The fact that the

Rayleigh–Ritz solution approach leads to an ordinary optimization problem, allows for a

rigorous convergence analysis of the corresponding numerical scheme. In this regard, a New-

ton’s numerical optimization scheme is developed for determining the most probable path.

The rationale relates to the fact that, for the special case of linear systems, the objective

function is not only convex, but also quadratic; and thus, a Newton’s scheme appears to be

an ideal choice as it converges in only one iteration to the unique global extremum (e.g.,

[25]). This convergence behavior indicates that a Newton’s scheme can be a suitable choice

also for nonlinear systems, since their response behavior can be construed as a perturbation

(not necessarily small) from the linear regime. Further, certain convergence properties of

the scheme are derived and discussed. A general overview of the fundamental aspects of the

WPI technique is provided in Chapter 2 of this thesis.

1.1.1 Improving WPI in terms of computational efficiency

Ever-increasing computational capabilities, novel signal processing techniques, advanced

experimental setups, as well as progress in emerging and transformative technologies (e.g.,

nano-mechanics) have contributed to a highly sophisticated mathematical modeling of the

governing equations of diverse dynamical systems. In general, the governing dynamics is

modeled as a high-dimensional system of coupled nonlinear (stochastic) differential equations.

In many cases, solving even the deterministic version of such equations is an open issue and

an active research topic. Clearly, addressing the stochastic counterparts of these equations
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becomes significantly more challenging, since the stochastic dimensions of the problem need

to be considered in addition to the system deterministic/physical coordinates; thus, the

overall dimensionality and computational complexity of the problem increase (e.g., [13]).

To address the above-described “curse-of-dimensionality”, as is typically referred to in the

relevant literature, researchers have developed diverse techniques for solving high-dimensional

stochastic equations in a computationally efficient manner. Indicatively, these range from

“smart” Monte Carlo simulation (MCS) schemes (e.g., [26, 7]) to various approximate dimen-

sion/order reduction approaches (e.g., [13]). Nevertheless, in most cases, these methodolo-

gies become eventually computationally prohibitive with an increasing number of problem

dimensions.

Further, it can be argued that a complete stochastic characterization of the dynami-

cal system response (i.e., determination of the joint response probability density function

(PDF)) is not required for the vast majority of practical problems. Instead, determining a

relatively small number of marginal PDFs, or low-dimensional joint PDFs, is often adequate

in practice. In this regard, an interesting class of solution techniques focus on developing

transformed governing stochastic equations involving only a subset of marginalized joint

PDFs. The rationale relates to decreasing the dimensionality of the original problem and

to determining directly the stochastic response of specific degrees-of-freedom (DOFs) or in-

trinsic coordinates of interest. Indicatively, appropriate multi-dimensional integration was

applied in [27] for deriving PDF evolution equations corresponding to specific quantities

of interest. Moreover, high-dimensional Fokker-Planck (F-P) equations were solved in [28]

based on a block decomposition of the high-dimensional unobserved subset of variables and of

the remaining low-dimensional observed variables. In a relatively similar context, a stochas-

tic collocation scheme was developed in [29] capable of treating high-dimensional stochastic

differential equations (SDEs) by constructing a sparse grid of collocation points, which is

only weakly dependent on the dimensionality of the state space (see also [30]). Also, it is

worth mentioning current research efforts based on deep learning tools for facilitating the

3



solution of complex SDEs (e.g., [31]).

Although the WPI technique exhibits a relatively high degree of accuracy, its standard

numerical implementation leads eventually to prohibitive computational cost with an in-

creasing number of stochastic dimensions. This is due to the fact that the complete joint

response PDF is determined by resorting to a point-wise computation on a multi-dimensional

lattice. Clearly, this hinders the scalability of the technique in addressing multi-DOF systems

described by more than a few DOFs. Although this limitation has been partly addressed in

[19, 24] by employing multi-dimensional function approximation techniques in conjunction

with compressive sampling concepts and tools for reducing the total number of grid-point

calculations, the requirement for determining the complete joint response PDF has not been

circumvented to-date. Thus, the overall computational cost still grows rapidly with an in-

creasing number of DOFs.

In Chapter 3 of this thesis, the curse of dimensionality in stochastic dynamics is ad-

dressed by marginalizing the joint response PDF based on a WPI variational formulation

with free boundaries. In this regard, the associated computational cost becomes indepen-

dent of the number of DOFs; and thus, high-dimensional systems can be readily treated by

the WPI technique. Two indicative numerical examples are considered for highlighting the

capabilities of the technique. The first example relates to marine engineering and pertains

to a structure exposed to nonlinear flow-induced forces and subjected to non-white stochas-

tic excitation. The second example relates to nano-engineering and pertains to a 100-DOF

stochastically excited nonlinear dynamical system modeling the behavior of large arrays of

coupled nano-mechanical oscillators. Comparisons with pertinent MCS data demonstrate

the computational efficiency and accuracy of the developed technique.

1.1.2 Improving WPI in terms of versatility

The applicability of the WPI technique has so far been restricted to systems with non-

singular diffusion matrices. In fact, the general formulation of the technique involving the
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inversion of the governing equation diffusion matrix does not allow for a straightforward

extension to cases pertaining to singular diffusion matrices, and thus, special mathematical

treatments are required (e.g., [32, 33, 34]). Indicative examples, where such special treat-

ments can be rather trivial, include casting the higher-order (e.g., second-order) governing

equation into a lower-order (e.g., first-order) form by introducing additional state variables,

as well as modeling non-white excitations via filter equations (e.g., [20, 35, 36]). In such

cases, the limitation of singular diffusion matrices can be readily bypassed (e.g., [37]) by

enforcing compatibility conditions of a rather simple (almost trivial) form between the aux-

iliary variables and the time-derivatives of the original variables. However, this is not always

the case as these auxiliary equations are more than often of a complex form. Examples

include (but are not limited to) dynamical systems with only some of their DOFs forced,

hysteretic models (e.g., Bouc-Wen [38]) with nonlinear auxiliary differential equations, and

diverse energy harvesting systems such as various electromechanical harvesters (e.g., [18])

and wave energy converters (e.g., [39]).

In Chapter 4 of this thesis, the WPI solution technique is generalized to cope with

a broad class of systems with singular diffusion matrices. In this regard, the governing

equations of motion are represented herein as a set of underdetermined stochastic differential

equations (SDEs) coupled with a set of deterministic ordinary differential equations (ODEs).

The latter, which can be of arbitrary (nonlinear) form, are construed as constraints on the

motion of the system driven by the stochastic excitation (e.g., [40, 41, 42]). This yields

a constrained variational problem to be solved for the most probable path, and thus, the

system joint response PDF is determined. Several numerical examples pertaining to both

linear and nonlinear constraint equations are considered, including MDOF systems with only

some of their DOFs stochastically excited, a linear oscillator under Kanai-Tajimi earthquake

excitation, as well as a nonlinear oscillator exhibiting hysteresis following the Bouc-Wen

formalism. Direct comparisons with MCS data demonstrate a relatively high degree of

accuracy.
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1.1.3 Utilizing WPI for the design of energy harvesting devices

A large class of energy harvesters exploit the ability of active materials (e.g. piezoelectric)

and electromechanical coupling mechanisms to generate an electric potential in response to

external excitations. Utilizing an appropriate circuit, the electric potential is converted into

current, and thus, mechanical energy is transformed into electrical. Following early efforts

referring to linear system modeling (e.g., [43, 44, 45]), researchers intentionally considered

nonlinear designs (e.g., via appropriate placement of magnets) for increasing the coupling

range between the excitation and the system, and therefore, for enhancing the efficiency and

energy output of the harvester (e.g., [46, 47]).

Further, many energy harvesters operate in tandem with structures and civil infrastruc-

ture systems, which are subjected to environmental excitations that have random and even

time-varying characteristics. Thus, researchers have recently realized the need for modeling

the excitations as stochastic processes [48, 49, 50, 51, 52]. Moreover, it has been shown that

experimentally collected impedance data related to various energy storage systems can be

best represented by fractional derivative modeling (e.g., [53, 54]). In this regard, there have

been efforts to propose enhanced versions of the energy harvester coupled electromechanical

equations by incorporating fractional derivative elements (e.g., [55, 56]).

Regarding design and optimization of energy harvesters for maximizing energy output,

this has been done primarily by considering deterministic harmonic excitations (e.g., [57]),

whereas the few papers referring to stochastic excitations employ almost exclusively the

maximization of mean harvested power as the optimization criterion [58, 59, 60]. However,

as also highlighted in [61, 18], it is clear that consideration of additional restrictions and

constraints related to low probability events is necessary for avoiding, for instance, equip-

ment failures. Such constraints may relate to the probability that the voltage and/or the

displacement stay within prescribed limits, while their inclusion in the energy harvester op-

timization problem can lead, potentially, to a more robust and efficient design than what is

currently the norm; see also [18] for a more detailed discussion. Thus, advanced stochas-
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tic dynamics techniques are required, capable of determining the joint response probability

density function (PDF) to be used in the constrained optimization problem of such energy

harvesting systems. Obviously, utilization of approximate techniques, such as the widely

employed standard statistical linearization [60, 62, 63], which yield only first- and second-

order response statistics (i.e., mean and standard deviation) is inadequate for optimization

subject to low probability constraints.

In Chapter 5 of this thesis, a methodology based on the Wiener path integral (WPI)

technique (e.g., [16, 17, 21, 64, 23]) is developed for stochastic response analysis and opti-

mization of a class of energy harvesters exhibiting asymmetric nonlinearities and endowed

with fractional derivative elements. Specifically, the WPI technique is appropriately adapted

herein to be used in conjunction with a constrained optimization algorithm for determining

efficiently the optimal parameters of the energy harvester. This analysis can be construed as

an extension of the work in [18] to account for fractional derivative terms in the governing

equations. Further, in comparison to [18], the overall complexity of the constrained opti-

mization problem is increased not only because of the more sophisticated modeling based on

fractional derivatives, but also due to considering an augmented higher dimensional vector

of optimization variables. Moreover, regarding the reliability-based probabilistic constraint,

which is considered in the optimization problem, a rather pragmatic definition is proposed

herein for cases referring to space limitations. Several numerical examples are included, while

comparisons with pertinent Monte Carlo simulation (MCS) data demonstrate the reliability

and robustness of the methodology.

1.2 Applications of computational algebraic geometry in engineering mechanics

1.2.1 Computational algebraic geometry and Gröbner bases

Computational methods that exploit results from algebraic geometry have flourished

in recent years and provide powerful tools for the analysis of mathematical problems via

computational algebra frameworks. Two prominent results in this direction are Hilbert’s
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basis theorem and Hilbert’s Nullstellensatz, which form the basis of the relationship between

algebraic geometry and commutative algebra, and have been exploited in [65, 66, 67, 68]

to lay the foundations of computational algebraic geometry. These contributions aided the

development of several computer algebra systems such as Mathematica, Macaulay2, Maple,

MuPAD, etc., which have significantly influenced a wide range of scientific research fields.

However, the great majority of researchers, utilize these tools in a “black box” manner, which

prevents possible adaptations of the aformentioned techniques to the unique characteristics

of a specific problem of interest.

In Chapter 6 of this thesis, a computational algebraic geometry technique is described

which is based on the concept of a Gröbner basis and is capable of obtaining all solutions of

an algebraic system of polynomial equations. This is achieved by exploiting the remainders

of the division between the system of polynomial equations by the Gröbner basis associated

with this system, and constructing multiplication matrices for each monomial in the system.

Next, the solutions of the polynomial system are obtained as the real eigenvalues of these

matrices. Therefore, this approach is exact, except the final step, i.e., the calculation of the

eigenvalues, which is performed numerically. The interested reader is directed to the books

[69, 70, 71, 72, 73]) for further detailed information. In general, the Gröbner basis, which

was introduced relatively recently, appears very promising for the theoretical study of a wide

range of problems in engineering mechanics, e.g., the existence of solutions in the statistical

linearization and in general any problem that requires exact solutions of polynomial systems

of equations.

1.2.2 Demonstrating convexity of the WPI most probable path optimization problem

Clearly, a wide range of numerical optimization schemes can be employed for determin-

ing the WPI most probable path (e.g., [25, 22]) via the Rayleigh–Ritz solution technique.

However, there is generally no guarantee that the selected optimization algorithm converges

to the global minimum (instead of a local minimum). Of course, it can be argued that the
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relatively high accuracy degree exhibited by the WPI technique, based on comparisons with

pertinent MCS data in a plethora of numerical examples (e.g., [18, 22]), can be construed as

an indication of determining successfully the optimal most probable path. Nevertheless, it

becomes clear that there is a need for pursuing the challenging task of proving the existence

of a unique global minimum and/or the convexity of the objective function corresponding to

an arbitrary nonlinear system under consideration.

In Chapter 7 of this thesis, demonstration of the potential convexity (and thus, the

existence of a global extremum) of the objective function to be minimized is addressed by

resorting to the computational algebraic geometry concepts and tools such as Gröbner bases,

presented in Chapter 6. Various numerical examples pertaining to diverse nonlinear oscil-

lators are considered, where it is proved that the associated objective functions are convex,

and that the proposed Newton’s scheme converges to the globally optimum most probable

path. Comparisons with MCS-based estimates are included as well for demonstrating the

reliability of the WPI technique.

1.2.3 Nonlinear normal modes (NNMs)

Effective analysis and design of complex multi-degree-of-freedom (MDOF) dynamical sys-

tems encountered in structural/mechanical applications requires a thorough understanding

of their vibratory response characteristics. Linear normal modes (LNMs) is a central concept

in linear vibration theory, because they are characterized by a fundamental physical interpre-

tation and exhibit interesting mathematical properties. Specifically, LNM can be employed

to decouple the equations of motion into a set of linear equations that are independent of

each other. Moreover, normal motions are characterized by invariance, i.e., if a motion is

initiated on a specific LNM, the rest of the LNMs remain quiescent. Further, the principle

of superposition is applicable which means that any general motion of the system (free or

forced) can be expressed as a linear combination of individual LNM motions. These facts,

have rendered the concept of LNMs extremely popular among researchers and practitioners
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in the diverse areas related to engineering dynamics.

In several situations however, the amplitude of vibration might extend beyond the ap-

proximately linear regime. Moreover, a plethora of dynamical systems exhibit inherently

nonlinear behavior even in the vicinity of the equilibrium points. Under these circum-

stances, nonlinear equations of motion are required to capture the system dynamics ac-

curately, whereas any attempt to apply traditional linear analysis would lead to large errors

and suboptimal designs. In this regard, research in nonlinear vibrations has focused on

systems with few degrees of freedom, e.g., lumped-mass models and models obtained via

a Galerkin discretization of the governing partial differential equations. These low-order

models are useful in describing the general behavior of nonlinear dynamical systems, but

they lack of rigorous analytical and broadly applicable tools for extracting the fundamental

characteristics of the associated nonlinear motions.

In this context, the concept of nonlinear normal modes (NNMs) has been proposed, as

a generalization of its linear counterpart. NNMs, which offer a solid theoretical tool for the

study of the complex dynamical phenomena associated to nonlinear systems, were pioneered

by Rosenberg [74, 75, 76], where attention was directed toward conservative systems with

symmetric nonlinearities. Further studies include [77, 78], whereas NNMs were extended

to a wide class of non-conservative systems by Shaw and Pierre [79, 1, 80, 81] and Vakakis

[82, 83]. Ever since, nonlinear modal analysis has been employed in various applications in

structural mechanics [84, 85], mechanical vibrations [86, 87, 88, 89], dynamic testing [90, 91]

and system identification [92]. For further information the interested reader is directed to

the books [93, 94] and review papers [95, 96].

Obtaining the NNMs of a nonlinear system is typically reduced to determining all solu-

tions of a nonlinear algebraic system of equations, which often takes the form of a polynomial

system of equations. Even though numerical methods for the continuation of periodic solu-

tions (e.g., [97]) have been shown to be relatively efficient and accurate in practice, they do

not provide guarantees that the algorithm converges to the desired solution. On the con-
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trary, under the assumption that the nonlinear system of algebraic equations is of polynomial

form, recent advances in computational algebraic geometry [73] in conjunction with the ever

increasing computational power of modern computers, may be employed to determine the

NNMs in an exact manner. In this regard, in Chapter 8 of the thesis, the formulation of

[1] is adopted and described in Sec. 8.1. Next, all solutions of the corresponding polynomial

system of equations are obtained via the computational algebraic geometry technique based

on the concept of Gröbner bases, which is presented in Chapter 6. Finally, several examples

are presented in Sec. 8.2, where the order of the polynomial expansions of [1] is increased for

improved accuracy and the technique is applied to a 3-DOF system, demonstrating its poten-

tial applicability to relatively high dimentional problems. Moreover, strong indications have

been identified that the form of the corresponding Gröbner basis could provide significant

insight about the nonlinear system under study, including information about the coupling

between nonlinear normal modes and the complexity of the corresponding computation.
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Chapter 2: Wiener path integral formalism

2.1 Theoretical aspects

2.1.1 Preliminaries

This section serves as a brief overview of several aspects of the theory of SDEs and the

associated Chapman-Kolmogorov (C-K) and Fokker-Plank (F-P) equations. In this regard,

consider a multi-dimensional first-order SDE of the general form

Ûα = A(α, t) +B(α, t)η(t) (2.1)

where the dot above a variable denotes differentiation with respect to time t and η(t) is a

zero-mean and delta-correlated process of intensity one; i.e., E[η(t)] = 0 and E[η(t)ηT(t+τ)] =

Iδ(τ) where I is the identity matrix, and δ(t) is the Dirac delta function. Certain existence

and uniqueness conditions related to Eq. (2.1) dictate that the solution α = [α j]n×1 is a

Markov stochastic vector process [98, 99], for which the C-K equation (e.g., [100])

p(αi+1, ti+1 |αi−1, ti−1) =
∫ ∞

−∞

p(αi+1, ti+1 |αi, ti)p(αi, ti |αi−1, ti−1)dαi (2.2)

is satisfied for any ti−1 < ti < ti+1. In Eq. (2.2), αi = α(ti) and p(αi+1, ti+1 |αi−1, ti−1) denotes

the transition PDF of the process α(t). Next, if A and B are continuous functions of t, then

α is a diffusion process [98] and the following conditions hold true for any ε > 0 (e.g., [99,
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101]), i.e.,

i) lim
∆t→0

∫
|αi+1−αi |<ε

p(αi+1, ti+1 |αi, ti)dαi+1 = 0

ii) lim
∆t→0

∫
|αi+1−αi |<ε

(αi+1 − αi)p(αi+1, ti+1 |αi, ti)dαi+1 = A(αi, ti)

iii) lim
∆t→0

∫
|αi+1−αi |<ε

(αi+1 − αi)(αi+1 − αi)
Tp(αi+1, ti+1 |αi, ti)dαi+1 = B(αi, ti)BT(αi, ti)

(2.3)

(2.4)

(2.5)

where ∆t = ti+1 − ti. Further, employing the C-K Eq. (2.2) leads to the F-P Eq. (2.6) for the

transition PDF p = p(αi+1, ti+1 |αi, ti), i.e.,

∂p
∂t
= −

∑
j

∂

∂α j

(
A j(α, t)p

)
+

1

2

∑
j,k

∂2

∂α j∂αk

(
B̃ j k(α, t)p

)
(2.6)

where A(α, t) = [A j(α, t)]n×1 is the drift vector, and B̃(α, t) = [B̃ j k(α, t)]n×n := B(α, t)BT(α, t)

denotes the diffusion matrix (e.g., [98, 99, 102]), which is symmetric and positive semidefinite.

2.1.2 Wiener path integral and Lagrangian function

In this section, basic WPI formalism aspects are presented for completeness. The inter-

ested reader is directed to [103, 15, 104, 105, 106] for more details. In the limit ∆t → 0, and

assuming a non-singular diffusion matrix B̃, the transition PDF associated with a diffusion

process α(t) has been shown to admit a Gaussian distribution (e.g., [102]) of the form

p(αi+1, ti+1 |αi, ti) =
[√
(2π∆t)ndet

[
B̃(αi, ti)

] ]−1
× . . .

exp

(
−

1

2

[αi+1 − αi − ∆tA(αi, ti)]T
[
B̃(αi, ti)

]−1
[αi+1 − αi − ∆tA(αi, ti)]

∆t

)

(2.7)

14



In passing, it is noted that the choice of Eq. (2.7) is not restrictive, and alternative non-

Gaussian distributions can also be employed (e.g., [107, 108]). Next, the probability that

α(t) follows a specific path ᾱ(t) can be expressed as the limiting case of the probability of

the compound event

P[ᾱ(t)] = lim
∆t→0
N→∞

P

[
N⋂

i=1

{
αi ∈

[
ᾱi, ᾱi + [dα ji]n×1

] }]
(2.8)

In Eq. (2.8), the time is discretized into N time points (slices) ∆t apart, while dα ji denotes

the infinitesimal element along dimension j at time ti. Loosely speaking, Eq. (2.8) represents

the probability of the process to propagate through the infinitesimally thin tube surrounding

ᾱ(t). In the following, considering deterministic initial conditions, and employing Eq. (2.7)

and the Markovian property of α(t), Eq. (2.8) becomes

P[ᾱ(t)] = lim
∆t→0
N→∞

{
N∏

i=1

p(ᾱi+1, ti+1 |ᾱi, ti)
n∏

j=1

dα ji

}
= lim
∆t→0
N→∞

{[
N∏

i=1

([√
(2π∆t)ndet

[
B̃(ᾱi, ti)

] ]−1 n∏
j=1

dα ji

)]
× . . .

exp

(
−

1

2

N∑
i=1

[ᾱi+1 − ᾱi − ∆tA(ᾱi, ti)]T
[
B̃(ᾱi, ti)

]−1
[ᾱi+1 − ᾱi − ∆tA(ᾱi, ti)]

∆t

)}

= exp
©­­«−

t f∫
t0

L(ā, Û̄a)dt
ª®®¬

t f∏
t=t0

da(t)

(2.9)

where

L(α, Ûα) =
1

2
[ Ûα −A(α, t)]T

[
B̃(α, t)

]−1
[ Ûα −A(α, t)] (2.10)

denotes the Lagrangian of the system and
∏t f

t=t0 da(t) is a functional measure given by

t f∏
t=t0

da(t) =
n∏

j=1

t f∏
t=t0

da j(t)√
2π

(
det

[
B̃(ā, t)

] ) 1
n

dt

(2.11)
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The interested reader is also directed to [22, 20] for more details. Further, the total proba-

bility that the process a starts from a0 at time t0 and ends up at a f at t f takes the form of

a functional integral, which “sums up” the probabilities associated with each and every path

that a can possibly follow (e.g., [15]). In this regard, denoting by C{a0, t0; a f , t f } the set of

all paths with initial state a0 at time t0 and final state a f at time t f , the transition PDF is

expressed as a functional integral (or Wiener path integral) in the form

p(a f , t f |a0, t0) =
∫

C{a0,t0;a f ,t f }

exp
©­­«−

t f∫
t0

L (a, Ûa) dt
ª®®¬

t f∏
t=t0

da(t) (2.12)

2.1.3 Most probable path approximation

Considering the significant challenges related to evaluating (2.12) analytically or nu-

merically, researchers have ordinarily resorted to the following approximate technique, also

referred to in the path integral literature as semi-classical approximation (e.g., [15]). Specif-

ically, note that the largest contribution to the functional integral of (2.12) comes from the

trajectory ā(t) for which the integral in the exponential (also known as stochastic action)

becomes as small as possible (e.g., [15]). This leads to the variational problem

minimize
∫ t f

t0
L (a, Ûa) dt (2.13)

The trajectory ā(t) satisfying (2.13) is also known as the “most probable path” and can be

used in conjunction with (2.12) for determining approximately a specific point of the system

response transition PDF, i.e.,

p(a f , t f |a0, t0) ≈ C exp

(
−

∫ t f

t0
L

(
ā, Û̄a

)
dt

)
(2.14)
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where C is a normalization constant. Clearly, the most probable path ā(t) is the extremal

that minimizes the functional in (2.13). According to the fundamental theorem of calculus

of variations [109], ā(t) can be evaluated by employing the necessary condition that the first

variation of the functional vanishes. Considering fixed initial and final conditions at t0 and

t f , respectively, this condition leads to a multivariate boundary value problem (BVP) of the

form

Laj −
d

dt
L Ûaj = 0 j = 1, ..., n

a j(t0) = a j,0, a j(t f ) = a j, f j = 1, ..., n

(2.15)

(2.16)

where Laj and L Ûaj denote the derivatives of the Lagrangian with respect to a j and Ûa j ,

respectively. (2.15) represents the Euler–Lagrange (E-L) equations and (2.16) relates to the

fixed boundary conditions.

2.2 WPI formulation for second order SDEs

In this section, the formulation delineated in Sections 2.1.2 and 2.1.3 is adapted to account

for systems whose dynamics is governed by second-order SDEs; see also [17, 20] for more

details. Such cases include structural and/or mechanical dynamical systems with inertia

terms in the respective equations of motion, which are generally modeled as a set of n

coupled nonlinear second-order SDEs of the form

M Üx + g(x, Ûx, t) = w(t) (2.17)

In Eq. (2.17), x = [x j(t)]n×1 is the system response displacement vector; M represents

the n × n mass matrix; g = [g j(x, Ûx, t)]n×1 is an arbitrary nonlinear vector-valued function,

which can account also for hysteretic response behaviors; and w is a white noise stochastic

excitation vector process with E[w(t)] = 0 and E[w(t)wT(t − τ)] = Dδ(τ), where D ∈ Rn×n is

a deterministic coefficient matrix.

Next, introducing a new variable v = Ûx, Eq. (2.17) can be cast, equivalently, into the
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form of Eq. (2.1) with

α =


x

v

 , A(α, t) =


v

−M−1g(x, v, t)

 and B(α, t) = B =


0 0

0 M−1
√
D

 (2.18)

where the square root of matrix D is given by
√
D
√
D

T
= D. Clearly, the diffusion matrix

B̃ = BBT is singular (see Eq. (2.18)), and thus, the expression in Eq. (2.10) cannot be

evaluated in a straightforward manner. Nevertheless, this limitation due to the singularity

of B̃ can be addressed by introducing delta-functionals to enforce the compatibility equation

Ûx = v (e.g., [15, 104, 20]). In particular, defining S(x, v, Ûv) = Ûv+M−1g(x, v, t) the transition

PDF of α given by Eq. (2.12) becomes

p(α f , t f |α0, t0) =
∫

C{x0,v0,t0;x f ,v f ,t f }

exp
©­­«−

t f∫
t0

1

2
[MS(x, v, Ûv)]T D−1 [MS(x, v, Ûv)] dt

ª®®¬ × . . .
δ [ Ûx − v]

t f∏
t=t0

dx(t)
t f∏

t=t0

dv(t)

(2.19)

For the derivation of Eq. (2.19), the relationship
(
M−1DM−T

)−1
= MTD−1M for an ar-

bitrary non-singular square matrix D has been taken into account. Following integra-

tion over all paths v(t), and adopting for convenience in the ensuing analysis the notation

g(x, Ûx, t) = g(x, Ûx), Eq. (2.19) becomes

p(x f , Ûx f , t f |x0, Ûx0, t0) =
∫

C{x0, Ûx0,t0;x f , Ûx f ,t f }

exp
©­­«−

t f∫
t0

L(x, Ûx, Üx)dt
ª®®¬

t f∏
t=t0

dx(t) (2.20)

where

L(x, Ûx, Üx) =
1

2
[M Üx + g(x, Ûx)]T D−1 [M Üx + g(x, Ûx)] (2.21)

Note that the form of Eqs. (2.19)-(2.21) can accommodate also cases of singular mass matrices
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M. This may be the case, for instance, when considering hysteresis models (e.g., Bouc-Wen)

that employ auxiliary additional state variables governed by first-order only equations (e.g.,

[10]). These first-order equations can be directly cast into the form of Eq. (2.1), whereas

inversion pertains to the non-singular part of M only; see also Sec. 4.3.2.

Further, it is readily seen that the singularity of the diffusion matrix B̃, encountered

due to the state-variable reformulation of the second-order Eq. (2.17) into the first-order

Eq. (2.18), has been addressed in a rather direct and straightforward manner by the intro-

duction of the delta-functional. Specifically, owning to the simple form of the compatibility

equation Ûx = v between the original variable and the state variable, functional integration

over the state variable v is performed in a direct (and rather trivial) manner. However,

singular diffusion matrices B̃ due to reasons other than state-variable reformulation (e.g.,

cases of systems with only some of their DOFs excited, hysteresis modeling via additional

auxiliary state equations, energy harvesters with coupled electro-mechanical equations, etc.)

are not amenable, in general, to a similar trivial treatment. This is due to the significantly

more complex form of the corresponding (compatibility) equations related to the singular-

ities, and thus, a direct functional integration is not possible. To address this challenge,

the WPI-based solution technique is generalized and extended in Chapter 4 by relying on a

constrained variational formulation that can account for arbitrary forms of (compatibility)

equations related to singular diffusion matrices.

