
New Methods in Sublinear Computation for High Dimensional Problems

Erik Waingarten

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2020

c� 2020

Erik Waingarten

All Rights Reserved

ABSTRACT

New Methods in Sublinear Computation for High Dimensional Problems

Erik Waingarten

We study two classes of problems within sublinear algorithms: data structures for

approximate nearest neighbor search, and property testing of Boolean functions. We develop

algorithmic and analytical tools for proving upper and lower bounds on the complexity of

these problems, and obtain the following results:

• We give data structures for approximate nearest neighbor search achieving state-of-

the-art approximations for various high-dimensional normed spaces. For example, our

data structure for arbitrary normed spaces over d answers queries in sublinear time

while using nearly linear space and achieves approximation which is sub-polynomial

in the dimension.

• We prove query complexity lower bounds for property testing of three fundamental

properties: k-juntas, monotonicity, and unateness. Our lower bounds for non-adaptive

junta testing and adaptive unateness testing are nearly optimal, and the lower bound

for adaptive monotonicity testing is the best that is currently known.

• We give an algorithm for testing unateness with nearly optimal query complexity. The

algorithm is crucially adaptive and based on a novel analysis of binary search over

long paths of the hypercube.

Contents

List of Figures vi

Acknowledgments xi

Bibliographic Note xv

Introduction 1

I Approximate Nearest Neighbor Search in General Metric Spaces
23

1 Overview of the Results 25

1.1 The Embedding’s Approach and ANN for Symmetric Norms 25

1.2 A Lower Bound in the List-of-Points Model 30

1.3 The Cutting Modulus and Random Partitions 36

1.3.1 Data-dependent randomized space partitions from bounds on the

cutting modulus . 39

1.3.2 Proof of Theorem 25 . 44

1.4 Upper Bounds on the Cutting Modulus . 45

1.4.1 The cutting modulus of ¸d
1

. 45

1.4.2 Bounding the Cutting Modulus via Holder Maps of Unit Spheres . . 47

1.5 Time Efficient Algorithms for Any Norm 53

2 ANN for General Symmetric Norms 59

2.1 An algorithm for Orlicz norms . 60

i

2.2 Embedding symmetric norms into product spaces 63

2.2.1 Proof of Lemma 2.2.7: bounding the net size 69

2.3 Proof of Theorem 34 . 74

2.4 A lower bound for linear embeddings of general symmetric norms 75

3 ANN via the Cutting Modulus 79

3.1 Partitioning general metrics . 80

3.1.1 Cutting Modulus and Partitioning 81

3.1.2 The Multiplicative Weights Update Method 83

3.2 Cell-probe ANN data structure . 88

3.3 An Inefficient Upper Bound on the Cutting Modulus of any Normed Space . 91

4 Constructive Bounds on the Cutting Modulus of Any Norm 97

4.1 Relating Rayleigh Quotients with Holder Homeomorphisms 98

4.1.1 ¸p Spaces . 101

4.1.2 A Good Translation Always Exists 102

4.1.3 Schatten-p spaces . 104

4.2 A Holder Homeomorphism Between Perturbations of Spheres 106

4.2.1 Algorithmic version of Theorem 47 107

4.3 Preliminaries . 109

4.4 Hölder homeomorphisms: an existential argument 117

4.5 Computing approximate Hölder homeomorphisms 121

4.5.1 High-level overview . 121

4.5.2 Discretization of F . 123

4.5.3 Convex program for ApproxRep(x, ◊, Á; W) 129

4.5.4 Computing ApproxRep(x, ◊, Á; W) with MEM(BW) 134

4.5.5 Summary and instantiation for applications 141

II Property Testing of Boolean Functions 145

5 A Lower Bound for Non-Adaptive Junta Testing 147

ii

5.1 High-level overview of our approach . 147

5.2 The Dyes and Dno distributions . 150

5.2.1 Most functions drawn from Dyes are k-juntas 151

5.2.2 Most functions drawn from Dno are Á-far from k-juntas 152

5.3 The Set-Size-Set-Queries (SSSQ) Problem 156

5.4 Reducing from SSSQ to distinguishing Dyes and Dno 157

5.5 A lower bound on the non-adaptive query complexity of SSSQ 162

5.5.1 Set-Size-Element-Queries (SSEQ) 162

5.5.2 A lower bound for SSEQ . 165

5.6 Proof of Theorem 54 assuming Theorem 65 168

5.6.1 Proof of Claim 7.3.4 . 169

6 Lower Bounds for Testing Monotonicity and Unateness 171

6.0.1 Distance to monotonicity and unateness 173

6.0.2 Tree pruning lemmas . 174

6.1 Monotonicity Lower Bound . 176

6.1.1 Distributions . 176

6.1.2 Signatures and the new oracle . 181

6.1.3 Notation for full signature maps 185

6.1.4 Tree pruning . 188

6.1.5 Proof of Lemma 6.1.12 for good leaves 190

6.1.6 Proof of the pruning lemma . 193

6.2 Unateness Lower Bound . 201

6.2.1 Distributions . 201

6.2.2 Balanced decision trees . 208

6.2.3 Balanced signature trees . 211

6.2.4 Tree pruning . 216

6.2.5 Proof of Lemma 6.2.14 for good leaves 218

6.2.6 Proof of the pruning lemma . 222

6.3 Non-Adaptive One-Sided Unateness Lower Bound 227

iii

6.4 Non-Adaptive Monotonicity Lower Bound 231

6.5 Tightness of Distributions for Monotonicity 236

6.5.1 An O(n1/4

)-query algorithm for distributions of [34] 236

6.5.2 An O(n1/3

)-query algorithm for our distributions 238

7 An Algorithm for Testing Unateness 241

7.0.1 Technical overview . 242

7.1 Preliminaries . 247

7.1.1 Binary search with a placeholder 249

7.1.2 Persistency with respect to a set of variables 250

7.2 Preprocessing Variables . 251

7.2.1 The preprocessing procedure . 252

7.2.2 Low influence variables have low impact on Preprocess 253

7.3 The Scores Lemma . 260

7.3.1 Distributions D›,m, H›,m and Pi,m and the definition of scores . . . 261

7.3.2 The Scores Lemma . 262

7.3.3 Bucketing scores . 266

7.4 The Main Algorithm . 267

7.5 The Algorithm for Case 1 . 269

7.5.1 Informative sets . 269

7.5.2 Catching variables: Relating D›,m and H›,m 272

7.5.3 Algorithm for Case 1.1 . 273

7.5.4 Algorithm for Case 1.2 . 277

7.6 Finding Bichromatic Edges of High Influence Variables 282

7.6.1 Revealing points . 283

7.6.2 The Find-Revealing procedure 286

7.6.3 The Find-Hi-Inf procedure 294

7.7 The Algorithm for Case 2 . 295

7.8 The Algorithm for Case 3 . 302

7.9 Adaptive Edge Search . 305

iv

7.10 Analysis of the Preprocessing Procedure 307

7.11 Overlap of Two Random Sets of Certain Sizes 308

Bibliography 309

v

List of Figures

0.1 The “cluster-or-cut” scenario for metric spaces displayed. See Definition 3

and the subsequent paragraphs. On the left-hand side, the “cluster scenario” is

displayed, where the vertices of a graph G = (V, E) satisfy that at least half lie

in a cluster of radius less than r · �(X, Á). On the other hand, the right-hand

side shows a graph G = (V, E) without any clusters, and as a result, the cutting

modulus implies that a low-conductance cut of the graph exists. 10

0.2 Pictorial representation of one step of the binary search strategy for finding

bi-chromatic edges. The hypercube {≠1, 1}n is represented as a diamond,

corresponding to the shape of the Hasse diagram of the partial order on {≠1, 1}n;

the bottom-most point is the all ≠1’s point, and the top point is the all 1’s point.

Points x and y are given with f(x) = 0 and f(y) = 1 and a particular path

represents flipping variables where x and y differ one at a time. Finally z lies

in the middle of a shortest path between x and y; in this case, f(z) = 1, so

BinarySearch(f, x, y) recurses down BinarySearch(f, x, z). 16

vi

0.3 Pictorial representation of a monotone Boolean function (on the left-hand side),

and a unate Boolean function (on the right-hand side). The hypercube {≠1, 1}n

is represented as a diamond, corresponding to the shape of the Hasse diagram

of the partial order on {≠1, 1}n; the bottom-most point is the all ≠1’s point,

and the top point is the all 1’s point. The functions have the regions Af =

{x œ {≠1, 1}n
: f(x) = 1} as shaded gray. When f : {≠1, 1}n æ {≠1, 1} is

monotone, any shortest path between any point in Af and the all 1’s point along

edges of {≠1, 1}n is fully contained in Af . When f is unate, there exists a point

r œ {≠1, 1}n such that f(x · r) is monotone, i.e., any shortest path between any

point in Af and r is fully contained in Af . 21

2.1 Example mapping of particular levels of x with F showing aggregation of

coordinates. The coordinate iÕ œ Ck(x) belongs to level k and will be non-zero

in x ≠ S(x). In particular, coordinate iÕ œ Ck(x) is mapped via sk to coordinate

¸ œ Tj(x), which is —≠j in x and 0 in S(x). Then coordinate ¸ is mapped to

i œ Bqj
(x), where qj is the level below j with bqj

Ø bj . Thus, the composed

map F sends iÕ to i. 72

5.1 An example of how an input x œ {0, 1}n is evaluated by f ≥ Dyes (or Dno).

The relevant variables of x are shaded gray. The output f(x) is computed in

two steps. First, the input x is indexed into one of N functions h
1

, . . . , hN

according to �M(x) = x|M + 1. Second, letting i = �M(x), the output f(x) is

equal to hi(x), which depends on the values of x|Si
for a subset Si µ A. . . . 151

6.1 Previous work and our results on monotonicity testing and unateness testing. . . 172

6.2 An illustration of the function f = fT,C,H and its dependency on T , C and H . . 177

vii

6.3 Picture of a function f in the support of Dyes and Dno. We think of evaluating

f(x) as following the arrows down the tree. The first level represents multi-

plexing x œ {0, 1}n with respect to the terms in T . If x satisfies no terms, or

multiple terms, then f outputs 0, or 1, respectively. If x satisfies Ti for a unique

term Ti (T
2

in the picture), then we follow the arrow to Ti and proceed to the

second level. If x falsifies no clause, or multiple clauses, then f outputs 1, or 0,

respectively. If x falsifies a unique clause Ci,j , then we follow the arrow to Ci,j

and output hi,j(x). 179

6.4 An illustration of fi : {0, 1}n+2 æ {0, 1}. The first two coordinates index the

sub-cubes. 228

6.5 A visual representation of the algorithm for finding violations in the two-level

Talagrand construction. The whole rectangle represents the set [n], which is

shaded for coordinates which are set to 1, and clear for coordinates which are set

to 0. Ti is the unique term satisfied and Ci,j is the unique clause falsified. The

functions hi,j is an anti-dictator of coordinate ¸. The sets illustrated represent

the current knowledge at the end of Stage 3 of the algorithm. Note that |C
1

| =

�(n5/6

), |C| = �(n2/3

), |C
0

| = n5/6, |Ti| = |Ci,j| = �(

Ô
n). 238

7.1 Description of the binary search subroutine for finding a bichromatic edge. . . . 250

7.2 Description of the subroutine CheckPersistence. 252

7.3 Description of the procedure Preprocess for preprocessing a set of variables. . 253

viii

7.4 Example executions of BinarySearch(f, x, S, fi) and BinarySearch(f, x(i), S Õ, fiÕ
)

on the left-hand side, and executions of BinarySearch(f, x, S Õ, fiÕ
) and BinarySearch(f, x(i), S, fi)

on the right-hand side, assuming that C(x) is satisfied, and corresponding to the

case when k Æ ¸. Queries made only during executions of BinarySearch(f, x, S, fi)

and BinarySearch(f, x(i), S, fi) are displayed by red dots, and the correspond-

ing paths considered are outlined in red; queries made only during executions

of BinarySearch(f, x, S Õ, fiÕ
) and BinarySearch(f, x(i), S Õ, fiÕ

) are displayed

by blue dots, and the corresponding paths considered are outlined in blue. Points

are filled in with black if f evaluates to 1, and points which are not filled in

if f evaluates to 0. Dotted lines indicates that condition C(x) or the fact that

n + 1 is a dummy variable implies points evaluate to the same value under f .

From the above executions, it is clear to see that BinarySearch(f, x, S, fi) on

the left-hand side considers the path (drawn in red) between xj
3

and xj
1

, and

BinarySearch(f, x(i), S Õ, fiÕ
) considers the path between wj

3

and wj
1

(drawn

in blue); since variable n + 1 represents a dummy variable, f has the same

evaluation on both of these paths, so both output the same variable. Similarly,

BinarySearch(f, x(i), S, fi) on the right-hand side considers the path (drawn in

red) between yj
3

and yj
1

, and BinarySearch(f, x(i), S Õ, fiÕ
) considers the same

path between zj
3

and zj
1

(drawn in blue); as a result of n + 1 being a dummy

variable, both output the same variable. 257

ix

7.5 Example executions of BinarySearch(f, x, S, fi) and BinarySearch(f, x, S Õ, fiÕ
)

on the left-hand side, and executions of BinarySearch(f, x(i), S, fi) and BinarySearch(f, x(i), S Õ, fiÕ
)

on the right-hand side, assuming that C(x) is satisfied, and corresponding to the

case when k > r. Queries made only during executions of BinarySearch(f, x, S, fi)

and BinarySearch(f, x(i), S, fi) are displayed by red dots, and the correspond-

ing paths considered are outlined in red; queries made only during executions

of BinarySearch(f, x, S Õ, fiÕ
) and BinarySearch(f, x(i), S Õ, fiÕ

) are displayed

by blue dots, and the corresponding paths considered are outlined in blue;

queries which are made during both are displayed with purple dots, and the

intersection of the paths considered in both are purple. Similarly to Figure 7.4,

points filled in evaluate to 1 under f , and points which are not filled in eval-

uates to 0 under f . Dotted lines implies points evaluate to the same value

under f . Note that BinarySearch(f, x, S, fi) considers the path (drawn in

purple) between xj
2

and xj
3

, and BinarySearch(f, x, S Õ, fiÕ
) considers the

same path between zj
2

and zj
3

; thus, both output the same variable. Similarly,

BinarySearch(f, x(i), S, fi) considers the path (drawn in purple) between yj
2

and yj
3

, and BinarySearch(f, x(i), S Õ, fiÕ
) considers the same path between

wj
2

and wj
3

; as a result, both output the same variable. 258

7.6 Algorithm for Case 1.1 . 273

7.7 Algorithm for Case 1.2 . 277

7.8 The subroutine Get-Revealing-Edges. 284

7.9 The subroutine Check-Revealing. 285

7.10 The procedure Find-Revealing. 289

7.11 The procedure Find-Hi-Inf. 295

7.12 Algorithm for Case 2 . 296

7.13 Algorithm for Case 3 . 303

7.14 Description of the adaptive edge search subroutine. 305

x

Acknowledgments

First and foremost, I thank my advisors, Xi Chen and Rocco Servedio. The one thing I knew

coming to Columbia as a first-year was that I wanted to work with Rocco and Xi. Looking

back, it’s hard for me to envision any alternative which could be as amazing as the past

five years were. I remember countless meetings in the fifth floor offices of CSB, discussing

problems, conjectures, and balancing both rocks and parameters. From these discussions

I learned many interesting research problems and adopted the research philosophy they

implicitly carry; namely, that research is and should be a lot of fun.

I also thank Alex Andoni wholeheartedly. I was extremely lucky to have taken Alex’s

class on algorithms for massive datasets my first semester, and even luckier that he invited

me to join a research meeting with him, Ilya Razenshteyn, and Aleksandar “Sasho” Nikolov.

Since then, I have been completely captivated by problems from that class, and I still

remember that meeting at Max Soha with Ilya and Sasho, where we asked the questions

which are now half of this thesis! This takes me to Ilya Razenshteyn, who has been an

invaluable mentor and friend. My internship at Microsoft Research, where he supervised

me, was filled with research discussions, espressos at Vivace, and beautiful hikes – the least

I could do was show him how to grill a proper steak.

I thank all of my co-authors and collaborators: Alex Andoni, Omri Ben-Eliezer, Clement

Canonne, Xi Chen, Rajesh Jayaram, Gautam Kamath, Thijs Laarhoven, Amit Levi, Shoham

Letzter, Jerry Li, Assaf Naor, Huy Nguyen, Sasho Nikolov, Ramesh Pallavoor, Sofya

Raskhodnikova, Ilya Razenshteyn, Rocco Servedio, Li-Yang Tan, and Jinyu Xie. I would

especially like to thank Li-Yang Tan for regularly hosting me at Stanford, Prasad Raghaven-

dra for hosting me at Berkeley, and Amit Levi for multiple productive visits. Being part

of Columbia’s theory group has been wonderful, and I thank everyone in the group for the

spurious discussions, lunches, and coffee breaks that made my time there so pleasant.

xi

I cannot understate the love and support I have received (and continue to receive) from

my family: my parents Jose Luis and Elizabeth, and siblings Chiara and Yannick. My father,

who first taught me what an algorithm is, has been helping me foster my mathematical

curiosity since day one. For this, and everything, I cannot thank them enough. Finally, none

of this would be possible without my partner and best friend Vitoria – she has been on this

incredible journey with me from the beginning, and having her has made these years superb.

xii

Berele – en realidad, esta tesis marca mi segundo titulo. Mi primer “doctorado” lo recibí

con vos, mientras charlabamos sobre la vida, la economia, y la matematica (entre varias

otras cosas) los mediodías de verano en el Tequendama. Te la dedico a vos. Gracias.

xiii

Bibliographic Note

The contents of this thesis have appeared in various papers in some form.

The results in Chapter 1 gives an overview of the results in approximate nearest neighbor

search, stating results from papers [12, 18, 14, 16] with co-authors Alexandr Andoni,

Thijs Laarhoven, Assaf Naor, Huy L. Nguyen, Aleksandar Nikolov and Ilya Razenshteyn.

Chapter 2 gives the formal proofs from [12]. Chapter 3 gives the formal proofs from [14].

Chapter 4 gives the formal proofs from [16]. We refer the reader to the articles [90, 75]

about [12, 14, 16] geared toward a general audience.

The results in Chapter 5 are based on the paper [56], which is co-authored with Xi Chen,

Rocco A. Servedio, Li-Yang Tan, and Jinyu Xie. Chapter 6 is based on the paper [51],

co-authored with Xi Chen and Jinyu Xie. Chapter 7 is based on the paper [50], co-authored

with Xi Chen.

xv

Introduction

This thesis is on sublinear algorithms, a paradigm in algorithm design addressing new

challenges faced by increasing data. The starting point is that modern demands on various

computational tasks make “efficient” algorithms unsuitable. The hardness is not necessarily

due to the computational complexity of the problem in the classical sense. In fact, most of

the problems considered in this thesis have linear time algorithms. Rather, we intend to run

these algorithms on massive inputs. In this context, even linear time is unacceptable.

Sublinear algorithms address this setting. The goal is to solve problems with time and/or

space which is significantly smaller than the size of the input. This focus on ultra-efficiency

requires new problem formulations, which usually allow approximate solutions and a small

probability of error. The area has had a profound impact in computer science: these include

sketching and streaming algorithms in computer networking and databases [3, 109, 21], fast

algorithms for linear algebra in machine learning [100, 136], and testing of local codes in

hardness of approximation [38, 125]. This thesis covers topics in two areas of sublinear

algorithms: approximate nearest neighbor search and property testing of Boolean functions.

