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Abstract

In interactive sequential decision-making systems, the learning agent needs to react

to new information both in the short term and in the long term, and learn to generalize

through repeated interactions with the environment. Unlike in offline learning environ-

ments, the new data that arrives is typically a function of previous actions taken by the

agent. One of the key challenges is to efficiently use and generalize from data that may

never reappear. Furthermore, in many real-world applications, the agent only receives

partial feedback on the decisions it makes. This necessitates a balanced exploration-

exploitation approach, where the agent needs to both efficiently collect relevant informa-

tion in order to prepare for future arrivals of feedback, and produce the desired outcome

in the current periods by exploiting the already collected information. In this thesis, we

focus on two classes of fundamental sequential learning problems:

Contextual bandits with combinatorial actions and user choice (Chapter 2

and Chapter 3): We investigate the dynamic assortment selection problem by combining

statistical estimation of choice models and generalization using contextual information.

For this problem, we design and analyze both UCB and Thomson sampling algorithms

with rigorous performance guarantees and tractability.

High-dimensional contextual bandits (Chapter 4): We investigate policies that

can efficiently exploit the structure in high-dimensional data, e.g., sparsity. We design

and analyze an efficient sparse contextual bandit algorithm that does not require to know

the sparsity of the underlying parameter – information that essentially all existing sparse

bandit algorithms to date require.
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Chapter 1

Introduction

In interactive sequential decision-making systems, the learning agent needs to react to new

information both in the short term and in the long term, and learn to generalize through

repeated interactions with the environment. In each interaction, the agent adaptively

takes an action based on the information given from the environment and then receives

feedback. Typically, the feedback arrives as a form of reward (or loss) that the agent

aims to maximize (or minimize) and as partial feedback only for the action chosen by

the agent, rather than full feedback for all actions. The multi-armed bandit (Thompson,

1933; Lai and Robbins, 1985; Lattimore and Szepesvári, 2019) is a classic model for

sequential decision making with partial feedback. The contextual bandit is a general

extension of the multi-armed bandit that incorporates the contextual information given

by the environment (Langford and Zhang, 2008). The contextual bandit is a fundamental

reinforcement learning problem that possesses the full complexity of statistical learning.

There have been successful applications of contextual bandits in various domains, such as

recommendation systems and healthcare (Li et al., 2010; Tewari and Murphy, 2017).

In the contextual bandit problem, unlike in offline learning environments, the new

information that arrives is often a function of the previous observations including the ac-
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Chapter 1: Introduction

tions previously taken by the agent. This necessitates a balanced exploration-exploitation

approach, where the agent needs to both efficiently collect relevant information in order to

prepare for future reward (exploration) and maximize the reward in the current periods

based on the already collected information (exploitation). Another key challenge is to

efficiently utilize and generalize various contextual information that may never reappear.

Therefore, it is crucial to design tractable algorithms for this fundamental sequential

decision-making problem, with provable guarantees on their statistical and computational

performances. In this thesis, we study the following two classes of sequential learning prob-

lems that arise in various real-world applications: (i) contextual bandits with combina-

torial actions and user choice consideration and (ii) high-dimensional contextual bandits.

We describe these problems in detail in the following sections.

1.1 Background

1.1.1 Multi-Armed Bandits

The multi-armed bandit framework addresses the fundamental problem of sequential de-

cision making under uncertainty with partial feedback. The agent has a set of arms to

choose from. Each arm represents an action or a decision with a random reward (in

stochastic settings), and the agent receives a sample from the random reward when an

arm is pulled; however, the agent receives no feedback on the arms that were not pulled.

The goal of the agent is to maximize the cumulative reward across the time horizon.

Often, the performance of the agent is measured in comparison with the best competitor

in hindsight (or the oracle that knows the true expected rewards of the arms). Hence,

an equivalent goal is to minimize the cumulative regret, which is defined as the difference

between the cumulative reward of the best competitor and that of the agent.

2



Chapter 1: Introduction

This model exemplifies the exploration-exploitation dilemma: if one pulls a myopically

optimal arm, i.e. the optimal arm based on previous observations, one will receive a good

reward but will forego the opportunity of discovering potentially a better arm. Typically,

the (non-contextual) multi-armed bandit models the reward of each arm independent of

each other and random i.i.d. noise around an arm’s mean reward. Therefore, pulling an

arm does not provide information for the other arms. While there is a rich literature on

the classical multi-armed bandit problem (Auer, Cesa-Bianchi, and Fischer, 2002; Bubeck,

Cesa-Bianchi, et al., 2012), many applications in the real world have a large number of

actions needed to be considered and require much richer classes of decisions. Therefore,

the basic multi-armed bandit may not be suitable in these real-world scenarios.

1.1.2 Contextual Bandits

Often, the real-world problems have a very large number of actions but also come with

additional information about the actions. These large action sets are usually dealt with

by introducing a structure that allows the learning agent to generalize from one action to

another (Lattimore and Szepesvári, 2019). For example, a recommender system, where

each action represents an item to be recommended, often has feature information about

the items and may also have access to contextual information about users. Hence, it would

be efficient to utilize the feedback for a recommended item to infer the user’s preference

on a similar item that was not recommended. The similarity between actions can be

captured by their proximity in the feature space.

The linear contextual bandit has been widely studied (Abe and Long, 1999; Auer,

2002; Dani, Hayes, and Kakade, 2008; Li et al., 2010; Rusmevichientong, Shen, and

Shmoys, 2010; Abbasi-Yadkori, Pál, and Szepesvári, 2011; Agrawal and Goyal, 2013) and

provides the key characteristics of the contextual bandit problem in the most succinct

way. In each round of interactions, the environment reveals feature vectors for each
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action that the agent can choose from. The agent selects an action and observes a reward

of the arm, whose expected reward is given by the inner product of the action’s feature

vector and the underlying parameter vector. The underlying parameter is unknown to

the agent. Therefore, the agent is initially unsure of which action is best. However, as

observations accumulate through repeated interactions, the agent is able to learn over

time the underlying parameter as well as effective actions to take.

Beyond the linear reward model, there are other approaches to incorporate a nonlinear

relationship between the feature vector and the reward, using generalized linear models

(Filippi et al., 2010; Li, Lu, and Zhou, 2017), decision trees (Elmachtoub et al., 2017)

and neural networks (Riquelme, Tucker, and Snoek, 2018). It is also worth mentioning

model-agnostic approaches (Langford and Zhang, 2008; Agarwal et al., 2014) which do

not specify any parametric form of the reward model. Despite the differences in the

model assumption, all of the contextual bandit frameworks still possess the exploration-

exploitation dilemma due to partial bandit feedback. Additionally, since the same context

or features may not appear again, the agent needs to efficiently utilize the contextual

information for learning the underlying reward model (or the policy itself). Therefore,

efficient generalization across different interactions with the environment is desired.

1.2 Problems

1.2.1 Contextual Bandits with Combinatorial Actions

In many of today’s human-AI interactions, a learning agent (AI) makes sequential de-

cisions and receives user (human) feedback only about the specific decisions it takes.

Therefore, one can model such problem instances as a multi-armed bandit or contextual

bandit where the agent selects a sequence of actions while interacting with users. How-
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ever, in most of these interactive systems, such as search engines, e-commerce, streaming

video services, news websites, etc., the agent does not select just a single item, as in the

basic multi-armed bandit setting, but rather selects a set of items – e.g., a list of search

results, an assortment of products, a slate of recommended movies, or relevant news ar-

ticles. Then the agent offers this set of items to the user, and the user may choose one

item from the offered set (or may choose none). The agent receives a reward associated

with the chosen item, if any. The specific choice of an item by a user is often a func-

tion of the contextual information about both the user and the items in the offer set.

However, a naive implementation of contextual bandit algorithms in this setting, treating

each feasible subset of items as an independent action, would be prohibitive due to the

combinatorial nature of the action selection.

In Chapter 2 and Chapter 3, we address this combinatorial contextual bandit problem.

We assume that the user choice is described by the multinomial logit (MNL) choice model

(McFadden, 1978), where the expected utility of an item is given by an inner product

of contextual information of the item and the unknown underlying parameter. This

problem inherits the challenges of exploration-exploitation tradeoff from the contextual

bandit problem, where we not only need to learn the users’ choice behavior but also

maximize reward by exploiting the information we already have, as well as generalization

of contextual information that may not reappear. Furthermore, the substitution effect of

items within an offer set makes the problem much more difficult. Thus, despite the fact

that this problem setting is prevalent in practice, existing decision-making algorithms for

this problem either lacked a theoretical guarantee or lacked tractability and practicality.

1.2.2 High-Dimensional Contextual Bandits

In many application domains, such as recommender systems and healthcare analytics, a

large amount of contextual information is often available for both personalization as well
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as generalization. This results in high-dimensional feature space; however, typically only

a very small subset of the features influences the expected reward. That is, the unknown

parameter vector is sparse with only the elements corresponding to the relevant features

being non-zero. There is an emerging body of work on multi-armed bandit problems with

sparse linear reward functions which propose methods to exploit the sparse structure un-

der various regularity assumptions (Abbasi-Yadkori, Pal, and Szepesvari, 2012; Gilton and

Willett, 2017; Bastani and Bayati, 2020; Wang, Wei, and Yao, 2018; Kim and Paik, 2019).

All of these existing approaches suffer from a crucial drawback: these algorithms require

the prior knowledge of sparsity index s0 (i.e., the number of the non-zero elements in the

unknown parameter). This information is almost never available in practice. In the ab-

sence of such knowledge, the existing algorithms fail to fully leverage the sparse structure,

and their performance does not guarantee the improvements in dimensionality-dependence

which can be realized in the sparse problem setting. Furthermore, the misspecification of

this sparsity parameter can lead to severe deterioration in the performances of algorithms.

Hence, designing an algorithm that operates in a sparsity-agnostic manner, and providing

its performance guarantees has been an important open problem.

1.3 Summary of Contributions

Chapter 2: UCB Algorithms for MNL Contextual Bandits

In Chapter 2, we propose upper confidence bound (UCB) algorithms that combine explo-

ration of the combinatorially large action space and exploitation of context information

to maximize reward. The algorithms maintain a confidence set for the unknown param-

eter of the MNL model and select an optimal set of items under an optimistic reward

function using the principle of optimism in the face of uncertainty. We propose the first
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polynomial-time algorithm for this problem. We establish the near-optimal regret bounds

that do not depend on the number of available items, where the regret is defined as the

discrepancy between the reward of the optimal set to offer if the true parameter was

known, and that of the agent’s offer-set selection. Furthermore, to overcome computa-

tional challenges, we exploit the structure of the MNL model and show that an online

Newton step is sufficient to maintain a tight confidence region. Hence, we achieve both

statistical and computational efficiency. Then we study provably optimal algorithms with

a finite total number of items, in particular, establishing regret bounds sublinear in the

feature dimension. We show that a practical algorithm can still achieve sublinear depen-

dence on the feature dimension. The effectiveness of our proposed algorithms is further

supported by numerical experiments.

Chapter 3: Thompson Sampling for MNL Contextual Bandits

In Chapter 3, we investigate Thompson sampling (TS) algorithms for the MNL contextual

bandit problem. TS methods are known to be empirically superior to UCB based methods

for many multi-armed bandit variants (Chapelle and Li, 2011). However, TS algorithms

are generally difficult to analyze, and this challenge is further exacerbated by the com-

binatorially large item space in the MNL contextual bandit problem, and the fact that

there is no conjugate prior for the MNL model. We provide both a Bayesian regret bound

and a worst-case regret bound for TS-based algorithms for the MNL contextual bandit

problem. A key element in our approach is an optimistic sampling scheme to address the

challenges that arise in the worst-case regret analysis. We also show that our proposed TS

algorithm has superior numerical performances. To the best of our knowledge, this is the

first worst-case theoretical guarantee for a TS algorithm in contextual bandits with com-

binatorial actions in general. The techniques developed here can be applied to analyzing

other combinatorial contextual bandits.

7



Chapter 1: Introduction

Chapter 4: Sparsity-Agnostic High-dimensional Bandit

We demonstrate that a relatively simple contextual bandit algorithm, which exploits

Lasso (`1-regularized regression) estimation in a sparsity-agnostic manner, has provably

near-optimal regret (under suitable regularity). We also show that, in empirical tests,

our proposed algorithm significantly outperforms all state-of-the-art alternative methods

that rely on a priori knowledge of sparsity. To the best of our knowledge, this is the

first general sparse bandit method for a general set of arms that does not require prior

knowledge of the sparsity index, overcoming the critical drawback of the existing methods.

The scalability in both the ambient feature dimension and the sparse support dimension

matches the equivalent terms in the offline Lasso convergence results, which implies that

our established result is best possible in online learning settings.

Our new results provide insights on how the previously proposed approaches for this

fundamental problem result in inevitable inefficiency and show that a surprisingly sim-

ple solution can provide provably efficiency as well as significantly superior empirical

performances. In high-stake decision-making domains such as healthcare, where a good

performance of a policy may represent an increased number of saved lives and vice versa,

we strongly believe our result can make a significant impact.
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Chapter 2

Upper Confidence Bound Algorithms

for MNL Contextual Bandits

In this chapter and Chapter 3, we study a sequential assortment selection problem which

is a combinatorial version of the contextual bandit problem. The goal of the decision-

making agent is to offer a sequence of assortments of at most K items from a set of

N possible items. The sequence is chosen as a function of the contextual information of

items, and possibly users, in order to minimize the expected regret, which is defined as the

gap between the expected revenue generated by the algorithm and the optimal expected

revenue when the true parameter is known. The contextual information in the form of

d-dimensional feature vectors for each of the N items is revealed in each round t, i.e., the

feature information about the items are allowed to change over time. The feedback here

is the particular item chosen by the user from the offered assortment. We assume that the

item choice follows a multinomial logistic (MNL) distribution (McFadden, 1978). This is

one of the most widely used model in dynamic assortment optimization literature (Caro

and Gallien, 2007; Rusmevichientong, Shen, and Shmoys, 2010; Sauré and Zeevi, 2013;

Agrawal et al., 2019; Agrawal et al., 2017; Aouad, Levi, and Segev, 2018).
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For sequential decision-making with contextual information, (generalized) linear ban-

dits (Abe and Long, 1999; Auer, 2002; Filippi et al., 2010; Rusmevichientong and Tsitsik-

lis, 2010; Abbasi-Yadkori, Pál, and Szepesvári, 2011; Chu et al., 2011; Li, Lu, and Zhou,

2017) and their variants have been widely studied. However, these methods are only

limited to a single item selection which is increasingly rarer in practice as compared to

multiple item offering that we consider in this work. There is a line of work on combinato-

rial variants of contextual bandit problems (Qin, Chen, and Zhu, 2014; Wen, Kveton, and

Ashkan, 2015; Kveton et al., 2015; Zong et al., 2016) mostly with semi-bandit feedback

or cascading feedback. However, these methods do not take the user choice into account.

Hence, substitution effect is not modeled. In contrast to these contextual bandit problems

and their combinatorial variants, in the multinomial logit (MNL) contextual bandit, the

item choice (feedback) is a function of all items in the offered assortment. The key chal-

lenges here are to design an algorithm that offers assortments to simultaneously learn the

unknown parameter and maximize the total expected revenue on a sequence interactions

with users; and to establish a bound on the performance of the algorithm. There has been

an emerging body of literature on the MNL bandits in both non-contextual and contex-

tual settings (Agrawal et al., 2017; Agrawal et al., 2019; Cheung and Simchi-Levi, 2017b;

Ou et al., 2018; Chen, Wang, and Zhou, 2018). However, designing a practical algorithm

that achieves provable guarantees poses a greater challenge. In this chapter, we study

upper confidence bound (UCB) algorithms for the MNL contextual bandit problem. An

overview of this chapter is as follows:

(a) In Section 2.2, we formulate the MNL contextual bandit problem, and briefly discuss

the maximum likelihood estimation for the MNL model.

(b) In Section 2.3, we propose a UCB-based algorithm, UCB-MNL (Algorithm 1), for the

MNL contextual bandits. To our knowledge, is the first polynomial-time algorithm
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that achieves an N independent Õ(d
√
T ) regret.1 This result matches the previ-

ous best upper bound (up to logarithmic factors). We also propose a variant of

UCB-MNL (Algorithm 2) that updates the MNL parameter in an online fashion and

show that this modified UCB-MNL algorithm has the same regret performance but is

substantially more computationally efficient.

(c) In Section 2.4, we prove a non-asymptotic confidence bound (Theorem 2.3) for the

maximum likelihood estimator of the MNL model, which may be of independent

interest. This sharp confidence bound is used in Section 2.5 and Section 2.6 to

analyze algorithms that have improved regret bound in terms of the dependence on

the feature dimension.

(d) In Section 2.5, we propose supCB-MNL (Algorithm 4) and utilize the sharper con-

vergence result in Theorem 2.3 to establish Õ(
√
dT ) regret. This improves on the

best previous result by
√
d factor, and matches the lower bound for the MNL bandit

problem within logarithmic factors. However, as with the existing provably optimal

bandit algorithms that rely on a framework proposed in Auer (2002), supCB-MNL is

not a practical algorithm.

(e) In Section 2.6, we propose a practical algorithm, DBL-MNL (Algorithms 5), which

achieves Õ(
√
dT ) regret when item revenue is uniform, i.e., the goal is to maximize

the click-through rate for offered assortments. DBL-MNL does not rely on the frame-

work of Auer (2002), and has state-of-the-art computational efficiency. Thus, this

work is the first one to provide a practical algorithm with provable
√
d dependence

on the feature dimension.
1Õ suppresses logarithmic dependence on problem parameters.
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2.1 Related Work

The MNL model (Plackett, 1975; McFadden, 1978; Luce, 2012) is one of the most widely

used choice models for assortment selection problems. The problem of computing the

optimal assortment (static assortment optimization problem), when the MNL parame-

ters, i.e., user preferences, are known a priori, is well-studied (Talluri and Van Ryzin,

2004; Davis, Gallego, and Topaloglu, 2014; Désir, Goyal, and Zhang, 2014). Our work

belongs to the literature on dynamic assortment optimization. Caro and Gallien (2007)

consider the setting where the demand for each of the items in an assortment is indepen-

dent. Rusmevichientong, Shen, and Shmoys (2010) and Sauré and Zeevi (2013) consider

the problem of minimizing regret under the MNL choice model and present an “explore

first then exploit later” approach. Rusmevichientong, Shen, and Shmoys (2010) showed

O(N2 log2 T ) regret bound, where N is the number of total candidate items. Sauré and

Zeevi (2013) later improved the bound to O(N log T ). However, these methods require

a priori knowledge of “separability” between the true optimal assortment and the other

sub-optimal alternatives.

More recent work by Agrawal et al. (2019), Agrawal et al. (2017), and Cheung and

Simchi-Levi (2017a) and Chen and Wang (2017) also incorporated the MNL models into

dynamic assortment optimization and formulated the problem into an online regret min-

imization problem without requiring a priori knowledge on separability. Agrawal et al.

(2019) proposed a UCB-type algorithm which shows Õ(
√
NT ) regret bound. Agrawal et

al. (2017) achieve the same order of Õ(
√
NT ) regret bound using a Thompson sampling

(Thompson, 1933) approach with improved empirical performances. Chen and Wang

(2017) show a matching lower bound of Ω(
√
NT ). All of these previous works mentioned

so far assume each item is associated with a unique parameter, i.e., one cannot learn across

items nor can incorporate multi-dimensional feature information which may be available
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to the decision-making agent. In our work, we consider the setting where there is infor-

mation about items with d features and these features can be time-varying. When the

total number of items N is much larger than the feature dimension d�
√
N , utilizing the

feature information and learning across items allows one to reduce the regret bound from

Õ(
√
NT ) to Õ(d

√
T ). However, one cannot directly incorporate (time-varying) feature

information into the previous work (Agrawal et al., 2019; Agrawal et al., 2017)) since these

methods require that the same assortment be offered repeatedly for a random number of

rounds until an outside choice (no purchase) is observed. Chen, Wang, and Zhou (2018)

proposed a UCB method which establishes Õ(d
√
T ) regret bound for the contextual ver-

sion of the MNL bandit problem. There is a fundamental difference between the algorithm

proposed in Chen, Wang, and Zhou (2018) and our proposed algorithms. Chen, Wang,

and Zhou (2018) enumerates the exponentially many
(
N
K

)
assortments and builds confi-

dence bounds for each of them. Hence, the resulting algorithm is an exponential-time

algorithm in the number of total items. We circumvent this computational bottleneck

by constructing confidence bounds for each item rather than each assortment (see Sec-

tion 2.3). It is also worth mentioning the previous work in the personalized MNL-bandit

problem (Cheung and Simchi-Levi, 2017b; Bernstein, Modaresi, and Sauré, 2018; Kallus

and Udell, 2020). These works consider each item utility separately and learn N different

parameters; hence there is no generalization across different items, which is different from

our problem setting.

Linear bandits have been widely studied (Abe and Long, 1999; Auer, 2002; Dani,

Hayes, and Kakade, 2008; Rusmevichientong and Tsitsiklis, 2010; Abbasi-Yadkori, Pál,

and Szepesvári, 2011; Chu et al., 2011; Agrawal and Goyal, 2013). Filippi et al. (2010), Li,

Lu, and Zhou (2017), and Kveton et al. (2020) extend linear bandits to scalar, monotone,

generalized linear bandits. Filippi et al. (2010) established Õ(d
√
T ) regret bound. Li,

Lu, and Zhou (2017) improved the regret bound to Õ(
√
dT ) by establishing a new finite-
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sample confidence bound for MLE in generalized linear models. However, these results

in (generalized) linear bandits do not apply directly to our problem, since the choice

probability of an item in an assortment is non-linear and non-monotone in the parameter

of the MNL model. It is also worthwhile to mention a line of work in other combinatorial

bandit problems (Qin, Chen, and Zhu, 2014; Wen, Kveton, and Ashkan, 2015; Kveton

et al., 2015; Zong et al., 2016; Li et al., 2016) mostly with semi-bandit feedback or

cascading feedback. Our work is distinct from these combinatorial bandit problems since

in cascading or semi-bandit settings, the mapping from the item feature to the user

feedback is still independent of other items in an offered set, ignoring the substitution

effect of items. On the other hand, MNL choice feedback that we consider in this work is

a function of an entire assortment which makes our analysis much more challenging.

2.2 Problem Formulation

2.2.1 Notations

For a vector x ∈ Rd, we use ‖x‖ to denote its `2-norm. The weighted `2-norm associated

with a positive-definite matrix V is defined by ‖x‖V :=
√
x>V x. The minimum and

maximum eigenvalues of a symmetric matrix V are written as λmin(V ) and λmax(V ),

respectively. The trace of a matrix V is trace(V ). For two symmetric matrices V and

W of the same dimensions, V � W means that V −W is positive semi-definite. For a

positive integer n, we define [n] = {1, ..., n}.

2.2.2 MNL Contextual Bandits

The MNL contextual bandits problem is defined as follows. The decision-making agent

has a set of N distinct items. We define S to be the set of candidate assortments with size
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constraint at most K, i.e. S = {S ⊂ [N ] : |S| ≤ K}. Although we treat S as stationary

for ease of exposition, we can allow S (as well as the item set [N ]) to change over time.

In each round t, the agent observes feature vectors xti ∈ Rd for every item i ∈ [N ].

Each feature vector xti combines the information of the user in round t and the corre-

sponding item i. For example, suppose the user in round t is characterized by a feature

vector vt and the item i has a feature vector wti (note that we allow feature vectors for

an item and a user to change over time), then we can use xti = vec(vtw>ti ), the vectorized

outer-product of vt and wti, as the combined feature vector of item i in round t. If vt is

not available, we can use item-dependent features only xti = wti. Given this contextual

information, in every round t, the agent offers an assortment St = {i1, . . . , i`} ∈ S, ` ≤ K,

and observes the user purchase decision ct ∈ St ∪ {0}, where {0} denotes “outside op-

tion” which means the user did not choose any item offered in St. This selection is given

by a multinomial logit (MNL) choice model (McFadden, 1978) under which the choice

probability for item ik ∈ St ∪ {0} is defined as

pt(ik|St, θ∗) :=



exp{x>tikθ
∗}

1 +∑
ij∈St exp{x>tijθ∗}

, if ik ∈ St

1
1 +∑

ij∈St exp{x>tijθ∗}
, if ik = 0

(2.1)

where θ∗ ∈ Rd is a time-invariant parameter unknown to the agent. The choice response

for each item ik ∈ St is defined as ytik := 1(ct = ik) ∈ {0, 1} and yt0 := 1(ct = 0) for the

outside option. Hence the choice response variable yt = (yt0, yti1 , ..., yti`) is a sample from

this multinomial distribution:

yt ∼ multinomial
{

1, (pt(0|St, θ∗), ..., pt(i`|St, θ∗))
}

where the parameter 1 indicates that yt is a single-trial sample, i.e., yt0+∑`
k=1 ytik = 1. For
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i ∈ St∪{0}, we define the noise εti := yti−pt(i|St, θ∗). Since each εti is a bounded random

variable in [0, 1], εti is σ2-sub-Gaussian with σ2 = 1/4; however, εti is not independent

across i ∈ St due to the substitution effect in the MNL model. The revenue parameter

rti for each item is also given at round t. rti is the revenue if item i is chosen in round t.

Without loss of generality, assume |rti| ≤ 1 for all i and t. Then, the expected revenue of

the assortment St is given by

Rt(St, θ∗) :=
∑
i∈St

rtipt(i|St, θ∗) (2.2)

Note that for a very broad class of applications for the MNL bandit problem, including

search engines and media recommendations, the goal of the agent is to maximize the

click-through rate. Therefore, in this case, the item revenue is uniform, i.e., rti = r for

all i and t. Note that the substitution effect of items in an assortment still exists even

with the uniform revenue parameter. Hence, while the optimization procedure becomes

easier under the uniform revenue setting, the challenges in terms of statistical learning

still remains the same; still more difficult than other combinatorial contextual bandit

problems.

We define S∗t to be the optimal assortment in round t when θ∗ is known a priori, i.e.

the true MNL probabilities pt(i|S, θ∗) are known a priori:

S∗t := argmax
S⊂S

Rt(S, θ∗). (2.3)

Note that S∗t is also potentially time-varying since feature vectors {xti} can change over

time. Consider a time horizon of T rounds, during which the agent sequentially chooses

an assortment to offer. The agent does not know the value of θ∗, and therefore, can only

choose the assortment St in period t based on the choices Sτ for periods τ < t, and the

observed responses. We measure the performance of the agent by the regret R(T ) for the
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time horizon T , which is the cumulative gap between the expected revenue generated by

the assortment chosen by the agent and that of the optimal assortment, i.e.,

R(T ) := E
[
T∑
t=1

(
Rt(S∗t , θ∗)−Rt(St, θ∗)

)]
(2.4)

where Rt(S∗t , θ∗) is the expected revenue corresponding to the optimal assortment in

round t, i.e., the highest revenue which can be obtained with the knowledge of θ∗. Hence,

maximizing the cumulative expected revenue is equivalent to minimizing the cumulative

expected regret. Note that the expectation in (2.4) is taken over two sources of stochastic-

ity in our problem: the feature vector xti and the noise εti with corresponding probability

measures Px and Pε. Throughout this chapter, all the expectations and probabilities are

with respect to the product measure Px × Pε. For notational brevity, we denote E and P

as “expectation” and “probability” with respect to this product measure.

2.2.3 MLE for Multinomial Logistic Regression

We briefly discuss the maximum likelihood estimate (MLE) of the MNL model which

we utilize for parameter estimation throughout this chapter. The MLE for the unknown

parameter θ∗ of the MNL model defined in (2.1) can be computed as follows. First, recall

that yt ∈ {0, 1}|St|+1 is the user choice where yti is the i-th component of yt. Then, the

likelihood function under parameter θ is then given by

L(Dn|θ) =
n∏
t=1

∏
i∈St∪{0}

(pt(i|St, θ))yti

where Dn = {Xt, St, yt}nt=1 and Xt = {xti}i∈[N ]. Taking the negative logarithm gives

`n(θ) = − logL(Dn|θ) = −
n∑
t=1

∑
i∈St∪{0}

yti log pt(i|St, θ)
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which is known as the cross-entropy error function for the multi-class classification prob-

lem. Taking the gradient of this negative log-likelihood with respect to θ, we obtain

∇θ`(θ) =
n∑
t=1

∑
i∈St

(pt(i|St, θ)− yti)xti

As the sample size n goes to infinity, it is known from the classical likelihood theory

(Lehmann and Casella, 2006) that the MLE θ̂n is asymptotically normal. In particular,

(θ̂n − θ∗)→ N (0, I−1
θ∗ ) where Iθ∗ is the Fisher information matrix. We show in the proof

of Theorem 2.3 that Iθ∗ is lower bounded by ∑
t

∑
i∈St pt(i|θ∗)pt(0|θ∗)xtix>ti . Hence, if

pt(i|θ∗)pt(0|θ∗) is bounded below away from zero, then we can ensure that Iθ∗ is invertible

and prevent asymptotic variance of x>θ̂ from going to infinity for any x.

2.3 UCB Algorithms for MNL Contextual Bandits

The basic idea of UCB algorithms is to maintain a confidence set for the parameter θ∗.

The techniques of upper confidence bounds (UCB) have been widely known to be effective

in balancing the exploration and exploitation trade-off in many bandit problems, including

K-arm bandits (Auer, Cesa-Bianchi, and Fischer, 2002; Lattimore and Szepesvári, 2019),

linear bandits (Auer, 2002; Dani, Hayes, and Kakade, 2008; Abbasi-Yadkori, Pál, and

Szepesvári, 2011; Chu et al., 2011) and generalized linear bandits (Filippi et al., 2010; Li,

Lu, and Zhou, 2017).

For each round t, the confidence set Ct for θ∗ is constructed from the feature vectors

{xt′i : i ∈ St′ , t
′ < t}, and the observed feedback of selected items {yt′ , t′ < t} from all

previous rounds. Let θ̂t denote the estimate of the unknown parameter θ∗ after t periods,

and suppose we are guaranteed that θ∗ lies within the confidence set Ct centered at MLE

θ̂t with radius αt > 0 with high probability (see Lemma 2.2). The confidence radius

αt has to be chosen carefully: larger αt induces more exploration; however, a too large
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value of αt can cause regret to increase. In the MNL bandit setting, exploitation is to offer

argmaxS∈S Rt(S, θ̂t) which is a greedy action with respect to the current estimate, whereas

exploration is to choose a set S that has the potential for a high expected revenue Rt(S, θ)

as θ varies over Ct. Thus, a direct way to introduce optimism, and induce exploration, is to

define an optimistic revenue for each
(
N
K

)
assortments. This is the approach taken in Chen,

Wang, and Zhou (2018); however, this enumeration has exponential complexity when N

is large and K is relatively small. We show that one can induce sufficient exploration

by defining an optimistic expected utility zti for each item, and defining the optimistic

revenue for any assortment S using the optimistic utility. We define

zti := x>ti θ̂t−1 + αt−1‖xti‖V −1
t−1

(2.5)

where Vt = ∑t
t′=1

∑
i∈St xt′ix

>
t′i ∈ Rd×d is a symmetric positive definite matrix. The opti-

mistic utility zti consists of two components: mean utility estimate x>ti θ̂t−1 and confidence

interval αt−1‖xti‖V −1
t−1

with suitable confidence radius αt−1. In the proof of the regret

bound of our proposed algorithm, we show that zti is, indeed, an upper bound of x>tiθ∗ if

θ∗ lies within in the confidence ellipsoid centered at θ̂t−1 (see Lemma 2.3).

2.3.1 Algorithm: UCB-MNL

We now have all the ingredients for our first UCB algorithm for the MNL contextual

bandit problem, UCB-MNL (Algorithm 1). During the initialization phase of Algorithm 1,

the agent first randomly chooses an assortment St with exactly K items (note that after

the initialization, the size of St can be smaller than K) to ensure a unique MLE estimate.

For this, the initialization duration T0, specified in Theorem 2.1, is chosen to guarantee

that λmin(VT0) is large enough.2 After the initialization phase, the algorithm chooses an
2This also implies λmin(VT0) > 0 after the initialization. Therefore, Vt is invertible for t ≥ T0.
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assortment based on upper confidence bounds of expected utility {zti}. That is, based on

zti, we construct the following optimistic estimate of the expected revenue

R̃t(S) :=
∑
i∈S rti exp (zti)

1 +∑
j∈S exp (ztj)

. (2.6)

The algorithm offers assortment St that maximizes this optimistic expected revenue, and

the receives a user choice feedback yt. We assume an access to an optimization method

which returns the assortment choice in round t, St = arg maxS⊂S R̃t(S). There are efficient

polynomial-time algorithms available to solve this optimization problem that we can use

(Rusmevichientong, Shen, and Shmoys, 2010; Davis, Gallego, and Topaloglu, 2013).

Algorithm 1 UCB-MNL
1: Input: initialization T0, confidence radius αt
2: Initialization: for t ∈ [T0]

3: Randomly choose St with |St| = K

4: Vt ← Vt−1 +∑
i∈St xtix

>
ti

5: for all t = T0 + 1 to T do

6: Compute zti = x>ti θ̂t−1 + αt−1‖xti‖V −1
t−1

for all i

7: Compute St = argmaxS⊂S R̃t(S)

8: Offer St and observe yt (user choice in round t)

9: Update Vt ← Vt−1 +∑
i∈St xtix

>
ti

10: Compute MLE θ̂t by solving

t∑
t′=1

∑
i∈St′

(
pt′(i|St′ , θ̂t)− yt′i

)
xt′i = 0 (2.7)

11: end for
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2.3.2 Regret Bound for UCB-MNL Algorithm

We present the an upper bound on the regret of UCB-MNL under the following assumptions

on the context process and the MNL model, both standard in the literature.

Assumption 2.1. Each feature vector set {xti ∈ Rd, i ∈ [N ]} is drawn i.i.d. from an

unknown distribution pX with ‖xti‖ ≤ 1 all t, i and there exists a constant σ0 > 0 such

that λmin
(
E
[

1
N

∑
i∈[N ] xtix

>
ti

])
≥ σ0.

The boundedness is used to make the regret bounds scale-free. The i.i.d. assumption

is also used in generalized linear bandit (Li, Lu, and Zhou, 2017) and MNL contextual

bandit (Cheung and Simchi-Levi, 2017b; Chen, Wang, and Zhou, 2018) literature. Note

that the i.i.d. assumption is on each set of feature vectors across different rounds and we

allow feature vectors xti and xtj for i 6= j to be correlated. Therefore, this is a weaker

assumption than the i.i.d. assumption in Chen, Wang, and Zhou (2018) which further

imposes independence between items. Also, the i.i.d. assumption on feature vectors is in

fact only required during the initialization phase to ensure that after the initialization the

MLE θ̂ is sufficiently close to θ∗, i.e., ‖θ̂ − θ∗‖ ≤ 1. We discuss this aspect further in the

proof of Theorem 2.1.

Assumption 2.2. There exists κ > 0 such that for every item i ∈ S and any S ∈ S and

all round t, min‖θ−θ∗‖≤1 pt(i|S, θ)pt(0|S, θ) ≥ κ.

As discussed in Section 2.2.3, this assumption is necessary for the asymptotic nor-

mality of the MLE. This is a standard assumption in MNL contextual bandits (Cheung

and Simchi-Levi, 2017b; Chen, Wang, and Zhou, 2018), which is also equivalent to the

standard assumption on the link function in generalized linear contextual bandits (Filippi

et al., 2010; Li, Lu, and Zhou, 2017) to ensure the Fisher information matrix is invertible.
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Theorem 2.1 (Regret bound of UCB-MNL). Suppose Assumptions 2.1 and 2.2 hold, and

we run UCB-MNL for T rounds with confidence width αt = 1
2κ

√
d log

(
t
d

)
+ 2 log t and initial

sampling for T0 = Θ
(
d+log T
Kσ2

0
+ λ0

Kσ0

)
where λ0 = max

{
1

4κ2

[
d log

(
T
d

)
+ 2 log T

]
, K

}
. Then

the cumulative expected regret of UCB-MNL is upper-bounded by

R(T ) = O
(
d
√
T log(T/d)

)
.

Discussion of Theorem 2.1. In terms of key problem primitives, Theorem 2.1

demonstrates Õ(d
√
T ) regret bound for UCB-MNL which is independent of N ; hence, it is

applicable to the case of very large set of candidate items. Chen, Wang, and Zhou (2018)

established the lower bound result Ω(d
√
T/K) for the MNL contextual bandits. When K

is small, which is typically true in many applications, the regret bound in Theorem 2.1

demonstrates that UCB-MNL is near-optimal. The established regret of UCB-MNL improves

the previous regret bound of Chen, Wang, and Zhou (2018) in both logarithmic and addi-

tive factors. Moreover, although having the same rate of Õ(d
√
T ) regret up to logarithmic

factors, the UCB method in Chen, Wang, and Zhou (2018) has exponential computational

complexity, since it needs to enumerate all of the possible
(
N
K

)
assortments.3 Therefore,

to our knowledge, UCB-MNL is the first polynomial-time algorithm that achieves Õ(d
√
T )

worst-case regret.

Remark 2.1. Besides this computational advantage, the item-wise upper confidence bounds

used in UCB-MNL as well as the other algorithms proposed in this chapter can also provide

additional insights for practitioners. That is, practitioners can directly check which item

has more (or less) uncertainty in terms of estimated utility.
3Chen, Wang, and Zhou (2018) recognize this computational issue and also an approximate optimiza-

tion algorithm to somewhat remedy it; however, not completely. Consider the simple (but widely used
in practice) problem setting where each item has unit revenue. In this case, assortment selection under
UCB-MNL reduces to sorting items based upper confidence bounds and therefore the run time is indepen-
dent of K, whereas the UCB algorithm proposed in Chen, Wang, and Zhou (2018) still has to construct
upper confidence bounds for all the

(
N
K

)
assortments.
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2.3.3 Proof of Theorem 2.1

In this section, we present the proof of Theorem 2.1 and the key lemmas for our analysis,

whose proofs are presented in the appendix. Recall that the initialization duration T0,

specified in Theorem 2.1, is chosen to ensure that ‖θ̂t−θ∗‖ ≤ 1 for t ≥ T0. This is done by

ensuring that λmin(VT0) is large enough at the end of the initialization. The first lemma

specifies how large λmin(VT0) should be in order for θ̂t to be sufficiently close to θ∗.

Lemma 2.1. Let T0 be any round such that λmin(VT0) ≥ 1
4κ2 [d log(T/d) + 2 log T ]. Then

for any t ≥ T0, we have P
(
‖θ̂t − θ∗‖ > 1

)
≤ 1

T
.

Lemma 2.1 ensures ‖θ̂t−θ∗‖ with high probability for large enough λmin(VT0). Besides

ensuring the concentration of θ̂t, we also require another lower bound on λmin(VT0), i.e.,

λmin(VT0) ≥ K to bound the self-normalized process ∑t
t′=1

∑
i∈St′ ‖xt′i‖V −1

t′−1
in Lemma 2.6.

Therefore, at the end of the random initialization period T0, we need to have

λmin(VT0) ≥ λ0 := max
{ 1

4κ2 [d log(T/d) + 2 log T ] , K
}
.

The following proposition, which is a direct adaptation of Proposition 1 in Li, Lu, and

Zhou (2017), allows us to find such T0.

Proposition 1 (Li, Lu, and Zhou 2017, Proposition 1). Suppose Assumption 2.1 holds.

Define VT0 = ∑T0
t′=1

∑
i∈St′ xt′ix

>
t′i, where T0 is the length of random initialization. Suppose

we run a random initialization with assortment size K for duration T0 which satisfies

T0 ≥
1
K

(
C1
√
d+ C2

√
log T

σ0

)2

+ 2B
Kσ0

for some positive, universal constants C1 and C2. Then, λmin(VT0) ≥ B with probability

at least 1− 1
T
.
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Proposition 1 ensures that λmin(VT0) ≥ λ0 holds with high probability if we run the

initialization for Ω
(
d+log T
Kσ2

0
+ λ0

Kσ0

)
rounds. Therefore, we only need a logarithmic num-

ber (in T ) of initial rounds to satisfy the minimum eigenvalue requirement of λmin(VT0).

Similar to Filippi et al. (2010) and Li, Lu, and Zhou (2017), the i.i.d. assumption (in

Assumption 2.1) on feature vectors {xti} is only needed to ensure the minimum eigenvalue

condition for VT0 at the end of the initialization phase. In the rest of the regret analysis

of UCB-MNL, we do not require this stochastic assumption. Hence, after the initialization

period, {xti} can even be chosen adversarially as long as each ‖xti‖ is bounded.

The rest of the proof involves bounding the parameter estimation error ‖θ̂t − θ∗‖Vt

and ‖xti‖V −1
t−1

as well as the optimism guarantees. Lemma 2.2 shows that the unknown

parameter θ∗ lies within an ellipsoid centered at θ̂t with a suitable confidence radius under

the `2 norm weighted by Vt with high probability. Note that the condition of Lemma 2.2

is ensured with high probability by combining Lemma 2.1 and Proposition 1.

Lemma 2.2. Suppose ‖θ̂t − θ∗‖ ≤ 1 for t ≥ T0 and λmin(VT0) ≥ K. Then

‖θ̂t − θ∗‖Vt ≤
1

2κ
√
d log(t/d) + 2 log t (2.8)

holds for all t ≥ T0 with a probability 1− 1
t2
.

Lemma 2.2 is a finite-sample parameter estimation error bound for the MLE of the

MNL model. Based on this result, we can construct the optimistic utility estimate using

the confidence radius αt = 1
2κ

√
d log(t/d) + 2 log t. The following lemma shows our opti-

mistic utility estimate zti is an upper confidence bound for the expected utility x>tiθ∗ if

the underlying parameter θ∗ is contained in the confidence ellipsoid centered at θ̂t.

Lemma 2.3. Let zti = x>ti θ̂t−1 + αt−1‖xti‖V −1
t−1

. If (2.8) holds, then we have

0 ≤ zti − x>tiθ∗ ≤ 2αt−1‖xti‖V −1
t−1
.
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The following lemma shows that the optimistic expected revenue R̃t(St) is an upper

bound of the expected revenue of the optimal assortment Rt(S∗t , θ∗) under the true un-

known parameter θ∗. The lemma is an adaptation of Lemma 4.2 in Agrawal et al. (2019)

which was established in the non-contextual setting.

Lemma 2.4. Suppose S∗t is the optimal assortment as defined in (2.3), and suppose

St = arg maxS⊂S R̃t(S). If for every item i ∈ S∗t , zti ≥ x>i θ
∗, then the revenues satisfy the

following inequalities for all round t:

Rt(S∗t , θ∗) ≤ R̃t(S∗t ) ≤ R̃t(St).

It is important to note that Lemma 2.4 does not claim that the expected revenue is

generally a monotone function, but only the value of the expected revenue corresponding

to the optimal assortment increases with an increase in the MNL parameters (Agrawal

et al., 2019). Then we show that the expected revenue has the Lipschitz property and

bound the immediate regret with the maximum variance over the assortment.

Lemma 2.5. Suppose that 0 ≤ zti − x>tiθ∗ ≤ 2αt−1‖xti‖V −1
t−1

holds for i ∈ St where St is

the chosen assortment in round t. Then, we have

R̃t(St)−Rt(St, θ∗) ≤ 2αt−1 max
i∈St
‖xti‖V −1

t−1
.

The next technical lemma bounds the sum of weighted squared norms. Note that we

later apply the Cauchy-Schwarz inequality to eventually bound ∑T
t=1 maxi∈St ‖xti‖V −1

t−1
by

Õ(
√
dT ).

Lemma 2.6. Define VT0 = ∑T0
t=1

∑
i∈St′ xtix

>
ti and Vt = VT0 + ∑t

t′=V0+1
∑
i∈St′ xt′ix

>
t′i. If
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λmin(VT0) ≥ K, then we have

T∑
t=1

max
i∈St
‖xti‖2

V −1
t−1
≤ 2d log(T/d) .

Hence, each of Lemma 2.2 and Lemma 2.6 contributes
√
d factor separately to the

overall regret, resulting in d factor in Theorem 2.1. Now we can combine the results to

show the cumulative regret bound. First we define the joint high probability event for the

concentration of the MLE and the concentration after the random initialization.

Definition 2.1. Define the following event:

Ê :=
{
‖θ̂t − θ∗‖ ≤ 1, ‖θ̂t − θ∗‖Vt ≤ αt,∀t ≥ T0

}
.

Note that by Proposition 1 with T0 = Ω
(
d+log T
Kσ2

0
+ λ0

Kσ0

)
, we can show

λmin(VT0) ≥ λ0 = max
{ 1

4κ2

[
d log

(
T

d

)
+ 2 log T

]
, K

}

with high probability, which in turn allows us to ensure ‖θ̂t − θ∗‖ ≤ 1 by Lemma 2.1.

Using the union bound, we can show ‖θ̂t − θ∗‖ ≤ 1 holds with probability at least 1− 2
T
.