2.2.1 Most probable path and Euler–Lagrange equations

Next, the most probable path approximation presented in Sec. 2.1.3 is extended to second-

order systems for approximating the WPI in Eq. (2.20). Specifically, the largest contribution

to the functional integral of Eq. (2.20) comes from the trajectory x̄(t) for which the integral

in the exponential, also known as stochastic action, is minimized (e.g., [15]). According to

calculus of variations (e.g., [110, 111]) this trajectory x̄(t) with fixed endpoints satisfies the
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extremality condition

δ

∫ t f

t0
L(x, Ûx, Üx)dt = 0 (2.22)

which leads to the Euler–Lagrange (E-L) equations

Lxj −
d

dt
L Ûxj +

d2

dt2
L Üxj = 0, j = 1, ..., n (2.23)

with the set of boundary conditions

x j(t0) = x j,0 Ûx j(t0) = Ûx j,0

x j(t f ) = x j, f Ûx j(t f ) = Ûx j, f

j = 1, ..., n (2.24)

Next, solving Eqs. (2.23)-(2.24) yields the n-dimensional most probable path, x̄(t), and thus,

a single point of the system response transition PDF is determined as [17]

p(x f , Ûx f , t f |x0, Ûx0, t0) ≈ C exp
©­­«−

t f∫
t0

L(x̄, Û̄x, Ǖx)dt
ª®®¬ (2.25)

where C is a normalization constant. It can be readily seen by comparing Eqs. (2.20) and

(2.25) that in the approximation of Eq. (2.25) only one trajectory, i.e., the most probable

path x̄(t), is considered in evaluating the path integral of Eq. (2.20). Regarding the degree

of approximation associated with Eq. (2.25), direct comparisons of Eq. (2.25) with pertinent

MCS data related to various engineering dynamical systems have demonstrated satisfactory

accuracy (e.g., [20, 23, 21, 19, 18, 24]).

2.3 WPI solution treatment

The determination of the most probable path is achieved by either solving the BVP

defined by the Euler–Lagrange equations (2.23) and (2.24) numerically, or by employing the

Rayleigh–Rirtz direct solution technique. The system response PDF can be subsequently
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evaluated via Eq. (2.25).

2.3.1 Numerical solution of the Euler–Lagrange equations

The solution of the Euler–Lagrange equations (2.23) and (2.24) can be accomplished by

employing numerical methods for BVPs (see e.g., [112]). Such methods include different

finite differences schemes [113], collocation methods [114] and the shooting method [115],

which provide relatively stable and robust numerical schemes that are readily available in

various open source and commercial software packages; see, for instance, [116] for the Matlab

built in function bvp4c.

2.3.2 Rayleigh–Ritz solution technique for the most probable path

In general, Eqs. (2.23)-(2.24) cannot be solved analytically for the most probable path.

Therefore, resorting to numerical solution schemes for boundary value problems (BVPs) is

often necessary. Indicatively, since x̄ is the solution of the variational problem

minimize J(x, Ûx, Üx) =

∫ t f

t0
L(x, Ûx, Üx)dt (2.26)

or, in other words, an extremum for the functional J , a direct functional minimization for-

mulation can be employed in conjunction with a standard Rayleigh–Ritz solution technique

(see [64, 23, 117]). In this regard, x(t) is approximated by

x̂(t) = ψ(t) + Zh(t) ≈ x(t) (2.27)

The function ψ(t) is chosen so that it satisfies the boundary conditions, while the trial

functions h(t) = [hl(t)]L×1 should vanish at the boundaries, i.e., h(t0) = h(t f ) = 0; Z ∈ Rn×L

is a coefficient matrix and L is the chosen number of trial functions considered. Utilizing a

21



vectorized form of Z, Eq. (2.27) is cast, equivalently, as

x̂(t) = ψ(t) +H(t)z (2.28)

with

z =



ZT
1

ZT
2

...

ZT
L


∈ RnL and H(t) =



hT(t) 0 . . . 0

0 hT(t) . . . 0

...
...

. . .
...

0 0 . . . hT(t)


(2.29)

where Zl denotes the lth row of matrix Z and H(t) is an n × nL time-dependent matrix.

Clearly, there is a wide range of choices for functions ψ and h. In the ensuing analysis, the

Hermite interpolating polynomials

ψ j(t) =
3∑

k=0

a j,k tk (2.30)

are adopted, i.e., ψ(t) = [ψ j(t)]n×1, where the n×4 coefficients a j,k are determined by the n×4

boundary conditions in Eq. (2.24). For the trial functions, the shifted Legendre polynomials

given by the recursive formula

`q+1(t) =
2q + 1

q + 1

(
2t − t0 − t f

t f − t0

)
`q(t) −

q
q + 1

`q−1(t), q = 1, ..., L − 1 (2.31)

are employed, which are orthogonal in the interval [t0, t f ], with `0(t) = 1; and `1(t) = (2t −

t0 − t f )/(t f − t0). The trial functions take the form

hl(t) = (t − t0)2(t − t f )
2`l(t) (2.32)

where the factor (t − t0)2(t − t f )
2 multiplies the lth-order Legendre polynomial `l(t) to yield

the lth trial function hl(t). Note that hl(t) is a polynomial of order l + 4 and vanishes at the
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boundaries. Clearly, each component x̂ j(t) of x̂(t) in Eq. (2.27) is a polynomial of order up

to L + 4 in t .

A practical advantage of the Rayleigh–Ritz solution technique is that the variational

problem (functional minimization) of Eq. (2.26) degenerates to an ordinary minimization

problem of a function that depends on a finite number of variables [111]. Specifically, the

functional J , dependent on the n functions x(t) (and their time derivatives), is cast in the

form

J(z) := J(x̂, Û̂x, Ü̂x) (2.33)

which depends on a finite number of nL coefficients z. The corresponding optimization

problem takes the form

min
z

J(z) (2.34)

Further, the extremality condition in Eq. (2.22) is replaced by the first-oder optimality

condition

∇J(z) = 0 (2.35)

which represents essentially a set of nL nonlinear algebraic equations that need to be solved

numerically. Once the solution z∗ of the optimization problem in Eq. (2.34) is obtained,

the most probable path x̄ is determined via Eq. (2.28). Obviously, there is a wide range

of standard numerical optimization schemes to be employed for obtaining the solution z∗.

Indicatively, these range from gradient based techniques (e.g., [25]) to rather heuristic global

optimization methods (e.g., [118, 119]).

Linear oscillator: A closed-form exact solution case

It has been shown recently in [120] that, for the special case of linear systems under

Gaussian white noise, the WPI most probable path approach summarized in Sec. 2.2 is

amenable to analytical treatment. In fact, the E-L Eqs. (2.23)-(2.24) become linear and
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can be solved analytically for the most probable path, which is substituted into Eq. (2.25)

yielding a closed-form expression for the joint response transition PDF. Most importantly,

it has been shown in [120] that the expression of Eq. (2.25) corresponding to linear systems

is exact, and involves no approximations.

Nevertheless, despite the available exact analytical solution for the joint response PDF

derived in [120], the Rayleigh-Ritz numerical solution approach is also considered in detail

in the following for the case of linear systems. This is done intentionally as it provides the

motivation and elucidates the rationale for developing a Newton’s numerical optimization

scheme in Sec. 2.3.2. Specifically, consider a linear system whose dynamics is described by

Eq.(2.17) with

g(x, Ûx, t) = glin(x, Ûx) := C Ûx +Kx (2.36)

where C and K denote the system damping and stiffness matrices, respectively. In this

regard, the left hand-side of Eq. (2.17) can be represented by the linear differential operator

G[·] defined as

G =M
∂2

∂t2
+ C

∂

∂t
+K (2.37)

Next, for simplicity and without loss of generality, consider D = 2πS0I, where I de-

notes the identity matrix. Substituting the expansion of Eq. (2.28) into the Lagrangian of

Eq. (2.21), and taking into account Eq. (2.37), yields

L(x, Ûx, Üx) ≈ L(z, t) =
1

2

1

2πS0

[
G[ψ] +G[H]z

]T [
G[ψ] +G[H]z

]
(2.38)

Further, expanding Eq. (2.38) and substituting into Eq. (2.33), the objective function

takes the form

J(z) = Jlin(z) :=
1

2πS0

[
1

2
zTQz + bTz

]
+ c (2.39)
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where the symmetric matrix Q ∈ RnL×nL is given by

[Q]kl =

∫ t f

t0

n∑
j=1

[
G[H]

]
k j

[
G[H]

]
jl

dt, k, l = 1, .., nL (2.40)

the vector b ∈ RnL is determined as

[b]l =

∫ t f

t0

n∑
j=1

[
G[ψ]

]
j

[
G[H]

]
jl

dt, l = 1, .., nL (2.41)

and the constant term c (i.e., independent of z) is equal to

c =
1

2

1

2πS0

∫ t f

t0
G[ψ]TG[ψ]dt (2.42)

Clearly, for the optimization problem of Eq. (2.34) the multiplicative factor 1
2πS0

and the

constant term c in the definition of the objective function of Eq. (2.39) do not affect the

solution z∗. Thus, Eq. (2.34) becomes, equivalently,

min
z

1

2
zTQz + bTz (2.43)

Note that the objective function of Eq. (2.39) (or, alternatively, Eq. (2.43)) is not only

quadratic, but also convex for positive definite symmetric matrices Q and its unique global

minimizer is given by

z∗ = −Q−1b. (2.44)

Substituting this result into Eq. (2.28) yields a closed-form expression for the most probable

path, i.e.,

ˆ̄x(t) = ψ(t) −H(t)Q−1b (2.45)

Further, it is worth pointing out that the time-dependent matrix Q is a function only

of the initial and final time points (t0 and t f ), and is independent of the boundary values
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x(t0), Ûx(t0), x(t f ) and Ûx(t f ); the latter are involved only in the evaluation of vector b through

the Hermite polynomials ψ (see Eq.(2.41)). The interested reader is also directed to B,

where, for tutorial effectiveness, the positive definiteness of matrix Q is demonstrated for

the case of a single-degree-of-freedom (SDOF) linear oscillator.

Finally, it has been shown in this section that a Rayleigh-Ritz numerical solution treat-

ment for determining the most probable path yields an objective function to be minimized,

which is both quadratic and convex for linear systems. Obviously, for such cases a New-

ton’s optimization scheme for determining the most probable path converges to the global

extremum in only one iteration [25]. Thus, taking into account that nonlinear response be-

haviors can be construed generally as perturbations (not necessarily small) from the linear

regime, it can be argued that a Newton’s optimization scheme (such as the one developed

in the following section) serves as a natural choice for addressing general cases involving

arbitrary nonlinearities.

A Newton’s numerical scheme formulation

In this section, a Newton’s iterative algorithm is developed for solving the optimization

problem in Eq. (2.34) corresponding to an arbitrary nonlinear oscillator. In this regard, as

highlighted in Sec. 2.3.2, the rationale for developing a Newton’s scheme relates to the form

of the objective function of Eq. (2.39) referring to linear systems, which is both convex and

quadratic; and thus, a Newton’s scheme appears to be an ideal choice as it converges in only

one iteration to the unique global extremum [25]. This convergence behavior suggests that

a Newton’s scheme can be a suitable choice also for nonlinear systems following Eq. (2.17)

with

g(x, Ûx, t) = glin(x, Ûx) + ε gnl(x, Ûx) (2.46)

where ε > 0 is a parameter indicating the intensity of the nonlinearity degree and gnl(x, Ûx)

is an arbitrary nonlinear function. Obviously, in the limiting case, as ε → 0 the nonlinear

function g(x, Ûx, t) becomes linear, i.e., g → glin (see also Eq. (2.36)), and the objective
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function in Eq. (2.34) approaches the quadratic form of Eq. (2.39), i.e., J(z) → Jlin(z). This

asymptotic behavior of J(z) suggests that a suitable optimization scheme relates to starting

from an initial point z(0) and to successively minimizing a quadratic function Jk
q , which

approximates J locally at z(k), i.e.,

Jk
q (z) = J(z(k)) + ∇J(z(k))(z − z(k)) +

1

2
(z − z(k))T∇2J(z(k))(z − z(k)) (2.47)

In Eq. (2.47), ∇J and ∇2J denote the gradient vector and the Hessian matrix of J,

respectively. The next point z(k+1) of the iterative scheme is obtained by minimizing Jk
q (z)

and setting ∇J = 0. This yields

z(k+1) = z(k) − [∇2J(z(k))]−1∇J(z(k)) (2.48)

which is the update formula of the standard Newton’s iterative optimization scheme (e.g.,

[25]).

It is worth noting that for the case of linear oscillators, i.e., ε = 0, and considering

Eq. (2.39), the Hessian matrix becomes ∇2J = Q, which is constant with respect to z. Thus,

the update formula in Eq. (2.48) becomes

z(k+1) = z(k) −Q−1[Qz(k) + b]−1 = −Q−1b (2.49)

which is equal to the closed-form solution derived in Eq. (2.44). In other words, as anticipated

for linear systems, the Newton’s optimization scheme converges to the exact solution in only

one iteration for any arbitrarily selected starting point z(0). Further, the optimal (for linear

systems) point z∗ = −Q−1b is expected to be a reasonable choice to be used as a starting

point in the optimization scheme for the general case of nonlinear systems.

Next, certain convergence analysis aspects are elucidated pertaining to the herein pro-

posed Newton’s scheme in conjunction with the general class of dynamical systems governed
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by Eqs. (2.17) and (2.46).

Specifically, as shown in [25], provided that the Hessian matrix ∇2J is Lipschitz continu-

ous in the neighborhood of the solution z∗ and that the initial point z(0) is sufficiently close

to z∗, the Newton’s iterative scheme given by Eq. (2.48) converges to z∗ at a quadratic rate,

i.e.,

‖ z(k+1) − z∗‖ ≤ L ‖[∇2J(z∗)]−1‖ ‖ z(k) − z∗‖2 (2.50)

where L is the Lipschitz constant of ∇2J(z) for z near z∗, i.e., L is a positive real constant

defined as 

∇2J(z2) − ∇2J(z1)




‖ z2 − z1‖
≤ L (2.51)

for all z1 and z2 in a neighborhood of z∗.

Next, substituting Eq. (2.46) into Eq. (2.21), and considering Eq. (2.39), the gradient

vector of J(z) becomes

∇J(z) = Qz + b + ε∇g1(z) +
ε

2
∇g2(z) (2.52)

and the Hessian matrix of J(z) takes the form

∇2J(z) = Q + ε∇2g1(z) +
ε2

2
∇2g2(z) (2.53)

where

g1(z) =

∫ t f

t0

[
M Ü̂x + C Û̂x +Kx̂

]T
gnl(x̂, Û̂x)dt (2.54)

and

g2(z) =

∫ t f

t0
gnl(x̂, Û̂x)

Tgnl(x̂, Û̂x)dt (2.55)

Further, substituting Eq. (2.53) into Eq. (2.50) leads to

‖ z(k+1) − z∗‖ ≤ L ‖[Q + ε∇2g1(z∗) +
ε2

2
∇2g2(z

∗)]−1‖ ‖ z(k) − z∗‖2 (2.56)
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Moreover, substituting Eq. (2.53) into Eq. (2.51) yields


ε∇2g1(z2) + ε2

2 ∇
2g2(z2) − ε∇

2g1(z1) −
ε2

2 ∇
2g2(z1)





‖ z2 − z1‖

≤ L (2.57)

Next, applying the triangle inequality to the left hand-side of Eq. (2.57) leads to


ε∇2g1(z2) + ε2

2 ∇
2g2(z2) − ε∇

2g1(z1) −
ε2

2 ∇
2g2(z1)





‖ z2 − z1‖

≤

ε



∇2g1(z2) − ∇2g1(z1)


‖ z2 − z1‖

+
ε2

2



∇2g2(z2) − ∇2g2(z1)


‖ z2 − z1‖

≤ εL1 +
ε2

2
L2

(2.58)

where L1 and L2 represent Lipschitz constants of ∇2g1(z) and ∇2g2(z), respectively, and

are independent of ε. Further, considering Eqs. (2.57) and (2.58), it is readily seen that

the term εL1 +
ε2

2 L2 represents a Lipschitz constant of ∇2J(z) for z in the neighborhood

of z∗, which decreases with decreasing ε . Also, as ε → 0 the term ‖[Q + ε∇2g1(z∗) +

ε2

2 ∇
2g2(z

∗)]−1‖ in Eq. (2.56) approaches the constant positive term


Q−1

 (see also B for the

positive definiteness of Q). Thus, as anticipated, the convergence rate shown in Eq. (2.56)

is increasing for decreasing nonlinearity degree.
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Chapter 3: Efficient marginalization with free boundaries

3.1 Marginalized Wiener path integral representation

It becomes clear that a brute-force determination of the n-dimensional response transition

PDF via (2.14) requires point-wise calculations on a n-dimensional lattice. This leads to an

exponential growth of the computational cost as a function of the number n of DOFs. In

other words, discretizing each dimension of vector a into N points, Nn BVPs of the form of

(2.15)-(2.16) need to be solved numerically for evaluating the joint response PDF via (2.14).

To circumvent this limitation, a technique is developed in this paper, capable of de-

termining marginalized joint response PDFs, i.e., PDFs that involve only a subset of the

components of vector a. In the ensuing analysis, a marginalized transition PDF is denoted

as p(u, t f |a0, t0), where u = {a j, f | j ∈ U} and U is an arbitrary subset U ⊆ {1, ..., n} with

cardinality p = |U |. Assuming fixed initial conditions at t0, the herein developed technique

is capable of determining any p-dimensional (marginalized) joint response transition PDF

p(u) = p(u, t f |a0, t0) directly, i.e., at a computational cost that is exponentially related to

the dimension p of the target PDF only, and is essentially independent of the dimension n

of the original system.

In this regard, the corresponding path integral representation of the transition PDF takes

the form

p(u, t0 |a0, t0) =
∫

C{a0,t0;u,t f }

exp
©­­«−

t f∫
t0

L (a, Ûa) dt
ª®®¬

t f∏
t=t0

da(t) (3.1)

where C{a0, t0; u, t f } denotes the space of all possible paths with initial state (a0, t0) and

final state
(
u, t f

)
. Note that the coordinates a j, f with j < U are considered free.

30



3.1.1 Most probable path with free boundaries

Clearly, the most probable path, denoted as ã(t) in the case of free endpoint boundaries,

depends on the choice of set U, since this set determines which coordinates of ã are fixed

at the endpoint (t = t f ). Specifically, accounting for the free endpoint boundaries in the

minimization of the functional in (2.13) leads to a BVP with the E-L equations of (2.15),

but with the modified boundary conditions

a j(t0) = a j,0
a j(t f ) = a j, f[
L Ûaj

]
t=t f
= 0

if j ∈ U

otherwise


j = 1, ..., n

(3.2a)

(3.2b)

(3.2a) represents the fixed initial conditions, whereas (3.2b) assigns a fixed endpoint condition

to the components a j of a with j ∈ U and a free endpoint condition to the components a j

with j < U. The form of the free endpoint conditions in (3.2b) is the outcome of the first-

order extremality condition with free endpoint boundaries (see Appendix A for the complete

derivation).

In this regard, a specific point of the marginalized system response transition PDF can

be determined as

p(u, t f |a0, t0) ≈ C exp

(
−

∫ t f

t0
L

(
ã, Û̃a

)
dt

)
(3.3)

where C is a normalization constant. Indicative examples of sample paths and most probable

paths corresponding both to (2.16) and (3.2) are shown in figure 3.1 for comparison.

31



Figure 3.1: Indicative examples of sample paths (thin lines) and most probable path (thick
line). Left: fixed endpoint boundaries a1, f and a2, f . Right: fixed endpoint boundary a1, f
and free endpoint boundary a2, f .

3.2 Generalization to higher-order SDEs

In this section, a generalization of the herein developed technique is presented, which

accounts for higher-order systems of the form

x(m) = P
(
x, ..., x(m−1), t

)
+ Q

(
x, ..., x(m−1), t

)
η(t) (3.4)

where x is a n-dimensional stochastic vector process, i.e., x(t) = [x j(t)]n×1 and x(m) denotes

the m-th-order derivative with respect to time t. Casting (3.4) into the form of (2.1), by

setting a = [x, ..., x(m−1)]T, leads to a first-order system of nm SDEs characterized by a sin-

gular diffusion matrix B̃. Thus, the Lagrangian in (2.10) cannot be used in a straightforward

manner. However, it was shown in [20] that this type of diffusion matrix singularity can be

treated effectively by introducing delta functionals (i.e., the functional counterpart of the

Dirac delta) into the path integral expression for enforcing the constraints Ûa = [ Ûx, ..., x(m)]T

similarly to Sec. 2.2. In this manner, functional integration of these delta functionals elim-

inates the variables corresponding to the singular part of B̃. Ultimately, the path integral

expression takes the form of (2.12) in conjunction, however, with a properly defined La-
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grangian shown in (3.5), i.e.,

L

(
x, ..., x(m)

)
=

1

2

[
x(m) − P

(
x, ..., x(m−1), t

)]T [
Q̃

(
x, ..., x(m−1), t

)]−1 [
x(m) − P

(
x, ..., x(m−1), t

)]
(3.5)

where

Q̃
(
x, ..., x(m−1), t

)
= Q

(
x, ..., x(m−1), t

)
QT

(
x, ..., x(m−1), t

)
(3.6)

(see also [20]).

3.2.1 Most probable path with free boundaries for higher-order SDEs

In a similar manner as in the first-order system of (2.1), the most probable path is

determined as the trajectory that minimizes the functional
∫ t f

t0
L

(
x, ..., x(m)

)
dt (see (2.13)).

Assuming fixed initial and endpoint boundaries, the most probable path x̄(t) can be evaluated

by solving the E-L equations

m∑
k=0

(−1)k
dk

dtkLx(k)j
= 0 for all j = 1, ..., n (3.7)

together with the fixed boundary conditions. A specific point of the complete joint re-

sponse transition PDF p(x f , ..., x
(m−1)
f , t f |x0, ..., x

(m−1)
0 , t0) can be obtained by utilizing an

expression similar to (2.14). On the other hand, a marginalized response transition PDF

p(u, t f |x0, ..., x
(m−1)
0 , t0) can be determined by utilizing an expression of the form of (3.3). In

this case, u denotes the p-dimensional vector that contains a prespecified number of end-

point coordinates, i.e., 1 ≤ p ≤ nm and u = {x(k)j, f | j ∈ Uk} where Uk is the set that contains

the indices of the coordinates of the k-th derivative x(k) that participate in the marginalized

PDF. For example, the marginal response PDF of the j-th component of the r-th derivative

x(r)j of x can be computed by setting Ur = { j} and Uk = � for all k , r. Next, accounting

for the free endpoint boundaries in the minimization of the functional
∫ t f

t0
L

(
x, ..., x(m)

)
dt
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leads to a BVP with the E-L equations of (3.7), but with the modified boundary conditions

x(k)j (t0) = x(k)j,0
x(k)j (t f ) = x(k)j, f[∑m−k−1

l=0 (−1)l d
l

dtlLx(l+k+1)j

]
t=t f

= 0

if i ∈ Uk

otherwise

(3.8a)

(3.8b)

These need to be considered for all j = 1, ..., n and k = 0, ...,m − 1, yielding a total number

of 2mn boundary conditions. The solution of this problem provides the most probable path

x̃(t), and a specific point of the marginalized response transition PDF is determined in the

form

p(u, t f |x0, ..., x
(m−1)
0 , t0) ≈ C exp

(
−

∫ t f

t0
L

(
x̃, ..., x̃(m)

)
dt

)
(3.9)

3.3 Computational efficiency aspects

In the standard WPI solution technique (e.g., [20]), the complete nm-dimensional joint

response PDF corresponding to the system of (3.4) is determined and marginalized by in-

tegration in an a posteriori manner. This procedure requires the discretization of the PDF

effective domain into Nnm points, where N is the number of points along each dimension,

and the response PDF at a given time instant t f is computed pointwise on the corresponding

lattice. This leads to an exponential growth of the computational cost as a function of the

dimensionality n and the order m of the system, since Nnm BVPs with fixed boundaries of

the form of (2.15)-(2.16) need to be solved numerically. This limitation of the standard WPI

technique has been partly addressed in [19, 24] by employing multi-dimensional function

approximation techniques in conjunction with compressive sampling concepts and tools for

reducing the total number of required BVPs to be solved. However, notwithstanding the sig-

nificant reduction of the associated computational cost achieved in [19, 24], the requirement

of the technique for determining the complete joint response PDF has not been circumvented
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to-date. Clearly, this limits the scalability of the methodology since the number of BVPs to

be solved becomes, evenually, prohibitive with increasing number n of DOFs.

In contrast, the technique developed in this paper is capable of determining any marginal

p-dimensional response PDF by solving only N p BVPs with free boundaries of the form of

(3.8). This constitutes a reduction of the computational cost by orders of magnitude com-

pared to the standard WPI technique. Notably, even in cases where the objective is to

determine all marginal response PDFs of an n-dimensional system of m-th order, the free

boundaries WPI solution formalism requires a dramatically smaller number of BVPs to be

solved than the fixed boundaries WPI formulation, i.e., nmN << Nmn. Clearly, in many prac-

tical problems where decision-making is based only on a readily identified most critical DOF,

the computational efficiency enhancement becomes even more impressive, and the above re-

lationship becomes N << Nmn. Further, indicative comparisons with a standard MCS-based

solution approach can be found in the numerical examples of the following section.

3.4 Numerical examples

In this section, the herein developed technique is utilized for determining marginalized

joint response PDFs of various multi-DOF nonlinear dynamical systems, typically encoun-

tered in engineering applications. In general, a wide range of systems in stochastic engineer-

ing dynamics can be modeled as an n-DOF system of the form

M Üx +C Ûx +Kx + g (x, Ûx, t) = Dη(t) (3.10)

where x(t) = [x j(t)]n×1 is the displacement vector process; M is a n×n diagonal mass matrix;

C andK are the n×n damping and stiffness matrices, respectively; g (x, Ûx, t) = [g j (x, Ûx, t)]n×1

denotes an arbitrary nonlinear vector-valued function and D is a deterministic nonsingular

n × n matrix.

In the following, two distinct numerical examples are considered for demonstrating the
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reliability and computational efficiency of the developed WPI solution technique. Compar-

isons with pertinent MCS data, generated by utilizing a standard 4th-order Runge-Kutta

scheme to numerically integrate the equations of motion, are included as well for assessing

the accuracy of the technique.

The first example relates to marine engineering and pertains to a structure exposed to

nonlinear flow-induced forces described by the Morison equation [121] and subjected to non-

white stochastic excitation. The second example relates to nano-engineering and pertains to

a 100-DOF stochastically excited nonlinear system modeling the behavior of large arrays of

coupled nanomechanical oscillators (e.g., [122, 123, 124]).

3.4.1 Structural system subject to flow-induced forces

In this example, a single-DOF oscillator under flow-induced forces is considered, typically

modeled via the Morison nonlinear equation [121]. Further, the excitation is modeled as

a non-white process compatible with the JONSWAP sea wave power spectrum, which is

approximated herein by a second-order linear filter; see also [20] and references therein for

more details. In this regard, the equations of motion become

µ Üy + γ Ûy + κy = w(t)

Üx + 2ωξ Ûx + ω2x +
1

2

CDρD
M0
|V + Ûx |(V + Ûx) = y(t)

(3.11a)

(3.11b)

where the parameters values µ = 1.8268, γ = 0.4418, κ = 3.0213, ω = 1.2566, ξ = 0.02,

CD = 1, ρD/M0 = 1.136 and V = 0 are used in the ensuing analysis. Next, following

[20], (3.11b) is substituted into (3.11a) yielding a 4th-order nonlinear SDE of the form of

(3.4) to be solved by the proposed WPI solution methodology. Clearly, from a practical

perspective, the higher-order derivatives x(3) and Üx, appearing in the 4th-order SDE due

to the filter (3.11a), do not offer any additional information or insight for analyzing and

eventually designing the structural system. Thus, the herein developed marginalized WPI
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Figure 3.2: Evolution in time of the marginal response displacement PDF p(x) pertaining to
the Morison nonlinear system. Left: WPI. Right: MCS estimates (10,000 realizations).

formulation appears ideal for eliminating variables x(3) and Üx from the response process

vector. Specifically, applying the free boundaries WPI technique, the evolution in time of

the marginal response displacement PDF is shown in Fig. 3.2. Comparing with pertinent

MCS data demonstrates the accuracy of the developed methodology. It is noted that the

evaluation of a marginal PDF at a specific time instant requires the solution of N = 31 BVPs,

whereas using the standard fixed boundaries WPI requires the solution of N4 = 923, 521

BVPs (since marginalization follows after the joint PDF has been obtained first). Also, for

this particular example, MCS based on 10, 000 realizations requires approximately 1 hour of

computation time, whereas a marginal PDF is determined via the proposed free boundaries

WPI technique in approximately 10 seconds on the same computer.

3.4.2 High-dimensional arrays of coupled nonlinear nano-mechanical oscillators

Due to their minuscule size and high sensitivity, micro- and nano-electromechanical sys-

tems (MEMS and NEMS) have been proposed recently for applications in signal processing,

laser scanning, protein printing and label-free detection of molecules even in low concentra-

tions [124]. In general, MEMS and NEMS can exhibit nonlinear response behavior due to

geometrical configurations and various damping mechanisms, are subject to various intrin-

sic sources of stochastic noise (e.g. adsorption-desorption and thermally induced noises),

whereas, to enhance their detection sensitivity, current technology enables the fabrication
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of large arrays of nano-oscillators, coupled by electric, magnetic, or elastic forces [123, 124].