Approximate Nearest Neighbors The problem of similarity search, also known as near-

est neighbor search, is formalized by considering a distance function defining a metric space

on the objects which measures dissimilarity. Then, one designs a data structure supporting

searches for close objects in that metric space. The nearest neighbor search problem is both

an indispensable algorithmic primitive and a hallmark tool in modern data analysis with

applications in diverse fields such as machine learning, robotics, and biology [128, 127].

As the number of objects grows and metric spaces become more complex, straightforward

solutions become computationally intractable. The curse of dimensionality exemplifies

this phenomenon: data structures for nearest neighbor search in high dimensional spaces

1

either have time complexities scaling linearly with the number of objects, or have space

complexities scaling exponentially with the dimension of the underlying space.

Major advances were made by allowing approximations, and currently, many techniques

exist for designing efficient data structures with good approximations in important special

cases. These techniques include Locality-Sensitive Hashing [79, 47, 60], metric embeddings

[81, 80, 27], and sketching [93, 7, 15]. The resulting data structures find approximately

nearest neighbors with sublinear time and polynomial space complexities. (See the recent

survey [9], as well as the thesis [5, 120].)

Property Testing Property testing, introduced in [125, 68], deals with approximate de-

cision making under extreme computational constraints. The algorithmic problems ask

to determine, given access to an unknown large object, whether or not it has a particular

property. The objects may be functions, graphs, or even probability distributions. Ideally,

algorithms answer these questions by inspecting the object in very few locations.

An analytic theme is “local-to-global” reasoning: the idea that global properties may

be deduced by making few local (and random) observations. One well-known instance is

random sampling for estimating statistics, and while sampling is a central tool in property

testing, the techniques stretch way beyond that. New methods of aggregation and consistency

of local observations, developed within the context of property testing, offer new perspectives

on classic mathematical concepts. These include, for example, linearity of functions,

sortedness of total and partial orders, and triangle freeness of large graphs (see [123, 122,

67] for a survey on property testing and the recent textbook [66] for more examples).

Summary of Contributions This thesis is divided in two parts. The first discusses

approximate nearest neighbor search, where the motivating question is: what properties

of a metric space enable the design of efficient data structures with good approximations?

The central concept introduced is the cutting modulus of a metric space, a quantity which

will determine (in part) the complexity of data structures. We design necessary algorithmic

primitives and develop analytical tools to understand the cutting modulus of a metric space,

and give new data structures for large classes of metric spaces which were previously not

2

well understood. The material presented appeared in the following works:

• [12]: “Approximate near neighbors for general symmetric norms”, with Alexandr

Andoni, Huy L. Nguyen, Aleksandar Nikolov, and Ilya Razenshteyn, appeared in

STOC 2017.

• [14]: “Data-dependent hashing via non-linear spectral gaps”, with Alexandr Andoni,

Assaf Naor, Aleksandar Nikolov, and Ilya Razenshteyn, appeared in STOC 2018.

• [16]: “Hölder homeomorphisms and approximate nearest neighbors”, with Alexandr

Andoni, Assaf Naor, Aleksandar Nikolov, and Ilya Razenshteyn, appeared in FOCS

2018.

The second part discusses topics in property testing of Boolean functions, and in

particular, the well-studied properties of juntas, monotonicity, and unateness. We prove

new upper and lower bounds on the query complexity of certain aspects of these testing

tasks. A theme is understanding the power of adaptivity, i.e., how the query complexity

changes when considering adaptive and non-adaptive algorithms. We give a nearly optimal

lower bound for testing juntas non-adaptively, a matching upper and lower bound on testing

unateness, and a new lower bound for testing monotonicity. The material presented appeared

in the following works:

• [56]: “Settling the query complexity of non-adaptive junta testing”, with Xi Chen,

Rocco A. Servedio, Li-Yang Tan, and Jinyu Xie, appeared in CCC 2017 and Journal

of the ACM.

• [51]: “Beyond Talagrand functions: new lower bounds for testing monotonicity and

unateness”, with Xi Chen and Jinyu Xie, appeared in STOC 2017.

• [50]: “Testing unateness nearly optimally”, with Xi Chen, appeared in STOC 2019.

We give a more detailed overview next, where we set up some necessary context and

highlight the main results. The following section is on approximate nearest neighbor search,

and the following is on property testing of Boolean functions.

3

Approximate Near Neighbor Search

Definition 1 (ANN Problem). Let (X, dX) be a metric space, r Ø 0 and c Ø 1. The

(r, cr)-Approximate Near Neighbor Search problem asks to preprocess a set of n points

P µ X into a data structure which supports near-neighbor queries: given a query point

q œ X such that there is a data point p œ P with dX(q, p) Æ r, return a point ‚p œ P with

dX(q, ‚p) Æ cr.

We refer to c Ø 1 as the approximation and r Ø 0 as the distance threshold; both

parameters are known during the preprocessing. We frequently abbreviate the (r, cr)-

Approximate Near Neighbor Problem as c-ANN when a data structure exists for an arbitrary

distance threshold r. The computational task is to produce a data structure D which

optimizes the space the data structure occupies and the time it takes to answer a single query.

The data structures will be randomized: the preprocessing step and the query step may use

randomness, and a query must succeed with probability at least 2/3 over the randomness in

the preprocessing and query step.

The exact version of the problem (when c = 1) has been intensely studied since the

early work of Minsky and Papert (see [106] Section 12.7), and is considered one of the

fundamental problems in computational geometry [119]. When the metric space consists of

vectors in d with some norm1 specifying distances, the best known data structures have

runtime O(dn) (amounting to a scan of the dataset for each query), or have exponential

space dependence with respect to the dimension, for instance, nO(d). In fact, this “curse of

dimensionality” seems to be an intrinsic barrier [134, 2, 135].

The works of Indyk and Motwani [79], as well as Kushilevitz, Ostrovsky and Rabani [93]

obtained sublinear query time and polynomial space data structures for small approximations

over ¸d
1

and ¸d
2

. For example, [79] design a data structure for c-ANN over ¸d
1

with query

time O(dn1/c
log(n)) and space O(nd + n1+1/c

). These works ushered a new class of ANN

algorithms side-stepping the “curse of dimensionality” in high-dimensional normed spaces,

1A normed space is a metric space specified by a vector space V and a map, or norm, Î · Î : V æ Ø0,
which satisfies some additional norm axioms: 1) ÎxÎ Ø 0 and is 0 only if x = 0, 2) Î–xÎ = |–|ÎxÎ for all
– œ and x œ V , and 3) Îx + yÎ Æ ÎxÎ + ÎyÎ for all x, y œ V . The distance between two vectors x, y œ V
is given by Îx ≠ yÎ.

4

and pioneered the use of randomized space partitions for data structure design. These data

structures provide a prototypical example of the theorems we are after. Formally, we want

the following guarantee.

Definition 2 (c-ANN Data Structure). For a metric space (X, dX), there exists a data

structure for c-ANN over X if the following holds. For any n œ and r Ø 0, there

exists s = s(n) œ (denoting the space complexity), t = t(n) œ (denoting the time

complexity), t
cp

= t
cp

(n) œ (denoting the cell-probe complexity), and w = O(log(n))

(denoting the word size), as well as two (randomized) functions:

• A preprocessing function, Preprocess : Xn æ ({0, 1}w
)

s, taking as input n points

in X , and outputting a data structure D œ ({0, 1}w
)

s of s words of w bits each.

• A querying algorithm Query : X ◊ ({0, 1}w
)

s æ X , which given as input a query

q œ X , access to w-bit words from a data structure D, outputs a point p œ X . The

algorithm probes at most t
cp

words from D and computing Query(·, ·) takes at most t

time.2

For any dataset P = (p
1

, . . . , pn) œ Xn, and any q œ X where dX(pi, q) Æ r for some

i œ [n], we denote the random variable given by the output of the data structure on query q,

p = Query(q, Preprocess(P)) œ P.

The output point p should satisfy

Pr [dX(p, q) Æ cr] Ø 2

3

.

We frequently consider growing families of metric spaces, where log |X| is useful

measure of complexity: points in X are encoded using O(log |X|) bits, and we assume that

evaluating distances between two points a, b œ X takes polylog|X| time. Infinite metric

spaces are handled via an (natural) encoding of a finite subset of the metric space. For

example, points in d are encoded by d coordinates of w bits each, where w = O(log n).

2Notice that t
cp

Æ t, since the running time of the algorithm is at least the number of times it probes the
data structure.

5

The induced metric space is on {≠nO(1), . . . , nO(1)}d, and since the querying algorithm

reads w-bit words, computing distances tends to take O(d) or poly(d) time.3

Theorem 1 (Indyk and Motwani’s ¸
1

Data Structure [79]). For any c Ø 1, there exists a

data structure for c-ANN over ¸d
1

with space complexity O(nd + n1+1/c
) and time complexity

O(dn1/c
log(n)).

For the rest of this thesis, a data structure is efficient if the time and space complexity

are akin to Theorem 1, i.e., the query time is sublinear in the number of data points n

and polynomial in the underlying dimension d (or in log |X| in the case of a finite metric

(X, dX)), and the space is polynomial in the dimension and the number of data points.4

Theorem 1 remains highly efficient even for approximation factors c which are close to 1.

This is a major accomplishment of [79, 93], and we will encounter metric spaces for which

the best approximation c must be at least some fixed constant (larger than 1) or fixed factor

which grows with d, or n. For example, we will, at times, heavily rely on the following

theorem of Indyk [78], obtaining a O(log log d)-ANN data structure for ¸d
Œ.

Theorem 2 (Indyk’s ¸Œ Data Structure [78]). For any fl > 0, there exists a data structure for

(4Álog

1+fl log(4d)Ë + 1)-ANN over ¸d
Œ with space complexity O(dn1+fl

) and time complexity

O(d log n).

A rich theory for ANN algorithms for Hamming/Manhattan (¸
1

) and Euclidean (¸
2

)

metrics developed following the works of [79, 93]. The new data structures were based

on hashing — in particular, Locality-Sensitive Hashing (LSH) [6] and its data-dependent

counterparts [13, 10, 17]. However, the landscape quickly blurs when considering metric

spaces beyond ¸
1

, ¸
2

and ¸Œ, as well as some other notable examples. Each ANN data

structure tends to be tailored to the specific metric space, and there lacks a general recipe for

dealing with new metric spaces, either from the upper bounds or lower bounds perspective.

This state of affairs motivates the following broad question.

3We work in the Word RAM model, so we assume that bit-wise operations on words, such as arithmetic,
may be done in constant time.

4Another interesting parameter to optimizing is the time complexity of preprocessing. This quantity is not
discussed in this thesis, and for the most part, the preprocessing time for data structures presented is inefficient.

6

Problem 1. For a given approximation c > 1, which metric spaces admit efficient c-ANN

algorithms?

The exploration is after a “simple” characterization of metric spaces admitting efficient

c-ANN data structures. We want a theory which specifies, for each metric space and approx-

imation factor c > 1, how to build a data structure for that metric space, and a proof that the

approximation cannot be improved. Problem 1 is motivated from several complementary

directions. The first is the ubiquity of similarity search data structures in practice, and the

need for data structures in important metric spaces where ANN is poorly understood (e.g.

the Earth Mover’s Distance (EMD), the edit distance, generalized versions of the Hamming

distance5, etc). Oftentimes, the data structures used for ANN require modern mathematical

machinery and are highly non-intuitive; such circumstances necessitate a thorough and

rigorous approach to study the performance of these data structures. The second, perhaps

more theoretical motivation, aims to understand ANN at a fundamental level. The goal

is to identify the geometric properties governing the hardness of ANN, and to develop

algorithmic primitives for manipulating high dimensional data in sublinear time.

Our Contributions in Approximate Nearest Neighbor Search

In the first part of this thesis, we develop algorithmic and analytical tools for addressing

Problem 1. The first chapter gives a broad tour of results in approximate nearest neighbor

search, and subsequent chapters formalize the notions developed there. We explore the

“embeddings approach” as a powerful (but also limited) paradigm for data structure design.

For a given metric space (X, dX), the goal is to design an embedding f : X æ Y , where

(Y, dY) is another metric space, such that distances are roughly preserved, i.e., dX(x, y) ¥
dY (f(x), f(y)), and (Y, dY) is “algorithmically tractable,” in the sense that there exists an

efficient ANN data structure over Y . Then, a data structure for ANN over X proceeds by

first mapping all points according to f , and then utilizing the data structure over Y . The

tradeoff is between the extent distances in Y approximate distances in X under f and the

tractability of the space (Y, dY). We use this approach to design a data structure for any

5E.g., a metric of interest in applications is (Xd, flXd), where X is a metric itself, with the distance
between vectors x, y œ Xd defined as flXd(x, y) =

qd
i=1

dX(xi, yi).

7

symmetric normed space6 with poly(log log n) approximation [12] (Chapter 1, Section 1.1).

Theorem 3 (ANN for Symmetric Norms). Let X = (

d, Î · ÎX) be any symmetric normed

space. There exists a data structure for poly(log log n)-ANN over X using space complexity

poly(d) · n1+o(1) and time complexity poly(d) · no(1).

The conceptual significance of Theorem 3 is its generality and modularity. The resulting

data structure was the first to improve on a O(

Ô
d)-approximation7 for a large class of

d-dimensional normed spaces. Consequently, Theorem 3 (in [12]) initiated the research

direction aimed at answering Problem 1 for high dimensional normed spaces.

In Chapter 1, Section 1.2, we briefly discuss the list-of-points model, which is a use-

ful abstraction for hashing-based data structures [18], and prove a lower bound for the

complexity of data structures over the shortest path metric on a constant degree expander.

The implication of this lower bound, namely, that ANN over the shortest path metric on

expanders is computationally hard, will be clear shortly. Then, we introduce the cutting

modulus of a metric space, the metric invariant which will play a prominent role in this

thesis. A more thorough discussion of the cutting modulus appears in Chapter 1, Section 1.3;

however, we present an informal definition here. The subsequent paragraphs and Figure 0.1

give a useful consequence.

Definition 3 (The Cutting Modulus – Simplified). Let (X, dX) be a finite metric space and

Á œ (0, 1). Then, X has cutting modulus �(X, Á) Ø 0, if for any r Ø 0 and any d-regular8

graph G = (V, E) with vertices V µ X and edges supported on points within distance r,9

at least one of the following two scenarios hold.

6Symmetric normed spaces are specified by norms Î · ÎX :

d æ Ø0

, which in addition to satisfying
norm axions, are invariant to permutations of coordinates and sign flips, i.e., in other words, for any x œ d,
and any bijection fi : [d] æ [d], letting xfi œ d be the vector with (xfi)i = |xfi(i)|, we have ÎxÎX = ÎxfiÎX .

7A data structure achieving approximation O(

Ô
d) for any normed space over d follows from an

application of John’s theorem to embed into ¸d
2

[82, 40] , and then applying the data structure of [79].
8We note that this is a simplification of the definition. In particular, we will not assume G is regular, and

we will also consider the weighted graph version. We refer the reader to Chapter 1 Section 1.4 for the formal
definition.

9In other words, (a, b) œ E only if dX(a, b) Æ r

8

1. Cluster scenario: Half of the vertices of the graph G are clustered within a set of

diameter at most �(X, Á) · r. In other words, there exists B µ X with diamX(B) Æ
�(X, Á) · r with |B fl V | Ø |V |/2.

2. Cut scenario: There exists a subset S µ V of conductance at most Á,

�G(S) =

|E(S, V \ S)|
d · min {|S|, |V \ S|} Æ Á. (1)

It is useful to think of G = (V, E) as encoding near-neighbor relationships among all

points to be considered by an ANN data structure; specifically, the dataset P will be a subset

of V µ X , and the query q œ V will be connected by an edge in E to a near-neighbor

in P . Intuitively, Definition 3 aids in building a data structure by recursively partitioning

the metric space X . For example, consider the “cluster scenario” first, where there exists

a set B µ X of diameter diamX(B) Æ r · �(X, Á) with |B fl V | Ø |V |/2, so at least

half of vertices in G lie in a cluster of diameter r · �(X, Á). It is conceivable that a data

structure would choose one vertex in G to represent all vertices within the cluster (up to

approximation r · �(X, Á)), since such a representative would summarize at least half of the

graph G. On the other hand, if no such set B exists, we are in the “cut scenario”, and there

exists a low-conductance cut S µ V of G. Suppose, furthermore, that S µ V is a balanced

separator.10 The data structure may then partition G according to S and recurse on both

sides; if the query-and-neighbor pair (q, p) were sampled by a uniformly random edge in E,

the probability that the data structure errs from partitioning G according to S is small, i.e.,

bounded by O(Á).

Another useful example to consider Definition 3 is the shortest path metric on an

expander graph. Specifically, we let G = (V, E) be a 3-regular expander graph, and we

consider the metric space (V, dG) where dG(x, y) is the length of the shortest path between

vertex x and vertex y in G. Since G is an expander graph, there are no low-conductance

cuts; formally, every set S µ V satisfies �G(S) = �(1). Furthermore, by virtue of G being

3-regular, the number of vertices within any set of diameter D is at most 3

D; this means that

10We have that �G(S) Æ Á and the denominator of the left-hand side of (1) is at least d|V |/3, i.e.,
|V |/3 Æ |S| Æ 2|V |/3.

9

no set of diameter less than log

3

(|V |/2) contains half of the vertices in G. We have thus

shown that for a small constant Á > 0, �((V, dG), Á) Ø �(log(|V |)).11

Figure 0.1: The “cluster-or-cut” scenario for metric spaces displayed. See Definition 3 and
the subsequent paragraphs. On the left-hand side, the “cluster scenario” is displayed, where
the vertices of a graph G = (V, E) satisfy that at least half lie in a cluster of radius less than
r · �(X, Á). On the other hand, the right-hand side shows a graph G = (V, E) without any
clusters, and as a result, the cutting modulus implies that a low-conductance cut of the graph
exists.

As shortest path metrics on expander graphs have high cutting modulus, upper bounds

on the cutting modulus of a metric space (X, dX) measure the “non-expander” nature of

(X, dX). Our use for the cutting modulus is the following theorem, which gives a (cell-

probe) data structure for any metric space (X, dX) whose approximation is given by the

cutting modulus. Conceptually, the theorem shows that there exists a data structure for

ANN over (X, dX) whenever the metric space (X, dX) is unlike a shortest path metric on

an expander graph. We refer to Chapter 1 Section 1.2 and Section 1.4 for a more elaborate

discussion on this point.

Theorem 4 (ANN Cell-Probe Data Structure from Cutting Modulus). For any metric space

(X, dX) and any Á œ (0, 1), there exists a data structure for O(�(X, Á))-ANN over X with

space complexity poly(log |X|) · n1+O(Á) and cell-probe complexity poly(log |X|) · nO(Á).

The introduction of the cutting modulus allows for leveraging a growing body of work

on metric spectral gaps for data structure design [105, 113, 111]. Metric spectral gaps

were originally developed to prove nonembeddability theorems, and here, we use these

techniques for upper bounding the cutting modulus, and in turn, designing data structures.

11This bound is maximal, since the diameter of a constant degree expander is O(log |V |).

10

For example, if X = (

d, Î · ÎX) is a normed space, Theorem 1 in [111] and Cheeger’s

inequality [48, 4] will imply an upper bound of �(X, Á) . log d/Á2, and hence, Theorem 4

gives a cell-probe data structure for O(log d)-ANN over any d-dimensional normed space.

In addition, the cutting modulus sheds new light on sufficient conditions for (data-dependent)

locality-sensitive hashing, as well as new randomized space partitions for classical normed

spaces (see Chapter 1, Section 1.4). Given the applicability of locality-sensitive hashing to

other algorithmic problems (beyond ANN), we suspect the cutting modulus could play a

central role there.