We then break the regret into the initialization phase and the learning phase:

R(T ) = E

 T0∑
t=1

(R(S∗t , θ∗)−R(St, θ∗))
+ E

 T∑
t=T0+1

(R(S∗t , θ∗)−R(St, θ∗))


≤ T0 + E

 T∑
t=T0+1

(
R̃t(St)−R(St, θ∗)

)
where the last inequality comes from optimistic revenue estimation by Lemma 2.4. Now,

we further decompose the regret of the learning phase further into two components –

when the high probability event holds in Lemma 2.2 and in Lemma 2.1 (i.e., Ê holds) and
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when either of the events does not hold, (i.e., Êc).

R(T ) ≤ T0 + E

 T∑
t=T0+1

(
R̃t(St)−Rt(St, θ∗)

)
1(Ê)

+ E

 T∑
t=T0+1

(
R̃t(St)−Rt(St, θ∗)

)
1(Êc)


≤ T0 + E

 T∑
t=T0+1

(
R̃t(St)−Rt(St, θ∗)

)
1(Ê)

+
T∑
t=1

( 1
t2

+ 2
T

)

≤ T0 +
T∑
t=1

2αt−1 max
i∈St
‖xti‖V −1

t−1
+O(1)

≤ T0 + 2αT
T∑
t=1

max
i∈St
‖xti‖V −1

t−1
+O(1)

where the third inequality is from Lemma 2.5. Applying the Cauchy-Schwarz inequality

to the second term, it follows that

R(T ) ≤ T0 + 2αT

√√√√T T∑
t=1

max
i∈St
‖xti‖2

V −1
t−1

+O(1) .

Applying Lemma 2.6 for ∑T
t=1 maxi∈St ‖xti‖2

V −1
t−1

,

R(T ) ≤ T0 + 2αT
√

2dT log(T/d) +O(1) .

Finally, our choice of αt gives αT = 1
2κ

√
d log(T/d) + 2 log T , we have

R(T ) ≤ T0 + d

κ

√
2T log(T/d) + 2

κ

√
dT log T log(T/d) +O(1) .

2.3.4 Online Parameter Update

UCB-MNL is simple to implement and more practical compared to previously known meth-

ods in the MNL bandit problem. The algorithm is statistically efficient, as established in

Theorem 2.1 and is also computationally much more efficient than the previously known

method (e.g., Chen, Wang, and Zhou 2018). However, as t increases, the computational
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cost of UCB-MNL becomes more expensive. In each round t, the MLE θ̂t is computed using

Θ(tK) samples, i.e., the per-round computational complexity grows linearly with t for

a straightforward implementation of the algorithm. Note that this issue is not unique

to UCB-MNL. Chen, Wang, and Zhou (2018) also suffers from the same issue in addition

to its computationally expensive procedure of the upper confidence construction for all

assortments which we discussed in Section 2.3.2. In fact, this bottleneck makes many

bandit algorithms including those in generalized linear bandits (Filippi et al., 2010; Li,

Lu, and Zhou, 2017) inappropriate for online implementations in real-world applications

since the entire learning history is stored in memory and used for parameter estimation

in each round.

In this section, we discuss a modification of UCB-MNL which incorporates an efficient

online update. This modification effectively exploits particular structures of the MNL

model. In stead of computing the exact solution for MLE which does not scale well in

time and space complexity, we propose an online update scheme to find an approximate

solution. First, we define the per-round loss for the MNL model and its gradient.

Definition 2.2. Define the per-round loss ft(θ) and its gradient Gt(θ) as the following:

ft(θ) := −
∑
i∈St

yti log pt(i|St, θ) = −
∑
i∈St

ytix
>
tiθ + log

(
1 +

∑
j∈St

exp(x>tjθ)
)

Gt(θ) := ∇θft(θ) =
∑
i∈St

(pt(i|St, θ)− yti)xti

The important observation here is that the loss for the MNL model in each round t is

strongly convex over bounded domain, which enables us to apply a variant of the online

Newton step (Hazan, Agarwal, and Kale, 2007), in particular inspired by (Hazan, Koren,

and Levy, 2014; Zhang et al., 2016) that proposed online algorithms for the logistic

model. Specifically, we propose to find an approximate solution by solving the following
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optimization problem

θ̂t = argmin
θ

{1
2‖θ − θ̂t−1‖2

Vt + (θ − θ̂t−1)>Gt−1(θ̂t−1)
}

(2.9)

where Vt = Vt−1 + κ
2
∑
i∈St xtix

>
ti .

Algorithm 2 UCB-MNL with online parameter update
1: Input: total rounds T , initialization rounds T0 and confidence radius α̃t
2: Initialization: for t ∈ [T0]

3: Randomly choose St with |St| = K

4: Vt ← Vt−1 + κ
2
∑
i∈St xtix

>
ti

5: for all t = T0 + 1 to T do

6: Compute z̃ti = x>ti θ̂t−1 + α̃t−1‖xti‖V −1
t−1

for all i ∈ [N ]

7: Compute St = argmaxS⊂S R̃t(S) based on {z̃ti}

8: Offer St and observe yt (user choice in round t)

9: Update Vt ← Vt−1 + κ
2
∑
i∈St xtix

>
ti

10: Compute θ̂t by solving the problem

θ̂t = argmin
θ

{1
2‖θ − θ̂t−1‖2

Vt + (θ − θ̂t−1)>Gt−1(θ̂t−1)
}

11: end for

The modified algorithm is summarized in Algorithm 2. The key differences between

Algorithm 1 and Algorithm 2 are the parameter update rule in (2.9) and the choice of

the confidence radius. During the learning phase, the algorithm builds a upper confidence

utility estimate z̃ti = x>ti θ̂t−1 + α̃t−1‖xti‖V −1
t−1

using a new confidence radius α̃t which is

specified in Theorem 2.2 (based on the confidence bound in Lemma 2.7). For parameter

estimation, only Θ(K) samples are needed for both computation and space per each

round, compared to Θ(tK) in Algorithm 1 which grows linearly with each round t.
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The following lemma provides the confidence bound for the online parameter update.

Lemma 2.7. Suppose ‖θ̂t − θ∗‖ ≤ 1 for t ≥ T0 and λmin(VT0) ≥ K. Then

‖θ̂t − θ∗‖Vt ≤
√
T0 + 8

κ
d log(t/d) +

(8
κ

+ 16
3

)
log(d2 log2(tK/2)et4) + 4

holds for all t ≥ T0 with a probability 1− 1
t2
.

The proof of Lemma 2.7 relies on exploiting the structure of the loss of the MNL

model and concentration inequalities for martingales. Since we use fewer samples (less

information) per each parameter update in the modified online update compared to the

full MLE computation, one might expect the confidence bound to increase with the online

update modification. Nevertheless, Lemma 2.7 shows that the confidence bound of the

parameter estimation scales with O
(√

d log(t/d)
)
, which is of the same order as the bound

shown in Lemma 2.2 – although there are extra additive terms and potentially a larger

constant. This suggests that the total regret bound for the modified UCB-MNL algorithm

should be also of the same order (up to logarithmic factors) as the regret bound of the

original UCB-MNL algorithm (Algorithm 1). In Theorem 2.2, we present the regret bound

for the UCB-MNL with online parameter update (Algorithm 2).

Theorem 2.2. Suppose Assumptions 2.1 and 2.2 hold, and we run UCB-MNL for T rounds

with “online parameter update” with initial sampling for T0 = Θ
(
d+log T
Kσ2

0
+ λ0

Kσ0

)
where

λ0 = max
{

1
4κ2 [d log(T/d) + 2 log T ] , K

}
and with confidence width

α̃t =
√
T0 + 8

κ
d log(t/d) +

(8
κ

+ 16
3

)
log(d2 log2(tK/2)et4) + 4 .

Then the cumulative expected regret of the algorithm is upper-bounded by

R(T ) ≤ T0 +O(1) + α̃T
√
dT log(T/d) = O

(
d
√
T log(1 + T/d) log(T/d)

)
.
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Theorem 2.2 still achieves a regret bound of Õ(d
√
T ) which matches the bound in

Theorem 2.1 for UCB-MNL while improving both the time and space complexities of the

algorithm. This result suggests that the modified UCB-MNL is appropriate for online im-

plementation, achieving both statistical and computational efficiency. The proof of The-

orem 2.2 follows the similar steps as that of Theorem 2.1 and is presented in Section A.2.

2.4 Non-asymptotic Normality of the MLE for

MNL Models

We have shown that UCB-MNL is both statistically and computationally efficient. The

algorithm also shows state-of-the-art practical performances as we report in Section 2.8.

However, the regret bound in Theorem 2.1 has a linear dependence on feature dimension

d and, therefore, is not very attractive when the feature vectors are high dimensional. We

next investigate whether a sublinear dependence on d is possible. In the regret analysis

for UCB-MNL, we upper-bound the prediction error x>(θ∗ − θ̂t) using Hölder’s inequality,

|x>θ̂t − x>θ∗| ≤ ‖x‖V −1
t
‖θ̂t − θ∗‖Vt , where we show each of the terms on the right hand

side is bounded by Õ(
√
d), hence resulting in a linear dependence on d when combined.

A potential solution to circumvent this challenge is to control the prediction error directly

without bounding two terms separately and establish a sublinear dependence on d.

In Theorem 2.3 we propose a non-asymptotic normality bound for the MLE for the

MNL model in order to establish a sharper concentration result for |x>(θ̂t − θ∗)|. This is

a generalization of Theorem 1 in Li, Lu, and Zhou (2017) to the MNL model. To the best

of our knowledge, there was no existing finite-sample normality results for the prediction

error of the utility for the MNL model. This result can be of independent interest beyond

the bandit problems.
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Theorem 2.3 (Non-asymptotic normality of MLE). Suppose we have independent re-

sponses y1, ..., yn conditioned on feature vectors {xti}n,Kt=1,i=1. Define Vn = ∑n
t=1

∑
i∈St xtix

>
ti ,

and let δ > 0 be given. Furthermore, assume that λmin(Vn) ≥ max
{

9D4

κ4 log(1/δ) ,
144D2

κ4

}
where

D := min
{

4
√

2d+ log 1
δ
,
√
d log(n/d) + 2 log 1

δ

}
. Then, for any x ∈ Rd, the maximum

likelihood estimator θ̂n of the MNL model satisfies with probability at least 1− 3δ that

|x>θ̂n − x>θ∗| ≤
5
κ

√
log 1

δ
‖x‖V −1

n
.

Hence, the prediction error can be bounded by Õ(
√
d) with high probability as long

as the conditions on independence of samples and the minimum eigenvalue are satisfied.

Note that although the statement of Theorem 2.3 is similar to that of the generalized

linear model version in Li, Lu, and Zhou (2017), the extension to the MNL model is

non-trivial because choice probability for any given item i ∈ St is function of the all the

items in the assortment St, and hence the analysis is much more involved. Theorem 2.3

implies that we can control the behavior of the MLE in every direction allowing us to

handle the prediction error in a tighter fashion.

2.5 Generating Independent Samples and

Provable Optimality

Unfortunately, we cannot directly apply the tight confidence bound of the MLE shown

in Theorem 2.3 to UCB-MNL since Theorem 2.3 requires independent samples (as well as

the minimum eigenvalue being large enough, but this condition can be satisfied by initial

random exploration). UCB-MNL is not guaranteed to produce independent samples since

the algorithm chooses assortments based on previous observations, causing dependence

between collected samples — this is a common characteristic of most bandit algorithms.
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This issue can be handled by generating independent samples using a framework proposed

in Auer (2002), which we denote as “Auer-framework.” This Auer-framework has been

previously used in several variants of (generalized) linear bandits (Chu et al., 2011; Li,

Lu, and Zhou, 2017; Zhou, Xu, and Blanchet, 2019). In what follows, we propose an

adaptation of the Auer-framework for the MNL contextual bandit problem, and establish

a provably optimal regret bound for the algorithm.

Algorithm 3 baseCB-MNL
1: Input: confidence radius β, index set Ψ, set A, features {xti}

2: Compute MLE θ̂ by solving the equation

∑
t′∈Ψ

∑
i∈St′

(pt′(i|St′ , θ)− yt′i)xt′i = 0

3: Update VΨ = ∑
t′∈Ψ

∑
i∈St′ xt′ix

>
t′i

4: Compute the following:

mti = x>ti θ̂ for all i ∈ I

wti = β‖xti‖V −1
Ψ

for all i ∈ I

Wt = 2 max
i∈I

wti

where I = {i ∈ S : S ∈ A}

We adapt the decomposition of the algorithm introduced in Auer (2002). That is,

we design a method which consists of two parts: (i) a subroutine algorithm baseCB-MNL

(Algorithm 3) to compute the MLE and the maximum confidence interval of expected

utility among the items in the candidate set (assuming statistical independence among

the samples), and (ii) a master algorithm supCB-MNL (Algorithm 4) to ensure that the

independence assumption holds. supCB-MNL operates on the radius of the confidence
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bound, independent of estimated expected utility, to perform exploration. supCB-MNL

maintains {Ψ`}L`=0, the sets of time indices which are the partitions of the entire horizon

[T ] = {1, ..., T}. The purpose of this partitioning is to ensure that the choice responses

yt in each index set Ψ` are independent, so that we can apply the normality result of the

MLE in Theorem 2.3 to samples in each index set Ψ` separately.

Algorithm 4 supCB-MNL
1: Input: T , initialization T0, confidence radius β

2: Initialization: for t ∈ [T0]

3: randomly choose St with |St| = K

4: set L = b1
2 log2 T c, and Ψ0 = · · · = ΨL = ∅.

5: for all T0 = τ + 1 to T do

6: Initialize A1 = S and ` = 1

7: while St is empty do

8: (a). Run baseCB-MNL with A`, β and Ψ` ∪ [T0] to compute θ̂(`)
t , m(`)

ti , w
(`)
ti , W

(`)
t

9: (b). If W(`)
t ≤ 1√

T
,

10: set St = argmaxS∈A` Rt(S, θ̂(`)
t ) based on {m(`)

ti }

11: update Ψ0 = Ψ0 ∪ {t}

12: (c). Else if W(`)
t > 2−`,

13: set St = argmaxS⊆A`
∑
i∈S w

(`)
ti

14: update Ψ` = Ψ` ∪ {t}

15: (d). Else if W(`)
t ≤ 2−`,

16: computeM(`)
t = maxS∈A` Rt(S, θ̂(`)

t ) based on {m(`)
ti }

17: A`+1 =
{
S ∈ A` : Rt(S, θ̂(`)

t ) ≥M(`)
t − 2−`+1

}
18: `← `+ 1

19: end while

20: end for

In each round of supCB-MNL (Algorithm 4), the decision-making agent screens the
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candidate assortments based on the value of wti = α‖xti‖V −1
t

for items in assortments in

A` through epochs ` = 1, ..., L until an assortment St is chosen. We describe each step of

the inner-loop over these epochs for a given round.

• Sub-routine: In step (a), we run baseCB-MNL (Algorithm 3) which uses the normality

result of the MLE (Theorem 2.3) to compute m(`)
ti and w(`)

ti for all i, W(`)
t , and θ̂(`)

t .

We can apply Theorem 2.3 here since samples in each index set {yt, t ∈ Ψ`} are

independent of each other given the feature vectors for each Ψ` (see Lemma 2.8).

• Exploitation: In step (b), if the maximal confidence interval W(`)
t is sufficiently

small, i.e., smaller than 1√
T
, for all possible candidate sets, then we perform pure

exploitation. This step’s contribution to the total regret will be small since we have

well-concentrated estimated utilities for all items.

• Exploration: In step (c), if there is a set that has a large enough confidence interval

(larger than 2−`), then we choose a set has the maximal uncertainty. Then we

update the index set Ψ` to include the time-stamp t.

• Pruning: Finally, step (d) is a pruning step, where we remove clearly sub-optimal

sets and keep the sets which are possibly optimal.

If the algorithm does not choose St in epoch `, then it moves on to the next epoch

` + 1 and repeats the process until St is chosen either via the exploitation step in (b) or

via the exploration step in (c). Note that when maximizing the expected revenue Rt(S, θ̂)

in step (b) or in step (d), it uses the expected revenue defined in (2.2) replacing θ∗ with

the current estimator θ̂(`)
t — notice that we use the expected revenue Rt(S) in supCB-MNL,

rather than the optimistic expected revenue R̃t(S) used in UCB-MNL (Algorithm 1).

The following result (which is adapted from Lemma 14 of Auer (2002)) shows that the

samples collected from Algorithm 4 in each index set Ψ` are independent.
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Lemma 2.8 (Lemma 4 in Li, Lu, and Zhou (2017)). For all ` ∈ [L] and t ∈ [T ], given

the set of feature vectors in index set Ψ`, {[xti]i∈St , t ∈ Ψ`}, the corresponding choice

responses {yt, t ∈ Ψ`} are independent random variables.

2.5.1 Regret Bound for supCB-MNL Algorithm

Independent samples ensured by the master algorithm supCB-MNL and Lemma 2.8 enable

us to apply the non-asymptotic normality result in Theorem 2.3 separately to samples in

each index set Ψ`. We present the following regret bound of supCB-MNL (Algorithm 4).

Theorem 2.4 (Regret bound of supCB-MNL). Suppose Assumptions 2.1 and 2.2 hold, we

run supCB-MNL for T ≥ T̃ rounds, where

T̃ = Ω
(

log2 (TN log2 T )
K2κ8d

+ d3

K2κ8

)
(2.10)

with initialization T0 =
√
dT and confidence width β = 5

κ

√
log(TN log2 T ). Then, the

cumulative expected regret of the algorithm is upper-bounded by

R(T ) = O
(√

dT log(T/d) log(TN log2 T ) log2 T
)
.

Discussion of Theorem 2.4. Theorem 2.4 establishes the regret bound of Õ(
√
dT )

for supCB-MNL. Ω(
√
NT ) lower bound was shown in Chen and Wang (2017) for the non-

contextual MNL bandits. This lower bound can be translated to Ω(
√
dT ) if each item is

represented as one-hot encoding. Hence, the regret bound in Theorem 2.4 matches the

lower bound for the MNL bandit problem with finite items. To our knowledge, this is the

first result that achieves the rate of Õ(
√
dT ) regret and establishes the provable optimal-

ity (up to logarithmic fators) in the MNL contextual bandit problem. Comparing with

Theorem 2.1 for UCB-MNL (Algorithm 1) as well as its online update variant (Algorithm 2),
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which are near-optimal in the case of infinitely large item set (or exponentially large N),

the improvement of
√
d factor comes from directly controlling the utility estimation error

using Theorem 2.3. Note that the regret bound in Theorem 2.4 has a logarithmic depen-

dence on N , therefore supCB-MNL is not applicable to a case where there are an infinite

number of total items. While provably optimal, however, supCB-MNL is not a practical

algorithm as one may expect from the design of the algorithm (common issue for almost

all
√
dT regret algorithms that follows the framework of Auer (2002)). We discuss this

aspect further in Section 2.6.

2.5.2 Proof Outline of Theorem 2.4

Note that we want to ensure that the concentration result of the prediction error in

Theorem 2.3 holds for all items i ∈ [N ] and for all rounds t ∈ [T ] including the inner

loop (epochs) in Algorithm 4; hence for all ` up to L = O(log2 T ). Thus, we choose the

confidence radius to be β = 5
κ

√
log(TN log2 T ). Then with probability at least 1− 3

TN log2 T
,

we would have for each i, `, and t,

|m(`)
ti − xtiθ∗| ≤ w

(`)
ti (2.11)

if the independence condition and the minimum eigenvalue condition of Theorem 2.3 are

satisfied. Then we can use the union bound to show this concentration holds jointly for

all items and all rounds (including the inner loops) with high probability. Now, we know

that the independence requirement is satisfied by supCB-MNL (as shown in Lemma 2.8)

that produces independent sample for each index set Ψ`. For the minimum eigenvalue

condition, we need to ensure that

λmin(VT0) ≥ Ω
(

max
{

(d+ log(TN log2 T ))2

κ4 log(TN log2 T ) ,
d+ log(TN log2 T )

κ4

})
(2.12)
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for sufficiently large T . For T ≥ T̃ satisfying the condition in (2.10), we can run the

random initialization for T0 = Θ(
√
dT ) to ensure (2.12) with high probability. Given this

minimum eigenvalue guarantee and the concentration result in (2.11), we decompose the

regret into to two disjoint parts — the regret incurred when an assortment is selected

for exploitation (step (b) in Algorithm 4) and the regret for exploration (step (c) in

Algorithm 4). We show the cumulative regret coming from step (b) is small since the

utility estimates are already “accurate” in this case. We also show that even when we

take an exploratory action in step (c), the regret incurred by such an action is not too

large due to the concentration result accompanied by the pruning procedure in step (d).

See Appendix A.4 for the full proof.

2.6 Practical Algorithm with Sublinear Dependence

on Feature Dimension

We have shown that supCB-MNL establishes the provable optimality with Õ(
√
dT ) regret

in the MNL contextual bandit problem. However, this comes at a cost. supCB-MNL

(Algorithm 4), although provably optimal, is not practical (see Section 2.8). In fact,

this is true for all methods (Chu et al., 2011; Li, Lu, and Zhou, 2017; Zhou, Xu, and

Blanchet, 2019) that rely on the Auer-framework (Auer, 2002) because the framework

wastes too many samples with random exploration — we verify this issue for supCB-MNL

in the numerical experiments in Section 2.8.4 Furthermore, the adaptation of the Auer-

framework to the MNL contextual bandit problem creates an additional computational

bottleneck where pruning sub-optimal candidate assortments (step (d) in Algorithm 4)

can be computationally expensive.
4The previous methods (Chu et al., 2011; Li, Lu, and Zhou, 2017; Zhou, Xu, and Blanchet, 2019) that

use techniques in Auer (2002) do not provide numerical evaluations.
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In this section, we investigate whether Õ(
√
dT ) regret can be achieved in a practical

manner for a class of the MNL contextual bandit problem where the revenue for each item

is uniform. As briefly mentioned earlier, this is one of the most common classes used in

various applications including web search engines and most recommender systems.

Algorithm 5 DBL-MNL
1: Input: sampling parameter qk, confidence radius βk
2: Set τ1 ← d, t← 1, V0 ← 0d×d
3: Initialization: for t ∈ [d]

4: Randomly choose St ∈ S with |St| = K

5: Vt ← Vt−1 +∑
i∈St xtix

>
ti

6: for each episode k = 2, 3, ... do

7: Set the last round of k-th episode: τk ← 2k−1

8: Compute MLE θ̂k by solving ∑τk−1
t=τk−2+1

∑
i∈St

(
pt(i|St, θ̂k)− yti

)
xti = 0

9: Update Wk−1 ← Vτk−1+1; Reset Vτk−1+1 ← 0d×d
10: for each round t = τk−1 + 1, ..., τk do

11: if τk − t ≤ qk and λmin(Vt) ≤ Kqkσ0
2 then

12: Randomly choose St ∈ S with |St| = K

13: else

14: Offer St = argmaxS∈S R̃t(S)

15: end if

16: Update Vt+1 ← Vt +∑
i∈St xtix

>
ti

17: end for

18: end for
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2.6.1 Algorithm: DBL-MNL

We propose a new algorithm, DBL-MNL (Algorithm 5), that achieves a sublinear dependence

on feature dimension d and is practical. The algorithm starts with a short initialization

perioid to ensure the invertibility of Vt. Then, DBL-MNL operates in an episodic manner. At

the beginning of each episode, the MLE is computed using the samples from a previous

episode. Within an episode, the parameter is not updated, but the algorithm takes

an UCB action based on the parameter computed at the beginning of the episode. In

particular, for round t in the k-th episode, the optimistic utility estimate is computed as

z̃ti = x>ti θ̂k + βk‖xti‖W−1
k−1

where Wk−1 =
τk−1∑

t′=τk−1+1

∑
i∈St′

xt′ix
>
t′i (2.13)

and τk−1 is the last period of the (k − 1)-th episode . Note that the Gram matrix Vt

resets at the beginning of each episode. Under this action selection, samples within each

episode are independent of each other. Episode lengths are doubled over time such that

the length of the k-th episode is twice as large as that of the (k−1)-th episode for each k.

This doubling technique is inspired by Jaksch, Ortner, and Auer (2010) and Javanmard

and Nazerzadeh (2019), but surprisingly has not been used much in the contextual bandit

literature. Towards the end of each episode, the algorithm checks whether λmin(Vt) is

suitably large. If not, it performs random exploration. Since episode lengths are growing

exponentially and the threshold for λmin(Vt) is only logarithmic in t, even in the worst case,

the algorithm draws O(log2 T ) random samples. Note that the algorithm may not even

take these exploratory actions since λmin(Vt) may already surpass the threshold for long

enough episodes (this is clearly observed in numerical evaluations). This makes DBL-MNL

much more practical since it would perform minimal random exploration. Furthermore,

the algorithm is computationally efficient with only logarithmic number of parameter

updates instead of updating in every period.
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2.6.2 Regret Bound for DBL-MNL Algorithm

We analyze the regret bound of DBL-MNL for which we aim to establish Õ(
√
dT ) regret. For

our analysis, we first present the following assumption which is similar to Assumption 2.1.

Assumption 2.3. Each feature vector xti is drawn i.i.d. from an unknown distribution pX

with ‖xti‖ ≤ 1 all t, i and there exists a constant σ0 > 0 such that λmin
(
E
[
xtix

>
ti

])
≥ σ0.

Assumption 2.3 assumes that feature vectors are i.i.d. across items in each round,

which is slightly stronger than Assumption 2.1. As mentioned earlier, this assumption is

the standard assumption in the MNL contextual bandit literature (e.g., Chen, Wang, and

Zhou 2018). We also add the following assumption on feature vectors which encompasses

many canonical distributions.

Assumption 2.4 (Relaxed symmetry). For a joint distribution pX , there exists ρ0 <∞

such that pX(−x)
pX(x) ≤ ρ0 for all x.

This assumption is also used in the analysis of sparse contextual bandits (in Chapter 4)

which states that the joint distribution pX can be skewed but this skewness is bounded.

For symmetrical distributions, Assumption 2.4 holds with ρ0 = 1. One can see that a

large class of continuous and discrete distributions satisfy Assumption 2.4, e.g., Gaussian

distribution, truncated Gaussian distribution, uniform distribution, and Rademacher dis-

tribution, and many more. Under this suitable regularity, we establish the following regret

bound for DBL-MNL.

Theorem 2.5 (Regret bound of DBL-MNL). Suppose Assumptions 2.3-2.4 hold, ri ≡ r is

uniform for all i ∈ [N ], and we run DBL-MNL with βk = 5
κ

√
log(τkN/2) and

qk = 2
σ0K

max
{

9D4
k

κ4 log(τkN/2) ,
144D2

k

κ4

}

41



Chapter 2: UCB Algorithms for MNL Contextual Bandits

where Dk = min
{

4
√

2d+ log(τkN/2),
√
d log(τk/d) + 2 log(τkN/2)

}
. Then the cumulative

expected regret of DBL-MNL over horizon T is upper-bounded by

R(T ) = O
(√

dT log(T/d) log(TN) log2 T
)
.

Discussion of Theorem 2.5. DBL-MNL achieves Õ(
√
dT ) regret when the revenue

for each item is uniform. Theorem 2.5 provides insights beyond the MNL contextual

bandits: it shows that under the suitable regularity condition, it is possible for a practical

algorithm to attain Õ(
√
dT ) regret. We expect this technique to yield practical provably

optimal algorithms for other variants of contextual bandit problems. Similar to the regret

bound of supCB-MNL (Theorem 2.4), DBL-MNL has a logarithmic dependence on N (as is

common for many Õ(
√
dT ) regret algorithms (Chu et al., 2011; Li, Lu, and Zhou, 2017)).

In fact, the numerical experiments in Section 2.8 suggest that the performance of DBL-MNL

does have at least a logarithmic dependence on N .

Remark 2.2. Note that DBL-MNL (Algorithm 5) can still be used in non-uniform revenue

settings although we establish the regret bound for the uniform revenues in Theorem 2.5.

The uniform revenue setting that we consider in the regret analysis of DBL-MNL is an

important problem class that still embeds the full statistical complexity of the MNL con-

textual bandit problem. This setting can be also considered as the top-K selection problem

(Cao et al., 2015) as far as action selection is concerned since the agent selects K items

with the highest estimated utilities for the user. (Recall that, in the non-uniform rev-

enue setting, the size of the optimal assortment may be smaller than the assortment size

constraint K.) However, this uniform revenue setting is still more difficult than other

variants of combinatorial (contextual) bandits such as semi-bandits and cascading bandits

in that top-K offering in this version of the MNL contextual bandit problem still takes the

substitution effect into account. This problem class is particularly important because of its
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wide range of applications. For example, in many recommender systems, the agent’s goal

is to maximize the click-through rate (CTR) on its service where each click is weighted

uniformly. An interesting aspect of the uniform revenue setting is that the combinatorial

optimization step for assortment selection reduces to a sorting task based on estimated util-

ities in our proposed algorithms, making the assortment selection procedure much more

computationally efficient.

2.6.3 Proof Outline of Theorem 2.5

Since the length of an episode grows exponentially, the number of episodes up to round

T is logarithmic in T . In particular, the T -th round belongs to the L-th episode with

L = blog2 T c + 1. Let Tk := {τk−1 + 1, ..., τk} denote an index set of rounds that belong

to the k-th episode. Note that the length of the k-th episode is |Tk| = τk/2. Then, we let

Reg(k-th episode) denote the cumulative regret of the k-th episode, i.e.,

Reg(k-th episode) := E

∑
t∈Tk

(
Rt(S∗t , θ∗)−Rt(St, θ∗)

)

so that the cumulative expected regret over T rounds is R(T ) = ∑L
k=1 Reg(k-th episode).

Therefore, it suffices to bound each Reg(k-th episode). Now, for each episode k ∈ [L], we

consider the following two cases.

(i) |Tk| ≤ qk: In this case, the length of an episode is not large enough to have the

concentration of the prediction error due to the failure of ensuring the lower bound

on λmin(Vt). Therefore, we cannot control the regret in this case. However, the total

number of such rounds is only logarithmic in T , hence the regret corresponding to

this case contributes minimally to the total regret.

(ii) |Tk| > qk: We can apply the fast convergence result in Theorem 2.3 as long as the

lower bound on λmin(Vt) is guaranteed — note that the independence condition is
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already satisfied since samples in each episode are independent of each other. We

show that λmin(Vt) grows linearly as t increases in each episode with high probability.

In case of λmin(Vt) not growing as fast as the rate we require, we perform random

sampling to satisfy this criterion towards the end of each episode. Therefore, with

high probability, the lower bound on λmin(Vt) becomes satisfied.

For case (i), clearly qk ≤ qL for any k ∈ {1, ..., L}. |Tk| eventually grows to be larger

than qL for some k since qL is logarithmic in T . Let k′ be the first episode such that

|Tk′ | ≥ qL. Hence, |Tk′ | ≤ 2qL. Thus, the cumulative regret prior to the k′-th episode is

k′−1∑
k=1

Reg(k-th episode) ≤
k′−1∑
k=1
|Tk| = |Tk′| ≤ 2qL = O

(
log d+ d2 + log2(TN)

)
.

Then, letting k′′ be the first episode such that |Tk′′ | ≥ qk′′ and noting that k′′ ≤ k′ gives

k′′−1∑
k=1

Reg(k-th episode) ≤
k′−1∑
k=1

Reg(k-th episode) .

Hence, the cumulative regret corresponding to case (i) is at most poly-logarithic in T .

For case (ii), it suffices to show random sampling ensures the growth of λmin(Vt). We

show that random sampling with duration qk specified in Theorem 2.5 ensures the mini-

mum eigenvalue condition for the Gram matrix, i.e., λmin(Vτk) ≥ max
{

9D4
k

κ4 log(τkN/2) ,
144D2

k

κ4

}
with high probability (see Lemma A.11) for each episode k ∈ [L]. We then apply the con-

fidence bound in Theorem 2.3 to the k-th episode which requires samples in the (k−1)-th

episode are independent and λmin(Vτk−1) at the end of the (k − 1)-th episode is large

enough. That is, with a lower bound guarantee on λmin(Vτk−1) and the fact that samples

are independent of each other within each episode, we have with high probability

|x>ti(θ̂k − θ∗)| ≤ βk‖xti‖W−1
k−1
, ∀i ∈ [N ], ∀t ∈ Tk
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with suitable confidence width βk specified in Theorem 2.5. Therefore, the expected regret

in the k-th episode can be bounded by Õ(
√
dτk). Then we combine the results over all

episodes to establish Õ(
√
dT ) regret.

2.7 Extensions to Position Dependent Offering

In many real-world applications, the choices of items are affected by not only their utilities

but also the positions where they are displayed in the offered assortment (Ghose, Ipeirotis,

and Li, 2014). For example, in an online recommendation platform or a web store, items

displayed at the top of the user interface or the web page are more likely to be clicked

or purchased than those displayed at the bottom. Similarly, in a brick-and-mortar store,

items displayed in upper-shelf positions often receive more attention than those displayed

in lower-shelf positions. The effect of the display positions is usually unknown a priori.

In our proposed framework, we can easily incorporate display position effect by in-

cluding a categorical variable indicating the display position. Hence, we need to estimate

parameters corresponding to each display position. Suppose there are K distinct dis-

play positions. Let ztik denote the upper confidence utility for item i in round t in

display position k ∈ [K] and let wtik := exp(ztik). Then the optimal assortment choice

St = {(i, k) ∈ [N ] × [K] : φtik = 1} can be given by the solutions of the following

optimization problem:

max
∑

i∈[N ],k∈[K]

rtiwtikφtik
1 +∑

ik wtikφtik

s.t.
∑
i

φtik ≤ 1 ∀k ∈ [N ]

∑
k

φtik ≤ 1 ∀i ∈ [N ]

φtik ∈ {0, 1} ∀i ∈ [N ], k ∈ [K]

(2.14)
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where φtik is the decision variable indicating item i is displayed at position k at round t.

Note that the constraints satisfy that each position displays at most 1 item, and each

item is displayed at most once.

Proposition 2 (Davis, Gallego, and Topaloglu 2013). The optimal position dependent

assortment can be computed by solving a linear programming.

Note that Lemma 2.4 and 2.5 continue to hold for this problem setting. Therefore, our

proposed algorithms extend to the setting of position dependent offering with the same

order of regret bounds.

Comparisons with previous methods on position-dependent offering. The

non-contextual setting in (Agrawal et al., 2019; Agrawal et al., 2017) can be extended to

incorporate position dependence; however, unlike in the setting here, the agent must offer

every item in each position to learn the effect of display position. Therefore, the extension

would create at least linearly increased amount of learning to their algorithms that are

already not scalable for a large number of items, i.e., large N . On the other hand, our

proposed methods are able to learn the position effect across items with a simple extension

as discussed earlier. In Chen, Wang, and Zhou (2018), it is possible to include a categorical

variable corresponding to display position as part of features; however, this will result in a

further exponential increase in computational complexity. Moreover, their method cannot

exploit that fact that the assortment optimization problem is a linear programming.

2.8 Numerical Experiments

In this section, we evaluate the performances of our proposed algorithms UCB-MNL (Algo-

rithm 1), supCB-MNL (Alogirhtm 4), and DBL-MNL (Algorithm 5) in numerical experiments.

In our evaluations, we report the cumulative regret for each round t ∈ {1, ..., T}. For each

experimental configuration, we evaluate the algorithms on 20 independent instances and
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report average performances. In each instance, the underlying parameter θ∗ is sampled

from the d-dimensional uniform distribution, with each element of θ∗ uniformly distributed

in [0, 1]. The underlying parameters are fixed during each problem instance but not known

to the algorithms. For efficient evaluations, we consider uniform revenues, i.e., rti = 1 for

all i and t. Therefore, the combinatorial optimization step to solve for the optimal as-

sortment reduces to sorting items according to their utility estimate. Also, recall that the

regret bound for DBL-MNL (Theorem 2.5) is derived under the uniform revenue assump-

tion, therefore, the uniform revenue setting provides a suitable test bed for all methods

considered in this chapter.

Comparison with the existing method. We compare our proposed algorithms

with the existing UCB algorithm for the MNL contextual bandit algorithm MLE-UCB

(Chen, Wang, and Zhou, 2018). Since MLE-UCB is an exponential-time algorithm that

enumerates entire
(
N
K

)
assortments, we conduct experiments with relatively small N and

K for this comparison: N ∈ {20, 40} and K = 3. For this experiment, we consider

two multivariate distributions for feature vectors: a Gaussian distribution and a uniform

distribution. For a multivariate Gaussian distribution, we draw each feature vector xti

independently from N (0d, 0.5Id). For a uniform distribution, we sample each feature

vector xti uniformly at random from hypercube [−1, 1]d.

In Figure 2.1, we report the cumulative regrets of the algorithms averaged over 20

runs. The error bars represent standard deviations. In the first row, the plots show

the experiment results based on feature vectors drawn from the multivariate Gaussian

distribution. The second row shows the results with feature vectors drawn from the

uniform distribution. In terms of cumulative regret, the performances of UCB-MNL and

DBL-MNL are comparable to the existing method, MLE-UCB. While UCB-MNL shows slightly

superior performances compared to MLE-UCB and DBL-MNL with the uniformly distributed

features, DBL-MNL shows superior performances in the setting of multivariate Gaussian
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Figure 2.1: Evaluations of UCB-MNL (Algorithm 1), supCB-MNL (Algorithm 4), DBL-MNL
(Algorithm 5), and MLE-UCB (Chen, Wang, and Zhou, 2018). Each plot shows the t-round
cumulative regret as a function of t averaged over 20 runs. In the firs row, the features are
drawn from a multivariate Gaussian distribution. In the second row, features are drawn
from a uniform distribution in a hypercube.

features. However, the differences between the performances of the algorithms mostly

appear to be within the standard deviations. As expected, supCB-MNL that relies on

the framework of Auer (2002) is not competitive, wasting too many samples for random

exploration. Therefore, supCB-MNL does not serve as a practical solution for this problem

even though it is theoretically optimal.

We also conduct the run-time evaluations for the algorithms. We report the results in

Table 2.1. We observe that DBL-MNL is significantly more efficient compared to the other

methods computationally due to its logarithmic number of parameter updates. UCB-MNL

also shows competitive performances in run-time. MLE-UCB suffers significantly in terms
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N = 20 N = 40
Method t = 500 t = 1000 t = 500 t = 1000
MLE-UCB 355.35 953.14 1932.04 4177.92
UCB-MNL 1.43 3.35 1.52 3.74
supCB-MNL 2.38 28.65 2.45 42.27
DBL-MNL 0.18 0.30 0.19 0.33

Table 2.1: Run-time evaluations (in seconds) with instances N ∈ {20, 40}, K = 3, d = 5.
The reported run-times are averaged over 20 runs.

of computational cost even in these reasonably small-scale problem instances since it

requires to compute upper confidence bounds for all combinatorially many assortments.

Furthermore, as the number of items increases, we observe that the run-time of MLE-UCB

grows exponentially, hence suggesting that the MLE-UCB algorithm is not suitable for

large-scale problem instances. Overall, these experiments show that both UCB-MNL and

DBL-MNL can learn to find the optimal policy efficiently in terms of both statistical and

computational perspectives.

Impact of total number of items N . We have observed that our proposed algo-

rithms, UCB-MNL and DBL-MNL, exhibit superior performances in the small-scale instances.

We now examine whether their performance is consistent as we scale the problem setting.

In particular, we examine the impact of the total number of items on the performance

of the algorithms. We vary the value of N ∈ {800, 1600, 3200} while keeping the other

problem parameters fixed, K = 5 and d = 5. Figure 2.2 shows the performances of

UCB-MNL, DBL-MNL, and supCB-MNL. The results suggest that UCB-MNL is most robust to

the changes in the size of the item set N , showing almost no effect on the cumulative

regret even for a very large N . DBL-MNL, on the other hand, is affected by the number of

items, showing the deterioration in the cumulative regret performances, which appears to

be consistent with our theoretical findings in the regret bound of DBL-MNL — recall that

the regret bound of DBL-MNL in Theorem 2.5 has a logarithmic dependence on N .
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Figure 2.2: Evaluations of UCB-MNL (Algorithm 1), supCB-MNL (Algorithm 4), and
DBL-MNL (Algorithm 5) in MNL contextual bandits. The plots show t-round regret as
a function of t with varying N ∈ {800, 1600, 3200}.
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Figure 2.3: Evaluations of UCB-MNL (Algorithm 1), supCB-MNL (Algorithm 4), and
DBL-MNL (Algorithm 5) in MNL contextual bandits. The plots show t-round regret as
a function of t with varying d ∈ {5, 10, 20}.

Impact of feature dimension d. Now, we examine the impact of the feature di-

mension by varying d ∈ {5, 10, 20} while keeping the other parameter fixed, N = 100 and

K = 5 . Figure 2.3 shows the cumulative regrets in these experiments. We again observe

that UCB-MNL shows the best performance among the algorithms we compare. However,

as the feature dimension increases, the performance of DBL-MNL stays almost the same

showing robust performance with respect to changes in the feature dimension whereas

the performance of UCB-MNL is slightly affected by an increase in the feature dimension.

Nevertheless, we observe that UCB-MNL is still able to find the optimal policy in a few

hundred rounds. A better scalability in d An interesting observation is that the regret

of UCB-MNL appears to scale better than a linear dependence on d (as suggested by the

regret bound of UCB-MNL in Theorem 1).
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2.9 Concluding Remarks

In this chapter, we studied a sequential assortment selection problem, where the user

choice is given by the MNL choice model whose parameter is unknown to the decision-

making agent. This assortment selection problem is a fundamental sequential learning

problem that embeds the core statistical and computational challenges of many real-

world applications. Despite the wide applicability of the problem setting, the existing

methods fall short in terms of tractability and scalability. We investigate practical UCB

algorithms for this problem and establish near-optimal regret bounds. To establish a

sharper regret bound, we present a non-asymptotic confidence bound for the maximum

likelihood estimator of the MNL model that may be of independent interest as its own

theoretical contribution. Our algorithms proposed in this chapter improve the state-of-

the-art both in terms of statistical and computational efficiency, and are significantly

morel practical than the existing methods.
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Thompson Sampling for

MNL Contextual Bandits

In multi-armed bandit problems, UCB methods maintain a confidence set for the unknown

parameter; and choose the most optimistic parameter from this set in each step, and pull

the optimal arm corresponding to this optimistic parameter value. The confidence set

is updated based on the reward feedback which is revealed after an arm is pulled. On

the other hand, Thompson sampling (TS) assumes a prior distribution over the unknown

parameter defining the reward distribution. At each step, a parameter value is sampled

from the posterior distribution, and an optimal arm corresponding to a sampled parameter

is pulled. Upon observing the reward for each round, the posterior distribution is updated

via Bayes’ rule. TS has been successfully applied in a wide range of settings (Strens, 2000;

Chapelle and Li, 2011; Agrawal and Goyal, 2012; Russo et al., 2018).

While UCB algorithms are simple to implement and analyze, and come with good

regret bounds (Li et al., 2010), TS has been shown to achieve better empirical performance

in many simulated and real-world settings without sacrificing simplicity (Chapelle and Li,

2011; Kaufmann, Korda, and Munos, 2012). However, the analysis of TS is generally

52



Chapter 3: Thompson Sampling for MNL Contextual Bandits

considered more challenging than that of UCB algorithms. In order to bridge this gap,

many recent studies have been focused on the analysis of worst-case regret and Bayesian

regret in TS approaches for both contextual bandits and reinforcement learning settings

(Agrawal and Goyal, 2013; Agrawal et al., 2017; Russo and Van Roy, 2014; Abeille,

Lazaric, et al., 2017). The main technical difficulty in analyzing regret of a TS algorithm

lies in controlling the deviation introduced by the randomness in the algorithm. This step

is made more challenging by the combinatorial action selection of the MNL contextual

bandit problem. In this chapter, we present TS algorithms for the MNL contextual bandit

problem. To our knowledge, these are the first TS algorithms with regret guarantees for

this problem. An overview of this chapter is as follows:

(a) In Section 3.3, we propose a TS algorithm, TS-MNL (Algorithm 6), that maintains a

posterior distribution of the unknown parameter of the MNL model and establish

Õ(d
√
T ) Bayesian regret.

(b) In Section 3.4, we discuss challenges that arise in the worst-case regret analysis of

TS based methods for the MNL contextual bandits. The challenges discussed here

may also apply to other combinatorial bandits.

(c) In Section 3.5, we propose a modified algorithm, TS-MNL with “optimistic sampling”

(Algorithm 7). This algorithm approximates the posterior by a Gaussian distri-

bution and uses optimistic sampling procedure to address the issues that arise in

worst-case regret analysis. We establish Õ(d3/2
√
T ) worst-case (frequentist) regret

bound for this algorithm.

The additional
√
d factor in the worst-case regret of the second algorithm results from

controlling the random sampling associated with TS, and is consistent with the results in

TS methods for linear bandits (Agrawal and Goyal, 2013; Abeille, Lazaric, et al., 2017).