In this regard, MEMS and NEMS are typically modeled as stochastically excited high-

dimensional nonlinear multi-DOF systems in the form of (3.10) [122, 123]. Note, however,

that due to the prohibitively large in many cases number of stochastic dimensions, the

analysis of relatively large arrays of MEMS and NEMS has been performed to-date based,

primarily, on techniques that are subject to significant simplifications and approximations;

see, for instance, [125] where a standard moments equations solution approach was employed,

which is capable of providing relatively accurate estimates only for the system response first-

and second-order statistics (e.g., mean and standard deviation); see also [10].

Next, the herein developed WPI technique is employed for determining marginalized joint

response PDFs of a 100-DOF MEMS modeled according to [123] and following (3.10) with

M =


m0 · · · 0

...
. . .

...

0 · · · m0


C =


c0 · · · 0

...
. . .

...

0 · · · c0


K =



k0 + 2ω0 −ω0 · · · 0

−ω0
. . .

. . .
...

...
. . .

. . . −ω0

0 · · · −ω0 k0 + 2ω0


g (x, Ûx, t) =

ε
(

x j

x2j + d2
0

) 3
2

− A cos(ωt)
100×1 D =


√

10π · · · 0

...
. . .

...

0 · · ·
√

10π



(3.12)

The parameter values are m0 = 1, c0 = 1.5, k0 = 120, ω0 = 70.2π, ε = 0.1, d0 = 0.1, A = 20

and ω = 3π.

In Fig. 3.3 the evolution in time of the marginal response displacement PDF of x33 is

shown, whereas in Fig. 3.4 the evolution in time of the joint response PDF p(x97, Ûx97) is

plotted. Comparisons with MCS data demonstrate the high accuracy degree exhibited by

the technique.

It is worth noting that in this example N = 31 BVPs are solved for evaluating a marginal

PDF at a specific time instant. Even in the case that knowledge of the marginal response
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Figure 3.3: Evolution in time of the marginal response displacement PDF of x33. Left: WPI.
Right: MCS estimates (10,000 realizations).

displacement PDFs for all DOFs is required, this translates into solving only 100 · 31 = 3100

BVPs. In contrast, the standard WPI technique, which unavoidably determines the complete

joint response PDF, requires the solution of 31200 BVPs, which is clearly a computationally

intractable number.

In Fig. 3.5, the accuracy and the efficiency of the proposed technique is compared with

pertinent MCS results for a 10-DOF version of the above nanomechanical oscillator at time

t = 0.5s. Specifically, the horizontal axis shows computational cost represented by actual

computation time required based on a MATLAB_R2019a numerical implementation. The

vertical axis shows the mean square error (MSE) between the estimated PDF and the target

PDF based on MCS with 100, 000 realizations (assumed to be the exact for comparison

purposes). The reported MSE corresponds to the average value accounting for all 20 marginal

PDFs. In a similar manner, the computation time of the WPI shown on the horizontal axis

corresponds to the average over the 20 marginal PDFs (i.e., 10 displacement and 10 velocity

PDFs). MCS-based PDF estimates with a varying number of realizations are included as

well. As anticipated, these estimates converge to the target PDF with an increasing number

of realizations, at the expense of course of increasing computational cost. Regarding the

WPI-based PDF estimates, it is seen that the accuracy exhibited by the technique increases

as the discretization of the PDF domain becomes finer. In other words, as the number N of

BVPs to be solved becomes larger, the associated error becomes smaller. More importantly,
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Figure 3.4: Evolution in time of the joint response PDF p(x97, Ûx97). Top: WPI. Bottom:
MCS estimates (10,000 realizations). The three isosurfaces shown correspond to PDF values
of 0.01 (blue), 0.32 (orange) and 0.6 (yellow).
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Figure 3.5: Comparisons between MCS and WPI technique in terms of accuracy and effi-
ciency: Mean square error and corresponding computation time for estimating a marginal
PDF of a 10-DOF nano-mechanical oscillator.

in all cases, the performance of the WPI technique appears superior to that of the standard

MCS. In fact, for approximately the same accuracy degree, it is seen that the WPI associated

computation time is several orders of magnitude smaller than that corresponding to MCS.
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Chapter 4: Systems with singular diffusion matrices

4.1 WPI formulation accounting for singular diffusion matrices

In this section, the WPI solution technique delineated in Sec. 2.2 is extended to account

for a general class of systems with singular diffusion matrices. In this regard, a novel WPI

based variational formulation with constraints is developed. Specifically, consider in the

following the general class of structural/mechanical systems whose governing equation of

motion takes the form

M Üx + g(x, Ûx) =


w(t)

0

 (4.1)

where M is an n × n, (potentially singular) mass matrix, and g is a nonlinear vector val-

ued function. Indicative examples of engineering systems whose dynamics is described by

Eq. (4.1) include, but are not limited to, structures subject to excitations applied to some

(and not all) of their DOFs, hysteretic (e.g., Bouc-Wen) systems modeled via additional

auxiliary state equations [10], and certain electromechanical energy harvesters [18]. Next,

comparing Eqs. (2.17) and (4.1), it can be readily seen that the D matrix corresponding to

the right-hand-side of Eq. (4.1), and defined as

Dδ(τ) = E



w(t)

0


[
wT(t + τ) 0

] =

E

[
w(t)wT(t + τ)

]
0

0 0

 =

Drr 0

0 0

 δ(τ) (4.2)

is singular, and thus, the Lagrangian of Eq. (2.21) cannot be determined in a straightforward

manner. Note that the symbol Drr is used to denote the non-singular square sub-matrix of

D.

In the ensuing analysis, the singularity of D is addressed by partitioning the system of
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Eq. (4.1) into two coupled subsystems: one that contains the equations corresponding to

vector w on the right-hand-side of Eq. (4.1) and another referring to the equations that

correspond to the zero entries on the right-hand-side of Eq. (4.1); this yields


Mr Üx + gr(x, Ûx)

Ms Üx + gs(x, Ûx)

 =

w(t)

0

 (4.3)

Note that the upper subsystem, hereinafter referred to as the r−system, constitutes an

underdetermined system of n − m SDEs and the lower subsystem, hereinafter referred to

as the s−system, represents an underdetermined system of m homogeneous ODEs. Clearly,

matrix Mr ∈ R
(n−m)×n consists of the first n−m rows of matrix M, while Ms ∈ R

m×n consists

of the last m rows of M. Further, by recasting Eq. (4.1) into the form of Eq. (4.3), it can be

argued that the motion of the dynamical system in Eq. (4.1) is governed by the r−system of

equations constrained by the s−system of equations.

Next, defining x(t) = [xr(t) xs(t)]T, Mr = [Mrr Mrs] and Ms = [Msr Mss], where

Mrr , Mrs, Msr and Mss are square matrices, and employing a δ-functional as in Sec. 2.2,

the WPI for the system response PDF takes the form

p(α f , t f |α0, t0) =
∫
C{α f ,t f |α0,t0}

exp
©­­«−

t f∫
t0

1

2
[Sr(α, Ûα)]

T D−1rr [Sr(α, Ûα)] dt
ª®®¬ × . . .

δ [Ss(α, Ûα)]

t f∏
t=t0

dxr(t)
t f∏

t=t0

dxs(t)

(4.4)

where α = [xr,xs, Ûxr, Ûxs]
T, while

Sr(α, Ûα) =Mrr Üxr +Mrs Üxs + gr(α) (4.5)

and

Ss(α, Ûα) =Msr Üxr +Mss Üxs + gs(α) (4.6)
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Following a similar procedure as in Sec. 2.2, the aim is to integrate over paths xs(t) and to

obtain a path integral formulation involving xr(t) only. However, this is not generally possible

because the argument of the δ-functional in Eq. (4.4) is not merely a trivial compatibility

relationship, as in Sec. 2.2, but a rather complex general function of xs. To address this

challenge, the equation Ss(α, Ûα) = 0 is enforced explicitly and takes the form of a constraint

φ(x, Ûx, Üx) = 0 given by

φ(x, Ûx, Üx) =Ms Üx + gs(x, Ûx) (4.7)

In this regard, the transition PDF can be expressed in the compact form

p(x f , Ûx f , t f |x0, Ûx0, t0) =
∫
C{x0, Ûx0,t0;x f , Ûx f ,t f |φ=0}

exp
©­­«−

t f∫
t0

Lr(x, Ûx, Üx)dt
ª®®¬

t f∏
t=t0

dx(t) (4.8)

where

Lr(x, Ûx, Üx) =
1

2
[Mr Üx + gr(x, Ûx)]

TD−1rr [Mr Üx + gr(x, Ûx)] (4.9)

and C{x0, Ûx0, t0;x f , Ûx f , t f |φ = 0} denotes the set of all paths, with initial state (x0, Ûx0) at

time t0 and final state (x f , Ûx f ) at time t f , which satisfy the constraint φ(x, Ûx, Üx) = 0.

4.2 Constrained variational problem solution treatment

Following the WPI formulation of Sec. 4.1, determining the most probable path is pur-

sued next by seeking for the solutions of the r−system that satisfy also the constraints of

the s− system. This leads to the formulation of a constrained variational problem for the

determination of the most probable path x̄, i.e.,

minimize Jr(x, Ûx, Üx) =

∫ t f

t0
Lr(x, Ûx, Üx)dt

subject to φ(x, Ûx, Üx) = 0

(4.10)

(4.11)
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where the Lagrangian Lr in Eq. (4.10) corresponds to the r−system only and is given by

Eq. (4.9), and the constraint function φ is given by Eq. (4.7).

Constrained variational problems of the form of Eqs. (4.10)-(4.11) can be solved by

employing the general Lagrange multipliers approach (e.g., [126, 127]). This leads to an

unconstrained variational problem by considering the auxiliary Lagrangian L∗(x, Ûx, Üx) =

Lr(x, Ûx, Üx)+λ(t)φ(x, Ûx, Üx). This unconstrained problem yields a system of n Euler–Lagrange

equations, similar to the ones in Eq. (2.23)-(2.24), to be solved together with the m con-

straint functions in Eq. (4.11) for the n unknown functions x(t) and the m unknown Lagrange

multiplier functions λ(t); see for instance [18]. In practice, however, the reformulation of this

complex system of n+m equations into an equivalent first-order system, as dictated by most

numerical BVP solvers, requires multiple time differentiations of the constraint functions.

As a result, the time derivatives of the constraints are fulfilled, but not the constraints

themselves. This is a common limitation in several numerical solution methods for BVPs as

highlighted in [128]. Therefore, in the ensuing analysis, attention is directed to a Rayleigh–

Ritz solution approach for the determination of the most probable path.

Specifically, following Sec. 2.3.2, the polynomial expansion of Eq. (2.28) is utilized for

the response vector x(t). This reduces the functional Jr(x, Ûx, Üx) of Eq. (4.10) to a function

Jr(z) := Jr(x̂, Û̂x, Ü̂x) (4.12)

which depends on the vectorized expansion parameters z ∈ Rp, where p = nL. Further, by

defining the functions

φ̂(z, t) := φ(x̂, Û̂x, Ü̂x) (4.13)

the constraints in Eq. (4.11) are replaced by φ̂(z, t) = 0. The adoption of the Rayleigh–Ritz

solution approach simplifies the constrained variational problem in Eq. (4.10)-(4.11) to an
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ordinary constrained optimization problem of the form

min
z∈Rp

Jr(z)

subject to φ̂(z, t) = 0 ∀ t ∈ [t0, t f ]

(4.14)

(4.15)

and facilitates further its numerical treatment. Taking into account Eq. (2.28), the solution

z∗ to the above problem yields the most probable path in the form ˆ̄x(t) = ψ(t)+H(t)z∗. Next,

a single point of the system response transition PDF can be determined via the semi-classical

approximation of Eq. (2.25) as

p(x f , Ûx f , t f |x0, Ûx0, t0) ≈ C exp
©­­«−

t f∫
t0

Lr( ˆ̄x,
Û̄̂x, Ǖ̂x)dt

ª®®¬ (4.16)

where C is a normalization constant.

4.2.1 Linear constraints

The special case of function gs in Eq. (4.3) taking the linear form gs(x, Ûx) = Cs Ûx+Ksx,

where Cs ∈ R
m×n and Ks ∈ R

m×n, leads to linear constraint functions in Eq. (4.11). This

considerable simplification facilitates a computationally efficient numerical treatment of the

optimization problem of Eqs. (4.14)-(4.15). In particular, a solution is pursued by restricting

the optimization within the space of solutions of Eq. (4.15) via a nullspace approach. Specif-

ically, linearity of the constraint equations ensures that φ̂(z, t) is a vector of m polynomial

functions of t, each of degree L +4 (see Eqs. (2.27)-(2.29), (4.7) and (4.13)), with coefficients

linear in the nL unknown expansion parameters z. Setting these polynomial coefficients

equal to zero yields a set of m(L + 4) linear equations with p = nL unknown variables. Next,

these equations are cast as a linear system of the form

Fz = d (4.17)
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where F ∈ Rs×p, d ∈ Rs and s = m(L + 4). Of course, for any well-posed constrained

optimization problem, the number of independent constraints is smaller than the dimension

of z. For the herein concerned problem, this yields m(L + 4) < p, which provides the lower

bound L > 4m
n−m for the number L of trial functions used in the polynomial expansion. The

system in Eq. (4.17) is underdetermined, while F may not have full row rank, i.e., rF ≤ s. It

is now possible to restrict minimization of the objective function Jr = Jr(z), where z ∈ Rp,

to the set of solutions of Eq. (4.17) that lie on a lower dimensional space of dimension p− rF .

To elaborate further, note that the vector space U ⊆ Rp of solutions of the system Fz = 0,

can be fully described with the aid of a basis S = [s1 s2 ... sp−rF ] for the nullspace of F

[129], where S ∈ Rp×(p−rF ). In this regard, any element z ∈ U can be represented by an

element v ∈ V ⊆ Rp−rF as z = Sv, and the vector space Ud ⊆ R
p of solutions of Fz = d can

be obtained as an affine transformation of U [130]. More specifically, the solutions z ∈ Ud

of Eq. (4.17) can be represented as

z = Sv + zp (4.18)

where zp is any particular solution of Eq. (4.17) [129, 130]; see also [131]. This approach

enables the corresponding constrained optimization problem

min
z∈Rp

Jr(z) subject to Fz = d (4.19)

of dimension p to be recast into a lower dimensional unconstrained problem of dimension

p − rF as

min
v∈Rp−rF

Jr(Sv + zp) (4.20)

Note that the minimizer z∗ of Eq. (4.19) can be obtained by the minimizer v∗ of Eq. (4.20)

using the relationship in Eq. (4.18).

Further, it is worth highlighting the special case of a linear oscillator with non-singular

diffusion matrix (unconstrained problem), where the most probable path can be derived
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in closed-form. Specifically, the linear oscillator yields a quadratic objective function in

Eq. (2.33) that can be written as

J(z) =
1

2
zTQz + bTz (4.21)

where matrixQ and vector b are given in Eqs. (2.40) and (2.41) respectively. Given thatQ is

positive definite, J(z) has the unique minimizer z∗ = −Q−1b and the most probable path can

be determined in closed-form via Eq. (2.28). This result can be utilized in conjunction with

the nullspace approach described earlier in this section, to determine the most probable path

of a linear oscillator with singular diffusion matrix in closed-form as well. This is the case

where the constraint function is linear (gs(x, Ûx) = Cs Ûx +Ksx) and function gr in Eq. (4.3)

is also linear, i.e., gr(x, Ûx) = Cr Ûx +Krx, where Cr ∈ R
(n−m)×n and Kr ∈ R

(n−m)×n, while the

optimization problem of Eq. (4.20) takes the form

min
v∈Rp−rF

1

2
[Sv + zp]

TQ[Sv + zp] + bT[Sv + zp] (4.22)

Next, solving the problem in Eq. (4.22) with respect to v leads to the unique stationary

point

v∗ = −(STQS)−1[zT
p QS + bTS] (4.23)

which, in conjunction with Eqs. (2.28) and (4.18), yields the following closed-form expression

for the most probable path, i.e.,

ˆ̄x(t) = ψ(t) +H(t)
[
S(STQS)−1[zT

p QS + bTS] − zp

]
(4.24)

4.2.2 Nonlinear constraints

In the more general case of arbitrary nonlinear constraints, it is possible to formulate

an optimization problem with nonlinear equality constraints to be solved by an appropriate
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numerical technique, such as a Newton scheme in conjunction with a Lagrange multiplier

approach for the enforcement of constraints. Specifically, a necessary and sufficient condition

for Eq. (4.15) to hold is

ξ(z) :=

√√√√√√ t f∫
t0

φ̂
2
(z, t)dt = 0 (4.25)

where integration and square root are performed element-wise, and thus, the corresponding

optimization problem can be formulated as

min
z∈Rp

Jr(z) subject to ξ(z) = 0 (4.26)

Next, two typically utilized methods for the solution of nonlinear optimization problems with

equality constraints of the form of Eq. (4.26) are presented.

Sequential Quadratic Programming (SQP)

The optimization problem with equality constraints in Eq. (4.26) can be solved by using

a Lagrange multiplier approach and by employing the corresponding Karush-Kuhn-Tucker

(KKT) conditions [25]. To this aim, the Lagrangian function LM is defined as

LM(z, λ) = Jr(z) − λ
Tξ(z) (4.27)

where λ ∈ Rm is a vector of Lagrange multipliers, and the Jacobian of the constraints is

denoted as

A(z)T = [∇ξ1(z),∇ξ2(z), ...,∇ξm(z)] (4.28)
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The first-order KKT conditions for the optimization problem with equality constraints in

Eq. (4.26) take the form of an n + m system of equations with n + m unknowns z and λ as

F(z, λ) =


∇Jr(z) − A(z)Tλ

ξ(z)

 = 0 (4.29)

while the Jacobian of Eq. (4.29) becomes

F′(z, λ) =


∇2zzLM(z, λ) −A(z)T

A(z) 0

 (4.30)

Next, a Newton scheme is utilized for the solution of the KKT system in Eq. (4.29). The

corresponding Newton step at the k th iteration (zk, λk) takes the form


zk+1

λk+1

 =

zk

λk

 +

pk

pk
λ

 (4.31)

where pk and pk
λ are obtained by solving the Newton-KKT system


∇2zzLM(z

k, λk) −A(zk)T

A(zk) 0



pk

pk
λ

 =

−∇Jr(z

k) + A(zk)Tλk

−ξ(zk)

 (4.32)

Solving the system in Eq. (4.32) and utilizing Eqs. (4.29) and (4.31), the update formulae

for λk+1 and zk+1 are given by

λk+1 =
[
Ak B−1k AT

k

]−1 [
−ξ k + Ak B−1k Gk

]
pk = B−1k

(
AT

k λ
k+1 − Gk

)
zk+1 = zk + αk p

k

(4.33)

(4.34)

(4.35)
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where Ak := A(zk) ∈ Rm×p, Bk := ∇2zzLM(z
k, λk) ∈ Rp×p, ξ k := ξ(zk) ∈ Rm and Gk :=

∇Jr(z
k) ∈ Rp.

In passing, it is noted that the above proposed Newton solution scheme for the KKT sys-

tem of Eq. (4.29) can be identified as a Sequential Quadratic Programming (SQP) method-

ology, which is a broader class of optimization algorithms capable of treating both equality

and inequality constraints [25]. Further, in Eq. (4.35), pk is the step direction and αk is a

step size parameter that is equal to 1 in the standard implementation of the scheme (see

Eq. (4.31)). In practice, however, a smaller value is typically chosen for the step size αk as

the iterations approach the local minimum. This yields faster convergence potentially, while

the value of αk at each iteration can be determined by an appropriate line search algorithm.

In the following, a line search scheme based on Wolfe conditions and described in [132] is

adopted in the numerical examples. Moreover, regarding numerical implementation of the

optimization scheme, the standard Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula [133,

134] is employed herein for approximating the inverse of the Hessian matrix ∇2zzLM ; see also

[25] for a broader perspective.

Augmented Lagrangian Method (ALM)

A relatively popular alternative approach for the solution of the constrained optimiza-

tion problem in Eq. (4.26) is the Augmented Lagrangian Method (ALM) [135, 136, 137].

The ALM approximates the solution by successively minimizing the augmented Lagrangian

function

LA(z, λ; µ) = Jr(z) −
m∑

j=1

λ jξ j(z) +
µ

2

m∑
j=1

ξ2j (z) (4.36)

for a sequence of penalty factors µ with increasing values. Therefore, a sequence of uncon-

strained subproblems is formulated, where the solution of the previous problem is used as
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the initial guess for the next one, i.e.,

zk+1 = arg min
z∈Rp

zinit=z
k

LA(z, λ
k ; µk) (4.37)

where the Lagrange multiplier vector λ = [λ j]m×1 at each step is given by the explicit estimate

λk+1 = λk − µkξ(zk) (4.38)

and zinit denotes the initial guess for the solution of the corresponding optimization problem.

The ALM has shown to improve the ill-posedeness of the quadratic penalty method (QPM),

as it can approximate the solution of the original problem even with moderate values of the

penalty factor µ [25]. Also, the augmented Lagrangian function in Eq. (4.36) can be derived

as the dual of the corresponding quadratic penalty function of the QPM, as shown in [138].

4.3 Numerical examples

To assess the reliability of the herein developed technique for determining the response

PDF of stochastically excited MDOF systems with singular diffusion matrices, two indicative

examples are considered in this section. The first example pertains to a 2-DOF oscillator,

where only one DOF is stochastically excited. It is shown that the special case of a lin-

ear oscillator under Kanai-Tajimi earthquake excitation, which yields a singular diffusion

matrix, can also be cast in that form and treated under the same framework. The sec-

ond example refers to a single-degree-of-freedom (SDOF) Bouc-Wen hysteretic oscillator,

where hysteresis is modeled by introducing an additional auxiliary state equation. The

WPI-based system response PDF estimates are compared with pertinent MCS data (10, 000

realizations) for assessing the accuracy of the herein developed technique. In this regard,

a standard fourth-order Runge-Kutta numerical integration scheme is employed for solving

the governing equations of motion within the MCS context.
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4.3.1 2-DOF oscillator with only one DOF stochastically excited

The following 2-DOF oscillator with only one DOF stochastically excited is considered

in the present example. Specifically, the equation of motion takes the form

M Üx + C Ûx + Kx + εgnl(x, Ûx) =


w(t)

0

 (4.39)

where

M =


1 0

0 1

 , C =


0.2 −0.1

−0.1 0.1

 , K =


2 −1

−1 1

 (4.40)

and S0 = 0.1, whereas three different forms are considered next for the nonlinear function

g(x, Ûx).

Linear oscillator with linear constraints

First, a linear version of the 2-DOF oscillator of Eq. (4.39) with ε = 0 is considered. The

WPI technique in conjunction with the closed-form expression in Eq. (4.24) for the most

probable path is utilized, and the joint response PDF p(x, Ûx) is calculated for two indicative

time instants t = 2 s and t = 8 s. The corresponding marginal response PDFs are shown

in Fig. 4.1 demonstrating a high degree of accuracy based on comparisons with the exact

solution obtained by numerically solving the related Lyapunov differential equation for the

time-dependent response covariance matrix (see for instance [10]).

Linear oscillator under Kanai-Tajimi earthquake excitation

A widely utilized earthquake excitation model relates to the Kanai-Tajimi power spec-

trum introduced in [139, 140] and further generalized in [141] and [142]. The rationale

behind the Kanai-Tajimi modeling relates to approximating the bedrock acceleration as a

white noise process filtered through the soil deposit, which is modeled as a SDOF oscillator,

53



-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

(a) p(x1)

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

(b) p(x2)

-2 0 2
0

0.2

0.4

0.6

0.8

(c) p( Ûx1)

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

(d) p( Ûx2)

Figure 4.1: Marginal response PDFs of a stochastically excited 2-DOF linear oscillator with
linear constraints; comparisons with exact solutions.

i.e.,

Üy + 2ζgωg Ûy + ω
2
gy = −w(t) (4.41)

where y, Ûy and Üy are the ground displacement, velocity and acceleration, respectively, relative

to the bedrock, while w(t) is a white noise process with E[w(t)w(t − τ)] = 2πS0δ(τ). In

Eq. (4.41), ζg is the damping ratio and ωg is the natural frequency of the ground whose

values are taken equal to ζg = 0.6 and ωg = 5π rad/s [142]. The absolute ground acceleration

in this case can be expressed as

Üxg(t) = Üy(t) + w(t) (4.42)

characterized by the Kanai-Tajimi power spectrum

S Üxg(ω) = S0
ω4
g + 4ζ2gω

2
gω

2

(ω2
g − ω2)2 + 4ζ2gω

2
gω2

(4.43)

54



Next, the equation of motion of a linear SDOF oscillator, with mass m0, damping coefficient

c0 and stiffness k0, under Kanai-Tajimi earthquake excitation takes the form

m0 Üx + c0 Ûx + k0x = −m0 Üxg(t) (4.44)

Further, dividing Eq. (4.44) by m0 and considering Eqs. (4.41) and (4.42), the overall system

can be written in the form

M Üz +C Ûz +Kz =


−1

−1

 w(t) (4.45)

where

z =


x

y

 , M =


1 1

0 1

 , C =


c0/m0 0

0 2ζgωg

 and K =


k0/m0 0

0 ω2
g

 (4.46)

Clearly, the white noise process w(t) in Eq. (4.45) can be equivalently expressed as a sum of

two independent white noise processes, i.e., w(t) = w1(t) + w2(t). In this regard, Eq. (4.45)

becomes

M Üz +C Ûz +Kz =


−1 −1

−1 −1



w1(t)

w2(t)

 (4.47)

and hence, Eq. (4.45) takes the form of Eq. (2.17) with w(t) = [w1(t),w2(t)]T. It can be

readily seen in Eq. (4.47) that the white noise vector process [w1(t),w2(t)]T is multiplied by

a rank-one matrix. Thus, matrix D in Eq. (2.18) is also rank-one (it has the value of 2 in all

its entries) which leads to a singular diffusion matrix B̃. Next, Eq. (4.47) can be multiplied

by the non-singular transformation matrix

T =


1 0

−1 1

 (4.48)
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Figure 4.2: Marginal response PDFs of a SDOF linear oscillator under Kanai-Tajimi earth-
quake excitation; comparisons with MCS data (10, 000 realizations).

and written, alternatively, as

TM Üz +TC Ûz +TKz = T


−1 −1

−1 −1



w1(t)

w2(t)

 =

−1 −1

0 0



w1(t)

w2(t)

 =

−w(t)

0

 (4.49)

Note that Eq. (4.49) has exactly the form of Eq. (4.39) with ε = 0, and thus, can be treated

by the herein developed technique. Further, since Eq. (4.49) is linear, the solution approach

of Sec. 4.2.1 can be applied, where the most probable path is given by Eq. (4.24) in closed

form. The corresponding marginal response PDFs are shown in Fig. 4.2 for an oscillator with

parameters m0 = 1, c0 = 0.2, k0 = 1 and S0 = 0.5. Comparisons with MCS data obtained by

utilizing the spectral representation method [143] to generate realizations compatible with

the Kanai-Tajimi power spectrum of Eq. (4.43) demonstrate a high degree of accuracy.

Nonlinear oscillator with linear constraints

Next, a version of the 2-DOF oscillator of Eq. (4.39) with stiffness and damping nonlin-

earities in the first equation and linear second equation is considered; thus, yielding linear

constraints in the herein developed computational framework. In particular, the nonlinear
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Figure 4.3: Marginal response PDFs of a stochastically excited 2-DOF nonlinear oscillator
with linear constraints; comparisons with MCS data (10, 000 realizations).

function gnl(x, Ûx) takes the form

gnl(x, Ûx) =


c11 Ûx31 + k11x31

0

 (4.50)

where x1 is the first component of the response vector x, c11 and k11 are the upper left

elements of matrices C and K, respectively, and the magnitude of the nonlinearity ε is

taken equal to 0.5. The WPI technique in conjunction with the methodology described in

Sec. 4.2.1 is utilized next, and the joint response PDF p(x, Ûx) is calculated for two indicative

time instants t = 2 s and t = 8 s. The corresponding marginal response PDFs are presented

in Fig. 4.3, and compared with pertinent MCS data (10, 000 realizations). The accuracy

degree exhibited by the WPI is generally high, whereas slight deviations from the MCS-based

estimates, such as in Fig. 4.3c, may be attributed not only to the various approximations

involved in the WPI technique (see Sec. 2.2), but also to the specific accuracy characterizing
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the MCS-based estimate given the utilized number of realizations.

Nonlinear oscillator with nonlinear constraints

Further, a third version of the 2-DOF oscillator in Eq. (4.39) with stiffness nonlinear-

ities in both equations is considered; thus, yielding nonlinear constraints in the proposed

computational framework. In this case, the nonlinear function gnl(x, Ûx) takes the form

gnl(x, Ûx) =


k11x31

k22x32

 (4.51)

where x1 and x2 are the first and second components of the response vector x, k11 and k22

are the upper left and lower right elements of matrix K, respectively, and the nonlinearity

magnitude ε is taken equal to 0.5.