Beyond the black-box application of Theorem 4, this approach yields time-efficient

algorithms (as opposed to merely cell-probe efficiency) by augmenting Definition 3. In

particular, the goal is to bound the computational complexity of low conductance cuts S

found in the cut scenario.12

The theorems we present next may be considered the “crown jewels” of our exploration

into Problem 1, as these constitute significant quantitative improvements to prior known

ANN data structures. (See Chapter 1, Section 1.4 and Section 1.5 for a high level discussion

on how this theorem is obtained.)

Theorem 5 (ANN Data Structure for Any Norm). There exists a data structure for do(1)-

ANN over X , where X = (

d, Î · ÎX) is any d-dimensional normed space with space

complexity poly(d) · n1+o(1) and time complexity poly(d) · no(1).

Prior to this work, the best approximation factor achievable in such generality was a

O(

Ô
d)-ANN data structure, which readily follows from the “embeddings approach:” the

embedding of any d-dimensional normed space over d into ¸d
2

is given by John’s theorem

proceeded by known data structures for ¸d
2

(see Chapter 1, Section 1.1 for a more thorough

discussion). Furthermore, a study of the cutting modulus of specific metric spaces gives new

ANN data structures for classic normed spaces improving on the state-of-the-art. For the

classic ¸d
p normed spaces, previous data structures achieved approximation O(2

p
) [114, 27]

12In particular, in the cut scenario of Definition 3, the set S should be accompanied by an algorithm which
given a point x œ V , determines whether x œ S or x /œ S in time polynomial in the representation of x (which
is logarithmic in the size of the graph). See Chapter 1, Section 1.4 for more discussion.

11

or O(log log d) [5]. For the Schatten-p normed spaces, no (non-trivial) data structures were

known.13

Theorem 6 (ANN Data Structure for ¸p Norms). For any Á œ (0, 1) and p œ [1, Œ), there

exists a data structure for O(p/Á)-ANN over ¸d
p with space complexity poly(d) · n1+Á and

time complexity poly(d) · nÁ.

Theorem 7 (ANN Data Structure for Schatten-p Norms). For any Á œ (0, 1) and p œ [1, Œ),

there exists a data structure for O(p/Á)-ANN over Sd
p

14with space complexity poly(d) ·n1+Á

and time complexity poly(d) · nÁ.

Property Testing of Boolean Functions

The second part of this thesis studies property testing of Boolean functions. The goal is

to study highly efficient randomized algorithms which are given black-box query access

to a Boolean function f : {≠1, 1}n æ {≠1, 1},15 and approximately decide whether f has

a particular property P . In general, the property P is a collection of Boolean functions,

namely, those which have the property. The approximation refers to the fact that algorithms

may mistakenly decide f has property P when f is very “close” to having the property.

Formally, we will consider the following definition. We refer the reader to Chapter 1 of the

textbook [66] for thorough justification of the definition below.

Definition 4 (Property Testing for P [68]). Fix n œ , Á œ (0, 1), and a set P µ {f :

{≠1, 1}n æ {≠1, 1}}. The problem of testing P asks to design a randomized algorithm

which receives black-box query access to an unknown Boolean function f : {≠1, 1}n æ
{≠1, 1}, and outputs accept or reject . If f œ P , the algorithm outputs accept

13The trivial data structure for Schatten-p norms interprets the matrix as a vector in ¸
2

, and obtains
approximation d|1/2≠1/p|.

14For p œ [1, Œ), the Schatten-p normed space Sd
p = (

d◊d, Î·ÎSp) is defined over the space of d◊d matri-
ces of real numbers, where for a matrix x œ d◊d, ÎxÎSp = (

qd
i=1

‡i(x)

p
)

1/p, where ‡
1

(x), . . . , ‡d(x) œ
are the singular values of x. We note S

1

is also known as the “nuclear norm” or “trace norm” and SŒ as the
“operator norm.”

15In particular, algorithms interact with an oracle for the function f : {≠1, 1}n æ {≠1, 1}. A query
specifies an input x œ {≠1, 1}n, and the oracle outputs the value f(x).

12

with probability at least 2/3, and if mingœP Prx≥{≠1,1}n
[f(x) ”= g(x)] Ø Á, the algorithm

outputs reject with probability at least 2/3.

The set P is called the property and Á œ (0, 1) is called the proximity parameter. We

say f is Á-far from P when mingœP Prx≥{≠1,1}n
[f(x) ”= g(x)] Ø Á. Algorithms testing

P (primarily) focus on minimizing the query complexity, which perhaps surprisingly, is

oftentimes a universal constant (depending only on Á) or small function of n and Á.16

From a purely structural perspective, efficient algorithms testing P give query-efficient and

randomized characterizations of P which are robust to small changes to the function (in

particular, this is the view spearheaded in [125]). The contrapositive of Definition 4 implies

that if an algorithm testing P outputs accept on an input f with probability at least 2/3,

then f must be “close” to P; i.e., there exists g œ P with Prx≥{≠1,1}n
[f(x) = g(x)] Ø

1 ≠ Á.17

From the computational perspective, Definition 4 and its various manifestations offers

a model for approximate decision-making in sublinear time. Our aim, in this thesis, is to

develop some of the algorithmic tools needed for these analyzes. Property testing provides a

space for the development of these techniques, as well as for a systematic evaluation of their

relative power. We give a short example of an important question in the analysis of testing

algorithms, commonly referred to as the power of adaptivity, which plays a prominent role

in this thesis and property testing research more broadly (see [69, 71, 122, 42] for a short

list).

One common stipulation is that testing algorithms be non-adaptive: these algorithms

query the unknown function f at inputs which are independent of responses to previous

queries.18 They are more desirable to some extent; non-adaptive algorithms are maximally

16The trivial algorithm (aside from querying the entire input) queries the unknown function f at
O(log |P|/Á) uniformly random inputs. The algorithm scans through all g œ P and determines whether f
agrees on all randomly chosen inputs with some function in P . If it does, the algorithm outputs accept , to
indicate its belief that f œ P; otherwise, it outputs reject . Notice that since the total number of functions
f : {≠1, 1}n æ {≠1, 1} is 2

2

n

, log |P| could be as large as 2

n.
17The probability that two functions disagree on a uniformly randomly input defines a metric over the space

of functions f : {≠1, 1}n æ {≠1, 1}. We write dist(f, g) = Pr
x≥{≠1,1}n

[f(x) ”= g(x)] and the distance to
a property P as mingœP dist(f, g).

18Without loss of generality, we may assume a q-query non-adaptive algorithm generates a set of queries
(x

1

, . . . , xq) œ ({≠1, 1}n
)

q drawn from some distribution D, and outputs accept or reject according to

13

parallelizable, simpler to implement, and simpler to analyze. Yet, certain scenarios require

“adaptivity,” i.e., dependence on responses to previous queries, to achieve query-optimal

algorithms.

For example, consider the task of finding a bi-chromatic edge of a Boolean function

f : {≠1, 1}n æ {≠1, 1}.19 In all testing problems considered here, a single bi-chromatic

edge of f will convey important information about f , and finding (special) bi-chromatic

edges of f will often be the core of the analysis.

One well-known technique, which plays a crucial role in algorithm design more generally,

is random sampling. Let the total influence of f , denoted If , be the number of bi-chromatic

edges of f divided by 2

n. Since the total number of edges in {≠1, 1}n is n2

n≠1, an algorithm

which samples edges of {≠1, 1}n uniformly at random and queries both endpoints will

find a bi-chromatic edge of f after roughly O(n/If) attempts. Note that this sampling

algorithm is non-adaptive, since the algorithm may (randomly) choose the O(n/If) queries

in advance.

On the other hand, there is another algorithmic technique which may dramatically

improve on the “non-adaptive edge sampling” algorithm. An (improved) algorithm may

proceed by sampling two inputs x, y ≥ {≠1, 1}n uniformly at random, and executing the

following sub-routine, which we informally term “binary search” (see also, Figure 0.2).

the response vector (f(x
1

), . . . , f(xq)) œ {≠1, 1}q.
19An edge of the hypercube (x, y) œ {≠1, 1}n ◊ {≠1, 1}n is a pair of points which differ on a single

coordinate. In other words, there exists exactly one index i œ [n] such that xi ”= yi and xj = yj for
all j œ [n] \ {i}. The edge (x, y) is bi-chromatic under the Boolean function f : {≠1, 1}n æ {≠1, 1} if
f(x) ”= f(y). For x œ {≠1, 1}n and i œ [n], the vector x(i) œ {≠1, 1}n is given by negating the i-th bit of x.
Hence, we (x, x(i)

) is an edge, and we will say the edge (x, x(i)
) is in direction i.

14

Informal Description of Subroutine BinarySearch (f, x, y).

Input: Query access to f : {≠1, 1}n æ {≠1, 1}, and two points x, y œ {≠1, 1}n.
Output: A bi-chromatic edge of f along a direction in {i œ [n] : xi ”= yi}, or “fail.”

1. Query f(x) and f(y) and return “fail” if f(x) = f(y). Otherwise, f(x) ”= f(y),
and we proceed to the next step.

2. If (x, y) is an edge of {≠1, 1}n, output (x, y).
3. Otherwise, let x = a

0

, . . . , a¸ = y be a (uniformly random) shortest path from x
to y along edges in {≠1, 1}n. Let z = aÂ¸/2Ê and query f(z).

4. If f(z) = f(x), output BinarySearch(f, z, y). Otherwise, output
BinarySearch(f, x, z).

The binary search sub-routine is adaptive, since the value of f(z) determines whether

BinarySearch(f, x, z) or BinarySearch(f, y, z) is executed. If, upon sampling

x, y ≥ {≠1, 1}n, the algorithm finds f(x) ”= f(y), then BinarySearch(f, x, y) will

output a bi-chromatic edge after O(log n) additional queries. In particular, the query

complexity of the adaptive algorithm is O(1/ Var(f) + log n),20 which is never larger than

O(n/If) and may be significantly smaller.

Unsurprisingly, binary search sub-routines are extremely useful for property testing

(for example, [33, 89, 53, 28, 99, 45, 50]). However, basic questions about “binary search”

beyond (trivial) observations become extremely hard to answer. The difficulty seems to

stem from the richness in structure of Boolean functions, and the adaptive nature of binary

search. In this thesis, we study property testing algorithms for three well-studied properties:

k-juntas, monotonicity, and unateness. We explore the power of adaptivity in the context

of these three properties, and in doing so, prove new upper and lower bounds on the query

complexity of testing algorithms.

20We denote the variance of the Boolean function, as Var(f) = E
x,y≥{≠1,1}n

[(f(x) ≠ f(y))

2

], and
notice that Var(f) is proportional (since the functions are Boolean) to the probability that two random inputs
are unequal.

15

z

y

x

Figure 0.2: Pictorial representation of one step of the binary search strategy for finding
bi-chromatic edges. The hypercube {≠1, 1}n is represented as a diamond, corresponding
to the shape of the Hasse diagram of the partial order on {≠1, 1}n; the bottom-most point
is the all ≠1’s point, and the top point is the all 1’s point. Points x and y are given with
f(x) = 0 and f(y) = 1 and a particular path represents flipping variables where x and y
differ one at a time. Finally z lies in the middle of a shortest path between x and y; in this
case, f(z) = 1, so BinarySearch(f, x, y) recurses down BinarySearch(f, x, z).

k-Juntas

Definition 5 (k-Juntas). For n, k œ , a Boolean function f : {≠1, 1}n æ {≠1, 1} is a

k-junta if there exists k indices i
1

, . . . , ik œ [n] and a function g : {≠1, 1}k æ {≠1, 1}
where f(x

1

, . . . , xn) = g(xi
1

, . . . , xik
) for every x œ {≠1, 1}n.

The study of computational aspects of k-juntas is especially motivated by the feature

selection problem in machine learning (see e.g. [36, 37, 76, 73, 98, 46]). The n bits of

an input x œ {≠1, 1}n specify the presence or absence of certain features.21 A k-junta

f : {≠1, 1}n æ {≠1, 1} specifies a concept where, when n ∫ k, contains a large number

(in particular, at least n ≠ k) of irrelevant features/variables [36, 37, 108, 132]. In practice,

filtering out irrelevant features can increase accuracy of certain learned models, and assist

in interpretability. Definition 5 specifies a notion of relevance and irrelevance for Boolean

functions on {≠1, 1}n: a variable i œ [n] is relevant if there exists a bi-chromatic edge

(x, x(i)
).

The main result of Fischer, Kindler, Ron, Safra, and Samorodnitsky [64], who first

21For example, we interpret x œ {≠1, 1}n with xi = 1 as x containing attribute i and xi = ≠1 as x
lacking attribute i.

16

studied k-juntas from the property testing perspective, is a ˜O(k2

)/Á-query testing algorithm,

showing that the complexity of testing is independent of the size of the input f . Since [64],

subsequent works sought the optimal dependence on k and Á. Chockler and Gutfreund [57]

showed that any tester for k-juntas requires �(k) queries (for a constant Á), and that result

was (recently) improved to �(k log k) by Saglam [126]. We highlight two works of Blais [32,

33] which gave new algorithms for testing k-juntas in the adaptive and non-adaptive settings.

Theorem 8 (Blais’s Adaptive Junta Tester [33]). There is an O(k log k + k/Á)-query, adap-

tive algorithm with the following property: Given Á > 0 and query access to an unknown

Boolean function f : {≠1, 1}n æ {≠1, 1}, it always accepts when f is a k-junta and rejects

with probability at least 2/3 when f is Á-far from a k-junta.

Theorem 9 (Blais’s Non-adaptive Junta Tester [32]). There is an ˜O(k3/2

)/Á-query, non-

adaptive algorithm with the following property: Given Á > 0 and query access to an

unknown Boolean function f : {≠1, 1}n æ {≠1, 1}, it accepts with probability at least 2/3

when f is a k-junta and rejects with probability at least 2/3 when f is Á-far from k-junta.

We note that Theorem 8 is optimal.22 The algorithm behind Theorem 8 is intuitive;

it proceeds by randomly partitioning the variables [n] into poly(k/Á) parts, and finding

relevant parts with a binary search strategy. The novelty of [33] lies in the analysis. The

existence of a non-adaptive subroutine which would close the query complexity gap between

Theorem 8 and Theorem 9 remained open for some time.

Our Contributions to Junta Testing We show a ˜

�(k3/2/Á) lower bound for non-adaptive

algorithms, matching the algorithm of [32] and settling the question up to poly-logarithmic

factors [56].

Theorem 10 (Non-adaptive Lower Bound for Testing k-Juntas). Let – œ (0.5, 1) be a fixed

constant, and let k = k(n) : æ and Á = Á(n) : æ RØ0

be any functions where

k(n) Æ –n and 2

≠n Æ Á(n) Æ 1/6 for all sufficiently large n. Then, any non-adaptive

22While the title to Blais’s paper, published in 2009, was “Testing juntas nearly optimally”, the recent
improvement of the lower bound by Saglam [126] shows that it is optimal up to constant factors.

17

algorithm testing whether a Boolean function f : {≠1, 1}n æ {≠1, 1} is a k-junta or Á-far

from a k-junta makes ˜

�(k3/2/Á) queries.

The technique for proving Theorem 10 was suprisingly general, and in particular, also

used for proving the query-complexity lower bounds for monotonicity and unateness testing

that we will see in the next sections.23 The main idea is to design two distributions over

Boolean functions (one supported on functions with the property, and one supported on

functions far from the property) by sampling a random partition of {≠1, 1}n and placing

a “hardness gadget” in each part. The proof of the lower bound then proceeds in two

steps. First, we show that the random partition imposes serious restrictions on testing

algorithms. For example, we will show that queries falling within the same part must be

close in Hamming distance.24 Then, we prove that algorithms with these restrictions cannot

determine whether or not the function came from one distribution or the other, i.e., whether

the function has the property or is Á-far from it. The challenge is designing the random

partition and hardness gadgets giving rise to two distributions; at the same time, we want

the random partition to place the most serious restrictions on algorithms, and the hardness

gadget to require many queries before it reveals useful information to the algorithm.

Monotonicity

Definition 6 (Monotonicity). For n œ , a Boolean function f : {≠1, 1}n æ {≠1, 1} is

monotone if every pair x, y œ {≠1, 1}n where x ∞ y satisfies f(x) Æ f(y).25

One may interpret a Boolean function f : {≠1, 1}n æ {≠1, 1} as a subset Af =

{x œ {≠1, 1}n
: f(x) = 1} µ {≠1, 1}n. A monotone Boolean function is one where

for any x œ Af , any shortest path between the all 1’s point and x is contained in Af

(see the left-hand side of Figure 0.3). Studying monotone Boolean functions from the

property testing perspective was first considered by Goldreich, Goldwasser, Lehman, Ron

23The same technique for proving lower bounds is also implicit in [28, 96, 117] as well.
24For non-adaptive algorithms, the argument may by considering two queries x

1

, x
2

œ {≠1, 1}n which
are far in Hamming distance and showing that the random partition places x

1

and x
2

in different parts with
high probability.

25The symbol ∞ specifies the natural poset on {≠1, 1}n, x ∞ y if and only if xi Æ yi for all i œ [n].

18

and Samorodnitsky [70], and since has been intensely studied (see Chapter 4 of [66] for an

overview and references therein).

Monotonicity testing provides the context for studying structural properties of the partial

order {≠1, 1}n, and this perspective has uncovered a surprising amount of combinatorial

structure. For example, the analysis of the “edge tester” [70, 61], which led to the first

O(n/Á)-query algorithm, is the perfect example of a directed isoperimetric result.26 For-

mally, it states that the distance from f to monotonicity, scaled by 2

n, is a lower bound

for the number of hypercube edges (x, y) where x ∞ y and f(x) > f(y).27 We will refer

to such edges as decreasing edges, or violating edges, as these form a certificate that the

function f is non-monotone. Chakrabarty and Seshadhri [43] gave the first improvement

to the “edge tester,” cementing the analogy to (undirected) isoperimetric inequalities with

an algorithm of query complexity ˜O(n7/8/Á3/2

); the algorithm was improved to ˜O(n5/6/Á4

)

by Chen, Servedio and Tan [49], and most recently to ˜O(

Ô
n/Á2

) by Khot, Minzer and

Safra [88]. This latest development of [88] gave a directed analogue of an inequality of

Talagrand [131], and proved the following elegant theorem, giving a “path tester”, which

readily implies the ˜O(

Ô
n/Á2

)-query upper bound.

Theorem 11 (Khot, Minzer, and Safra’s Analysis of the Path Tester [88]). For n œ , let D
be the distribution, supported on pairs of points (x, y) in {≠1, 1}n given by the following

procedure:

1. Sample x ≥ {≠1, 1}n uniformly at random, and sample t ≥ {0, . . . , Álog

2

nË/2}
uniformly at random.

2. Sample y by picking a random subset S µ [n] of 2

t variables, and let

yi =

Y_]_[1 i œ S

xi i /œ S
.

26As far as we can tell, the connection is made in hindsight and attributed to the work of Chakrabarty and
Seshadhri [43] in [88].

27The first algorithm proceeds by sampling O(n/Á) uniformly random edges of the hypercube and querying
the end points. Since the total number of edges is n2

n, and Á2

n are decreasing when f is Á-far from monotone,
O(n/Á) queries suffice for an algorithm which succeeds with high constant probability. Furthermore, this
algorithm is non-adaptive and makes one-sided error.

19

Then, if f is Á-far from monotone,

Pr
(x,y)≥D

[f(x) > f(y)] Ø ˜

�(Á2/
Ô

n).

The corresponding “path tester” is non-adaptive and always outputs accept when f is

monotone. With these restrictions, Theorem 11 matches a query-complexity lower bound

of �(

Ô
n) (for constant Á) [63]. The techniques developed in two papers [49, 54] showed

�(n1/2≠”
)-queries are needed for non-adaptive algorithms, for any constant ” > 0. Whether

adaptive algorithms may improve on the query complexity of the path tester was (and still is)

an enticing open question. An approach is to appeal to the (extremely effective and efficient)

binary search procedure. Analytically, we want to answer the following question: when f

is Á-far from monotone, is there a lower bound on the probability that (some variation of)

binary search outputs a violating edge? Until the work of Belovs and Blais [34] not even a

super-logarithmic query-complexity lower bound on adaptive algorithms was known.