Both regret bounds are independent of candidate item set size N , which implies that our
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TS algorithms can be applied to a large item set. The TS algorithms that we propose

in this chapter are efficient to implement as long as the assortment optimization step

is solved efficiently, for which our TS algorithms can exploit efficient polynomial-time

algorithms (Rusmevichientong and Tsitsiklis, 2010; Davis, Gallego, and Topaloglu, 2013).

To our knowledge, the worst-case regret analysis in this chapter is the first result for a

TS algorithm for any combinatorial variant of contextual bandits.

3.1 Related Work

In addition to the literature discussed in Section 2.1, we briefly discuss the literature on

TS for contextual bandits. Agrawal and Goyal (2013) define TS for linear contextual

bandit as a Bayesian algorithm where a Gaussian prior over the unknown parameter is

updated according to the observed rewards, a random sample is drawn from the posterior,

and the corresponding optimal arm is selected in each round. Agrawal and Goyal (2013)

classify actions (or items in our case) as saturated and unsaturated depending on whether

their standard deviation is smaller or bigger than their gap to the optimal action. While

for unsaturated actions the regret is related to their standard deviation that decreases

over time, they prove that TS has a small (but constant) probability to select saturated

actions. They show Õ(d3/2
√
T ) worst-case regret bound. Following the work of Agrawal

and Goyal (2013), Abeille, Lazaric, et al. (2017) show that a TS algorithm does not

need to sample from an actual Bayesian posterior distribution and that any distribution

satisfying suitable concentration and anti-concentration properties guarantees a small

regret and provide an alternative proof of TS achieving the same regret bound Õ(d3/2
√
T ).

However, these results in (generalized) linear contextual bandits (either UCB or TS) do

not apply directly to our MNL contextual bandit problem, since the choice probability of

an item in an assortment is non-linear and non-monotone in the MNL parameter.
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In the personalized MNL-bandit problem where independent parameters are assumed

for each item, Cheung and Simchi-Levi (2017b) propose a TS approach. However, they

only provide the Bayesian regret which is relatively easier to analyze compared to the

worst-case regret (we discuss this aspect in Section 3.4), and their method (as well as

other personalized MNL bandit methods) considers learning N separate parameters for

each of the items; hence it is not scalable for a large item set (i.e., large N).

3.2 Worst-Case and Bayesian Regret

The problem setting in this chapter is identical to the setting in Chapter 2.1 We refer

the reader to Section 2.2 for the problem formulation of the MNL contextual bandits. As

before, let S∗t be the optimal assortment in round t under full information if θ∗ is known:

S∗t = argmax
S∈S

Rt(S, θ∗) .

The performance of an algorithm is measured by the regret, the gap between the expected

revenue generated by the assortment St chosen by the algorithm and that of the optimal

assortment S∗t under the true parameter θ∗. We define the (worst-case) cumulative ex-

pected regret as

R(T, θ∗) =
T∑
t=1

E
[
Rt(S∗t , θ∗)−Rt(St, θ∗) | θ∗

]
where Rt(S∗t , θ∗) is the expected revenue corresponding to the optimal assortment in round

t, and the expectation is taken over randomness in feature vectors and noise as well as

possible randomization in a learning algorithm. When it is clear that we condition on a

fixed θ∗, we denote R(T ) := R(T, θ∗) in the rest of the chapter. In Bayesian settings, i.e.,

when θ∗ is randomly generated or the learning agent has a prior belief in θ∗, the Bayesian
1For regret analysis, however, we use a slightly different set of assumptions. See Section 3.3.1.
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cumulative regret (Russo and Van Roy, 2014) over T horizon is defined as

RBayes(T ) = Eθ∗ [R(T, θ∗)] =
T∑
t=1

E
[
Rt(S∗t , θ∗)−Rt(St, θ∗)

]

where the expectation is taken also over the distribution of θ∗. In other words, RBayes(T )

is a weighted average of R(T, θ∗) under the prior on θ∗.

3.3 Algorithm: TS-MNL

In this section, we describe TS-MNL, our first TS algorithm for the MNL contextual bandit

problem, and establish an upper bound on its Bayesian regret. TS-MNL follows the basic

procedure of TS which maintains a posterior on the unknown parameter and updates the

posterior when a new feedback is obtained.

We first provide the definition of the posterior distribution Qt on the unknown param-

eter θ∗. At the beginning of the learning phase, the agent knows that θ∗ is distributed

according to Q0, the prior distribution. Now, at each round t, the agent has access to

the observations up to round t, Dt = {Xτ , yτ}t−1
τ=1 where Xτ = {xτi}i∈Sτ . Then the agent

combines Q0 and Dt to define the posterior distribution Qt(θ):

Qt(θ) ∝ Q0(θ)p(Dt|θ), where p(Dt|θ) =
t−1∏
τ=1

∏
i∈Sτ∪{0}

(pτi(Sτ , θ))yτi (3.1)

and the “∝” notation hides the partition function
∫
φQ0(φ)p(Dt|φ)dφ in the denominator.

In other words, the posterior distribution is proportional to the product of the prior

distribution and the likelihood function. Note that there is no conjugate prior for the MNL

model. Hence, sampling from Qt is intractable. In order to overcome this intractability,

one may draw an approximate sampling using Markov chain Monte Carlo (Andrieu et al.,

2003). For ease of exposition, we assume that we can sample from posterior Qt(θ) in
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the Bayesian regret analysis. We will later provide a remedy for this intractability in the

modification of our algorithm for the worst-case regret analysis.

Assumption 3.1. We can sample from Qt(θ).

In each round t, TS-MNL algorithm takes three major steps. First, it randomly samples

a parameter θ̃t from the posterior distribution Qt. Second, it computes the assortment

choice St under this sampled parameter θ̃t. Finally, St is offered to the user and feedback

yt is observed. The pseudocode of TS-MNL is presented in Algorithm 6.

Algorithm 6 TS-MNL
1: Input: prior distribution Q0

2: for all t = 1 to T do

3: Observe xti and rti for all i ∈ [N ]

4: Sample θ̃t from the posterior distribution Qt in (3.1)

5: Compute St = argmaxS∈S Rt(S, θ̃t)

6: Offer St and observe yt (user choice at round t)

7: end for

Algorithm 6 has the combinatorial optimization step in Line 5. There are efficient

polynomial-time algorithms available to solve this combinatorial optimization problem

(Rusmevichientong, Shen, and Shmoys, 2010; Davis, Gallego, and Topaloglu, 2013) for

given utility estimates under the sampled parameter. As in the case for the UCB algo-

rithms in Chapter 2, we again assume an access to an optimization method which returns

the assortment choice at time t, St = arg maxS⊂S Rt(S, θ) for a given parameter θ.

3.3.1 Bayesian Regret of TS-MNL

In this section, we provide an upper bound on the Bayesian regret of TS-MNL under the

following standard assumptions.
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Assumption 3.2. ‖xti‖ ≤ 1 for all t and i. Also, ‖θ∗‖ ≤ 1.

This assumption is used to make the regret bounds scale-free for convenience and is

in fact standard in the bandit literature. If ‖xti‖ ≤ C and ‖θ∗‖ ≤ C for some constant C

instead, then our regret bounds would increase by a factor of C.

Assumption 3.3. There exists κ > 0 such that, for every item i ∈ S and any S ∈ S and

all round t, infS∈S,θ∈Rd pti(S, θ)pt0(S, θ) ≥ κ.

This is a common assumption in other MNL contextual bandit literature Cheung

and Simchi-Levi (2017b) and Chen, Wang, and Zhou (2018), and also is equivalent to

a standard assumption in generalized linear contextual bandit literature (Filippi et al.,

2010; Li, Lu, and Zhou, 2017) to ensure the Fisher information matrix is invertible and

is adapted to suit our MNL setting.

Next, we state the Bayesian cumulative regret bound for Algorithm 6 in Theorem 3.1.

We also provide a discussion and a proof outline for the regret bound.

Theorem 3.1 (Bayesian regret of TS-MNL). Suppose we run TS-MNL (Algorithm 6) for

a total of T rounds with assortment size constraint K. Then the Bayesian regret of the

algorithm is upper-bounded by

RBayes(T ) ≤ O(1) +
1
κ

√
2d log

(
1 + TK

d2

)
+ 2 log T +

√
d

κ

 ·
√

2dT log
(

1 + TK

d2

)

= O
(
d
√
T log

(
1 + TK

d2

))
.

Discussion of Theorem 3.1. Theorem 3.1 establishes Õ(d
√
T ) Bayesian regret.

Chen, Wang, and Zhou (2018) established the lower bound Ω(d
√
T/K) for the MNL con-

textual bandits under almost identical settings. When K is small and fixed (which is

typically true in many applications), Theorem 3.1 demonstrates that TS-MNL is almost
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optimal. Furthermore, the regret bound is completely free of N ; hence TS-MNL is appli-

cable to the case of a large number of items (large N). Also, if K ≤ d2, the regret bound

becomes free ofK. In Section 3.5, we introduce modifications to TS-MNL for the worst-case

regret analysis which include the explicit use of regularized MLE for parameter estimation

and sampling from the Gaussian distribution instead of maintaining the actual posterior

to overcome the intractability. The concentration results derived for the Bayesian regret

analysis in this section serve as a building block for the worst-case regret analysis for the

modified algorithm.

The proof outline of Theorem 3.1 is motivated by Russo and Van Roy (2014) and Wen,

Kveton, and Ashkan (2015). We let Ft denote the filtration that contains all observed

information up to the beginning of the t-th round, prior to sampling a parameter in

round t. Then, conditioning on the filtration Ft, the sampled parameter θ̃t and the true

parameter θ∗ are i.i.d. with the posterior distribution Qt in the Bayesian perspective.

Also, the assortment selection step is a deterministic combinatorial optimization and the

feature set {xti}i∈[N ] are fixed given Ft. Hence, conditioning on Ft, St and S∗t are also

i.i.d. Therefore, there is no expected regret due to the random sampling in the Bayesian

perspective. Thus, we only need to control the estimation error of θ∗ for which we utilize

the finite-sample concentration result for the MNL parameter.

3.3.2 Proof of Theorem 3.1: Bayesian Regret Analysis

Recall that θ̃t is independently drawn from the posterior distribution Qt in Algorithm 6

and also note that in the Bayesian setting, conditioned on Ft, the posterior distribution

for θ∗ is given by Qt. Therefore, conditioned on Ft, θ̃t and θ∗t are i.i.d. samples from Qt.

Also note that our optimization oracle is a fixed combinatorial optimization algorithm

and {xti}i∈[N ] are fixed given Ft. Hence, conditioning on Ft, St and S∗ are also i.i.d.
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Confidence Bound for Expected Revenue

We define a upper confidence expected revenue as

Ut(S, θ̂t) =
∑
i∈S rti exp

{
x>ti θ̂t + αt‖xti‖V −1

t

}
1 +∑

j∈S exp
{
x>tj θ̂t + αt‖xtj‖V −1

t

}

where αt > 0 is the confidence width and its value is specified later (Lemma 3.2). Also,

we define Vt = ∑t
τ=1

∑
i∈Sτ xτix

>
τi. Note that this upper confidence expected revenue Ut

is constructed for the sake of the analysis presented in this section and does not affect

the proposed algorithm (or its assortment selection). We first decompose the immediate

regret using Ut.

E[R(t) | Ft] = E
[
Rt(S∗t , θ∗)−Rt(St, θ∗) | Ft

]
= E

[
Rt(S∗t , θ∗)− Ut(S∗t , θ̂t) | Ft

]
+ E

[
Ut(S∗t , θ̂t)− Ut(St, θ̂t) | Ft

]
+ E

[
Ut(St, θ̂t)−Rt(St, θ∗) | Ft

]
.

Notice that E
[
Ut(S∗t , θ̂t)−Ut(St, θ̂t) | Ft

]
= 0 since conditioning on Ft, St and S∗ are i.i.d.

and Ut is a deterministic function. Hence, for the Bayesian cumulative regret, we are left

bound the two quantities R(1)
Bayes(T ) and R(2)

Bayes(T ) as the following:

T∑
t=1

E[R(t) | Ft] =
T∑
t=1

E
[
Rt(S∗t , θ∗)− Ut(S∗t , θ̂t) | Ft

]
︸ ︷︷ ︸

R(1)
Bayes(T )

+
T∑
t=1

E
[
Ut(St, θ̂t)−Rt(St, θ∗) | Ft

]
︸ ︷︷ ︸

R(2)
Bayes(T )

In the following sections, we present the upper-bounds for R(1)
Bayes(T ) and R(2)

Bayes(T ). Then

we combine the results to establish the Bayesian cumulative regret for TS-MNL (Algo-

rithm 6).
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Bounding R(1)
Bayes(T )

Before we present the upper bound forR(1)
Bayes(T ), we introduce the following lemma which

utilizes the structure of the MNL model. Lemma 3.1 shows that the expected revenue Rt

(and hence Ut) has a Lipschitz property, i.e., Lemma 3.1 ensures that we can control the

difference between expected revenues by bounding with maximum difference in utilities.

Lemma 3.1. For any two utility parameters ut = [ut1, ..., utN ] and u′t = [u′t1, ..., u′tN ], we

have ∑
i∈S rti exp (uti)

1 +∑
j∈S exp (utj)

−
∑
i∈S rti exp(u′ti)

1 +∑
j∈S exp(u′tj)

≤ max
i∈S
|uti − u′ti| .

In particular, if uti ≥ u′ti for all i, then

∑
i∈S rti exp (uti)

1 +∑
j∈S exp (utj)

−
∑
i∈S rti exp(u′ti)

1 +∑
j∈S exp(u′tj)

≤ max
i∈S

(uti − u′ti) .

Note that in the statement of Lemma 3.1 we use the explicit form of expected rev-

enues (with generic utility parameters) in order to accommodate both Rt and Ut. Now,

Lemma 3.2 below shows that the true parameter θ∗ lies within an ellipsoid centered at

θ̂t with confidence radius αt. This is the result for the non-i.i.d. finite-sample confidence

bound for the MNL parameter.

Lemma 3.2. Define αt := 1
2κ

√
d log

(
1 + tK

dλ

)
+ 4 log t +

√
λ
κ
. If θ̂t is the solution to the

regularized MLE in (B.1) at round t, then

‖θ̂t − θ∗‖Vt ≤ αt

holds for all t with a probability 1−O
(

1
t2

)
.

If θ∗ is indeed within the confidence region for all t, i.e., if the high probability event

of Lemma 3.2 holds, then one can show that x>ti θ̂t + αt‖xti‖V −1
t
≥ x>tiθ

∗ for all i. Hence,
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Ut(S∗t , θ̂t) is greater than Rt(S∗t , θ∗). Then, R(1)
Bayes(T ) can be upper-bounded by 0. How-

ever, there is a small probability of failure for the confidence region which we need to take

into consideration. The following lemma states the result formally.

Lemma 3.3. Let the upper confidence expected revenue Ut(S∗t , θ̂t) be defined with the

confidence width αt = 1
2κ

√
d log

(
1 + tK

dλ

)
+ 4 log t+

√
λ
κ
. Then, we have

T∑
t=1

E
[
Rt(S∗t , θ∗)− Ut(S∗t , θ̂t) | Ft

]
= O(1).

Bounding R(2)
Bayes(T )

This portion of the regret is controlled by the concentration of the upper confidence

expected revenue Ut(St, θ̂t) to the true expected revenue Rt(St, θ∗). We can first use

Lemma 3.1 to upper-bound R(2)
Bayes(T ) by the expected maximum difference in utilities.

Now, suppose that θ∗ resides within the confidence region with the radius αt for all rounds

t (Lemma 3.2). Then the same holds for the radius αT since αT ≥ αt. Using this fact and

Cauchy-Schwartz inequality, we can further bound R(2)
Bayes(T ) by (3.2).

T∑
t=1

E
[
Ut(St, θ̂t)−Rt(St, θ∗) | Ft

]
≤

T∑
t=1

E
[
max
i∈St

(
x>ti θ̂t + αt‖xti‖V −1

t
− x>tiθ∗

)
| Ft

]

≤ 2αT
T∑
t=1

E
[
max
i∈St
‖xti‖V −1

t
| Ft

]
(3.2)

Then, we are left to control the sum of the expectations in (3.2). Specifically, we provide

a worst-case bound on ∑T
t=1 maxi∈St ‖xti‖V −1

t
for any realization of random variables in

Lemma 3.4, which presents a self-normalized bound.

Lemma 3.4. Define VT = V +∑T
t=1

∑
i∈St xtix

>
ti where V = λId. Then we have

T∑
t=1

max
i∈St
‖xti‖V −1

t
≤
√

2dT log
(

1 + TK

dλ

)
.
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Combining the results of Lemma 3.4 and (3.2), we have

T∑
t=1

E
[
Ut(St, θ̂t)−Rt(St, θ∗) | Ft

]
≤ 2αT

√
2dT log

(
1 + TK

dλ

)
+O(1)

where αT = 1
2κ

√
d log

(
1 + TK

dλ

)
+ 4 log T +

√
λ
κ

and O(1) comes from the failure event of

the concentration of θ̂t in Lemma 3.2.

Combining R(1)
Bayes(T ) and R(2)

Bayes(T )

Combining the bounds for R(1)
Bayes(T ) and R(2)

Bayes(T ), we have

RBayes(T ) ≤ O(1) +
1
κ

√
2d log

(
1 + TK

dλ

)
+ 2 log T +

√
λ

κ

 ·
√

2dT log
(

1 + TK

dλ

)
.

For completeness, we choose λ = d to get the regret bound shown in Theorem 3.1 which

gives the Bayesian regret RBayes(T ) = O
(
d
√
T log

(
1 + TK

d2

))
. Since Algorithm 6 itself

does not use the regularized MLE for parameter estimation, one may optimize over the

choice of λ in the regret bound.

3.4 Challenges in Worst-Case Regret Analysis

TS-MNL (Algorithm 6) is still valid under a frequentist setting, i.e., when the true parameter

is not a random variable but a fixed parameter. However, when analyzing the worst-case

regret (also known as frequentist regret) for the algorithm, the main technical difficulty lies

in controlling the deviation in performance due to the random sampling of the algorithm.

Note that in Bayesian regret analysis, the regret arising from the sampling is not addressed

because θ̃t and θ∗ are i.i.d. conditioned on Ft. However, this does not hold anymore when

θ∗ is fixed; hence the worst-case regret analysis needs to ensure that the deviation due

to sampling is small enough. To see this, we decompose the worst-case immediate regret

63



Chapter 3: Thompson Sampling for MNL Contextual Bandits

into a few components.

R(t) = E[Rt(S∗t , θ∗)−Rt(St, θ∗)]

= E[Rt(S∗t , θ∗)−Rt(S∗t , θ̃t)] + E[Rt(S∗t , θ̃t)−Rt(St, θ̃t)] + E[Rt(St, θ̃t)−Rt(St, θ∗)]

≤ E[Rt(S∗t , θ∗)−Rt(S∗t , θ̃t)] + E[Rt(St, θ̃t)−Rt(St, θ∗)] (3.3)

The inequality comes from the fact that our assortment choice at round t, St, is optimal

under θ̃t; hence Rt(S∗t , θ̃t) ≤ Rt(St, θ̃t). The second term E[Rt(St, θ̃t)−Rt(St, θ∗)] in (3.3) is

relatively easier to control. We can show that the term can be bounded by combining the

upper-bound for the estimation error |x>(θ̂t − θ∗)| and the concentration of the sampling

probability of θ̃t. However, controlling the first term E[Rt(S∗t , θ∗)− Rt(S∗t , θ̃t)] in (3.3) is

more challenging in frequentist analysis. First, note that E[Rt(S∗t , θ∗) − Rt(S∗t , θ̃t)] = 0

in the Bayesian setting since θ∗ and θ̂t are i.i.d. conditioned on Ft as mentioned earlier.

However, this is no longer true in the worst-case regret analysis. In the worst-case regret

analysis of TS, this term is controlled by showing that a sampled parameter is optimistic

frequently enough. In other words, we need to lower-bound the probability of the sampled

parameter being optimistic, i.e., P
(
Rt(S∗t , θ̃t) ≥ Rt(S∗t , θ∗) | Ft

)
≥ p for some parameter

free p > 0.

To describe the challenge in our MNL contextual bandit problem, we present the

following lemma which shows that the expected revenue for the optimal assortment is

monotonically increasing with an increase in the utility estimates.

Lemma 3.5 (Agrawal et al. (2019), Lemma 4.2). Suppose S∗t is the optimal assortment

under the true parameter θ∗ at round t, i.e., S∗t = arg maxS∈S Rt(S, θ∗). Also suppose

that x>tiθ∗ ≤ x>tiθ
′ for all i ∈ S∗t . Then Rt(S∗t , θ∗) ≤ Rt(S∗t , θ′).

Note that Lemma 3.5 shows the monotonicity of expected revenue only for the optimal

assortment and it does not claim that the expected revenue is generally a monotone
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function for all assortments. This lemma implies that we can lower-bound the probability

of having an optimistic expected revenue under the sampled parameter.

P
(
Rt(S∗t , θ̃t) ≥ Rt(S∗t , θ∗) | Ft

)
≥ P

(
x>ti θ̃t ≥ x>tiθ

∗,∀i ∈ S∗t | Ft
)

However, this makes the probability of being optimistic exponentially small in the size of

the assortment S∗t , i.e., exponentially small in O(K), which in turn results in exponential

dependence on O(K) in the worst-case regret bound. In order to overcome such an issue,

we adopt a few modifications in the algorithm which we discuss in the following section.

3.5 TS-MNL with Optimistic Sampling

Motivated by the challenges in the worst-case analysis of TS-MNL discussed in Section 3.4,

we present a variant of TS-MNL, which we call TS-MNL with “optimistic sampling.” The

main modifications in this variant of the algorithm are the posterior approximation by a

Gaussian distribution and optimistic sampling by drawing multiple samples.

Sampling from Gaussian Distribution. We modify our TS algorithm to a generic

randomized algorithm constructed on the regularized MLE rather than sampling from

an actual Bayesian posterior. Abeille, Lazaric, et al. (2017) show that TS does not

need to sample from an actual posterior distribution and that any distribution satisfy-

ing suitable concentration and anti-concentration properties guarantees a small regret.

Specifically, instead of sampling from the posterior Qt, we sample θ̃t from Gaussian dis-

tribution N
(
θ̂t, α

2
tV
−1
t

)
where θ̂t is the regularized MLE, i.e., the solution of (3.4), and

αt is the confidence radius. This way, we ensure tractability of the sampling distribution.

Furthermore, this Gaussian approximation allows us to adopt optimistic sampling (which

we discuss below) in an efficient manner.
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Optimistic Sampling. The optimistic sampling we present here is a key ingredient in

avoiding the theoretical challenges present in the worst-case regret analysis. For optimistic

sampling, instead of drawing a single sample θ̃t, we drawM independent samples {θ̃(j)
t }Mj=1

from N
(
θ̂t, α

2
tV
−1
t

)
(the exact value of M is specified in Theorem 3.2). Then we compute

the optimistic utility estimate ũti for each i ∈ [N ]:

ũti = max
j
x>ti θ̃

(j)
t .

We define R̃t(S) to be the expected revenue of assortment S based on ũti:

R̃t(S) =
∑
i∈S rti exp {ũti}

1 +∑
j∈S exp {ũtj}

Note that this optimistic sampling scheme is different from that proposed in Agrawal

et al. (2017). The setting in Agrawal et al. (2017) is non-contextual, and they use a

1-dimensional Gaussian random variable to correlate the samples of the utility of the K

items in order to ensure the probability that all samples are simultaneously optimistic

is a constant. This correlated sampling reduces the overall variance severely, hence they

propose taking K samples instead of a single sample to increase the variance. In contrast,

we take multiple samples of the multivariate Gaussian distribution to directly ensure that

the probability of an optimistic sample is sufficiently large.

The pseudocode of the modified algorithm is presented in Algorithm 7. The modified

algorithm now explicitly maintains the matrix Vt and computes the regularized MLE θ̂t.

Note that αT can be replaced by αt = O
(√

d log
(
1 + tK

dλ

)
+ 4 log t

)
at round t, if the

horizon T is not known and the analysis holds for either case.
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Algorithm 7 TS-MNL with Optimistic Sampling
1: Input: sample size M , confidence radius αT , penalty parameter λ

2: for all t = 1 to T do

3: Observe xti and rti for all i ∈ [N ]

4: Sample {θ̃(j)
t }Mj=1 independently from N (θ̂t, α2

TV
−1
t )

5: Compute ũti = maxj x>ti θ̃
(j)
t for all i ∈ [N ]

6: Compute St = argmaxS∈S R̃t(S)

7: Offer St and observe yt (user choice at round t)

8: Update Vt+1 ← Vt +∑
i∈St xtix

>
ti

9: Compute the regularized MLE θ̂t by solving

n∑
t=1

∑
i∈St

(pti(St, θ)− yti)xti + λθ = 0 (3.4)

10: end for

3.5.1 Worst-Case Regret of TS-MNL with Optimistic Sampling

Theorem 3.2 (Regret of TS-MNL with optimistic sampling). Suppose we run TS-MNL with

optimistic sampling (Algorithm 7) for a total of T rounds with the optimistic sample size

M = d1− logK
log(1−1/(4

√
eπ))e, the penalty parameter λ ≥ 1 and assortment size constraint K.

Then the worst-case regret of the algorithm is upper-bounded by

R(T ) ≤ O(1) + 16
√
eπβT

√2dT log
(

1 + TK

dλ

)
+
√

8T
λ

log 2T


+ (αT + βT )
√

2dT log
(

1 + TK

dλ

)

where αT = 1
2κ

√
d log

(
1 + TK

dλ

)
+ 4 log T +

√
λ
κ

and βT = αT
√

2d log(MT ).

Theorem 3.2 establishes Õ(d3/2
√
T ) worst-case regret, which matches the regret bounds

of TS methods for linear contextual bandits Agrawal and Goyal (2013) and Abeille,
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Lazaric, et al. (2017) up to logarithmic factor. The regret bound shows no dependence

on N , and has an additional O(
√

log logK) dependence due to optimistic sampling which

is very small for any reasonable assortment size K. Compared to Theorem 3.1, the addi-

tional factor
√
d comes from the deviation of the random sampling which is addressed in

the worst-case regret analysis.

The proof of Theorem 3.2 utilizes the anti-concentration property of the maximum of

Gaussian random variables for ensuring frequent optimism. In particular, we show in the

following lemma that the proposed optimistic sampling can ensure a constant probability

of optimism.

Lemma 3.6 (Optimism). Suppose ‖θ̂t− θ∗‖Vt ≤ 1
2κ

√
d log

(
1 + tK

dλ

)
+ 4 log t+

√
λ
κ

and we

take optimistic samples of size M = d1− logK
log(1−1/(4

√
eπ))e. Then we have

P
(
R̃t(St) > Rt(S∗t , θ∗) | Ft

)
≥ 1

4
√
eπ

.

The inverse of the lower-bounding probability 4
√
eπ can be interpreted as the expected

time between any two optimistic assortment selections. In other words, our modified

algorithm is optimistic at least with a constant frequency even in the worst case. Then,

using this frequent optimism, we can ensure that the cumulative regret due to the random

sampling can be bounded. Along with this result, we show the concentrations of both

regularized MLE and TS samples to establish the regret bound in Theorem 3.2. The

proofs are left to Appendix 3.5.2.

3.5.2 Proof of Theorem 3.2: Worst-case Regret Analysis

We first decompose the cumulative regret, similar to the procedure in previous sections

but this time using R̃t(St). In the following sections, we derive the bounds for R(1)(T )
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and R(2)(T ) separately.

R(T ) =
T∑
t=1

E[Rt(S∗t , θ∗)− R̃t(St)]︸ ︷︷ ︸
R(1)(T )

+
T∑
t=1

E[R̃t(St)−Rt(St, θ∗)]︸ ︷︷ ︸
R(2)(T )

Bounding R(2)(T ).

We can controlR(2)(T ) by showing that both MLE θ̂t and TS parameters {θ̃t} concentrate

appropriately. To show each of these concentration results, we first further decompose

R(2)(T ):

R(2)(T ) =
T∑
t=1

E[R̃t(St)−Rt(St, θ̂t)] +
T∑
t=1

E[Rt(St, θ̂t)−Rt(St, θ∗)] . (3.5)

The second term deals with the estimation error and can be bounded by the concentration

of θ̂t in Lemma 3.2 and the Lipschitz-like property in Lemma 3.1, i.e., with probability

1−O(t−2), we have

Rt(St, θ̂t)−Rt(St, θ∗) ≤ max
i∈St

∣∣∣x>ti(θ̂t − θ∗)∣∣∣ ≤ αt max
i∈St
‖xti‖V −1

t
. (3.6)

The first term in (3.5) deals with the random sampling of {θ̃(j)
t }. Again, we can bound

the difference in expected revenue by the difference in utility estimates using Lemma 3.1:

R̃t(St)−Rt(St, θ̂t) ≤ maxi∈St(ũti − x>ti θ̂t). Then we are left to show that ũti concentrates

appropriately for all i ∈ [N ]. The following lemma ensures the concentration of ũti.

Lemma 3.7. Let βt = αt min
(√

4d log(Mt),
√

2 log(2M) +
√

4 log(Nt)
)
. Then for all

i ∈ [N ],

ũti − x>ti θ̂t ≤ βt‖xti‖V −1
t

with probability 1−O
(

1
t2

)
.
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Remark 3.1. Lemma 3.7 shows that the confidence radius βt is larger than αt by the factor

of at most
√

2d log(Mt). The additional
√
d factor comes from the oversampling of TS,

which also appears in other TS methods for linear contextual bandit problems (Agrawal

and Goyal, 2013; Abeille, Lazaric, et al., 2017).
√

logM factor comes from drawing

optimistic samples where M = O(logK); hence the marginal increase of the regret bound

due to optimistic sampling is very small.

Hence for the first term in (3.5), we have R̃t(St)−Rt(St, θ̂t) ≤ βt maxi∈St ‖xti‖V −1
t

with

probability 1−O
(

1
t2

)
. We combine with (3.6) to derive the bound for R(2)(T ):

R(2)(T ) ≤
T∑
t=1

(αt + βt) max
i∈St
‖xti‖V −1

t
+

T∑
t=1
O
(
t−2
)

(3.7)

Bounding R(1)(T ).

As discussed in Section 3.4, a sufficient condition for ensuring the success of TS is to

show the probability of TS samples being optimistic is high enough. Lemma 3.6 lower-

bounds the probability that the expected revenue under sampled parameters is higher

than the optimal expected revenue under the true parameter, which states that if we have

sufficiently many samples with M = d1− logK
log(1−1/(4

√
eπ))e, we have

P
(
R̃t(St) > Rt(S∗t , θ∗t ) | Ft

)
≥ 1

4
√
eπ

.

Using this frequent optimistic sampling, we can ensure that the regret due to the

oversampling is not too large.

Lemma 3.8. Let p̃ = 1
4
√
eπ
. Then, we have

T∑
t=1

E[Rt(S∗t , θ∗t )− R̃t(St)] ≤
4βT
p̃

√2dT log
(

1 + TK

dλ

)
+
√

8T
λ

log 2T
+O(1) .
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Combining the results

Applying Lemma 3.4 to the bound for R(2)(T ) in (3.7) and combining with Lemma 3.8,

we have the final bound for the worst-case cumulative regret.

R(T ) ≤ O(1) + +16
√
eπβT

√2dT log
(

1 + TK

dλ

)
+
√

8T
λ

log 2T


+ (αT + βT )
√

2dT log
(
T

d

)
.

3.6 Numerical Study

In this section, we perform numerical evaluations to analyze two variants of our proposed

algorithm: TS-MNL with optimistic sampling (Algorithm 7) and TS-MNL with the Gaussian

approximation for the posterior distribution. We perform synthetic experiments similar

to the experiments in Chapter 2. We simulate instances of the MNL contextual bandit

problem with varying parameter values. For each experiment, we report the (frequentist)

cumulative regret for the algorithms, i.e., we compute a regret with respect to a fixed

parameter θ∗. For each instance, we randomly draw θ∗ from a multi-dimensional uniform

distribution, where each component of θ∗ is drawn uniformly at random in [0, 1]. Note that

the parameter θ∗ stays fixed for the entire horizon t ∈ [T ] in a given instance. For each

experimental configuration, we evaluate the algorithms on 20 independent instances and

report average performances. For each plot, the error bars represent standard deviations.

Impact of total number of items N . We first investigate the influence of the total

number of items N on the performances of the algorithms. We vary N ∈ {100, 400, 1600}

while keeping the other problem parameters fixed, K = 5 and d = 5. In these experi-

ments, we use feature vectors drawn from a multivariate Gaussian distribution. For each

round t ∈ {1, ..., 1000}, we draw each xti, i ∈ [N ] independently from N (0d, 0.5Id).
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Figure 3.1: Evaluations of TS-MNL with optimistic sampling (Algorithm 7), TS-MNL with
the Gaussian approximation only and UCB-MNL (Algorithm 1) in MNL contextual bandits.
The plots show t-round regret as a function of t with varying N ∈ {100, 400, 1600}.
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Figure 3.2: Evaluations of TS-MNL with optimistic sampling (Algorithm 7), TS-MNL with
the Gaussian approximation only and UCB-MNL (Algorithm 1) in MNL contextual bandits.
The plots show t-round regret as a function of t with varying d ∈ {10, 20, 30}.

For comparison, we evaluate the performances of our TS-MNL algorithms along with the

performances of an efficient UCB method proposed in Chapter 2, UCB-MNL (Algorithm 1).

Figure 3.1 shows that the three algorithms appear to scale well with an increase in the

total number of items N . The performance of TS-MNL with optimistic sampling appears to

be state-of-the-art, showing a slightly superior performance compared to the performance

of UCB-MNL. Furthermore, TS-MNL with optimistic sampling consistently performs better

than TS-MNL with the Gaussian approximation only. The results of these experiments

support our theoretical analysis: TS-MNL with optimistic sampling takes advantage of

the MNL structure and can guarantee a worst-case statistical efficiency. This is indeed

consistent with our finding that single sample from a Gaussian distribution approximation

does not provide optimism guarantees.
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Figure 3.3: Evaluations of TS-MNL with optimistic sampling (Algorithm 7), TS-MNL with
the Gaussian approximation only and UCB-MNL (Algorithm 1) in MNL contextual bandits.
The plots show t-round regret with fixed feature vectors.

Impact of feature dimension d. We then evaluate the performances of the algo-

rithms to test the impact of the feature dimension d on regret performances. Figure 3.2

reports the results averaged over 20 independent instances. Again, the performance of

TS-MNL with optimistic sampling appears to be superior to the performances of the other

methods while all of the three algorithms show favorable scalability in the feature dimen-

sion. An interesting observation is that the TS methods scale well with increases in the

feature dimension even compared to the UCB method despite the fact that they have

worse regret dependence (e.g., O(d3/2) worst-case dependence in the regret of TS-MNL

with optimistic sampling). The numerical performances do not appear to suggest such

dependence. These results suggest that the proposed TS-MNL algorithms are practical

solutions even in potentially high-dimensional problem settings.

Experiments with fixed features. So far, we have evaluated the algorithms with

features drawn randomly in each round. In this part of the experiments, we evaluate the

performances of the algorithms with fixed features. That is, the features for each item stay

fixed throughout the entire horizon. Figure 3.3 shows that both TS algorithms, TS-MNL

with optimistic sampling and TS-MNL with the Gaussian approximation, and UCB-MNL per-

form well even with the fixed features. TS-MNL with optimistic sampling again outperforms

the other methods in this set of experiments.
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3.7 Concluding Remarks

In this chapter, we propose two TS algorithms for the MNL contextual bandits which

learn the parameters of the underlying choice model while simultaneously maximizing the

cumulative revenue. We provide their theoretical performance bounds and show attractive

numerical performances in our experiments. We also discuss the challenges which arise

in worst-case regret analysis for this combinatorial action selection problem under the

MNL model. We believe that these challenges are potentially present in many other

problems involving combinatorial action selections with feature information beyond the

MNL model. To our knowledge, the worst-case regret analysis for our TS algorithm is the

first frequentist regret guarantee of a TS method for contextual bandits with combinatorial

action selection of any kind. We believe that our proposed optimistic sampling framework

can be useful for other combinatorial contextual bandit problems.
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Chapter 4

Sparsity-Agnostic High-Dimensional

Bandit Algorithm

In classical multi-armed bandits, one of the arms is pulled in each round and a reward

corresponding to the chosen arm is revealed to the decision-making agent. The rewards

are, typically, independent and identically distributed samples from an arm-specific dis-

tribution. The goal of the agent is to devise a strategy for pulling arms that maximizes

cumulative rewards, suitably balancing between exploration and exploitation. Linear con-

textual bandits (Abe and Long, 1999; Auer, 2002; Chu et al., 2011) and generalized linear

contextual bandits (Filippi et al., 2010; Li, Lu, and Zhou, 2017) are more recent important

extensions of the basic multi-armed bandit setting, where each arm a is associated with a

known feature vector xa ∈ Rd, and the expected payoff of the arm is a (typically, mono-

tone increasing) function of the inner product x>a β∗ for a fixed and unknown parameter

vector β∗ ∈ Rd. Unlike the traditional multi-armed bandit problem, pulling any arm pro-

vides some information about the unknown parameter vector, and hence, insight into the

average reward of the other arms. These contextual bandit algorithms are applicable in

a variety of problem settings, such as recommender systems, online retail, and healthcare
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analytics (Li et al., 2010; Tewari and Murphy, 2017), where the contextual information

can be used for personalization and generalization.

In most application domains highlighted above, the feature space is high-dimensional

(d � 1), yet typically only a small subset of the features influence the expected reward.

That is, the unknown parameter vector is sparse with only elements corresponding to

the relevant features being non-zero, i.e., the sparsity index s0 = ‖β∗‖0 � d, where the

zero norm ‖x‖0 counts non-zero entries in the vector x. There is an emerging body of

literature on contextual bandit problems with sparse linear reward functions (Abbasi-

Yadkori, Pal, and Szepesvari, 2012; Gilton and Willett, 2017; Bastani and Bayati, 2020;

Wang, Wei, and Yao, 2018; Kim and Paik, 2019) which propose methods to exploit the

sparse structure under various conditions. However, there is a crucial shortcoming in

almost all of these approaches: the algorithms require prior knowledge of the sparsity

index s0, information that is almost never available in practice. In the absence of such

knowledge, the existing algorithms fail to fully leverage the sparse structure, and their

performance does not guarantee the improvements in dimensionality-dependence which

can be realized in the sparse problem setting (and can lead to extremely poor performance

if s0 is underspecified). The purpose of this work is to demonstrate that a relatively

simple contextual bandit algorithm that exploits `1-regularized regression using Lasso

(Tibshirani, 1996) in a sparsity-agnostic manner, is provably near-optimal insofar as its

regret performance (under suitable regularity). Our contributions are as follows:

(a) We propose the first general1 sparse bandit algorithm that does not require prior

knowledge of the sparsity index s0.

(b) We establish that the regret bound of our proposed algorithm is O(s0

√
T log(dT ))

for the two-armed case, which affords the most accessible exposition of the key
1Carpentier and Munos (2012) do not require to know sparsity, but both their algorithm and analysis

are limited to the fixed `2 unit ball arm set. See more discussions in Section 4.1.
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analytical ideas. (Extensions to the general K-armed case are discussed later.) The

regret bound scale in s0 and d matches the equivalent terms in the offline Lasso

results (see the discussions in Section 4.4.2).

(c) We comprehensively evaluate our algorithm on numerical experiments and show

that it consistently outperforms existing methods, even when these methods are

granted prior knowledge of the correct sparsity index (and can greatly outperform

them if this information is misspecified).

The salient feature of our algorithm is that it does not rely on forced sampling which

was used by almost all previous work, e.g., Bastani and Bayati (2020), Wang, Wei, and

Yao (2018), and Kim and Paik (2019), to satisfy certain regularity of the empirical Gram

matrix. Forced sampling requires prior knowledge of s0 because such schemes, the key

ideas of which go back to Goldenshluger and Zeevi (2013), need to be fine-tuned using

the correct sparsity index. (See further discussions in Section 4.1.2.)

The rest of the chapter is organized as follows. In Section 4.1, we review the re-

lated literature and discuss the reason why the previously proposed methods require the

knowledge of the sparsity index s0. In Section 4.2, we present the problem formulation.

Section 4.3 describes our proposed algorithm. In Section 4.4, we describe the challenges

when the sparsity information is unknown, and establish an upper bound on the cu-

mulative regret for the two-armed sparse bandits. Section 4.5 contains the numerical

experiments for the two-armed sparse bandits. In Section 4.6, we extend our analysis and

numerical evaluations to the K-armed sparse bandits. Section 4.7 presents discussions

and future directions. The complete proofs and additional numerical results are provided

in the appendix.
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4.1 Related Work

4.1.1 Review

Linear bandits and generalized linear bandits have been widely studied (Abe and Long,

1999; Auer, 2002; Dani, Hayes, and Kakade, 2008; Rusmevichientong and Tsitsiklis, 2010;

Abbasi-Yadkori, Pál, and Szepesvári, 2011; Filippi et al., 2010; Chu et al., 2011; Agrawal

and Goyal, 2013; Li, Lu, and Zhou, 2017; Kveton et al., 2020). However, when ported to

the high-dimensional contextual bandit setting, these strategies have difficulty exploiting

sparse structure in the unknown parameter vector, and hence may incur regret propor-

tional to the full ambient dimension d rather than the sparse set of features of cardinality

s0. To exploit spare structure, Abbasi-Yadkori, Pal, and Szepesvari (2012) propose a

framework to construct high probability confidence sets for online linear prediction and

establish a regret bound of Õ(
√
s0dT ), where Õ hides logarithmic terms, when the spar-

sity index s0 is known. Furthermore, their algorithm is not computationally efficient; an

implementable version of their framework is not yet known (Section 23.5 in Lattimore

and Szepesvári 2019). It is worth noting that the
√
d dependence in the regret bound is

unavoidable unless additional assumptions are imposed; see Theorem 24.3 in Lattimore

and Szepesvári (2019). Gilton and Willett (2017) adapt Thompson sampling (Thompson,

1933) to sparse linear bandits; however, they also assume a priori knowledge of a small

superset of the support for the parameter.

Bastani and Bayati (2020) address the contextual bandit problem with high-dimensional

features using Lasso (Tibshirani, 1996) to estimate the parameter of each arm separately.

To ensure compatibility of the empirical Gram matrices, they adapt the forced-sampling

technique in Goldenshluger and Zeevi (2013) which is now tuned using the (a priori

known) sparsity index, and is implemented for each arm at predefined time points. They
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establish a regret bound of O(Ks2
0[log d+ log T ]2) where K is the number of arms. Note

that they invoke several additional assumptions introduced in Goldenshluger and Zeevi

(2013), including a margin condition that ensures that the density of the context dis-

tribution is bounded near the decision boundary, and arm-optimality which assumes a

gap between the optimal and sub-optimal arms exists with some positive probability. In

the same problem setting, Wang, Wei, and Yao (2018) propose an algorithm which uses

forced-sampling along with the minimax concave penalty (MCP) estimator (Zhang, 2010)

and improve the regret bound to O(Ks2
0[s0 + log d] log T ). Note that Bastani and Bay-

ati (2020) and Wang, Wei, and Yao (2018) achieve a poly-logarithmic dependence on T

in the regret, exploiting the arm optimality condition which assumes a gap between the

optimal and sub-optimal arms exists with some probability.2 Since we do not assume

such “separability” between arms, poly-logarithmic dependence on T is not attainable

in our problem setting. Kim and Paik (2019) extend the method proposed in Bastani

and Bayati (2020) to linear bandit settings and propose a different approach to address

the non-compatibility of the empirical Gram matrices by using a doubly-robust technique

(Bang and Robins, 2005) that originates with the missing data (imputation) literature.

They achieve O(s0
√
T log(dT )) regret.

All of the aforementioned algorithms require that the learning agent know the sparsity

index s0 of the unknown parameter (or a non-trivial upper-bound on sparsity which is

strictly less than d).3 That is, only when the algorithm knows s0, it can guarantee the

regret bounds mentioned above. Otherwise, the regret bounds would scale polynomially

with d instead of s0 or potentially scale linearly with T . To the best of our knowledge, the

only work in sparse bandits which does not require this prior knowledge of the sparsity
2The regret bounds in both Bastani and Bayati (2020) and Wang, Wei, and Yao (2018) have additional

dependence O(1/p3
∗) where p∗ is the arm optimality lower bounding probability. Hence, in the worse case,

the regret bounds have additional O(K3) dependence.
3Besides sparsity, some algorithms require further knowledge, such as arm optimality lower bounding

probability (Bastani and Bayati, 2020; Wang, Wei, and Yao, 2018), which is also not readily available in
practice.

79



Chapter 4: Sparsity-Agnostic High-Dimensional Bandit Algorithm

index is the work by Carpentier and Munos (2012) although their algorithm still requires

to know the `2-norm of the unknown parameter. However, their analysis uses a non-

standard definition of noise and is restricted to the case where the set of arms is the `2

unit ball and fixed over time, a structure they exploit in a significant manner, and which

limits the scope of their algorithm.