The WPI technique in conjunction with the SQP method described in Sec. 4.2.2 is utilized

next. In this regard, each point of the joint response PDF p(x, Ûx) at time t = 1 s is obtained by

utilizing the SQP algorithm combined with a line search scheme and by employing the BFGS

formula, with an initial guess zinit = 0. Following integration of the joint response PDF, the

corresponding marginal PDFs are obtained and presented in Fig. 4.4. Comparisons with

pertinent MCS data (10, 000 realizations) demonstrate a high degree of accuracy. Further,

the joint response PDFs p(x1, x2), p(x1, Ûx1) and p(x2, Ûx2) are also shown in Figures 4.5, 4.6

and 4.7, respectively, for the two time instants t = 1 s and t = 3 s. In a similar manner

as before, satisfactory accuracy is observed based on comparisons with corresponding MCS

data.

Next, the WPI technique in conjunction with the ALM method described in Sec. 4.2.2

is utilized. In this context, each point of the joint response PDF p(x, Ûx) at time t = 1 s

is obtained by successively minimizing the augmented Lagrangian function of Eq. (4.36),

for the sequence of penalty factors with increasing values µ = 3k for k = 0, 2, 4, 6, 8,

10, 12. Following integration of the joint response PDF, the corresponding marginal PDFs
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Figure 4.4: Marginal response PDFs of a stochastically excited 2-DOF nonlinear oscillator
with nonlinear constraints at t = 1 s and t = 3 s; comparisons with MCS data (10,000
realizations).
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(a) MCS - t = 1 s (b) WPI - t = 1 s

(c) MCS - t = 3 s (d) WPI - t = 3 s

Figure 4.5: Joint response PDF p(x1, x2) of a stochastically excited 2-DOF nonlinear oscil-
lator with nonlinear constraints at t = 1 s and t = 3 s.

(a) MCS - t = 1 s (b) WPI - t = 1 s

(c) MCS - t = 3 s (d) WPI - t = 3 s

Figure 4.6: Joint response PDF p(x1, Ûx1) of a stochastically excited 2-DOF nonlinear oscil-
lator with nonlinear constraints at t = 1 s and t = 3 s.
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(a) MCS - t = 1 s (b) WPI - t = 1 s

(c) MCS - t = 3 s (d) WPI - t = 3 s

Figure 4.7: Joint response PDF p(x2, Ûx2) of a stochastically excited 2-DOF nonlinear oscil-
lator with nonlinear constraints at t = 1 s and t = 3 s.

are obtained for three indicative values of µ and presented in Fig. 4.8. A comparison with

pertinent MCS results (10, 000 realizations) shows the convergence of the marginal PDFs to

the MCS-based estimates for increasing values of µ.

It is seen that both the SQP and the ALM optimization schemes of section 4.2.2, perform

satisfactorily in solving the problem of Eq. (4.26) with relatively high accuracy. Nevertheless,

there are cases where the SQP algorithm may not converge to the optimum value for various

reasons, such as poor choice of the initial guess or non-smooth and numerically ill-behaved

governing / constraint equations. In such cases, the ALM or an appropriate combination of

the SQP and ALM schemes may yield a more robust and efficient solution approach. An

indicative example is considered next.

4.3.2 Bouc-Wen hysteretic oscillator

A SDOF Bouc-Wen nonlinear oscillator, which has been widely utilized in engineering

dynamics for modeling systems exhibiting hysteresis, is considered in this numerical exam-
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Figure 4.8: Marginal response PDFs of a stochastically excited 2-DOF nonlinear oscillator
with nonlinear constraints at t = 1 s for increasing values of the penalty factor µ; comparisons
with MCS data (10, 000 realizations).
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ple. The introduction of the smooth and versatile Bouc-Wen hysteretic model [144, 145]

was followed by its successful application to various engineering mechanics related fields.

Besides its versatility in efficiently capturing a broad range of hysteretic behaviors, corre-

sponding equivalent linear elements can be readily determined in an explicit manner [146].

Specifically, a statistical linearization method (e.g., [10]) was proposed in [147] that involved

deriving closed-form expressions for the equivalent linear elements of the Bouc-Wen model.

Furthermore, a wavelet-based statistical linearization method was developed in [148] to de-

termine the response evolutionary power spectrum. Indicatively, the Bouc-Wen formalism

and its variants have been employed recently for modeling the inelastic behavior of steel

beams with hysteretic damping [149], while in [150] a Bouc-Wen model compatible with

plasticity postulates has been developed. A detailed presentation of the applications and the

extensions of the Bouc-Wen model can be found in [38] and in review papers such as [151]

and [152].

The Bouc-Wen oscillator is generally described by the system of coupled differential

equations

Üx + 2ζ0ω0 Ûx + αω2
0x + (1 − α)ω2

0z = w(t)

Ûz + γ | Ûx |z |z |ν−1 + β Ûx |z |ν − A Ûx = 0

(4.52)

(4.53)

where in Eq. (4.52) α can be viewed as a form of post-yield-to-pre-yield stiffness ratio. In the

Bouc-Wen model, the additional auxiliary state z is related to the response x via Eq. (4.53).

Various both softening and hardening behaviors can be modeled by appropriately choosing

the constant parameters γ, β and A (see e.g., [152]).

Clearly, Eqs. (4.52)-(4.53) can be construed as a coupled system of a SDE (Eq. (4.52)) and

a homogeneous ODE (Eq. (4.53)). This can be readily cast in the form of Eq. (4.1), and thus,

treated by the herein developed solution technique. In passing, it is worth mentioning that,

due to Eq. (4.53) being first-order, the system augmented mass matrix M in Eq. (2.17) is

singular. Nevertheless, this poses no difficulties in applying the solution technique in a rather

straightforward manner; see also discussion following Eq. (2.21). Moreover, it is noted that
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the Bouc-Wen model in Eqs. (4.52) and (4.53) has some special characteristics that affect the

form of the corresponding optimization problem. In particular, Eq. (4.52) is linear, which

yields a corresponding objective function of a quadratic form (see Eq. (4.21)). This suggests

that the SQP method presented in Sec. 4.2.2 is expected to perform satisfactorily, as it

is essentially a quasi-Newton method. However, due to the form of Eq. (4.53) containing

multiplicative relations involving absolute value functions, the constraint function takes a

relatively complex form that can be locally non-differentiable; thus, leading to a potentially

ill-posed optimization problem.

Next, for the parameter values ζ0 = 0.01, ω0 = 1, α = 0.01, γ = 0.5, ν = 1, β = 0.5

and A = 1, the joint response PDF p(x, z, Ûx) is obtained by employing the SQP method of

Sec. 4.2.2 with an initial guess zinit = 0. The corresponding marginal PDFs of the response

displacement x and velocity Ûx are plotted in Fig. 4.9 (line with x markers) for an indicative

time instant t = 10 s. Clearly, based on comparisons with pertinent MCS data, this solution

approach does not exhibit a satisfactory accuracy degree. As explained earlier, this may be

due to a potentially ill-posed optimization problem, or due to the initial guess zinit not being

sufficiently close to the optimum. In this regard, it can be argued that an ALM solution

treatment may be, perhaps, a more appropriate choice. Specifically, for a sequence of penalty

factors starting from zero, the initial ALM optimization problem becomes unconstrained and

convex (quadratic form); thus, yielding a unique solution. Next, given that the sequence

of penalty factors is sufficiently long and densely discretized, the ALM solution approach

could potentially converge to the global optimum, at the expense, however, of considerable

computational cost due to the large number of optimization subproblems; see Eq. (4.37).

In this regard, an alternative hybrid solution approach is proposed, which attempts to

benefit from the advantages of both the ALM and the SQP schemes. Specifically, an ALM

run is performed first by using a small number of penalty factors with moderate values and

by setting large convergence tolerances to accelerate convergence. Of course, this ALM step

is not expected to yield the optimum with high accuracy (see line with o markers in Fig. 4.9).
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Figure 4.9: Marginal response PDFs of a SDOF Bouc-Wen oscillator at t = 10 s by employing
various optimization schemes; comparisons with pertinent MCS data (10,000 realizations).

Instead, it is aimed to be used as a reasonable initial guess for the SQP methodology, which

can now converge to a solution of relatively high accuracy (see line with * markers in Fig. 4.9)

as compared to corresponding MCS data (10,000 realizations). Further, in Fig. 4.10 the

marginal PDFs p(x) and p( Ûx) are plotted for two indicative time instants as obtained by the

above proposed hybrid ALM/SQP solution approach. In a similar manner as in Fig. 4.9,

comparisons with relevant MCS data (10, 000 realizations) show a relatively high degree of

accuracy exhibited by the WPI technique. Indeed, despite the non-smooth character of the

nonlinearities involved in the Bouc-Wen model (e.g., absolute value functions in Eq. (4.53))

that render the problem rather challenging, the herein developed technique has performed

satisfactorily in determining the response statistics. The corresponding joint response PDF

p(x, Ûx) is shown in Fig. 4.11.

65



-4 -2 0 2 4
0

0.5

1

1.5

(a) p(x)

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

(b) p( Ûx)

Figure 4.10: Marginal response PDFs of a SDOF Bouc-Wen oscillator determined by the
combined ALM/SQP approach at t = 1 s and t = 10 s.

(a) MCS - t = 1 s (b) WPI - t = 1 s

(c) MCS - t = 10 s (d) WPI - t = 10 s

Figure 4.11: Joint response PDF p(x, Ûx) of a SDOF Bouc-Wen oscillator determined by the
combined ALM/SQP approach at t = 1 s and t = 10 s
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Chapter 5: Application: Design optimization of electromechanical

energy harvesters under random vibration

5.1 Problem formulation

5.1.1 Modeling aspects

One of the most widely studied electromechanical energy harvesters consists of a can-

tilever beam with piezoelectric patches attached near its clamped ends as shown in Fig. 5.1a.

The vibrating beam induces strain to the piezoelectric patches, and thus, electrical voltage

is generated and energy is harvested with the aid of an electrical circuit connected to the

patches. It has been shown experimentally [153, 50, 154] that intentional incorporation of

system nonlinearities, typically realized by appropriate installation of magnets as shown in

Fig. 5.1a, can potentially increase the harvested energy. This has been also verified numer-

ically in several studies [155, 156, 47] in conjunction with a Duffing model to describe the

mechanical nonlinearities. As discussed in detail in [47], the dynamics of such a system (see

Fig. 5.1a) can be approximated by the following general mathematical model of coupled

electromechanical equations, expressed in a non-dimensional form as

Üx + 2ζ Ûx +
dU(x)

dx
+ κ2y = w(t)

Ûy + αy − Ûx = 0

(5.1a)

(5.1b)

where x denotes the response displacement, and y represents the induced voltage in capac-

itative harvesters or the induced current in inductive ones. Further, ζ is the damping, κ is

the coupling coefficient, α (referred to as the electrical constant in the following) is defined

as the ratio between the mechanical and electrical time constants of the harvester (see [62]),
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Figure 5.1: (a) Schematic representation of the electromechanical energy harvesting device.
(b) Various shapes of the potential function for δ = 1.

and U(x) denotes the potential function. Its derivative dU(x)
dx represents the restoring force,

which is nonlinear in general; see [47] for more details. Also, w(t) represents the external

excitation, which is modeled as a Gaussian white noise stochastic process with a constant

power spectrum value S0. Details regarding the non-dimensionalization of the governing

equations can be found in [62] and [157].

In modeling the restoring force dU(x)
dx , a wide range of nonlinear behaviors can be captured

by the 3rd order polynomial

dU(x)
dx

= x + λx2 + δx3 (5.2)

where λ and δ control the intensity of the quadratic and cubic nonlinear terms, respectively,

while the coefficient corresponding to the linear stiffness term equals 1 as a result of the non-

dimensionalization [62]. Further, considering the behavior of the potential function U(x) for

δ ≥ 0 (see Fig. 5.1b), Eq. (5.2) leads to a bistable asymmetric potential for λ > 2
√
δ (dashed-

dotted line), to a monostable asymmetric potential for 0 < λ ≤ 2
√
δ (dashed line), and to
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a monostable symmetric potential for λ = 0 (dotted line). As shown in [62], for λ = 0 and

Gaussian white noise excitation, the maximum mean harvested power is achieved for δ = 0,

or in other words, the linear system is optimal; see also [158, 156, 159, 160] for a relevant

discussion on the optimality of linear systems under certain conditions. Furthermore, it was

shown in [63, 157] that utilizing nonlinear oscillators with symmetric bistable potentials, i.e.,

λ = 0 and a restoring force of the form dU(x)
dx = −x + δx3, can be beneficial for maximizing

the mean harvested power. In this regard, a question is posed naturally regarding the

performance, in terms of harvesting efficiency, of potential functions with asymmetries, i.e.,

λ , 0. This was addressed in [161, 62] where the response statistics of monostable harvesters

in the regime 0 ≤ λ ≤ 2
√
δ were determined via statistical linearization. It was shown that

the maximum mean harvested power is achieved for some δ > 0 and for the bistability limit

λ = 2
√
δ (solid line in Fig. 5.1b).

Further, it can be argued that models of electric circuits involving fractional derivative

terms are, in general, in better agreement with experimental data than their traditionally

used integer order counterparts. In fact, it has been shown that experimentally collected

impedance data from a variety of energy storage systems (e.g. supercapacitors) can be best

represented by fractional order models (e.g. [53, 54]).

Although there have been few recent research efforts to provide an enhanced version of

Eq. (5.1) by incorporating fractional derivative terms in the electrical Eq. (5.1a) (e.g.[55,

56]), these have been either limited to considering cases of deterministic excitation only, or re-

stricted to system response analysis without proposing any efficient optimization framework.

In this paper, a class of nonlinear electromechanical energy harvesters with fractional order

derivatives in the electrical equation and parameter λ ≤ 2
√
δ, with δ ≥ 0 (i.e., monostable

asymmetric system) is considered. These systems are characterized by a single equilibrium

position at (x, y) = (0, 0). Following [56] for the fractional derivative modeling of the capaci-
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tance, the coupled electromechanical system of equations takes the general form

Üx + 2ζ Ûx + x + λx2 + δx3 + κ2y = w(t)

Dr y + αy − Ûx = 0

(5.3a)

(5.3b)

where Dr is the r-th order fractional derivative operator, defined as

Dr[ f (t)] =
dr f
dtr =

1

Γ(1 − r)

∫ t

ti

Ûf (τ)
(t − τ)r

dτ (5.4)

Eq. (5.4) represents a Caputo fractional derivative of order 0 < r < 1 (see also [162]

for alternative fractional derivative definitions). Note that in the limit r → 1 Eq. (5.3b)

degenerates to Eq. (5.1b). Next, to provide some insight regarding the dynamics of the

system of Eq. (5.3), Eq. (5.3a) can be construed as the governing stochastic differential

equation (SDE) constrained by the fractional differential equation (FDE) of Eq. (5.3b).

The system response vector process q = [x, Ûx, y]T starts from initial conditions, exhibits a

transient phase, and eventually reaches stationarity where the maximum response variance

is observed. In this regard, the mean harvested power Ph is proportional to the stationary

variance of the zero-mean electrical quantity y, and is given by (e.g. [47])

Ph = αE{y
2} (5.5)

where E{.} represents the expectation operator. It is noted that in comparison with refer-

ence [18], not only the complexity of the governing equations (Eq. (5.1)) is increased by

considering fractional derivative terms, but also the range of harvester design configurations

to be studied herein is extended by allowing λ ≤ 2
√
δ (unlike λ = 2

√
δ used in [18]).
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5.1.2 Optimization aspects

From an optimal design perspective, the objective is typically expressed in the literature

as maximizing the mean stationary harvested power Ph for a given excitation intensity S0.

This can be formulated as an optimization problem in the set of parameters {ζ, δ, λ, κ, α} ⊆

R5+, where R+ denotes the set of positive real numbers. Nevertheless, the complexity of the

problem can be decreased by examining the impact of parameter κ on the system dynamics.

Specifically, considering equations (5.1) and (5.5), it is seen that a larger coupling coefficient

κ yields a larger variance of the electrical quantity y in a monotonic manner. As a result,

κ should take the largest value possible, and thus, can be excluded from the optimization

problem. The rest of the parameters affect the output harvested power in a more complex

manner (see also [18] for a relevant discussion). Therefore, they need to be included in the

optimization. In this regard, for the parameter vector z = [α, δ, ζ, λ] and for κ and S0 fixed,

the harvester design problem can be formulated as an optimization problem of the form

arg max
z∈Z

Ph(z) (5.6)

where Z ⊂ R4+ is an effective domain of parameter values.

Nevertheless, additional design criteria need to be considered in practice, which translate

into constraints to be enforced. Such constraints can take the general form P f (z) < ε ,

where the probability of failure P f refers typically to an “extreme event” characterized by

a low probability of occurrence. Indicatively, excessively high voltage levels, or extreme

displacement values, may compromise the proper function of the electronic circuits, or may

cause mechanical failure to the oscillator, respectively. In such cases, P f can be defined as the

probability that either |x | or |y | exceed some prescribed limit, i.e. P f = P(|x | > xlimit or |y | >

ylimit). Taking such an additional design criterion into account, Eq. (5.6) is reformulated as
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a reliability-based optimization problem in the form

arg max
z∈Z

Ph(z) s.t. P f (z) ≤ ε (5.7)

Note, however, that if failure is defined as |x | > xlimit , the imposed limits on the displace-

ment x are symmetric with respect to the equilibrium position x = 0. Although this may

be a reasonable constraint definition for cases referring, for instance, to mechanical failures

due to excessive levels of displacement, it is problematic when addressing the challenge of

limited available space for the harvester. Specifically, it can be readily seen that since the

herein considered harvesting system is asymmetric, employing such a failure definition does

not exploit fully the available space; thus, leading potentially to an unnecessarily conserva-

tive design. In this regard, a more pragmatic approach regarding the failure criterion for

such cases is proposed in the following. This relates to considering a box of specific width

Lb, and to defining the probability of failure as the smallest probability of exceeding either

end of the box for all possible locations of the harvester within the box. This is represented

graphically and explained in Fig. 5.2a, which depicts the stationary marginal PDF of the

response displacement x of a typical asymmetric harvester, positioned at two different loca-

tions within a box of width Lb. The thin solid curve denotes the PDF of the harvester with

equilibrium position at x = 0, leading to a probability of failure P f ,1 (shaded red region).

This configuration can be found by utilizing a constraint on the probability of failure of the

form P f = P(|x | > xlimit) < ε with xlimit =
Lb

2 . Further, the thick solid curve in Fig. 5.2a,

represents the PDF of the same harvester, shifted by δx to the right to yield an overall lower

probability of failure P f ,2 < P f ,1 (shaded blue region). Thus, from a practical perspective,

the optimal design of an asymmetric harvester subject to limited available space should,

ideally, specify the location of the device (or more specifically, the location of its equilibrium

position) within the box, so that the probability of failure is minimized (see Fig. 5.2b). This

is typically achieved when P f is “shared” by both tails in an optimal manner. In other words,
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Figure 5.2: Impact of the harvester location δx within a box of width Lb on the probability of
failure P f . (a) Stationary marginal PDFs of the response displacement x. Thin solid curve:
δx = 0 yielding P f ,1. Thick solid curve: δx > 0 yielding P f ,2 < P f ,1. (b) Relationship
between δx and P f , depicting a well defined optimal position.

the harvester should be placed within the box in a manner that exploits fully the available

space for a given box width Lb.

In this regard, the location of a harvester’s equilibrium position within the box, i.e.,

the shift parameter δx, needs to be considered as an additional unknown variable to be

determined. Thus, the design optimization problem in Eq. (5.7) is adapted by considering

the augmented variable vector zaug = [z, δx] = [α, δ, ζ, λ, δx] and by defining the probability

of failure P f as

P f (zaug) = 1 − Sz(δx) (5.8)

where

Sz(u) =
∫ ∞

−∞

rect
(
v

Lb

)
pz,s(v + u)dv (5.9)
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represents the survival probability and rect (.) is a rectangular pulse function defined as

rect (x) =



0, if |x | > 1
2

1
2, if |x | = 1

2

1, if |x | < 1
2

(5.10)

Also, Fig. 4.1b shows a typical behavior of Eq. (5.8) with respect to δx.

However, a closer examination of the objective function in Eq. (5.7), reveals that this

depends only on z, i.e., the variables α, δ, ζ and λ, whereas δx is involved only in the

constraint. Moreover, for a given set of values z, the optimal location δx∗, i.e., the one

corresponding to minimal probability of failure, can be determined simply as

δx∗ = arg max
u

Sz(u) (5.11)

From a numerical optimization perspective, this enables the evaluation of the vector z at

each iteration step independently of δx, followed by the estimation of the optimal δx∗ by

solving the rather trivial (1-dimensional) problem of Eq. 5.11. In other words, the opti-

mization problem considers effectively only the four variables of vector z to be optimized

simultaneously at each iteration, whereas the optimal location δx∗ is provided essentially

as a by-product. Thus, the complexity of the optimization problem relates, essentially, to

a 4-dimensional problem involving z, such as in Eq. (5.7) (as opposed to an augmented

5-dimensional problem involving zaug), whereas considering (5.11), Eq. (5.8) is written as

P f (z) = 1 −max
u

Sz(u) (5.12)

Further, a penalty approach is utilized herein for solving the constrained problem of Eq.

(5.7). This yields an unconstrained problem with the modified objective function Ph,ε (z) =
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1ε (z)Ph(z), where 1ε is an indicator function defined as

1ε (z) =


0, P f (z) ≥ ε

1, otherwise
(5.13)

Considering that information regarding the gradient of the objective function Ph(z) related

to Eq. (5.7) is not available in general, the extended gradient-free Generalized Pattern

Search (GPS) optimization algorithm is utilized next, which requires no assumptions about

the differentiability and continuity of the objective function [163, 164, 119].

Obviously, knowledge of the harvester complete response PDF is required to be used in

the optimization procedure, and not only of the response mean and variance that are typi-

cally determined in the literature. To this aim, the WPI stochastic response determination

technique is adapted and applied herein in conjunction with the constrained optimization

problem of Eq. (5.7). In comparison with reference [18], a more pragmatic version of the

reliability-based constraints referring to space limitations is considered in Eq. (5.12), while

the overall complexity of the optimization problem is increased. This is not only because of

a more sophisticated modeling of Eq. (5.1) based on fractional derivatives, but also due to

considering a higher dimensional vector z; that is, five optimization variables (i.e., [α, ζ, λ, δ]

and δx) are considered herein in contrast to the two variables in [18]. Hereinafter, the ex-

plicit dependence of a stationary marginal response PDF on z is suppressed for simplicity

and pz,s(.) is denoted as ps(.).

5.2 Adaptation of the Wiener path integral technique to address the nonlinear

electromechanical harvester with fractional derivative terms

5.2.1 Theoretical aspects

Considering Eq. (5.3), it can be readily seen that a straightforward application of Eq.

(2.21) would lead to a singular matrix D. Thus, the methodology presented in Chapter 4 is
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required to account for the special form of Eq. (5.3). In this regard, in the ensuing analysis,

Eq. (5.3a) is construed as an under-determined SDE with 2 unknown functions (x(t) and

y(t)), excited by the Gaussian white noise process w(t). Setting q = [x, y]T , the corresponding

Lagrangian is expressed as

L(q, Ûq, Üq) = L(x, y, Ûx, Üx) =
1

4πS0

[
Üx + 2ζ Ûx + x + λx2 + δx3 + κ2y

]2 (5.14)

Next, to account also for the impact of Eq. (5.1b) on the harvester dynamics, Eq. (5.1b) is

treated as a dynamic constraint in the form

φ(y,Dr y, Ûx) = Dr y + αy − Ûx = 0 (5.15)

Eq. (5.14) in conjunction with Eq. (5.15) lead to a fractional constrained variational problem

of the form

minimize J(x, y, Ûx, Üx) =
∫ t f

ti
L(x, y, Ûx, Üx)dt subject to φ(y,Dr y, Ûx) = 0 (5.16)

with the boundary conditions

x(ti) = xi, Ûx(ti) = Ûxi, y(ti) = yi

x(t f ) = x f , Ûx(t f ) = Ûx f , y(t f ) = y f

(5.17)

In the following section, the numerical solution of Eqs. (5.16)-(5.17) is determined by for-

mulating and employing a constrained optimization numerical scheme (e.g. [25]).

5.2.2 Numerical aspects

In this section, a Rayleigh–Ritz direct minimization approach is proposed for solving

the constrained variational problem of equations (5.16)-(5.17), and for determining the most
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probable path q̄(t) = [x̄(t), ȳ(t)]T .

In this regard, the standard Rayleigh–Ritz approach relies on an expansion for q(t) in

the form q(t) ≈ q̂(t) = ψ(t) +Ch(t), where h(t) = [h0(t), ..., hL−1(t)]T is a basis of polynomial

functions vanishing at the boundaries, ψ(t) = [ψ1(t), ..., ψn(t)]T is a vector of n polynomi-

als satisfying the boundary conditions and C ∈ Rn×L is the expansion coefficient matrix,

similarly to Sec. 2.3.2. Obviously, since this expansion satisfies the boundary conditions by

construction, the functional minimization problem of equations (5.16)-(5.17) can be directly

reformulated as an unconstrained optimization problem over the space of the coefficients C.

Note, however, that in the herein developed formulation, in addition to the boundary condi-

tions of Eq. (5.17), the dynamic constraint of Eq. (5.15) needs to be accounted for as well.

Thus, a standard implementation of the Rayleigh–Ritz approach would lead, unavoidably,

to an overall constrained optimization problem (e.g. [18]). In this regard, an alternative

formulation of the optimization problem is proposed next, which accounts for the boundary

conditions and the dynamic constraint in a more direct and straightforward manner. Specif-

ically, a standard polynomial expansion for q(t) = [x(t), y(t)]T is adopted, which takes the

form 
x̂(t)

ŷ(t)

 = Cg(t) =
[
cx cy

]T
g(t) (5.18)

where g(t) = [g0(t), ..., gL−1(t)]T is a basis of polynomial functions that are orthogonal in

the interval [ti, t f ]. In the ensuing analysis, the shifted Legendre polynomials given by the

recursive formula

gp+1(t) =
2p + 1

p + 1

(
2t − ti − t f

t f − ti

)
gp(t) −

p
p + 1

gp−1(t), p = 1, 2, ... (5.19)

are employed, with g0(t) = 1; and g1(t) = (2t − ti − t f )/(t f − ti). Next, the first and second

derivatives of x(t) are expressed as Û̂x = cx Ûg and Ü̂x = cx Üg, respectively, and thus, the functional
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J(x, y, Ûx, Üx) in Eq. (5.16) is approximated by the function

J(c) = J(x̂, ŷ, Û̂x, Ü̂x) (5.20)

where c =
[
cT

x cT
y

]T
∈ R2L is the vectorized form of C ∈ R2×L. Moreover, the fractional

order derivative of y(t) is expressed as

Dr ŷ = cyDrg (5.21)

where Drg = {Dr[g0(t)], ...,Dr[gL−1(t)]}T is the vector of fractional derivatives of the L poly-

nomial basis functions.

Clearly, compared to the classical Rayleigh–Ritz method, [x̂(t), ŷ(t)]T in the expansion of

Eq. (5.18) do not necessarily satisfy the boundary conditions of Eq. (5.17). To address this

point, the initial and final boundary conditions of Eq. (5.17) are imposed explicitly as linear

constraints of the form
Aic = bi

A f c = b f

(5.22)

where the matrices Ai,A f ∈ R
3×2L are given by

Ai =


g(ti)T 0

0 g(ti)T

Ûg(ti)T 0


and A f =


g(t f )

T 0

0 g(t f )
T

Ûg(t f )
T 0


(5.23)

and the initial and final state vectors bi and b f take the form

bi =


xi

yi

Ûxi


and b f =


x f

y f

Ûx f


(5.24)
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Moreover, by employing the expansion of Eq. (5.18), the dynamic constraint φ(y,Dr y, Ûx) =

0 of Eq. (5.16), which needs to be satisfied for all t ∈ [ti, t f ], is approximated by φ̂(c, t) =

φ(ŷ,Dr ŷ, Û̂x) = 0, and is equivalently expressed as

ξ(c) :=

t f∫
ti

[φ̂(c, t)]2dt = 0 (5.25)

Next, taking into account both the constraint of Eq. (5.22) and the constraint of Eq.

(5.25), the constrained variational problem in equations (5.16)-(5.17) is reformulated as a

constrained optimization problem in the form

J∗b f
= min

c∈RnL
J(c)

subject to ξ(c) = 0
Ai

A f

 c =

bi

b f


(5.26)

Further, according to Eq. (2.25) and assuming fixed initial conditions bi at ti (e.g., system

initially at rest), a specific point of the response transition PDF corresponding to final state

b f at t f is determined as

p̂(b f , t f |bi, ti) = C exp
(
−J∗b f

)
(5.27)

where C is a normalization constant. Obviously, choosing a sufficiently large final time instant

t f Eq. (5.27) converges to the stationary joint response PDF ps(b f ) = p̂(b f , t f |bi, ti). The

optimization problem of Eq. (5.26), which has both linear and nonlinear equality constraints,

is solved in the following examples by a standard interior point method presented in [165,

166].
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5.3 Numerical examples

To demonstrate the reliability of the proposed technique for analyzing and optimizing

energy harvesting systems, a mono-stable asymmetric nonlinear harvester (0 ≤ λ ≤ 2
√
δ, δ ≥

0) with a fractional derivative term described by Eq. (5.3) is considered in this section.

First, to demonstrate the accuracy of the adapted WPI technique described in Sec. 5.2, the

stationary marginal response PDFs are determined and compared with pertinent MCS data.