Theorem 12 (Belov and Blais’s Adaptive Monotonicity Testing Lower Bound). Let Á > 0

be a fixed constant. Any algorithm which tests whether an unknown Boolean function

f : {≠1, 1}n æ {≠1, 1} is monotone or Á-far from monotone makes �(n1/4

) queries.

Our Contributions to Monotonicity Testing Here, we improve the adaptive lower bound

to ˜

�(n1/3

) and the non-adaptive lower bound to ˜

�(

Ô
n) [51].

Theorem 13 (Adaptive Monotonicity Testing Lower Bound). There exists a fixed con-

stant Á > 0 such that any algorithm which tests whether an unknown Boolean function

f : {≠1, 1}n æ {≠1, 1} is monotone or Á-far from monotone makes ˜

�(n1/3

) queries.

Theorem 14 (Non-adaptive Monotonicity Testing Lower Bound). There exists a fixed

constant Á > 0 such that any non-adaptive algorithm which tests whether an unknown

Boolean function f : {≠1, 1}n æ {≠1, 1} is monotone or Á-far from monotone makes
˜

�(

Ô
n) queries.

20

Figure 0.3: Pictorial representation of a monotone Boolean function (on the left-hand
side), and a unate Boolean function (on the right-hand side). The hypercube {≠1, 1}n is
represented as a diamond, corresponding to the shape of the Hasse diagram of the partial
order on {≠1, 1}n; the bottom-most point is the all ≠1’s point, and the top point is the all
1’s point. The functions have the regions Af = {x œ {≠1, 1}n

: f(x) = 1} as shaded gray.
When f : {≠1, 1}n æ {≠1, 1} is monotone, any shortest path between any point in Af and
the all 1’s point along edges of {≠1, 1}n is fully contained in Af . When f is unate, there
exists a point r œ {≠1, 1}n such that f(x · r) is monotone, i.e., any shortest path between
any point in Af and r is fully contained in Af .

Unateness

The problem of testing unateness, first studied in [70], has also attracted significant attention

[89, 44, 24, 23]. A Boolean function f is unate if every variable is either monotone non-

decreasing, or monotone non-increasing. Equivalently, a Boolean function f : {≠1, 1}n æ
{≠1, 1}, specifying the set Af = {x œ {≠1, 1}n

: f(x) = 1} µ {≠1, 1}n,28 is unate iff

there exists a point r œ Af such that every shortest path between r and a point x œ Af is

contained in Af (see the right-hand side of Figure 0.3); formally, we have the following

definition.

Definition 7 (Unateness). For n œ , a Boolean function f : {≠1, 1}n æ {≠1, 1} is unate

if there exists r œ {≠1, 1}n so that g : {≠1, 1}n æ {≠1, 1} given by g(x) = f(x · r) is

monotone.

Similarly to the case of monotonicity testing, there is a non-adaptive “edge tester” with

28We are implicitly assuming here that Af is non-empty.

21

query complexity ˜O(n/Á) [89, 43, 24, 23].29 These non-adaptive algorithms turned out to

be optimal [51, 22] for non-adaptive algorithms which always accept unate functions. Using

the techniques developed for proving Theorem 11, we gave an ˜O(n3/4/Á2

)-query adaptive

algorithm in [52].

Our Contributions to Unateness Testing Here, we improve on the ˜O(n3/4/Á2

)-query

tester. The main result is an (nearly optimal) algorithm which tests unateness with query

complexity ˜O(n2/3/Á2

). The main conceptual contribution is an adaptive preprocessing stage

which efficiently identifies a subset of variables containing many violations to unateness.

The preprocessing stage is based on, unsurprisingly, a novel analysis of a binary search

procedure. Whether an analogous preprocessing stage, making o(

Ô
n)-queries, exists for

monotonicity testing is a tantalizing open problem. Such a procedure has the potential to

close the gap between the ˜O(

Ô
n)-query upper bound of [88] and the ˜

�(n1/3

)-query lower

bound of Theorem 13 [51].

Theorem 15 (Adaptive Unateness Tester). There is an ˜O(n2/3/Á2

)-query, adaptive algo-

rithm with the following property: Given Á > 0 and query access to an unknown Boolean

function f : {≠1, 1}n æ {≠1, 1}, it always accepts when f is unate, and rejects with

probability at least 2/3 when f is Á-far from unate.

Theorem 15 has optimal dependence on n up to poly-logarithmic factors, as we show a

matching lower bound.

Theorem 16 (Adaptive Unateness Testing Lower Bound). There exists a fixed constant Á > 0

such that any algorithm which tests whether an unknown Boolean function f : {≠1, 1}n æ
{≠1, 1} is unate or Á-far from unate makes ˜

�(n2/3

) queries.

29We note that the unateness edge tester from [23] is more involved. It utilizes Levin’s work investment
strategy to carefully choose how many random edges to sample in each direction. A simple edge tester, which
only samples uniformly random edges, is analyzed in [70] and makes O(n3/2/Á) queries.

22

Part I

Approximate Nearest Neighbor Search

in General Metric Spaces

23

Chapter 1

Overview of the Results

The results in approximate nearest neighbor search presented in this thesis [12, 14, 16] build

on each other, and hence, we use this chapter to give a broad overview of these results.

While some technical arguments are presented, the purpose here is not to present formal

proofs. Later chapters elaborate on the arguments and formal proofs are given.

1.1 The Embedding’s Approach and ANN for Symmetric

Norms

The first direction toward Problem 1 is understanding the power and limitations of metric

embeddings. These essentially function as reductions between metric spaces. To design a

data structure for a desired metric space, one identifies a target metric space which is both

algorithmically tractable and sufficiently expressive; i.e., the target space admits an efficient

data structure (for instance ¸d
1

as in Theorem 1), and there is an embedding from the desired

metric space into the target space which approximately preserves distances. The resulting

data structure proceeds by first applying the embedding, and then using the data structure

in the target metric space. The following definition, formally stating what a (bi-Lipschitz)

embedding is, as well as its use in the subsequent theorem encapsulates the “embeddings

approach.”

Definition 8 (Bi-Lipschitz Metric Embedding). Let (X, dX) and (Y, dY) be two metric

spaces. For c Ø 1, a function f : X æ Y is an embedding of X into Y with distortion c if

there exists a threshold · > 0 such that for every a, b œ X ,

dX(a, b) Æ · · dY (f(a), f(b)) Æ c · dX(a, b).

25

Theorem 17 (The Embeddings Approach). Let (X, dX) and (Y, dY) be two metric spaces.

Suppose that:

• f : X æ Y is an embedding of X into Y of distortion c
0

, and there exists an algorithm

ALGf which given as input a point a œ X , outputs f(a) in time T (f).

• For every n œ and c > 1, there exists a data structure for c-ANN over Y with query

time q(Y, n, c) and space s(Y, n, c).

Then, there for every n œ there exists a data structure for (c
0

c)-ANN over X with query

time T (f) + q(Y, n, c) and space s(Y, n, c).

This very elegant and versatile approach already gives a wealth of ANN data structures

over various metric spaces. First and foremost, it implies efficient c(1 + Á)-ANN data

structures for ¸d
p for p œ [1, 2] [83].1 Common target metric spaces for this approach (which

are substituted into (Y, dY) in Theorem 17) are ¸d
1

, ¸d
2

[79, 93], and ¸d
Œ [78]. Successes

include a poly(log log d)-approximation for the Ulam metric [8], a O(log d)-approximation

for EMD [47, 81], a 2

ÂO(

Ô
log d)-approximation for edit distance [116], and a poly(log d)-

approximation for Frechét distance [77]. Generally, combining Theorem 17 with John’s

theorem (stated next) gives an ANN data structure for any d-dimensional normed space

with approximation O(

Ô
d).

Theorem 18 (John’s Theorem [82, 25]). Let (Rd, Î · ÎX) be any d-dimensional normed

space. There exists a linear map2 f : Rd æ Rd such that for every a œ Rd,

ÎaÎX Æ Îf(a)Î
2

Æ
Ô

d · ÎaÎX .

One may further weaken the notion of embeddings to allow for randomization. The idea

is to relax the condition that all pairwise distances are approximately preserved, and instead

require that the probability of the near neighbor be preserved is high enough for the reduction

1 The reduction to Theorem 1 proceeds by defining a distribution over linear maps Rd æ RO(d log(1/Á)/Á2
)

such that a random map from this distribution is an embedding of ¸p to ¸
1

with distortion (1 + Á) with high
probability. For ¸

2

æ ¸
1

, matrix multiplication by a scaled Gaussian matrix gives the desired embedding.
2Notice that since the function is linear and dX(a, b) = Îa ≠ bÎX in a normed space, an upper and lower

bound on the norm of each vector implies Definition 8. Furthermore, computing f is done via a matrix-vector
multiplication.

26

to ANN over the target space to succeed. In fact, the following definition implies the nearest

neighbor preserving embeddings of [80] and will give O(log log d)-approximation for all

¸p-norms [5].

Definition 9. Let (X, dX) and (Y, dY) be two metric spaces. For r Ø 0, c Ø 1, and –, — > 0,

a distribution D supported on functions f : X æ Y (–, —)-preserves approximate near

neighbors3, if there exists thresholds 0 < ·
1

< ·
2

such that for every a, b œ X:

• If dX(a, b) Æ r, then Prf≥D[dY (f(a), f(b)) Æ ·
1

] Ø –.

• If dX(a, b) Ø cr, then Prf≥D[dY (f(a), f(b)) Æ ·
2

] Æ —.

Given a data structure for (·
2

/·
1

)-ANN over (Y, dY), a c-ANN data structure for (X, dX)

proceeds by, independently for O(1/(– ≠ —n)) iterations, sampling f ≥ D and applying

the (·
2

/·
1

)-ANN data structure for (Y, dY) to the data set f(P) = (f(p
1

), . . . , f(pn)). For

a query q œ X with near-neighbor pi œ P , following a union bound, at least one of the

O(1/(– ≠ —n)) iterations of f ≥ D will satisfy dY (f(q), f(pi)) Æ ·
1

and every pj œ P

where dX(q, pj) Ø cr will satisfy dY (f(q), f(pj)) Ø ·
2

with high constant probability.

Once this happens, the corresponding (·
2

/·
1

)-ANN data structure over (Y, dY) will find the

near neighbor with high constant probability.

I will now sketch how to use randomized embeddings of this form, combined with

known results from the literature (specifically, [78, 77, 5]), to obtain a poly(log log n)-ANN

data structure for any symmetric norm. A formal description of the embedding, as well as

the algorithm, is presented in Chapter 2.

Definition 10 (Symmetric Norm). A normed space X = (Rd, Î · ÎX) is symmetric if

Î · ÎX : Rd æ RØ0 is invariant under permutation and sign-flips of coordinates. In other

words, if x œ Rd and xú œ Rd is given by sorting the coordinates of |x| in non-increasing

value, then ÎxÎX = ÎxúÎX .

The key is to identify a target metric space which is algorithmically tractable (for the

doubly-logarithmic approximation we are aiming for) and expressive enough to admit

3and in particular, will be used in conjunction with an ANN algorithm for (Y, dY) to obtain an ANN
algorithm for (X, dX).

27

embeddings for all d-dimensional symmetric norms with a small constant distortion. We

state one of the main theorems, whose proof appears in Chapter 2.

Theorem 19 (Universal Target for Symmetric Norms). Fix d œ and ” œ (0, 1/2). There

exist t = t(d, ”) Æ dO(log(1/”)/”) and a normed space Y = (Rt, Î · ÎY) such that any

symmetric norm X = (Rd, Î · ÎX) embeds into Y via a linear map f : Rd æ Rt with

distortion 1 + ”.

The normed space Y is given by an iterated product space of top-k norms; we will view

x = (xi,k)iœ[t
1

],kœ[d]

œ (Rd
)

t
1

d, so that the parameter t in Theorem 19 is given by t
1

d2, then

ÎxÎY = max

iœ[t
1

]

Qa dÿ
j=k

Îxi,kÎT (k)

Rb ,

and T (k) = (Rd, Î · ÎT (k)

) denotes the top-k norm.4 We abbreviate Y = ¸t
1Œ(¸d

1

(T (k)

)).

Conceptually, the existence of such a low-dimensional universal space incuring only constant

distortion is surprising. Classical results in convex geometry and metric embeddings, such

as John’s theorem [82] (cited in Theorem 18) and Frechét’s embedding technique [101]

show that ¸
2

and ¸Œ admit embeddings of general normed spaces; however, the embeddings

either incur distortion which is polynomial in the dimension or suffer an exponential blowup

in the dimension of the target space.

The new data structure for the normed space Y uses a combination of novel and known

techniques based on randomized embeddings, the data structure of Theorem 2 [78], as well

as the data structure for ¸p-product spaces [77, 8, 5].

Theorem 20 (Theorem 1 of [77] and Theorem 5.1.2 of [5]). Let k œ , and suppose

{(Xi, dXi
)}iœ[k]

is a collection of metric spaces where each admits a c-ANN data structure

using space at most s(n) Ø n and query time at most q(n) for some c Ø 1. For any ” > 0,

Á œ (0, 1), and p œ [1, Œ), there exists a data structure for O(cÁ≠1

log

1+” log n)-ANN

4The top-k norm of a point x œ Rd is given by sum of the highest (in absolute value) k coordinates of x;
i.e., ÎxÎT (k)

=

qk
j=1

xú
j (see Definition 10).

28

over the ¸p-product of X’s5
(◊k

i=1

Xi, d¸k
p(Xi)

) using space6 O(ks(n)n”+Áp
), and query time

O(nÁp
) · O(q(n) log(n) + k log(n) maxjœ[k]

log |Xk|).

The final step is to give a randomized embedding, in the sense of Definition 9, from

(Rd, Î · ÎT (k)

) to ¸d
Œ which (–, —)-preserves approximate near neighbors with —n π –, for

arbitrary k œ [d]. Combining the embedding with Theorem 2 gives a data structure for

O(log log d)-ANN for top-k norms. We will then successive apply Theorem 20 to give a

poly(log log n)-ANN data structure for Y , and thus, for any symmetric norm.

Lemma 1.1.1 (Randomized Embedding of Top-k into ¸Œ [12]). Fix k, d œ , and let r Ø 0,

c Ø 1, and Á œ (0, 1/2). There exists a distribution D supported on R>0 such that letting

u
1

, . . . , ud ≥ D, the linear map f = fu
1

,...,ud
: Rd æ Rd given by

(x
1

, x
2

, . . . , xd)

f‘æ
3

x
1

u
1

,
x

2

u
2

, . . . ,
xd

ud

4

is a randomized embedding between (Rd, Î · ÎT (k)

) and ¸d
Œ which (1/nÁ, 1/n2

)-preserves

approximate near neighbors with thresholds ·
1

= r and ·
2

= 3cr · Á.

The proof of Lemma 1.1.1 follows from a more general construction of randomized

embeddings from any d-dimensional Orlicz norm into ¸d
Œ. Specifically, for a convex

function G : RØ0 æ RØ0 with G(0) = 0 defining the Orlicz norm (Rd, Î · ÎG)

7, the

distributions D over R>0, defining the scalings in the randomized embedding, is one where

Pru≥D[|t/u| Æ ·
1

] = –≠G(|t|/r). Hence, the condition that Îf(x)ÎŒ Æ ·
1

translates (by

independence of the draws to D) to a product of probabilities, where each term in the

product is Prui≥D[|xi/u| Æ ·
1

]. The definition of D then implies, when ÎxÎG Æ r, that the

product is at least –.

5Given a collection of metric spaces {(Xi, dXi)}iœ[k]

and p œ [1, Œ], the ¸p-product of X’s the metric
space defined over the cartesian product ◊k

i=1

Xi, where distances between points (a
1

, . . . , ak), (b
1

, . . . , bk)

is given by d¸k
p(Xi)

(a, b) = (

qk
i=1

dXi(ai, bi)
p
)

1/p.

6We remark that [77], which first obtained this Theorem for p = Œ, states a weaker bound in the space
complexity. [8] noticed a better analysis gave the corresponding space bound. See also, Appendix A of [12].

7The Orlicz norm over Rd specified by the function G is given by ÎxÎG = inf{r œ (0, Œ) :qd
i=1

G(|xi|/r) Æ 1}.

29

Theorem 21 (Symmetric Norm Data Structure [12]). Fix d œ and Á œ (0, 1/2), and let

X = (Rd, Î·ÎX) be a symmetric norm. There exists a data structure for O(log

2

log(n) log log d/Á5

)-

ANN over X using space dO(1) · O(n1+Á
) and query time dO(1) · O(nÁ

).

We remark that the “embeddings approach” outlined in this section has its limits. Indyk

suggested the proof of the following theorem (formally proven in Chapter 2), which shows

that one cannot hope for a universal target space (in the sense of Theorem 19) for general

norms with a polynomial blowup in the dimension improving on Theorem 18.

Theorem 22 ([12]). Fix Á œ (0, 1/2) and C > 1. Suppose that for any d œ , there

exists dÕ œ and a normed space Y = (RdÕ
, Î · ÎY) such that for any normed space

X = (Rd, Î · ÎX), there exists a distribution D supported on linear maps Rd æ RdÕ where

every x œ Rd satisfies

Pr
f≥D

Ë
ÎxÎX Æ Îf(x)ÎY Æ C · d1/2≠ÁÎxÎX

È
Ø 2

3

.

Then, dÕ
= exp (�(d2Á

)).

1.2 A Lower Bound in the List-of-Points Model

This section explores Problem 1 from a lower bounds perspective. We construct a class

of metric spaces, the shortest path metrics on constant-degree expander graphs, which, for

large classes of data structures, do not admit small approximations for ANN. The restriction

to “large classes of data structures” is necessary; current techniques for proving (general)

data structure lower bounds are far-from distinguishing the nuances between metric spaces.8

Rather, we formalize the list-of-points framework. This algorithmic framework encapsulates

hashing-based approaches pioneered in [79], and the lower bounds proved will inform the

upper bounds to come.

8The best cell-probe lower bounds for ANN appear in [118]. Here, the lower bounds become trivial once
the query time exceeds O(log n).

30

Definition 11. Let G = (V, E) be a connected, undirected graph. The shortest path metric

on G is the metric space (V, dG) given by letting dG(u, v) be the length of the shortest path

between u and v in G.

We consider an arbitrary family G = {GN = ([N], EN)}Nœ of 3-regular expanders, i.e.,

there exists constants ÷ œ (0, 1) and N
0

œ such that all N > N
0

satisfy ⁄
2

(LGN
) Ø ÷.9

We consider the family M = {([N], dGN
)}Nœ of shortest path metrics on G. For N œ ,

we seek efficient data structures for ANN over ([N], dGN
) when n, the number of dataset

points, satisfies

Ê(log n) Æ log N Æ no(1), (1.1)

since this choice of parameters aligns well with the notion of efficiency for Definition 2.10

Here, we want to prove a curse of dimensionality for metric spaces in M: for any ” œ (0, 1)

there are infinitely many N œ , such that any data structure for (log N)

1≠”-ANN over

([N], dGN
) for n dataset points must have time complexity �(n) or space complexity scaling

exponentially in (log N)

”. The approximation factor of (log N)

1≠” for any ” œ (0, 1) would

be best possible, due to the embedding theorem of Bourgain [39].

Theorem 23 (Bourgain’s Embedding [39, 97]). For any metric space (X, dX), there exists

an embedding f : X æ ¸O(log N)

2

with distortion O(log N).