4.1.2 Why do existing sparse bandit algorithms require prior

knowledge of the sparsity index?

The primary reason that a priori knowledge of sparsity index s0 is assumed throughout

most of the literature is, roughly speaking, to ensure suitable “size” of the confidence

bounds and concentration. For example, Abbasi-Yadkori, Pal, and Szepesvari (2012)

require the parameter s0 to explicitly construct a high probability confidence set with

its radius proportional to s0 rather than d. The recently proposed bandit algorithms of

Bastani and Bayati (2020) and Kim and Paik (2019) and the variant with MCP estimator

in Wang, Wei, and Yao (2018) employ a logic that is similar in spirit (though different

in execution). Specifically, the compatibility condition is assumed to hold only for the

theoretical Gram matrix, and the empirical Gram matrix may not satisfy such condition

(the difficulty in controlling that is due to the non-i.i.d. adapted samples of the feature

variables). As a remedy to this issue, Bastani and Bayati (2020) and Wang, Wei, and Yao

(2018) utilize the forced-sampling technique of Goldenshluger and Zeevi (2013) to obtain

a “sufficient” number of i.i.d. samples and use them to show that the empirical Gram

matrices concentrate in the vicinity of the theoretical Gram matrix, and hence, satisfy the

compatibility condition after a sufficient amount of forced-sampling. The forced-sampling

duration needs to be predefined and scales at least polynomially in the sparsity index s0

to ensure concentration of the Gram matrices. That is, if the algorithm does not know s0,
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the forced-sampling duration will have to scale polynomially in d. Kim and Paik (2019)

propose an alternative to forced sampling that builds on doubly-robust techniques used in

the missing data literature; however, their algorithm involves random arm selection with

a probability that is calibrated using s0, and initial uniform sampling whose duration

requires knowledge of s0 and scales polynomially with s0 in order to establish their regret

bounds. The sensitivity to the sparsity index specification is also evident in cases where

its value is misspecified, which may result in severe deterioration in the performance of

the algorithms (see further discussions in Section 5.1).

The key observation in our analysis is that i.i.d. samples, which are the key output

of the forced samplings scheme, are, in fact, not required under some mild regularity

conditions. We show that the empirical Gram matrix satisfies the compatibility condition

after a sufficient number of rounds, provided the theoretical Gram matrix also satisfies the

condition; the details of this analysis are in Section 4.4. Numerical experiments support

these findings, and moreover, demonstrate that the performance of our proposed algorithm

can be superior to forced-sampling-based schemes that are tuned with foreknowledge of

the sparsity index s0.

4.2 Preliminaries

4.2.1 Notation

For a vector x ∈ Rd, we use ‖x‖1 and ‖x‖2 to denote its `1-norm and `2 norm respectively,

the notation ‖x‖0 is reserved for the cardinality of the set of non-zero entries of that vector.

The minimum and maximum singular values of a matrix V are written as λmin(V ) and

λmax(V ) respectively. For two symmetric matrices V and W of the same dimensions,

V < W means that V −W is positive semi-definite. For a positive integer n, we define a
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set of integers up to n as [n] = {1, ..., n}. For a real-valued differentiable function f , we

use ḟ to denote its first derivative.

4.2.2 Generalized Linear Contextual Bandits

We consider the stochastic generalized linear bandit problem with K arms. Let T be

the problem horizon, namely the number of rounds to be played. In each round t ∈

[T ], the learning agent observes a context consisting of a set of K feature vectors Xt ={
Xt,i ∈ Rd | i ∈ [K]

}
, where the tuple Xt is drawn i.i.d. over t ∈ [T ] from an unknown joint

distribution with probability density pX with respect to the Lebesgue measure. Note that

the feature vectors for different arms are allowed to be correlated. Each feature vector

Xt,i is associated with an unknown stochastic reward Yt,i ∈ R. The agent then selects one

arm, denoted by at ∈ [K] and observes the reward Yt := Yt,at corresponding to the chosen

arm’s feature Xt := Xt,at as a bandit feedback. The policy consists of the sequence of

actions π = {at : t = 1, 2, ...} and is non-anticipating, namely each action only depends

on past observations and actions.

In this work, we consider the generalized linear model (GLM) in which there is an

unknown parameter β∗ ∈ Rd and a fixed increasing function µ : R → R (also known as

inverse link function) such that the reward Yt,i of arm i is

Yt,i = µ(X>t,iβ∗) + εt,i

where each εt,i is an independent zero-mean noise. Therefore, E[Yt,i|Xt,i = x] = µ(x>β∗)

for all i ∈ [K] and t ∈ [T ]. Widely used examples for µ are sµ(z) = z which corresponds

to the linear model, and µ(z) = 1/(1 + e−z) which corresponds to the logistic model. The

parameter β∗ and the feature vectors {xt,i} are potentially high-dimensional, i.e., d� 1,

but β∗ is sparse, that is, the number of non-zero elements in β∗, s0 = ‖β∗‖0 � d. It is
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important to note that the agent does not know s0 or the support of β∗.

We assume that there is an increasing sequence of sigma fields {Ft} such that each

εt,i is Ft-measurable with E[εt,i|Ft−1] = 0. In our problem, Ft is the sigma-field generated

by random variables of chosen actions {a1, ..., at}, their features {X1, ..., Xt}, and the

corresponding rewards {Y1, ..., Yt}. We assume the noise εt is sub-Gaussian with parameter

σ, where σ is a positive absolute constant, i.e., E[eαεt ] ≤ eα
2σ2/2 for all α ∈ R. In practice,

for bounded reward Yt,i, the noise εt,i is also bounded and hence satisfies the sub-Gaussian

assumption with an appropriate σ value.

The agent’s goal is to maximize the cumulative expected reward E[∑T
t=1 µ(X>t,atβ∗)]

over T rounds. Let a∗t = argmaxi∈[K] µ(X>t,iβ∗) denote the optimal arm for each round t.

Then, the expected cumulative regret of policy π = {a1, ..., aT} is defined as

Rπ(T ) :=
T∑
t=1

E
[
µ(X>t,a∗tβ

∗)− µ(X>t,atβ
∗)
]
.

Hence, maximizing the expected cumulative rewards of policy π over T rounds is equiv-

alent to minimizing the cumulative regret Rπ(T ). Note that all the expectations and

probabilities throughout the chapter are with respect to feature vectors and noise unless

explicitly stated otherwise.

4.2.3 Lasso for Generalized Linear Models

Consider an offline setting where we have samples Y1, ..., Yn and corresponding features

X1, ..., Xn. The log-likelihood function of β under the canonical GLM is

logLn(β) :=
n∑
j=1

[
YjX

>
j β −m(X>j β)

g(η) − h(Yj, η)
]
.
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Here, η ∈ R+ is a known scale parameter, m(·), g(·) and h(·) are normalization functions,

and m(·) is infinitely differentiable with the first derivative

ṁ(x>β∗) = E[Y |X = x] = µ(x>β∗) .

The Lasso (Tibshirani, 1996) estimate for the GLM can be defined as

β̂n ∈ argmin
β

{
`n(β) + λ‖β‖1

}
(4.1)

where `n(β) := − 1
n

∑n
j=1

[
YjX

>
j β −m(X>j β)

]
and λ is a penalty parameter. Lasso is

known to be an efficient (offline) tool for estimating the high-dimensional linear regression

parameter. The “fast convergence” property of Lasso is guaranteed when the above data

are i.i.d. and when the observed covariates are not “highly correlated.” The restricted

eigenvalue condition (Bickel, Ritov, Tsybakov, et al., 2009; Raskutti, Wainwright, and

Yu, 2010), the compatibility condition (Van De Geer, Bühlmann, et al., 2009), and the

restricted isometry property (Candes, Tao, et al., 2007) have all been used to ensure

that such high correlations are avoided. In sequential learning settings, however, these

conditions are often violated because the observations are adapted to the past, and the

feature variables of the chosen arms converge to a small region of the feature space as the

learning agent updates its arm selection policy.

4.3 Proposed Algorithm

Our proposed Sparsity-Agnostic (SA) Lasso Bandit algorithm for high-dimensional

GLM bandits is summarized in Algorithm 8. As the name suggests, our algorithm does

not require prior knowledge of the sparsity index s0. It relies on Lasso for parameter

estimation, and does not explicitly use exploration strategies or forced-sampling. Instead,
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in each round, we choose an arm which maximizes the inner product of a feature vector and

the Lasso estimate. After observing the reward, we update the regularization parameter

λt and update the Lasso estimate β̂t which minimizes the penalized negative log-likelihood

function defined in (4.1).

SA Lasso Bandit requires only one input parameter λ0. We show in Section 4.4 that

λ0 = 2σxmax where xmax is a bound the `2-norm of the feature vectors Xt,i. Thus, λ0

does not depend on the sparsity index s0 or the underlying parameter β∗. (Note that,

in comparison, Kim and Paik (2019) require three tuning parameters, and Bastani and

Bayati (2020) and Wang, Wei, and Yao (2018) require four tuning parameters, most of

which are functions of the unknown sparsity index s0.) It is worth noting that tuning

parameters, while helping achieve low regret, are challenging to specify in online learning

settings. Therefore, our proposed algorithm is practical and easy to implement.

Algorithm 8 SA Lasso Bandit
1: Input parameter: λ0

2: for all t = 1 to T do

3: Observe Xt,i for all i ∈ [K]

4: Compute at = argmaxi∈[K] X
>
t,iβ̂t

5: Pull arm at and observe Yt
6: Update λt ← λ0

√
4 log t+2 log d

t

7: Update β̂t+1 ← argminβ {`t(β) + λt‖β‖1}

8: end for

Discussion of the algorithm. Algorithm 8 may appear to be an exploration-free greedy

algorithm (e.g., Bastani, Bayati, and Khosravi 2017), but this is not the case. To better see

this, recall that upper-confidence bound (UCB) algorithms construct a high-probability

confidence ellipsoid around a greedy estimate and choose the parameter value that maxi-

mizes the reward. Once the UCB estimate is chosen, the action selection is greedy with
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respect to the parameter estimate.4 The UCB algorithms carefully control the size of the

confidence ellipsoid to ensure convergence, thus, exploration is loosely equivalent to regu-

larizing the parameter estimate. The algorithm we propose also computes the parameter

estimate by regularizing the MLE with a sparsifying norm, and then, as in UCB, takes a

greedy action with respect to this regularized parameter estimate. We adjust the penalty

associated with the sparsifying norm over time at a suitable rate in order to ensure that

our estimate is consistent as we collect more samples. (This adjustment and specification

do not require knowledge of sparsity s0.) An inadequate choice of this penalty parameter

would lead to large regret, which is analogous to poor choice of confidence widths in UCB.

4.4 Regret Analysis

4.4.1 Regularity Condition

In this section, we establish an upper bound on the expected regret of SA Lasso Bandit

for the two-armed (K = 2) generalized linear bandits. We focus on the two-arm case pri-

marily for clarity and accessibility of key analysis ideas, and later illustrate how this anal-

ysis extends to the K-armed case with K ≥ 3 under suitable regularity (see Section 4.6).

We first provide a few definitions and assumptions used throughout the analysis, starting

with assumptions standard in the (generalized) linear bandit literature.

Assumption 4.1 (Feature set and parameter). There exists a positive constant xmax such

that ‖x‖2 ≤ xmax for all x ∈ Xt and all t, and a positive constant b such that ‖β∗‖2 ≤ b.

Assumption 4.2 (Link function). There exist κ0 > 0 and κ1 <∞ such that the derivative

µ̇(·) of the link function satisfies κ0 ≤ µ̇(x>β) ≤ κ1 for all x and β.
4Likewise, in Thompson sampling (Thompson, 1933), the agent chooses the greedy action for the

sampled parameter.
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Clearly for the linear link function, κ0 = κ1 = 1. For the logistic link function, we

have κ1 = 1/4.

Definition 4.1 (Active set and sparsity index). The active set S0 := {j : β∗j 6= 0} is

the set of indices j for which β∗j is non-zero, and the sparsity index s0 = |S0| denotes the

cardinality of the active set S0.

For the active set S0, and an arbitrary vector β ∈ Rd, we can define

βj,S0 := βj1{j ∈ S0} , βj,Sc0 := βj1{j /∈ S0} .

Thus, βS0 = [β1,S0 , ..., βd,S0 ]> has zero elements outside the set S0 and the components of

βSc0 can only be non-zero in the complement of S0. Let C(S0) denote the set of vectors

C(S0) := {β ∈ Rd | ‖βSc0‖1 ≤ 3‖βS0‖1} . (4.2)

Let X ∈ RK×d denote the design matrix where each row is a feature vector for an arm.

(Although we focus on K = 2 case in this section, the definitions and the assumptions

introduced here also apply to the case of K ≥ 3.) Then, in keeping with the previous

literature on sparse estimation and specifically on sparse bandits (Bastani and Bayati,

2020; Wang, Wei, and Yao, 2018; Kim and Paik, 2019), we assume that the following

compatibility condition is satisfied for the theoretical Gram matrix Σ := 1
K
E[X>X].

Assumption 4.3 (Compatibility condition). For active set S0, there exists compatibility

constant φ2
0 > 0 such that

φ2
0‖βS0‖2

1 ≤ s0β
>Σβ for all β ∈ C(S0) .

We add to this the following mild assumption that is more specific to our analysis.
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Assumption 4.4 (Relaxed symmetry). For a joint distribution pX , there exists ν < ∞

such that pX (−x)
pX (x) ≤ ν for all x.

Discussion of the assumptions. Assumptions 4.1 and 4.2 are the standard regularity

assumptions used in the GLM bandit literature (Filippi et al., 2010; Li, Lu, and Zhou,

2017; Kveton et al., 2020). It is important to note that unlike the existing GLM bandit

algorithms which explicitly use the value of κ0, our proposed algorithm does not use κ0

or κ1 — this information is only needed to establish the regret bound. The compatibility

condition in Assumption 4.3 is analogous to the standard positive-definite assumption on

the Gram matrix for the ordinary least squares estimator for linear models but is less

restrictive. The compatibility condition ensures that truly active components of the pa-

rameter vector are not “too correlated.” As mentioned above, the compatibility condition

is a standard assumption in the sparse bandit literature (Bastani and Bayati, 2020; Wang,

Wei, and Yao, 2018; Kim and Paik, 2019). Assumption 4.4 states that the joint distri-

bution pX can be skewed but this skewness is bounded. Obviously, if pX is symmetrical,

we have ν = 1. Assumption 4.4 is satisfied for a large class of continuous and discrete

distributions, e.g., elliptical distributions including Gaussian and truncated Gaussian dis-

tributions, multi-dimensional uniform distribution, and Rademacher distribution.

4.4.2 Regret Bound for SA Lasso Bandit

Theorem 4.1 (Regret bound for two arms). Suppose K = 2 and Assumptions 4.1-4.4

hold. Let λ0 = 2σxmax. Then the expected cumulative regret of the SA Lasso Bandit

policy π over horizon T ≥ 1 is upper-bounded by

Rπ(T ) ≤ 4κ1 + 4κ1xmaxb(log(2d2) + 1)
C0(s0)2 +

32κ1νσxmaxs0

√
T log(dT )

κ0φ2
0

where C0(s0) = min
(

1
2 ,

φ2
0

256s0νx2
max

)
.
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Discussion of Theorem 4.1. In terms of key problem primitives, Theorem 4.1 estab-

lishes O(s0

√
T log(dT )) regret without any prior knowledge on s0. The bound shows that

the regret of our algorithm grows at most logarithmically in feature dimension d. The key

takeaway from this theorem is that SA Lasso Bandit is sparsity-agnostic and is able to

achieve “correct” dependence on parameters d and s0. That is, based on the offline Lasso

convergence results under the compatibility condition (e.g., Theorem 6.1 in Bühlmann

and Van De Geer 2011), we believe that the dependence on d and s0 in Theorem 4.1 is

best possible.5

The regret bound in Theorem 4.1 is tighter than the previously known bound in the

same problem setting (Kim and Paik, 2019) although direct comparison is not immediate,

given the difference in assumptions involved — compared to Kim and Paik (2019), we

require Assumption 4.4 whereas they assume the sparsity index s0 is known. Having

said that, the numerical experiments in Section 4.5 support our theoretical claims and

provide additional evidence that our proposed algorithm compares very favorably to other

existing methods (which are tuned with the knowledge of the correct s0), and moreover,

the performance is not sensitive to the assumptions that were imposed primarily for

technical tractability purposes. Note that the input parameter λ0 = 2σxmax depends on

σ and xmax which are parameters required by all parametric bandit methods, and hence

our algorithm does not require any additional information.

As mentioned earlier, the previous work on sparse bandits (Bastani and Bayati, 2020;

Wang, Wei, and Yao, 2018; Kim and Paik, 2019) require the knowledge of the sparsity

index s0. In the absence of such knowledge, if sparsity is underspecified, then these algo-

rithms would suffer a regret linear in T . On the other hand, if the sparsity is overspecified,
5Since the horizon T does not exist in offline Lasso results, it is not straightforward to see whether

√
T

dependence can be improved comparing only with the offline Lasso results. Clearly, without an additional
assumption on the separability of the arms, we know that poly-logarithmic scalability in T is not feasible.
We briefly discuss our conjecture in comparison with the lower bound result in the non-sparse linear
bandits in Section 4.4.4 where we discuss the regret bound under the RE condition.
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the regret of these algorithms may scale with d instead of s0. Our proposed algorithm

does not require such prior knowledge, hence there is no risk of under-specification or

over-specification, and yet our analysis provides a sharper regret guarantee. Furthermore,

our result also suggests that even when the sparsity is known, random sampling to satisfy

the compatibility condition, invoked by all existing sparse bandit algorithms to date, can

be wasteful since said conditions may be already satisfied even in the absence of such

sampling. This finding is also supported by the numerical experiments in Section 4.5 and

Section 4.6.2. We provide the outline of the proof and the key lemmas in the following

section.

4.4.3 Challenges and Proof Outlines

There are two essential challenges that prevent us from fully benefiting from the fast

convergence property of Lasso:

(i) The samples induced by our bandit policy are not i.i.d., therefore the standard Lasso

oracle inequality does not hold.

(ii) Empirical Gram matrices do not necessarily satisfy the compatibility condition even

under Assumption 4.3. This is because the selected feature variables for which

the rewards are observed do not provide an “even” representation for the entire

distribution.

To resolve (i), we provide a Lasso oracle inequality for the GLM with non-i.i.d. adapted

samples under the compatibility condition in Lemma 4.1. For (ii), we aim to provide a

remedy without using the knowledge of sparsity or without using i.i.d. samples. Hence,

this poses a greater challenge. In Section 4.4.3, we address this issue by showing that the

empirical Gram matrix behaves “nicely” even when we choose arms adaptively without

deliberate random sampling. In particular, we show that adapted Gram matrices can be
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controlled by the theoretical Gram matrix and the empirical Gram matrix concentrates

properly around the adapted Gram matrix as we collect more samples. Connecting this

matrix concentration to the corresponding compatibility constants, we show that the

empirical Gram matrix satisfies the compatibility condition with high probability.

Lasso Oracle Inequality for GLM with Non-i.i.d. Data.

We present an oracle inequality for the Lasso estimator for the GLM with non-i.i.d. data.

This is a generalization of the standard Lasso oracle inequality (Bühlmann and Van De

Geer, 2011; Geer et al., 2008) that allows adapted sequences of observations. This is

also a generalization of Proposition 1 in Bastani and Bayati (2020) to the GLM. This

convergence result may be of independent interest.

Lemma 4.1 (Oracle inequality). Let {Xτ : τ ∈ [t]} be an adapted sequence such that

each Xτ may depend on {Xs : s < τ}. Suppose the compatibility condition holds for

the empirical covariance matrix Σ̂t = 1
t

∑t
τ=1XτX

>
τ with active set S0 and compatibility

constant φt. For δ ∈ (0, 1), define the regularization parameter

λt := 2σxmax

√
2[log(2/δ) + log d]

t
.

Then with probability at least 1− δ, the Lasso estimate β̂t defined in (4.1) satisfies

‖β̂t − β∗‖1 ≤
4s0λt
κ0φ2

t

.

Note that here we assume that the compatibility condition holds for the empirical

Gram matrix Σ̂t. In the next section, we show that this holds with high probability. The

Lasso oracle inequality holds without further assumptions on the underlying parameter β∗

or its support. Therefore, if we show that Σ̂t satisfies the compatibility condition without
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the knowledge of s0, then the remainder of the result does not require this knowledge.

Compatibility Condition and Matrix Concentration.

We first define the generic compatibility constant for matrix M with respect to S0.

Definition 4.2. The compatibility constant of M over S0 is

φ2(M,S0) := min
β

{
s0β

>Mβ

‖βS0‖2
1

: ‖βSc0‖1 ≤ 3‖βS0‖1 6= 0
}
.

Hence, it suffices to show φ2(M,S0) > 0 in order to show that matrix M satisfies the

compatibility condition. Although one can define a compatibility constant with respect

to any index set, in this section, we will focus on the active index set S0 of the parameter

β∗. Also, note that the constant 3 in the inequality is for ease of exposition and may be

replaced by a different value, but then one has to adjust the choice of the regularization

parameter accordingly. Now, under Assumption 4.3, the theoretical Gram matrix Σ =
1
K
E[X>X] satisfies the compatibility condition i.e., φ2

0 = φ2(Σ, S0) > 0.

Definition 4.3. We define the adapted Gram matrix as Σt := 1
t

∑t
τ=1 E[XτX

>
τ |Fτ−1] and

the empirical Gram matrix as Σ̂t := ∑t
τ=1XτX

>
τ .

For each term E[XτX
>
τ |Fτ−1] in Σt, the past observations Fτ−1 affects how the feature

vector Xτ is chosen. More specifically, our algorithm uses Fτ−1 to compute β̂τ and then

chooses arm aτ such that its feature xaτ maximizes x>aτ β̂τ . Hence, we can rewrite Σt as

Σt = 1
t

t∑
τ=1

2∑
i=1

EXτ
[
Xτ,iX

>
τ,i1{Xτ,i = argmax

X∈Xτ
X>β̂τ} | β̂τ

]
.

Since the compatibility condition is satisfied only for the theoretical Gram matrix Σ and

we need to show the empirical Gram matrix Σ̂t satisfies the compatibility condition, the

adapted Gram matrix Σt serves as a bridge between Σ and Σ̂t in our analysis. We first

92



Chapter 4: Sparsity-Agnostic High-Dimensional Bandit Algorithm

lower-bound the compatibility constant φ2(Σt, S0) in terms of φ2(Σ, S0) so that we can

show that Σt satisfies the compatibility condition as long as Σ satisfies the compatibility

condition. Then, we show that Σ̂t concentrates around Σt with high probability and that

such matrix concentration guarantees the compatibility condition of Σ̂t.

In Lemma 4.2, we show that the adapted Gram matrix Σt can be controlled in terms

of the theoretical Gram matrix Σ, which allows us to link the compatibility constant of

Σ to compatibility constant of Σt. Note that Lemma 4.2 shows the result for any fixed

vector β; hence, it can be applied to E[XτX
>
τ |Fτ−1].

Lemma 4.2. For a fixed vector β ∈ Rd, we have

2∑
i=1

EXt
[
Xt,iX

>
t,i1{Xt,i = argmax

X∈Xt
X>β}

]
< ν−1Σ,

where ν the degree of asymmetry of the distribution pX defined in Assumption 4.4.

Therefore, we have Σt < ν−1Σ which implies that φ2(Σt, S0) ≥ φ2(Σ,S0)
ν

> 0, i.e.,

Σt satisfies the compatibility condition. Note that both Σ and Σt can be singular. In

Lemma 4.3, we show that Σ̂t concentrates to Σt with high probability. This result is

crucial in our analysis since it allows the matrix concentration without using i.i.d. samples.

The proof of Lemma 4.3 utilizes a new Bernstein-type inequality for adapted samples

(Lemma C.5 in the appendix) which may be of independent interest.

Lemma 4.3 (Matrix concentration). For t ≥ 2 log(2d2)
C0(s0)2 where C0(s0) = min

(
1
2 ,

φ2
0

256s0νx2
max

)
,

we have

P
(
‖Σt − Σ̂t‖∞ ≥

φ2
0

32s0ν

)
≤ exp

(
−tC0(s0)2

2

)
.

Then, we invoke the following corollary to use the matrix concentration results to

ensure the compatibility condition for Σ̂t.
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Corollary 4.1 (Corollary 6.8, Bühlmann and Van De Geer (2011)). Suppose that Σ0-

compatibility condition holds for the index set S with cardinality s = |S|, with compatibility

constant φ2(Σ0, S), and that ‖Σ1 − Σ0‖∞ ≤ ∆, where 32s∆ ≤ φ2(Σ0, S). Then, for the

set S, the Σ1-compatibility condition holds as well, with φ2(Σ1, S) ≥ φ2(Σ0, S)/2.

In order to satisfy the hypotheses in Lemma 4.3 and Corollary 4.1, we define the initial

period t < T0 := 2 log(2d2)
C0(s0)2 during which the compatibility condition for the empirical Gram

matrix is not guaranteed, and the event

Et :=
{
‖Σt − Σ̂t‖∞ ≤

φ2
0

32s0ν

}
.

Then for all t ≥ dT0e and Σt for which event Et holds, we have

φ2
t := φ2(Σ̂t, S0) ≥ φ2(Σt, S0)

2 ≥ φ2
0

2ν > 0 .

Hence, the compatibility condition is satisfied for the empirical Gram matrix without

using sparsity information.

Proof Sketch of Theorem 4.1

We combine the results above to analyze the regret bound of SA Lasso Bandit shown in

Theorem 4.1. First, we divide the time horizon [T ] into three groups:

(a) (t ≤ T0). Here the compatibility condition is not guaranteed to hold.

(b) (t > T0) such that Et holds.

(c) (t > T0) such that Et does not hold.

These sets are disjoint, hence we bound the regret contribution from each separately and

obtain an upper bound on the overall regret. It is important to note that SA Lasso Bandit
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Algorithm does not rely in any way on this partitioning – it is introduced purely for the

purpose of analysis. Set (a) is the initial period over which we do not have guarantees

for the compatibility condition. Therefore, we cannot apply the Lasso convergence result;

hence we can incur O(s2
0 log d) regret. Set (b) is where the compatibility condition is

satisfied; hence the Lasso oracle inequality in Lemma 4.1 can apply. In fact, this group

can be further divided to two cases: (b-1) when the high-probability Lasso result holds

and (b-2) when it does not, where the regret of (b-2) can be bounded by O(1). For (b-1),

using the Lasso convergence result and summing the regret over the time horizon gives

O(s0

√
T log(dT )) regret, which is the leading factor in the regret bound of Theorem 4.1.

Lastly, (c) contains the failure events of Lemma 4.3 whose regret is O(s2
0). The proofs

of the lemmas are in Appendix C.1, followed by the complete proof of Theorem 4.1 in

Appendix C.2.

4.4.4 Regret under the Restricted Eigenvalue Condition

In our analysis so far, we have presented the main results under the compatibility condition

in order to be consistent with previous results in the sparse bandit literature. In this

section, we present the regret bound for SA Lasso Bandit under the restricted eigenvalue

(RE) condition and briefly discuss its implication in terms of potentially matching lower

bounds. Similar to the analysis under the compatibility condition, we assume that the

RE condition is satisfied only for the theoretical Gram matrix Σ = 1
K
E[X>X].

Assumption 4.5 (RE condition). For active set S0 and Σ, there exists restricted eigen-

value φ1 > 0 such that φ2
1‖β‖2

2 ≤ β>Σβ for all β ∈ C(S0) defined in (4.2).

The RE condition is very similar to the compatibility condition in Assumption 4.3

but uses the `2 norm instead of the `1 norm. Based on this condition, we can show the

following regret bound.
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Theorem 4.2 (Regret bound under RE condition). Suppose K = 2 and Assumptions 4.1,

4.2, 4.4, and 4.5 hold. Then the expected cumulative regret of the SA Lasso Bandit policy

is O
(√

s0T log(dT )
)
.

Theorem 4.2 establishes O
(√

s0T log(dT )
)
regret without any prior knowledge on s0.

The regret upper-bound based on the RE condition still enjoys logarithmic dependence

on d and furthermore sublinear dependence on s0. Compared to Theorem 4.1, the regret

bound in Theorem 4.2 is smaller by √s0 factor, which is again consistent with the offline

Lasso results under the RE condition (Theorem 7.19 in Wainwright 2019). The difference

in the regret bounds in Theorem 4.1 and Theorem 4.2 is due to the RE condition being

slightly stronger than the compatibility condition.

The RE condition is more directly analogous (as compared to the compatibility con-

dition) to the standard positive-definiteness assumption for covariance matrices in GLM

bandits (Li, Lu, and Zhou, 2017). That is, the RE condition is equivalent to positive-

definite covariance when s0 = d , i.e., non-sparse settings. Li, Lu, and Zhou (2017)

showed O
(
(log T )3/2√dT logK

)
regret bound of for GLM bandits, which matches the

Ω(
√
dT ) minimax lower bound established (Chu et al., 2011) for linear bandits with fi-

nite arms, up to logarithmic factors. Therefore, in sparse settings, we conjecture that

O
(√

s0T log(dT )
)
regret is best possible up to logarithmic factors under the RE condi-

tion (and so is O
(
s0

√
T log(dT )

)
regret under the compatibility condition). While we

present these conjectures, we do not claim our results are minimax. In fact, we discuss

in Section 4.7 that the entire notion of minimax regret is much more delicate in sparse

contextual bandits.
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Figure 4.1: The plots show the t-round cumulative regret of SA Lasso Bandit (Algorithm 8),
DR Lasso Bandit (Kim and Paik, 2019), and Lasso Bandit (Bastani and Bayati, 2020) for
K = 2, d = 100 (first row) and d = 200 (second row) with varying sparsity s0 ∈ {5, 10, 20}
under strong correlation, ρ2 = 0.7.

4.5 Numerical Experiments

We conduct numerical experiments to evaluate SA Lasso Bandit and compare with exist-

ing sparse bandit algorithms: DR Lasso Bandit (Kim and Paik, 2019) and Lasso Bandit

(Bastani and Bayati, 2020) in two-armed contextual bandits. We follow the experimental

setup of Kim and Paik (2019) to evaluate algorithms under different levels of correlation

between arms. Although we consider K = 2 case in this section, the experimental setup

introduced here also applies to numerical evaluations for K ≥ 3 armed case in Section 4.6.

For each dimension i ∈ [d], we sample each element of the feature vectors [X(i)
t,1 , ..., X

(i)
t,K ]

from multivariate Gaussian distribution N (0K , V ) where covariance matrix V is defined

as Vi,i = 1 for all diagonal elements i ∈ [K] and Vi,j = ρ2 for all off-diagonal elements

i 6= j ∈ [K]. Hence, for ρ2 > 0, feature vectors for each arm are allowed to be correlated.

We consider different levels of correlation with ρ2 = 0.7 (strong correlation) in Figure 4.1
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Figure 4.2: The plots show the t-round cumulative regret of SA Lasso Bandit (Algorithm 8),
DR Lasso Bandit (Kim and Paik, 2019), and Lasso Bandit (Bastani and Bayati, 2020) for
K = 2, d = 100 (first row) and d = 200 (second row) with varying sparsity s0 ∈ {5, 10, 20}
under weak correlation, ρ2 = 0.3.

and ρ2 = 0.3 (weak correlation) in Figure 4.2 as well as ρ2 = 0 (no correlation) in the

appendix. In these sets of experiments, we consider feature dimensions d = 100 and

d = 200. For comparison, we use a linear reward with the linear link function µ(z) = z

since both Lasso Bandit and DR Lasso Bandit are proposed in linear reward settings.

We generate β∗ with varying sparsity s0 = ‖β∗‖0. For a given s0, we generate each non-

zero element of β∗ from a uniform distribution in [0, 1]. For noise, we sample εt ∼ N (0, 1)

independently for all rounds. For each case with different experimental configurations, we

conduct 20 independent runs, and report the average of the cumulative regret for each of

the algorithms. The error bars represent the standard deviations.

DR Lasso Bandit is proposed for the same problem setting as ours. Therefore, it does

not require any modifications for experiments. However, the problem setting of Lasso

Bandit is different from ours: it assumes that the context variable is the same for all arms

but each arm has a different parameter. We follow the setup in Kim and Paik (2019), and
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adapt Lasso Bandit to our setting by defining a Kd-dimensional context vector

Xt = [X>t,1, ..., X>t,K ]> ∈ RKd and a Kd-dimensional parameter β∗i for each arm i where

β∗i = [β∗>1(i = 1), ..., β∗>1(i = K)]> ∈ RKd; thus, X>t β∗i = X>ti β
∗s. Note that despite

the concatenation, the effective dimension of the unknown parameter β∗i remains the same

as far as estimation is concerned. We defer the other details of the experimental setup

and additional results to the appendix.

It is important to note that we report the performances of the benchmarks (DR Lasso

Bandit and Lasso Bandit) assuming that they have access to correct sparsity index s0;

however, this information is hidden from our algorithm. Despite this advantage, the

experiment results shown in Figure 4.1 and Figure 4.2 demonstrate that SA Lasso Bandit

outperforms the other methods by significant margin consistently across various problem

instances. We also verify that the performance of our proposed algorithm is the least

sensitive to the details of the problem instances, and scales well with changes in the

instance. The regret of our algorithm appears to scale linearly with the sparsity index

s0, while its dependence on the feature dimension d appears to be very minimal in most

of the instances, which is consistent with our theoretical findings. We also observe that

a higher correlation between arms (feature vectors) improves the overall performances of

the algorithms. This finding is stronger in the experiments for the K-armed case. We

discuss this phenomenon in detail in Section 4.6.

4.6 Extension to K Arms

Thus far, we have presented our main results in two-armed bandit settings which highlight

the main challenges of sparse bandit problems without prior knowledge of sparsity. In

this section, we extend our regret analysis to the case of K ≥ 3 arms. Also, we present

additional numerical experiments for K-armed bandits.
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4.6.1 Regret Analysis for K Arms

Recall that SA Lasso Bandit is valid for any number of arms; hence, no modifications are

required to extend the algorithm toK ≥ 3 arms. The analysis of SA Lasso Bandit for the

K-armed case tackles largely the same challenges described in Section 4.4.3: the need for

a Lasso convergence result for adapted samples and ensuring the compatibility condition

without knowing s0 (and without relying on i.i.d. samples). The former challenge is again

taken care of by the Lasso convergence result in Lemma 4.1. However, the latter issue

is more subtle in the K-armed case than in the two-armed case. In particular, when

controlling the adapted Gram matrix Σt with the theoretical Gram matrix Σ, the Gram

matrix for the unobserved feature vectors could be incomparable with the Gram matrix

for the observed feature vectors. For this issue, we introduce an additional regularity

condition, which we denote as the “balanced covariance” condition.

Assumption 4.6 (Balanced covariance). Consider a permutation (i1, ..., iK) of (1, ..., K).

For any integer k ∈ {2, ..., K − 1} and fixed vector β, there exists CX <∞ such that

E
[
XikX

>
ik
1{X>i1β < ... < X>iKβ}

]
4 CXE

[
(Xi1X

>
i1 +XiKX

>
iK

)1{X>i1β < ... < X>iKβ}
]
.

This balanced covariance condition implies that there is “sufficient randomness” in the

observed features compared to non-observed features. The exact value of CX depends on

the joint distribution of X including the correlation between arms. In general, the more

positive the correlation, the smaller CX (obviously, with an extreme case of perfectly cor-

related arms having a constant CX independent of any problem parameters). When the

arms are independent and identically distributed, Assumption 4.6 holds with CX = O(1)

for both the multivariate Gaussian distribution and a uniform distribution on a sphere,

and for an arbitrary independent distribution for each arm, Assumption 4.6 holds for
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CX =
(
K−1
K0

)
where K0 = d(K − 1)/2e. It is important to note that even in this pes-

simistic case, CX does not exhibit dependence on dimensionality d or the sparsity index

s0. These are formalized in Proposition 4 in Appendix C.4.6 This balanced covariance

condition is somewhat similar to “positive-definiteness” condition for observed contexts

in the bandit literature (e.g., Goldenshluger and Zeevi (2013) and Bastani, Bayati, and

Khosravi (2017)). However, notice that we allow the covariance matrices on both sides

of the inequality to be singular. Hence, the positive-definiteness condition for observed

context in our setting may not hold even when the balanced covariance condition holds.

While this condition admittedly originates from our proof technique, it also provides po-

tential insights on learnability of problem instances. That is, CX close to infinity implies

that the distribution of feature vectors is heavily skewed toward a particular direction.

Hence, learning algorithms may require many more samples to learn the unknown param-

eter, leading to larger regret. It is important to note that our algorithm does not require

any prior information on CX . The regret bound for the K-armed sparse bandits under

Assumption 4.6 is as follows.

Theorem 4.3 (Regret bound for K arms). Suppose K ≥ 3 and Assumptions 4.1-4.4, and

4.6 hold. Let λ0 = 2σxmax. Then the expected cumulative regret of the SA Lasso Bandit

policy π over horizon T ≥ 1 is upper-bounded by

Rπ(T ) ≤ 4κ1 + 4κ1xmaxb(log(2d2) + 1)
C1(s0)2 +

64κ1νCXσxmaxs0

√
T log(dT )

κ0φ2
0

where C1(s0) = min
(

1
2 ,

φ2
0

256s0νCXx2
max

)
.

6While it is not our primary goal to derive general tight bounds on CX , we acknowledge that the bound
on CX for an arbitrary distribution for independent arms is very loose, and is the result of conservative
analysis driven by lack of information on pX . Numerical evaluation on distributions other than Gaussian
and uniform distributions, detailed in Section 4.6, buttress this point and indicate that the dependence
on K is no greater than linear.
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Theorem 4.3 establishesO
(
s0

√
T log(dT )

)
regret without prior knowledge on s0, achiev-

ing the same rate as Theorem 4.1 in terms of the key problem primitives. The proof of

Theorem 4.3 largely follows that of Theorem 4.1. The main difference is how we control

the adapted Gram matrix Σt with the theoretical Gram matrix Σ. Under the balanced

covariance condition, we can ensure the lower bound of the adapted Gram matrix as a

function of the theoretical Gram matrix, which is analogous to the result in Lemma 4.2.

In particular, we can show that for a fixed vector β ∈ Rd,

K∑
i=1

EXt
[
Xt,iX

>
t,i1{Xt,i = argmax

X∈Xt
X>β}

]
< (2νCX )−1Σ .

The formal result is presented in Lemma C.7 in Appendix C.4 along with its proof. Next,

we again invoke the matrix concentration result in Lemma 4.3 to connect the compatibility

constant of empirical Gram matrix Σ̂t to that of Σt, and eventually to the theoretical Gram

matrix Σ. Thus, we ensure the compatibility condition of Σ̂t. The additional regret in

the K-armed case as compared to the two-armed case is essentially a scaling by CX to

ensure the balanced covariance condition.

4.6.2 Numerical Experiments for K Arms

We now validate the performance of SA Lasso Bandit in K-armed sparse bandit settings

via additional numerical experiments and provide comparison with the existing sparse

bandit algorithms. The setup of the experiments is identical to the setup described in

Section 4.5. We perform evaluations under various instances. In particular, we focus

on the performances of algorithms as the number of arms increases. Additionally, to

investigate the effect of the balanced covariance condition, we evaluate algorithms on

features drawn from a non-Gaussian elliptical distribution, for which we do not have a

tight bound of CX as well as the multi-dimensional uniform distribution.
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Figure 4.3: The plots show the t-round cumulative regret of SA Lasso Bandit (Algorithm 8),
DR Lasso Bandit (Kim and Paik, 2019), and Lasso Bandit (Bastani and Bayati, 2020) with
varying number of arms K ∈ {20, 100}, feature dimensions d ∈ {100, 200}, and different dis-
tributions. In the first two rows, features are drawn from a multivariate Gaussian distribution
with weak and strong correlation levels. The third row shows evaluations with features drawn
from the multi-dimensional uniform distribution. In the fourth row, features are drawn from a
non-Gaussian elliptical distribution.
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Figure 4.3 shows the sample results of the numerical evaluations (averaged over 20 in-

dependent runs per problem instance), and the additional results are also presented in the

appendix. The experiment results provide the convincing evidence that the performance

of our proposed algorithm is superior to the existing sparse bandit methods that we com-

pare with. Again, SA Lasso Bandit outperforms the existing sparse bandit algorithms

by significant margins, even though the correct sparsity index s0 is revealed to these algo-

rithms and kept hidden from SA Lasso Bandit. Furthermore, SA Lasso Bandit is much

more practical and simple to implement with a minimal number of a hyperparameter.

In the experiments with Gaussian distributions shown in the first and second rows

in Figure 4.3, we again observe that algorithms generally perform better under strong

correlation compared to weak correlation instances. This is expected since strongly (posi-

tively) correlated arms imply a smaller discrepancy between expected payoffs of the arms.

A strong correlation between the arms also implies a smaller CX , hence leading to a lower

regret, as briefly discussed earlier when we introduce the balanced covariance condition.

Thus, the balanced covariance condition appears to capture the essence of positive cor-

relation between arms. It is important to note that there are two different notions of

correlation: correlation between the arms and correlation between the features of an arm.

A higher correlation between the features potentially decreases the value of compatibility

constant. Thus, the regret may increase with an increase in correlation of the features as

far as the compatibility condition is concerned. The plots in the third and fourth rows in

Figure 4.3 show that when the feature vectors are drawn i.i.d. according to the uniform

distribution and non-Gaussian elliptical distributions, the performance of existing algo-

rithms (e.g., DR Lasso Bandit from Kim and Paik (2019)) deteriorates significantly; SA

Lasso Bandit still exhibits superior performances. Thus, our proposed algorithm is very

robust to the changes in the distribution of the feature vectors.
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4.7 Concluding Remarks

In this chapter, we study high-dimensional contextual bandit problem with sparse struc-

ture. In particular, we address the fundamental issue that previously known learning

algorithms for this problem require a priori knowledge of the sparsity index s0 of the

unknown parameter. We propose and analyze an algorithm that does not require this

information. The proposed algorithm achieves a tight regret upper bound which depends

on a logarithmic function of the feature dimension which matches the scaling of the offline

Lasso convergence results. The algorithm attains this sharp result without knowing the

sparsity of the unknown parameter, overcoming weaknesses of the existing algorithms.

We demonstrate that our proposed algorithm significantly outperforms the benchmark,

supporting the theoretical claims. We conclude by outlining some of future directions.

Minimax Regret in Sparse Bandits. Minimax regret in sparse bandits is more subtle

to define than in (non-sparse) linear or GLM bandits. Consider the following setting.

Suppose nature is allowed to freely choose s0 ∈ [d], it can force the regret for any sparse

bandit algorithm to be polynomial in d by choosing s0 = d. On the other hand, if we

limit nature to choose s0 ∈ [1, smax], it will choose s0 = smax, and therefore, sparse bandit

algorithms can assume that the sparsity index s0 is known, and set equal to smax. Thus,

it is not clear how to define a minimax criterion in a manner that does not reveal the

dominating choice for nature, and therefore, forces learning algorithm to play a strategy

which hedges against a range of values of the sparsity index.

Reinforcement Learning with High-Dimensional Covariates. Another compelling

direction is to extend our analysis and proposed approach to reinforcement learning with

high-dimensional context or with high-dimensional function approximation. A main chal-

lenge in this direction appears to be the need for an algorithm to be optimistic. To our

knowledge, almost all reinforcement learning algorithms with provable efficiency rely on
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the principle of optimism. But, as we have discussed in this chapter, in order to be opti-

mistic in the tightest sense under sparse structure, the knowledge on sparsity is generally

needed.
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Appendix A: Upper Confidence Bound Algorithms

for MNL Contextual Bandits

A.1 Proofs of Lemmas for Theorem 2.1

A.1.1 Proof of lemma 2.2

Proof. We first define the following:

Jt(θ) =
t∑

t′=1

∑
i∈St′

(pt′(i|St′ , θ)− pt′(i|St′ , θ∗))xt′i

Zt := Jt(θ̂t) =
t∑

t′=1

∑
i∈St′

εt′ixt′i .

Then we follow the same arguments of the proof of Theorem 2.3 up to (A.8) and combine

with ‖θ̂t − θ∗‖ ≤ 1. Therefore, we have

‖Zt‖V −1
t

= ‖Jt(θ̂t)‖V −1
t
≥ κ2‖θ̂t − θ∗‖2

Vt . (A.1)

Then we are left to bound ‖Zt‖2
V −1
t

. We can use Theorem 1 in Abbasi-Yadkori, Pál, and

Szepesvári (2011), which states if the noise εti is sub-gaussian with parameter σ, then

‖Zt‖2
V −1
t
≤ 2σ2 log

(
det(Vt)1/2 det(VT0)−1/2

δ

)
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with probability at least 1− δ. Then we combine with Lemma A.2. So it follows that

‖Zt‖2
V −1
t
≤ 2σ2

[
d

2 log
(
tK

d

)
− 1

2 log det(VT0) + log 1
δ

]
.