Next, optimal energy harvester designs are obtained by employing the aforementioned WPI

technique in conjunction with Eq. (5.5) as the objective function of a global optimization

algorithm, constrained via a prescribed probability of failure (see Eq. (5.7) and Eq. (5.12)).

5.3.1 Energy harvester stochastic response analysis

The nonlinear energy harvester with mono-stable asymmetric potential (see Eq. (5.3))

and parameters ζ = 0.1, κ = 0.65, α = 0.8, δ = 0.2 and S0 = 0.05 is considered next. The

stationary marginal response PDFs ps(x) and ps(y) for fractional derivative order r = 0.75

and for three (non-dimensional) time instants t = 1, t = 10 and t = 20 are shown in Fig.

5.3 and compared with pertinent MCS data. It is observed that the system has practically

reached stationarity for t = 10. Clearly, the WPI technique exhibits a high degree of accuracy

in determining the stochastic response of the nonlinear harvester, even for the challenging

case of the strongly non-Gaussian and asymmetric displacement PDF ps(x).

Moreover, the stationary marginal response PDFs determined by the WPI technique for

fractional derivative order r values 1, 0.75 and 0.5 are shown in Fig. 5.4 and compared with

pertinent MCS data. The WPI technique exhibits a high degree of accuracy in determining

the response PDFs, for all considered values of the fractional derivative order. Obviously, the

impact of the fractional derivative order is larger on the electrical quantity y (as compared

to x), since the fractional derivative in Eq. (5.1b) operates directly on y.
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Figure 5.3: Marginal response PDFs of a nonlinear energy harvester with ζ = 0.1, κ = 0.65,
α = 0.8, δ = 0.2, S0 = 0.05 and fractional derivative order r = 0.75 for three (non dimensional)
time instants t = 1, t = 10 and t = 20. Comparison with MCS data (10, 000 realizations).
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Figure 5.4: Stationary marginal response PDFs of a nonlinear energy harvester with ζ = 0.1,
κ = 0.65, α = 0.8, δ = 0.2 and S0 = 0.05 for various values of the fractional derivative order
r = 1, r = 0.75 and r = 0.5. Comparison with MCS data (10, 000 realizations).

81



5.3.2 Energy harvester design optimization

In this section, the results of a 4-parameter (α, δ ζ , λ) and a 2-parameter (α, δ) harvester

design optimization problems, both with and without constraints related to probability of

failure, are presented and discussed. In both cases, the optimal locations δx∗ are provided

as well according to the formulation in Sec. 5.1.2.

4-parameter design optimization

The general 4-parameter optimization problem is considered herein with z = [α, δ, ζ, λ]T ∈

[0.5, 3]×[0, 5]×[0.05, 0.2]×[0, 2
√
δ] and fractional derivative order r = 1. The GPS algorithm

[163] is utilized for the solution of the optimization problem of Eq. (5.7) with constrained P f

defined in Eq. (5.12), whereas the unconstrained case is studied as well by setting Lb →∞.

Since the GPS algorithm is not guaranteed to converge to the global optimum, 5 opti-

mization chains are considered, i.e., 5 independent optimization runs starting from different

initial points, to increase the probability of converging to the global optimum. These 5 initial

points are chosen based on the rationale described in the following. First, the 4-dimensional

input space is discretized into a coarse grid of 961 points and the marginal PDFs of x and

y corresponding to each grid point are obtained by utilizing the WPI technique presented

in Sec. 5.2.2. Next, the points violating the condition λ ≤ 2
√
δ, and/or leading to failure

with respect to the specific box size parameter Lb and probability threshold ε , are discarded.

The 30 feasible points yielding the highest energy output Ph are identified and the one cor-

responding to the highest overall Ph value is selected as the first initial point. Further, the

remaining 4 initial points for each optimization chain are chosen among the rest of the 29

points as the ones exhibiting the largest sum of distances with respect to the other points.

Clearly, this procedure selects initial points with the following desirable properties: a) they

are feasible; b) they are located in regions corresponding to high energy output; and c) they

are reasonably dispersed over these high output regions.

The results of the 5 optimization chains for the unconstrained probability of failure case
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(Lb → ∞) are plotted in Fig. 5.5 as projections on 2D planes, where the color of the

circles varies with the iteration number (starting from dark blue and converging to yellow).

This representation provides a crude illustration of the optimization solution path in the

4-dimensional space. It is seen, that the 5 chains converged to different points characterized

by different mean harvester power outputs, and that all converged points are located on the

bistability limit λ = 2
√
δ. Moreover, the optimal parameter ζ∗ reaches its lower bound of

0.05 (see figures 5.5d-5.5f). This is anticipated as a mechanical system with low damping

leads to higher amplitude vibrations, and thus, to higher harvested power.

However, in many practical implementations, space limitations dictate constraints on the

vibration amplitude, such as the one described by Eqs. (5.7)-(5.12). In this regard, and

focusing on the constrained optimization problem of Eqs. (5.7)-(5.12) with ε = 10−3, the

results of the 5 optimization chains are shown in Fig. 5.6 for two design examples with

Lb = 2.4 (figures 5.6a,5.6c,5.6e) and Lb = 3 (figures 5.6b,5.6d,5.6f). In these examples, some

chains converge to designs, which do not correspond to the bistability limit (λ = 2
√
δ). In

fact, it can be seen in Fig. 5.6e that for a relatively “tight” box with Lb = 2.4, the global

optimum found yields a symmetric harvester, i.e., λ ≈ 0. This trend is evident in Tab.

5.1, which summarizes the optimal (among the 5 chains) results, for various examples with

increasing Lb, including the unconstrained case (Lb = ∞). Indeed, note that for Lb < 2.9, the

optimal harvester is approximately symmetric (λ ≈ 0), whereas for Lb ≥ 2.9 the constraint on

the probability of failure becomes less severe and asymmetric designs appear to yield higher

power output. In fact, these asymmetric designs tend to converge to the bistability limit

with λ = 2
√
δ. Moreover, as the available space Lb decreases, the parameter δ∗ is increased

to provide additional stiffness and restrict the oscillator within the gradually tighter bounds.

2-parameter design optimization

According to the results of the 4-parameter design optimization examples presented in

Tab. 5.1, ζ∗ always takes its lower bound value, while λ∗ converges either to its lower
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Figure 5.5: 2D projections of computed points (color varies with iteration count). Optimiza-
tion by GPS algorithm with z = [α, δ, ζ, λ]T ∈ [0.5, 3] × [0, 5] × [0.05, 0.2] × [0, 2

√
δ], κ = 0.65,

r = 1 and unconstrained probability of failure (Lb = ∞).
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Figure 5.6: 2D projections of computed points (color varies with iteration count and unfilled
circles correspond to probabilities of failure larger that ε). Optimization by GPS algorithm
with z = [α, δ, ζ, λ]T ∈ [0.5, 3] × [0, 5] × [0.05, 0.2] × [0, 2

√
δ], κ = 0.65, r = 1 and constrained

probability of failure with Lb equal to 2.4 (5.6a,5.6c,5.6e) and 3 (5.6b,5.6d,5.6f) and ε = 10−3.
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Table 5.1: Summary of optimal energy harvester designs for z = [α, δ, ζ, λ]T ∈ [0.5, 3]×[0, 5]×
[0.05, 0.2] × [0, 2

√
δ], κ = 0.65, r = 1 and different box sizes Lb. Unconstrained (Lb = ∞) and

constrained probability of failure with ε = 10−3.

Box size Optimal design Average Probability of
Lb α∗ δ∗ ζ∗ λ∗ δx∗ power Ph failure P f

2.3 1.761 3.573 0.05 0.000 0.000 0.1514 0.000999
2.4 1.678 2.982 0.05 0.033 0.005 0.1593 0.000997
2.5 1.678 2.510 0.05 0.013 0.002 0.1635 0.000994
2.6 1.640 2.112 0.05 0.003 0.001 0.1701 0.000999
2.7 1.610 1.810 0.05 0.105 0.025 0.1736 0.000936
2.8 1.557 1.503 0.05 0.004 0.001 0.1807 0.000993
2.9 1.115 1.973 0.05 2.809 0.565 0.1864 0.000780
3.0 1.090 1.753 0.05 2.648 0.557 0.1926 0.000727
∞ 0.887 0.556 0.05 1.491 - 0.2349 0.000000

allowable value of 0 or to the bistability limit 2
√
δ. Motivated by the above observations, a

2-parameter design optimization is pursued in this section aiming at enhanced computational

efficiency and more robust convergence behavior. Specifically, z in Eq. (5.7) becomes z =

[α, δ]T ∈ [0.5, 3] × [0, 5] with ζ = 0.05, κ = 0.65. Two distinct values of lamda are considered

in the examples, i.e., λ = 0 and λ = 2
√
δ. Notably, employing a similar approach as in

Sec. 5.3.2, all 5 optimization chains applied for a given set of fixed parameters converged to

the same optimal point. Clearly, this indicates that the 2-parameter optimization exhibits

a more robust convergence behavior than its 4-parameter counterpart. For various values

of the box size parameter Lb the converged optimal points are presented in Tab. 5.2 for

λ = 0 and in Tab. 5.3 for λ = 2
√
δ. Moreover, Fig. 5.7 depicts the points accessed by the 5

optimization chains for λ = 2
√
δ, and box size parameter Lb equal to 2.4, 3 and ∞.

It is seen in tables 5.2 and 5.3 that, similarly to the 4-parameter optimization of Sec.

5.3.2, for relatively small box sizes Lb the symmetric design (λ = 0 - Tab. 5.2) outperforms

the asymmetric design (λ = 2
√
δ - Tab. 5.3), whereas as Lb increases, asymmetry leads to

higher energy output, even for the unconstrained case (Lb = ∞). Further, the theoretically

supported fact (e.g. [156, 158, 159, 160]), that the linear design, i.e., δ = 0, is optimal among

symmetric (λ = 0) and unconstrained (Lb → ∞) harvesters, is further corroborated by the
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Table 5.2: Summary of optimal energy harvester designs for z = [α, δ]T ∈ [0.5, 3] × [0, 5],
λ = 0, ζ = 0.05, κ = 0.65, r = 1 and different box sizes Lb. Unconstrained (Lb = ∞) and
constrained probability of failure with ε = 10−3.

Box size Optimal design Average Probability of
Lb α∗ δ∗ δx∗ power Ph failure P f

2.3 1.765 3.574 0.000 0.1516 0.001000
2.4 1.750 3.008 0.000 0.1578 0.000971
2.5 1.672 2.578 0.000 0.1624 0.000879
2.6 1.638 2.130 0.000 0.1680 0.000962
2.7 1.589 1.782 0.000 0.1738 0.000991
2.8 1.560 1.509 0.000 0.1787 0.000982
2.9 1.574 1.289 0.000 0.1837 0.000969
3.0 1.480 1.082 0.000 0.1906 0.000995
∞ 1.190 0.000 - 0.2231 0.000000

Table 5.3: Summary of optimal energy harvester designs for z = [α, δ]T ∈ [0.5, 3] × [0, 5],
λ = 2

√
δ, ζ = 0.05, κ = 0.65, r = 1 and different box sizes Lb. Unconstrained (Lb = ∞) and

constrained probability of failure with ε = 10−3.

Box size Optimal design Average Probability of
Lb α∗ δ∗ δx∗ power Ph failure P f

2.3 1.325 4.407 0.442 0.1465 0.000997
2.4 1.284 3.801 0.488 0.1533 0.000999
2.5 1.252 3.259 0.516 0.1607 0.000905
2.6 1.188 2.823 0.537 0.1677 0.000996
2.7 1.195 2.477 0.550 0.1746 0.000989
2.8 1.130 2.178 0.558 0.1817 0.000972
2.9 1.103 1.917 0.559 0.1898 0.000992
3.0 1.086 1.659 0.572 0.1952 0.000963
∞ 0.890 0.459 - 0.2373 0.000000
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(a) 3D plot - Lb = 2.4 (b) overview plot - Lb = 2.4

(c) 3D plot - Lb = 3 (d) overview plot - Lb = 3

(e) 3D plot - Lb = ∞ (f) overview plot - Lb = ∞

Figure 5.7: Stationary mean harvested power Ph. Optimization by GPS algorithm with
z = [α, δ]T ∈ [0.5, 3] × [0, 5], λ = 2

√
δ, ζ = 0.05, κ = 0.65, r = 1. (a),(c) and (e): 3D surface

plots with gradient coloring. (b),(d) and (f): overview plots with flat coloring.
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herein analysis; see last row of Tab. 5.2. In contrast, it appears that the introduction of

asymmetric nonlinearities, i.e., δ > 0 and λ = 2
√
δ yields designs that outperform significantly

the linear design in terms of energy output; this is also in agreement with conclusions drawn

in [161, 62, 18] based on relevant numerical studies. Moreover, considering the shape of the

surface plots in Fig. 5.7, and that all 5 chains converged to the same point, indicates the

existence of a single (global) optimum for the 2-parameter optimization case.

Next, attention is directed to three indicative optimal harvesters in Tab. 5.3 with Lb

values of 2.4, 3 and ∞. The corresponding stationary marginal response PDFs ps(x) and

ps(y) are obtained by employing the herein adapted WPI technique. These are plotted in

Fig. 5.8 and compared with MCS data. Besides the relatively high degree of accuracy

exhibited by the WPI technique, it is seen in figures 5.8a and 5.8c that the optimal shape

of ps(x) tends towards a rectangular form. This is anticipated, since this particular shape

of ps(x) leads, in general, to low probability of failure. Also, it corresponds to a relatively

higher variance of x, and therefore (see Eq. (5.1a)), to a higher variance of y as well, i.e.,

higher energy output (see Eq. 5.5).

2-parameter design optimization for various fractional derivative order values

In this subsection, the 2-parameter design optimization problem of Sec. 5.3.2 is considered

for harvesters with λ = 2
√
δ and with two distinct fractional derivative order values, i.e.,

r = 0.75 and r = 0.50. The results are summarized in Tab. 5.4 for r = 0.75 and in Tab.

5.5 for r = 0.50. The conclusions are similar to Sec. 5.3.2 (see Tab. 5.3), while it is evident

that the energy output decreases for decreasing fractional derivative order r as shown in Sec.

5.3.1 (see Fig. 5.4b).
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Figure 5.8: Response PDFs of three optimal designs corresponding to box size parameter Lb
values of 2.4, 3 and∞; see second, eighth and ninth rows of Tab. 5.3, respectively, for optimal
design parameters (α∗, δ∗), shift parameter δx, mean harvested power Ph and probability of
failure P f .
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Table 5.4: Summary of optimal energy harvester designs for z = [α, δ]T ∈ [0.5, 3] × [0, 5],
λ = 2

√
δ, ζ = 0.05, κ = 0.65, r = 0.75 and different box sizes Lb. Unconstrained (Lb = ∞)

and constrained probability of failure with ε = 10−3.

Box size Optimal design Average Probability of
Lb α∗ δ∗ δx∗ power Ph failure P f

2.3 1.408 4.531 0.429 0.1235 0.000917
2.4 1.359 3.906 0.476 0.1280 0.000907
2.5 1.398 3.350 0.509 0.1331 0.000983
2.6 1.555 2.969 0.521 0.1377 0.000941
2.7 1.440 2.617 0.540 0.1419 0.000832
2.8 1.438 2.266 0.552 0.1471 0.000953
2.9 1.379 1.992 0.559 0.1505 0.000881
3.0 1.474 1.783 0.553 0.1593 0.000916
∞ 1.047 0.625 - 0.1767 0.000000

Table 5.5: Summary of optimal energy harvester designs for z = [α, δ]T ∈ [0.5, 3] × [0, 5],
λ = 2

√
δ, ζ = 0.05, κ = 0.65, r = 0.50 and different box sizes Lb. Unconstrained (Lb = ∞)

and constrained probability of failure with ε = 10−3.

Box size Optimal design Average Probability of
Lb α∗ δ∗ δx∗ power Ph failure P f

2.3 1.398 4.492 0.433 0.1102 0.000920
2.4 1.438 3.866 0.478 0.1136 0.000975
2.5 1.357 3.330 0.513 0.1177 0.000942
2.6 1.320 2.930 0.533 0.1213 0.000867
2.7 1.276 2.490 0.553 0.1252 0.000989
2.8 1.342 2.224 0.559 0.1288 0.000983
2.9 1.474 2.012 0.556 0.1317 0.000981
3.0 1.408 1.787 0.556 0.1369 0.000901
∞ 1.875 1.000 - 0.1569 0.000000
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Part II

Computational algebraic geometry and

Gröbner bases
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Chapter 6: Solution of algebraic polynomial systems of equations

with Gröbner bases

In this section, a computational algebraic technique based on Gröbner bases is developed,

which is capable of determining the entire set of solutions corresponding to an algebraic

system of coupled multivariate polynomial equations of the form

f1(z1,..., zp) = 0

...

fs(z1,..., zp) = 0

(6.1)

Indicatively, the interested reader is also directed to papers [167, 168, 169] and to books [69,

70, 71, 72, 73] for a more detailed presentation of the topic.

6.1 Algebraic geometry: Selected basic elements and concepts

In this section, selected basic elements and concepts of algebraic geometry are presented

for completeness, including certain fundamental results to be used in the following.

Definition 6.1.1 (Polynomial Ring) A polynomial ring over a field K is defined as the

set of all polynomials in p variables with coefficients in K and is denoted as K[z1, ..., zp].

Definition 6.1.2 (Affine Variety) Let f1, ..., fs be polynomials in K[z1, ..., zp], then

V( f1, ..., fs) = {(a1, ..., an) ∈ K
n | fi(a1, ..., an) = 0 ∀ i = 1, ..., s}

is the affine variety defined by f1, ..., fs.
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Based on Definition 6.1.2, the entire set of solutions of a polynomial system of the form

of Eq. (6.1) constitutes an affine variety. Further, it is noted that an affine variety can

be construed as a generalization of the concept of nullspace, referring to linear transforma-

tions in vector spaces, to consider polynomial transformations in polynomial rings. Also,

a linear subspace is a subset of a vector space with certain properties. A similar concept

corresponding to a polynomial ring is referred to as an ideal and is formally defined next.

Definition 6.1.3 (Ideal) A subset I ⊆ K[z1, ..., zp] is an ideal if:

(i) 0 ∈ I

(ii) If f , g ∈ I, then f + g ∈ I

(iii) If f ∈ I and h ∈ K[z1, ..., zp], then h f ∈ I

An ideal can be defined by an arbitrary collection of polynomials F = { f1, ..., fs} in

K[z1, ..., zp] as

〈 f1, ..., fs〉 =

{
s∑

i=1

hi fi | h1, ..., hs ∈ K[z1, ..., zp]

}
(6.2)

and is referred to as the ideal generated by f1, ..., fs. It is seen that F = { f1, ..., fs} forms a

basis for the ideal 〈 f1, ..., fs〉 in the sense that every element in 〈 f1, ..., fs〉 can be constructed

as a combination of elements in F with elements in K[z1, ..., zp]. In fact, according to a

fundamental result in algebraic geometry, known as Hilbert’s Basis Theorem, every ideal

I ⊆ K[z1, ..., zp] has a finite generating set, i.e., I = 〈g1, ..., gt〉 for some g1, ..., gt ∈ I. The

interested reader is directed to [72] for a detailed proof.

Further, consider the ideal I (V) related to the affine variety V ∈ Kp defined as

I (V) = { f ∈ K[z1, ..., zp] | f (α) = 0 ∀ a ∈ V} (6.3)

In Eq. (6.3), I (V) represents the ideal containing all polynomials that vanish on V . In other

words, V is the set of common solutions of all (infinite in number) polynomials in I (V) (e.g.,
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[72]). Note that Eq. (6.3) can be construed as a mapping from a finite set of vectors V to

an infinite set of polynomials I (V). In this regard, it is also possible to define a mapping in

the form

V (I) = {(α1, ..., αn) ∈ K
n | f (α1, ..., αn) = 0 ∀ f ∈ I} (6.4)

Hilbert’s Basis Theorem can be used to prove that V (I) in Eq. (6.4) is an affine variety (see

[72]). In particular, if I = 〈 f1, ..., fs〉, then

V (I) = V ( f1, ..., fs) (6.5)

It can be readily seen in Eq. (6.5) that although a nonzero ideal I always contains an infinite

number of polynomials, the set V (I) can be defined based on a finite set of polynomial

equations. Also, Eq. (6.5) demonstrates that the common solutions of all the polynomials

in an ideal coincide with the common solutions of its generating polynomials.

Next, Theorem 1 is presented, which relates to the celebrated Hilbert’s Nullstellensatz

(e.g., [72]). The interested reader is directed to [72] for a detailed proof.

Theorem 1 (Weak Nullstellensatz) Let K be an algebraically closed field and I ⊆ K[z1, ..., zp]

be an ideal satisfying V(I) = �. Then I = K[z1, ..., zp].

Theorem 1 shows that the system of polynomial equations in Eq. (6.1) may not have a

solution only under the condition that the ideal it generates is equal to the associated poly-

nomial ring, i.e., I = 〈 f1, ..., fs〉 = K[z1, ..., zp]. However, K[z1, ..., zp] is generated by 1, since

〈1〉 = K[z1, ..., zp], and thus, Eq. (6.5) shows that the only system of polynomial equations

without a solution is the system 1 = 0. This can only hold true under the condition that

the field K is algebraically closed (e.g., [72]). Taking into account that the algebraic closure

of R is C, the weak Nullstellensatz can be construed as a generalization of the Fundamental

Theorem of Algebra, which states that any non-constant polynomial in one variable with co-

efficients in C has at least one root in C. Accordingly, any system of non-constant polynomial
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equations with coefficients in C has at least one solution in C. The following section pertains

to techniques relying on the aforementioned algebraic geometry results for determining the

entire set of solutions (assumed to be of a finite number).

6.2 Computational algebraic geometry: Selected basic elements and concepts

In this section, fundamental results related to computer implementations of algebraic

geometry concepts are presented for determining the entire set of solutions of Eq. (6.1) in

an algebraic symbolic manner.

First, defining a precise monomial order denoted by > is a prerequisite for the ensuing

analysis. Indicative standard monomial orders include the lexicographical order (lex ), the

graded lexicographical order (grlex ) and the reverse graded lexicographical order (grevlex ).

Following the selection of an order >, LT( f ) is defined as the leading term of a polynomial

f ∈ K[z1, ..., zp] with respect to the order >. Similarly, LM( f ) denotes the leading monomial

of f , i.e., the monomial of LT( f ). Moreover, for an ideal I ⊆ K[z1, ..., zp], LT(I) denotes the

ideal generated by the leading terms of every element in I, i.e., LT(I) = 〈LT( f )| f ∈ I〉. Also,

for an ideal I = 〈 f1, ..., fs〉, the following property is satisfied; that is,

〈LT( fi), ..., LT( fs)〉 ⊆ 〈LT(I)〉 (6.6)

Moreover, the degree of a polynomial, denoted as deg( f ), is defined as the maximum among

the sums of powers of all monomials in f and is independent of the monomial order.

Next, a division algorithm is presented, which can be construed as a multivariate gener-

alization of the Euclidean division of univariate polynomials (e.g., [73]).

Definition 6.2.1 (Division Algorithm) Let > be a monomial order and F = { f1, ..., fs}

be an ordered s-tuple of polynomials in K[z1, ..., zp]. Then, every f ∈ K[z1, ..., zp] can be

written as

f = q1 f1 + ... + qs fs + r
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where qi, r ∈ K[z1, ..., zp], and either r = 0, or r is a linear combination of monomials, none

of which is divisible by any of LT( f1), ..., LT( fs).

It is noted that not only different monomial orders, but also different arrangements of the fi’s

lead, in general, to different qi’s and r. Nevertheless, in the latter case, it is possible to use

the Division Algorithm for dividing polynomials f ∈ K[z1, ..., zp] by s-tuples of polynomials

F = { f1, ..., fs}, yielding unique remainders r, unaffected by the arrangement of the fi’s in F.

This leads to the concept of a Gröbner basis.

Definition 6.2.2 (Gröbner basis) Define a monomial order > on K[z1, ..., zp] and let I ⊂

K[z1, ..., zp] be an ideal. Next, two equivalent definitions for a Gröbner basis are presented

(see also [72]).

1. A finite subset G = {g1, ..., gt} of I is a Gröbner basis if

〈LT(g1), ..., LT(gt)〉 = 〈LT(I)〉

2. A Gröbner basis for I (w.r.t. >) is a finite collection of polynomials G = {g1, ..., gt} ⊂ I

with the property that for every f ∈ I, LT( f ) is divisible by LT(gi) for some i.

The construction of a Gröbner basis G for the ideal I = 〈 f1, ..., fs〉, provided an arbitrary

generating set { f1, ..., fs}, can be achieved by Buchberger’s algorithm (e.g., [65, 66, 73]), and

in this case the property I = 〈 f1, ..., fs〉 = 〈g1, ..., gt〉 holds. It is noted that a Gröbner basis

G = {g1, ..., gt} of I ∈ K[z1, ..., zp] is not unique for a given monomial order >. Also, division

of any f ∈ K[z1, ..., zp] by G using the Division Algorithm, yields a representation in the

form

f = q1g1 + ... + qtgt + f̄ G (6.7)

In the above representation, although the qi’s are non-unique elements of I, (i.e., they depend

on the arrangement of the gi’s in G), the remainder f̄ G is unique for a given >. Further, f̄ G

is not divisible by any LT(gi), and thus, it is not divisible by any element in LT(I). In this
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regard, f̄ G, represents a uniquely determined normal form for modulo I, and is given as a

linear combination of the monomials xa < 〈LT(I)〉, where xa = za1
1 za2

2 ...z
an
n for some n-tuple

a = (a1, ..., an) of non-negative integers. Furthermore, the remainders f̄ G and ḡG generated

by the divisions of polynomials f , g ∈ I ⊂ K[z1, ..., zp] by a Gröbner basis, respectively,

exhibit the following properties (e.g., [73]), i.e.,

f ∈ I ⇔ f̄ G = 0

f̄ G = ḡG ⇔ f − g ∈ I

f̄ G + ḡG = f + g
G

f̄ G · ḡG
G
= f · g

G

(6.8)

(6.9)

(6.10)

(6.11)

Next, the uniqueness of the remainder f̄ G determined by division of a polynomial f ∈

K[z1, ..., zp] by a Gröbner basis G of I ⊂ K[z1, ..., zp] enables the definition of the coset [ f ].

Definition 6.2.3 (Coset) Given f ∈ K[z1, ..., zp], the coset [ f ] is defined as the set

[ f ] = f + I = { f + h | h ∈ I}

In essence, the coset [ f ] groups together all polynomials in K[z1, ..., zp] that yield the same

remainder when divided by G. Hence, this implies a one-to-one correspondence between

remainders and cosets ( f̄ G ↔ [ f ]), and thus, f̄ G can be construed as a representative of its

coset [ f ]. Next, the quotient ring K[z1, ..., zp]/I is defined formally, which represents the set

of all cosets of polynomials in K[z1, ..., zp] with respect to an ideal I ∈ K[z1, ..., zp].

Definition 6.2.4 (Quotient Ring) The quotient ring K[z1, ..., zp]/I is defined as the set

K[z1, ..., zp]/I = {[ f ] | f ∈ K[z1, ..., zp]}

According to [73], equations (6.10) and (6.11) for the remainder apply also on K[z1, ..., zp]/I,

98



i.e., f̄ G+ḡG ↔ [ f ]+[g] and f̄ G · ḡG
G
↔ [ f ]·[g]. In this regard, the quotient ring K[z1, ..., zp]/I

constitutes also an algebra, which is denoted by A in the ensuing analysis.

It is important to note that the remainders f̄ G are linear combinations of the monomials

B = {xa | xa < LT(I)} (6.12)

which form a basis of A (also known as the basis of standard monomials in the literature). The

role of algebra A in obtaining the entire set of solutions of Eq. (6.1) is catalytic. However,

an important requirement relates to A being finite-dimensional, which is ensured by the

following theorem; see also [73] for a detailed proof.

Theorem 2 (Finiteness Theorem) Let I ⊆ K[z1, ..., zp] be an ideal. Then, the algebra

A = K[z1, ..., zp]/I

is finite-dimensional, if and only if, the variety V(I) ⊂ Kn is a finite set.

Next, considering K = C, f ∈ C[z1, ..., zp] and I ⊂ C[z1, ..., zp], the multiplication defined

in Eq. (6.11) can be used to define a linear map m f from the algebra A = C[z1, ..., zp]/I to

itself. Specifically, for [g] ∈ A, m f : A→ A is defined as

m f ([g]) = [ f ] · [g] = [ f · g] ∈ A (6.13)

Relying on the vector space structure of the algebra A, it can be shown that m f is, indeed,

a linear map [73]. Further, assuming that the system of polynomial equations in Eq. (6.1)

has a finite number of solutions, Theorem 2 implies that A is a finite-dimensional algebra.

This fact, enables the representation of the linear map m f by a matrix M f associated with a

basis of A. This is precisely the basis B of standard monomials defined in Eq. (6.12). More

importantly, Theorem 3 shows that the multiplication matrix M f can be utilized to evaluate
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f on V (I); see [73] for a detailed proof.

Theorem 3 Let I ⊂ C[z1, ..., zp] be a zero-dimensional ideal and A = C[z1, ..., zp]/I. Further,

let f ∈ C[z1, ..., zp] with M f being the multiplication matrix corresponding to the linear map

m f : A→ A defined in Eq. (6.13). Then, the eigenvalues of M f are equal to the values of f

on V(I).