The above theorem, together with the “embeddings approach” of Theorem 17, lays a

path toward data structures for O(log N)-ANN over ([N], dGN
). Time efficiency does not

necessarily follow because the function f may take N�(1) time to compute.11 However,

Theorem 23 does imply an efficient cell-probe data structure, and leaves us hopeless for

unconditional lower bounds except for dramatic advancements in complexity theory.

9Here, I am letting ⁄
2

(LGN) be the second smallest eigenvalue of the normalized Laplacian of the graph
GN .

10Recall that the metric analogue of dimension will be log |X| for a metric space (X, dX).
11In particular, the time complexity of computing f will crucially depend on the oracle access granted

to the metric space ([N], dGN). In the black-box model, where a metric space (X, dX) is accessed only via
black-box evaluations of d(·, ·), computing even a single coordinate of f may be too costly. See [91] for a
more thorough treatment of the black-box model for ANN.

31

The hardness of ANN over metric spaces alike M is unsurprising. A growing body of

work, establishing non-embedability results for finite metric spaces, utilize the shortest path

on constant degree expanders as the hard instance. These lower bounds preclude efficient

data structures for ANN which proceed via low-distortion embeddings into low-dimensional

tractable spaces. For example, the work of London, Linial, and Rabinovich [97] shows

that embedding ([N], dGN
) into ¸

1

requires �(log N) distortion, matching the upper bound

on the distortion from Theorem 2312 (see also Section 15.5 in [102]). More generally,

there are strong lower bounds on the required distortion13 for embedding M into arbitrary

low-dimensional normed spaces [110, 111]. The arguments are formalized with the notion

of non-linear spectral gaps, first studied by [105], we give a proof of the subsequent theorem

in Chapter 3.

Definition 12 (Non-Linear Spectral Gaps). Let (X, dX) be a metric space and for n œ ,

µ be a symmetric probability measure supported on [n] ◊ [n] with marginal distribution fl.

For p > 0, the inverse of the non-linear spectral gap “(µ, dp
X) is the infimum over “ > 0

such that for any u
1

, . . . , un œ X ,

E
i,j≥fl

[dX(ui, uj)

p
] Æ “ E

(i,j)≥µ
[dX(ui, uj)

p
] .

Theorem 24. Let d œ and consider any normed space X = (Rd, Î · ÎX). For n œ ,

and a symmetric probability measure µ over [n] ◊ [n] with marginal fl,

“(µ, Î · Î2

X) .
A

log d

⁄
2

(Lµ)

B
2

,

where ⁄
2

(Lµ) is the second smallest eigenvalue of the normalized Laplacian matrix Lµ =

In ≠ diag(fl)

≠1/2µdiag(fl)

≠1/2.

For the metric space ([N], dGN
) œ M, consider the distribution µ which samples a

12Even though the upper bound in Theorem 23 holds for embedding into ¸
2

, the embedding into ¸
1

follows
from concatenating Theorem 23 with the O(1)-distortion embedding of ¸

2

æ ¸
1

.
13even average distortion

32

uniformly random edge of GN , and notice that since GN is 3-regular, “(µ, d2

GN
) & log

2 N .14

If for a normed space X = (Rd, Î · ÎX), there existed an embedding f : ([N], dGN
) æ

(Rd, Î · ÎX) with distortion c, then “(µ, Î · Î2

X) & log

2 N/c2; however, Theorem 24 implies

log

2 N/c2 . log

2 d, since ⁄
2

(µ) = �(1), and thus c = �(log N/ log d). This latter result

gives a curse of dimensionality for data structures which proceed via embeddings into an

arbitrary d-dimensional normed space: any (log N)

1≠”-ANN data structure implied by an

embedding into a normed space with Theorem 17 will have time and space complexity

exponential in (log N)

”. (As well will see, Theorem 24 will be useful for designing data

structures as well!)

Definition 13 (List-of-Points Framework [18]). For a metric space (X, dX), n œ and

r Ø 0, a data structure for c-ANN over X in the list-of-points framework is specified as

follows:

• There are two parameters ¸ = ¸(n) œ and a distribution H supported on a list

of ¸ pairs of subsets of X , i.e., a sample {(A
1

, B
1

), . . . , (A¸, B¸)} ≥ H satisfies

Ai, Bi µ X .

• The function Preprocess : Xn ◊ {0, 1}m æ ({0, 1}w
)

s, given P œ Xn and random

bits, constructs D œ ({0, 1}w
)

s by:

1. Using the random bits to sample {(A
1

, B
1

), . . . , (A¸, B¸)} ≥ H,

2. D is divided into three parts; the first part encodes the lists {(A
1

, B
1

), . . . (A¸, B¸)};15

the second part uses n · Álog |X|/wË words to store the dataset P in order; the

third part is divided into ¸ blocks. For i œ [¸], we denote Di as the ith block.

3. For each i œ [¸], Di stores indices of points from P inside Ai, using at most one

word to store each index.16

• The function Query : X ◊ {0, 1}m æ X , when given a query q œ X proceeds by:

14In particular, letting n = N and ui = i in Definition 12, we notice that dGN (i, j) = 1 for every
(i, j) ≥ µ and dGN (i, j)

2 & log

2 N with probability approaching 1 as N æ Œ (1.2), which lower bounds
“(µ, d2

GN
) & log

2 N .
15for example, we may succinctly encode this by storing the random bits
16Recall that w = �(log n), so that one word is enough to an element of [n].

33

1. Reading the encoding of the list {(A
1

, B
1

), . . . , (A¸, B¸)} and forming the set

I(q) = {i œ [¸] : q œ Bi}.17

2. For each i œ I(q), the algorithm scans Di,18 and computes, for each index

j œ Di, dX(q, pj). If the algorithm finds a point pj where dX(q, pj) Æ cr, it

outputs pj .

Definition 13 captures data structures based on randomized space decompositions. A

draw of {(A
1

, B
1

), . . . , (A¸, B¸)} ≥ H gives two such decompositions of X; where A =

{A
1

, . . . , A¸} governs where dataset points are placed, and B = {B
1

, . . . , B¸} governs

where queries search. The setting of hashing, á la Locality-Sensitive Hashing (LSH) [79],

corresponds to the case Ai = Bi for every i œ [¸]. For general data structures, Definition 13

has a glaring weakness: the space decompositions used are completely independent of the

dataset. This exempts the preprocessing and query phases from using the dataset P to guide

the execution, a major detriment to efficient data structures.19 Nevertheless, the list-of-points

framework will provide a useful abstraction for studying necessary properties of randomized

space decompositions for ANN data structures. A formalization of hashing-based data

structures, allowing for adaptivity of the hash functions, appears in [11], where the goal

there is understanding limits of the data-dependent LSH approach for ¸
2

[13, 10].

We now define the robust expansion of a metric space, a central quantity of a metric

space which will dictate the quality of space decompositions. This quantity characterizes

the time and space complexity of list-of-points data structures. The robust expansion was

first identified in [118] and used to establish cell-probe lower bounds for ANN under various

metric spaces, most notably for ¸
1

, ¸
2

, and ¸Œ [58, 18, 85].

17We will ignore subtle issues of encoding of the list {(A
1

, B
1

), . . . , (A¸, B¸)}, as well as the time
complexity of computing I(q) since this definition will be useful for lower bounds.

18there is a subtle issue in finding Di. In particular, since the blocks may have varying sizes (because
storing a different number of points from P), the algorithm will not know where in D the block Di lies. We
note this issue may be safely ignored for lower bounds, and assume the algorithm knows where blocks Di

begin.
19For example, when X = R, a data structure which sorts the dataset P and performs a binary search is

not captured by Definition 13.

34

Definition 14 (Robust Expansion [118]). Fix a metric space (X, dX) and a distribution µ

supported on pairs points X ◊ X with marginal distributions fl
1

and fl
2

. For “ > 0 and

– > 0,

�µ(–, “) = inf

I
fl

2

(B)

fl
1

(A)

: A, B µ X, fl
1

(A) Æ – and Pr
(p,q)≥µ

[q œ B|p œ A] Ø “

J
.

The following lemma formalizes the connection between Definition 14 and lower bounds

for data structures in the list-of-points model. It analyzes an appropriate distribution over

dataset-query pairs and applies Yao’s principle. The lower bound on the space and time

complexity follow by a lower bound on the expected time and expected space complexity of

the assumed list-of-points data structure with respect to the distribution over inputs. The

following lemma appears in [18]. It is a simple exercise in computing the time and space

complexity of list-of-points dat structures.

Lemma 1.2.1. Let (X, dX) be a metric space, r Ø 0 and n œ . Suppose that H and ¸

specify a list-of-points data structure for c-ANN over (X, dX) with distance threshold r and

n dataset points. Let µ be a distribution supported on pairs of points X ◊ X with distance

at most r, and let fl
1

and fl
2

be the marginal distributions of µ, where

Pr
p

1

,p
2

≥fl
1

[dX(p
1

, p
2

) < cr] = o
3

1

n

4
.

Then, there exists {(Ai, Bi)}¸
i=1

in the support of H such that for every i œ [¸], –i = fl
1

(Ai),

“i = Pr
(p,q)≥µ[q œ Bi | p œ Ai] satisfying

q¸
i=1

–i“i Ø 1

2

, and

s(n) Ø ¸ + n
ÿ̧
i=1

–i, q
cp

(n) Ø ÿ̧
i=1

�µ(–i, “i)–i · (1 + n–i).

Given Lemma 1.2.1, it remains to compute the robust expansion of metric spaces in M
for an appropriate distribution µ, and apply the lower bound. Specifically, for any ” œ (0, 1)

and N > N
0

, let r = (log N)

”/10. The distribution µ supported on pairs of points in

([N], dGN
) at distance at most r is given by letting (p, q) ≥ µ where p ≥ [N] uniformly

and q is the result of a random walk from p of length r in GN . Then, since both marginal

35

distributions of µ are equal and uniform, and GN is 3-regular,

Pr
p

1

,p
2

≥fl
1

[dGN
(p

1

, p
2

) < cr] <
3

cr

N
<

1Ô
N

, (1.2)

and since n satisfies (1.1), we may apply Lemma 1.2.1. Finally, an application of the

expander mixing lemma shows that for all –, “ œ (0, 1),

“ Æ �µ(–, “) · – + (1 ≠ ⁄
2

(LGN
))

r
Ò

�µ(–, “).

Deducing the curse of dimensionality is now straight-foward: we apply Lemma 1.2.1 to

obtain the sequence of points {(–i, “i)}iœ[¸]

and consider the subset L µ [¸] of indices

satisfying �µ(–i, “i)–i Ø “i/2. First, consider the case
q

iœL –i“i Ø 1/4, and notice

that substituting this (along with the definition of L) into the expression for q
cp

(n) in

Lemma 1.2.1 implies q
cp

(n) = �(n). On the other hand, if
q

iœL –i“i < 1/4, we must

have
q

i/œL –i“i Ø 1/4. In this case and since N > N
0

, every i /œ L satisfies “i/2 Æ
(1 ≠ ÷)

r
Ò

�µ(–i, “i). This implies

1

8

A
1

1 ≠ ÷

Br

Æ ÿ
i/œL

–i

Ò
�µ(–i, “i) Æ ¸,

because �µ(–i, “i)–i Æ 1 and ¸ ≠ |L| Æ ¸. Seeing as 1 ≠ ÷ œ (0, 1) is a fixed constant and

the expression of s(n) in Lemma 1.2.1 depends linearly on ¸, we obtain space complexity

exponential in r = (log N)

”/10.

1.3 The Cutting Modulus and Random Partitions

In Section 1.2, we showed that the shortest path metric on expander graphs, M =

{[N], dGN
}Nœ , suffers the curse of dimensionality in the list-of-points framework; i.e., any

sublinear time data structure for ANN incurs exponential dependence in the dimension of

the space.20 Utilizing M as an initial lower bound instance, Theorem 17 can derive lower

bounds for an arbitrary metric space (X, dX). Informally, if for some ” œ (0, 1), there exists

20Recall we use log |X| as a proxy for dimension of a metric space (X, dX)

36

a function f : [N] æ X embedding ([N], dGN
) into (X, dX) with distortion (log N)

1≠”;

then, for any ”Õ < ”, we obtain a lower bound for data structures for (log N)

”Õ-ANN over

X . Hence, a prerequisite for efficient data structures for ANN over X (in the list-of-points

framework) is that shortest path metrics on expander graphs do not embed into X . This

section is based on the work in [14] (and the formal proofs are given in Chapter 3), where

we provide a partial converse to the above statement: for any metric space (X, dX) where

expanders do not embed,21 we construct an ANN data structure over X .22 The resulting

data structure will be in the cell-probe model, i.e., the data structure is efficient in its space

and cell-probe complexity, but not in its time complexity.

Definition 15 (The Cutting Modulus [14]). Let (X, dX) be a finite metric space and Á œ
(0, 1). The cutting modulus �(X, Á) is the infimum of � > 0 such that the following holds.

For all r Ø 0, and all symmetric probability measures µ supported on pairs of points X ◊ X

at distance at most r in X with marginal distribution fl, either (1) there exists a set B µ X

with fl(B) Ø 1/2 and diamX(B) Æ r · �, or (2) there exists a set S µ X with conductance

�µ(S) =

µ(S, X \ S)

min{fl(S), 1 ≠ fl(S)} Æ Á.

The case of infinite metric spaces is handled by considering all finite subsets. Specifically,

the cutting modulus of a (infinite) metric space (Y, dY), denoted �(Y, Á), is the infimum over

all � > 0 and N œ such that all metric spaces (Y Õ, dY) induced from Y by considering a

subset Y Õ µ Y of size N has �(Y Õ, Á) Æ �.

The metric spaces M defined in Section 1.2 have cutting modulus �(([N], dGN
), Á) &

log N when Á < ÷/2 and N Ø N
0

. The proof follows from considering r = 1 and µ to be

the uniform distribution over pairs of points in GN connected by an edge (which implies fl

is uniform since the graphs are regular). By virtue of the graphs GN having degree 3, any

subset of diameter significantly smaller than log N will not contain any constant fraction

of the graph (the computation is similar to (1.2)). On the other hand, ⁄
2

(LGN
) Ø ÷ for

21The precise notion of nonembeddability is captured by the cutting modulus, which we define in Defini-
tion 15.

22Furthermore, we note that the data structure will not be in the list-of-points framework.

37

N Ø N
0

, which implies, by the (easy direction of the) Cheeger inequalities [48, 4], that any

subset has conductance at least ÷/2.

More generally, upper bounds on the cutting modulus may follow from an application of

Cheeger’s inequality to an upper bound on the non-linear spectral gap (Definition 12), and we

may utilize various techniques exist for upper-bounding non-linear spectral gaps of metric

spaces [103, 105, 110, 111]. The machinery (including Theorem 24) were initially developed

for proving nonembeddability of expander metrics; however, these automatically give upper

bounds on the cutting modulus. We sketch how Theorem 24 imples �(X, Á) . log d/Á2: if

µ is a symmetric probability distribution supported on pairs of points X ◊ X at distance

at most r in X with marginal fl, and if fl(B) Æ 1/2 for all diamX(B) . r · log d/Á2, then,

“(µ, Î ·Î2

X) & log

2 d/Á4, and by Theorem 24, ⁄
2

(Lµ) . Á2, so that we may apply Cheeger’s

inequality to obtain a low-conductance cut S µ X of µ [48, 4].

Theorem 25 is stated next and places the cutting modulus at the focus of our study of

Problem 1.23

Theorem 25 (Cell-Probe Data Structure for (�(X, Á) + 1)-ANN [14]). Let (X, dX) be a

metric space of size N and Á œ (0, 1). There exists a data structure for (�(X, Á) + 1)-

ANN over X with space complexity n1+O(Á)

log N(log(1/Á) + log log N) and cell-probe

complexity nO(Á)

log N(log(1/Á) + log log N).

At a high level, the data structure behind the proof of Theorem 25 builds a (data-

dependent) randomized decision tree. The data structure begins with a set P of n dataset

points in X and continues the following process while more than one dataset point is

considered. The algorithm checks whether there is a cluster in P containing a constant

fraction of points with diameter r · �(X, Á). If such a cluster exists, any dataset point inside

the cluster is a (�(X, Á) + 1)r-approximate near neighbor to any query point within distance

r from any point in the cluster. The data structure stores one point inside the cluster and

makes a child node, recursing on remaining dataset points outside the cluster. If no such

cluster exists, Theorem 26, relying on condition (2) of Definition 15, will imply existence of

23We know the cutting modulus in conjunction with Theorem 25 cannot be the conclusion of Problem 1.
For example, �(¸d

Œ, Á) = �(log d/Á), while Theorem 2 gives an O(log log d)-ANN data structure [78].

38

a randomized space partition supported on subsets with small conductance (with respect

to some symmetric probability measures) which split the dataset roughly evenly. The data

structure samples a set S from the randomized space partition and makes two child nodes:

one node recurses on P fl S and the other recurses on P fl (X \ S).

The approach of taking a “ball” or “cut” most resembles the data structures for ANN over

¸
1

/¸
2

of [10] and ¸d
Œ of Indyk [78] (proving Theorem 2). At a high level, these follow by

designing randomized space partitions which performs well under a fixed dataset assuming

the dataset satisfies a well-separatedness condition. In this case, the absence of large clusters

of small diameter serves as this condition. The randomized space partitions depend on

the dataset, and hence termed “data-dependent LSH.”24 The next subsection is devoted

to one such “ball” or “cut” theorem for general metric spaces, analogous to Lemma 1 of

[78]. The quality of the randomized space partitions depends on the cutting modulus of

the metric space, and following that subsection, we show how the theorem is used to prove

Theorem 25.

1.3.1 Data-dependent randomized space partitions from bounds on

the cutting modulus

Theorem 26 ([14]). Let (X, dX) be a metric space of size N , Á œ (0, 1/8), and r Ø 0. There

exists a collection F of at most NO(log(1/Á)+log log N) subsets of X such that the following

holds. If, for 1 < m Æ N and x
1

, . . . , xm œ X , all B µ X with diamX(B) Æ r · �(X, Á)

satisfy |B fl {x
1

, . . . , xm}| Æ m/8, there exists a distribution H supported on F satisfying:

1. A subset S ≥ H satisfies |S fl {x
1

, . . . , xm}| œ [m/8, 7m/8] with probability 1.

2. If y, z œ X satisfy dX(y, z) Æ r, then

Pr
S≥H

[|{y, z} fl S| = 1] Æ 20Á.

There are three crucial components of the randomized space partition defined in

24In contrast, a (data-independent) LSH is a randomized space partition which performs well under any
dataset. For example, the data structures for ANN over ¸

1

of [79] and [93] (proving of Theorem 1) fall in this
category.

39

Theorem 26. The first is the balancedness of parts with respect to a dataset of points

x
1

, . . . , xm œ X , as guaranteed by (1). The second is that the probability of separating any

two points within distance r is small, as guaranteed by (2). In the language of Locality-

Sensitive Hashing (LSH) [79], (1) is analogous to an upper bound of 7/8 on p
2

and (2)

is analogous to a lower bound of 1 ≠ 20Á on p
1

. Subsequently, Theorem 26 foreshadows

an ANN data structure with time complexity nlog(1/p
1

)/ log(1/p
2

)

= nO(Á). The third crucial

component is the fact that samples from the distribution H may be encoded in at most

O(log N(log(1/Á) + log log N)) bits. This is a consequence of the collection F being small

and fixed in advanced.