Since det(VT0) ≥ (λmin(VT0))d, we have

‖Zt‖2
V −1
t
≤ 2σ2

[
d

2 log
(
tK

d

)
− d

2 log λmin(VT0) + log 1
δ

]

≤ 2σ2
[
d

2 log
(
tK

d

)
− d

2 logK + log 1
δ

]

≤ σ2
[
d log

(
t

d

)
+ 2 log 1

δ

]
(A.2)

where the second inequality is by λmin(VT0) ≥ K. Then, using the fact that σ2 = 1
4 in our

problem and combining with (A.1), we have that

‖θ̂t − θ∗‖Vt ≤
1

2κ

√
d log

(
t

d

)
+ 2 log 1

δ
.

with probability at least 1− δ.

A.1.2 Proof of Lemma 2.1

Proof. The proof of this lemma is the adaptation of Lemma 9 in Kveton et al. (2020),

which follows the proof of Theorem 1 in Li, Lu, and Zhou (2017). Note from (A.7) that

Jt(θ) is an injection and satisfies the conditions of Lemma A of Chen, Hu, Ying, et al.

(1999). Therefore, we follow the same arguments of Theorem 1 of Li, Lu, and Zhou (2017)

to use Lemma A of Chen, Hu, Ying, et al. (1999). For any T0 such that λmin(VT0) ≥ 1
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and for t ≥ T0, we have

‖Jt(θ̂t)‖V −1
t
≤ κ

√
λmin(VT0) =⇒ ‖Jt(θ̂t)‖V −1

t
≤ κ

√
λmin(Vt)

=⇒ ‖θ̂t − θ∗‖ ≤ 1 .

Therefore, it suffices to show ‖Jt(θ̂t)‖V −1
t
≤ κ

√
λmin(VT0) for large enough T0. Then from

(A.2), we have

‖Jt(θ̂t)‖2
V −1
t
≤ 1

4

[
d log(t/d) + 2 log 1

δ

]

with probability at least 1− δ. Letting δ = 1
T
, we have

‖Jt(θ̂t)‖2
V −1
t
≤ 1

4 [d log(T/d) + 2 log T ] .

Therefore, if λmin(Vt) is large enough such that

λmin(Vt) ≥
1

4κ2 [d log(T/d) + 2 log T ] ,

we have ‖θ̂t − θ∗‖ ≤ 1 with probability at least 1− 1
T
.

A.1.3 Proof of Lemma 2.6

The proof of Lemma 2.6 requires the following technical lemmas.

Lemma A.1. Suppose ‖xti‖ ≤ 1 for all i and t. Define Vt = VT0 +
t∑

t′=T0+1

∑
i∈St′

xt′ix
>
t′i.

Suppose λmin(VT0) ≥ K. Then

t∑
t′=T0+1

∑
i∈St′
‖xt′i‖2

V −1
t′−1
≤ 2 log

(
det(Vt)

λmin(VT0)d

)
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Proof. Let λ1, λ2, ..., λd be the eigenvalues of ∑n
i=1 xtix

>
ti . Since ∑n

i=1 xtix
>
ti is positive

semi-definite, λj ≥ 0 for all j. Hence, we have

det
I +

∑
i∈St

xtix
>
ti

 =
d∏
j=1

(1 + λj)

≥ 1 +
d∑
j=1

λj = 1− d+
d∑
j=1

(1 + λj)

= 1− d+ trace
I +

∑
i∈St

xtix
>
ti

 = 1 +
∑
i∈St
‖xti‖2

2 (A.3)

Now, we lower-bound det(Vt).

det(Vt) = det
Vt +

∑
i∈St

xtix
>
ti


= det(Vt) det

I +
∑
i∈St

V
−1/2
t xti(V −1/2

t xti)>


≥ det(Vt)
1 +

∑
i∈St
‖xti‖2

V −1
t


≥ det(VT0)

t∏
t′=T0+1

1 +
∑
i∈St
‖xt′i‖2

V −1
t′−1

 (A.4)

The first inequality comes from (A.3). The second inequality comes from applying the

first inequality repeatedly. Since λmin(Vt) is increasing over time, i.e., λmin(Vt) ≥ λmin(VT0)

for t ≥ T0, it follows that

‖xti‖2
V −1
t′−1
≤ ‖xti‖2

λmin(Vτ−1) ≤
1

λmin(VT0) ≤
1
K
.

Hence ∑i∈St ‖xti‖2
V −1
t′−1
≤ 1 for all t ≥ T0. Then using the fact that z ≤ 2 log(1 + z) for
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any z ∈ [0, 1], we have

t∑
t′=T0+1

∑
i∈St′
‖xt′i‖2

V −1
t′−1
≤ 2

t∑
t′=T0+1

log
1 +

∑
i∈St′
‖xt′i‖2

V −1
t′−1


= 2 log

t∏
t′=T0+1

1 +
∑
i∈St′
‖xt′i‖2

V −1
t′−1


≤ 2 log

(
det(Vt)
det(VT0)

)

≤ 2 log
(

det(Vt)
λmin(VT0)d

)

The second inequality is from (A.4).

Lemma A.2. Suppose ‖xti‖ ≤ 1 for all i and t. Then det(Vt) is increasing with respect

to t and

det(Vt) ≤
(
tK

d

)d
(A.5)

Proof. For any symmetric positive definite matrix Ṽ ∈ Rd×d and column vector x ∈ Rd,

we have

det(Ṽ + xx>) = det(V ) det
(
I + Ṽ −1/2xx>Ṽ −1/2

)
= det(Ṽ ) det(1 + ‖Ṽ −1/2x‖2)

≥ det(Ṽ ).

The second equality above is due to Sylvester’s determinant theorem, which states that
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det(I +BA) = det(I + AB). Let λ1, ..., λd > 0 be the eigenvalues of Vt. Then

det(Vt) ≤
(
λ1 + ...+ λd

d

)d

=
(
trace(Vt)

d

)d

=
(∑t

t′=1
∑
i∈St′ trace(xt′ix

>
t′i)

d

)d

=
(∑t

t′=1
∑
i∈St′ ‖xt′i‖

2

d

)d

≤
(
tK

d

)d
.

Proof of Lemma 2.6

Proof. Combining Lemma A.1 and Lemma A.2,

t∑
t′=1

max
i∈St′
‖xt′i‖2

V −1
t′−1
≤

t∑
t′=1

∑
i∈St′
‖xt′i‖2

V −1
t′−1

≤ 2 log
(

det(Vt)
det(VT0)

)

≤ 2 log
(

tK

dλmin(VT0)

)d

≤ 2d log(t/d) .

where the last inequality is by λmin(VT0) ≥ K. Then we complete the proof.
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A.1.4 Proof of Lemma 2.3

Proof.

|x>ti θ̂t−1 − x>tiθ∗| =
∣∣∣∣[V −1/2

t−1 (θ̂t−1 − θ∗)
]>

(V −1/2
t−1 xti)

∣∣∣∣
≤ ‖V −1/2

t−1 (θ̂t−1 − θ∗)‖2‖(V −1/2
t−1 xti)‖2

= ‖θ̂t−1 − θ∗‖Vt‖xti‖V −1
t

≤ αt−1‖xti‖V −1
t

where the first inequality is by Hölder’s inequality. Hence, it follows that

(
x>ti θ̂t−1 + αt−1‖xti‖V −1

t

)
− x>tiθ∗ ≤ 2α‖xti‖V −1

t
.

Also, From |x>ti θ̂t−1 − x>tiθ∗| ≤ αt−1‖xti‖V −1
t

, we have

x>ti θ̂t−1 − x>tiθ∗ ≥ −αt−1‖xti‖V −1
t

Hence, we have
(
x>ti θ̂t−1 + αt−1‖xti‖V −1

t

)
− x>tiθ∗ ≥ 0
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A.1.5 Proof of Lemma 2.5

Proof. Let uti ≥ u′ti for all i. By the mean value theorem, there exists ūti := (1−c)uti+cu′ti

for some c ∈ (0, 1) with

∑
i∈S rti exp (uti)

1 +∑
j∈S exp (utj)

−
∑
i∈S rti exp(u′ti)

1 +∑
j∈S exp(u′tj)

= (∑i∈S rti exp{ūti}(uti − u′ti))(1 +∑
i∈S exp{ūti})

(1 +∑
i∈S exp{ūti})2

− (∑i∈S rti exp{ūti})(
∑
i∈S exp{ūti}(uti − u′ti))

(1 +∑
i∈S exp{ūti})2

=
∑
i∈S

rtipti(S, ūt)(uti − u′ti)−Rt(S, ūt) ·
∑
i∈S

pti(S, ūt)(uti − u′ti)

=
∑
i∈S

(
rti −Rt(S, ūt)

)
pti(S, ūt)(uti − u′ti)

≤ max
i∈S
|uti − u′ti| = max

i∈S
(uti − u′ti)

where the inequality is from |rti| ≤ 1, and pti(S, ūt) ≤ 1 is a multinomial probability.

A.2 Proofs for Lemma 2.7 and Theorem 2.2

The proof of Lemma 2.7 depends on the few technical lemma we present here in this

section. Recall from Definition 2.2 for the per-round loss ft(θ) and its gradient Gt(θ):

ft(θ) = −
∑

i∈St∪{0}
yti log pt(i|St, θ) = −

∑
i∈St

ytix
>
tiθ + log

(
1 +

∑
j∈St

exp(x>tjθ)
)

Gt(θ) = ∇θft(θ) =
∑
i∈St

(pt(i|St, θ)− yti)xti

We will use these terms throughout this section. In addition to ft(θ) and Gt(θ), we also

define their conditional expectations which we will utilize in the proofs of this section.
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Definition A.1. Define the conditional expectations over y of ft(θ) and its gradient Gt(θ).

f̄t(θ) := Ey [ft(θ)|Ft] Ḡt(θ) := Ey[Gt(θ)|Ft] = Ey[∇ft(θ)|Ft]

where Ft contains all the information up to the beginning of the t-th round.

Lemma A.3. For any θ1, θ2, we have

ft(θ2) ≥ ft(θ1) +Gt(θ1)>(θ2 − θ1) + κ

2 (θ2 − θ1)>
( ∑
i∈St

xtix
>
ti

)
(θ2 − θ1)

Proof. Using the Taylor expansion, with θ̄ = cθ2 − (1− c)θ1 for some c ∈ (0, 1)

ft(θ2) = ft(θ1) +Gt(θ1)>(θ2 − θ1) + 1
2(θ2 − θ1)>Hf (θ̄)(θ2 − θ1)

where Hf (θ̄) is the Hessian matrix at θ̄. Following the proof of Theorem 2.3, the Hessian

matrix can be lower-bounded as follows

Hf (θ̄) =
∑
i∈St

pt(i|St, θ̄)xtix>ti −
∑
i∈St

∑
j∈St

pt(i|St, θ̄)ptj(St, θ̄)xtix>tj

�
∑
i∈St

pt(i|St, θ̄)pt0(θ̄)xtix>ti

From Assumption 2.2, we have

Hf (θ̄) � κ
∑
i∈St

xtix
>
ti
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Therefore, we have

ft(θ2) = ft(θ1) +Gt(θ1)>(θ2 − θ1) + 1
2(θ2 − θ1)>Hf (θ̄)(θ2 − θ1)

≥ ft(θ1) +Gt(θ1)>(θ2 − θ1) + κ

2 (θ2 − θ1)>
( ∑
i∈St

xtix
>
ti

)
(θ2 − θ1).

Lemma A.4.

2Gt(θ̂t)>(θ̂t − θ∗) ≤ ‖Gt(θt)‖2
V −1
t+1

+ ‖θ̂t − θ∗‖2
Vt+1 − ‖θ̂t+1 − θ∗‖2

Vt+1

Proof. Note that θ̂t+1 is the optimal solution to the problem

θ̂t+1 = argmin
θ

{1
2‖θ − θ̂t‖

2
Vt+1 + (θ − θ̂t)>Gt(θ̂t)

}

Hence, from the first-order optimality condition, we have

[
Gt(θ̂t) + Vt+1(θ̂t+1 − θ̂t)

]>
(θ − θ̂t+1) ≥ 0,∀θ

which gives

θ>Vt+1(θ̂t+1 − θ̂t) ≥ θ̂>t+1Vt+1(θ̂t+1 − θ̂t)−Gt(θ̂t)(θ − θ̂t+1).

124



Appendix A: UCB Algorithms for MNL Contextual Bandits

Then we can write

‖θ̂t − θ∗‖2
Vt+1 − ‖θ̂t+1 − θ∗‖2

Vt+1

= θ̂>t Vt+1θ̂t − θ̂>t+1Vt+1θ̂t+1 + 2θ∗>Vt+1(θ̂t+1 − θ̂t)

≥ θ̂>t Vt+1θ̂t − θ̂>t+1Vt+1θ̂t+1 + 2θ̂>t+1Vt+1(θ̂t+1 − θ̂t)− 2Gt(θ̂t)(θ∗ − θ̂t+1)

= θ̂>t Vt+1θ̂t + θ̂>t+1Vt+1θ̂t+1 − 2θ̂>t+1Vt+1θ̂t − 2Gt(θ̂t)(θ∗ − θ̂t+1)

= ‖θ̂t − θ̂t+1‖2
Vt+1 + 2Gt(θ̂t)(θ̂t+1 − θ̂t) + 2Gt(θ̂t)(θ̂t − θ∗)

≥ −‖Gt(θt)‖2
V −1
t+1

+ 2Gt(θ̂t)(θ̂t − θ∗)

where the last inequality is from the fact that

‖θ̂t − θ̂t+1‖2
Vt+1 + 2Gt(θ̂t)(θ̂t+1 − θ̂t) ≥ min

θ

{
‖θ‖2

Vt+1 + 2Gt(θ̂t)(θ)
}

= −‖Gt(θt)‖2
V −1
t+1
.

Lemma A.5. For all θ ∈ Rd, we have f̄t(θ) ≥ f̄t(θ∗).

Proof.

f̄t(θ)− f̄t(θ∗) = −
∑
i∈St

pt(i|St, θ∗) log pt(i|St, θ) +
∑
i∈St

pt(i|St, θ∗) log pt(i|St, θ∗)

=
∑
i∈St

pt(i|St, θ∗) [log pt(i|St, θ∗)− log pt(i|St, θ)]

=
∑
i∈St

pt(i|St, θ∗) log pt(i|St, θ
∗)

pt(i|St, θ)

≥ 0

where ∑i∈St pt(i|St, θ∗) log pt(i|St,θ∗)
pt(i|St,θ) is the Kullback-Leibler divergence between two distri-
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butions which is always non-negative.

Lemma A.6. For any positive-semidefinte matrix V ,

‖Gt(θ)‖2
V ≤ 4 max

i∈St
‖xti‖2

V

Proof. For any positive-semidefinte matrix V

(zi − zj)>V (zi − zj)> = z>i V zi + z>j V zj − z>i V zj − z>j V zi ≥ 0

which implies z>i V zi + z>j V zj ≥ z>i V zj + z>j V zi. We let zi := (pt(i|St, θ)− yti)xti

‖Gt(θ)‖2
V =

∑
i∈St

∑
j∈St

(pt(i|St, θ)− yti) (ptj(St, θ)− ytj)x>tiV xtj

=
∑
i∈St

(pt(i|St, θ)− yti)2 x>tiV xti

+ 1
2
∑
i∈St

∑
j∈St

(pt(i|St, θ)− yti) (ptj(St, θ)− ytj) (x>tiV xtj + x>tjV xti)

≤
∑
i∈St

(pt(i|St, θ)− yti)2 x>tiV xti

+ 1
2
∑
i∈St

∑
j∈St

[
(pt(i|St, θ)− yti)2 x>tiV xtj + (ptj(St, θ)− ytj)2 x>tjV xti

]

=
∑
i∈St

(pt(i|St, θ)− yti)2 x>tiV xti +
∑
i∈St

(pt(i|St, θ)− yti)2 x>tiV xti

= 2
∑
i∈St

(pt(i|St, θ)− yti)2 x>tiV xti

≤ 4 max
i∈St

x>tiV xti

= 4 max
i∈St
‖xti‖2

V
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Lemma A.7. With a probability at least 1− δ,

t∑
t′=T0+1

[
Ḡt′(θ̂t′)−Gt′(θ̂t′)

]>
(θ̂t′ − θ∗)

≤ κ

4

t∑
t′=T0+1

‖θ∗ − θ̂t′‖2
Wt′

+
(4
κ

+ 8
3

)
log
(
d2 log2

tK
2 et

2

δ

)
+ 2

Proof. First, notice that
[
Ḡt′(θ̂t′)−Gt′(θ̂t′)

]>
(θ̂t′−θ∗) is a martingale difference sequence.

Also, we have

∣∣∣∣[Ḡt′(θ̂t′)−Gt′(θ̂t′)
]>

(θ̂t′ − θ∗)
∣∣∣∣ ≤ ∣∣∣∣[Ḡt′(θ̂t′)

]>
(θ̂t′ − θ∗)

∣∣∣∣+ ∣∣∣∣[Gt′(θ̂t′)
]>

(θ̂t′ − θ∗)
∣∣∣∣

≤
∥∥∥Ḡt′(θ̂t′)

∥∥∥ ∥∥∥θ̂t′ − θ∗∥∥∥+
∥∥∥Gt′(θ̂t′)

∥∥∥ ∥∥∥θ̂t′ − θ∗∥∥∥
≤ 2
√

2‖θ̂t′ − θ∗‖

where the last inequality is from the fact that ‖Gt(θ)‖ = ‖∑i∈St (pt(i|St, θ)− yti)xti‖ ≤
√

2 for any θ. Also, note that for large enough t′ (i.e. after the random initialization), we

have ‖θ̂t′ − θ∗‖ ≤ 1. Hence, we have

∣∣∣∣[Ḡt′(θ̂t′)−Gt′(θ̂t′)
]>

(θ̂t′ − θ∗)
∣∣∣∣ ≤ 2

√
2.

We define the martingale Mt := ∑t
t′=1

[
Ḡt′(θ̂t′)−Gt′(θ̂t′)

]>
(θ̂t′ − θ∗). And, we also define
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Σt as

Σt :=
t∑

t′=1
Eyt′

[([
Ḡt′(θ̂t′)−Gt′(θ̂t′)

]>
(θ̂t′ − θ∗)

)2
]

≤
t∑

t′=1
Eyt′

[(
Gt′(θ̂t′)>(θ̂t′ − θ∗)

)2
]

≤
t∑

t′=1

∑
i∈St′

(
x>t′i(θ̂t′ − θ∗)

)2

=
t∑

t′=1
‖θ̂t′ − θ∗‖2

Wt′
:= Bt

Note that Bt, the upper bound for Σt, is a random variable, so we cannot directly apply

Bernstein’s inequality to Mt. Instead, we consider two cases (i) Bt ≤ 4
tK

and (ii) Bt >
4
tK

.

Case (i)

Let’s assume Bt =
t∑

t′=1
‖θ̂t′ − θ∗‖2

Wt′
≤ 4
tK

. Then we have

Mt =
t∑

t′=1

[
Ḡt′(θ̂t′)−Gt′(θ̂t′)

]>
(θ̂t′ − θ∗)

=
t∑

t′=1

∑
i∈St′

(yt′i − p(St, θ∗))x>t′i(θ̂t′ − θ∗)

≤
t∑

t′=1

∑
i∈St′
|x>t′i(θ̂t − θ∗)|

≤

√√√√√tK t∑
t′=1

∑
i∈St′

(
x>t′i(θ̂t − θ∗)

)2

≤ 2.
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Case (ii)

Let’s assume Bt =
t∑

t′=1
‖θ̂t′ − θ∗‖2

Wt′
>

4
tK

. Note that we have both a lower and upper

bounds for Bt, i.e., 4
tK

< Bt ≤ tK. Then we can use the peeling process (Bartlett,

Bousquet, Mendelson, et al., 2005).

P
(
Mt ≥ 2

√
ηtBt + 8ηt

3

)
= P

(
Mt ≥ 2

√
ηtBt + 8ηt

3 ,
4
tK

< Bt ≤ tK
)

= P
(
Mt ≥ 2

√
ηtBt + 8ηt

3 ,
4
tK

< Bt ≤ tK,Σt ≤ Bt

)
≤

m∑
j=1

P
(
Mt ≥ 2

√
ηtBt + 8ηt

3 ,
4 · 2j−1

tK
< Bt ≤

4 · 2j
tK

,Σt ≤ Bt

)

≤
m∑
j=1

P

Mt ≥
√
ηt

8 · 2j
tK

+ 8ηt
3 ,Σt ≤

4 · 2j
tK


≤ m exp(−ηt)

where m = d2 log2
tK
2 e, and the last inequality is from Bernstein’s inequality for martin-

gales. Combining with the result in Cases (i) and (ii), letting ηt = log mt2

δ
= log d2 log2

tK
2 et

2

δ

and taking the union bound over t, we have with probability at least 1− δ

Mt =
t∑

t′=1

[
Ḡt′(θ̂t′)−Gt′(θ̂t′)

]>
(θ̂t′ − θ∗) ≤ 2

√√√√ηt t∑
t′=T0+1

‖θ∗ − θ̂t′‖2
Wt′

+ 8ηt
3 + 2.

Then we apply uv ≤ cu2 + v2/(4c) to the second term on the right hand side with c = 2
κ
.

√√√√ηt t∑
t′=T0+1

‖θ∗ − θ̂t′‖2
Wt′
≤ 2ηt

κ
+ κ

8

t∑
t′=T0+1

‖θ∗ − θ̂t′‖2
Wt′

Then we have

t∑
t′=T0+1

[
Ḡt′(θ̂t′)−Gt′(θ̂t′)

]>
(θ̂t′ − θ∗) ≤

κ

4

t∑
t′=T0+1

‖θ∗ − θ̂t′‖2
Wt′

+
(4
κ

+ 8
3

)
ηt + 2
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A.2.1 Proof of Lemma 2.7

Proof. From Lemma A.3, we have

ft(θ̂t) ≤ ft(θ∗) +Gt(θ̂t)>(θ̂t − θ∗)−
κ

2 (θ∗ − θ̂t)>
( ∑
i∈St

xtix
>
ti

)
(θ∗ − θ̂t)

Taking expectation over y gives

f̄t(θ̂t) ≤ f̄t(θ∗) + Ḡt(θ̂t)>(θ̂t − θ∗)−
κ

2 (θ∗ − θ̂t)>
( ∑
i∈St

xtix
>
ti

)
(θ∗ − θ̂t)

Note that ∇f̄t(θ) = Ey[∇ft(θ)|Ft] = Ḡt(θ) by the Leibniz integral rule.

Also, let Wt := ∑
i∈St xtix

>
ti . Since f̄t(θ) ≥ f̄t(θ∗) from Lemma A.5, we have

0 ≤ f̄t(θ̂t)− f̄t(θ∗)

≤ Ḡt(θ̂t)>(θ̂t − θ∗)−
κ

2‖θ
∗ − θ̂t‖2

Wt

= Gt(θ̂t)>(θ̂t − θ∗)−
κ

2‖θ
∗ − θ̂t‖2

Wt
+
[
Ḡt(θ̂t)−Gt(θ̂t)

]>
(θ̂t − θ∗)

From Lemma A.4, we have 2Gt(θ̂t)>(θ̂t − θ∗) ≤ ‖Gt(θt)‖2
V −1
t+1

+ ‖θ̂t − θ∗‖2
Vt+1 − ‖θ̂t+1 −

θ∗‖2
Vt+1 . So we have

0 ≤ 1
2‖Gt(θt)‖2

V −1
t+1

+ 1
2‖θ̂t − θ

∗‖2
Vt+1 −

1
2‖θ̂t+1 − θ∗‖2

Vt+1

− κ

2‖θ
∗ − θ̂t‖2

Wt
+
[
Ḡt(θ̂t)−Gt(θ̂t)

]>
(θ̂t − θ∗)

≤ 2 max
i∈St
‖xti‖2

V −1
t+1

+ 1
2‖θ̂t − θ

∗‖2
Vt+1 −

1
2‖θ̂t+1 − θ∗‖2

Vt+1

− κ

2‖θ
∗ − θ̂t‖2

Wt
+
[
Ḡt(θ̂t)−Gt(θ̂t)

]>
(θ̂t − θ∗)
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where the last inequality is by Lemma A.6, ‖Gt(θ)‖2
V −1
t+1
≤ 4 maxi∈St ‖xti‖2

V −1
t+1

. Note that

since Vt+1 = Vt + κ
2
∑
i∈St xtix

>
ti , we have

‖θ̂t − θ∗‖2
Vt+1 = ‖θ̂t − θ∗‖2

Vt + κ

2 (θ̂t − θ∗)>
∑
i∈St

xtix
>
ti

 (θ̂t − θ∗)

= ‖θ̂t − θ∗‖2
Vt + κ

2‖θ̂t − θ
∗‖2
Wt
.

Therefore, we can continue

0 ≤ 2 max
i∈St
‖xti‖2

V −1
t+1

+ 1
2‖θ̂t − θ

∗‖2
Vt + κ

4‖θ̂t − θ
∗‖2
Wt
− 1

2‖θ̂t+1 − θ∗‖2
Vt+1

− κ

2‖θ
∗ − θ̂t‖2

Wt
+
[
Ḡt(θ̂t)−Gt(θ̂t)

]>
(θ̂t − θ∗)

= 2 max
i∈St
‖xti‖2

V −1
t+1

+ 1
2‖θ̂t − θ

∗‖2
Vt −

1
2‖θ̂t+1 − θ∗‖2

Vt+1 −
κ

4‖θ
∗ − θ̂t‖2

Wt

+
[
Ḡt(θ̂t)−Gt(θ̂t)

]>
(θ̂t − θ∗)

Hence, we have

‖θ̂t+1 − θ∗‖2
Vt+1 ≤ ‖θ̂t − θ

∗‖2
Vt + 4 max

i∈St
‖xti‖2

V −1
t+1
− κ

2‖θ
∗ − θ̂t‖2

Wt

+ 2
[
Ḡt(θ̂t)−Gt(θ̂t)

]>
(θ̂t − θ∗).

Summing over t gives

‖θ̂t+1 − θ∗‖2
Vt+1 ≤ λmax(VT0) + 4

t∑
t′=T0+1

max
i∈St′
‖xt′i‖2

V −1
t′+1
− κ

2

t∑
t′=T0+1

‖θ∗ − θ̂t′‖2
Wt′

+ 2
t∑

t′=T0+1

[
Ḡt′(θ̂t′)−Gt′(θ̂t′)

]>
(θ̂t′ − θ∗)
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Now, we can use Lemma A.7 which shows with a probability at least 1− δ,

t∑
t′=T0+1

[
Ḡt′(θ̂t′)−Gt′(θ̂t′)

]>
(θ̂t′ − θ∗)

≤ κ

4

t∑
t′=T0+1

‖θ∗ − θ̂t′‖2
Wt′

+
(4
κ

+ 8
3

)
log
(
d2 log2

tK
2 et

2

δ

)
+ 2.

We have with a probability at least 1− δ

‖θ̂t+1 − θ∗‖2
Vt+1 ≤ T0 + 4

t∑
t′=T0+1

max
i∈St′
‖xt′i‖2

V −1
t′+1

+
(8
κ

+ 16
3

)
log
(
d2 log2

tK
2 et

2

δ

)
+ 4

≤ T0 + 8
κ
d log

(
t

d

)
+
(8
κ

+ 16
3

)
log
(
d2 log2

tK
2 et

2

δ

)
+ 4

where we apply Lemma 2.6 to bound ∑t
t′=1 maxi∈St′ ‖xt′i‖

2
V −1
t′+1

in the last inequality.

Note that Vt 4 Vt′ for any t ≤ t′, which implies ‖xti‖2
V −1
t+1
≤ ‖xti‖2

V −1
t−1

. Therefore, we

can apply Lemma 2.6 here. Also, note that Vt in Algorithm 1 and Vt in Algorithm 2

are different by the factor of κ
2 , which results in additional 2

κ
factor for the bound of∑t

t′=1 maxi∈St′ ‖xt′i‖
2
V −1
t′+1

.

A.2.2 Proof of Theorem 2.2

Proof. Similar to the proof of Theorem 2.1, we first define the high probability event

Definition A.2. Define the following joint event for t ≥ T0:

Ẽt =
{
λmin(VT0) ≥ K, ‖θ̂t − θ∗‖ ≤ 1, ‖θ̂t − θ∗‖Vt ≤ α̃t,∀t ≥ T0

}

where α̃t is defined as Theorem 2.2.

First, using Proposition 1 and Lemma 2.1 with the union bound, we can show that

P
(
λmin(VT0) ≥ K, ‖θ̂t − θ∗‖ ≤ 1

)
≤ 2

T
. Hence, the failure event of Ẽt can be bounded with
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the concentration result in Lemma 2.7. We begin with decomposition of the cumulative

regret based on Ẽt.

R(T ) ≤ T0 + E

 T∑
t=T0+1

(
R̃t(St)−Rt(St, θ∗)

)
1(Ẽt)

+ E

 T∑
t=T0+1

(
R̃t(St)−Rt(St, θ∗)

)
1(Ẽct )


≤ T0 + E

 T∑
t=T0+1

(
R̃t(St)−Rt(St, θ∗)

)
1(Ẽt)

+
T∑
t=1
O(t−2)

≤ T0 +
T∑
t=1

2α̃T max
i∈St
‖xti‖V −1

t
+O(1)

Applying the Cauchy-Schwarz inequality and Lemma 2.6 for ∑T
t=1 maxi∈St ‖xti‖2

V −1
t

, we

have

R(T ) ≤ T0 + 2α̃T
√

2dT log(T/d) +O(1)

where α̃T =
√
T0 + 8

κ
d log(T/d) +

(
8
κ

+ 16
3

)
log(d2 log2(TK/2)et4) + 4.

A.3 Proof of Theorem 2.3

In this section, we present a finite-sample version of the asymptotic normality of the MLE

for the MNL model. It is a generalization of Theorem 1 in (Li, Lu, and Zhou, 2017) to a

multinomial setting.

Proof. Recall that the gradient of the negative log-likelihood of the MNL model is given

by

∇θ`n(θ) =
n∑
t=1

∑
i∈St

(pt(i|St, θ)− yti)xti

We define its conditional expectation Jn(θ) and will use this term throughout this section
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Definition A.3. Define the conditional expectation ∇θ`(θ) as

Jn(θ) := Ey [∇θ`n(θ)|Ft] =
n∑
t=1

∑
i∈St

(pt(i|St, θ)− pt(i|St, θ∗))xti.

Notice that Jn(θ̂n) = ∑n
t=1

∑
i∈St εtixti since the choice of θ̂n is given by the MLE. In

other words, θ̂n is given by the solution to the following:

n∑
t=1

∑
i∈St

(
pt(i|St, θ̂n)− yti

)
xti = 0

Hence it follows that

Jn(θ̂n) =
n∑
t=1

∑
i∈St

(
pt(i|St, θ̂n)− pt(i|St, θ∗)

)
xti

=
n∑
t=1

∑
i∈St

(
pt(i|St, θ̂n)− yti

)
xti +

n∑
t=1

∑
i∈St

(yti − pt(i|St, θ∗))xti

= 0 +
n∑
t=1

∑
i∈St

εtixti

For convenience, define Zn := Jn(θ̂n). For brevity, we will denote pti(θ) := pt(i|St, θ) when

it is clear that St is the assortment chosen at round t.

A.3.1 Consistency of MLE

In this section, we show the consistency of MLE θ̂n. For any θ1, θ2 ∈ Rd, the mean value

theorem implies that there exists θ̄ = cθ1 + (1− c)θ2 with c ∈ (0, 1).

Jn(θ1)− Jn(θ2) =
 n∑
t=1

∑
i∈St

∑
j∈St
∇jpti(θ̄)xtix>tj

 (θ1 − θ2)

=
n∑
t=1

∑
i∈St

pti(θ̄)xtix>ti −
∑
i∈St

∑
j∈St

pti(θ̄)ptj(θ̄)xtix>tj

 (θ1 − θ2)
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Let Ht := ∑
i∈St pti(θ̄)xtix>ti−

∑
i,j∈St pti(θ̄)ptj(θ̄)xtix>tj. Notice Ht is a Hessian of a negative

log-likelihood which is convex. Hence, Ht is positive semidefinite. Also note that

(xi − xj)(xi − xj)> = xix
>
i + xjx

>
j − xix>j − xjx>i � 0

which implies xix>i + xjx
>
j � xix

>
j + xjx

>
i . Therefore, it follows that

Ht =
∑
i∈St

pti(θ̄)xtix>ti −
∑
i∈St

∑
j∈St

pti(θ̄)ptj(θ̄)xtix>tj

=
∑
i∈St

pti(θ̄)xtix>ti −
1
2
∑
i∈St

∑
j∈St

pti(θ̄)ptj(θ̄)
(
xtix

>
tj + xtjx

>
ti

)

�
∑
i∈St

pti(θ̄)xtix>ti −
1
2
∑
i∈St

∑
j∈St

pti(θ̄)ptj(θ̄)
(
xtix

>
ti + xtjx

>
tj

)

=
∑
i∈St

pti(θ̄)xtix>ti −
∑
i∈St

∑
j∈St

pti(θ̄)ptj(θ̄)xtix>ti

=
∑
i∈St

pti(θ̄)
1−

∑
j∈St

ptj(θ̄)
xtix>ti

=
∑
i∈St

pti(θ̄)pt0(θ̄)xtix>ti

where pt0(θ̄) is the probability of choosing the no purchase option under parameter θ̄.

Define Hn(θ) := ∑n
t=1

∑
i∈St pti(θ̄)pt0(θ̄)xtix>ti . Then, we can write

Jn(θ1)− Jn(θ2) =
[
n∑
t=1

Ht

]
(θ1 − θ2)

≥

 n∑
t=1

∑
i∈St

pti(θ̄)pt0(θ̄)xtix>ti

 (θ1 − θ2)

= Hn(θ̄)(θ1 − θ2) (A.6)

If θ̄ ∈ Bη := {θ : ‖θ − θ∗‖ ≤ η} with some η > 0, then pti(θ̄)pt0(θ̄) ≥ κη, where κη is
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defined as κη := infθ∈Bη ,i∈S,S∈S pti(θ)pt0(θ) > 0. Then since Hn(θ̄) � κηVn, we have

(θ1 − θ2)>(Jn(θ1)− Jn(θ2)) ≥ (θ1 − θ2)>(κηVn)(θ1 − θ2) > 0 (A.7)

for any θ1 6= θ2. Therefore, Jn(θ) is an injection from Rd to Rd. and so the inverse J−1

is a well-defined function. Note that Bη is a convex set. Hence, if θ1, θ2 ∈ Bη, then also

θ̄ ∈ Bη. Also, by the definition of Jn(θ), we have Jn(θ∗) = 0. Then, for any θ ∈ Bη, it

follows that

‖Jn(θ)‖2
V −1
n

= ‖Jn(θ)− Jn(θ∗)‖2
V −1
n

≥ (θ − θ∗)>Hn(θ̄)V −1
n Hn(θ̄)(θ − θ∗)

≥ κ2
ηλmin(Vn)‖θ − θ∗‖2 (A.8)

where the first inequality is due to (A.6) and the second inequality is again from the fact

that Hn(θ̄) � κηVn. Now, we need an upper-bound for ‖Jn(θ)‖V −1
n

. From Lemma A.8,

‖Jn(θ̂n)‖V −1
n
≤ 4

√
2d+ log 1

δ
(A.9)

with probability at least 1− δ. Also, from (A.2) in Lemma 2.2, we have

‖Jn(θ̂n)‖V −1
n
≤ 1

2

√
d log

(
n

d

)
+ 2 log 1

δ

with probability at least 1 − δ for n ≥ T0 with λmin(VT0) ≥ K. We let D denote a high

probability upper bound on ‖Jn(θ̂n)‖V −1
n

:

D := min

4
√

2d+ log 1
δ
,

√
d log

(
n

d

)
+ 2 log 1

δ


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so that ‖Jn(θ̂n)‖V −1
n
≤ D with probability at least 1−2δ. For n ≥ T0 such that λmin(VT0) ≥

max
{

1
4κ2

[
d log

(
T
d

)
+ 4 log T

]
, K

}
, we can apply Lemma 2.1 to ensure ‖θ̂n − θ∗‖ ≤ 1.

Hence, using κ ≤ min‖θ−θ∗‖≤1 pti(S, θ)pt0(S, θ) in Assumption 2.2 and combining with

(A.8), we have

‖θ̂n − θ∗‖ ≤
D

κ
√
λmin(Vn)

. (A.10)

A.3.2 Normality of MLE

In this section, we show the normality result of MLE θ̂n. For the rest of the section, we

assumes (A.9) holds. First, we define F,L and E which are defined as:

F (θ) :=
n∑
t=1

∑
i∈St

pti(θ)xtix>ti −
n∑
t=1

∑
i∈St

∑
j∈St

pti(θ)ptj(θ)xtix>tj

L := F (θ∗) =
n∑
t=1

∑
i∈St

pti(θ∗)xtix>ti −
n∑
t=1

∑
i∈St

∑
j∈St

pti(θ∗)ptj(θ∗)xtix>tj

E := F (θ̃)− F (θ∗)

where θ̃ := cθ∗ + (1− c)θ̂n for some constant c ∈ (0, 1). Then, it follows that

Zn = Jn(θ̂n) = Jn(θ̂n)− Jn(θ∗)

= (L+ E)(θ̂ − θ∗).

Hence, for any x ∈ R2, we can write

x>(θ̂n − θ∗) = x>(L+ E)−1Zn

= x>L−1Zn − x>L−1E(L+ E)−1Zn. (A.11)
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Note that (L + E) is a non-singular matrix, hence (L + E) is invertible. Here, the key

element is controlling the matrix E. Note that if θ̂n and θ∗ are close (so θ̃ and θ∗ are also

close), elements in E are small.

A.3.3 Bounding Matrix E

First, we further decompose E into two summations, E1 and E2

E =
n∑
t=1

∑
i∈St

(
pti(θ̃)− pti(θ∗)

)
xtix

>
ti︸ ︷︷ ︸

E1

−
n∑
t=1

∑
i∈St

∑
j∈St

(
pti(θ̃)ptj(θ̃)− pti(θ∗)ptj(θ∗)

)
xtix

>
tj︸ ︷︷ ︸

E2

(A.12)

We first bound the first summation E1. Note that

E1 =
n∑
t=1

∑
i∈St

(
pti(θ̃)− pti(θ∗)

)
xtix

>
ti

=
n∑
t=1

∑
i∈St

∑
j∈St
∇jpti(θ1)x>tj(θ̂n − θ∗)xtix>ti

=
n∑
t=1

∑
i∈St

pti(θ1)x>ti(θ̂n − θ∗)xtix>ti −
n∑
t=1

∑
i∈St

∑
j∈St

pti(θ1)ptj(θ1)x>tj(θ̂n − θ∗)xtix>ti

where the second equality is by the mean value theorem for some θ1 := c1θ
∗ + (1− c1)θ̂n

with c1 ∈ (0, 1). Note that the mean value theorem is applied to θ̃ and θ∗, and since θ̃ is

a convex combination of θ̂n and θ∗, we can find such c1. Then it follows that

E1 =
n∑
t=1

∑
i∈St

pti(θ1)
x>ti(θ̂n − θ∗)− ∑

j∈St
ptj(θ1)x>tj(θ̂n − θ∗)

xtix>ti
≤

n∑
t=1

∑
i∈St

pti(θ1)

∥∥∥∥∥∥xti −
∑
j∈St

ptj(θ1)xtj

∥∥∥∥∥∥ ‖θ̂n − θ∗‖xtix>ti
≤

n∑
t=1

∑
i∈St

2pti(θ1)‖θ̂n − θ∗‖xtix>ti
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where we have used the assumption that ‖xti‖ < 1 for all i and t for the last inequality.

Then, for any x ∈ Rd \ {0}, we have

x>L−1/2E1L
−1/2x ≤

n∑
t=1

∑
i∈St

2pti(θ1)‖θ̂n − θ∗‖‖x>L−1/2xti‖2

≤
n∑
t=1

∑
i∈St

2‖θ̂n − θ∗‖‖x>L−1/2xti‖2

≤ 2‖θ̂n − θ∗‖
x>L−1/2

 n∑
t=1

∑
i∈St

xtix
>
ti

L−1/2x


≤ 2
κ
‖θ̂n − θ∗‖‖x‖2

where the third inequality follows from the fact that pti(θ1) ≤ 1. Therefore, combining

with (A.10) it follows that

‖L−1/2E1L
−1/2‖ ≤ 2

κ
‖θ̂n − θ∗‖ ≤

2D
κ2
√
λmin(Vn)

. (A.13)

Similarly, we can bound the second summation E2 in (A.12). Again by the mean value

theorem, for some θ2 := c2θ
∗ + (1− c2)θ̂n with c2 ∈ (0, 1) we have

E2 =
n∑
t=1

∑
i∈St

∑
j∈St

(
pti(θ̃)ptj(θ̃)− pti(θ∗)ptj(θ∗)

)
xtix

>
tj

=
n∑
t=1

∑
i∈St

∑
j∈St

∑
k∈St
∇k[pti(θ2)ptj(θ2)]x>t,k(θ̂n − θ∗)xtix>ti .
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Let pti = pti(θ2) for brevity. Then, it follows that

E2 =
n∑
t=1

∑
i∈St

∑
j∈St

∑
k∈St
∇k[ptiptj]x>t,k(θ̂n − θ∗)xtix>tj

=
n∑
t=1

∑
i∈St

∑
j∈St

ptj
ptixti − ∑

k∈St
ptipt,kxt,k

> (θ̂n − θ∗)xtix>tj

+
n∑
t=1

∑
i∈St

∑
j∈St

pti
ptjxtj − ∑

k∈St
ptjpt,kxt,k

> (θ̂n − θ∗)xtix>tj

=
n∑
t=1

∑
i∈St

∑
j∈St

ptiptj

(xti + xtj)− 2
∑
k∈St

pt,kxt,k

> (θ̂n − θ∗)xtix>tj

≤
n∑
t=1

∑
i∈St

∑
j∈St

ptiptj

∥∥∥∥∥∥(xti + xtj)− 2
∑
k∈St

pt,kxt,k

∥∥∥∥∥∥ ‖θ̂n − θ∗‖xtix>tj
≤

n∑
t=1

∑
i∈St

∑
j∈St

4ptiptj‖θ̂n − θ∗‖xtix>tj

=
n∑
t=1

∑
i∈St

4pti (1− pt0) ‖θ̂n − θ∗‖xtix>ti

where pt0 = pt0(θ2) is a probability of choosing an outside option. Then, for any x ∈

Rd \ {0}, we have

x>L−1/2E2L
−1/2x ≤

n∑
t=1

∑
i∈St

4pti(θ2) (1− pt0(θ2)) ‖θ̂n − θ∗‖‖x>L−1/2xti‖2

≤
n∑
t=1

∑
i∈St

4‖θ̂n − θ∗‖‖x>L−1/2xti‖2

≤ 4‖θ̂n − θ∗‖
x>L−1/2

 n∑
t=1

∑
i∈St

xtix
>
ti

L−1/2x


≤ 4
κ
‖θ̂n − θ∗‖‖x‖2 .

Similarly, combining with (A.10) it follows that

‖L−1/2E2L
−1/2‖ ≤ 4

κ
‖θ̂n − θ∗‖ ≤

4D
κ2
√
λmin(Vn)

. (A.14)
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Hence, combining (A.13) and (A.14), we have for λmin(Vn) ≥ 144
κ4 D2

‖L−1/2EL−1/2‖ = ‖L−1/2(E1 − E2)L−1/2‖

≤ ‖L−1/2E1L
−1/2‖+ ‖L−1/2E2L

−1/2‖

≤ 6D
κ2
√
λmin(Vn)

≤ 1
2 . (A.15)

A.3.4 Bounding the Prediction Error x>(θ̂n − θ∗)

Recall from (A.11) that the prediction error for any x ∈ R2 can be written as

x>(θ̂n − θ∗) = x>L−1Zn − x>L−1E(L+ E)−1Zn.

First, we bound the first term x>L−1Zn in (A.11). We start with providning the following

definitions for the ease of our presentation:

Xt := [xt1;xt2; ...;xt|St|]> ∈ R|St|×d

X := [X1;X2; ...;Xn]> ∈ R(
∑

t
|St|)×d

Et := [εt1, εt2, ..., εt|St|]> ∈ R|St|

Then we use the notations above to see |x>L−1Zn| =
∣∣∣∑t x

>L−1X>t Et
∣∣∣. For indepen-

dent samples, Xt and Et are independent. Therefore, for each t

E
[
x>L−1X>t Et

]
= E

∑
i∈St

x>L−1xtiεti

 =
∑
i∈St

E
[
x>L−1xti

]
E[εti] = 0

since E[εti] = 0 for all t, i. Also, we have

∣∣∣x>L−1X>t Et
∣∣∣ ≤ ‖x>L−1X>t ‖‖Et‖ ≤

√
2‖x>L−1X>t ‖
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where we use ‖Et‖ ≤
√

2. We also know ‖x>L−1X>t ‖ is bounded since both Xt and x are

bounded. Hence, each x>L−1X>t Et is therefore a bounded random variable. This allows

us to apply Hoeffding inequality for bounded random variables in Lemma A.15.