In other words, according to Theorem 3, if the system in Eq. (6.1) has a finite number of µ

solutions (i.e., V (I) is a finite set of size µ), substituting these solutions into any polynomial

f ∈ C[z1, ..., zp] yields µ values that are equal to the eigenvalues of M f . In passing, it is worth

noting that the (Strong) Nullstellensatz, which is a consequence of Hilbert’s original result

and is used in the proof of Theorem 3, is of paramount importance to efforts attempting to

associate ideals I with the corresponding varieties V (I). In this regard, it can be argued

that it provides the tools for establishing a “dictionary” between geometry and algebra [73].

It is important to note that matrix M f can only be defined if the standard basis B of

Eq. (6.12) is finite. This is true if the variety V ( f1, ..., fs) is a finite set, i.e., the system of

polynomial equations in Eq. (6.1) has a finite number of µ solutions in C. Thus, it becomes

clear that the total number µ of (complex) solutions of the system in Eq. (6.1) is equal to the

number of monomials in the standard basis B, i.e., µ = length(B). If f is a dense polynomial

of even degree 2d, then it follows from Bézout’s Theorem that µ = (2d − 1)n [169].

6.3 Algorithmic aspects and mechanization of the technique

The steps for determining the multiplication matrix M f of an arbitrary f ∈ K[z1, ..., zp]

corresponding to the system of polynomials in Eq. (6.1) are presented in Algorithm 1, which

is based on the following three main subroutines:

• Groebner( f1, ..., fs): This subroutine computes a Gröbner basis G = {g1, ..., gt} of

the ideal generated by f1, ..., fs based on Buchberger’s algorithm (e.g., [65, 66]). The
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implementation can be found in most symbolic mathematical computation languages

(see for instance gbasis(.) built-in function in Matlab).

• StandardBasis(G): This subroutine computes the basis of standard monomials B

defined in Eq. (6.12) corresponding to the Gröbner basis G = {g1, ..., gt}. Indicatively,

B is constructed by selecting all monomials that are not divisible by LT(gi) for any

i = 1, ..., t.

• NormalForm(h,G): This subroutine computes the unique remainder of the division

of an arbitrary polynomial h by the Gröbner basis G via the Division Algorithm in

Definition 6.2.1. The column vector of coefficients of this remainder with respect to

basis B, is denoted as [NormalForm(h,G)]B. The interested reader is directed to [168]

for an indicative implementation in a symbolic language system.

Algorithm 1 MultMatrix( f , f1, ..., fs) - Computation of multiplication matrix M f

Input: f , f1, ..., fs ∈ R[z1, ..., zp]

Output: M f
1: G = Groebner( f1, ..., fs)
2: B = StandardBasis(G)
3: µ = length(B)
4: Initialize M f as an empty µ × µ matrix
5: for i = 1 to µ do
6: M f (:, i) = [NormalForm(B(i) · f ,G)]B . Computation of the i-th column of M f
7: end for
8: return M f

Next, consider the system of polynomial equations of Eq. (6.1) and the ideal generated

by these polynomials I = 〈 f1, ..., fs〉. According to Eq. (6.4), the affine variety V (I) is

the set of all solutions of Eq. (6.1) and thus, the real solutions of Eq. (6.1) are the real

elements of V (I). The determination of V (I) can be achieved with the aid of Theorem 3.

Specifically, Theorem 3 suggests that all the real values of an arbitrary polynomial f on V (I)

are precisely the real eigenvalues of matrix M f which is constructed according to Algorithm

1 as M f = MultMatrix( f , f1, ..., fs). Next, assuming that Eq. (6.1) has n real solutions and
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denoting by z(k) the k-th solution, the first components of all n solutions, i.e., z(1)1 , ..., z(n)1 ,

can be determined as the real eigenvalues of the matrix Mz1 = MultMatrix(z1, f1, ..., fs).

In the same exact manner, all components i of the n real solutions i.e., z(1)i , ..., z(n)i , can be

determined as the real eigenvalues of Mzi for all i = 1, ..., p.

It is noted however, that the computation of the eigenvalues for each Mzi does not pro-

vide a natural ordering of these eigenvalues, and thus, the process of obtaining each z(k)i as

described above, implies that, in general, z(k)i and z(k)j (where i , j) are not necessarily com-

ponents of the same solution k. In other words, the components of the different solutions

are unordered. This would not be a problem in the case of n = 1, i.e., if there was only

one solution of the system in Eq. (6.1). One way to treat this issue is by considering all

possible combinations zcandidate = [z1, ..., zp]
T from the obtained results by selecting one zi

from (z(1)i , ..., z(n)i ) at a time, and verifying whether zcandidate is a valid solution by substi-

tuting it into Eq. (6.1). This leads to a number of possible solutions of np which increases

exponentially with p. For example, in the case of a 2 dimensional oscillator, i.e., n = 2 and

assuming an up to 3-rd order expansion in Eq. (8.8), leads to a polynomial system of p = 18

equations with p unknowns which has n = 2 solutions. In this case, there exist 218 candidate

solutions zcandidate. Even though, 218 appears as a tractable number of candidate solutions

to verify, by slightly increasing n and/or p can lead to a number of candidate solutions in the

order of billions or even trillions which constitutes a significant limitation of this approach.

In passing, it is noted that the graded lexicographical order

xd
1 > ... > xd

n > xd−1
1 x2 > ... > x1 > ... > xn > 1 (6.14)

is considered in the numerical examples of this thesis.
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Chapter 7: Convexity of the Wiener path integral technique most

probable path optimization problem

7.1 Formulation of the WPI most probable path optimization problem as an

algebraic system of polynomial equations

For a wide range of dynamical systems (e.g., systems with a nonlinearity function in

Eq. (2.46) of polynomial form), not only the entire set of solutions corresponding to the

first-order optimality condition ∇J(z) = 0 in Eq. (2.35) can be determined, but also convex-

ity of J(z) is implied if the technique yields only one solution. In the latter case, clearly, the

Newton’s optimization scheme of Sec. 2.3.2 converges to the same global minimum deter-

mined by the herein proposed computational algebraic technique presented in Chapter 6. In

fact, it is noted that, in its standard implementation, the technique determines the values

of J corresponding to all real solutions of the system in Eq. (6.1), i.e., J is evaluated on

the entire set of points defined by ∇J(z) = 0. Of course, as discussed in Sec. 6.3, the tech-

nique can be utilized for determining the actual solutions z∗ as well (and not only the values

J(z∗)) (e.g., [73]). However, this implies significant additional computational cost. In this

regard, coupling the Newton’s optimization scheme of Sec. 2.3.2 with the herein proposed

computational algebraic technique for showing that the z∗ provided by the Newton’s scheme

corresponds, indeed, to the global minimum of J(z), appears to be an efficient alternative.

Next, considering a polynomial nonlinearity function gnl in Eq. (2.46) of degree d, the

term g1(z) in Eq. (2.54) becomes a multivariate polynomial of degree d + 1 in p := nL

variables, whereas the term g2(z) in Eq. (2.55) becomes a multivariate polynomial of degree

2d in p variables. Therefore, the objective function J(z) takes the form of a multivariate

polynomial of degree 2d in p variables and the first-order optimality condition of Eq. (2.35)
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leads to an algebraic system of p equations of the form of Eq. (6.1). In Eq. (6.1), each fi is

a polynomial of degree at most 2d − 1 with coefficients in R. In this regard, the convexity

of the objective function J(z) can be proved by showing that the system of Eq. (6.1) has a

unique real solution. Also, s = p is considered in the ensuing analysis, although this is not

a necessary requirement for the technique (e.g., [73]).

Next, consider the optimization problem of Eq. (2.34) and set

J∗ = min
z∈Rn

J(z) (7.1)

Then, J∗ is equal to the smallest real eigenvalue of matrix MJ representing the linear map

mJε : A → A (defined in Eq. (6.13)) with respect to the monomial basis B (defined in

Eq. (6.12)), where A = C[z1, ..., zp]/I with I = 〈 ∂J
∂z1
, ..., ∂J

∂zn
〉. In other words, the globally

minimum value of J(z), as well as all its values on its critical points (i.e., points where

∇J = 0), can be found by determining matrix MJ .

Moreover, as shown in Sec. 2.3.2, the convergence rate expressed in Eq. (2.56) is increasing

for decreasing nonlinearity degree. This is demonstrated further in the numerical examples

of Sec. 7.2; see Tables 7.1 and 7.2. Finally, it is important to note that although it has

been shown in Section 2.3.2 that a Newton’s optimization scheme for determining the most

probable path appears to be a suitable choice, the convergence rate shown in Eq.(2.56) can

be construed as local (see also [25]). In other words, there is no guarantee about existence

and convergence to a global minimum. In fact, proving the potential convexity of J(z) (and

thus, the existence of a global extremum) is addressed by resorting to the computational

algebraic geometry concepts and tools presented in Chapter 6 such as Gröbner bases.

7.2 Numerical examples

In this section, various numerical examples pertaining to oscillators with diverse nonlinear

behaviors are considered for demonstrating the reliability of the WPI technique to evaluate
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the joint response PDF, in conjunction with the proposed Newton’s scheme for determining

the most probable path. Further, the herein developed Gröbner basis approach is also

employed for demonstrating the existence of a unique solution (and thus, the convexity of

the objective function) of the most probable path optimization problem.

7.2.1 Linear oscillator

Consider a SDOF linear oscillator whose governing equation is a scalar version of Eq. (2.17),

i.e.,

m Üx + c Ûx + k x = w(t), (7.2)

where m = 5, c = 0.2, k = 1, and E(w(t)w(t + τ)) = 2πS0δ(τ) with S0 = 0.5.

As pointed out in Sec. 2.3.2, for linear systems the Newton’s optimization scheme con-

verges to the exact solution z∗ = −Q−1b in only one iteration for any arbitrarily selected

starting point z(0). In this regard, for an indicative final time instant t f = 1s and for bound-

ary conditions (x(0), Ûx(0), x(t f ), Ûx(t f )) = (0, 0,−0.5,−1.0), the objective function of Eq. (2.39)

is shown in Fig. 7.1 by utilizing L = 2 trial functions. Further, as also stated in Sec. 2.3.2 and

proved in B, it is readily seen that the objective function J(z) of Eq. (2.39) is convex, and thus,

the Newton’s scheme converges to the exact optimal solution z∗ = −Q−1b = (0.0173, 0.00014)

in a single iteration starting from the arbitrarily chosen point z(0) = (50, 50). Further, em-

ploying the Gröbner basis approach developed in Chapter 6 and discussed in Sec. 7.1 yields

a single solution and the corresponding objective function value becomes J(z∗) = 4.4204,

which coincides practically with the estimate based on Newton’s scheme.

Finally, utilizing a brute-force discretization of the PDF effective domain (e.g. [22]),

the joint response PDF at a specific time instant is determined via the solution of N2 = 961

boundary value problems. In Fig. 7.2, the corresponding marginal response displacement and

velocity PDFs at various time instants are plotted. It is shown that the WPI-based estimates

utilizing Newton’s scheme coincide with the estimates based on the Gröbner basis approach.

Comparisons with MCS data (10,000 realizations) are included as well demonstrating the
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high accuracy degree exhibited by the WPI technique.

Figure 7.1: Most probable path optimization problem objective function using L = 2 trial
functions and corresponding to a linear oscillator under white noise (t f = 1s, x(t f ) =

−0.5, Ûx(t f ) = −1.0). The Newton’s optimization scheme iterations are also included.

(a) Response displacement PDF (b) Response velocity PDF

Figure 7.2: Response displacement and velocity PDFs at various time instants correspond-
ing to a linear oscillator under white noise. Comparisons between WPI-based estimates
utilizing the Newton’s scheme and the Gröbner basis approaches for the most probable path
determination. MCS-based estimates are also included (10,000 realizations).
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7.2.2 Duffing nonlinear oscillator

In this example, consider a SDOF Duffing nonlinear oscillator whose governing equation

is a scalar version of Eq. (2.17), i.e.,

m Üx + c Ûx + k x + εgnl(x, Ûx) = w(t) (7.3)

where

gnl(x, Ûx) = k x3 (7.4)

In Eqs. (7.3)-(7.4), the same parameters values are used for m, c, k and S0 as in example

7.2.1.

Next, for an indicative final time instant t f = 1s and for boundary conditions (x(0), Ûx(0),

x(t f ), Ûx(t f )) = (0, 0,−0.5,−1.0), the objective functions J(z) of the most probable path opti-

mization problem for ε = 1, 10, and 20 are shown in Figs. 7.3, 7.4 and 7.5, respectively. The

iteration points of the Newton’s scheme are also included in the figures corresponding both

to an arbitrarily selected starting point (i.e., z(0) = (50,−50)), and to a starting point equal

to the exact optimum z(0) = zlin = −Q
−1b corresponding to the associated linear system (i.e.,

ε = 0). Clearly, as pointed out in Sec. 2.3.2, z(0) = zlin is shown to be a reasonable choice

as a starting point in the optimization scheme, since for all cases the number of iterations is

significantly smaller than the respective one based on an arbitrarily selected starting point.

Also, as dictated by Eq. (2.56), it can be readily seen that the convergence rate increases for

smaller values of the nonlinearity parameter ε. Numerical results related to the iterations of

the Newton’s scheme are summarized in Table 7.1, which includes also results based on the

Gröbner basis approach. It is seen that, for all nonlinearity parameter values, the Gröbner

approach yields a single solution and the corresponding objective function value coincides

practically with the estimate based on the Newton’s scheme. This proves the convexity of the

objective function and that the Newton’s scheme converges, indeed, to the global minimum.
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In Fig. 7.6, the WPI-based marginal response displacement and velocity PDFs are plotted

for various nonlinearity magnitude values at two indicative time instants. It is shown that

the WPI-based estimates utilizing the Newton’s scheme coincide with the estimates based on

the Gröbner basis approach. Comparisons with MCS data (10, 000 realizations) are included

as well demonstrating the high accuracy degree exhibited by the WPI technique.

Figure 7.3: Most probable path optimization problem objective function using L = 2 trial
functions and corresponding to a Duffing oscillator with ε = 1.0 under white noise (t f =

1s, x(t f ) = −0.5, Ûx(t f ) = −1.0). The Newton’s optimization scheme iterations are also
included.

7.2.3 Nonlinear oscillator with an asymmetric response PDF

In this example, consider a SDOF nonlinear oscillator with an asymmetric response PDF,

whose governing equation is given by Eqs. (7.5)-(7.6), i.e.,

m Üx + c Ûx + k x + εgnl(x, Ûx) = w(t) (7.5)
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Figure 7.4: Most probable path optimization problem objective function using L = 2 trial
functions and corresponding to a Duffing oscillator with ε = 10 under white noise (t f =

1s, x(t f ) = −0.5, Ûx(t f ) = −1.0). The Newton’s optimization scheme iterations are also
included.

Table 7.1: Convergence rate and objective function values for a Duffing oscillator

ε = 1.0 ε = 10 ε = 20 ε = 100

‖z(k) − z∗ ‖ J(z(k)) ‖z(k) − z∗ ‖ J(z(k)) ‖z(k) − z∗ ‖ J(z(k)) ‖z(k) − z∗ ‖ J(z(k))

Newton’s numerical optimization scheme - Arbitrarily selected starting point z(0)

70.697 1.26E4 70.685 8.23E3 70.671 1.30E4 70.138 8.81E4
37.666 4.14E3 44.568 3.97E3 50.835 5.26E3 58.718 2.34E4
7.735 1.92E2 18.447 9.96E2 38.458 2.81E3 49.450 6.92E3

4.63E-2 4.458 12.425 4.59E2 29.451 1.83E3 40.993 2.52E3
5.37E-7 4.452 3.571 45.024 9.694 2.76E2 31.862 1.10E3
1.08E-16 4.452 2.93E-2 4.745 3.467 43.157 23.047 6.10E2

1.56E-6 4.743 5.588E-2 5.096 17.922 4.28E2
7.03E-15 4.743 1.08E-5 5.086 14.318 1.04E2

6.44E-13 5.086 5.787 28.117
2.459 8.534
0.118 8.491

1.32E-4 8.491
2.97E-10 8.491
1.41E-15 8.491

Newton’s numerical optimization scheme - Starting point z(0) = −Q−1b corresponding to a linear oscillator with ε = 0

5.24E-3 4.452 5.29E-2 4.751 1.07E-1 5.120 5.74E-1 9.446
8.49E-9 4.452 8.49E-6 4.743 6.77E-5 5.086 7.68E-3 8.491

2.15E-13 4.743 2.617E-11 5.086 1.11E-6 8.491
2.28E-14 8.491

Computational algebraic geometry approach based on Gröbner bases

4.452 4.743 8.490
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Figure 7.5: Most probable path optimization problem objective function using L = 2 trial
functions and corresponding to a Duffing oscillator with ε = 20 under white noise (t f =

1s, x(t f ) = −0.5, Ûx(t f ) = −1.0). The Newton’s optimization scheme iterations are also
included.
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(a) ε = 1: Response displacement PDF (b) ε = 1: Response velocity PDF

(c) ε = 10: Response displacement PDF (d) ε = 10: Response velocity PDF

(e) ε = 20: Response displacement PDF (f) ε = 20: Response velocity PDF

Figure 7.6: Response displacement and velocity PDFs at various time instants correspond-
ing to a Duffing oscillator under white noise. Comparisons between WPI-based estimates
utilizing the Newton’s scheme and the Gröbner basis approaches for the most probable path
determination. MCS-based estimates are also included (10,000 realizations).
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where

gnl(x, Ûx) = ax2 + x3 (7.6)

In Eq. (7.5)-(7.6), the parameters values used are, m = 1, c = 0.2, k = 1, E(w(t)w(t + τ)) =

2πS0δ(τ) with S0 = 0.05, and a is constant.

Further, for an indicative final time instant t f = 1s and for boundary conditions (x(0), Ûx(0),

x(t f ), Ûx(t f )) = (0, 0,−0.3,−0.8), the objective functions J(z) of the most probable path opti-

mization problem for ε = 1 and a = 1.5, ε = 10 and a = 3
√
10

20 , and ε = 50 and a = 3
√
2

20 are

shown in Figs. 7.7, 7.8 and 7.9, respectively. The iteration points of the Newton’s scheme

are also included in the figures corresponding both to an arbitrarily selected starting point

(i.e., z(0) = (50,−50) or z(0) = (−50, 50)), and to a starting point equal to the exact optimum

z(0) = zlin = −Q
−1b corresponding to the associated linear system (i.e., ε = 0). In a similar

manner as in example 7.2.2, z(0) = zlin proves to be an excellent choice as a starting point in

the optimization scheme, whereas it is seen that the convergence rate increases for smaller

values of the nonlinearity parameter ε. Numerical results related to the iterations of the New-

ton’s scheme are summarized in Table 7.2, which includes also results based on the Gröbner

basis approach. The convexity of the objective function and the convergence of Newton’s

scheme to the global minimum is demonstrated by noticing that for all nonlinearity param-

eter values, the Gröbner approach yields a single solution and the corresponding objective

function value coincides practically with the estimate based on the Newton’s scheme.

In Fig. 7.10, the WPI-based marginal response displacement and velocity PDFs are

plotted for various nonlinearity magnitude values at two indicative time instants. It is

shown that the WPI-based estimates utilizing Newton’s scheme coincide with the estimates

based on the Gröbner basis approach. Comparisons with MCS data (20, 000 realizations) are

included as well demonstrating the high accuracy degree exhibited by the WPI technique.
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Figure 7.7: Most probable path optimization problem objective function using L = 2 trial
functions and corresponding to a nonlinear oscillator with an asymmetric response PDF with
ε = 1 and a = 1.5 under white noise (t f = 1s, x(t f ) = −0.3, Ûx(t f ) = −0.8). The Newton’s
optimization scheme iterations are also included.

Table 7.2: Convergence rate and objective function values for a nonlinear oscillator with an
asymmetric response PDF.

ε = 1, a = 1.50 ε = 10, a = 3
√
10

20 ε = 50, a = 3
√
2

20 ε = 100, a = 0.150

‖z(k) − z∗ ‖ J(z(k)) ‖z(k) − z∗ ‖ J(z(k)) ‖z(k) − z∗ ‖ J(z(k)) ‖z(k) − z∗ ‖ J(z(k))

Newton’s numerical optimization scheme - Arbitrarily selected starting point z(0)

70.678 3.49E+03 70.730 3.30E4 70.732 1.28E6 70.374 5.40E6
25.173 6.21E2 58.642 9.16E3 57.614 3.33E5 57.053 1.41E6
17.770 3.88E2 47.166 2.96E3 47.261 8.62E4 46.490 3.65E5
1.786 5.536 35.498 1.19E3 39.109 2.23E4 38.153 9.45E4

2.31E-2 1.683 26.321 5.92E2 32.603 5.90E3 31.606 2.43E4
3.21E-6 1.683 20.316 3.64E2 27.040 1.68E3 26.449 6.27E3
6.18E-14 1.683 7.104 63.160 21.494 5.72E2 22.213 1.67E3

1.943 6.109 15.672 2.39E2 18.191 4.96E2
1.15E-1 1.615 11.019 1.16E2 13.697 1.78E2
2.08E-4 1.598 7.990 63.940 9.385 71.774
7.29E-10 1.598 0.782 2.554 6.971 35.490

6.73E-3 1.794 5.514 23.641
2.35E-7 1.794 1.570 5.110
1.07E-15 1.794 0.520 2.616

6.55E-3 2.271
1.93E-6 2.271
1.99E-13 2.271

Newton’s numerical optimization scheme - Starting point z(0) = −Q−1b corresponding to a linear oscillator with ε = 0

0.0278 1.684 0.046 1.601 0.077 1.800 0.278 2.357
3.955E-6 1.683 3.205E-5 1.598 2.305E-5 1.794 0.0010 2.2715
9.116E-14 1.683 1.711E-11 1.598 8.485E-12 1.794 1.831E-8 2.271

Computational algebraic geometry approach based on Gröbner bases

1.683 1.598 1.793 2.271
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Figure 7.8: Most probable path optimization problem objective function using L = 2 trial
functions and corresponding to a nonlinear oscillator with an asymmetric response PDF with
ε = 10 and a = 3

√
10

20 under white noise (t f = 1s, x(t f ) = −0.3, Ûx(t f ) = −0.8). The Newton’s
optimization scheme iterations are also included.
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Figure 7.9: Most probable path optimization problem objective function using L = 2 trial
functions and corresponding to a nonlinear oscillator with an asymmetric response PDF with
ε = 50 and a = 3

√
2

20 under white noise (t f = 1s, x(t f ) = −0.3, Ûx(t f ) = −0.8). The Newton’s
optimization scheme iterations are also included.
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(a) ε = 1: Response displacement PDF (b) ε = 1: Response velocity PDF

(c) ε = 10: Response displacement PDF (d) ε = 10: Response velocity PDF

(e) ε = 50: Response displacement PDF (f) ε = 50: Response velocity PDF

Figure 7.10: Response displacement and velocity PDFs at various time instants correspond-
ing to a nonlinear oscillator with an asymmetric response PDF. Comparisons between WPI-
based estimates utilizing the Newton’s scheme and the Gröbner basis approaches for the most
probable path determination. MCS-based estimates are also included (20,000 realizations).
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7.2.4 Nonlinear oscillator with a bimodal response PDF

Consider a SDOF nonlinear oscillator exhibiting a bimodal response PDF, whose govern-

ing equation is given by

m Üx + c Ûx + k x + εgnl(x, Ûx) = w(t) (7.7)

where

gnl(x, Ûx) = −ax + x3 (7.8)

In Eq. (7.7)-(7.8), the parameters values utilized are, m = 1, c = 1.0, k = 1.0, E(w(t)w(t+τ)) =

2πS0δ(τ) with S0 = 0.0637 and a is constant.

Next, for an indicative final time instant t f = 1s and for boundary conditions (x(0), Ûx(0),

x(t f ), Ûx(t f )) = (0, 0, 0.8, 0.9), the objective functions J(z) of the most probable path optimiza-

tion problem for a = 1.3, 1.5 and 1.8, considering ε = 1 are shown in Figs. 7.11, 7.12 and

7.13, respectively. The Newton’s scheme iteration points are also included in the figures cor-

responding both to an arbitrarily selected starting point z(0) = (−100, 100), and to a starting

point equal to the exact optimum z(0) = zlin = −Q
−1b corresponding to the associated linear

system (i.e., ε = 0). Obviously, the convergence behavior is highly improved when z(0) = zlin

is used. Numerical results related to the iterations of the Newton’s scheme are summarized

in Table 7.3, which includes also results based on the Gröbner basis approach. In a simi-

lar manner as in the previous examples, the single solution obtained by the Gröbner basis

approach demonstrates the convexity of the objective function and the existence of a single

global minimum.

In Fig. 7.14, it is shown that the WPI-based estimates utilizing the Newton’s scheme co-

incide with the estimates based on the Gröbner basis approach. Comparisons with MCS data

(50, 000 realizations) are included as well demonstrating the high accuracy degree exhibited

by the WPI technique.
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Figure 7.11: Most probable path optimization problem objective function using L = 2 trial
functions and corresponding to a nonlinear oscillator with a bimodal response PDF with
a = 1.3 and ε = 1 under white noise (t f = 1s, x(t f ) = 0.8, Ûx(t f ) = 0.9). The Newton’s
optimization scheme iterations are also included.

Table 7.3: Convergence rate and objective function values for a nonlinear oscillator with a
bimodal response PDF.

a = 1.3 a = 1.5 a = 1.8

‖z(k) − z∗ ‖ J(z(k)) ‖z(k) − z∗ ‖ J(z(k)) ‖z(k) − z∗ ‖ J(z(k))

Newton’s numerical optimization scheme - Arbitrarily selected starting point z(0)

141.401 2.35E4 141.386 2.33E4 141.366 2.30E4
104.044 8.73E3 103.987 8.66E3 103.905 8.57E3
73.449 3.79E3 73.522 3.78E3 73.635 3.77E3
54.720 2.02E3 54.932 2.04E3 55.255 2.06E3
26.456 6.13E2 26.538 6.21E2 26.665 6.32E2
23.386 5.47E2 24.484 6.01E2 26.232 6.92E2
8.777 81.474 10.692 1.18E2 14.577 2.13E2
0.742 5.232 1.302 6.274 3.305 15.852

1.75E-3 4.667 4.88E-3 4.514 1.91E-2 4.316
1.15E-8 4.667 9.02E-8 4.514 1.30E-6 4.316

2.95E-17 4.514 6.38E-15 4.316

Newton’s numerical optimization scheme - Starting point z(0) = −Q−1b corresponding to a linear oscillator with ε = 0.

0.072 4.671 0.084 4.520 0.1028 4.325
3.374E-6 4.667 6.193E-6 4.514 1.205E-5 4.316
2.990E-14 4.667 1.058E-13 4.514 4.436E-13 4.316

Computational algebraic geometry approach based on Gröbner bases.

4.667 4.514 4.316
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Figure 7.12: Most probable path optimization problem objective function using L = 2 trial
functions and corresponding to a nonlinear oscillator with a bimodal response PDF with
a = 1.5 and ε = 1 under white noise (t f = 1s, x(t f ) = 0.8, Ûx(t f ) = 0.9). The Newton’s
optimization scheme iterations are also included.
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Figure 7.13: Most probable path optimization problem objective function using L = 2 trial
functions and corresponding to a nonlinear oscillator with a bimodal response PDF with
a = 1.8 and ε = 1 under white noise (t f = 1s, x(t f ) = 0.8, Ûx(t f ) = 0.9). The Newton’s
optimization scheme iterations are also included.
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(a) a = 1.3: Response displacement PDF (b) a = 1.3: Response velocity PDF

(c) a = 1.5: Response displacement PDF (d) a = 1.5: Response velocity PDF

(e) a = 1.8: Response displacement PDF (f) a = 1.8: Response velocity PDF

Figure 7.14: Response displacement and velocity PDFs at various time instants correspond-
ing to a nonlinear oscillator with a bimodal response PDF under white noise. Comparisons
between WPI-based estimates utilizing both the Newton’s scheme and the Gröbner basis ap-
proaches for the most probable path determination. MCS-based estimates are also included
(50,000 realizations).
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Chapter 8: Nonlinear normal modes (NNMs)

8.1 The Shaw–Pierre formulation

8.1.1 Center manifold technique

The nonlinear equations of motion are written in the state variable form

Ûxi = yi

Ûyi = gi(x;y)

 i = 1, ..., n
(8.1a)

(8.1b)

where x = [x1, x2, ..., xn]
T is the displacement vector, y = [y1, y2, ..., yn]

T is the velocity vector

and g = [g1, g2, ..., gn]
T is an arbitrary nonlinear vector function.

Following [1], it is assumed next that there exists at least one motion for which all

displacements and velocities are functionally related to a single displacement-velocity pair.

Without loss of generality, this pair is chosen as the first displacement x1 and velocity y1,

and the notation u = x1 and v = y1 is employed for convenience. In this regard, the rest xi’s

and yi’s are expressed functionally in terms of u and v as

xi = Xi(u, v)

yi = Yi(u, v)

 i = 1, ..., n
(8.2a)

(8.2b)
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where X1(u, v) = u and Y1(u, v) = v. Eq. (8.2) can be written in vector form as



x1

y1

x2

y2
...

xn

yn



=



u

v

X2(u, v)

Y2(u, v)
...