Roughly speaking, the cutting modulus asserts that for every symmetric distribution µ

over pairs of points in X at distance at most r, where the marginal distribution fl contains no

large clusters of diameter r · �(X, Á), there exists a set S with conductance at most Á. After

an iterative argument taking unions of low-conductance cuts, the set S can be assumed to

be roughly balanced, i.e., min{fl(S), 1 ≠ fl(S)} Ø 1/3 and µ(S, X \ S) Æ 2Á.25 If points

x
1

, . . . , xm from X are sampled from fl, |S fl {x
1

, . . . , xm}| œ [m/8, 7m/8] with very

high probability over randomness in generating the points x
1

, . . . , xm. Furthermore, since

µ(S, X \ S) is exactly the probability that a random pair (y, z) ≥ µ is separated by S, i.e.,

|{y, z} fl S| = 1, if the query and near-neighbor pair (y, z) are sampled from µ, y and z

lie in the same side of S with probability at least 1 ≠ 2Á over randomness in generating the

query and near-neighbor pair. As a result, the cutting modulus gives, for each distribution µ

with marginal fl, a single set S µ X satisfying conditions akin to (1) and (2) assuming the

points x
1

, . . . , xm and y, z are sampled from fl and µ, and the probability of success is with

respect to the randomness in generating the points.

On the other hand, Theorem 26 considers a fixed set of points x
1

, . . . , xm and y, z, and

asks for a distribution H over subsets of X performing well for x
1

, . . . , xm and y, z, where

the probability of success is with respect to a sample S ≥ H. At a high level, Theorem 26

generates, from a solution for any distributional input, a distribution over (few) solutions

for any worst-case input. The proof of Theorem 26 proceeds in two steps. We first argue

25For example, one may use the reduction which converts a low-conductance cut into a balanced separator
(Section 3.3 of [95]).

40

Theorem 26 is implied by a lemma we state next. Then, we prove the next lemma assuming

an upper bound on the cutting modulus.

Lemma 1.3.1. Let (X, dX) be a metric space of size N , Á œ (0, 1/8), and r Ø 0. Consider

s œ , and suppose that for every distribution fl supported on points in X satisfying all

B µ X with diamX(B) Æ r · �(X, Á) have fl(B) Æ 1/7, there exists a distribution Hfl

supported on at most s subsets of X where the following hold:

1. A subset S ≥ Hfl satisfies fl(S) œ [1/7, 6/7] with probability 1.

2. If y, z œ X satisfy dX(y, z) Æ r, then |{y, z} fl S| = 1 with probability at most 20Á

over S ≥ Hfl.

Then, the conclusion of Theorem 26 hold with log |F| . log N · log s.

The implication from Lemma 1.3.1 to Theorem 26 can be understood in the context

of online learning. An oracle has an unknown and fixed dataset P µ X without large

clusters, and we want a (deterministic) algorithm which builds a distribution H satisfying

the conditions of Theorem 26 by querying the oracle. The algorithm proceeds in a sequence

of iterations. In each iteration, the algorithm updates a “proposed distribution”, fl supported

on X , which over the course of the execution, approaches the uniform distribution over P ,

which we denote ÂP . The notion of approaches is with respect to Kullback-Liebler (KL)

divergence, RE(·Î·), and the updates are according to the multiplicative weights update rule

(see, [74, 20]).

Claim 1.3.2. Let X be a fixed set, fl be any distribution supported on X , and ÷ œ (0, 1) be

a fixed constant. For any set S µ X , there exists two distributions fl+

S and fl≠
S supported on

X such that for any unknown distribution Â supported on X ,

• If fl(S) ≠ Â(S) Ø ÷, then RE(fl≠
S ÎÂ) Æ RE(flÎÂ) ≠ ÷2/4.

• If fl(S) ≠ Â(S) Æ ≠÷, then RE(fl+

S ÎÂ) Æ RE(flÎÂ) ≠ ÷2/4.

Initially, the algorithm sets fl to the uniform over X , and continually proceeds as follows.

Suppose there exists a set B µ X with diamX(B) Æ r · �(X, Á) satisfying fl(B) > 1/7;

since the ÂP (B) < 1/8, the algorithm updates fl to fl≠
S according to Claim 1.3.2, thereby

decreasing RE(flÎÂP) by at least a small constant. Otherwise, using the assumption of

41

Lemma 1.3.1, the algorithm designs a candidate distribution Hfl over subsets of X , and

measures the quality of Hp with respect to ÂP by querying the oracle.26 In particular, if

(1) of Theorem 26 is not satisfied, and there is a subset S in the support of Hfl where

ÂP (S) /œ [1/8, 7/8], the oracle reports the set S and whether ÂP (S) is larger than 7/8 or

smaller than 1/8 using Álog

2

sË + 1 bits. Again, the algorithm updates fl by to either fl+

S or

fl≠
S according to Claim 1.3.2, which decreases RE(flÎÂP) by at least a constant. To complete

the argument, notice that RE(flÎÂP) œ [0, log N], implying that the algorithm terminates

with a distribution Hfl satisfying the conditions of Theorem 26 after O(log N) iterations.

The upper bound on |F| follows from the fact that Hfl only depends on O(log N log s) bits

communicated by the oracle.

The second step, summarized in the lemma below, implies the conditions of Lemma 1.3.1

with s = O(log(N)/Á2

) and completes the proof of Theorem 26.

Lemma 1.3.3. Let (X, dX) be a metric space of size N , Á œ (0, 1/8), r Ø 0, and s =

O(log(N)/Á2

). Suppose fl is a distribution supported on points in X such that all B µ X

with diamX(B) Æ r · �(X, Á) satisfy fl(B) Æ 1/7. There exists a distribution Hfl supported

on at most s subsets of X where the following holds:

1. A subset S ≥ Hfl satisfies fl(S) œ [1/7, 6/7] with probability 1.

2. If y, z œ X satisfy dX(y, z) Æ r, then |{y, z} fl S| = 1 with probability at most 20Á

over S ≥ Hfl.

The proof of Lemma 1.3.3, without the sparsity condition on the distributions Hfl,

follows from von Neumann’s minimax theorem. Specifically, let Cr µ X ◊ X be the set

of pairs of points (y, z) œ X ◊ X at distance at most r, i.e., dX(y, z) Æ r, and consider

the compact and convex set D µ R|Cr| of symmetric probability distributions supported

on pairs in Cr. Furthermore, denote Sfl as the collection of subsets X which are roughly

balanced with respect to fl, i.e., S œ Sfl satisfies fl(S) œ [1/7, 6/7], and consider the

compact, and convex set K µ R|Sfl| of probability distributions supported on subsets in Sfl.

26Notice that the distribution Hfl satisfies condition (2) of Theorem 26, as this is the same as condition (2)
of Lemma 1.3.1. Hence, only (1) is to be checked.

42

Then, Lemma 1.3.3 is exactly saying

min

HœK
H s-sparse

max

µœD
ÿ

(y,z)œCr

ÿ
SœSfl

1 {|{y, z} fl S| = 1} · µ(y, z) · H(S) Æ 20Á. (1.3)

Removing the sparsity condition on H and applying von Neumann’s minimax theorem, a

proof of Lemma 1.3.3 without a bound on s follows from showing that

max

µœD
min

HœK
ÿ

(y,z)œCr

ÿ
SœSfl

1 {|{y, z} fl S| = 1} · µ(y, z) · H(S) Æ 20Á. (1.4)

Toward this (relaxed) goal, consider any distribution µ œ D, and let µ̃ œ D be the following

mixture: a sample (y, z) ≥ µ̃ is generated by letting (y, z) = (yÕ, zÕ
) ≥ µ with probability

1/8, and (y, z) = (x, x) where x ≥ fl with probability 7/8. We now apply Definition 15 to

µ̃. By writing the marginal distribution fl̃ of µ̃, we have fl̃(B) Æ 1/2 for all B µ X with

diamX(B) Æ r · �(X, Á), since fl̃(B) Æ 7/8 · fl(B) + 1/8 < 7/8 · 1/7 + 1/8. Hence, let

S µ X have µ̃(S, X \ S) Æ 2Á and fl̃(S) œ [1/3, 2/3]. Using again the fact that µ̃ is defined

as a mixture of µ and twice fl, we have µ(S, X \ S) Æ 16Á and fl(S) œ [5/21, 16/21].

Letting H be the distribution which is only supported on the set S proves the left-hand side

of (1.4) is at most 16Á < 20Á.

The fact that there exists an s-sparse distribution H œ K satisfying (1.3), follows, again,

from the multiplicative weights update algorithm. The argument proceeds as in Section 3.2

of [20] on approximately solving zero-sum games [65]. We consider a payoff matrix indexed

by Cr ◊ Sfl. For (y, z) œ Cr and S œ Sfl, the entry in the (y, z)-th row and S-th column is

1{|{y, z} fl S| = 1}. As shown in the previous paragraph, for any “mixed strategy” of the

row player, i.e., a distribution µ œ D, there exists a “pure strategy” of the column player,

i.e., a set S œ Sfl, with expected payoff less than 16Á. Hence, the goal is to find a “mixed

strategy” for the column player, which is approximately optimal up to additive 4Á against

any “pure strategy” of the row player; in addition, the mixed strategy should be s-sparse.

Theorem 3.1 of [20] shows exactly this: there exists a 4Á-approximate mixed strategy for

the column player given by the average of O(log(|Cr|)/Á2

) pure strategies for the column

player. Since |Cr| Æ N2, this completes Lemma 1.3.3, and hence, Theorem 26.

43

1.3.2 Proof of Theorem 25

Assuming Theorem 26, completing the sketch of Theorem 25 is straight-forward. The depth

of the randomized decision tree is at most log

8/7

n: either there is a cluster of more than

1/8-fraction of dataset points within a set of diameter r · �(X, Á), and we store one point

inside the cluster, or the data structure samples a set S ≥ H and recurses on dataset points

falling inside and outside the set S, decreasing the dataset by at least a 1/8-fraction.

The querying algorithm, upon receiving a query q œ X , begins at the root and walks

down the tree. If a node contained a cluster of dataset points, and the point stored as part

of the cluster is within distance r(�(X, Á) + 1) from q, the data structure returns the point.

Otherwise, the querying algorithm reads the encoding of the set S ≥ H and checks whether

q œ S. If so, the algorithm proceeds with the child node corresponding to S; otherwise, the

algorithm proceeds with the child node corresponding to X \ S.

Suppose p œ P satisfies dX(q, p) Æ r, and consider the event, over the randomness in

samples to the distributions H along the path in the decision tree containing p (of depth at

most log

8/7

n), that whenever a set S ≥ H is sampled, |{p, q} fl S| ”= 1. Notice this occurs

with probability at least (1 ≠ 20Á)

log

8/7

n
= n≠ log

8/7

(1/(1≠20Á)) Ø n≠1000Á. When the event

does occur, two outcomes may occur. The first is that query algorithm encounters a cluster

node with a point within distance r(�(X, Á) + 1) of the query and returns successfully. The

second outcome is when the first outcome does not occur. In this case, p does not belong to a

cluster (otherwise, q is within r(�(X, Á) + 1) from a cluster point); since p and q were never

split by a set S, they lie in the same leaf node and the query algorithm returns p. Repeating

the randomized decision tree O(n1000Á
) times to increase the probability of success implies

Theorem 25.

Remark 27 (A remark on cell-probe complexity). This section’s primary focus was ANN

data structures with efficient space and cell-probe complexities. Time complexity was

completely ignored. The key concern is that a root-to-leaf path in the randomized decision

tree built may take |X|�(1) time to traverse. In particular, the data structure consists of

nO(Á) decision trees and for a query q œ X , a root-to-leaf path on the tree is determined

44

by the inclusion or exclusion of q in a set S µ X sampled from H.27 The set S may be

large (for example, |S| œ [|X|0.01, |X| ≠ |X|0.01), and a priori have no structure. On a query

q œ X , the data structure walks down the decision tree and must repeatedly performing the

following: at the current node (which does not contain a cluster), the data structure reads

the encoding of the set S sampled for that node, decodes the set S, and scans S to determine

if q œ S. Notice that the cell-probe complexity is determined by the size of the encoding of

S, and the time complexity is determined by the time to decode S and |S|.

1.4 Upper Bounds on the Cutting Modulus

This section presents upper bounds on the cutting modulus of various metric spaces. Claims

in this section are formalized in Chapter 4. Combined with Theorem 25, these result in

efficient cell-probe ANN data structures. Emphasis is given to bounds which also yield time

efficient data structures. As briefly alluded to in the last section, we augment the notion of

cutting modulus to mind time complexity. We begin with bounding the cutting modulus of

¸d
1

. This is the simplest such bound, and elucidates approaches to come.

1.4.1 The cutting modulus of ¸d
1

Fix N œ and consider any finite subset X µ ¸d
1

. Let µ be any symmetric probability

distribution supported on pairs in X ◊X and let fl be the marginal distribution of µ. Consider

the quantity

R(µ, Î · Î
1

) =

ÿ
xœX

ÿ
yœX

µ(x, y)Îx ≠ yÎ
1ÿ

xœX

ÿ
yœX

fl(x)fl(y)Îx ≠ yÎ
1

=

E
(x,y)≥µ

[Îx ≠ yÎ
1

]

E
x,y≥fl

[Îx ≠ yÎ
1

]

, (1.5)

Suppose that, for r Ø 0, µ and fl satisfy the conditions of Definition 15. In other words, µ is

supported on pairs of points at distance at most r, and fl(B) Æ 1/2 for every B µ X with

27Technically, there exists the (easy) case when there was a large cluster of dataset points with small
diameter. In this case, the data structure performs computes dX(q, p) for some p œ P and either returns p, or
proceeds to the child node.

45

diam¸d
1

(B) Æ 4r/Á.28 Under these assumptions, R(µ, Î · Î
1

) Æ Á; specifically, we upper

bound the numerator of the right-hand side of (1.5) by r, and lower bound the denominator of

the right-hand of side of (1.5) by r/Á. The numerator is at most r because every (x, y) ≥ µ

has Îx ≠ yÎ
1

Æ r. For bounding the denominator, notice that for every x œ X , the set

B = X fl B¸d
1

(x, 2r/Á) satisfies fl(B) Æ 1/2 because diam¸d
1

(X) Æ 4r/Á. This implies

Ey≥fl[Îx ≠ yÎ
1

] Ø r/Á and gives a lower bound on the denominator.

Lemma 1.4.1. Let d œ and µ be any symmetric probability distribution supported on

finitely many pairs of points in Rd. Let fl be the marginal of µ and suppose it has non-zero

support on at least two points. There exists a distribution S supported on subsets of Rd

satisfying

E
S≥S

Ë
µ(S, S)

È
E

S≥S
[fl(S)(1 ≠ fl(S))]

Æ R(µ, Î · Î
1

). (1.6)

Since R(µ, Î · Î
1

) Ø 1/Á,29 Lemma 1.4.1 implies there exists a set S µ Rd in the

support of S with �µ(S) Æ Á.30 The proof of Lemma 1.4.1 proceeds by noticing that, since

Îx ≠ yÎ
1

=

q
kœ[d]

|xk ≠ yk|, there exists k œ [d] where31

E
(x,y)≥µ

[|xk ≠ yk|]
E

x,y≥fl
[|xk ≠ yk|] Æ

E
(x,y)≥µ

[Îx ≠ yÎ
1

]

E
x,y≥fl

[Îx ≠ yÎ
1

]

= R(µ, Î · Î
1

). (1.7)

Let – = inf{xk œ R : x œ supp(fl)} and — = sup{xk œ R : x œ supp(fl)} be the smallest

and largest values on the k-th coordinate of a sample of fl, and consider the distribution S
supported on sets S µ Rd given by letting S =

Ó
x œ Rd

: xk Æ ·
Ô

where · ≥ [–, —] is

28Here, the assumption on diam¸d
1
(B) Æ 4r/Á is to upper bound �(¸d

1

, Á) Æ 4/Á.
29Notice this implies fl has non-zero supported on at least two different points, since otherwise, the

denominator of (1.5) is 0.
30In particular, (1.6) implies, by re-arranging terms, that ES≥S

#
µ(S, S) ≠ Áfl(S)(1 ≠ fl(S))

$ Æ 0. Hence,
there exists a set S µ Rd in the support of S where µ(S, S) ≠ Áfl(S)(1 ≠ fl(S)) Æ 0, and the bound on
�µ(S) follows since fl(S)(1 ≠ fl(S)) Æ min{fl(S), 1 ≠ fl(S)}. Generally, for any m œ and collection
{(ai, bi)}iœ[m]

of pairs of real numbers, (

q
i ai)/(

q
i bi) = “ implies there exists some i œ [m] where bi ”= 0

and ai/bi Æ “.
31The argument is analogous to footnote 30.

46

drawn uniformly at random.32 Then, we simply notice the left-hand side of (1.6) is exactly

the left-hand side of (1.7). Formally,

E
S≥S

Ë
µ(S, S)

È
=

ÿ
xœX

ÿ
yœY

µ(x, y) Pr
S≥S

[|{x, y} fl S| = 1] = E
(x,y)≥µ

C |xk ≠ yk|
— ≠ –

D
.

E
S≥S

[fl(S)(1 ≠ fl(S))] = E
œY

fl(x)fl(y) Pr
S≥S

[|{x, y} fl S| = 1] = E
x,y≥fl

C |xk ≠ yk|
— ≠ –

D
.

Remark 28 (Time Complexity Bounds for ¸d
1

). Even though the above-mentioned argument

bounding �(X, Á) Æ 4/Á, combined with Theorem 25, gives a cell-probe data structure,

we may additionally conclude in this case that q(n) = O(q
cp

(n)). The argument proceeds

by noticing that Lemma 1.4.1 finds, given any distribution µ on pairs of points in ¸d
1

, a

low-conductance cut S µ Rd given by an axis-aligned threshold. In other words, a set S is

specified by a coordinate k œ [d] and a threshold · œ R; then, x œ S if and only if xk Æ · .

Following the argument in Subsection 1.3.2 and Remark 27, a walk down the decision tree

must repeatedly determine whether the query q lies in a set S sampled from H. In this case,

the set S is given by the union of axis-aligned thresholds, i.e., axis-aligned boxes (with

possibly infinite sides).33 Hence, sets S in H, or their complements, are encoded by a list

of at most d triples (k, ·≠, ·
+

) œ [d] ◊ (R fi {≠Œ, Œ})

2, and determining whether q œ S

takes linear time in the encoding of S, implying q(n) = O(q
cp

(n)).

1.4.2 Bounding the Cutting Modulus via Holder Maps of Unit

Spheres

For any metric space (X, dX), the natural approach to upper bound �(X, Á) follows, yet

again, from embedding X into ¸d
1

and applying Lemma 1.4.1. This is the approach we take

in this section when (X, dX) is a normed space, albeit with a notion of embedding less

stringent than Definition 8. Consider any symmetric probability distribution µ supported

on finitely many pairs in X and let fl be its marginal distribution. For any r œ (0, Œ), we

32Notice that by definition of – and —, fl(S) œ (0, 1) with probability 1.
33Even though, Lemma 1.4.1 gives a low conductance set, fl(S) may be arbitrarily small. Recall that a set

S in H must have fl(S) œ [1/3, 2/3], so we may apply Lemma 1.4.1 multiple times. See also, Footnote 25.

47

consider the quantity34

R(µ, dr
X) =

E
(x,y)≥µ

[dX(x, y)

r
]

E
x,y≥fl

[dX(x, y)

r
]

, (1.8)

which we term the non-linear Rayleigh quotient. When (X, dX) is the metric on the real

line, (R, | · |), and r = 2, (1.8) is exactly the Rayleigh quotient of the normalized Laplacian

of the (weighted) graph defined according to µ. Specifically, let U µ R be the support of fl,

and since (1.8) is invariant under translation, assume points in U satisfy
q

xœU fl(x)x = 0.35

Consider the weighted graph G = (V, E, w) where V = U , (x, y) œ E iff µ(x, y) ”= 0, and

w(x, y) = µ(x, y). The normalized Laplacian LG is the |U | ◊ |U | matrix, where rows and

columns are indexed by x œ U , and the entry (LG)x,y is ≠µ(x, y)/
Ò

fl(x)fl(y) if x ”= y,

and 1 ≠ µ(x, x)/fl(x) if x = y. Then, the vector z œ R|U | where zx =

Ò
fl(x) · x satisfies

Èz, zÍ = (1/2)

q
x,yœU fl(x)fl(y)|x ≠ y|2 and Èz, LGzÍ = (1/2)

q
x,yœU µ(x, y)|x ≠ y|2.