P
(
|x>L−1Zn| ≥ ν

)
= P

(∣∣∣∣∣
n∑
t=1

x>L−1X>t Et
∣∣∣∣∣ ≥ ν

)

≤ 2 exp

− 2ν2∑n
t=1

(
2
√

2‖x>L−1X>t ‖
)2


= 2 exp

{
− ν2

4‖x>L−1X>‖2

}

≤ 2 exp

− κ2ν2

4‖x‖2
V −1
n

 (A.16)

where the second equality follows from the definition of X, i.e.,

n∑
t=1
‖x>L−1X>t ‖2 =

n∑
t=1

x>L−1X>t XtL
−1x = x>L−1X>XL−1x = ‖x>L−1X>‖2 .

And, the last inequality follows from the fact that L � κV = κX>X and combining it

with the following:

‖x>L−1D>‖2 = x>L−1X>XL−1x ≤ 1
κ2‖x‖

2
V −1
n
.

Then, letting the right-hand side of (A.16) be 2δ and solving for ν, we obtain that with

probability at least 1− 2δ,

|x>L−1Z| ≤
2
√

log(1/δ)
κ

‖x‖V −1
n
. (A.17)

Then, the rest of the proof for the theorem largely follows the proof of Theorem 1 in Li,
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Lu, and Zhou (2017). For the sake of completeness, we present the full proof.

|x>L−1E(L+ E)−1Zn| ≤ ‖x‖L−1‖L−1/2E(L+ E)−1Zn‖

≤ ‖x‖L−1‖L−1/2E(L+ E)−1L1/2‖‖Zn‖L−1

≤ 1
κ
‖x‖V −1

n
‖L−1/2E(L+ E)−1L1/2‖‖Zn‖V −1

n
(A.18)

where the last inequality is from L � κVn. Then it follows that

‖L−1/2E(L+ E)−1L1/2‖ = ‖L−1/2E(L−1 − L−1E(L+ E)−1)L1/2‖

= ‖L−1/2EL−1/2 − L−1/2EL−1E(L+ E)−1L1/2‖

≤ ‖L−1/2EL−1/2‖+ ‖L−1/2EL−1/2‖‖L−1/2E(L+ E)−1L1/2‖

By solving this inequality, we get

‖L−1/2E(L+ E)−1L1/2‖ ≤ ‖L−1/2EL−1/2‖
1− ‖L−1/2EL−1/2‖

≤ 2‖L−1/2EL−1/2‖

≤ 12D
κ2
√
λmin(Vn)

where the second inequality is from (A.15) and the third inequality is from combining

with (A.15). Combining with (A.18) and ‖Zn‖V −1
n
≤ D (which we assume to hold in this

section), we have

|x>L−1E(L+ E)−1Zn| ≤
1
κ
‖x‖V −1

n
‖L−1/2E(L+ E)−1L1/2‖‖Zn‖V −1

n

≤ 12D2

κ3
√
λmin(Vn)

‖x‖V −1
n

(A.19)
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Then combining the results from (A.17) and (A.19), we have

|x>(θ̂n − θ∗)| ≤ |x>L−1Z|+ |x>L−1E(L+ E)−1Zn|

≤

√
log 1

δ

κ
‖x‖V −1

n
+ 12D2

κ3
√
λmin(Vn)

‖x‖V −1
n
.

Then it follows that |x>(θ̂n − θ∗)| ≤ 5
κ

√
log 1

δ
‖x‖V −1

n
holds as long as λmin(Vn) ≥ 9D4

κ4 log(1/δ)

holds. Recall that in (A.15), we also use the condition λmin(Vn) ≥ 144D2

κ4 . Therefore, we

require that λmin(Vn) ≥ max
{

9D4

κ4 log(1/δ) ,
144D2

κ4

}
.

Lemma A.8. For any δ > 0, with probability at least 1− δ, we have

‖Jn(θ̂n)‖V −1
n
≤ 4

√
2d+ log 1

δ
. (A.20)

Proof. This lemma is an extension of Lemma 7 in Li, Lu, and Zhou (2017). For conve-

nience, let Z = Jn(θ̂n) and V = Vn. Let B̂ be a 1/2-net of the unit ball Bd. Then |B̂| ≤ 6d

(Pollard 1990, Lemma 4.1), and for any x ∈ Bd, there is a x̂ ∈ B̂ such that ‖x− x̂‖ ≤ 1
2 .

Therefore, we have

x>V −1/2Z = x̂>V −1/2Z + (x− x̂)>V −1/2Z

= x̂>V −1/2Z + ‖x− x̂‖ · 1
‖x− x̂‖

(x− x̂)>V −1/2Z

≤ x̂>V −1/2Z + 1
2 sup
z∈Bd

z>V −1/2Z .

Taking supremum on both sides, we get

sup
x∈Bd

x>V −1/2Z ≤ 2 max
x̂∈B̂

x̂>V −1/2Z .
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Also, note that ‖Z‖V −1 = ‖V −1/2Z‖ = sup‖x‖≤1 x
>V −1/2Z. Recall that Z = ∑n

t=1X
>
t Et.

Then, it follows that

P (‖Z‖V −1 ≥ ν) ≤ P
(

max
x̂∈B̂

x̂>V −1/2Z >
ν

2

)

≤
∑
x̂∈B̂

P
(
x̂>V −1/2Z >

ν

2

)

=
∑
x̂∈B̂

P
(

n∑
t=1

x̂>V −1/2X>t Et ≥
ν

2

)
.

Noting that |x̂>V −1/2X>t Et| ≤
√

2‖x̂>V −1/2X>t ‖, we again apply Hoeffding inequality

(Lemma A.15) to a sum of bounded random variables x̂>V −1/2X>t Et as done in (A.16).

Then, it follows that

P (‖Z‖V −1 ≥ ν) ≤
∑
x̂∈B̂

exp
{
− 2ν2

32∑n
t=1 ‖x̂>V −1/2X>t ‖2

}

=
∑
x̂∈B̂

exp
{
− ν2

16‖x̂>V −1/2X>‖2

}

≤ exp
{
−ν

2

16 + d log 6
}

where the last inequality is by the fact that |B̂| ≤ 6d and the following bound on

‖x̂>V −1/2X>‖2 with V = X>X

‖x̂>V −1/2X>‖2 = x̂>V −1/2X>XV −1/2x̂ = ‖x̂‖2 ≤ 1 .

If we let ν = 4
√

2d+ log(1/δ), then we have

P
(
‖Z‖V −1 ≥ 4

√
2d+ log(1/δ)

)
≤ exp

{
−32d+ 16 log(1/δ)

16 + d log 6
}
≤ δ.
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A.4 Proof of Theorem 2.4

For suitably large T ≥ T̃ = Ω
(

log2(TN log2 T )
K2κ8d

+ d3

K2κ8

)
, setting the initialization during T0 =

√
dT would satisfy the minimum eigenvalue condition of Theorem 2.3, i.e., there exists

some constant c such that T0 =
√
dT = c

Kκ4

√
log2 (TN log2 T ) + d4 satisfies λmin(VT0) ≥

max
{

9D4

κ4 log(TN log2 T ) ,
144D2

κ4

}
. Note that here we choose δ = 1

TN log2 T
. Also, it is important

to note that the samples collected during the random initialization are used in the sub-

routine estimation for all index sets since they are also independent of samples from

each index set. Therefore, once the samples from the initialization satisfies the minimum

eigenvalue condition of Theorem 2.3, we can apply the confidence bound in Theorem 2.3

to each index set simultaneously satisfy the condition (since the independence condition

is already ensured).

We now present two technical lemmas to help establish the cumulative expected regret

in Theorem 2.4. The first lemma ensures that normality results (Theorem 2.3) holds with

given confidence radius β for all items.

Lemma A.9. Suppose that T satisfy the condition in (2.10). Choose T0 =
√
dT and

confidence width β = 5
κ

√
log(TN log2 T ). Define the following event:

Et :=
{
|m(`)

ti − x>tiθ∗| ≤ w
(`)
ti , ∀i ∈ [N ],∀` ∈ [L]

}
(A.21)

Then, event Et holds with probability at least 1−O(T−1) for all t ≥ T0

The next lemma bounds the immediate regret of supCB-MNL, breaking down to two

assortment selection scenarios — when an assortment is selected for exploitation (step (b))

or for exploration (step (c)) in Algorithm 3. Intuitively, the cumulative regret incurred

by step (b) is small since the utility estimates are “accurate,” that is, the uncertainty in

estimated utilities are suffciently small for all items in this case. The challenge is to show
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that even when we take an exploratory action in step (c), the regret incurred by such an

action is not too large.

Lemma A.10. Suppose that event Et in (A.21) holds, and that in round t, the assortment

St is chosen at stage `t. Then S∗t ∈ A` for all ` ≤ `t. Furthermore, we have

Rt(S∗t , θ∗)−Rt(St, θ∗) ≤


2√
T
, if St chosen in step (b)

8
2`t , if St chosen in step (c)

Then, we follow the similar arguments of Li, Lu, and Zhou (2017) to show the cumu-

lative expected regret bound. First, define V`,t = ∑
t∈Ψ`

∑
i∈St xtix

>
ti , then by Lemma 2.6

and the Cauchy-Schwarz inequality, we have

∑
t∈Ψ`

max
i∈St

w
(`)
ti =

∑
t∈Ψ`

max
i∈St

β‖xti‖V −1
`,t

≤ β
√

2|Ψ`|d log(T/d).

However, from the choices made at exploration steps (step (c)) of Algorithm 4, we know

2−`|Ψ`| ≤ 2
∑
t∈Ψ`

max
i∈St

w
(`)
ti

for ` ∈ {1, ..., L}. Now, we combine the two inequalities above. Then it follows that

|Ψ`| ≤ 2`+1β
√

2|Ψ`|d log(T/d). (A.22)

Note that each index set Ψ` is a disjoint set with ∪L`=0Ψ` = {t+ 1, ..., T}. Then, we break

the regret into three components – when event Et in (A.21) holds, i.e., the concentration

result holds, and when the event does not hold (Ect ), and the random initialization phase

with length T0. Note that we need the minimum eigenvalue of VT0 to be larger than
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the case in UCB-MNL but we can still use Proposition 1 to ensure such case with high

probability.

R(T ) = E
[
T∑
t=1

(R(S∗, θ∗)−R(St, θ∗))
]

≤ T0 + E

 T∑
t=T0+1

(R(S∗, θ∗)−R(St, θ∗))1 (Et)


+ E

 T∑
t=T0+1

(R(S∗, θ∗)−R(St, θ∗))1 (Ect )


We further decompose the regret into the disjoint stages recorded by Ψ`.

R(T ) ≤ T0 + E

∑
t∈Ψ0

(R(S∗, θ∗)−R(St, θ∗))1 (Et)


+ E

 L∑
`=1

∑
t∈Ψ`

(R(S∗, θ∗)−R(St, θ∗))1 (Et)
+O(1)

≤ T0 + 2√
T
|Ψ0|+

L∑
`=1

8
2` |Ψ`|+O(1)

≤ T0 + 2
√
T +

L∑
`=1

16β
√

2|Ψ`|d log(T/d) +O(1)

≤ T0 + 2
√
T + 16β

√
2dLT log(T/d) +O(1)

where the third inequality uses (A.22) and the last inequality is by Cauchy-Schwartz

inequality. Now, with our choices of confidence with β = 5
κ

√
log(TN log2 T ) and initial-

ization T0 =
√
dT and epoch length L = b1

2 log2 T c ≤ 1
2 log2 T , we complete the proof.
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A.5 Proofs of Lemmas for Theorem 2.4

A.5.1 Proof of Lemma 2.8

Proof. Since a time-stamp t can only be added to Ψ`, ` ≥ 1 in step (c) of Algorithm 4, the

event {t ∈ Ψ`} only depends on the results of trials t′ ∈ ∪`′<`Ψ`′ and on w̄(`)
ti . From the

definition of w̄(`)
ti , we know it only depends on the sets of feature vectors {xu,i}i∈Su , u ∈ Ψ`

and on {xti}i∈St .

A.5.2 Proof of Lemma A.9

Proof. With T0 =
√
dT and T ≥ T̃ where T̃ is defined as (2.10), at the end of random

initialization, we can show that there exists a large enough constant c such that T0 =
c

Kκ4

√
log2 (TN log2 T ) + d4 satisfies

λmin(VT0) ≥ max
{

9D4

κ4 log(TN log2 T ) ,
144D2

κ4

}

with high probability using Proposition 1. Then, the condition on the minimum eigenvalue

of Vt for any t ≥ T0 is also satisfied since λmin(Vt) ≥ λmin(VT0) for all t ≥ T0. Then the

minimum eigenvalue condition is satisfied for all sub-routine estimation since the samples

in the initialization period is shared across all index sets, i.e., baseCB-MNL is run on

samples in Ψ`∪ [T0] for all ` in step (a). Therefore, applying Theorem 2.3 with confidence

width β = 5
κ

√
log(TN log2 T ), we can show

|m(`)
ti − xtiθ∗| ≤ w

(`)
ti

holds for all i ∈ [N ], ` ∈ [L], and t ∈ {T0 + 1, ..., T} with probability at least 1− 3
TN log2 T

.

Now, applying the union bound over all items and epochs, we complete the proof.
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A.5.3 Proof of Lemma A.10

Proof. Combining Lemma 2.4 and Lemma 2.5, we have

∣∣∣Rt(S, θ∗)−Rt(S, θ̂(`))
∣∣∣ ≤ ∣∣∣R̃t(S, θ̂(`))−Rt(S, θ̂(`))

∣∣∣ ≤ 2 max
i∈S

w
(`)
ti ≤ W

(`)
t .

We first show the optimal assortment S∗t ∈ A` for all `. We prove this by induction. For

` = 1, the lemma automatically holds. As an inductive step, suppose S∗t ∈ A` and we

want to prove S∗t ∈ A`+1. Since the algorithm proceed to stage `+ 1, we know from step

(c) in Algorithm 4 that

∣∣∣Rt(S, θ∗)−Rt(S, θ̂(`))
∣∣∣ ≤ W(`)

t ≤ 2−`

for all S ∈ A`. In particular, it holds for S = S∗t since S∗t ∈ A` by the inductive step.

Then the optimality of S∗t implies

Rt(S∗t , θ̂(`)) ≥ Rt(S∗t , θ∗)− 2−` ≥ Rt(S, θ∗)− 2−` ≥ Rt(S, θ̂(`))− 2 · 2−`

for S ∈ A`. Hence, it follows that

Rt(S∗t , θ̂(`)) ≥ max
S∈A`

Rt(S, θ̂(`))− 2 · 2−` =M(`)
t − 2 · 2−`.

Therefore, we have S∗t ∈ A`+1 according to step (d). If St is selected in step (b), that it

implies Rt(St, θ̂(`t)) ≥ Rt(S∗t , θ̂(`t)). Then if follows that

Rt(St, θ∗) ≥ Rt(St, θ̂(`t))− 1√
T
≥ Rt(S∗t , θ̂(`t))− 1√

T
≥ Rt(S∗t , θ∗)−

2√
T
.

Suppose St is chose at stage `t in step (c) in Algorithm 4. The lemma holds automat-
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ically for `t = 1 since Rt(S, θ∗) ∈ [0, 1] for all S and t. If `t > 1, St must have passed

through steps (c) and (d) in the previous stage, `t − 1. Also note that we have already

shown that the optimal assortment S∗t ∈ A`t . Hence, S∗t also must have passed through

steps (c) and (d) in stage `t−1. Therefore, passing through step (c) at stage `t−1 implies

that we can bound

∣∣∣Rt(S, θ̂(`t−1))−Rt(S, θ∗)
∣∣∣ ≤ W(`t−1)

t ≤ 2−(`t−1)

for S = St and S = S∗t . Also, for step (d) at stage `t − 1 implies that

Rt(S∗t , θ̂(`t−1))−Rt(St, θ̂(`t−1)) ≤ 2 · 2−(`t−1)

Combining these inequalities above, we have

Rt(St, θ∗) ≥ Rt(St, θ̂(`t−1))− 2−(`t−1)

≥ Rt(S∗t , θ̂(`t−1))− 3 · 2−(`t−1)

≥ Rt(S∗t , θ∗)− 4 · 2−(`t−1).

A.6 Proof of Theorem 2.5

Following the proof outline presented in Section 2.6.3, we first define the notations which

are used throughout our analysis in this section.

Definition A.4. Let L be the last episode over horizon, i.e., for a given time horizon T ,

L := blog2 T c + 1. We let Tk denote an index set of all rounds that belong to the k-th

episode Tk := {τk−1 + 1, ..., τk}.
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By the design of the DBL-MNL algorithm, the length of the k-th episode is |Tk| = τk/2

where τk is the last period of the k-th episode. We aim to bound the cumulative regret for

each episode Reg(k-th episode) so that R(T ) = ∑L
k=1 Reg(k-th episode) is also bounded.

As briefly discussed in Section 2.6.3, there are two scenarios for a given episode.

(i) |Tk| ≤ qk: In this case, the length of an episode is not large enough to ensure the

concentration of the prediction error due to the failure to ensure the lower bound on

λmin(Vt). Therefore, we cannot control the regret in this case. However, the number

of such rounds is only logarithmic in T , hence the regret corresponding to this case

contributes minimally to the total regret.

(ii) |Tk| > qk: We can apply the fast convergence result in Theorem 2.3 as long as the

lower bound on λmin(Vt) is guaranteed — note that the independence condition is

already satisfied since samples in each episode are independent of each other. We

show that λmin(Vt) grows linearly as t increases in each episode with high probability.

In case of λmin(Vt) not growing as fast as the rate we require, we perform random

sampling to satisfy this criterion towards the end of each episode. Therefore, with

high probability, the lower bound on λmin(Vt) becomes satisfied.

For case (i), clearly qk ≤ qL for any k ∈ {1, ..., L}. |Tk| eventually grows to be larger

than qL for some k since qL is logarithmic in T . Let k′ be the first episode such that

|Tk′ | ≥ qL. Hence, |Tk′ | ≤ 2qL. Thus, the cumulative regret prior to the k′-th episode is

k′−1∑
k=1

Reg(k-th episode) ≤
k′−1∑
k=1
|Tk| = |Tk′| ≤ 2qL = O

(
log d+ d2 + log2(TN)

)
.

Then, letting k′′ be the first episode such that |Tk′′ | ≥ qk′′ and noting that k′′ ≤ k′ gives

k′′−1∑
k=1

Reg(k-th episode) ≤
k′−1∑
k=1

Reg(k-th episode) .
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Hence, the cumulative regret corresponding to case (i) is at most poly-logarithic in T .

For case (ii), it suffices to show random sampling ensures the growth of λmin(Vt).

Lemma A.11 shows that random sampling with duration qk specified in Theorem 2.5

ensures the lower bound of λmin(Vt), i.e., λmin(Vt) ≥ max
{

9D4
k

κ4 log(τkN/2) ,
144D2

k

κ4

}
with high

probability.

Lemma A.11. Suppose

qk = 2
σ0K

max
{

9D4
k

κ4 log(τkN/2) ,
144D2

k

κ4

}

where Dk = min
{

4
√

2d+ log(τkN/2),
√
d log(τk/d) + 2 log(τkN/2)

}
.

Then, for the k-th episode, with probability at least 1− d exp
{
− qkσ0

10

}
, we have

λmin(Vτk) ≥ max
{

9D4
k

κ4 log(τkN/2) ,
144D2

k

κ4

}
. (A.23)

Remark A.1. We emphasize that the assumption K ≤ 18
κ4 is not restrictive. In fact, we

can instead use Proposition 1 to show that

qk = C

K
max

{
d2 + log(τ 2

kN/4)
σ0κ4 ,

d+ 2 log(τk/2)
σ2

0

}

for some constant C satisfies the threshold on λmin(Vτk) without assuming K ≤ 18
κ4 . How-

ever, we provide a specific value of qk which does not depend on an additional unknown

constant since qk is an input to the algorithm. Furthermore, in many real-world ap-

plications, K is typically small; hence K ≤ 18
κ4 (recall that κ ∈ (0, 1)) is a reasonable

assumption.

We then apply Theorem 2.3 to prediction error in the k-th episode which requires

samples in the (k − 1)-th episode are independent and λmin(Vτk−1) at the end of the
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(k − 1)-th episode is large enough. With a lower bound guarantee on λmin(Vτk−1) from

Lemma A.11 and the fact that samples are independent of each other within each episode,

we have with probability at least 1− 6
τkN

|x>ti(θ̂k − θ∗)| ≤ βk‖xti‖W−1
k−1

where βk = 5
κ

√
log(τkN/2). Recall that Wk−1 = Vτk−1 = ∑τk−1

t′=τk−1+1
∑
i∈St′ xt′ix

>
t′i is the

Gram matrix at the end of the (k − 1)-th episode. Then, we can use the union bound to

show this concentration result for all items and all rounds within the episode.

|x>ti(θ̂k − θ∗)| ≤ βk‖xti‖W−1
k−1
, ∀i ∈ [N ],∀t ∈ Tk . (A.24)

Let Ẽk,1 and Ẽk,2 denote the event that the minimum eigenvalue condition in (A.23) holds

(at the end of the (k − 1)-th episode) and the event that the MLE concentration result

in (A.24) holds respectively.

Ẽk,1 :=
{
λmin(Vτk−1) ≥ max

{
9D4

k−1
κ4 log(τk−1N/2) ,

144D2
k−1

κ4

}}

Ẽk,2 :=
{
|x>ti(θ̂k − θ∗)| ≤ βk‖xti‖W−1

k−1
,∀i ∈ [N ],∀t ∈ Tk

}
.

On the joint event Ẽk,1 ∩ Ẽk,2, by the definition of the upper confidence bound of an

utility estimate z̃ti and following the same arguments as Lemma 2.3, we have

0 ≤ z̃ti − x>tiθ∗ ≤ 2βk‖xti‖W−1
k−1

.

Therefore, the optimistic expected revenue R̃t(S) based on {z̃ti} is computed the same

way as (2.6). It is important to note that while the formation of the optimistic revenue

R̃t(S) is identical to (2.6), the actual values of R̃t(S) are different for the two algorithms,
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UCB-MNL and DBL-MNL. In particular, when feature dimension d is large, the confidence

bound of R̃t(S) in DBL-MNL can be much tighter than that of UCB-MNL since the confidence

width βk for DBL-MNL does not have dependence on d.

Let St = argmaxS∈S R̃t(S). Then, it follows that R̃t(St) ≥ R(S∗t , θ∗) following from

Lemma 2.4. Thus, we can bound the regret in the k-th episode as follows:

Regret(k) =
∑
t∈Tk

(R(S∗t , θ∗)−R(St, θ∗))1(Ẽk,1 ∩ Ẽk,2)

≤
∑
t∈Tk

(
R̃(St)−R(St, θ∗)

)
1(Ẽk,1 ∩ Ẽk,2)

Then, by the Lipschitz property of the expected revenue of the MNL model shown in

Lemma 2.5, it follows that

∑
t∈Tk

(
R̃(St)−R(St, θ∗)

)
1(Ẽk) ≤

∑
t∈Tk

∑
i∈St

∣∣∣∣x>ti(θ̂k − θ∗) + βk‖xti‖W−1
k−1

∣∣∣∣
≤ 2βk

∑
t∈Tk

∑
i∈St
‖xti‖W−1

k−1

where the last inequality is from (A.24). Then we use Lemma A.12 to bound using the

norm using the current Gram matrix. This result utilizes the fact that the minimum

eigenvalue of the Gram matrix grows linearly within each episode since the samples are

independent from each other, allowing us to use the matrix Chernoff inequality to the sum

of independent matrices. Furthermore, the fact that episode length difference is two-fold

for adjacent episodes allows us to bound the difference between the Gram matrices.

Lemma A.12. For t ∈ Tk,

∑
t∈Tk

∑
i∈St
‖xti‖W−1

k−1
≤ C1

∑
t∈Tk

∑
i∈St
‖xti‖V −1

t−1

with probability at least 1− de−C2(t−τk−1) for some constants C1 and C2.
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Let Ẽk,3 denote the event that Lemma A.12 holds for the k-th episode.

Ẽk,3 :=

∑
t∈Tk

∑
i∈St
‖xti‖W−1

k−1
≤ C1

∑
t∈Tk

∑
i∈St
‖xti‖V −1

t−1
,∀t ∈ Tk


On this event along with , it follows that

∑
t∈Tk

(
R̃(St)−R(St, θ∗)

)
1(Ẽk,1 ∩ Ẽk,2 ∩ Ẽk,3) ≤ 2C1βk

∑
t∈Tk

∑
i∈St
‖xti‖V −1

t−1

≤ 2C1βk

√
τk
2
∑
t∈Tk

∑
i∈St
‖xti‖2

V −1
t−1

≤ 2C1βk

√
τkd log

(
τk
2d

)

where we use the Cauchy-Schwarz inequality in the second inequality and apply the bound

on the self-normalized process in Lemma 2.6 in the last inequality. Thus, when events Ẽk

and Ẽk,3 hold, the regret in the k-th episode is bounded by

∑
t∈Tk

(R(S∗t , θ∗)−R(St, θ∗))1(Ẽk,1 ∩ Ẽk,2 ∩ Ẽk,3) = O
(√

dτk log(τk/d) log(τkN)
)

On the other hand, the regret in the episode under the failure events of Ẽk,1, Ẽk,2, and Ẽk,3

are bounded by

∑
t∈Tk

(R(S∗t , θ∗)−R(St, θ∗))1(Ẽck,1) = Õ(d)

∑
t∈Tk

(R(S∗t , θ∗)−R(St, θ∗))1(Ẽck,2) = Õ(1)

∑
t∈Tk

(R(S∗t , θ∗)−R(St, θ∗))1(Ẽck,3) = Õ(d) .
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Therefore, summing over all episodes, the cumulative expected regret is given by

R(T ) = O
(√

dT log(T/d) log(TN) log2 T
)

A.6.1 Proof of Lemma A.11

Proof. By the design of Algorithm 5, it suffices to show that the random sampling for

duration qk provides sufficient growth of λmin(Vτk). Let T̃k be the set of rounds in the k-th

episode that random sampling is performed. Without loss of generality, assume that the

random initialization is invoked for the full duration qk (note that Algorithm 5 may not

invoke random sampling at all if the minimum eigenvalue condition is already satisfied).

Hence, T̃k = {τk − qk + 1, τk} in this case. First, under random sampling of St, we have

λmin

∑
t∈T̃k

∑
i∈St

E
[
xtix

>
ti

] = λmin

∑
t∈T̃k

KE

 1
N

∑
j∈[N ]

xtjx
>
tj




≥
∑
t∈T̃k

Kλmin

E
 1
N

∑
j∈[N ]

xtjx
>
tj


≥ qkKσ0 (A.25)

where the first inequality is from the fact that the minimum eigenvalue function λmin(·)

is concave over positive semi-definite matrices. We also use the fact that in the uniform

revenue setting, the size of the assortment is |St| = K for all t. Then, since ‖xti‖ ≤ 1 for

all t and i, we can upper-bound the maximum eigenvalue

λmax

∑
i∈St

xtix
>
ti

 ≤ K
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for all t. Let Ṽk := ∑
t∈T̃k

∑
i∈St xtix

>
ti . Then, we can use the matrix Chernoff inequality

shown in Lemma A.16 (Corollary 5.2 of Tropp (2012)).

P
(
λmin

(
Ṽk
)
≤ qkKσ0

2

)
≤ P

(
λmin

(
Ṽk
)
≤ 1

2 · λmin
(
E
[
Ṽk
]))

≤ d

(
e−1/2

(1/2)1/2

)λmin(E[Ṽk])/K

≤ d exp

−λmin
(
E
[
Ṽk
])

10K


where we use the fact that −1

2 −
1
2 log

(
1
2

)
≤ − 1

10 in the last inequality. Then using the

lower bound of E
[
Ṽk
]
in (A.25), it follows that

P
(
λmin

(
Ṽk
)
≤ qkKσ0

2

)
≤ d exp

{
−qkKσ0

10K

}
= d exp

{
−qkσ0

10

}
.

Then, by our choice of qk with qk = 2
σ0K

max
{

9D4
k

κ4 log(τkN/2) ,
144D2

k

κ4

}
, we have

P
(
λmin

(
Ṽk
)
≤ max

{
9D4

k

κ4 log(τkN/2) ,
144D2

k

κ4

})
≤ d exp

{
−qkσ0

10

}
.

A.6.2 Proof of Lemma A.12

Proof. Recall that Wk−1 is the Gram matrix at the end of the (k − 1)-th episode, i.e.,

Vτt−1 before it resets at the beginning of the k-th episode. Since Vt resets at the beginning

of each episode, we focus on how Vt grows in the k-th episode relative to Wk−1, the Gram

matrix at the end of the previous episode. Clearly, if CWk−1 < Vt, for all t ∈ {τk−1 +1, τk}

for some constant C, then the claim holds. Then it suffices to show λmin(Vt) grows linearly

as t increases during the (k − 1)-th episode. In fact, since X is time-invariant, we show

the λmin(Vt) grows linearly with t in all episodes.
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Let θ̃k,t be the parameter corresponding to the upper confidence reward at round t,

maxS∈S R̃t(S). Note that θ̃k,t is not the same as the MLE θ̂k. Since we take an UCB

action in Algorithm 5, this is equivalent to taking some optimistic parameter within the

confidence ellipsoid centered at θ̂k. It is important to note that since we do not update

the MLE and confidence bound within each episode, the samples yt’s are still independent

from each other in the same episode.

Consider {(i1, ..., iN)}, a set of all permutations of integers {1, , , N}. Without loss of

generality, assume N is divisible by K. Then we can write

E
[
XtiX

>
ti

]
= 1
N
E
[
Xt1X

>
t1 + ...+XtNX

>
tN

]
= 1
N

∑
(i1,...,iN )

E
[
(Xt,i1X

>
t,i1 + ...+Xt,iNX

>
t,iN

)1{X>t,i1 θ̃k,t < · · · < X>t,iN θ̃k,t}
]

4
1
N

∑
(i1,...,iN )

N

K
CXE

[
(Vt,min(I) + Vt,max(I))1{X>t,i1 θ̃k,t < · · · < X>t,iN θ̃k,t}

]

where Vt,min(I) and Vt,max(I) are the first and last K sums respectively under ordering

I = (i1, ..., iN). That is,

Vt,min(I) = Vt,min(i1, ..., iN) := Xt,i1X
>
t,i1 + ...+Xt,iKX

>
t,iK

Vt,max(I) = Vt,max(i1, ..., iN) := Xt,iN−K+1X
>
t,iN−K+1

+ ...+Xt,iNX
>
t,iN

Note that the last inequality holds since CX(Vmin(I)+Vmax(I)) dominates any K sum in

{Xt,i1X
>
t,i1 , ..., Xt,iNX

>
t,iN
} which is shown in Lemma A.13. Note that Lemma A.13 shows

the result under any vector θ, hence can be applied here.
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E
[
XtiX

>
ti

]
4
CX
K

∑
(i1,...,iN )

E
[
(Vt,min(I) + Vt,max(I))1{X>t,i1 θ̃k,t < · · · < X>t,iN θ̃k,t}

]

4
CX(ρ0 + 1)

K

∑
(i1,...,iN )

E
[
Vt,max(I)1{X>t,i1 θ̃k,t < · · · < X>t,iN θ̃k,t}

]

4
2CXρ0

K
E

 ∑
Xti∈Xt

XtiX
>
ti1

(
Xti ∈ St

)

where the second inequality comes from utilizing the relaxed symmetry (Assumption 2.4)

and Lemma A.14. The last inequality uses the fact that St = argmaxS∈S R̃t(S) and

ρ0 ≥ 1. Therefore,

E

 ∑
Xti∈Xt

XtiX
>
ti1

(
Xti ∈ St

) <
K

2CXρ0
E
[
XtiX

>
ti

]
.

Now, for t ∈ Tk, we define

Σk,t :=
t∑

t′=τk−1+1
E

 ∑
Xt′i∈Xt′

Xt′iX
>
t′i1

(
Xt′i ∈ St′

) .
Then, since the minimum eigenvalue function λmin(·) is concave over positive semi-definite

matrices, we have

λmin (Σk,t) = λmin

 t∑
t′=τk−1+1

E

 ∑
Xt′i∈Xt′

Xt′iX
>
t′i1

(
Xt′i ∈ St′

)
≥

t∑
s=τk−1+1

λmin

E
 ∑
Xt′i∈Xt′

Xt′iX
>
t′i1

(
Xt′i ∈ St′

)
≥ K(t− τk−1)σ0

2ρ0CX
> 0 . (A.26)

Now, to apply the matrix concentration inequality, we need to show an upper bound

on the maximum eigenvalue of E
[∑

Xt′i∈Xt′ Xt′iX
>
t′i1

(
Xt′i ∈ St′

)]
. We use the fact that

160



Appendix A: UCB Algorithms for MNL Contextual Bandits

‖Xt′i‖ ≤ 1 is bounded. Hence, we have for all τ

λmax

E
 ∑
Xt′i∈Xt′

Xt′iX
>
t′i1

(
Xt′i ∈ St′

) ≤ K .

Then we can apply Corollary 5.2 in Tropp (2012) to the finite sequence of independent

matrices Vt for t ∈ Tk.

P
(
λmin(Vt) ≤

K(t− τk−1)σ0

2ρ0CX

)
≤ d

(
e−1/2

0.51/2

) (t−τk−1)σ0
2ρ0CX

= d exp
{

(t− τk−1)σ0

2ρ0CX
log
(
e−1/2

0.51/2

)}

≤ d exp
{
−(t− τk−1)σ0

20ρ0CX

}

where the last inequality uses −1
2 −

1
2 log 1

2 ≤ −
1
10 . Therefore, λmin(Vt) grows linearly as

t grows within the episode with probability at least 1− d exp {−(t− τk−1)σ0/(20ρ0CX )}.

This completes the proof.

Lemma A.13. Consider {(i1, ..., iN)}, a set of all permutations of {1, , , N}. Let Vt,min(I)

and Vt,max(I) be the first and last K sums respectively under given I = (i1, ..., iN):

Vt,min(I) = Vt,min(i1, ..., iN) := Xt,i1X
>
t,i1 + ...+Xt,iKX

>
t,iK

Vt,max(I) = Vt,max(i1, ..., iN) := Xt,iN−K+1X
>
t,iN−K+1

+ ...+Xt,iNX
>
t,iN

Then for any fixed vector θ, there is some CX such that

∑
(i1,...,iN )

E
[
(Xt,i1X

>
t,i1 + ...+Xt,iNX

>
t,iN

)1{X>t,i1θ < · · · < X>t,iN θ}
]

4
∑

(i1,...,iN )

N

K
CXE

[
(Vt,min(I) + Vt,max(I))1{X>t,i1θ < · · · < X>t,iN θ}

]
.
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Proof. Here, we use Proposition 4 in Appendix C which shows that there exists some con-

stant C such that for any permutation (i1, ..., iN) of (1, ..., N), any integer n ∈ {1, ..., N}

and a fixed vector θ,

E
[
XinX

>
in1{X

>
i1θ < ... < X>iN θ}

]
4 CE

[(
Xi1X

>
i1 +XiNX

>
iN

)
1{X>i1θ < ... < X>iN θ}

]
.

One can see that in the case of K = 1, then the proposition directly applies. (And, the

claim trivially holds with CX = 1 when K = N). Now, for K ∈ 2, ..., N − 1, it suffices to

show that Vt,min(I) + Vt,max(I) dominates any K-sub-sum of Xt,i1X
>
t,i1 + ...+Xt,iNX

>
t,iN

.

Also, the inequality above immediately implies that

E
[
(XijX

>
ij

+XinX
>
in)1{X>i1θ < ... < X>iN θ}

]
4 2CE

[(
Xi1X

>
i1 +XiNX

>
iN

)
1{X>i1θ < ... < X>iN θ}

]

for j, n ∈ {1, ..., N} with j 6= n. Then, Consider an arbitrary K-sub-sum over indices

(i′1, ..., i′K) which is a subset of (i1, ..., iN).

E
[
(Xt,i′1

X>t,i′1 + ...+Xt,i′K
X>t,i′K )1{X>t,i1θ < · · · < X>t,iN θ}

]

Without loss of generality, assume (i′1, ..., i′K) is sorted in the increasing order with respect

the product X>i θ, the same as (i1, ..., iN). That is, X>t,i′jθ ≤ X>t,i′nθ for any j, n ∈ {1, ..., K}

with j < n. Then, it is easy to see that for the sum of the first and last elements,

E
[
(Xt,i′1

X>t,i′1 +Xt,i′K
X>t,i′K )1{X>t,i1θ < · · · < X>t,iN θ}

]
4 2CE

[
(Xt,i1X

>
t,i1 +Xt,iNX

>
t,iN

)1{X>t,i1θ < · · · < X>t,iN θ}
]
.
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Likewise, for the second and the second to the last elements, we can show

E
[
(Xt,i′2

X>t,i′2 +Xt,i′K−1
X>t,i′K−1

)1{X>t,i1θ < · · · < X>t,iN θ}
]

4 2CE
[
(Xt,i2X

>
t,i2 +Xt,iN−1X

>
t,iN−1

)1{X>t,i1θ < · · · < X>t,iN θ}
]
.

Repeating this procedure K/2 times and summing over the inequalities completes the

proof since we have shown it for an arbitrary sub-sum.

Remark A.2. Since our primary focus in Lemma A.12 is to show λmin(Vt) grows linearly

in every episode, we only show a result based on CX given by Proposition 4. While CX is

a finite value for any i.i.d. distribution, a general bound for CX can be loose. Note that

the exact value of CX is characterized by the distribution of feature vectors. For example,

for multivariate Gaussian and uniform distributions, it can be shown that CX = O(1) (see

Lemma C.8 and Lemma C.9 in Appendix C.)

Lemma A.14. Suppose Assumption 2.4 holds. Then we have

E
[
Vt,min(I)1{X>t,i1 θ̃k,t < · · · < X>t,iN θ̃k,t}

]
4 ρ0E

[
Vt,max(I)1{X>t,i1 θ̃k,t < · · · < X>t,iN θ̃k,t}

]
.

Proof. Let x be a tuple (xi1 , ..., xiK ).

E
[
Vt,min(I)1{X>t,i1 θ̃k,t < · · · < X>t,iN θ̃k,t}

]
= E

[
(Xt,i1X

>
t,i1 + ...+Xt,iKX

>
t,iK

)1{X>t,i1 θ̃k,t < · · · < X>t,iN θ̃k,t}
]

=
∫

(xi1x>i1 + ...+ xiKx
>
iK

)1
{
x>i1β ≤ ... ≤ x>iNβ

}
pX(x)dx

=
∫

(xi1x>i1 + ...+ xiKx
>
iK

)1
{
− x>i1β ≥ ... ≥ −x>iNβ

}
pX(−x)dx

4 ρ0

∫
(xi1x>i1 + ...+ xiKx

>
iK

)1
{
x>i1β ≥ ... ≥ x>iNβ

}
pX(x)dx

= ρ0E
[
Vt,max(I)1{X>t,i1 θ̃k,t < · · · < X>t,iN θ̃k,t}

]
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where the inequality is from the relaxed symmetry in Assumption 2.4.

A.7 Other Lemmas

Proposition 3. For each Et = [εt1, εt2, ..., εt|St|]>, ‖Et‖ ≤
√

2.

Proof. Note that by the definition of εti, we have

εt1 + εt2 + ...+ εt|St| = 0, and εti ∈ [−1, 1]. (A.27)

Hence the vector Et lies within the bounded hyperplane in (A.27). Therefore, the `2 norm

‖Et‖ =
√
ε2t1 + ε2t2 + ...+ ε2t|St| is maximized at the corners of this bounded hyperplane,

i.e., for some i, j ∈ St, i 6= j

εti = 1, εtj = −1 and εtk = 0, for all k 6= i, k 6= j,

which gives ‖Et‖ ≤
√

2.

Lemma A.15 (Hoeffding’s inequality). Let X1, ..., Xn be n independent random variables

such that E[Xi] = 0 and almost surely, Xi ∈ [ai, bi], for all i. Then for any nu > 0,

P
(∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ > ν

)
≤ 2 exp

(
− 2ν2∑n

i=1(bi − ai)2

)
.

Lemma A.16 (Tropp (2012), Corollary 5.2). Consider a finite sequence {Yk} of inde-

pendent, random, self-adjoint matrices such that each Yk is positive semi-definite and

λmax(Yk) ≤ R almost surely. Compute the minimum and maximum eigenvalues of the

sum of expectations,

µmin := λmin

(∑
k

E[Yk]
)

and µmax := λmax

(∑
k

E[Yk]
)
.
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Then

P
{
λmin

(∑
k

E[Yk]
)
≤ (1− δ)µmin

}
≤ d ·

(
e−δ

(1− δ)1−δ

)µmin/R

for δ ∈ [0, 1] and

P
{
λmax

(∑
k

E[Yk]
)
≤ (1 + δ)µmax

}
≤ d ·

(
eδ

(1 + δ)1+δ

)µmax/R

for δ ≥ 0 .
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B.1 Regularized Maximum Likelihood Estimation for MNL Model

We briefly discuss regularized maximum likelihood estimation (MLE) for MNL model –

specifically the estimation of the unknown parameter θ∗ of the MNL model with the rigde

penalty. Recall that yt ∈ {0, 1}|St|+1 is the user choice where yti is the i-th component of

yt. Then, the ridge penalized maximum likelihood estimation for MNL model is given by

the following minimization problem:

θ̂ = argmin
θ

[
`n(θ) + λ

2‖θ‖
2
]

(B.1)

where `n(θ) = −∑n
t=1

∑
i∈St∪{0} yti log pti(St, θ) with the penalty parameter λ ≥ 1.

Taking the gradient of this penalized log-likelihood function with respect to θ, we

obtain

∇θ

[
`n(θ) + λ

2‖θ‖
2
2

]
=

n∑
t=1

∑
i∈St

(pti(St, θ)− yti)xti + λθ. (B.2)

Instead of using the regularized MLE for the parameter estimation, one could consider

using the MLE without regularization. For this, however, one may consider performing a

random initialization (random exploration) to ensure that the matrix Vt is invertible.
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B.2 Proofs of Lemmas for Theorem 3.1

B.2.1 Proof of Lemma 3.1

Proof. By the mean value theorem, there exists ūti := (1− c)uti + cu′ti for some c ∈ (0, 1)

with

∑
i∈S rti exp (uti)

1 +∑
j∈S exp (utj)

−
∑
i∈S rti exp(u′ti)

1 +∑
j∈S exp(u′tj)

=
∑
i∈S

rtipti(S, ūt)(uti − u′ti)−Rt(S, ūt) ·
∑
i∈S

pti(S, ūt)(uti − u′ti)

=
∑
i∈S

(
rti −Rt(S, ūt)

)
pti(S, ūt)(uti − u′ti)

≤ max
i∈S
|uti − u′ti|

where the inequality is from |rti| ≤ 1, and pti(S, ūt) ≤ 1 is a multinomial probability (and

hence Rt(S, ūt) ≤ 1).

B.2.2 Proof of Lemma 3.2

Proof. We first define the function Gn(θ) which we use throughout the proof:

Gn(θ) =
n∑
t=1

∑
i∈St

[(pti(St, θ)− pti(St, θ∗))xti] + λ(θ − θ∗)

Gn(θ) is the difference in the gradients of the ridge penalized maximum likelihood in (B.2)

evaluated at θ and at θ∗. Notice that Gn(θ̂) = ∑n
t=1

∑
i∈St εtixti−λθ∗ since the choice of θ̂

is given by the ridge penalized maximum likelihood. To see that, first note that θ̂ is the

minimizer of (B.1); hence is given by the solution to the following equation:

n∑
t=1

∑
i∈St

(
pti(St, θ̂)− yti

)
xti + λθ̂ = 0 (B.3)
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Therefore, it follows that

Gn(θ̂) =
n∑
t=1

∑
i∈St

(
pti(St, θ̂)− pti(St, θ∗)

)
xti + λ(θ̂ − θ∗)

=
n∑
t=1

∑
i∈St

(
pti(St, θ̂)− yti

)
xti + λθ̂ +

n∑
t=1

∑
i∈St

(yti − pti(St, θ∗))xti − λθ∗

= 0 +
n∑
t=1

∑
i∈St

εtixti − λθ∗

where the last equality is from (B.3) and the definition of εti = yti − pti(St, θ∗). For

convenience, we define Zn := ∑n
t=1

∑
i∈St εtixti. Hence, Gn(θ̂) = Zn − λθ∗. Also, we will

denote pti(θ) := pti(St, θ) when it is clear that St is the assortment chosen at round t.