Xn(u, v)

Yn(u, v)



(8.3)

It is noted that that for the cases considered in this thesis, a representation of the form

of Eq. (8.2) is possible. The interested reader is referred to [1] for more details about the

applicability of this representation.

Eq. (8.2) represents a 2-dimensional constraint surface in the 2n-dimensional phase space.

Thus, according to [1], a normal mode of motion for the nonlinear system of Eq. (8.1) is

defined as a motion which takes place on a 2-dimensional invariant manifold in the system’s

phase space. This manifold has the following two properties, (a) it passes through a stable

equilibrium point of the system, and (b) at that point, it is tangent to a plane which is an

eigenspace of the system linearized around that equilibrium.

Next, restraining the solutions of the equations of motion (Eq. (8.1)) to satisfy the

constraint equations (Eq. (8.2)) as well, yields a set of equations which can be solved for

the constraint surface defined by the Xi’s and Yi’s. This is accomplished by eliminating the

time dependence and leads to a set of equations for the geometry of the invariant manifold

(see e.g., [170, 171]). In this regard, differentiating the constraint equations Eq. (8.2) with

respect to time yields

Ûxi =
∂Xi

∂u
Ûu +

∂Xi

∂v
Ûv

Ûyi =
∂Yi

∂u
Ûu +

∂Yi

∂v
Ûv

 i = 1, ..., n
(8.4a)

(8.4b)
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Next, substituting the equations of motion Eq. (8.1) into Eq. (8.4) and replacing xi and yi

by Xi and Yi respectively, leads to 2n − 2 equations of the form

Yi(u, v) =
∂Xi

∂u
v +

∂Xi

∂v
g1(u, X2(u, v), ..., Xn(u, v); v,Y2(u, v), ...,Yn(u, v))

gi(u, X2(u, v), ..., Xn(u, v); v,Y2(u, v), ...,Yn(u, v))

=
∂Yi

∂u
v +

∂Yi

∂v
g1(u, X2(u, v), ..., Xn(u, v); v,Y2(u, v), ...,Yn(u, v))

which can be solved for Xi and Yi. It is noted that for i = 1, Eq. (8.5) is satisfied trivially.

Even though Eq. (8.5) are not simpler than the original equations of motion, they allow

for an approximate solution based on power series expansions. Once the Xi’s and Yi’s have

been obtained, the normal mode dynamics, i.e., the dynamics on the invariant manifold can

be determined by substituting the Xi’s and Yi’s in place of xi and yi in the first pair of the

equations of motion, i.e., the ones for x1 and x2. In this regard, the modal dynamic equation

becomes

Ûu = v

Ûv = g1(u, X2(u, v), ..., Xn(u, v); v,Y2(u, v), ...,Yn(u, v))

(8.6a)

(8.6b)

where u and v represent the variables on the invariant manifold and correspond to projections

of the modal dynamics on the (x1, y1) plane. In general, at every equilibrium point there are

n solutions for the Xi’s and Yi’s which correspond to n sets of equations of the form of Eq.

(8.6), one set for each mode.

8.1.2 Approximation of the modal dynamics

Following [1], this section presents a technique for approximating the normal mode in-

variant manifolds, as well as the dynamics on these manifolds near the equilibrium point.

Despite its local nature, this technique yields exact results for similar normal modes, since

they they are represented by flat manifolds, and asymptotic results for non-similar normal

modes. The adopted approximations take the form of power series expansions and can, in
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principle, be generated for arbitrary order.

More specifically, a Taylor series expansion about the equilibrium configuration of the

systems is employed. Without loss of generality, it is assumed that the equilibrium point of

interest is at x = 0. In this regard, the dynamics of the system near the equilibrium point

can be approximated as

Ûx j =y j

Ûy j =α j k xk + β j k yk + δ j kmxk xm + ε j kmxk ym + γ j kmyk ym

+ µ j kmq xk xmxq + ν j kmq xk xmyq + ρ j kmq xk ymyq + ξ j kmqyk ymyq + ...

where the coefficients in the expansions are derived form straightforward differentiation of

the forces g j ( j = 1, ..., n) with respect to x and y, and where the implicit summation notation

is used.

Next, it is assumed that the normal modes for the non-linear system, as given in Eq.

(8.2), can also be expanded with the aid of a Taylor series as

Xi(u, v) =a1,iu + a2,iv + a3,iu2 + a4,iuv + a5,iv2

+ a6,iu3 + a7,iu2v + a8,iuv2 + a9,iv3 + ...

Yi(u, v) =b1,iu + b2,iv + b3,iu2 + b4,iuv + b5,iv2

+ b6,iu3 + b7,iu2v + b8,iuv2 + b9,iv3 + ...


i = 1, ..., n

(8.8a)

(8.8b)

(8.8c)

(8.8d)
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The expansion of Eq. (8.8) can be written in vector form as



x1

y1

x2

y2
...

xn

yn



=





1 0

0 1

a1,2 a2,2

b1,2 b2,2
...

...

a1,n a2,n

b1,n b2,n



+



0 0

0 0

a3,2u + a4,2v a5,2v

b3,2u + b4,2v b5,2v
...

...

a3,nu + a4,nv a5,nv

b3,nu + b4,nv b5,nv



+



0 0

0 0

a6,2u2 + a8,2v2 a7,2u2 + a9,2v2

b6,2u2 + b8,2v2 b7,2u2 + b9,2v2

...
...

a6,nu2 + a8,nv2 a7,nu2 + a9,nv2

b6,nu2 + b8,nv2 b7,nu2 + b9,nv2






u

v

 + ...

(8.9)

which leads to a more compact notation of the form

q =
{
m0 +m1(u, v) +m2(u, v)

} 
u

v

 + ... (8.10)

where q = [x1, y1, x2, y2, ..., xn, yn]
T and m0, m1, m2 are 2n × n matrices. The matrix m0 is

the linear modal component, whereas m1 and m2 incorporate the effects of quadratic and

cubic non-linear terms, respectively.

The coefficients of the linear terms represent the ratios for the usual linear normal modes.

For an undamped system it can be shown that the cross-terms between displacement and

velocity, a2,i and b1,i, equal zero, while a1,i = b2,i represent the usual amplitude rations for

a conservative vibratory system. For a damped system, the linear coupling terms between
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displacement and velocity are generally non-zero and have no special relationship with one

another (other than being the linear approximation to the modal subspace), except in cases

such as proportional damping, where the modes of the damped system are identical to those

of its undamped counterpart. These non-zero cross-terms allow for phase differences between

the displacements for non-conservative systems.

The non-linear terms in Eq. (8.10) describe the bending of the modal subspace. Their

associated coefficients can all be zero for a mode in which the amplitude ratios are fixed

constants, as happens in systems which posses similar normal modes, but in general they

are non-zero. These terms capture the effects of the non-linear forces, and result in the fact

that the displacement and velocity ratios are dependent on the amplitude of the motion.

Next, substituting Eq. (8.8) into Eq. (8.5), gathering terms of the same order in the

monomials of u and v and requiring that the corresponding coefficients vanish, leads to a

system of algebraic equations for the coefficients aki and bki in Eq. (8.8). This system,

consists of 18(n − 1) algebraic equations if the Taylor expansions of Eq. (8.8) are truncated

after the 3-rd order terms. In the case that 4-th order terms are included in the Taylor

expansions, the number of algebraic equations becomes 28(n − 1) and including 5-th order

terms it becomes 40(n − 1). In general, the system of algebraic equations to be solved has

[(r + 1)(r + 2) − 2](n − 1) equations and the same number of unknowns where r is the order

of the expansion in Eq. (8.8).

Solving the 18(n − 1) system of equations leads to a cubic series approximation of the n

nonlinear normal modes and provides a geometric representation of the invariant manifolds

near the equilibrium point. A local approximation of the dynamical equations for each mode

can be constructed via Eq. (8.6) by utilizing the series expansion for g1 shown in Eq. (8.7)

and replacing (x j, y j) with X j(u, v),Yj(u, v) for all j = 1, ..., n. This yields a single-degree-

of-freedom nonlinear oscillator equation which describes the dynamics of the system on an

invariant, two-dimensional subspace which is tangent to the linear normal mode eigenspace

at the equilibrium point. There are n such oscillators, one for each normal mode. It is noted,
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that in the case where the nonlinear functions g j in the equations of motion Eq. (8.1) are

polynomial functions of x and y, the series representation of Eq. (8.7) is not necessary, since

the quantities Ûx j and Ûy j will be polynomials in u and v by construction.

8.1.3 Transformation from nonlinear modal to physical coordinates

Next, a complete nonlinear modal matrix M can be constructed which depends on the

modal coordinates denoted as w. The 2n × 2n modal matrix M is constructed by concate-

nating the n 2n × 2 matrices of Eq. (8.10). Similarly, w is constructed by noting that

each mode will have its own (u, v) pair, which is labeled as (uk, vk) for k = 1, ..., n, i.e.,

w = [u1, v1, ..., uk, vk]
T . The complete transformation from modal coordinates w to physical

coordinates q can be written as

q =M(w)w =
{
M0 +M1(w) +M2(w)

}
w + ... (8.11)

where the matrices Mp are assembled from the matrices mp of Eq. (8.10) for p = 0, 1, 2.

It is noted that the coefficients ai, j and bi, j will be different for each mode, and an explicit

representation of Eq. (8.11) with respect to these coefficients would require an additional

index representing the each mode, i.e., ai, j,k and bi, j,k .

8.1.4 Transformation from physical to nonlinear modal coordinates

A nonlinear extension of the corresponding linear modal superposition is described in

this section, which of course is not strictly the same as its linear counterpart. Specifically,

it is a nonlinear coordinate transformation that allows for assembling a complete solution

from a sum of simpler ones. In general, the coupling between the nonlinear equations of

motion cannot be fully eliminated. Nevertheless, as shown in Sec. 8.2 the herein described

nonlinear transformation of the equations of motion leads to a relatively accurate description

of the system dynamics simply by ignoring the coupling terms and applying superposition of
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the resultant uncoupled nonlinear equations. Moreover, this approach reduces to its linear

counterpart when nonlinearities are not present or ignored.

In linear system, the eigenspaces are planar and the overall system response can be decom-

posed into modal components via linear projection onto these eigenspaces, or reassembled

by linear recombination of the modal responses. In the presence of nonlinearities, the modal

subspaces are curved in general and curvilinear coordinates need to be utilized for reflecting

the nature of these subspaces.

The aforementioned nonlinear modal superposition approach, involves a transformation

from physical coordinates to modal coordinates and a subsequent recombination of the modal

dynamics to the physical coordinates via q = M(w)w of Eq. (8.11). This process requires

an inversion of the transformation of Eq. (8.11). As described in [1], this inversion is much

simpler in the case where only cubic nonlinearities are present. The inversion is presented

here under this assumption and the interested reader is referred to Appendix C in [1] for a

detailed presentation of the general case.

The inversion process begins by setting M1(w) equal to zero and rewriting equation Eq.

(8.11) as

w =
{
M0 +M2(w)

}−1
q + ...

=
{
I +M−10 M2(w)

}−1
M−10 q + ...

=
{
I −M−10 M2(w)

}
M−10 q + ...

(8.12)

where I is the 2n×2n identity matrix. The right hand side of Eq. (8.12) involves both q and

w. This can be remedied by observing that M2(w) is quadratic in w and that the leading

order argument of M2 is simply M−10 q. Hence, w in the right hand side of Eq. (8.12) is

replaced byM−10 q and higher order terms are ignored. This yields the inverse transformation

w =
{
I −M−10 M2(M−10 q)

}
M−10 q + ... (8.13)

which is correct up to cubic terms in q.
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Next, the equations of motion are being transformed to a modal coordinate representa-

tion. Specifically, near the equilibrium q = 0, the equations of motion are written as

Ûq = A(q)q =
{
A0 +A1(q) +A2(q)

}
q + ... (8.14)

where A0q represents the linearized dynamics, A1(q)q the quadratic terms and A2(q)q the

cubic terms. Next, the time derivative of q is expressed as

Ûq =
∂M̄(w)
∂w

Ûw (8.15)

which is a direct consequence of Eq. (8.11) after defining

M̄(w) =M(w)w = q (8.16)

Substituting Eqs. (8.15) and (8.16) into Eq. (8.14) yields

∂M̄(w)
∂w

Ûw = A(M̄(w))M̄(w) (8.17)

and thus the equations of motion in terms of the modal coordinates can be expressed as

Ûw =

[
∂M̄(w)
∂w

]−1
A(M̄(w))M̄(w) (8.18)

Even though the modal equations in Eq. (8.18) are generally coupled, it is shown in Sec. 8.2

that in some cases, ignoring the coupling terms the nonlinear modal responses can be recom-

bined into a sufficiently accurate general motion. This is achieved by solving an initial value

problem. Specifically, let q0 be the initial conditions of the system in physical coordinates.

The inverse transformation of Eq. (8.13) is employed for determining the initial value vector

w0 in terms of modal coordinates, which corresponds to the coupled system of nonlinear
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modal oscillators of Eq. (8.18). In Sec. 8.2, the coupling terms are ignored yielding a set

of n “decoupled” nonlinear modal equations of motion which are individually solved using

numerical integration. The results are compared with numerical integration results of the

original equations of motion in physical coordinates, demonstrating very good agreement in

the considered examples.

8.2 Examples

8.2.1 Linear oscillator with damping

The first example considered in this section is a 2-dimensional linear oscillator described

by the following equations of motion.

Ûx1 = y1, Ûy1 = g1(x1, y1; x2, y2) = −(1 + k)x1 + k x2 − cy1 + cy2

Ûx2 = y2, Ûy2 = g2(x1, y1; x2, y2) = k x1 − (1 + k)x2 + cy1 − 2cy2

(8.19a)

(8.19b)

where the parameter values are k = 1 and c = 0.3. The expansions of Eq. (8.2) are utilized

and truncated to up to 3-rd order terms and the procedure outlined in Sec. 8.1.1 yields a

system of 18 polynomial equations in 18 unknowns, namely the 9 coefficients a1, ..., a9 of the

expansion of X2(u, v) and the 9 coefficients b1, ..., b9 for the expansion of Y2(u, v) shown in

Eq. (8.2). This system of polynomial equations has 2 real solutions, one for each mode.

The Gröbner basis approach outlined in Chapter 6 is utilized next for the solution of the

aforementioned polynomial system. The corresponding Gröbner basis, shown in Eq. (C.1) in

Appendix C, has 24 elements and the basis of standard monomials B, shown in Eq. (8.20),

has only 6 elements, i.e., the polynomial system of equations has 6 solutions (2 real and 4

complex).

B =
[
1 a1 a2 b1 b2 b22

]
(8.20)

The two solutions of the polynomial system of equations corresponding to the two normal
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modes are given in Tab. 8.1. It can be seen that only the coefficients of the linear parts of

the expansions, i.e., a1, a2, b1 and b2 are nonzero.

Table 8.1: Solutions for the linear system

Mode 1 Mode 2 Mode 1 Mode 2
a1 -1.1056 0.9471 b1 0.4599 0.1401
a2 -0.1550 -0.1386 b2 -0.9891 0.9676
a3 0 0 b3 0 0
a4 0 0 b4 0 0
a5 0 0 b5 0 0
a6 0 0 b6 0 0
a7 0 0 b7 0 0
a8 0 0 b8 0 0
a9 0 0 b9 0 0

The shapes of the invariant manifolds X2(u, v) = x2 and Y2(u, v) = Ûx2 within the phase

space (u, v) = (x1, Ûx1) is shown in Fig. 8.1. As expected, these manifolds corresponding to

the linear system of Eq. (8.19) have planar shapes. Moreover, the linear equations of motion

(a) X2(x1, Ûx1) - Mode 1 (b) X2(x1, Ûx1) - Mode 2

(c) Y2(x1, Ûx1) - Mode 1 (d) Y2(x1, Ûx1) - Mode 2

Figure 8.1: Invariant manifolds of the linear system.
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in Eq. (8.19) are projected onto the linear modal subspaces which leads to the uncoupled

system of modal equations of motion as

mode 1: Üu1 + 0.7517 Ûu1 + 2.9676u1 = 0

mode 2: Üu2 + 0.1483 Ûu2 + 1.0109u2 = 0

(8.21a)

(8.21b)

Next, assuming a vector of initial conditions q0 = (x1, y1, x2, y2) = (0, 0, 2, 0), the original

equations of motion Eq. (8.19) are solved numerically. Moreover, q0 is transformed to modal

coordinates using Eq.(8.13) as w0 = (u1, v1, u2, v2) = (−0.97309,−0.15905, 0.97309, 0.15905)

and the uncoupled modal equations of motion Eq. (8.21) are solved separately for each

mode and subsequently recombined into a general motion in terms of physical coordinates.

The results of the two solution approaches are compared in Fig. 8.2 where perfect agreement

is observed. This is due to the linear form of the original equations of motion which allows

for perfect decoupling and modal superposition.

8.2.2 Nonlinear oscillator with cubic nonlinearity

The second example of this section is a 2-dimensional nonlinear system with cubic non-

linearity described by the following equations of motion.

Ûx1 = y1, Ûy1 = g1(x1, y1; x2, y2) = −(1 + k)x1 + k x2 − γx31 − cy1 + cy2

Ûx2 = y2, Ûy2 = g2(x1, y1; x2, y2) = k x1 − (1 + k)x2 + cy1 − 2cy2

(8.22a)

(8.22b)

where the parameter values are k = 1, c = 0.3 and γ = 0.5. The expansions of Eq. (8.2) are

utilized and truncated to up to 3-rd order terms and the procedure outlined in Sec. 8.1.1

yields a system of 18 polynomial equations in 18 unknowns, namely the 9 coefficients a1, ..., a9

of the expansion of X2(u, v) and the 9 coefficients b1, ..., b9 for the expansion of Y2(u, v) shown

in Eq. (8.2). This system of polynomial equations again has 2 real solutions, one for each

mode.
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Figure 8.2: Numerical solutions of original and modal equations of motion. Solid line:
original equations of motion. Dashed line: linear modal equations of motion.

The Gröbner basis approach outlined in Chapter 6 is utilized next for the solution of the

aforementioned polynomial system. In this case, the Gröbner basis has 28 elements which

have a much more complicated form compared to the elements of the Gröbner basis in the

linear system case. The basis of standard monomials B, shown in Eq. (8.23), again has only

6 elements, i.e., the polynomial system of equations has 6 solutions (2 real and 4 complex).

B =
[
1 b2 b6 b7 b8 b9

]
(8.23)

The two solutions of the polynomial system of equations corresponding to the two normal

modes are given in Tab. 8.2.

The shapes of the invariant manifolds X2(u, v) = x2 and Y2(u, v) = Ûx2 within the phase
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Table 8.2: Solutions for the system with cubic nonlinearity

Mode 1 Mode 2 Mode 1 Mode 2
a1 -1.1056 0.9471 b1 0.4599 0.1401
a2 -0.1550 -0.1386 b2 -0.9891 0.9676
a3 0 0 b3 0 0
a4 0 0 b4 0 0
a5 0 0 b5 0 0
a6 0.0327 0.1554 b6 0.2088 0.0531
a7 -0.0492 -0.0074 b7 0.1991 0.0244
a8 -0.0110 0.2191 b8 0.0821 0.0768
a9 -0.0187 -0.0627 b9 0.0324 0.2455

space (u, v) = (x1, Ûx1) is shown in Fig. 8.3. In this case, the manifolds corresponding to

the nonlinear system of Eq. (8.22) have curved shapes and they are tangent to their linear

counterparts at the equilibrium point, i.e., the point (0, 0) in this example. Moreover, the

(a) X2(x1, Ûx1) - Mode 1 (b) X2(x1, Ûx1) - Mode 2

(c) Y2(x1, Ûx1) - Mode 1 (d) Y2(x1, Ûx1) - Mode 2

Figure 8.3: Invariant manifolds of the nonlinear system with cubic nonlinearity.

nonlinear equations of motion in Eq. (8.22) are projected onto the nonlinear modal subspaces

which, after ignoring the coupling terms, leads to the “decoupled” system of modal equations
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of motion

mode 1: Üu1 + 0.7517 Ûu1 + 2.9676u1 + 0.4046u31

− 0.0105u21 Ûu1 − 0.0136u1 Ûu21 + 0.0089 Ûu31 = 0

mode 2: Üu2 + 0.1483 Ûu2 + 1.0109u2 + 0.3287u32

+ 0.0002u22 Ûu2 − 0.2421u2 Ûu22 − 0.0109 Ûu32 = 0

(8.24a)

(8.24b)

For the same nonlinear system described in Eq. (8.22), the expansions of Eq. (8.2) are

utilized but truncated to up to 5-th order terms this time. The procedure outlined in Sec.

8.1.1 yields a system of 40 polynomial equations in 40 unknowns, where the coefficients

a10, ..., a20 are included in the expansion of X2(u, v) and the coefficients b10, ..., b20 in the

expansion of Y2(u, v). This system of polynomial equations again has 2 real solutions, one for

each mode. This polynomial system is solved using the Gröbner basis approach outlined in

Chapter 6. The values of the coefficients a1, ..., a9 and b1, ..., b9 are the same with the ones in

Tab. 8.2, whereas the values of the additional 4-th and 5-th order coefficients are shown in

Tab. 8.3. It is seen that the 5-th order coefficients are nonzero indicating that the accuracy

of the invariant manifolds shown in Fig. 8.3 increases with increasing expansion order even

beyond the order of the nonlinearity present in the equations of motion. Projection onto the

Table 8.3: Additional 4-th and 5-th order coefficients for the system with cubic nonlinearity

Mode 1 Mode 2 Mode 1 Mode 2
a10 0 0 b10 0 0
a11 0 0 b11 0 0
a12 0 0 b12 0 0
a13 0 0 b13 0 0
a14 0 0 b14 0 0
a15 0.0803 0.1144 b15 -0.1685 0.1180
a16 0.1157 -0.1155 b16 -0.2342 0.3684
a17 0.1041 -0.5317 b17 -0.2022 0.0329
a18 0.0783 0.0906 b18 -0.1015 -0.7289
a19 0.0190 0.0162 b19 -0.0266 0.0937
a20 0.0080 -0.0584 b20 -0.0076 0.0471

nonlinear modal subspaces approximated by the 5-th order expansion, and after ignoring the

coupling terms, leads to the “decoupled” system of modal equations of motion similar the

one in Eq. (8.24) but terms of up to 5-th order in this case.
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Next, assuming a vector of initial conditions q0 = (0, 0, 2, 0), the original equations of

motion Eq. (8.22) are solved numerically. Moreover, q0 is transformed to nonlinear modal

coordinates using Eq.(8.13) yielding w0 = (−0.91743,−0.22736, 0.91743, 0.22736) and the

“decoupled” modal equations of motion Eq. (8.24) are solved separately for each mode and

subsequently recombined into a general motion in terms of physical coordinates. The same

procedure is followed again twice. First, the original equations of motion and the vector of

initial conditions are projected onto the linear modal subspaces, yielding the “linear” modal

equations of motion

mode 1: Üu1 + 0.7517 Ûu1 + 2.9676u1 + 0.5u31 = 0

mode 2: Üu2 + 0.1483 Ûu2 + 1.0109u2 + 0.5u32 = 0

(8.25a)

(8.25b)

with initial conditions w0 = (−0.97309,−0.15905, 0.97309, 0.15905). Second, the original

equations of motion and the vector of initial conditions are projected onto the nonlinear

subspaces approximated by the 5-th order expansion. The results of the four solution ap-

proaches are compared in Fig. 8.4 where it can be observed that the solution of the nonlinear

modal equations Eq. (8.24) captures the solution of the original equations of motion rela-

tively accurately. The discrepancy between these two solutions is attributed to the fact that

coupling terms have been ignored in Eq. (8.24). On the contrary, the solution of the “linear”

modal equations Eq. (8.25) diverges from the solution of the original equations significantly.

Finally, the solution of the modal equations of motion obtained after projection onto the

nonlinear modal subspaces approximated by the 5-th order expansions yields an obvious

improvement over the solution where only a 3-rd order expansion is used.
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Figure 8.4: Numerical solutions of original and modal equations of motion. Thick solid
line: original equations of motion. Thick dashed line: nonlinear modal equations of
motion approximated to 5-th order. Thin dashed line: nonlinear modal equations of
motion approximated to 3-rd order. Thin dashed-dotted line: linear modal equations of
motion.

8.2.3 Nonlinear oscillator with cubic and quintic nonlinearities

The third example of this section is a 2-dimensional nonlinear system with cubic and

quintic nonlinearities described by the following equations of motion.

Ûx1 = y1, Ûy1 = g1(x1, y1; x2, y2) = −(1 + k)x1 + k x2 − γx31 − δx51 − cy1 + cy2

Ûx2 = y2, Ûy2 = g2(x1, y1; x2, y2) = k x1 − (1 + k)x2 + cy1 − 2cy2

(8.26a)

(8.26b)

where the parameter values are k = 1, c = 0.3, γ = 0.5 and δ = 1.5. The expansions of Eq.

(8.2) are utilized and truncated to up to 5-th order terms and the procedure outlined in Sec.
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8.1.1 yields a system of 40 polynomial equations in 40 unknowns, namely the 20 coefficients

a1, ..., a20 of the expansion of X2(u, v) and the 20 coefficients b1, ..., b20 for the expansion of

Y2(u, v) shown in Eq. (8.2). This system of polynomial equations again has 2 real solutions,

one for each mode.

The Gröbner basis approach outlined in Chapter 6 is utilized next for the solution of the

aforementioned polynomial system. In this case, the Gröbner basis has 50 elements and the

basis of standard monomials B, shown in Eq. (8.27), again has only 6 elements, i.e., the

polynomial system of equations has 6 solutions (2 real and 4 complex).

B =
[
1 b16 b17 b18 b19 b20

]
(8.27)

The two solutions of the polynomial system of equations corresponding to the two normal

modes are given in Tab. 8.4. It is noted, that for the nonlinear system of this example, a

second approach has been utilized, where the expansions of Eq. (8.2) are truncated after

the 3-rd order terms, even though the nonlinear system includes a quintic term as well. The

results, i.e., the Gröbner basis, the basis of standard monomials and the solutions of the

polynomial system of equations, were identical to the previous example.

Table 8.4: Solutions for the system with cubic and quintic nonlinearities

Mode 1 Mode 2 Mode 1 Mode 2
a1 -1.1056 0.9471 b1 0.4599 0.1401
a2 -0.1550 -0.1386 b2 -0.9891 0.9676
a3 0 0 b3 0 0
a4 0 0 b4 0 0
a5 0 0 b5 0 0
a6 0.0327 0.1554 b6 0.2088 0.0531
a7 -0.0492 -0.0074 b7 0.1991 0.0244
a8 -0.0110 0.2191 b8 0.0821 0.0768
a9 -0.0187 -0.0627 b9 0.0324 0.2455
a10 0 0 b10 0 0
a11 0 0 b11 0 0
a12 0 0 b12 0 0
a13 0 0 b13 0 0
a14 0 0 b14 0 0
a15 0.0095 0.4282 b15 0.4926 -0.0379
a16 -0.0892 0.1884 b16 0.5264 -0.2200
a17 -0.0698 1.0743 b17 0.3492 0.0771
a18 -0.0657 0.0876 b18 0.1776 0.6983
a19 -0.0200 0.6308 b19 0.0536 0.2076
a20 -0.0084 -0.1075 b20 0.0128 0.6944
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The shapes of the invariant manifolds X2(u, v) = x2 and Y2(u, v) = Ûx2 within the phase

space (u, v) = (x1, Ûx1) is shown in Fig. 8.3. In this case, the manifolds corresponding to

the nonlinear system of Eq. (8.22) have curved shapes and they are tangent to their linear

counterparts at the equilibrium point, i.e., the point (0, 0) in this example. Moreover, the

(a) X2(x1, Ûx1) - Mode 1 (b) X2(x1, Ûx1) - Mode 2

(c) Y2(x1, Ûx1) - Mode 1 (d) Y2(x1, Ûx1) - Mode 2

Figure 8.5: Invariant manifolds of the nonlinear system with cubic and quintic nonlinearities.

nonlinear equations of motion in Eq. (8.26) are projected onto the nonlinear modal subspaces

approximated to 5-th order (see Eq. (8.8)) which, after ignoring the coupling terms, leads
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to the “decoupled” system of modal equations of motion

mode 1: Üu1 + 0.7517 Ûu1 + 2.9676u1 + 0.4046u31 − 0.0105u21 Ûu1

− 0.0136u1 Ûu12 + 0.0089 Ûu13 + 1.3428u51 − 0.0687u41 Ûu1

− 0.0350u31 Ûu1
2 + 0.0124u21 Ûu1

3 + 0.0039u1 Ûu14 + 0.0046 Ûu15 = 0

mode 2: Üu2 + 0.1483 Ûu2 + 1.0109u2 + 0.3287u32 + 0.0001u22 Ûu2

− 0.2421u2 Ûu22 − 0.0109 Ûu23 + 1.0832u52 − 0.1224u42 Ûu2

− 1.0975u32 Ûu2
2 − 0.2971u22 Ûu2

3 − 0.6931u2 Ûu24 − 0.1008 Ûu25 = 0

(8.28a)

(8.28b)

Next, assuming a vector of initial conditions q0 = (0, 0, 2, 0), the original equations of mo-

tion Eq. (8.26) are solved numerically. Moreover, q0 is transformed to nonlinear modal

coordinates using Eq.(8.13) yielding w0 = (−0.80372,−0.33127, 0.80372, 0.33127) and the

“decoupled” modal equations of motion Eq. (8.28) are solved separately for each mode and

subsequently recombined into a general motion in terms of physical coordinates. The same

procedure is followed again twice. First, the original equations of motion and the vector of

initial conditions are projected onto the nonlinear modal subspaces approximated to 3-rd or-

der (see Eq. (8.8)) which, after ignoring the coupling terms, leads to the “decoupled” system

of modal equations of motion

mode 1: Üu1 + 0.7517 Ûu1 + 2.9676u1 + 0.4046u31

− 0.0105u21 Ûu1 − 0.0136u1 Ûu21 + 0.0089 Ûu31 + 1.5u51 = 0

mode 2: Üu2 + 0.1483 Ûu2 + 1.0109u2 + 0.3287u32

+ 0.0002u22 Ûu2 − 0.2421u2 Ûu22 − 0.0109 Ûu32 + 1.5u52 = 0

(8.29a)

(8.29b)

(8.29c)

(8.29d)

with initial conditions w0 = (−0.97309,−0.15905, 0.97309, 0.15905). Second, the original

equations of motion and the vector of initial conditions are projected onto the linear modal
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subspaces, yielding the “linear” modal equations of motion

mode 1: Üu1 + 0.7517 Ûu1 + 2.9676u1 + 0.5u31 + 0.5u31 + 1.5u51 = 0

mode 2: Üu2 + 0.1483 Ûu2 + 1.0109u2 + 0.5u32 + 0.5u32 + 1.5u52 = 0

(8.30a)

(8.30b)

with initial conditions w0 = (−0.97309,−0.15905, 0.97309, 0.15905).
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Figure 8.6: Numerical solutions of original and modal equations of motion. Thick solid
line: original equations of motion. Thick dashed line: nonlinear modal equations of
motion approximated to 5-th order. Thin dashed line: nonlinear modal equations of
motion approximated to 3-rd order. Thin dashed-dotted line: linear modal equations of
motion.