For a metric space (Y, dY) and p œ (0, Œ), we consider a function f : X æ Y ,36 and

write

R(f(µ), dr
Y) =

E
(x,y)≥µ

[dY (f(x), f(y))

r
]

E
x,y≥fl

[dY (f(x), f(y))

r
]

.

The goal of this section is to design, given a d-dimensional normed space X = (Rd, Î · ÎX)

and a symmetric probability distribution µ over finitely many pairs of points in Rd, function

f : Rd æ Rd such that for � : RØ0 æ RØ0 with �(Á) æ 0 as Á æ 0,37

R(f(µ), Î · Î
1

) Æ � (R(µ, Î · Îr
X)) . (1.9)

Combining (1.9) with Lemma 1.4.1 immediately implies �(X, Á) Æ 4(1/�

≠1

(Á))

1/r, where

�

≠1

(Á) = sup{Á
0

Ø 0 : ’ÁÕ Æ Á
0

, �(ÁÕ
) Æ Á}. Then, Theorem 25 gives an (4/�

≠1

(Á)

1/r
+

34Equation (1.5) corresponds exactly to the case (X, dX) = ¸d
1

and r = 1.
35Formally, let t =

q
xœU fl(x)x and U Õ

= {x ≠ t : x œ U}. Then, the ratio in (1.8) remains unchanged
when using the distribution µÕ given by (x ≠ t, y ≠ t) where (x, y) ≥ µ with marginal flÕ instead of µ.
Furthermore,

q
xœU Õ flÕ

(x)x = 0.
36For example, f could be an embedding as in Definition 8, or as we will see, a slightly weaker object.
37In the discussion, it is implicit that f does not map all points in supp(fl) to a single point and make the

denominator of (1.8) be 0.

48

1)-ANN cell-probe data structure over X . We note that comparison inequalities analogous

to (1.9) between general metric spaces are studied in [113]. There, comparisons are made

among nonlinear spectral gap (recall Definition 12), which may be equivalently stated as the

supremum over all f : X æ X of 1/R(f(µ), dr
X). While relating the nonlinear spectral gap

of a metric space (X, dX) and that of ¸
1

gives upper bounds on �(X, Á) as well, maintaining

the function f in (1.9) allows for a discussion on computational complexity. In particular,

upper bounds on the time complexity of ANN data structures obtained via this method will

follow from restrictions imposed on the computational complexity of f .

Remark 29. Section 1.3 describes the cutting modulus and suggests an approach for ANN

data structures in order to address limitations of the embeddings approach from Section 1.1.

It seems peculiar that we will upper bound �(X, Á) using metric embeddings into ¸
1

, and

that this will overcome limitations of the embeddings approach for ANN data structures.

The key is that the embeddings necessary are substantially weaker than those prescribed in

Section 1.1. In particular, the inequality (1.9) allows the embedding f to preserve distances

on average over µ and fl. This relaxed guarantee is what this section will exploit.

Definition 16 (Holder Homeomorphism between Spheres). Let X = (Rd, Î · ÎX) and

Y = (RdÕ
, Î·Î) be two normed spaces. For c Ø 0 and – œ (0, 1], function „ : S(X) æ S(Y)

is an –-Holder homeomorphism with Holder constant c if it is bijective and for every

a, b œ S(X),

Î„(a) ≠ „(b)ÎY Æ c · Îa ≠ bÎ–
X .

Lemma 1.4.2 (Radial Extensions of Holder Homeomorphism between Spheres). Let X =

(Rd, Î · ÎX) and Y = (RdÕ
, Î · ÎY) be two normed spaces, and for c Ø 0 and – œ (0, 1], let

„ : S(X) æ S(Y) be an –-Holder homeomorphism with constant c. Then, for r Ø 1, the

radial extension f„,r : Rd æ RdÕ given by

f„,r(x) = ÎxÎr
X · „(x/ÎxÎX) (1.10)

49

satisfies Îf„,r(x)ÎY = ÎxÎr
X for every x œ Rd, and for every x, y œ Rd,

Îf„,r(x) ≠ f„,r(y)ÎY Æ
1
2

–c + 2

1≠–r
2

Îx ≠ yÎ–
X

1
ÎxÎr≠–

X + ÎyÎr≠–
X

2
. (1.11)

A weakness of using the radial extensions of Holder homeomorphism as embeddings is

that the quality of (4.2) degrades as norms of vectors grow. However, we will still derive

(1.9) when f is a translation of f„,r, since distances will be preserved on average. To garner

intuition, consider a distribution µ supported on finitely many pairs in Rd ◊Rd, and suppose

that after a translation, the marginal distribution fl is roughly centered after applying f„,r;

formally, assume38

E
x≥fl

[f„,r(x)] = 0.

Under this condition,

E
x≥fl

[Îf„,r(x)ÎY] Æ E
x,y≥fl

[Îf„,r(x) ≠ f„,r(y)ÎY] Æ 2 E
x≥fl

[Îf„,r(x)ÎY] (1.12)

by the triangle inequality. We use (4.1) in Lemma 1.4.2 to lower bound the denominator of

R(f„,r(µ), Î ·ÎY), and (4.2) to upper bound the numerator of R(f„,r(µ), Î ·ÎY). In particular,

(4.1) and (1.12) imply the denominator of R(f„,r(µ), Î · ÎY) is up to a constant factor at

least Ex≥fl[ÎxÎr
X] Ø 2

≠r≠1 Ex,y≥fl[Îx ≠ yÎr
X]. Suppose that after applying f„,r to points

in (x, y) ≥ µ, the numerator of R(f„,r(µ), Î · ÎY) increases substantially in terms of the

numerator of R(µ, Î · ÎX). This occurs when the upper bound on Îf„,r(x) ≠ f„,r(y)ÎY in

terms of Îx≠yÎX in (4.2) degrades substantially, which only occurs when ÎxÎX and ÎyÎX

are large. However, this means Ex≥fl [Îf„,r(x)ÎY], and because of (1.12), the denominator

of R(f„,r(µ), Î · ÎY) is large. The next theorem closely follows an argument of [103],

formalizing the intuition with a relaxed assumption of the centering of fl, as well as for

bounding R(f„,r(µ), Î · Îs
Y).

Theorem 30 (Matousek’s Extrapolation [103, 16]). Let X = (Rd, Î · ÎX) and Y = (RdÕ
, Î ·

38We seek a vector z œ Rd which depends on fl and satisfies E
x≥fl[f„,r(x ≠ z)] = 0. If such a vector

exists, it suffices to prove (1.9) under the centering assumption since R(µ, Î · ÎX) is invariant to translations.
The existence of such a vector is a subtle matter which will be discussed shortly.

50

ÎY) be any normed spaces, and suppose that for – œ (0, 1] and c Ø 0, there exists an

–-Holder homeomorphism „ : S(X) æ S(Y) with constant c. Let µ be any symmetric

probability distribution supported on finitely many pairs of points in X ◊ X , and let fl be

the marginal of µ. Suppose that, for r > – and s Ø 0, the distribution fl under f„,r is

approximately centered, i.e.,

.... E
x≥fl

[f„,r(x)]

....
Y

Æ
3

1

2

s+1

· E
x≥fl

[Îf„,r(x)Îs
Y]

4
1/s

, (1.13)

then,

R(f„,r(µ), Î · Îs
Y) Æ 2

2s+2

(c + r)

s · R(µ, Î · Îsr
X)

–/r. (1.14)

For certain important cases, Theorem 30 obtains a bound on the cutting modulus better

than by using the best bi-Lipschitz embeddings. Furthermore, we may employ techniques

for constructing Holder homeomorphism between spheres of normed spaces (for example,

see Chapter 9 of [29]) to obtain new ANN data structures. For a particularly elegant example

of when Theorem 30 and Theorem 25 shine, consider ¸p spaces when p Ø 2. Here, bi-

Lipschitz embeddings into ¸
1

incur distortion d1/2≠1/p,39 resulting in ANN data structure

via Theorem 17 with polynomial approximation. On the other hand, a well-known map, the

Mazur map ([104], and Section 9.1 of [29]), between the S(¸d
p) æ S(¸d

1

) given by40

(x
1

, . . . , xd)

„‘≠æ(sign(x
1

) · |x
1

|p, . . . , sign(xd) · |xd|p), (1.15)

is 1-Holder with constant at most 2p. Consider setting r = p and s = 1, and notice that

f„,r : Rd æ Rd acts coordinate-wise as specified in (1.15). In order to find a translation

z œ Rd which centers the dataset, we let zk œ R where Ex≥fl[sign(xk ≠ zk)|xk ≠ zk|p] = 0

for every k œ [d].41 Therefore, we may assume (4.3) and apply Theorem 30, with s = – = 1

39The identity map embeds ¸p æ ¸
2

with distortion d1/2≠1/p, and matrix multiplication by Gaussian
random variables embeds ¸

2

æ ¸
1

with small constant distortion. See Footnote 1.
40More generally, a Mazur map exists from any ¸p æ ¸q norm, by analogously mapping (x

1

, . . . , xd) æ
(sign(x

1

)|x
1

|p/q, . . . , sign(xd), |xd|p/q
).

41To see that such a point zk œ R exists, notice that E
x≥fl[sign(xk ≠ zk)|xk ≠ zk|p] is continuous as a

51

and r = p, to obtain the bound R(f„,r(µ), Î · Î
1

) Æ 24p · R(µ, Î · Îp
p)

1/p and hence, show that

the cutting modulus �(¸d
p, Á) . p/Á.42 Finally, we show the last ingredient, which shows a

center for the distribution fl always exists.

Theorem 31 (A Good Translation Always Exists [16]). Let X = (Rd, Î · ÎX) and Y =

(RdÕ
, Î · ÎY) be any normed spaces. Suppose that for – œ (0, 1] and c Ø 0, the function

„ : S(X) æ S(Y) is an –-Holder homeomorphism with constant c. For any probability

distribution fl supported on finitely many points in Rd and any r > 1, there exists a point

z œ Rd such that

E
x≥fl

[f„,r(x ≠ z)] = 0. (1.16)

Furthermore, if, for R œ R, fl is supported in BX(0, R), the point z may be chosen to satisfy

ÎzÎX Æ 8

r/–R.

A similar approach, utilizing a properly generalized Mazur map, obtains ANN data

structures for the Schatten-p norms with approximation O(p). These are normed spaces

defined on Rd◊d, where vectors x are interpreted as matrices, and the Schatten-p norm is

given by ÎxÎSp = (

qd
i=1

|‡i(x)|p)

1/p, where ‡
1

(x), . . . , ‡d(x) are the d singular values of x.

The non-commutative Mazur map [121] maps S(Sp) æ S(Sq) by mapping x ‘æ U�

p/qV ,

where U�V is the singular value decomposition of x, and bounds on – and c analogous to

that of S(¸p) æ S(¸q) are attained for any p, q œ [1, Œ). Recall that Schatten-2, i.e., the

Frobenius norm, is equivalent to ¸d2

2

, and we have established (1.9) when the right-hand side

is R(µ, Î · Î2

2

). One would apply Theorem 46 to obtain a centering z œ Rd, and then apply

Theorem 30 with X = Sp, for some p œ [1, Œ), Y = S
2

, and s = 2.

function of zk, and at some moment changes sign as zk increases.
42We note that with a different approach, [114, 27] utilize the Mazur map as an embedding to design a data

structure for O(2

p
)-ANN over ¸p norms. The challenge with that approach is that distances between large

vectors are poorly preserved; to overcome this, [114, 27] reduce the c-bounded-ANN problem, where dataset
points lie in a bounded ball of radius O(c).

52

1.5 Time Efficient Algorithms for Any Norm

Special care is need when defining the exact computational model for ANN data structures

over arbitrary normed spaces X = (Rd, Î · ÎX). For example, computing ÎxÎX should not

be the bottleneck, and instances considered should be numerically stable, i.e., discretizing

coordinates to within w-bit precision should not incur massive changes to distances.43 We

consider the following assumptions:

1. We design data structures for (1, c)-ANN over X , i.e., the distance threshold is 1; the

assumption is without loss of generality, since otherwise, we may rescale all points.

2. We assume the unit ball of the normed space X , BX , satisfies B¸
2

µ BX µ
Ô

dB¸
2

. Equivalently, this corresponds to the assumption that every x œ Rd satisfies

ÎxÎ
2

/
Ô

d Æ ÎxÎX Æ ÎxÎ
2

. By John’s theorem, one may apply a linear transformation

(increasing running time by O(d2

) times bit complexity of the linear transformation).

3. For simplicity, we consider the case all dataset points P µ Rd, as well as the query

q œ Rd, lie within a Euclidean ball of radius poly(d) from 0 œ Rd. This assumption is

also without loss of generality, although some algorithmic preprocessing is required:

we first build the data structure for ANN over ¸
1

in Theorem 1, which uses a randomly

chosen LSH function and utilize it to hash dataset points into buckets; for each

non-empty bucket, we recenter the points to enforce a bounded diameter.

4. We assume access to an oracle which computes ÎxÎX for any x œ Rd.

We record the final theorem of this section, which shows that an algorithm which

computes the radial extension of an –-Holder homeomorphism into ¸
2

efficiently suffices

for time-efficient ANN data structures.

Theorem 32 (Time Efficient Data Structures from Holder Homeomorphisms [16]). Let

X = (Rd, Î · ÎX) be any normed space, and suppose that for – œ (0, 1], c Ø 0, and dÕ œ ,

there exists an –-Holder homeomorphism „ : S(X) æ S(¸dÕ
2

) with constant c. Suppose, that

for r Ø 1, there exists an algorithm ALG„,r which receives as input a vector x œ Rd and an

43Recall that w is the word complexity of data structures, which will commonly be set to O(log n).

53

error parameter ” œ (0, 1), and outputs in time poly(d, dÕ, 1/”) a vector y œ RdÕ such that

Îf„,r(x) ≠ yÎ
2

Æ ”.

Then, for any Á œ (0, 1), there exists a data structure for ANN over X with space complexity

poly(d, dÕ
)n1+O(Á)

log(1/Á) and time complexity poly(d, dÕ
)nO(Á)

log(1/Á), which achieves

approximation (O((c + r)/Á))

1/–.

At a high level, the proof of Theorem 32 designs an algorithm by combining the bound

of �(X, Á) Æ (O((c + r)/Á))

1/– from Theorem 30 and Theorem 46, as well as the ideas

behind Theorem 25. Similarly to Remark 28, the query algorithm behind Theorem 25 needs

to walk down a decision tree, where the child node in the walk depends on whether the

query point q œ Rd lies in a set S µ Rd, where S was sampled from a distribution H made

up of unions of (possibly infinite) low-conductance cuts guaranteed to exists from the bound

on �(X, Á). For each S œ supp(H), there was some symmetric probability distribution µ

supported on pairs of points X ◊ X within distance at most 1 whose marginal fl has no

small-diameter dense clusters, and the set S was a balanced separator with respect to µ (i.e.,

µ(S, X \ S) . Á, and min{fl(S), 1 ≠ fl(S)} Ø 1/3).

We make two observations when applying Theorem 30 and Theorem 46 to µ with

marginal fl. The first is that if fl does not contain small-diameter clusters, the low-

conductance cut S is specified by the inverse image of an axis aligned threshold after

a translation of f„,r. In other words, Theorem 30 and Theorem 46 imply that if we translate

all points in µ according to some centering (as specified by Theorem 46), and then we

apply f„,r to every point, we obtain a distribution µÕ in ¸dÕ
2

where R(µÕ, Î · Î2

2

) is small.44

The claim is that there exists an axis aligned threshold in RdÕ which has low conductance

with respect to µ.45 As a result, in order to determine whether the query q belongs to S or

44That occurs when we apply Theorem 30 with s = 2.
45Technically, we showed in Section 1.4.1 how to obtain axis aligned thresholds of low conductance given

an upper bound on R(µÕ, Î · Î
1

), while we have an upper bound on R(µÕ, Î · Î2

2

). The thing to notice is that we
may apply Theorem 30 and Theorem 46 with the Mazur map M

2,1 : S(¸dÕ

2

) æ S(¸dÕ

1

) (see Equation 1.15 and
Section 4.1.1), and parameters r = 2, s = 1, – = 1; the result is that if we translate the points in µÕ and apply
M

2,1 to every point, we obtain a distribution µÕÕ where R(µÕÕ, Î · Î
1

) is small, hence, giving an axis aligned
threshold of low-conductance. Finally, notice that the Mazur map acts coordinate-wise and monotonically, i.e.,

54

not, one needs to translate q, apply f„,r, and check the appropriate coordinate, which may

be done efficiently given an algorithm for computing f„,r. We note that one (minor) issue

which adds some complication is that the algorithm ALG„,r does not compute f„,r exactly,

but rather, outputs a vector y which within distance ” of f„,r; hence, we must ensure that

Theorem 30 and Theorem 46 are robust to perturbations on the order of 1/poly(dr, dÕ
).

The second observation is to address the following potential worry: the balanced

separator may be the union of (possibly infinite) low-conductance cuts, and if each cut

used a different translation, the time required to check whether a query lies in this union

would be unbounded. We now use the fact Theorem 46 gave a translation where (1.16) is

0, and that (4.3) allowed some slack. The good news is that we may re-use translations.

Specifically, consider any subset S where fl(S) is very small, and let µÕ be the distribution

given by (x, y) ≥ µ conditioned on x, y /œ S, and let flÕ be the marginal of µÕ. Since all

points are bounded within a ball of radius R (in Î · ÎX), we always have Îf„,r(x)Î
2

Æ Rr,

which means that E
x≥fl

[f„,r(x)] ≠ E
x≥flÕ

[f„,r(x)]

....
2

. Rrfl(S).

In particular, if fl(S) is 1/poly(dr
), for sufficiently large polynomial, the left-hand side of

(4.3) is small, while the right-hand side of (4.3) is large when there are no low-diameter

dense clusters. Therefore, we may invoke Theorem 46 only after the having removed

1/poly(dr
)-fraction of points. When the same translation is used, the union of axis aligned

thresholds is an axis aligned box (with possibly infinite sides). In summary, the resulting

balanced separators are the union of polynomially many axis aligned boxes obtained after

applying translations and f„,r.

We state the final ingredient for applying Theorem 32 in order to obtain ANN data

structures for any norm. In particular, we establish efficiently computable Holder homeo-

morphisms between unit spheres of normed spaces.

Theorem 33 (Efficient Holder Homeomorphism between Perturbations of Spheres [59,

29, 16]). Let X = (

d, Î · ÎX) be any normed space, and fix –, —, “ œ (0, 1/2]. There

M
2,1(x)i Æ M

2,1(y)i if and only if xi Æ yi. Thus, the inverse image of an axis aligned threshold under the
transformation M

2,1 is also an axis aligned threshold.

55

exists two normed spaces Y = (

d, Î · ÎY) and Z = (

d, Î · ÎZ), as well as an –-Holder

homeomorphism „ : S(Y) æ S(Z) with constant O(1/
Ô

“—) such that the following three

items hold:

• The normed space Y is a small perturbation of X: BY µ BX µ d–+—(1≠2–)/2BY .

Furthermore, there exists an algorithm which given as input a vector x œ Rd and

” > 0, as well as oracle access to Î · ÎX , outputs ‚÷ œ RØ0

satisfying ‚÷ œ (ÎxÎY ≠
”, ÎxÎY + ”) in time poly(d, 1/”).