For any θ1, θ2 ∈ Rd, the mean value theorem implies that there exists θ̄ = cθ1+(1−c)θ2

with some c ∈ (0, 1) such that

Gn(θ1)−Gn(θ2) =
n∑
t=1

∑
i∈St

[
(pti(θ1)− pti(θ2))xti

]
+ λ(θ1 − θ2)

=
 n∑

t=1

∑
i∈St

∑
j∈St
∇jpti(θ̄)xtix>tj

+ λId

 (θ1 − θ2)

=
 n∑
t=1

∑
i∈St

pti(θ̄)xtix>ti −
∑
i∈St

∑
j∈St

pti(θ̄)ptj(θ̄)xtix>tj

+ λId

 (θ1 − θ2)

where Id is a d× d identitiy matrix. We define the matrix Ht as

Ht :=
∑
i∈St

pti(θ̄)xtix>ti −
∑
i,j∈St

pti(θ̄)ptj(θ̄)xtix>tj

Notice Ht is a Hessian of a negative log-likelihood which is convex. Hence, Ht is positive

semidefinite. Also note that

(xi − xj)(xi − xj)> = xix
>
i + xjx

>
j − xix>j − xjx>i � 0
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which implies xix>i + xjx
>
j � xix

>
j + xjx

>
i . Therefore, it follows that

Ht =
∑
i∈St

pti(θ̄)xtix>ti −
∑
i∈St

∑
j∈St

pti(θ̄)ptj(θ̄)xtix>tj

=
∑
i∈St

pti(θ̄)xtix>ti −
1
2
∑
i∈St

∑
j∈St

pti(θ̄)ptj(θ̄)
(
xtix

>
tj + xtjx

>
ti

)

�
∑
i∈St

pti(θ̄)xtix>ti −
1
2
∑
i∈St

∑
j∈St

pti(θ̄)ptj(θ̄)
(
xtix

>
ti + xtjx

>
tj

)

=
∑
i∈St

pti(θ̄)xtix>ti −
∑
i∈St

∑
j∈St

pti(θ̄)ptj(θ̄)xtix>ti

=
∑
i∈St

pti(θ̄)
1−

∑
j∈St

ptj(θ̄)
xtix>ti

=
∑
i∈St

pti(θ̄)pt0(θ̄)xtix>ti

where pt0(θ̄) is the probability of choosing the outside option. Now,

Gn(θ1)−Gn(θ2) =
[
n∑
t=1

Ht + λId

]
(θ1 − θ2)

≥

 n∑
t=1

∑
i∈St

pti(θ̄)pt0(θ̄)xtix>ti + λId

 (θ1 − θ2)

:= H(θ̄)(θ1 − θ2).

Consider some θ̄ ∈ Rd. From Assumption 3.3, pti(θ̄)pt0(θ̄) is lower-bounded by κ. Then

we have

(θ1 − θ2)>(Gn(θ1)−Gn(θ2)) ≥ (θ1 − θ2)>(κVn)(θ1 − θ2) > 0

for any θ1 6= θ2. By the definition of Gn(θ) , we have Gn(θ∗) = 0. Hence, for any θ ∈ Rd,
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we have

‖Gn(θ)‖2
V −1
n

= ‖Gn(θ)−Gn(θ∗)‖2
V −1
n

= (Gn(θ)−Gn(θ∗))> V −1
n (Gn(θ)−Gn(θ∗))

≥ (θ − θ∗)>H(θ̄)V −1
n H(θ̄)(θ − θ∗)

≥ κ2(θ − θ∗)>Vn(θ − θ∗)

= κ2‖θ̂ − θ∗‖2
Vn

where the last inequality is from H(θ̄) � κVn. Now, recall for θ̂ which is the solution to

(B.3), Gn(θ̂) = Zn − λθ∗ where Zn = ∑n
t=1

∑
i∈St εtixti. Hence, we have

κ‖θ̂ − θ∗‖Vn ≤ ‖Gn(θ̂)‖V −1
n
≤ ‖Zn‖V −1

n
+ λ‖θ∗‖V −1

n

Then we can use Theorem 1 in Abbasi-Yadkori, Pál, and Szepesvári (2011), which states

if the noise εti is sub-Gaussian with parameter σ (with σ = 1
2 in our problem), then

‖Zn‖2
V −1
n
≤ 2σ2 log

(
det(Vn)1/2 det(V )−1/2

δ

)

with probability at least 1− δ. Then we combine with Lemma A.2. So it follows that

‖Zn‖2
V −1
n
≤ 2σ2

[
d

2 log
(
trace(V ) + nK

d

)
− 1

2 log det(V ) + log 1
δ

]
.
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Since V = λId, it follows that

‖Zn‖2
V −1
n
≤ 2σ2

[
d

2 log
(
dλ+ nK

d

)
− 1

2 log λd + log 1
δ

]

= 2σ2
[
d

2 log
(
λ+ nK

d

)
− d

2 log λ+ log 1
δ

]

= 2σ2
[
d

2 log
(

1 + nK

dλ

)
+ log 1

δ

]
.

Then for ‖θ∗‖V −1
n

, we have

‖θ∗‖2
V −1
n
≤ ‖θ∗‖2

λmin(Vn) ≤
‖θ∗‖2

λmin(V ) ≤
‖θ∗‖2

λ
.

Hence, λ‖θ∗‖V −1
n
≤
√
λ since ‖θ∗‖ ≤ 1. Combining the results and using the fact that

σ = 1
2 for our problem, we have that

‖θ̂n − θ∗‖Vn ≤
1

2κ

√
d log

(
1 + nK

dλ

)
+ 2 log 1

δ
+
√
λ

κ
.

with probability at least 1− δ.

B.2.3 Proof of Lemma 3.3

Proof. First, define event Êt = {‖θ∗ − θ̂t‖Vt ≤ αt}, i.e. the regularized MLE estimate

concentrates properly to θ∗ in rounds t. From Lemma 3.2, this concentration event holds

with probability 1 − O
(

1
t2

)
for each round t. On Êt, we show x>tiθ

∗ ≤ x>ti θ̂t + αt‖xti‖V −1
t
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for all i.

|x>ti θ̂t − x>tiθ∗| =
∣∣∣∣[V −1/2

t (θ̂t − θ∗)
]>

(V −1/2
t xti)

∣∣∣∣
≤
∥∥∥V −1/2

t (θ̂t − θ∗)
∥∥∥ ∥∥∥V −1/2

t xti
∥∥∥

= ‖θ̂t − θ∗‖Vt‖xti‖V −1
t

≤ αt‖xti‖V −1
t

where the first inequality is by Hölder’s inequality. Hence, it follows that

x>tiθ
∗ −

(
x>ti θ̂t + αt‖xti‖V −1

t

)
≤ 0

for all i. Hence, using the restricted monotonicity in Lemma 3.5, if event Êt holds, then

we have

Rt(S∗t , θ∗)− Ut(S∗t , θ̂t) ≤ 0.

Then we have

E
[
Rt(S∗t , θ∗)− Ut(S∗t , θ̂t) | Ft

]
≤ E

[(
Rt(S∗t , θ∗)− Ut(S∗t , θ̂t)

)
1(Êt) | Ft

]
+ E

[
1(Êct ) | Ft

]
≤ 0 +O(t−2).

Therefore, summing over all t ≤ T , we have

T∑
t=1

E
[
Rt(S∗t , θ∗)− Ut(S∗t , θ̂t) | Ft

]
≤ 0 +

T∑
t=1
O(t−2) = O(1).
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B.2.4 Proof of Lemma 3.4

See Section A.1.3. The slight difference between Lemma 3.4 and the proof in Section A.1.3

is the initial Gram matrix V0. In Section A.1.3, random initialization is used whereas V

comes from the regularization in Lemma 3.4. However, these two cases are equivalent;

hence slight modification provides for the bound for Lemma 3.4.

B.3 Proofs of Lemmas for Theorem 3.2

B.3.1 Proof of Lemma 3.7

Proof. Given Ft, each of Gaussian random variable x>ti θ̃
(j)
t has mean x>ti θ̂t and standard

deviation αt‖xti‖V −1
t

.

|ũti − x>ti θ̂t| = αt‖xti‖V −1
t

∣∣∣maxj x>ti θ̃
(j)
t − x>ti θ̂t

∣∣∣
αt‖xti‖V −1

t

≤ αt‖xti‖V −1
t

max
j

∣∣∣∣∣∣x
>
ti θ̃

(j)
t − x>ti θ̂t

αt‖xti‖V −1
t

∣∣∣∣∣∣
= αt‖xti‖V −1

t
max
j
|Zj|

where each Zj is a standard normal random variable. Using the result from Lemma B.1,

we have maxj |Zj| ≤
√

2 log(2M) +
√

4 log t with probability at least 1− 1
t2
. Then, for all

i ∈ [N ],

|ũti − x>ti θ̂t| ≤
(√

2 log(2M) +
√

4 log(Nt)
)
αt‖xti‖V −1

t
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with probability at least 1− 1
t2
. Alternatively, let m = argmaxj x>ti θ̃

(j)
t . Then we can write

|ũti − x>ti θ̂t| =
∣∣∣∣max

j
x>ti θ̃

(j)
t − x>ti θ̂t

∣∣∣∣
=
∣∣∣x>ti(θ̃(m)

t − θ̂t)
∣∣∣

=
∣∣∣x>tiV −1/2

t V
1/2
t (θ̃(m)

t − θ̂t)
∣∣∣

≤ αt‖xti‖V −1
t

∥∥∥α−1
t V

1/2
t (θ̃(m)

t − θ̂t)
∥∥∥

≤ αt‖xti‖V −1
t

max
j

∥∥∥α−1
t V

1/2
t (θ̃(j)

t − θ̂t)
∥∥∥

= αt‖xti‖V −1
t

max
j
‖ζj‖

where each element in ζj ∈ Rd is a univariate standard normal variable N (0, 1). Hence,

each ‖ζj‖ ≤
√

4d log t with probability at least 1 − 1
t2
. Using the union bound for all

j ∈ {1, ...,M}, we have with probability at least 1− 1
t2

|ũti − x>ti θ̂t| ≤
√

4d log(Mt)αt‖xti‖V −1
t
.

Lemma B.1. Let Zi ∼ N (0, 1), i = 1, ..., n be a standard Gaussian random variable.

Then we have

P

max
i
|Zi| ≤

√
2 log(2n) +

√
2 log 1

δ

 ≥ 1− δ.

Proof. Using the Chernoff bound, for each Zi, we have

P(|Zi| > ε) ≤ 2e−ε2/2.
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Applying the union bound, we have

P
(

max
i
|Zi| >

√
2 log(2n) + ε

)
≤ 2n exp

(
−(
√

2 log(2n) + ε)2/2
)

= 2n exp(− log(2n)− ε
√

2 log(2n)− ε2/2)

≤ e−ε
√

2 log(2n)e−ε
2/2

≤ e−ε
2/2.

Letting δ = e−ε
2/2, we have the result.

B.3.2 Proof of Lemma 3.6

Proof. Given Ft, each of Gaussian random variable x>ti θ̃
(j)
t has mean x>ti θ̂t and standard

deviation αt‖xti‖V −1
t

. Hence, for each i ∈ S∗t , we have

P
(

max
j
x>ti θ̃

(j)
t > x>tiθ

∗ | Ft
)

= 1− P
(
x>ti θ̃

(j)
t ≤ x>tiθ

∗,∀j ∈ {1, ...,M} | Ft
)

= 1− P

x>ti θ̃(j)
t − x>ti θ̂t

αt‖xti‖V −1
t

≤ x>tiθ
∗ − x>ti θ̂t

αt‖xti‖V −1
t

,∀j ∈ {1, ...,M} | Ft


= 1− P

Zj ≤ x>tiθ
∗ − x>ti θ̂t

αt‖xti‖V −1
t

,∀j ∈ {1, ...,M} | Ft



where Zj is a standard normal random variable. By the assumption, we have |x>tiθ∗ −

x>ti θ̂t| ≤ αt‖xti‖V −1
t

for all i, Hence, we can bound the RHS term within the probability.

x>tiθ
∗ − x>ti θ̂t

αt‖xti‖V −1
t

≤
αt‖xti‖V −1

t

αt‖xti‖V −1
t

= 1

Then, it follows that

P
(

max
j
x>ti θ̃

(j)
t > x>tiθ

∗ | Ft
)
≥ 1− (P(Z ≤ 1))M . (B.4)
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Now, since St = argmaxS R̃t(S), we have R̃t(St) ≥ R̃t(S∗t ). Then combining with

Lemma 3.5, we can lower-bound the probability of having an expected revenue optimistic

under the sampled parameter (the second inequality below).

P
(
R̃t(St) > Rt(S∗t , θ∗t ) | Ft

)
≥ P

(
R̃t(S∗t ) > Rt(S∗t , θ∗t ) | Ft

)
≥ P

(
ũti > x>tiθ

∗, ∀i ∈ S∗t | Ft
)

= P
(

max
j
x>ti θ̃

(j)
t > x>tiθ

∗,∀i ∈ S∗t | Ft
)

≥ 1−K (P(Z ≤ 1))M

where the last inequality comes from (B.4) and the union bound. Using the anti-concentration

inequality in Lemma B.3, we have P(Z ≤ 1) ≤ 1− 1
4
√
eπ
. Hence, it follows that

P
(
R̃t(St) > Rt(S∗t , θ∗t ) | Ft

)
≥ 1−K

(
1− 1

4
√
eπ

)M

≥ 1−
(

1− 1
4
√
eπ

)

= 1
4
√
eπ

where the second inequality comes from our choice of M = d1 − logK
log(1−1/(4

√
eπ))e which

implies
(
1− 1

4
√
eπ

)M
≤ 1

K

(
1− 1

4
√
eπ

)
.

B.3.3 Proof of Lemma 3.8

Proof. The proof is inspired by the techniques used for Theorem 1 in Abeille, Lazaric,

et al. (2017). First, we define Θ̃t the set of parameter samples for which the expected

revenue concentrate appropriately to the expected revenue based on the MLE parameter.
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Also, we define the set of optimistic parameter samples Θ̃opt
t which coinciding with Θ̃t.

Θ̃t :=
{
{θ̃(j)

t }Mj=1 : R̃t(St)−Rt(St, θ̂t) ≤ βt max
i∈St
‖xti‖V −1

t

}
Θ̃opt
t :=

{
{θ̃(j)

t }Mj=1 : R̃t(St) > Rt(S∗t , θ∗t )
}
∩ Θ̃t

Define the event Et that both x>ti θ̂t and ũti are concentrated around their respective means.

Et = {x>ti θ̂t − x>tiθ∗ ≤ αt‖xti‖V −1
t
,∀i} ∩ {ũti − x>ti θ̂t ≤ βt‖xti‖V −1

t
,∀i} .

Recall that St = argmaxS∈S R̃(S) . For any θ̃1:M
t := {θ̃(j)

t }Mj=1 ∈ Θ̃opt
t , we have

(
Rt(S∗t , θ∗t )− R̃t(St)

)
1(Et) ≤

(
Rt(S∗t , θ∗t )− inf

θ1:M
t ∈Θ̃t

max
S∈S

R̃t(S, θ1:M
t )

)
1(Et)

where R̃t(S, θ1:M
t ) is the optimistic expected revenue under the sampled parameters θ1:M

t .

Note that we can decompose

Rt(S∗t , θ∗t )− R̃t(St) =
(
Rt(S∗t , θ∗t )− R̃t(St)

)
1(Et) +

(
Rt(S∗t , θ∗t )− R̃t(St)

)
1(Ect )

where we can bound the summation of the second term in the right hand side since event

Et holds with high probability.

T∑
t=1

E
[
Rt(S∗t , θ∗t )− R̃t(St)

]
=

T∑
t=1

E
[(
Rt(S∗t , θ∗t )− R̃t(St)

)
1(Et)

]
+O(1)

Therefore, we are left to bound the first term in the right hand side. Then conditioning

on the sample parameter being optimistic, i.e.,θ̃1:M
t ∈ Θ̃opt

t , we can further bound with
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the expectation over any random choice.

E
[(
Rt(S∗t , θ∗t )− R̃t(St)

)
1(Et) | Ft

]
≤ E

[(
Rt(S∗t , θ∗t )− inf

θ1:M
t ∈Θ̃t

max
S∈S

R̃t(S, θ1:M
t )

)
1(Et) | Ft

]

≤ E
[(
R̃t(St)− inf

θ1:M
t ∈Θ̃t

max
S∈S

R̃t(S, θ1:M
t )

)
1(Et) | Ft, θ̃1:M

t ∈ Θ̃opt
t

]

≤ E
[(
R̃t(St)− inf

θ1:M
t ∈Θ̃t

R̃t(St, θ1:M
t )

)
1(Et) | Ft, θ̃1:M

t ∈ Θ̃opt
t

]

= E

 sup
θ1:M
t ∈Θ̃t

(
R̃t(St)− R̃t(St, θ1:M

t )
)
1(Et) | Ft, θ̃1:M

t ∈ Θ̃opt
t


≤ E

 sup
θ1:M
t ∈Θ̃t

max
i∈St

∣∣∣∣ũti − x>tiθ(j)
t

∣∣∣∣1(Et) | Ft, θ̃1:M
t ∈ Θ̃opt

t


≤ 2βtE

 max
i∈St(θ̃1:M

t )
‖xti‖V −1

t
| Ft, θ̃1:M

t ∈ Θ̃opt
t , Et

P(Et)

where the last inequality is from the definition of the set Θ̃t and St(θ̃1:M
t ) stands for the

optimal assortment under the sampled parameters θ̃1:M
t = {θ̃(j)

t }Mj=1.

From Lemma 3.6, we have P
(
R̃t(St) > Rt(S∗t , θ∗t ) | Ft, Et

)
≥ 1

4
√
eπ

=: p̃. Therefore it

follows that

P
(
θ̃1:M
t ∈ Θ̃opt

t | Ft, Et
)

= P
(
R̃t(St) > Rt(S∗t , θ∗t ) and θ̃1:M

t ∈ Θ̃t, Et
)

≥ P
(
R̃t(St) > Rt(S∗t , θ∗t ) | Ft, Et

)
− P

(
θ̃1:M
t /∈ Θ̃t, Et

)
≥ p̃−O(t−1)

≥ p̃/2.
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Now, note that we can write

E

 max
i∈St(θ̃1:M

t )
‖xti‖V −1

t
| Ft, Et


≥ E

 max
i∈St(θ̃1:M

t )
‖xti‖V −1

t
| Ft, θ̃1:M

t ∈ Θ̃opt
t , Et

P (θ̃1:M
t ∈ Θ̃opt

t | Ft, Et
)

≥ E

 max
i∈St(θ̃1:M

t )
‖xti‖V −1

t
| Ft, θ̃1:M

t ∈ Θ̃opt
t , Et

 · p̃/2
Therefore, combining the results, we have

E
[(
Rt(S∗t , θ∗t )− R̃t(St)

)
1(Et) | Ft

]
≤ 2βtE

 max
i∈St(θ̃1:M

t )
‖xti‖V −1

t
| Ft, θ̃1:M

t ∈ Θ̃opt
t , Et

P(Et)

≤ 4βt
p̃

E

 max
i∈St(θ̃1:M

t )
‖xti‖V −1

t
| Ft, Et

P(Et)

≤ 4βt
p̃

E

 max
i∈St(θ̃1:M

t )
‖xti‖V −1

t
| Ft

 .
Summing over all t and taking the failure event into consideration, we have

T∑
t=1

E
[(
Rt(S∗t , θ∗t )− R̃t(St)

)
1(Et) | Ft

]
≤

T∑
t=1

4βt
p̃

E

 max
i∈St(θ̃1:M

t )
‖xti‖V −1

t
| Ft

 .
Here, the summation on the RHS contains an expectation, so we cannot directly apply

Lemma 3.4. Instead, we use Lemma B.2 to bound the sum of the expectations

T∑
t=1

E[Rt(S∗t , θ∗t )− R̃t(St)] ≤
T∑
t=1

4βt
p̃

√2dT log
(

1 + TK

dλ

)
+
√

8T
λ

log 2T
+O(1).
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Lemma B.2. If λmin(Vt) ≥ λ, then with probability 1−O(T−1) we have

T∑
t=1

E

 max
i∈St(θ̃1:M

t )
‖xti‖V −1

t
| Ft

 ≤
√

2dT log
(

1 + TK

dλ

)
+
√

8T
λ

log 2T .

Proof. We rewrite the summation as follows.

T∑
t=1

E

 max
i∈St(θ̃1:M

t )
‖xti‖V −1

t
| Ft


=

T∑
t=1

max
i∈St
‖xti‖V −1

t
+

T∑
t=1

E
 max
i∈St(θ̃1:M

t )
‖xti‖V −1

t
| Ft

−max
i∈St
‖xti‖V −1

t

 (B.5)

The first summation can be bounded by using Lemma 3.4 and the Cauchy-Schwarz in-

equality.

T∑
t=1

max
i∈St
‖xti‖V −1

t
≤

√√√√T T∑
t=1

max
i∈St
‖xti‖2

V −1
t
≤
√

2dT log
(

1 + TK

dλ

)
(B.6)

For the second summation in (B.5), we can apply Azuma-Hoeffding inequality (Lemma B.4).

Note that the second summation is a martingale by construction. Also recall that

maxi∈St ‖xti‖ ≤ 1 for all t, hence we have

E

 max
i∈St(θ̃1:M

t )
‖xti‖V −1

t
| Ft

−max
i∈St
‖xti‖V −1

t
≤ 2
λmin(Vt)

≤ 2
λmin(V ) = 2

λ
.

Therefore, 2
λ
is an upper-bound for each element in the second summation. Now applying

Azuma-Hoeffding inequality, we have

T∑
t=1

E
 max
i∈St(θ̃1:M

t )
‖xti‖V −1

t
| Ft

−max
i∈St
‖xti‖V −1

t

 ≤
√

8T
λ

log 2T (B.7)

with probability 1−O(T−1). Combining (B.6) and (B.7), we have the result.
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B.3.4 Other Lemmas

The following lemma is used to derive the concentration and anti-concentration inequali-

ties for Gaussian random variables.

Lemma B.3 (Abramowitz and Stegun 1965). For a Gaussian random variable Z with

mean µ and variance σ2, for any z ≥ 1,

1
2
√
πz
e−z

2/2 ≤ P (|Z − µ| > zσ) ≤ 1√
πz
e−z

2/2. (B.8)

Lemma B.4 (Azuma-Hoeffding inequality). If a super-martingale (Yt; t ≥ 0) correspond-

ing to filtration Ft, satisfies |Yt − Yt−1| ≤ ct for some constant ct, for all t = 1, ..., T ,

then for any a ≥ 0,

P(YT − Y0 ≥ a) ≤ 2e
− a2

2
∑T

t=1 c
2
t
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Bandit Algorithm

C.1 Proofs of Lemmas for Theorem 4.1

C.1.1 Proof of Lemma 4.1

Proof. The proof follows from modifying the proof of the standard Lasso oracle inequality

(Bühlmann and Van De Geer, 2011) using martingale theory. Recall from (4.1) that the

negative log-likelihood of the GLM is

`t(β) = −1
t

t∑
τ=1

[
YτX

>
τ β −m(X>τ β)

]

where m is a normalizing function with its gradient ṁ(X>β) = µ(X>β). Now, we denote

the expectation of `t(β) over Y by ¯̀
t(β):

¯̀
t(β) := EY [`t(β)] = −1

t

t∑
τ=1

[
µ(X>τ β∗)X>τ β −m(X>τ β)

]
.

Note that ∇β
¯̀
t(β) = −1

t

∑t
τ=1

[
µ(X>τ β∗)− µ(X>τ β)

]
Xτ . Hence, we have ∇β

¯̀
t(β∗) = 0d

which implies that β∗ = argminβ ¯̀
t(β) given the fact that m is convex in the GLM. Hence,

for any parameter β ∈ Rd, the excess risk is defined as

E(β) := ¯̀
t(β)− ¯̀

t(β∗).
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Note that by definition, E(β) ≥ 0, for all β ∈ Rd (with E(β∗) = 0). The Lasso estimate

β̂t for the GLM is given by the minimization of the penalized negative log-likelihood

β̂t := argmin
β

{
`t(β) + λt‖β‖1

}

where λ is the penalty parameter whose value needs to be chosen to control the noise of

the model. Now, we define the empirical process of the problem as

vt(β) := `t(β)− ¯̀
t(β).

Note that the randomness in {Yτ} still plays a role on `t(β) and hence on vt(β). Then by

the definition of β̂t, we have

`t(β̂t) + λt‖β̂t‖1 ≤ `t(β∗) + λt‖β∗‖1.

Adding and subtracting terms, we have

`t(β̂t)− ¯̀
t(β̂t) + ¯̀

t(β̂t)− ¯̀
t(β∗) + λt‖β̂t‖1 ≤ `t(β∗)− ¯̀

t(β∗) + λt‖β∗‖1 .

Rearranging terms gives the following “basic inequality” for the GLM

E(β̂t) + λt‖β̂t‖1 ≤ −[vt(β̂t)− vt(β∗)] + λt‖β∗‖1 .

The basic inequality implies that in order to provide an upper-bound for the penalized

excess risk, we need to control the deviation of the empirical process [vt(β̂t) − vt(β∗)]

(Bühlmann and Van De Geer, 2011). And we bound this deviation of the empirical process

in terms of the parameter estimation error ‖β̂t−β∗‖1. Essentially, [vt(β̂t)−vt(β∗)] is where

the random noise plays a role, and with large enough penalization (suitably large λ) we
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can control such randomness in the empirical process. We define the event of the empirical

process being controlled by the penalization.

T := {|vt(β̂t)− vt(β∗)| ≤ λ‖β̂t − β∗‖1} . (C.1)

Lemma C.1 ensures that we can control this empirical process deviation with high proba-

bility. Hence, in the rest of the proof, we restrict ourselves to the case where the empirical

process behaves well, i.e., event T in (C.1) holds.

Lemma C.1. Assume Xt satisfies ‖Xt‖2 ≤ xmax for all t. If λ = σxmax

√
2[log(2/δ)+log d]

t
,

then with probability at least 1− δ we have

|vt(β̂t)− vt(β∗)| ≤ λ‖β̂t − β∗‖1 .

On event T , for λt ≥ 2λ, we have

2E(β̂t) + 2λt‖β̂t‖1 ≤ λt‖β̂t − β∗‖1 + 2λt‖β∗‖1 . (C.2)

Let β̂ := β̂t for brevity. Using the active set S0, we can define the following:

βj,S0 := βj1{j ∈ S0} βj,Sc0 := βj1{j /∈ S0}

so that βS0 = [β1,S0 , ..., βd,S0 ]> has zero elements outside the set S0 and the elements of

βSc0 can only be non-zero in the complement of S0. We can then lower-bound ‖β̂‖1 using

the triangle inequality,

‖β̂‖1 = ‖β̂S0‖1 + ‖β̂Sc0‖1

≥ ‖β∗S0‖1 − ‖β̂S0 − β∗S0‖1 + ‖β̂Sc0‖1 .
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Also, we can rewrite

‖β̂ − β∗‖1 = ‖β̂S0 − β∗S0‖1 + ‖β̂Sc0 − β
∗
Sc0
‖1

= ‖β̂S0 − β∗S0‖1 + ‖β̂Sc0‖1 .

Then we continue from (C.2)

2E(β̂) + 2λt‖β∗S0‖1 − 2λt‖β̂S0 − β∗S0‖+ 2λt‖β̂Sc0‖1 ≤ λt‖β̂S0 − β∗S0‖1 + λt‖β̂Sc0‖1 + 2λt‖β∗‖1

= λt‖β̂S0 − β∗S0‖1 + λt‖β̂Sc0‖1 + 2λt‖β∗S0‖1 .

Therefore, we have

0 ≤ 2E(β̂) ≤ 3λt‖β̂S0 − β∗S0‖1 − λt‖β̂Sc0‖1 (C.3)

= λt
(
3‖β̂S0 − β∗S0‖1 − ‖β̂Sc0 − β

∗
Sc0
‖1
)

Then the compatibility condition can be applied to the vector β̂ − β∗ which gives

‖β̂S0 − β∗S0‖
2
1 ≤ s0(β̂ − β∗)>Σ̂(β̂ − β∗)/φ2

t . (C.4)

From (C.3), we have

2E(β̂) + λt‖β̂Sc0‖1 ≤ 3λt‖β̂S0 − β∗S0‖1 .
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Therefore, we have

2E(β̂) + λt‖β̂ − β∗‖1 = 2E(β̂) + λt‖β̂Sc0‖1 + λt‖β̂S0 − β∗S0‖1

≤ 3λt‖β̂S0 − β∗S0‖1 + λt‖β̂S0 − β∗S0‖1

= 4λt‖β̂S0 − β∗S0‖1

≤ 4λt
√
s0(β̂ − β∗)>Σ̂(β̂ − β∗)/φt

≤ κ0(β̂ − β∗)>Σ̂(β̂ − β∗) + 4λ2
t s0

κ0φ2
t

≤ 2E(β̂) + 4λ2s0

κ0φ2
t

where the second inequality is from applying the compatibility condition (C.4) and the

third inequality is by using 4uv ≤ u2 + 4v2 with u =
√
κ0(β̂ − β∗)>Σ̂(β̂ − β∗) and v =

λt
√
s0

φt
√
κ0
. The last inequality is from Lemma C.2. Hence, rearranging gives

‖β̂ − β∗‖1 ≤
4s0λt
κ0φ2

t

.

This completes the proof.

186



Appendix C: Sparsity-Agnostic High-Dimensional Bandit Algorithm

C.1.2 Proof of Lemma C.1

Proof. By the definitions of the negative log-likelihood `t(β) and its expectation ¯̀
t(β), we

can rewrite the empirical process vt(β) as

vt(β) = `t(β)− ¯̀
t(β)

= −1
t

t∑
τ=1

[
YτX

>
τ β −m(X>τ β)

]
+ 1
t

t∑
τ=1

[
µ(X>τ β∗)X>τ β −m(X>τ β)

]

= −1
t

t∑
τ=1

[
YτX

>
τ β − µ(X>τ β∗)X>τ β

]

= −1
t

t∑
τ=1

ετX
>
τ β

where the last equality uses the definition of ετ . Then, the empirical process deviation is

vt(β̂t)− vn(β∗) = −1
t

t∑
τ=1

ετX
>
τ (β̂t − β∗).

Applying Hölder’s inequality, we have

|vt(β̂t)− vt(β∗)| ≤
1
t

∥∥∥∥∥
t∑

τ=1
ετXτ

∥∥∥∥∥
∞
‖β̂t − β∗‖1.

Then controlling the empirical process reduces to controlling 1
t

∥∥∥∑t
τ=1 ετXτ

∥∥∥
∞
. Then,

using the union bound, it follows that

P
(

1
t

∥∥∥∥∥
t∑

τ=1
ετXτ

∥∥∥∥∥
∞
≤ λ

)
= 1− P

(
1
t

∥∥∥∥∥
t∑

τ=1
ετXτ

∥∥∥∥∥
∞
> λ

)

≥ 1−
d∑
j=1

P
(

1
t

∣∣∣∣∣
t∑

τ=1
ετX

(j)
τ

∣∣∣∣∣ > λ

)

where X(j)
τ is the j-th element of Xτ . For each j ∈ [d], and τ ∈ [t], we let Z(j)

τ := ετX
(j)
τ .

Let F̃t−1 denote the sigma-field that contains all observed information prior to taking an
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action in round t, i.e., F̃t−1 is generated by random variables of previously chosen actions

{a1, ..., at−1}, their features {X1, ..., Xt−1}, the corresponding rewards {Y1, ..., Yt−1} and

the set of feature vectors Xt = {Xt,1, ..., Xt,K} in round t.

Then, each {Z(j)
τ }tτ=1 for j ∈ [d] is a martingale difference sequence adapted to the

filtration F̃1 ⊂ ... ⊂ F̃τ since E[ετX(j)
τ |F̃τ−1] = X(j)

τ E[ετ |F̃τ−1] = 0 for each j. Note that

each X(j)
τ is a bounded random variable with |X(j)

τ | ≤ ‖Xτ‖∞ ≤ ‖Xτ‖2 ≤ xmax. Then

from the fact that ετ is σ2-sub-Gaussian, it follows that Z(j)
τ is also σ2-sub-Gaussian. That

is,

E
[
exp(αZ(j)

τ ) | F̃τ−1
]

= E
[
exp

{(
αX(j)

τ

)
ετ
}
| F̃τ−1

]
≤ E

[
exp(αxmaxετ ) | F̃τ−1

]
≤ exp

(
α2x2

maxσ
2

2

)

for any α ∈ R. Then, using the concentration result in Lemma C.11, we have

P
(∣∣∣∣∣

t∑
τ=1

εtiX
(j)
τ

∣∣∣∣∣ > tλ

)
≤ 2 exp

(
− t2λ2

2tσ2x2
max

)
≤ 2 exp

(
− tλ2

2σ2x2
max

)
.

So, with λ = σxmax

√
2[log(2/δ)+log d]

t
, we have

P
(

1
t

∥∥∥∥∥
t∑

τ=1
ετXτ

∥∥∥∥∥
∞
≤ λ

)
≥ 1− 2d exp

(
log δ2 − log d

)
= 1− δ .
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Lemma C.2. The excess risk is lower-bounded by

E(β̂t) ≥
κ0

2 (β̂t − β∗)>Σ̂(β̂t − β∗) .

Proof. By the definition of the excess risk E(β), we have

E(β) = ¯̀
t(β)− ¯̀

t(β∗)

= −1
t

t∑
τ=1

[
µ(X>τ β∗)X>τ β −m(X>τ β)

]
+ 1
t

t∑
τ=1

[
µ(X>τ β∗)X>τ β∗ −m(X>τ β∗)

]
.

Since ṁ(·) = µ(·), we have ∇β
¯̀
t(β∗) = 0d. Hence, the gradient of the excess risk ∇βE(β)

and the Hessian are given as

∇βE(β) = −1
t

t∑
τ=1

[
µ(X>τ β∗)Xτ − µ(X>τ β)Xτ

]
,

HE(β) := ∇2
βE(β) = 1

t

t∑
τ=1

µ̇(X>τ β)XτX
>
τ .

Using the Taylor expansion, with β̄ = cβ∗ + (1− c)β̂ for some c ∈ (0, 1)

E(β̂t) = E(β∗) +∇βE(β∗)>(β̂t − β∗) + 1
2(β̂t − β∗)>HE(β̄)(β̂t − β∗) . (C.5)

Note that by the definition of β∗, we have E(β∗) = 0 and ∇βE(β∗) = ∇β`(β∗) = 0d.

Hence, combining with the definition of the Hessian, we have

E(β̂t) = 1
2(β̂t − β∗)>

[
1
t

t∑
τ=1

µ̇(X>τ β̄)XτX
>
τ

]
(β̂t − β∗)

≥ κ0

2 (β̂t − β∗)>Σ̂(β̂t − β∗)

where the last inequality is from Assumption 4.2 and Σ̂ = 1
t

∑t
τ=1XτX

>
τ .
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C.1.3 Proof of Lemma 4.2

Proof. Consider X = {X1, X2}. Let the joint density function of x1, x2 as pX (x1, x2).

Then we have

E[X>X] =
∫

(x1x
>
1 + x2x

>
2 )pX (x1, x2)dx1, x2

=
∫
x1x

>
1

[
1

{
(x1 − x2)>β ≥ 0

}
+ 1

{
(x1 − x2)>β ≤ 0

}]
pX (x1, x2)dx1, x2

+
∫
x2x

>
2

[
1

{
(x1 − x2)>β ≥ 0

}
+ 1

{
(x1 − x2)>β ≤ 0

}]
pX (x1, x2)dx1, x2

Let’s first look at the first integral.

∫
x1x

>
1

[
1

{
(x1 − x2)>β ≥ 0

}
+ 1

{
(x1 − x2)>β ≤ 0

}]
pX (x1, x2)dx1, x2

=
∫
x1x

>
1

[
1

{
(x1 − x2)>β ≥ 0

}
pX (x1, x2) + 1

{
−(x1 − x2)>β ≥ 0

}
pX (x1, x2)

]
dx1, x2

4
∫
x1x

>
1 1

{
(x1 − x2)>β ≥ 0

}
pX (x1, x2)dx1, x2

+ ν
∫
x1x

>
1 1

{
−(x1 − x2)>β ≥ 0

}
pX (−x1,−x2)dx1, x2

=
∫
x1x

>
1 1

{
(x1 − x2)>β ≥ 0

}
pX (x1, x2)dx1, x2

+ ν
∫
x1x

>
1 1

{
(x1 − x2)>β ≥ 0

}
pX (x1, x2)dx1, x2

= (1 + ν)
∫
x1x

>
1 1

{
(x1 − x2)>β ≥ 0

}
pX (x1, x2)dx1, x2

= (1 + ν)E
[
X1X

>
1 1{X1 = argmax

X∈X
X>β}

]

where the inequality follows from Assumption 4.4. Likewise, we can show for the second

integral that

∫
x2x

>
2

[
1

{
(x1 − x2)>β ≥ 0

}
+ 1

{
(x1 − x2)>β ≤ 0

}]
pX (x1, x2)dx1, x2

= (1 + ν)E
[
X2X

>
2 1{X1 = argmax

X∈X
X>β}

]
.
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Hence,

E[X>X] = (1 + ν)
(
E
[
X1X

>
1 1{X1 = argmax

X∈X
X>β}

]
+ E

[
X2X

>
2 1{X2 = argmax

X∈X
X>β}

])
.

Therefore, with the fact that ν ≥ 1, we have

2∑
i=1

E
[
XiX

>
i 1{Xi = argmax

X∈X
X>β}

]
<

2
1 + ν

· 1
2E[X>X] < ν−1Σ .

C.1.4 Bernstein-type Inequality for Adapted Samples

In this section, we derive a Bernstein-type inequality for adapted samples which is shown

in Lemma C.5. We first define the following function of a random variable Xt which is

used throughout this section.

Definition C.1. For all i, j with 1 ≤ i ≤ j ≤ d, we define γijt (Xt) to be a real-value

function which take random variable Xt ∈ Rd as input:

γijt (Xt) := 1
2x2

max

(
X

(i)
t X

(j)
t − E[X(i)

t X
(j)
t | Ft−1]

)
(C.6)

where X(i)
t is the i-th element of Xt.

It is easy to see that E
[
γijt (Xt) | Ft−1

]
= 0 and E

[
|γijt (Xt)|m | Ft−1

]
≤ 1 for all integer

m ≥ 2. While we introduce this specific function γijt (Xt) in order to connect to the matrix

concentration ‖Στ − Σ̂τ‖∞, Lemma C.4 and Lemma C.5 can be applied to any function

γijt (Xt) that satisfies the zero mean and the bounded m-th moment conditions.
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Lemma C.3 (Bühlmann and Van De Geer (2011), Lemma 14.1). Let Zt ∈ R be a random

variable with E[Zt | Ft−1] = 0. Then it holds that

logE
[
eZt | Ft−1

]
≤ E

[
e|Zt| | Ft−1

]
− 1− E [|Z| | Ft−1] .

Proof. The proof follows directly from the proof of Lemma 14.1 in Bühlmann and Van

De Geer (2011), applying their result to a conditional expectation. For any c > 0,

exp(Zt − c)− 1 ≤ exp(Zt)
1 + c

− 1

= eZt − 1− Zt + Zt − c
1 + c

≤ e|Zt| − 1− |Zt|+ Zt − c
1 + c

.

Let c = E
[
e|Zt| | Ft−1

]
− 1− E [|Z| | Ft−1]. Hence, since E[Zt | Ft−1] = 0,

E [exp(Zt − c) | Ft−1]− 1 ≤
E
[
e|Zt| | Ft−1

]
− 1− E [|Zt| | Ft−1]− c

1 + c
= 0 .

Lemma C.4. Suppose E
[
γijt (Xt) | Ft−1

]
= 0 and E

[
|γijt (Xt)|m | Ft−1

]
≤ m! for all

integer m ≥ 2, all t ≥ 1 and all 1 ≤ i ≤ j ≤ d. Then, for L > 1 we have

E
[
exp

(
1
L

τ∑
t=1

γijt (Xt)
)]
≤ exp

(
τ

L(L− 1)

)
.
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Proof.

E
[
exp

(
1
L

τ∑
t=1

γijt (Xt)
)]

= E
[
E
[

exp
(

1
L

τ∑
t=1

γijt (Xt)
)
| Fτ−1

]]

= E
[
E
[

exp
(
γijτ (Xτ )
L

)
| Fτ−1

]
exp

(
1
L

τ−1∑
t=1

γijt (Xt)
)]

≤ e
1

L(L−1)E
[
exp

(
1
L

τ−1∑
t=1

γijt (Xt)
)]

where the inequality is from Lemma C.3 and noting that

logE
[

exp
(
γijτ (Xτ )
L

)
| Fτ−1

]
≤ E

[
e|γ

ij
τ (Xτ )|/τ − 1− |γ

ij
τ (Xτ )|
L

| Fτ−1

]

= E
[ ∞∑
m=2

|γijτ (Xτ )|m

Lmm! | Fτ−1

]

=
∞∑
m=2

E
[
|γijτ (Xτ )|m | Fτ−1

]
Lmm!

≤ 1
L(L− 1) .

Then, repeatedly applying this to the rest of the sum 1
L

∑τ−1
t=1 γ

ij
t (Xt), we have

E
[
exp

(
1
L

τ∑
t=1

γijt (Xt)
)]
≤ exp

(
τ

L(L− 1)

)
.

Lemma C.5 (Bernstein-type inequality for adapted samples). Suppose E
[
γijt (Xt) | Ft−1

]
=

0 and E
[
|γijt (Xt)|m | Ft−1

]
≤ m! for all integer m ≥ 2, all t ≥ 1 and all 1 ≤ i ≤ j ≤ d.

Then for all w > 0, we have

P

 max
1≤i≤j≤d

∣∣∣∣∣1τ
τ∑
t=1

γijt (Xt)
∣∣∣∣∣ ≥ w +

√
2w +

√
4 log(2d2)

τ
+ 2 log(2d2)

τ

 ≤ exp
(
−τw2

)
.

193



Appendix C: Sparsity-Agnostic High-Dimensional Bandit Algorithm

Proof. Using the Chernoff bound and Lemma C.4, for any L > 1 we have

P
(

τ∑
t=1

γijt (Xt) ≥ a

)
= P

(
exp

(
1
L

τ∑
t=1

γijt (Xt)
)
≥ exp

(
a

L

))

≤
E
[
exp

(
1
L

∑τ
t=1 γ

ij
t (Xt)

)]
exp

(
a
L

)
≤ exp

(
− a
L

)
exp

(
τ

L(L− 1)

)

= exp
(
− a
L

+ τ

L(L− 1)

)
.

Here, L = τ+a+
√
τ2+τa
a

minimizes the right hand side above for L > 1. Therefore,

P
(

τ∑
t=1

γijt (Xt) ≥ a

)
≤ exp

{
− a2

τ + a+
√
τ 2 + τa

+ τa2

(τ + a+
√
τ 2 + τa)(τ +

√
τ 2 + τa)

}

= exp

−


√
1 + a/τ

1 +
√

1 + a/τ

 a2

τ + a+
√
τ 2 + τa


≤ exp

− a2

2
(
τ + a+

√
τ 2 + τa

)


≤ exp

− a2

2
(
τ + a+

√
τ 2 + 2τa

)
 .

Choosing a = τ
(
w +
√

2w
)
gives

P
(

1
τ

τ∑
t=1

γijt (Xt) ≥ w +
√

2w
)
≤ exp

(
−τw2

)
. (C.7)
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Then for the maximal inequality, we first apply the union bound to (C.7).

P
(

max
1≤i≤j≤d

1
τ

∣∣∣∣∣
τ∑
t=1

γijt (Xt)
∣∣∣∣∣ ≥ w +

√
2w
)
≤

∑
1≤i≤j≤d

2P
(

1
τ

τ∑
t=1

γijt (Xt) ≥ w +
√

2w
)

≤ 2d2 exp
(
−τw2

)
= exp

(
−τw2 + log(2d2)

)
.

Then,

P

 max
1≤i≤j≤d

1
τ

∣∣∣∣∣
τ∑
t=1

γijt (Xt)
∣∣∣∣∣ ≥ w +

√
2w +

√
4 log(2d2)

τ
+ 2 log(2d2)

τ


≤ P

 max
1≤i≤j≤d

1
τ

∣∣∣∣∣
τ∑
t=1

γijt (Xt)
∣∣∣∣∣ ≥

(
w + 2 log(2d2)

τ

)
+

√√√√2
(
w + 2 log(2d2)

τ

)
= P

(
max

1≤i≤j≤d

1
τ

∣∣∣∣∣
τ∑
t=1

γijt (Xt)
∣∣∣∣∣ ≥ w′ +

√
2w′

)

≤ exp
(
−τw

′

2 + log(2d2)
)

= exp
(
−τw2

)

where w′ = w + 2 log(2d2)
τ

.

C.1.5 Proof of Lemma 4.3

Proof. Notice the difference between the unconditional theoretical Gram matrix Σ and

its adapted version E[XtX
>
t |Ft−1] which is a conditional covariance matrix conditioned

on the history Ft−1. Recall that from Algorithm 8, in each round t we choose Xt given

the history Ft−1. More precisely, we compute βt based on Ft−1 and choose Xt which

maximizes the product X>t β̂t, i.e., argmaxX∈Xt X>β̂t where Xt = {Xt,1, Xt,2}. Hence, we
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can write E[XtX
>
t |Ft−1] as the following:

E[XtX
>
t |Ft−1] =

2∑
i=1

EXt
[
Xt,iX

>
t,i1{Xti = argmax

X∈Xt
X>β̂t} | β̂t

]
.