The results of the four solution approaches are compared in Fig. 8.6 where it can be

observed that the solution of the nonlinear modal equations approximated to 5-th order, i.e.,

Eq. (8.28), captures the solution of the original equations of motion relatively accurately.
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The discrepancy between these two solutions is attributed to the fact that coupling terms

have been ignored in Eq. (8.28). On the contrary, the solution of the nonlinear modal

equations approximated to 3-rd order, i.e., Eq. (8.29), as well as, the solution of the “lin-

ear” modal equations, i.e., Eq. (8.30) diverge from the solution of the original equations

significantly.

8.2.4 3-Dimensional nonlinear oscillator with cubic nonlinearity

The first example considered in this section is a 3-dimensional linear oscillator described

by the following equations of motion.

Ûx1 = y1, Ûy1 = g1(x1, y1; x2, y2; x3, y3) = −(1 + k)x1 + k x2 − γx31 − cy1 + cy2

Ûx2 = y2, Ûy2 = g2(x1, y1; x2, y2; x3, y3) = k x1 − (1 + k)x2 + k x3 + cy1 − 2cy2 + cy3

Ûx3 = y3, Ûy3 = g3(x1, y1; x2, y2; x3, y3) = k x2 − (1 + k)x3 + cy2 − 2cy3

(8.31a)

(8.31b)

(8.31c)

where the parameter values are k = 1 and c = 0.3. The expansions of Eq. (8.2) are utilized

and truncated to up to 3-rd order terms and the procedure outlined in Sec. 8.1.1 yields a

system of 36 polynomial equations in 36 unknowns, namely the 9 coefficients a1,2, ..., a9,2 of

the expansion of X2(u, v), the 9 coefficients b1,2, ..., b9,2 for the expansion of Y2(u, v), the 9

coefficients a1,3, ..., a9,3 of the expansion of X3(u, v) and the 9 coefficients b1,3, ..., b9,3 for the

expansion of Y3(u, v) shown in Eq. (8.2). This system of polynomial equations has 3 real

solutions, one for each mode.

The Gröbner basis approach outlined in Chapter 6 is utilized next for the solution of

the aforementioned polynomial system. In this case, the Gröbner basis has 127 elements.

The basis of standard monomials B, shown in Eq. (8.32), has only 15 elements, i.e., the

polynomial system of equations has 15 solutions (3 real and 12 complex).

B = [1, a8,3, a9,3, b1,2, b2,2, b6,2, b7,2, b8,2, b9,2, b1,3, b2,3, b6,3, b7,3, b8,3, b9,3] (8.32)
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The two solutions of the polynomial system of equations corresponding to the three normal

modes are given in Tab. 8.5.

Table 8.5: Solutions for the system with cubic nonlinearity corresponding to the 3-D non-
linear oscillator

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3
a1,2 -1.6209 1.3697 -0.0822 b1,2 0.7883 0.1289 0.2820
a2,2 -0.2329 -0.2179 -0.1412 b2,2 -1.3990 1.3916 -0.0191
a3,2 0 0 0 b3,2 0 0 0
a4,2 0 0 0 b4,2 0 0 0
a5,2 0 0 0 b5,2 0 0 0
a6,2 0.0139 0.2144 0.1381 b6,2 0.3017 0.0554 0.0197
a7,2 -0.0619 0.0054 0.0153 b7,2 0.2502 -0.2379 0.1555
a8,2 -0.0225 0.7563 0.0609 b8,2 0.1017 -0.0632 0.0448
a9,2 -0.0182 -0.1344 -0.0132 b9,2 0.0314 0.7754 0.0772
a1,3 1.1912 0.9570 -0.9663 b1,3 -0.7507 0.1213 0.0309
a2,3 0.2218 -0.2051 -0.0155 b2,3 0.9799 0.9776 -0.9594
a3,3 0 0 0 b3,3 0 0 0
a4,3 0 0 0 b4,3 0 0 0
a5,3 0 0 0 b5,3 0 0 0
a6,3 -0.0123 0.2226 -0.0722 b6,3 -0.2404 0.0196 0.1885
a7,3 0.0451 0.0600 -0.0916 b7,3 -0.1953 -0.0623 0.0832
a8,3 0.0175 0.6235 -0.0650 b8,3 -0.0831 0.1262 0.0685
a9,3 0.0140 -0.1592 -0.0325 b9,3 -0.0244 0.6513 -0.0216
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(a) X2(x1, Ûx1) - Mode 1 (b) X2(x1, Ûx1) - Mode 2 (c) X2(x1, Ûx1) - Mode 3

(d) Y2(x1, Ûx1) - Mode 1 (e) Y2(x1, Ûx1) - Mode 2 (f) Y2(x1, Ûx1) - Mode 3

(g) X3(x1, Ûx1) - Mode 1 (h) X3(x1, Ûx1) - Mode 2 (i) X3(x1, Ûx1) - Mode 3

(j) Y3(x1, Ûx1) - Mode 1 (k) Y3(x1, Ûx1) - Mode 2 (l) Y3(x1, Ûx1) - Mode 3

Figure 8.7: Invariant manifolds of the 3-D nonlinear system with cubic nonlinearity.

The shapes of the invariant manifolds X2(u, v) = x2, Y2(u, v) = Ûx2, X3(u, v) = x3 and

Y3(u, v) = Ûx3 within the phase space (u, v) = (x1, Ûx1) is shown in Fig. 8.7 for each of the

three normal modes. In this case, the manifolds corresponding to the nonlinear system of

Eq. (8.31) have curved shapes and they are tangent to their linear counterparts at the
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equilibrium point, i.e., the point (0, 0) in this example.
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Conclusions

The first part of this thesis is devoted to presenting important developments of the Wiener

path integral (WPI) technique. Originated from theoretical physics, path integral techniques

have recently attracted attention in the engineering mechanics community, primarily due to

their unique characteristics in treating uncertainty propagation problems related to nonlin-

ear dynamical systems under random excitation. The adaptation of path integration con-

cepts in engineering dynamics problems, has been significantly aided by the contributions

of Kougioumtzoglou and co-workers, focusing primarily on variational approaches that lead

to the development of the WPI technique presented in Chapter 2. Following the initial re-

search efforts in the area of engineering mechanics (e.g., [17]), attention was directed towards

improving the WPI technique with respect to three distinct aspects; namely, numerical effi-

ciency, accuracy and versatility in treating a wider range of engineering dynamics problems.

In this thesis, significant improvements in the efficiency and versatility of the WPI technique

are presented.

Specifically, in Chapter 3, a novel WPI variational formulation with free boundaries is

developed for determining the stochastic response of high-dimensional nonlinear dynamical

systems in a computationally efficient manner. In this regard, the determination of the

complete joint response PDF, required by the standard WPI implementation, has been

circumvented herein by utilizing a novel variational formulation involving free boundaries.

The developed technique is capable of determining any lower-dimensional joint response

PDF directly by properly selecting a combination of fixed and free boundaries at the end

time point. Therefore, if knowledge of few only marginal or lower-dimensional joint response

PDFs corresponding to a high-dimensional system is of interest, the technique constitutes a

powerful tool that appears to be orders of magnitude more efficient than a standard MCS
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scheme.

Next, in Chapter 4, a methodology based on the WPI is developed for determining the

joint response transition PDF of a broad class of nonlinear dynamical systems with singular

diffusion matrices. In this regard, the WPI technique has been extended herein to account for

systems that can be represented, generally, as an underdetermined system of SDEs coupled

with a set of ODEs. Indicative examples include (but are not limited to) systems with only

some of the DOFs excited, hysteresis modeling via additional auxiliary state equations, and

energy harvesters with coupled electro-mechanical equations. Next, interpreting the set of

ODEs as constraint equations leads to a constrained variational problem to be solved for the

most probable path, and thus, the joint response PDF is determined. To this aim, a direct

functional minimization formulation has been applied, coupled with a standard Rayleigh-

Ritz solution approach. This has reduced the constrained variational problem to an ordinary

constrained optimization problem. The reliability of the technique has been demonstrated

by considering diverse numerical examples, including various 2-DOF oscillators with only

one DOF excited. Interestingly, it has been shown that the special case of a linear oscillator

under Kanai-Tajimi earthquake excitation, which yields a singular diffusion matrix, can also

be cast in the aforementioned form and treated under the same framework. Further, the

SDOF Bouc-Wen nonlinear hysteretic oscillator has also been considered. Comparisons with

pertinent MCS data have demonstrated a relatively high degree of accuracy. Moreover,

in Chapter 5, this methodology is applied for the stochastic response determination and

reliability-based design optimization of a class of energy harvesters exhibiting asymmetric

nonlinearities and endowed with fractional derivative elements. It is shown, that the WPI

technique provides an efficient computational framework for designing such devices, and

the results verify several theoretically established facts reported in the vibratory energy

harvesting literature.

The second part of this thesis, serves as a demonstration of the potential merit of recently

developed computational algebraic geometry techniques in a wide variety of problems in en-
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gineering mechanics. Computational methods that exploit results from algebraic geometry

have flourished in recent years and provide powerful tools for the analysis of mathematical

problems via computational algebra frameworks. In Chapter 6, one such technique is pre-

sented, which relies on the concept of a Gröbner basis to yield all solutions of an algebraic

system of polynomial equations. Even though this technique is confined to treating polyno-

mial systems of relatively low dimensionality, it has been proven very useful in treating two

challenging problems related to engineering mechanics.

First, it is shown in Chapter 7, that the convexity of the objective function involved in

the solution of the WPI can be demonstrated with the aid of Gröbner bases. Specifically,

the Rayleigh–Ritz solution approach to the WPI leads to an optimization problem that re-

quires the minimization of a multivariate polynomial. Unless the corresponding objective

function is convex, there is no guarantee that a numerical optimization scheme will lead to

the global optimum and not to a possibly local optimum. However, considering first order

optimality conditions, leads to a system of polynomial equations which is amenable to the

solution technique described in Chapter 6. In this regard, all solutions of the algebraic poly-

nomial system are obtained and it is shown that at least for the herein considered nonlinear

oscillators, there is only one solution to the associated polynomial system. Therefore, the

objective function corresponding to the original minimization problem is convex, and thus,

any appropriate numerical scheme is guaranteed to converge to the global optimum.

Second, in Chapter 8, the Gröbner basis approach is applied to the calculation of nonlinear

normal modes (NNMs) of a class of nonlinear dynamical systems. NNMs are the nonlinear

counterparts of the well known linear normal modes of linear systems and their calculation

is a particularly tedious task. For systems with polynomial nonlinearities, the calculation of

the NNMs typically resorts to obtaining all solutions of an algebraic system of polynomial

equations. In Chapter 8, the Shaw–Pierre formulation for approximating NNMs is adopted

and the related polynomial system of equations is solved with the aid of the Gröbner basis

approach. As shown in Sec. 8.2, this solution treatment allows for considering higher order
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terms in the associated Taylor expansion, which improves the accuracy of the corresponding

approximation. Moreover, in order to reduce the associated computational cost, information

about the linear part of the Taylor expansion is utilized in obtaining the remaining nonlinear

terms, which renders the calculation of the NNMs of a 3-DOF dynamical system possible. To

the knowledge of the author, this is achieved for the first time without resorting to numerical

continuation schemes.
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Appendix A: Derivation of Euler-Lagrange equations and

free-boundary conditions

Some basic variational calculus concepts are reviewed for completeness.

A.1 First-order system of SDEs

The most probable path ā(t) corresponding to (2.1) is the function that minimizes the

functional

S =
∫ t f

t0
L (a, Ûa) dt (A.1)

where the Lagrangian L is given in (2.10). Such a function is typically referred to as an

extremal of functional S. According to the fundamental theorem of calculus of variations

[109], an extremal can be evaluated by utilizing the necessary condition that the first variation

of the functional vanishes, i.e.

δS = 0 (A.2)

in conjunction with appropriate boundary conditions. Assuming that the initial and final

times t0 and t f are fixed, the first variation δS can be written as

δS =
∫ t f

t0
[L (a + δa, Ûa + δ Ûa) − L (a, Ûa)] dt (A.3)

where δa and δ Ûa are the variations of functions a and Ûa, respectively. By employing Taylor’s

formula, the first term of the integrand in (A.3) can be written as

L (a + δa, Ûa + δ Ûa) = L (a, Ûa) +
n∑

i=1

∂

∂ai
L (a, Ûa) δai +

n∑
i=1

∂

∂ Ûai
L (a, Ûa) δ Ûai + R (A.4)
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where R is an infinitesimal of higher order than δa and δ Ûa. Next, combining equations (A.2),

(A.3) and (A.4), ignoring R and defining Lai =
∂
∂ai
L (a, Ûa) and L Ûai =

∂
∂ Ûai
L (a, Ûa), the first

variation of (A.3) takes the form

δS =
∫ t f

t0

n∑
i=1

[
Laiδai + L Ûaiδ Ûai

]
dt

=

n∑
i=1

∫ t f

t0
Laiδaidt +

∫ t f

t0
L Ûaiδ Ûaidt (A.5)

Applying integration by parts on the second integral within the sum of (A.5) yields

∫ t f

t0
L Ûaiδ Ûaidt =

[
L Ûaiδai

] t f
t0
−

∫ t f

t0

d

dt
L Ûaiδaidt (A.6)

Substituting (A.6) into (A.5), the necessary condition (i.e., (A.2)) for the minimization of

functional S becomes

δS =
n∑

i=1

[
L Ûaiδai

] t f
t0
+

n∑
i=1

∫ t f

t0

(
Lai −

d

dt
L Ûai

)
δaidt = 0 (A.7)

A.1.1 Fixed boundaries

Next, considering fixed initial and final conditions of the form

ai(t0) = ai,0 and ai(t f ) = ai, f for all i = 1, ..., n (A.8)

all variations δai vanish at the boundaries, i.e.,

[δai]t=t0 = [δai]t=t f = 0 for all i = 1, ..., n (A.9)
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and thus, (A.7) becomes
n∑

i=1

∫ t f

t0

(
Lai −

d

dt
L Ûai

)
δaidt = 0 (A.10)

Utilizing the fundamental lemma of calculus of variations [111], leads to the well known Euler-

Lagrange (E-L) equations of (2.15) which is a system of n coupled second-order ordinary

differential equations (ODE) that can be solved together with the 2n boundary conditions

of (2.16) for the determination of the most probable path ā(t).

A.1.2 Free boundaries

The problem of determining the most probable path ã(t) is considered next, in which

some of the endpoint boundaries are considered free. Thus, it is assumed that the initial

conditions are fixed and that only a subset of the endpoint boundaries are fixed at t = t f ,

i.e.,

ai(t0) = ai,0

ai(t f ) = ai, f if i ∈ U

 i = 1, ..., n
(A.11a)

(A.11b)

whereas the rest ai(t f ) for which i < U are considered free. It is noted that the set U, that

determines which endpoint boundaries are fixed, is an arbitrary subset U ⊆ {1, ..., n}.

In this case, the variations at the boundaries take the form

[δai]t=t0 = 0
[δai]t=t f = 0

[δai]t=t f = δai, f

if i ∈ U

otherwise


i = 1, ..., n

(A.12a)

(A.12b)

Note that ã(t) is also an extremal with respect to the more restricted class of functions a(t)

that have their boundaries fixed. Consequently, ã(t) satisfies the E-L equation (2.15). In

this regard, the second sum in (A.7) vanishes and taking (A.12) into account, (A.7) reduces
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to ∑
i<U

[
L Ûaiδai

]
t=t f
=

∑
i<U

[
L Ûai

]
t=t f

δai, f = 0 (A.13)

Since the variations δai, f are arbitrary, (A.13) leads to the additional boundary conditions[
L Ûai

]
t=t f

for all i < U. Overall, the most probable path ã(t) can be determined by solving the

system of the n E-L equations in (2.15) together with the 2n modified boundary conditions

of (3.2); see also [109, 111] for a broader perspective.

A.2 Higher-order system of SDEs

In this section, a generalization of the herein developed methodology is presented, which

accounts for higher-order systems of the form of (3.4). The most probable path x̄(t) corre-

sponding to (3.4) is the function that minimizes the functional

S =
∫ t f

t0
L

(
x, ..., x(m)

)
dt (A.14)

where L
(
x, ..., x(m)

)
is shown in (3.5).

Similarly as in the first-order case, x̄(t) can be determined by considering the first-order

extremality condition of (A.2). In the case of higher-order SDEs considered in this section,

assuming that the initial and final times t0 and t f are fixed, the first variation δS takes the

form

δS =
∫ t f

t0

[
L

(
x + δx, ..., x(m) + δx(m)

)
− L

(
x, ..., x(m)

)]
dt (A.15)

where δx, ..., δx(m−1) and δx(m) are the variations of functions x, ..., x(m−1) and x(m), respec-

tively. By employing Taylor’s formula, the first term of the integrand in (A.15) can be
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written as

L

(
x + δx, ..., x(m) + δx(m)

)
=

L

(
x, ..., x(m)

)
+

n∑
i=1

∂

∂xi
L

(
x, ..., x(m)

)
δxi +

n∑
i=1

∂

∂ Ûxi
L

(
x, ..., x(m)

)
δ Ûxi + ...

+

n∑
i=1

∂

∂x(m)i

L

(
x, ..., x(m)

)
δx(m)i + R

= L
(
x, ..., x(m)

)
+

m∑
k=0

n∑
i=1

∂

∂x(k)i

L

(
x, ..., x(m)

)
δx(k)i + R (A.16)

where R is an infinitesimal of higher order than δx, ..., δx(m−1) and δx(m). Next, combining

equations (A.2), (A.15) and (A.16), ignoring R and defining Lx(k)i

= ∂

∂x(k)i

L

(
x, ..., x(m)

)
, the

first variation of (A.15) takes the form

δS =
m∑

k=0

n∑
i=1

∫ t f

t0
Lx(k)i

δx(k)i dt (A.17)

Applying integration by parts once on the terms of (A.17) corresponding to k = 1, twice on

the terms corresponding to k = 2, etc. yields∫ t f

t0
L Ûxiδ Ûxidt =

[
L Ûxiδxi

] t f
t0
−

∫ t f

t0

d

dt
L Ûxiδxidt∫ t f

t0
L Üxiδ Üxidt =

[
L Üxiδ Ûxi

] t f
t0
−

[
d

dt
L Üxiδxi

] t f

t0

+

∫ t f

t0

d2

dt2
L Üxiδxidt

...∫ t f

t0
Lx(m)i

δx(m)i dt =
m−1∑
k=0

(−1)k
[

dm−k−1

dtm−k−1Lx(m)i

δx(k)i

] t f

t0

+ (−1)m
∫ t f

t0

dm

dtmLx(m)i

δxidt

(A.18)

Substituting (A.18) into (A.17) and gathering terms of the same order k in variations

169



δx(k)i , the necessary condition ((A.2)) for the minimization of functional S becomes

δS =
n∑

i=1

{ [(
m−1∑
k=0

(−1)k
dk

dtkLx(k+1)i

)
δxi

] t f

t0

+

[(
m−2∑
k=0

(−1)k
dk

dtkLx(k+2)i

)
δ Ûxi

] t f

t0

+ ...

+
[
Lx(m)i

δx(m−1)i

] t f

t0
+

∫ t f

t0

(
m∑

k=0

(−1)k
dk

dtkLx(k)i

)
δxidt

}
=

n∑
i=1

{
m−1∑
l=0

[(
m−l−1∑

k=0

(−1)k
dk

dtkLx(k+l+1)i

)
δx(l)i

] t f

t0

}
+

n∑
i=1

∫ t f

t0

(
m∑

k=0

(−1)k
dk

dtkLx(k)i

)
δxidt = 0

(A.19)

A.2.1 Fixed boundaries

Next, considering fixed initial and final conditions of the form

x(k)i (t0) = x(k)i,0 and x(k)i (t f ) = x(k)i, f for all i = 1, ..., n and k = 0, ...,m − 1 (A.20)

all variations δx(k)i vanish at the boundaries, i.e.,

[
δx(k)i

]
t=t0
=

[
δx(k)i

]
t=t f
= 0 for all i = 1, ..., n and k = 0, ...,m − 1 (A.21)

and thus, (A.19) becomes

n∑
i=1

∫ t f

t0

(
m∑

k=0

(−1)k
dk

dtkLx(k)i

)
δxidt = 0 (A.22)

Utilizing the fundamental lemma of calculus of variations [111], leads to the Euler-Lagrange

(E-L) equations shown in (3.7) which is a system of n coupled 2mth-order ODEs that can

be solved together with the 2nm boundary conditions of (A.20) for the determination of the

most probable path x̄(t).
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A.2.2 Free boundaries

The problem of determining the most probable path x̃(t) is considered next, in which

some of the endpoint boundaries are considered free. Thus, it is assumed that the initial

conditions are fixed and that only a subset of the endpoint boundaries are fixed at t = t f ,

i.e.,

x(k)i (t0) = x(k)i,0

x(k)i (t f ) = x(k)i, f if i ∈ Uk

 i = 1, ..., n and k = 0, ...,m − 1
(A.23a)

(A.23b)

whereas the rest x(k)i (t f ) for which i < Uk are considered free. It is noted that the sets

Uk , that determine which endpoint boundaries of kth-order are fixed, are arbitrary subset

Uk ⊆ {1, ..., n} for all k = 0, ...,m − 1.

In this case, the variations at the boundaries take the form

[
δx(k)i

]
t=t0
= 0

[
δx(k)i

]
t=t f
= 0[

δx(k)i

]
t=t f
= δx(k)i, f

if i ∈ Uk

otherwise


i = 1, ..., n and k = 0, ...,m − 1

(A.24a)

(A.24b)

Note that x̃(t) is also an extremal with respect to the more restricted class of functions

x(t) that have their boundaries fixed. Consequently, x̃(t) satisfies the E-L equation (3.7).

In this regard, the corresponding sum in (A.19) vanishes and taking (A.24) into account,

the remaining terms of (A.19) yield a set of boundary conditions corresponding to the free

boundaries, i.e., the components x(k)i for which i < Uk . The complete set of boundary con-

ditions, considering a combination of fixed and free conditions, is shown in (3.8). Concisely,

the most probable path x̃(t) can be determined by solving the system of the n E-L equations

in (3.7) together with the 2nm modified boundary conditions of (3.8).
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Appendix B: Positive definiteness of matrix Q

In this Appendix, the positive definiteness of matrix Q is proved, and thus, convexity

of Eq. (2.43) is also implied. For tutorial effectiveness, the proof is shown hereinafter for a

SDOF linear oscillator. In this regard, consider a normalized version of Eq. (7.2) in the form

Üx + 2ζ0ω0 Ûx + ω2
0x =

w(t)
m

(B.1)

where ζ0 is the damping ratio and ω0 is the natural frequency of the system. Next, employing

two trial functions (i.e., L = 2) and considering arbitrary initial and final time instants (t0

and t f ) in Eq. (2.40), matrix Q is expressed in the form

Q =


Q11 0

0 Q22

 (B.2)

where

Q11 =
(t f − t0)5

630
(ω0

4 t f
4 − 4ω0

4 t f
3 t0 + 6ω0

4 t f
2 t02 − 4ω0

4 t f t03 + ω0
4 t04 + 48ω0

2 t f
2 ζ0

2+

−24ω0
2 t f

2 − 96ω0
2 t f t0 ζ02 + 48ω0

2 t f t0 + 48ω0
2 t02 ζ02 − 24ω0

2 t02 + 504)

(B.3)
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Q22 =
(t f − t0)5

6930
(ω0

4 t f
4 − 4ω0

4 t f
3 t0 + 6ω0

4 t f
2 t02 − 4ω0

4 t f t03 + ω0
4 t04 + 176ω0

2 t f
2 ζ0

2+

−88ω0
2 t f

2 − 352ω0
2 t f t0 ζ02 + 176ω0

2 t f t0 + 176ω0
2 t02 ζ02 − 88ω0

2 t02 + 3960)

(B.4)

Next, for simplicity and without loss of generality, setting t0 = 0 in Eq. (B.2) yields

Q =


t f 5 (ω0

4 t f 4+48ω0
2 t f 2 ζ02−24ω0

2 t f 2+504)
630 0

0
t f 5 (ω0

4 t f 4+176ω0
2 t f 2 ζ02−88ω0

2 t f 2+3960)
6930

 (B.5)

Since Q is diagonal, its eigenvalues λ are readily determined as

λ =


(
ω0

4 t f 9

630 +
8ω0

2 t f 7 ζ02

105 −
4ω0

2 t f 7

105 +
4 t f 5

5

)(
ω0

4 t f 9

6930 +
8ω0

2 t f 7 ζ02

315 −
4ω0

2 t f 7

315 +
4 t f 5

7

) (B.6)

Next, setting y = ω2
0 and considering the most critical case (i.e., ζ0 = 0) for showing that

the eigenvalues λ are positive, Eq. (B.6) becomes

λ =


(
y2 t f 9

630 −
4 y t f 7

105 +
4 t f 5

5

)(
y2 t f 9

6930 −
4 y t f 7

315 +
4 t f 5

7

) (B.7)

Differentiating Eq. (B.7) with respect to y yields

dλ

dy
=


(
2y t f 9

630 −
4 t f 7

105

)(
2y t f 9

6930 −
4 t f 7

315

) (B.8)

Setting Eq. (B.8) equal to zero and solving for y leads to

y∗ =


12 t f

−2

44 t f
−2

 , (B.9)
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whereas the eigenvalues evaluated at y∗ yield

λ(y∗) =


4 t f

5/7

92 t f
5/315

 (B.10)

Further, the second derivative of λ becomes

d2λ

dy2
=


t f

9/315

t f
9/3465

 (B.11)

Clearly, since d2λ/dy2 > 0, the expression for the eigenvalues λ as a function of y is convex,

and thus, the points in Eq. (B.9) correspond to minima for λ. Further, since λ is positive at

y∗, λ is positive for any arbitrary values ω0 > 0 and 0 < ζ0 < 1. In conclusion, all eigenvalues

of matrix Q are positive, and thus, Q is positive definite.
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Appendix C: Gröbner basis for NNMs determination of the linear

oscillator example

G =



b32 + 1.91b22 − 4.09b2 + 3.0a1 − 2.7a2 − 0.3b1 − 1.91

a21 + 0.18a1 − 1.0b22 + 0.6a2 + 0.3b1 − 0.09

−0.15b22 − 0.91a2 − 0.5b1 + 0.5a1a2 + 0.15

a22 − 0.9a2 − 0.09b22 − 1.09b2 + a1 − 0.3b1 + 0.09

0.1a1b1 − 0.3a2 − 0.2b1 − 0.06a1 + 0.03

0.05b22 − 0.03a2 + 0.05a2b1 − 0.05

0.1b21 + 0.03b1 + 0.3a1 − 0.3b2

0.2a1 − 0.09a2 − 0.2b2 + 0.1a1b2 − 0.1

0.2a2 + 0.1b1 + 0.03b2 + 0.1a2b2 + 0.03b22 − 0.03

0.03a2 + 0.02b1 + 0.01b1b2

0.01a3

0.01a4

0.01a5

0.01a6

0.01a7

0.01a8

0.01a9

0.01b3

0.01b4

0.01b5

0.01b6

0.01b7

0.01b8

0.01b9



(C.1)
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