From Lemma 4.2, it follows that

E[XtX
>
t |Ft−1] < ν−1Σ .

Now, taking an average over t gives,

Στ = 1
τ

τ∑
t=1

E[XtX
>
t |Ft−1] < ν−1Σ .

Then, we define β̃ corresponding to compatibility constant φ2(Στ , S0), that is,

β̃ := argmin
β

{
β>Στβ

‖βS0‖2
1

: ‖βSc0‖1 ≤ 3‖βS0‖1 6= 0
}
.

Therefore, it follows that

β̃>Στ β̃

‖β̃S0‖2
1
≥ β̃>Σβ̃
ν‖β̃S0‖2

1
≥ φ2

0
ν

(C.8)

where the second inequality is by the compatibility condition on Σ. Thus, Στ satisfies the

compatibility condition with compatibility constant φ2(Στ , S0) = φ2
0
ν
.

Now, noting that 1
2x2

max
‖Στ − Σ̂τ‖∞ = max1≤i≤j≤d

1
τ

∣∣∣∑τ
t=1 γ

ij
t (Xt)

∣∣∣ for γijt (·) defined in

(C.6), we can use a Bernstein-type inequality for adapted samples in Lemma C.5 to get

P

‖Στ − Σ̂τ‖∞
2x2

max
≥ w +

√
2w +

√
4 log(2d2)

τ
+ 2 log(2d2)

τ

 ≤ exp
(
−τw2

)
.
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For τ ≥ 2 log(2d2)
C0(s0)2 where C0(s0) = min

(
1
2 ,

φ2
0

256s0νx2
max

)
, letting w = C0(s0)2 gives

w +
√

2w +
√

4 log(2d2)
τ

+ 2 log(2d2)
τ

≤ 2
(
C0(s0)2 +

√
2C0(s0)

)
≤ 4C0(s0)

≤ φ2
0

64s0νx2
max

= φ2(Στ , S0)
64s0x2

max
.

Hence,

P

‖Στ − Σ̂τ‖∞
2x2

max
≥ φ2(Στ , S0)

64s0x2
max

 ≤ P

‖Στ − Σ̂τ‖∞
2x2

max
≥ w +

√
2w +

√
4 log(2d2)

τ
+ 2 log(2d2)

τ


≤ exp

(
−τw2

)
= exp

(
−τC0(s0)2

2

)
.

Corollary C.1. For t ≥ 2 log(2d2)
C0(s0)2 where C0(s0) = min

(
1
2 ,

φ2
0

256s0νx2
max

)
, the empirical Gram

matrix Σ̂t satisfies the compatibility condition with compatibility constant φt ≥ φ2
0

2ν > 0

with probability at least 1− exp {−tC0(s0)2/2}.

Proof. We can use Corollary 4.1 (Bühlmann and Van De Geer (2011), Corollary 6.8) to

show that the empirical Gram matrix Σ̂τ satisfies the compatibility condition as long as Στ

satisfies the compatibility condition. From (C.8), we know Στ satisfies the compatibility

condition with compatibility constant φ2
0
ν
. Then, combining Lemma 4.3 and Corollary 4.1,

it follows that given ‖Σt − Σ̂t‖∞ ≤ φ2
0

32s0ν for t ≥ dT0e, we have

φ2(Σ̂t, S0) ≥ φ2(Σt, S0)
2 ≥ φ2

0
2ν > 0 .
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That is, Σ̂τ satisfies the compatibility condition with compatibility constant which is at

least φ2
0

2ν > 0.

C.2 Proof of Theorem 4.1

Proof. First, let T0 := 2 log(2d2)
C0(s0)2 where C0(s0) = min

(
1
2 ,

φ2
0

256s0νx2
max

)
. Also, we define the

high probability event Et:

Et :=
{
‖Σt − Σ̂t‖∞ ≥

φ2
0

32s0ν

}
.

Hence, on this event Et, if t ≥ T0, then from Corollary C.1 we have φ2
t ≥

φ2
0

2ν , i.e., the

compatibility condition holds in round t. Slightly overloading the subscript for brevity,

let Xt := Xt,at be a feature of the arm chosen in round t and Xa∗t
:= Xt,a∗t

be the feature

of the optimal arm in round t. First, we look at the (non-expected) immediate regret

Reg(t) with R(t) = E[Reg(t)] in round t. Notice that by Assumptions 4.1 and 4.2 and by

the mean value theorem, Reg(t) is bounded by

Reg(t) ≤ κ1
(
X>a∗tβ

∗ −X>t β∗
)
≤ κ1‖Xa∗t

−Xt‖2‖β∗‖2 ≤ 2κ1xmaxb

Then we can decompose the immediate regret as follows.

Reg(t) = Reg(t)1(t ≤ T0) + Reg(t)1(t > T0, Et) + Reg(t)1(t > T0, Ect )

≤ 2κ1xmaxb1(t ≤ T0) + Reg(t)1(t > T0, Et) + 2κ1xmaxb1(t > T0, Ect )

= 2κ1xmaxb1(t ≤ T0) + Reg(t)1
(
µ(X>t β̂t) ≥ µ(X>a∗t β̂t), t > T0, Et

)
+ 2κ1xmaxb1(t > T0, Ect )

198



Appendix C: Sparsity-Agnostic High-Dimensional Bandit Algorithm

where the last equality follows from the optimality of Xt with respect to parameter β̂t,

i.e., Xt = argmaxX∈Xt µ(X>β̂t). For the second term, we have

P
(
µ(X>t β̂t) ≥ µ(X>a∗t β̂t)

)
= P

(
µ(X>t β̂t)− µ(X>a∗t β̂t) + Reg(t) ≥ Reg(t)

)
= P

(
(µ(X>t β̂t)− µ(X>t β∗))− (µ(X>a∗t β̂t)− µ(X>a∗tβ

∗)) ≥ Reg(t)
)

≤ P
(
|µ(X>t β̂t)− µ(X>t β∗)|+ |µ(X>a∗t β̂t)− µ(X>a∗tβ

∗)| ≥ Reg(t)
)

≤ P
(
κ1‖β̂t − β∗‖1‖Xt‖∞ + κ1‖β̂t − β∗‖1‖Xa∗t

‖∞ ≥ Reg(t)
)

≤ P
(
2κ1‖β̂t − β∗‖1 ≥ Reg(t)

)

where the last inequality is from the fact that each Xt,i is bounded. For an arbitrary

constant gt > 0, we continue with expected regret R(t) = E[Reg(t)] for t > T0.

R(t) ≤ E
[
Reg(t)1

(
2κ1‖β̂t − β∗‖1 ≥ Reg(t), Et

)]
+ 2κ1xmaxbP(Ect )

= E
[
Reg(t)1

(
2κ1‖β̂t − β∗‖1 ≥ Reg(t),Reg(t) ≤ κ1gt, Et

)]
+ E

[
Reg(t)1

(
2κ1‖β̂t − β∗‖1 ≥ Reg(t),Reg(t) > κ1gt, Et,

)]
+ 2κ1xmaxbP(Ect )

≤ κ1gt + κ1P
(
2‖β̂t − β∗‖1 ≥ gt, Et

)
+ 2κ1xmaxbP(Ect ) .

Summing over all rounds after the initial T0 rounds, we have

T∑
t=dT0e

R(t) ≤ κ1

T∑
t=dT0e

gt

︸ ︷︷ ︸
(a)

+κ1

T∑
t=dT0e

P
(
2‖β̂t − β∗‖1 ≥ gt, Et

)
︸ ︷︷ ︸

(b)

+ 2κ1xmaxb
T∑

t=dT0e
P(Ect )︸ ︷︷ ︸

(c)

. (C.9)

We first bound the term (b) in (C.9). We choose gt := 2s0λt
κ0φ2

t
= 4σxmaxs0

κ0φ2
t

√
4 log t+2 log d

t
. Then

using Lemma 4.1, we have

P
(
2‖β̂t − β∗‖1 ≥ gt, Et

)
≤ 2
t2
.
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for all t ≥ T0. Therefore, it follows that

T∑
t=dT0e

P
(
2‖β̂t − β∗‖1 ≥ gt, Et

)
≤

T∑
t=dT0e

2
t2
≤
∞∑
t=1

2
t2
≤ π2

3 < 4 .

For the term (a) in (C.9), we have φ2
t ≥

φ2
0

2ν provided that event Et holds. Hence, we have

T∑
t=dT0e

gt =
T∑

t=dT0e

4σxmaxs0

κ0φ2
t

√
4 log t+ 2 log d

t

≤
T∑

t=dT0e

8νσxmaxs0

κ0φ2
0

√
4 log t+ 2 log d

t

≤ 8νσxmaxs0
√

4 log T + 2 log d
κ0φ2

0

T∑
t=dT0e

1√
t

≤ 8νσxmaxs0
√

4 log T + 2 log d
κ0φ2

0

T∑
t=1

1√
t

≤ 16νσxmaxs0
√

4 log T + 2 log d
κ0φ2

0

√
T

where the last inequality is from the fact that ∑T
t=1

1√
t
≤
∫ T
t=0

1√
t

= 2
√
T .

Finally, for the term (c) in (C.9), we have from Lemma 4.3:

T∑
t=dT0e

P(Ect ) ≤
T∑

t=dT0e
P
(
‖Σt − Σ̂t‖∞ ≥

φ2
0

32s0ν

)

≤
T∑

t=dT0e
exp

(
−tC0(s0)2

2

)

≤
∞∑
t=1

exp
(
−tC0(s0)2

2

)

≤ 2
C0(s0)2 .
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C.3 Proof of Theorem 4.2

The proof follows similar arguments as the proof of Theorem 4.1. The key difference

is that the RE condition involves `2 norm and therefore the analysis requires the Lasso

oracle inequality of the GLM in `2 norm, which we provide as an extension of Lemma 4.1.

Corollary C.2. Assume that the RE condition holds for Σ̂t with active set S0 and re-

stricted eigenvalue φt. For some δ ∈ (0, 1), let the regularization parameter λt be

λt := 2σxmax

√
2[log(2/δ) + log d]

t
.

Then with probability at least 1− δ, we have

‖β̂t − β∗‖2 ≤
3√s0λt
κ0φ2

t

.

Proof. Continuing from (C.3) in Lemma 4.1, the RE condition can be applied to the

vector β̂ − β∗ which gives

‖β̂ − β∗‖2
2 ≤

(β̂ − β∗)>Σ̂t(β̂ − β∗)
φ2
t

. (C.10)

Again from (C.3), we can use the margin condition in Lemma C.2

3λt‖β̂S0 − β∗S0‖1 ≥ 2E(β̂n)

≥ κ0(β̂ − β∗)>Σ̂t(β̂ − β∗)

≥ κ0φ
2
t‖β̂ − β∗‖2

2
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where the last inequality is from (C.10) applying the RE condition. Then, it follows that

κ0φ
2
t‖β̂ − β∗‖2

2 ≤ 3λt‖β̂S0 − β∗S0‖1

≤ 3λt
√
s0‖β̂S0 − β∗S0‖2

≤ 3λt
√
s0‖β̂ − β∗‖2 .

Hence, dividing the both sides by ‖β̂ − β∗‖2 and rearranging gives

‖β̂ − β∗‖2 ≤
3√s0λt
κ0φ2

t

.

This complete the proof.

C.3.1 Ensuring the RE Condition for the Empirical Gram Matrix

To distinguish from the compatibility constant, we introduce the definition of a generic

restricted eigenvalue of matrix M over active set S0.

Definition C.2. The restricted eigenvalue of M over S0 is

φ2
RE(M,S0) := min

β

{
β>Mβ

‖β‖2
2

: ‖βSc0‖1 ≤ 3‖βS0‖1 6= 0
}
.

Note that Assumption 4.5 only provides the RE condition for the theoretical Gram

matrix Σ. Then, we follow the same arguments as in the analysis under the compatibility

condition to show that φ2
RE(Σt, S0) ≥ φ2

RE(Σ,S0)
ν

> 0, i.e., Σt satisfies the RE condition.

Then using Lemma 4.3, we can show that Σ̂t concentrates to Σt with high probability.

The following lemma (similar to Corollary 4.1) ensures the RE condition of Σ̂t conditioned

on the matrix concentration of the empirical Gram matrix Σ̂t.
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Lemma C.6. Suppose that the RE condition holds for Σ0 and the index set S with

cardinality s = |S|, with restricted eigenvalue φ2
RE(Σ0, S) > 0, and that ‖Σ1−Σ0‖∞ ≤ ∆,

where 32s∆ ≤ φ2
RE(Σ0, S). Then, for the set S, the RE condition holds as well for Σ1,

with φ2
RE(Σ1, S) ≥ φ2

RE(Σ0, S)/2.

Proof. The proof is an adaptation of Lemma 6.17 in Bühlmann and Van De Geer, 2011

to the RE condition.

∣∣∣β>Σ1β − β>Σ0β
∣∣∣ =

∣∣∣β>(Σ1 − Σ0)β
∣∣∣

≤ ‖Σ1 − Σ0‖∞‖β‖2
1

≤ ∆‖β‖2
1

For β such that ‖βSc‖ ≤ 3‖βS‖, we have the RE condition satisfied for Σ0. Hence, we

have

‖β‖1 ≤ 4‖βS‖1 ≤ 4
√
s‖βS‖2 ≤ 4

√
s‖β‖2 ≤

4
√
s0β>Σ0β

φRE(Σ0, S) .

Therefore, it follows that

∣∣∣β>Σ1β − β>Σ0β
∣∣∣ ≤ 16s∆β>Σ0β

φ2
RE(Σ0, S) .

Since β>Σ0β > 0, dividing the both sides by β>Σ0β gives

∣∣∣∣∣β>Σ1β

β>Σ0β
− 1

∣∣∣∣∣ ≤ 16s∆
φ2

RE(Σ0, S)
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Now, since 32s∆ ≤ φ2
RE(Σ0, S), it follows that

1
2 ·

β>Σ0β

‖β‖2
2
≤ β>Σ1β

‖β‖2
2
≤ 3

2 ·
β>Σ0β

‖β‖2
2
.

Hence,

φ2
RE(Σ1, S) ≥ φ2

RE(Σ0, S)
2 .

C.3.2 Proof of Theorem 4.2

Proof. The proof of Theorem 4.2 follows the similar arguments as the proof of Theo-

rem 4.1. The only difference is that we use `2 error bound ‖β̂t−β∗‖2 instead of ‖β̂t−β∗‖1.

First, note that

P
(
µ(X>t β̂t) ≥ µ(X>a∗t β̂t)

)
≤ P

(
|µ(X>t β̂t)− µ(X>t β∗)|+ |µ(X>a∗t β̂t)− µ(X>a∗tβ

∗)| ≥ Reg(t)
)

≤ P
(
κ1‖β̂t − β∗‖2‖Xt‖2 + κ1‖β̂t − β∗‖2‖X∗t ‖2 ≥ Reg(t)

)
≤ P

(
2κ1‖β̂t − β∗‖2 ≥ Reg(t)

)
.

For an arbitrary constant gt > 0, we continue with expected regret E[Reg(t)] for t > T0.

R(t) ≤ κ1gt + κ1P
(
2‖β̂t − β∗‖2 ≥ gt, Et

)
+ 2κ1xmaxbP(Ect ) .

Hence, the cumulative regret is bounded by

T∑
t=1
R(t) ≤ 2κ1xmaxbT0 + κ1

T∑
t=dT0e

gt + κ1

T∑
t=dT0e

P
(
2‖β̂t − β∗‖2 ≥ gt, Et

)
+ 2κ1xmaxb

T∑
t=dT0e

P(Ect ) .
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Let gt := 3√s0λt
2κ0φ2

t
= 6σxmax

κ0φ2
t

√
s0(4 log t+2 log d)

t
. From Lemma 4.1, we have

P
(
2‖β̂t − β∗‖2 ≥ gt, Et

)
≤ 2
t2

for all t. Therefore, it follows that

T∑
t=dT0e

P
(
2‖β̂t − β∗‖2 ≥ gt, Et

)
≤

T∑
t=1

P
(
2‖β̂t − β∗‖2 ≥ gt, Et

)
≤ π2

3 < 4 .

For t ≥ T0, we have φ2
t ≥

φ2
1

2ν provided that event Et holds. Hence, we have

T∑
t=dT0e

gt =
T∑

t=dT0e

6σxmax

κ0φ2
t

√
s0(4 log t+ 2 log d)

t

≤
T∑

t=dT0e

12νσxmax

κ0φ2
1

√
s0(4 log t+ 2 log d)

t

≤
12νσxmax

√
s0(4 log T + 2 log d)
κ0φ2

1

T∑
t=1

1√
t

≤
24νσxmax

√
s0(4 log T + 2 log d)
κ0φ2

1

√
T

where the last inequality is from the fact that ∑T
t=1

1√
t
≤
∫ T
t=0

1√
t

= 2
√
T . Combining all

the results with the bounds on T0 and ∑T
t=dT0e P(Ect ) from the proof of Theorem 4.1, the

expected regret under the RE condition is bounded by

Rπ(T ) ≤ 4κ1 + 4κ1xmaxb(log(2d2) + 1)
C2(φ1, s0)2 +

48κ1νσxmax

√
s0T log(dT )

κ0φ2
1

where C2(φ1, s0) = min
(

1
2 ,

φ2
1

256s0νx2
max

)
.
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C.4 Regret Analysis for K-Armed Case

C.4.1 Proof Outline of Theorem 4.3

As discussed in Section 4.6, the analysis for the K -armed bandit mostly follows the proof of

the two-armed bandit analysis in Section 4.4. Assuming the compatibility condition of the

empirical Gram matrix Σ̂t, the Lasso oracle inequality for adapted samples in Lemma 4.1

can be directly applied. Hence, what we have left is ensuring the compatibility condition

of Σ̂t. As before, for each E[XτX
>
τ |Fτ ] in Σt, the history Fτ affects how feature vector

Xτ is chosen. Similar to the two-armed bandit case, we rewrite Σt as

Σt = 1
t

t∑
τ=1

K∑
i=1

EXt
[
Xτ,iX

>
τ,i1{Xτ,i = argmax

X∈Xτ
X>β̂τ} | β̂τ

]
.

Recall that the compatibility condition is only assumed for the theoretical Gram matrix Σ

(Assumption 4.3). Again, the adapted Gram matrix Σt is used to bridge Σ and Σ̂t to

ensure the compatibility of Σ̂t. The key difference between the two-armed bandit analysis

and the K-armed bandit analysis lies in how Σt is controlled by Σ. In particular, under

the balanced covariance condition in Assumption 4.6, we show the following lemma which

is a generalization of Lemma 4.2.

Lemma C.7. Suppose Assumption 4.6 holds. For a fixed vector β ∈ Rd, we have

K∑
i=1

EXt
[
Xt,iX

>
t,i1{Xi = argmax

X∈Xt
X>β}

]
< (2νCX )−1Σ .

With this result, we can lower-bound the compatibility constant φ2(Σt, S0) of the

adapted Gram matrix in terms of the compatibility constant φ2(Σ, S0) for the theoretical
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Gram matrix. That is, we have Σt < (2νCX )−1Σ which implies that

φ2(Σt, S0) ≥ φ2(Σ, S0)
2νCX

> 0 .

Hence, Σt satisfies the compatibility condition. Then, we can show that Σ̂t concentrates

to Σt with high probability which directly follows from applying Lemma 4.2, which is

formally stated as follows.

Corollary C.3. For t ≥ 2 log(2d2)
C1(s0)2 where C1(s0) = min

(
1
2 ,

φ2
0

256s0νCXx2
max

)
, we have

P
(
‖Σt − Σ̂t‖∞ ≥

φ2
0

32s0νCX

)
≤ exp

{
−tC1(s0)2

2

}
.

Now, we can invoke Corollary 4.1 to connect this matrix concentration result to guar-

anteeing the compatibility condition of Σ̂t. Therefore, Σ̂t satisfies the compatibility con-

dition with compatibility constant φ2
t = φ2

0
4νCX > 0. The rest of the proof of Theorem 4.3

directly follows the proof of Theorem 4.1 using this compatibility constant.

C.4.2 Proof of Lemma C.7

Proof. Since the distribution of Xt = {Xt,1, ..., Xt,K} is time-invariant, we suppress the

subscript on t and write X = {X1, ..., XK}. Let joint distribution of X as pX (x1, ..., xK) =

pX (x) where we let x = (x1, ..., xK). All expectations in this proof is taken with respect

to the tuple X . Then the theoretical Gram matrix is defined as

E[X>X] = E
[
K∑
i=1

XiX
>
i

]

=
∫

(x1x
>
1 + ...+ xKx

>
K)pX (x)dx
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Let’s first focus on
∫
x1x

>
1 pX (x)dx.

∫
x1x

>
1 pX (x)dx =

∫
x1x

>
1 1

{
x1 = argmax

xi∈X
x>i β

}
pX (x)dx

+
∫
x1x

>
1 1

{
x1 = argmin

xi∈X
x>i β

}
pX (x)dx

+
∫
x1x

>
1 1

{
x1 6= argmax

xi∈X
x>i β, x1 6= argmin

xi∈X
x>i β

}
pX (x)dx .

We define three disjoint sets of possible orderings for {1, ..., K} as follows.

Definition C.3. We define the following sets of permutations of (1, ..., K).

Imax
1 := {indices (i1, ..., iK) such that iK = 1}

Imin
1 := {indices (i1, ..., iK) such that i1 = 1}

Imid
1 := {indices (i1, ..., iK) such that i1 6= 1 and iK 6= 1}.

Then, for
∫
x1x

>
1 1{x1 = argminxi∈X x

>
i β}pX (x)dx, we can write

∫
x1x

>
1 1

{
x1 = argmin

xi∈X
x>i β

}
pX (x)dx =

∑
(i1,...,iK)∈Imin

1

∫
x1x

>
1 1

{
x>i1β ≤ ... ≤ x>iKβ

}
pX (x)dx

Then for any (i1, ..., iK) ∈ Imin
1 ,

∫
x1x

>
1 1

{
x>i1β ≤ ... ≤ x>iKβ

}
pX (x)dx =

∫
x1x

>
1 1

{
− x>i1β ≥ ... ≥ −x>iKβ

}
pX (x)dx

4 ν
∫
x1x

>
1 1

{
− x>i1β ≥ ... ≥ −x>iKβ

}
pX (−x)dx

= ν
∫
x1x

>
1 1

{
x>i1β ≥ ... ≥ x>iKβ

}
pX (x)dx

where the inequality is again from Assumption 4.4. Since the elements in Imin
1 can be
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considered as reversed orderings of elements in Imax
1 (and obviously |Imin

1 | = |Imax
1 |),

E
[
X1X

>
1 1{X1 = argmin

X∈X
X>β}

]
=
∫
x1x

>
1 1

{
x1 = argmin

xi∈X
x>i β

}
pX (x)dx

=
∑

(i1,...,iK)∈Imin
1

∫
x1x

>
1 1

{
x>i1β ≤ ... ≤ x>iKβ

}
pX (x)dx

4
∑

(i1,...,iK)∈Imin
1

ν
∫
x1x

>
1 1

{
x>i1β ≥ ... ≥ x>iKβ

}
pX (x)dx

= ν
∫
x1x

>
1 1

{
x1 = argmax

xi∈X
x>i β

}
pX (x)dx

= νE
[
X1X

>
1 1{X1 = argmax

X∈X
X>β}

]
.

Also, using the definitions of Imin
1 , Imid

1 and Imax
1 , we can rewrite E

[
X1X

>
1

]
.

E
[
X1X

>
1

]
= E

[
X1X

>
1 1{X1 = argmin

X∈X
X>β}

]
+ E

[
X1X

>
1 1{X1 = argmax

X∈X
X>β}

]

+ E
[
X1X

>
1 1{X1 6= argmin

X∈X
X>β,X1 6= argmax

X∈X
X>β}

]

=
∑

(i1,...,iK)∈Imin
1

E
[
X1X

>
1 1{X>i1β < · · · < X>iKβ}

]

+
∑

(i1,...,iK)∈Imax
1

E
[
X1X

>
1 1{X>i1β < · · · < X>iKβ}

]

+
∑

(i1,...,iK)∈Imid
1

E
[
X1X

>
1 1{X>i1β < · · · < X>iKβ}

]

=
∑

(i1,...,iK)∈Imin
1

E
[
Xi1X

>
i11{X

>
i1β < · · · < X>iKβ}

]

+
∑

(i1,...,iK)∈Imax
1

E
[
XiKX

>
iK
1{X>i1β < · · · < X>iKβ}

]

+
∑

(i1,...,iK)∈Imid
1

E
[
X1X

>
1 1{X>i1β < · · · < X>iKβ}

]
.
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sFrom Assumption 4.6, we have

E
[
X1X

>
1 1{X>i1β < · · · < X>iKβ}

]
4 CXE

[
(Xi1X

>
i1 +XiKX

>
iK

)1{X>i1β < · · · < X>iKβ}
]
.

Then it follows that

E
[
X1X

>
1

]
4

∑
(i1,...,iK)∈Imin

1

E
[
Xi1X

>
i11{X

>
i1β < · · · < X>iKβ}

]

+
∑

(i1,...,iK)∈Imax
1

E
[
XiKX

>
iK
1{X>i1β < · · · < X>iKβ}

]

+
∑

(i1,...,iK)∈Imid
1

CXE
[(
Xi1X

>
i1 +XiKX

>
iK

)
1{X>i1β < · · · < X>iKβ}

]

4
∑

(i1,...,iK)∈Imin
1

CXE
[(
Xi1X

>
i1 +XiKX

>
iK

)
1{X>i1β < · · · < X>iKβ}

]

+
∑

(i1,...,iK)∈Imax
1

CXE
[(
Xi1X

>
i1 +XiKX

>
iK

)
1{X>i1β < · · · < X>iKβ}

]

+
∑

(i1,...,iK)∈Imid
1

CXE
[(
Xi1X

>
i1 +XiKX

>
iK

)
1{X>i1β < · · · < X>iKβ}

]
.

Since Imin
1 , Imid

1 and Imax
1 are disjoint sets, we can write

E
[
XiX

>
i 1{Xi = argmin

X∈X
X>β}

]
=

∑
(i1,...,iK)∈Imin

1

E
[
Xi1X

>
i11{X

>
i1β < · · · < X>iKβ}

]

+
∑

(i1,...,iK)∈Imax
1

E
[
Xi1X

>
i11{X

>
i1β < · · · < X>iKβ}

]

+
∑

(i1,...,iK)∈Imid
1

E
[
Xi1X

>
i11{X

>
i1β < · · · < X>iKβ}

]
.
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We can also express E
[
XiX

>
i 1{Xi = argmaxX∈X X>β}

]
similarly. Therefore, we have

E
[
X1X

>
1

]
4 CX

K∑
i=1

(
E
[
XiX

>
i 1{Xi = argmin

X∈X
X>β}

]
+ E

[
XiX

>
i 1{Xi = argmax

X∈X
X>β}

])

4 CX (1 + ν)
K∑
i=1

E
[
XiX

>
i 1{Xi = argmax

X∈X
X>β}

]
.

Then, summing E
[
XjX

>
j

]
over all j = 1, ..., K gives

E[X>X] =
K∑
j=1

E
[
XjX

>
j

]
4 KCX (1 + ν)

K∑
i=1

E
[
XiX

>
i 1{Xi = argmax

X∈X
X>β}

]
.

Hence,

K∑
i=1

E
[
XiX

>
i 1{Xi = argmax

X∈X
X>β}

]
<

1
CX (1 + ν) ·

1
K

E[X>X] < (2CXν)−1Σ .

C.4.3 Proposition 4

Proposition 4. In the case of independent arms, both a multivariate Gaussian distribu-

tion and a uniform distribution on a unit sphere satisfy Assumption 4.6 with CX = O(1).

For an arbitrary distribution, it holds with CX =
(
K−1
K0

)
where K0 = d(K − 1)/2e.

The proof of Proposition 4 involves the following few technical lemmas.

Lemma C.8. Suppose each Xi ∈ Rd is i.i.d. Gaussian with mean µ and covariance

matrix Γ. For any permutation (i1, ..., iK) of (1, ..., K), any integer k ∈ {2, ..., K−1} and
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fixed β,

E
[
XikX

>
ik
1{X>i1β < ... < X>iKβ}

]
4 E

[
Xi1X

>
i11{X

>
i1β < ... < X>iKβ}

]
+ E

[
XiKX

>
iK
1{X>i1β < ... < X>iKβ}

]
.

Proof. It suffices to show that for any y ∈ Rd

E
[
(X>iky)2

1{X>i1β < ... < X>iKβ}
]

≤ E
[
(X>i1y)2

1{X>i1β < ... < X>iKβ}
]

+ E
[
(X>iKy)2

1{X>i1β < ... < X>iKβ}
]
.

Now, we can write

y = β̃(β̃>y) +
d−1∑
j=1

gjg
>
j y := β̃w0 +

d−1∑
j=1

gjg
>
j y .

where w0 = β̃>y and β̃ = β
‖β‖ and

[
β̃, gi, ..., gd−1

]
form an orthonormal basis. For i ∈ [N ],

we can write

X>i y = (X>i β̃)w0 +X>i

d−1∑
j=1

gjg
>
j

 y
= (X>i β̃)w0 +

d−1∑
j=1

gjg
>
j

Xi

> y .
Then we define the following two random variables

Ui := X>i β̃, Vi := GXi
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where G = ∑d−1
j=1 gjg

>
j . Then we have

Ui
Vi

 ∼ N

µ>β̃
Gµ

,
A11 A12

A21 A22




where

A11 = β̃>Γβ̃ ∈ R

A12 = A>21 = β̃>ΓG> ∈ R1×d

A22 = GΓG> ∈ Rd×d .

Then, we know from Lemma C.12 that the conditional distribution Vi | Ui of a multivariate

normal distribution is also a multivariate normal distribution. In particular,

Vi | Ui = ui ∼ N
(
Gµ+ A21A

−1
11 (ui − µ>β̃), B

)

where B = A22 − A21A
−1
11 A12. Therefore, given Uik = uik , we can write

X>iky = uikw0 + V >ik y

= uikw0 +
(
Gµ+ A21A

−1
11 (uik − µ>β̃) +B1/2Z

)>
y .

where Z ∼ N (0, Id) and Z ⊥⊥ Uik . Rearranging gives

X>iky = uik
(
w0 + A−1

11 A12y
)

+
(
Gµ− A21A

−1
11 µ

>β̃
)>
y + Z>B1/2y .
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Hence, X>iky is a linear function of uik . Then it follows that

(
X>iky

)2
=
[
uik

(
w0 + A−1

11 A12y
)

+
(
Gµ− A21A

−1
11 µ

>β̃
)>
y + Z>B1/2y

]2

≤ max


[
ui1

(
w0 + A−1

11 A12y
)

+
(
Gµ− A21A

−1
11 µ

>β̃
)>
y + Z>B1/2y

]2
,

[
uiK

(
w0 + A−1

11 A12y
)

+
(
Gµ− A21A

−1
11 µ

>β̃
)>
y + Z>B1/2y

]2


≤
[
ui1

(
w0 + A−1

11 A12y
)

+
(
Gµ− A21A

−1
11 µ

>β̃
)>
y + Z>B1/2y

]2

+
[
uiK

(
w0 + A−1

11 A12y
)

+
(
Gµ− A21A

−1
11 µ

>β̃
)>
y + Z>B1/2y

]2
.

Therefore, it follows that

E
[
(X>iky)2

1{X>i1β < ... < X>iKβ}
]

≤ E
[
(X>i1y)2

1{X>i1β < ... < X>iKβ}
]

+ E
[
(X>iKy)2

1{X>i1β < ... < X>iKβ}
]
.

Hence,

E
[
XikX

>
ik
1{X>i1β < ... < X>iKβ}

]
4 E

[
(Xi1X

>
i1 +XiKX

>
iK

)1{X>i1β < ... < X>iKβ}
]
.

Lemma C.9. Suppose X ∈ Rd is uniformly distributed on the unit sphere Sd−1 and

K = o(d). For fixed vector β ∈ Rd and a given integer k ∈ {2, ..., K − 1},

E
[
XikX

>
ik
1{X>i1β < ... < X>iKβ}

]
4 CXE

[
(Xi1X

>
i1 +XiKX

>
iK

)1{X>i1β < ... < X>iKβ}
]
.

where CX = O(1).
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Proof. Here, we instead show directly

E[XX>] 4 C

(
E
[
XX>1{X = argmax

Xi∈{X1,...,XK}
X>i β̃}

]
+ E

[
XX>1{X = argmin

Xi∈{X1,...,XK}
X>i β̃}

])

for some constant C. It can be shown that if C = O(1), then the claim holds with

CX = O(1). Suppose X ∈ Rd is uniformly distributed on the unit sphere Sd−1 := {s ∈

Rd : ‖s‖2 = 1}. Then by Lemma 2 in Cambanis, Huang, and Simons, 1981, we can write

for each Xi,

Xi ∼
(
BiUi,1, (1−B2

i )1/2Ui,2
)

where Bi ∼ beta
(

1
2 ,

d−1
2

)
, Ui,1 = ±1 with probability 1

2 , Ui,2 ∼ unif(Sd−2). Ui,1, Ui,2 and

Bi are independent of each other. Similar to the analysis of the Gaussian case, we can

normalize β so that β̃ = β
‖β‖ . Without loss of generality, assume that β̃ = [1, 0, ..., 0]>.

That is, only the first element is non-zero. We can do this sinceX is spherical and rotation

invariant. Then we can write

E
[
XX>1{X = argmax

Xi∈{X1,...,XK}
X>i β̃}

]
= E

[
XX>1{X = argmax

Xi∈{X1,...,XK}
X

(1)
i }

]

where X(1)
i is the first element of Xi. Similarly,

E
[
XX>1{X = argmin

Xi∈{X1,...,XK}
X>i β̃}

]
= E

[
XX>1{X = argmin

Xi∈{X1,...,XK}
X

(1)
i }

]
.

Now, from the definition of X, for B ∼ beta
(

1
2 ,

d−1
2

)
we have

XiX
>
i =

 B2
i Bi

√
1−B2

i Ui,1U
>
i,2

Bi

√
1−B2

i Ui,1Ui,2 (1−B2
i )Ui,2U>i,2

 .
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By the independence of U1, U2, and B, we have

E
[
XX>

]
= E

 B2 0

0 1
d−1(1−B2)Id−1

 .

By the definitions of Bi and Ui,1, it follows that

E
[
XX>1{B = max

Bi∈{B1,...,BK}
Bi}

]
4 E

[
XX>1{X = argmax

Xi∈{X1,...,XK}
X

(1)
i }

]
+ E

[
XX>1{X = argmin

Xi∈{X1,...,XK}
X

(1)
i }

]
.

Since E[B2] = (α+1)α
(α+β+1)(α+β) for B ∼ beta(α, β), we have E[B2] = 3

d(d+2) and 1−E[B2]
d−1 =

d+3
d(d+2) using α = 1

2 and β = d−1
2 . Clearly, λmin(E

[
XX>

]
) = 3

d(d+2) . Similarly, for the

matrix E
[
XX>1{B = maxiBi}

]
, we have

E
[
XX>1{B = max

i
Bi}

]
= E

 B2
1{B = maxiBi} 0

0 1
d−1(1−B2)1{B = maxiBi}Id−1

 .

Note that E[B2
1{B = maxiBi}] = ∑K

j=1 E[B2
j1{Bj = maxiBi}] ≥ E[B2]. Then, we need

to show

C(1− E[B2
1{B = max

i
Bi}]) ≥ 1− E[B2]

for some C. Note that E[B2
1{B = maxiBi}] ≤ NE[B2]. Hence, we can show

C ≥ 1− E[B2]
1−NE[B2] =

1− 3
d(d+2)

1− 3K
d(d+2)

= d2 + d− 3
d2 + d− 3K .
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Since K = o(d), we have C = O(1). Hence,

E[XX>] 4 CE
[
XX>1{B = max

Bi∈{B1,...,BK}
Bi}

]

4 C

(
E
[
XX>1{X = argmax

Xi∈{X1,...,XK}
X

(1)
i }

]
+ E

[
XX>1{X = argmin

Xi∈{X1,...,XK}
X

(1)
i }

])

= C

(
E
[
XX>1{X = argmax

Xi∈{X1,...,XK}
X>i β̃}

]
+ E

[
XX>1{X = argmin

Xi∈{X1,...,XK}
X>i β̃}

])

which implies CX = O(1).

Lemma C.10. Consider i.i.d. arbitrary distribution pX . Fix some vector β ∈ Rd. For a

given integer k ∈ {2, ..., K − 1},

E
[
XkX

>
k 1{X>1 β < ... < X>k β < ... < X>Kβ}

]
4 CK,kE

[
(X1X

>
1 +XKX

>
K)1{X>1 β < ... < X>Kβ}

]

where CX =
(

K−1
(K−1)/2

)
assuming K is odd — if K is even, we can use d(K − 1)/2e.

Proof. First notice that

E
[
XkX

>
k 1{X>1 β < · · · < X>k β < · · · < X>Kβ}

]
= EV

[
V V >EX1:K/Xk

[
1{X>1 β < · · · < X>k−1β < V >β < X>k+1β < · · · < X>Kβ} | V

]]

where X1:K/Xk denotes X1, ..., Xk−1, Xk+1, ..., XK . Also,

E
[
X1X

>
1 1{X>1 β < · · · < X>Kβ}

]
= EV

[
V V >EX2:K

[
1{V >β < X>2 β < · · · < X>Kβ} | V

]]
E
[
XKX

>
K1{X>1 β < · · · < X>Kβ}

]
= EV

[
V V >EX1:K−1

[
1{X>1 β < · · · < X>K−1β < V >β} | V

]]
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Let ψ(y) := P(X>β ≤ y) denote the CDF of X>β. Then

P
(
X>1 β < · · · < X>k−1β < V >β < X>k+1β < · · · < X>Kβ

)
=

k−1∏
i=1

P
(
X>i β ≤ V >β

) 1
(k − 1)!

N∏
i=k+1

P
(
X>i β ≥ V >β

) 1
(K − k)!

= 1
(k − 1)!(K − k)!ψ(V >β)k−1

(
1− ψ(V >β)

)K−k
.

Likewise

P
(
V >β < X>2 β < · · · < X>Kβ

)
= 1

(K − 1)!
(
1− ψ(V >β)

)K−1
,

P
(
X>1 β < · · · < X>K−1β < V >β

)
= 1

(K − 1)!ψ(V >β)K−1.

Then, we need to show there exists CK,k such that

P
(
X>1 β < · · · < X>k−1β < V >β < X>k+1β < · · · < X>Kβ

)
≤ CK,k

[
P
(
V >β < X>2 β < · · · < X>Kβ

)
+ P

(
X>1 β < · · · < X>K−1β < V >β

)]
.

That is,

ψ(V >β)k−1
(
1− ψ(V >β)

)K−k
(k − 1)!(K − k)! ≤ CK,k

(K − 1)!

[(
1− ψ(V >β)

)K−1
+ ψ(V >β)K−1

]
.

Hence,

CK,k ≥
(
K − 1
k − 1

)
ψ(V >β)k−1

(
1− ψ(V >β)

)K−k
(1− ψ(V >β))K−1 + ψ(V >β)K−1

.
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Since ψ(V >β) ∈ [0, 1], we have

ψ(V >β)k−1
(
1− ψ(V >β)

)K−k
(1− ψ(V >β))K−1 + ψ(V >β)K−1

≤ 1

for all K and k. Hence, for CK,k =
(
K−1
k−1

)
,

E
[
XkX

>
k 1{X>1 β < · · · < X>k β < · · · < X>Kβ}

]
4 CK,kE

[
(X1X

>
1 +XKX

>
K)1{X>1 β < · · · < X>Kβ}

]
.

C.5 Other lemmas

Lemma C.11 (Wainwright (2019), Theorem 2.19). Let {Zτ ,Fτ}∞τ be a martingale dif-

ference sequence, and suppose that Zτ is σ2-sub-Gaussian in an adapted sense, i.e., for

all α ∈ R, E[eαZτ |Fτ−1] ≤ eα
2σ2/2 almost surely. Then for all γ ≥ 0, P [|∑n

τ=1 Zτ | ≥ γ] ≤

2 exp[−γ2/(2nσ2)].

Note that Lemma C.12 is a well-known result, but for the sake of completeness, we

present its formal statment and proof.

Lemma C.12. Let X ∈ Rd follow a multivariate Gaussian distribution with mean µ and

covarance matrix Σ and consider the partition of X with

X =

X1

X2

 ∼ N

µ1

µ2

,
Σ11 Σ12

Σ21 Σ22


 .

Then the conditional distribution of X1 given X2 is also a multivariate Gaussian distri-
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bution. In particular

X1 | X2 = x2 ∼ N
(
µ1 + Σ12Σ−1

22 (x2 − µ2),Σ11 − Σ12Σ−1
22 Σ21

)
.

Proof. Define Z = X1 + AX2 where A = −Σ12Σ−1
22 . Now we can write

cov(Z,X2) = cov(X1, X2) + cov(AX2, X2)

= Σ12 + Avar(X2)

= Σ12 − Σ12Σ−1
22 Σ22

= 0

Therefore Z and X2 are not correlated and, since they are jointly normal, they are inde-

pendent1. Now, clearly we have E(Z) = µ1 + Aµ2. Then

E[X1|X2] = E[Z −AX2|X2]

= E[Z|X2]− E[AX2|X2]

= E[Z]−AX2

= µ1 + A(µ2 −X2)

= µ1 + Σ12Σ−1
22 (X2 − µ2).

1If a random vector has a multivariate normal distribution then any two or more of its components
that are uncorrelated are independent.
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For the covariance matrix, note that

var(X1|X2) = var(Z −AX2|X2)

= var(Z|X2) + var(AX2|X2)−Acov(Z,−X2)− cov(Z,−X2)A>

= var(Z|X2)

= var(Z)

Hence, it follows that

var(X1|X2) = var(Z)

= var(X1 + AX2)

= var(X1) + Avar(X2)A> + Acov(X1, X2) + cov(X2, X1)A>

= Σ11 + Σ12Σ−1
22 Σ22Σ−1

22 Σ21 − 2Σ12Σ−1
22 Σ21

= Σ11 + Σ12Σ−1
22 Σ21 − 2Σ12Σ−1

22 Σ21

= Σ11 − Σ12Σ−1
22 Σ21

C.6 Additional Experiment Results

C.6.1 Details on Experimental Setup

For feature vectors drawn from the uniform distribution, we sample each feature vector X

independently from a d-dimensional hypercube [−1, 1]d. For elliptically distributed feature

vectors, we construct each feature vector X ∈ Rd following the definition in Theorem 1
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of Cambanis, Huang, and Simons (1981):

X = µ+RAU (k)

where µ ∈ Rd is a mean vector, U (k) ∈ Rk is uniformly distributed on the unit sphere

in Rk, R ∈ R is a random variable independent of U (k), and A is a d × k-dimensional

matrix with rank k. We sample R from Gaussian distribution N (0, 1), and sample each

element of A uniformly in [0, 1]. We use zero mean µ = 0d.

C.6.2 Additional Results for Two-Armed Bandits
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Figure C.1: The plots show the t-round cumulative regret of SA Lasso Bandit (Algorithm 8),
DR Lasso Bandit (Kim and Paik, 2019), and Lasso Bandit (Bastani and Bayati, 2020) for
K = 2, d ∈ {100, 200} and varying sparsity s0 ∈ {5, 10, 20} under no correlation between arms,
ρ2 = 0.

Figure C.1 shows the evaluations in two-armed bandits with independent arms whose

features are drawn from a multivariate Gaussian distribution. Comparing the numerical

results in Figure C.1 with those in Figure 4.1 and Figure 4.2, we observe that the per-

222



Appendix C: Sparsity-Agnostic High-Dimensional Bandit Algorithm

formance of DR Lasso Bandit substantially deteriorates as correlation between arms

decreases whereas the performances of SA Lasso Bandit and Lasso Bandit decrease

more gracefully with a decrease in arm correlation. Throughout these experiments, our

proposed algorithm, SA Lasso Bandit, consistently exhibits the fastest convergence to

the optimal action and robust performances under various instances.
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Figure C.2: The plots show the t-round regret of SA Lasso Bandit (Algorithm 8), DR Lasso
Bandit (Kim and Paik, 2019), and Lasso Bandit (Bastani and Bayati, 2020) for K = 50 and
s0 = 10. The first three rows are the results with features drawn from multivariate Gaussian
distributions with varying levels of correlation between arms ρ2 ∈ {0, 0.3, 0.7}. In the fourth row,
features are drawn from a multi-dimensional uniform distribution. In the fourth row, features
are drawn from a non-Gaussian elliptical distribution. For each row, we present evaluations for
varying feature dimensions, d ∈ {100, 200, 400, 800}.
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