• The normed space Z is a small perturbation of ¸d
2

: B¸d
2

µ BZ µ d“(1≠2–)/2B¸d
2

.

• There exists an algorithm which given as input a vector x œ Rd and ” > 0 such that

ÎxÎY œ (1 ≠ ”, 1 + ”), as well as oracle access to Î · ÎX , outputs in time poly(d, 1/”),

a vector y œ Rd satisfying

Îy ≠ „(x/ÎxÎY)ÎZ Æ ”.

We now apply Theorem 33 with

– = — =

1Ô
log d

and “ =

1

log d
.

Let µ be any symmetric probability distribution supported on finitely many pairs Rd ◊ Rd.

First, notice that by Theorem 33,

R(µ, Î · Î2

Y) Æ d2–+—(1≠2–) · R(µ, Î · Î2

X). (1.17)

Applying Theorem 30 with „ from Theorem 33, r = 1, and s = 2, we have that there exists

a translation z, giving the distribution µÕ such that

R(f„,r(µ
Õ
), Î · Î2

Z) . 1/(“—) · R(µ, Î · Î2

Y)

–. (1.18)

Finally, once again, we use the fact that Z is a perturbation of (

d, Î · Î
2

) to write

R(f„,r(µ
Õ
), Î · Î2

2

) . d“(1≠2–) · R(f„,r(µ
Õ
), Î · Î2

Z). (1.19)

56

Combining (1.17), (1.18), and (1.19), as well as the parameter settings,

R(f„,r(µ
Õ
), Î · Î2

2

) . d“(1≠2–) · 1/(“—) · d2–2

+—–(1≠2–)R(µ, Î · Î2

X)

–

= poly(log d) · R(µ, Î · Î2

X)

1/
Ô

log d.

57

Chapter 2

ANN for General Symmetric Norms

In this chapter, we formally prove Theorem 21, Theorem 22, and Theorem 22, as stated

in Section 1.1 in Chapter 1. We re-state the definition as well as the main theorem for the

algorithm for convenience.

Definition 17. A normed space X = (Rd, Î · ÎX) is symmetric if Î · ÎX : Rd æ RØ0

is invariant under permutation and sign-flips of coordinates. In other words, if x œ Rd

and xú œ Rd is given by sorting the coordinates of |x| in non-increasing value, satisfy

ÎxÎX = ÎxúÎX .

Recall the main result is a poly(log log n)-ANN data structure for an arbitrary symmetric

norm. Formally, we prove the following theorem, which we instantiate with d = no(1) so as

to disregard polynomial dependencies in the dimension.

Theorem 34. Fix n œ and d = no(1). For every d-dimensional symmetric norm Î · Î,

there exists a data structure for ANN over Î · Î for n-point datasets with approximation

(log log n)

O(1) space n1+o(1), and query time no(1).

We re-state two theorems which we use extensively in this chapter: Theorem 2, which

gives a data structure for ¸Œ, as well as Theorem 20, which shows how to combine many

data structures for product spaces.

Theorem 35 ([78]). For any fl Ø 0, there exists a data structure for (4Álog

1+fl log(4d)Ë+1)-

ANN over ¸d
Œ with space complexity O(dn1+fl

) and time complexity O(d log n).

Theorem 36 (Theorem 1 of [77] and Theorem 5.1.2 of [5]). Let k œ , and suppose

{(Xi, dXi
)}iœ[k]

is a collection of metric spaces where each admits a c-ANN data structure

using space at most s(n) Ø n and query time at most q(n) for some c Ø 1. For any ” > 0,

59

Á œ (0, 1), and p œ [1, Œ), there exists a data structure for O(cÁ≠1

log

1+” log n)-ANN

over the ¸p-product of X’s1
(◊k

i=1

Xi, d¸k
p(Xi)

) using space2 O(ks(n)n”+Áp
), and query time

O(nÁp
) · O(q(n) log(n) + k log(n) maxjœ[k]

log |Xk|).

2.1 An algorithm for Orlicz norms

Before showing a data structure for general symmetric norms, we give an algorithm for

general Orlicz norms. We then show how to apply these ideas to top-k norms. This restricted

setting has a simple analysis and illustrates one of the main techniques used. A similar

approach was used in prior work to construct randomized embeddings of ¸p norms into

¸Œ, and solve the ANN search problem; here we show that these techniques are in fact

applicable in much greater generality.

Definition 18 (Orlicz Norms). Let G : RØ0

æ RØ0

be a non-zero convex function with

G(0) = 0. For d œ , the Orlicz norm G = (Rd, Î · ÎG) is defined by letting its unit ball

BG µ Rd consist of all vectors x œ Rd with
qd

i=1

G(|xi|) Æ 1.

Lemma 2.1.1. Let Î · ÎG be an Orlicz norm. For every D, – > 1 and every µ œ (0, 1/2)

there exists a randomized linear map f : Rd æ Rd such that for every x œ Rd:

• if ÎxÎG Æ 1, then Prf

5...f(x)

...Œ Æ 1

6
Ø µ;

• if ÎxÎG > –D, then Prf

5...f(x)

...Œ > D
6

Ø 1 ≠ µ–.

Proof. Let the distribution D over R
+

have the following CDF F : R
+

æ [0, 1]:

F (t) = Pr
u≥D

[u Æ t] = 1 ≠ µG(t).

1Given a collection of metric spaces {(Xi, dXi)}iœ[k]

and p œ [1, Œ], the ¸p-product of X’s the metric
space defined over the cartesian product ◊k

i=1

Xi, where distances between points (a
1

, . . . , ak), (b
1

, . . . , bk)

is given by d¸k
p(Xi)

(a, b) = (

qk
i=1

dXi(ai, bi)
p
)

1/p.

2We remark that [77], which first obtained this Theorem for p = Œ, states a weaker bound in the space
complexity. [8] noticed a better analysis gave the corresponding space bound. See also, Appendix A of [12].

60

Consider the following randomized linear map f : Rd æ Rd:

(x
1

, x
2

, . . . , xd)

f‘æ
3

x
1

u
1

,
x

2

u
2

, . . . ,
xd

ud

4

where u
1

, . . . , ud ≥ D are i.i.d. samples from D. Suppose that ÎxÎG Æ 1. Then,qd
i=1

G(|xi|) Æ 1. This, in turn, implies:

Pr
f

5
Îf(x)ÎŒ Æ 1

6
=

dŸ
i=1

Pr
ui≥D

5---- xi

ui

---- Æ 1

6
=

dŸ
i=1

µG(|xi|)
= µ

qd

i=1

G(|xi|) Ø µ.

Now suppose that ÎxÎG > –D. This, together with the convexity of G(·), implies:

dÿ
i=1

G

A |xi|
D

B
Ø (1 ≠ –)G(0) + – ·

dÿ
i=1

G

A |xi|
–D

B
Ø –.

Thus, we have:

Pr
f

5
Îf(x)ÎŒ Æ D

6
=

dŸ
i=1

Pr
ui≥D

5---- xi

ui

---- Æ D
6

=

dŸ
i=1

µG(|xi|/D)

= µ
qd

i=1

G(|xi|/D) Æ µ–.

Theorem 37 (ANN for Orlicz norms). For every d-dimensional Orlicz norm Î ·ÎG and every

Á œ (0, 1/2), there exists a data structure for ANN over Î ·ÎG, which achieves approximation

O
1

log log d
Á2

2
using space O (dn1+Á

) and query time O (dnÁ
).

Proof. Let P µ Rd be a dataset of n points. Consider the data structure which does the

following:

1. For all 1 Æ i Æ nÁ, we independently apply the randomized linear map f from

Lemma 2.1.1 with parameters µ = n≠Á, D = O
1

log log d
Á

2
, and – =

2

Á . We define

Pi = {f i(x) | x œ P}

to be the image of the dataset under f i, where f i is the i-th independent copy of f .

2. For each 1 Æ i Æ nÁ, we use Theorem 2 to build a data structure for ANN over ¸Œ

61

with approximation D for dataset Pi. We refer to the i-th data structure as Ti.

Each Ti occupies space O(dn1+Á
) and achieves approximation D with query time O(d log n).

To answer a query q œ Rd, we query Ti with f i(q) for each i œ [nÁ
]. Let xi be the point

returned by Ti, and let pi œ P be the pre-image of xi under f i, so that f i(pi) = xi. If for

some Ti, the point returned satisfies Îpi ≠ qÎG Æ –D, then we return pi.

• If there exists some p œ P with Îp ≠ qÎG Æ 1, then by Lemma 2.1.1, with probability

1 ≠ (1 ≠ n≠Á
)

nÁ Ø 3

5

, some f i has Îf i(p ≠ q)ÎŒ Æ 1. Since f i is linear, Îf i(p) ≠
f i(q)ÎŒ Æ 1 as well.

• Let i œ [nÁ
] be an index where some p œ P with Îp≠qÎG Æ 1 has Îf i(p)≠f i(q)ÎŒ Æ

1. Every other pÕ œ P with ÎpÕ ≠ qÎG Ø –D satisfies

Pr
5
Îf i(p

Õ
) ≠ f i(q)ÎŒ Æ D

6
Æ 1

n2

.

A union bound over at most n points with distance greater than –D to q shows that

except with probability at most 1

n , Ti returns some pi œ P with Îpi ≠ qÎG Æ –D.

Thus, the total probability of success of the data structure is at least 3

5

≠ 1

n .

The total query time is O (dnÁ · log n) and the total space used is O (dn1+2Á
). This data

structure achieves approximation –D = O
1

log log d
Á2

2
. Decreasing Á by a constant factor, we

get the desired guarantees.

Remark. The construction of the randomized embedding in Lemma 2.1.1 and the data

structure from Theorem 37 work in a somewhat more general setting, rather than just for

Orlicz norms. For a fixed norm Î · Î, we can build a randomized map f : Rd æ Rd with the

guarantees of Lemma 2.1.1 if there exists a non-decreasing G : R
+

æ R
+

where G(0) = 0,

G(t) æ Œ as t æ Œ, and for every x œ Rd:

• if ÎxÎ Æ 1, then
qd

i=1

G(|xi|) Æ 1, and

• if ÎxÎ Ø –D, then
qd

i=1

G
1 |xi|

D

2
Ø –.

The data structure itself just requires the existence of a randomized linear map satisfying the

conditions of Lemma 2.1.1.

62

We now describe how to obtain a data structure for ANN for any top-k norm, (Rd, Î ·
ÎT (k)

), where ÎxÎT (k)

computes the sum of the highest (in magnitude) k coordinates of

x. In particular, for any x œ Rd, let xú œ Rd be the vector given by a non-increasing

re-arrangement of coordinates.3 Then, ÎxÎT (k)

=

qk
i=1

|xú
i |.

Lemma 2.1.2 (Randomized Embedding of Top-k into ¸Œ). Fix any k œ [d]. For every

D, – > 1 and every µ œ (0, 1/2), there exists a randomized linear map f : Rd æ Rd such

that for every x œ Rd:

• if ÎxÎT (k)

Æ 1, then Prf

5
Îf(x)ÎŒ Æ 1

6
Ø µ;

• if ÎxÎT (k)

> –D, then Prf

5
Îf(x)ÎŒ > D

6
Ø 1 ≠ µ–≠1.

Proof. We define G : R
+

æ R
+

where for every x œ Rd,

G(t) = t · ‰
[

1

k
,Œ)

(t)

If ÎxÎT (k)

Æ 1, there are at most k coordinates where |xi| Ø 1

k . Therefore,
qd

i=1

G(|xi|) Æ
ÎxÎT (k)

Æ 1. If ÎxÎT (k)

Ø –D, then
qk

i=1

|xú
i | Ø –D. Therefore,

qd
i=1

G
1 |xú

i |
D

2
Øqk

i=1

G
1 |xú

i |
D

2
Ø – ≠ 1. The proof now follows in the same way as Lemma 2.1.1.

Lemma 2.1.2 gives us a data structure for any top-k norm with approximation O(log log d)

applying Theorem 37.

2.2 Embedding symmetric norms into product spaces

We construct an embedding of general symmetric norms into product spaces of top-k norms.

To state the main result of this section, we need the following definition.

Definition 19. For any c
1

, . . . , cd Ø 0, let ¸d
1

(T (c)

) µ Rd2 be the space given by the

seminorm Î · Î(c)

T,1 · Rd2 æ R where for x = (x
1

, . . . , xd) œ Rd2 and x
1

, . . . , xd œ Rd:

ÎxÎ(c)

T,1 =

dÿ
k=1

ckÎxkÎT (k)

.

3In other words, for x œ Rd, the vector xú œ Rd is such that xú
1

Ø · · · Ø xú
d and there exists a bijection

fi : [d] æ [d] where for all i œ [d], xi = xú
fi(i).

63

Theorem 38 (Re-statement of Theorem 19). For any constant ” œ (0, 1/2), any symmetric

norm Î · ÎX : Rd æ R can be embedded linearly with distortion 1 + ” into ¸t
Œ(¸d

1

(T (c)

))

where t = dO(log(1/”)”≠1

). In particular, there exists c œ Rt◊d
+

such that for every x œ Rd,

(1 ≠ ”)ÎxÎX Æ max

iœ[t]

A
dÿ

k=1

ci,kÎxÎT (k)

B
Æ (1 + ”)ÎxÎX . (2.1)

The vectors in ¸t
Œ(¸d

1

(T (c)

)) µ Rtd2 can be broken up into td blocks of d coordinates

each. The embedding referenced above will simply map x œ Rd into Rtd2 by making each

of the td many blocks equal to a copy of x. The non-trivial part of the above theorem is

setting the constants ci,k for i œ [t] and k œ [d] so (2.1) holds. Before going on to give the

proof of Theorem 38, we establish some definitions and propositions which will be used in

the proof. For the subsequent sections, let — œ (1, 2) be considered a constant close to 1.

Definition 20 (Levels and Level Vectors). For any fixed vector x œ Rd and any k œ , we

define level k with respect to x as Bk(x) = {i œ [d] | —≠k≠1 < |xi| Æ —≠k}. Additionally,

we let bk(x) = |Bk(x)| be the size of level k with respect to x. The level vector of x,

V (x) œ Rd is given by

V (x) = (—k, . . . , —k¸ ˚˙ ˝
b≠k(x) times

, —k≠1, . . . , —k≠1¸ ˚˙ ˝
b≠k+1

(x) times

, . . . , —≠k, . . . , —≠k¸ ˚˙ ˝
bk(x) times

, 0, . . . 0)

where k is some integer such that all non-zero coordinates lie in some level between ≠k

and k. We say the i-th level vector Vi(x) œ Rd is given by

Vi(x) = (—≠i, . . . , —≠i¸ ˚˙ ˝
bi(x) times

, 0, . . . , 0).

The notation used for level vectors appears in [35]; however, we refer to level k as the

coordinates of x lying in (—≠k≠1, —≠k
]; whereas [35] refers to level k as the coordinates of

x lying in [—k≠1, —k
).

Definition 21. Fix some · > 0. For any vector x œ Rd, let C(x) œ Rd be the vector where

64

each i œ [d] sets

C(x)i =

Y_]_[xi |xi| Ø ·

0 |xi| < ·
.

Proposition 2.2.1 (Proposition 3.4 in [35]). Let Î · ÎX be any symmetric norm and x œ Rd

be any vector. Then
1

—
ÎV (x)ÎX Æ ÎxÎX Æ ÎV (x)ÎX .

Proposition 2.2.2. Let Î · ÎX be any symmetric norm. For any vector x œ Rd,

ÎxÎX ≠ ·d Æ ÎC(x)ÎX Æ ÎxÎX .

Proof. Note that x weakly majorizes C(x), so ÎC(x)ÎX Æ ÎxÎX . For the other direction,

let v = x≠C(x). Then v has all coordinates with absolute value at most · , so ·d›(1) weakly

majorizes v. Therefore,

ÎxÎX Æ ÎC(x)ÎX + ÎvÎX Æ ÎC(x)ÎX + ·d.

Intuitively, the above two propositions say that up to multiplicative loss — and additive

loss ·d in the norm of the vector, we may assume that all coordinates are exactly —j for

j Ø log—(·). Thus, if x œ Rd, then

ÎxÎX ≠ ·d Æ ÎV (C(x))ÎX Æ —ÎxÎX .

If additionally, we let · =

—
d2

, so when ÎxÎX Æ 1 there are at most 2 log— d non-empty

levels in V (C(x)).

Definition 22 (Rounded counts vector). Fix any level vector x œ Rd. The rounded counts

vector of x, W (x) œ Rd is given by y where the y œ Rd is constructed using the following

procedure:

1: Initialize y = (0, . . . , 0) œ Rd and c = d.

2: for k = ≠Œ, . . . , 2 log—(d) ≠ 1 do

65

3: if bk(x) Ø 0 then

4: Let j œ
+

be the integer where —j≠1 < bk(x) Æ —j .

5: if c Ø Â—jÊ then

6: Set the first Â—jÊ zero-coordinates of y with —≠k. Update c Ω c ≠ Â—≠kÊ.

7: end if

8: end if

9: end for

10: Return y

Intuitively, W (x) represents the level vector of x where we ignore coordinates smaller

than —
d2

, and additionally, we round the counts of coordinates to powers of —.

Lemma 2.2.3. For every vector x œ Rd and any symmetric norm Î · ÎX ,

ÎxÎX ≠ ·d Æ ÎW (V (C(x)))ÎX Æ —2ÎxÎX .

Proof. The bound ÎxÎX ≠ ·d Æ ÎW (V (C(x)))ÎX follows by combining Proposition 2.2.1

and Proposition 2.2.2, as well as the monotonicity of norms. The bound ÎW (V (C(x)))ÎX Æ
—2ÎxÎX follows from Proposition 2.2.1, Proposition 2.2.2, as well as Lemma 3.5 from

[35].

In order to simplify notation, we let R : Rd æ Rd given by R(x) = W (V (C(x))).

Definition 23. Let the set L µ Rd
+

be given by

L = {y œ Rd
+

| y
1

Ø . . . yd Ø 0}.

Additionally, for an arbitrary symmetric norm Î · ÎX with dual norm Î · ÎXú , we let the set

R µ L be given by

R = {R(y) œ Rd
+

| y œ L fl BXú}.

Definition 24. Fix a vector y œ L \ {0} (y has non-negative, non-increasing coordinates).

Let the maximal seminorm with respect to y, Î · Îy : Rd æ R be the seminorm where for

66

every x œ Rd,

ÎxÎy = È|xú|, yÍ.

We first show there exists some setting of c œ Rd such that we may compute ÎxÎy as

¸d
1

(T (c)

).

Lemma 2.2.4. For every vector y œ L \ {0}, there exists c
1

, . . . , cd Ø 0 where for all

x œ Rd,

ÎxÎy = ÎxÎ(c)

T,1.

Proof. For k œ [d], we let ck = yk ≠ yk+1

, where yd+1

= 0.

È|xú|, yÍ =

dÿ
i=1

|xú
i |yi =

dÿ
i=1

|xú
i |

A
dÿ

k=i

ck

B
=

dÿ
k=1

ck

A
kÿ

i=1

|xú
i |

B
=

dÿ
k=1

ckÎxÎT (k)

Given Lemma 2.2.4, it suffices to show that for an arbitrary symmetric norm Î · ÎX , we

may compute ÎxÎX (with some distortion) as a maximum over many maximal seminorms.

In the following lemma, we show that taking the maximum over maximal norms from

R suffices, but gives sub-optimal parameters. We then improve the parameters to prove

Theorem 38.

Lemma 2.2.5. Let Î · ÎX be an arbitrary symmetric norm and let Î · ÎXú be its dual norm.

Then for any ÎxÎX Æ 1,

ÎxÎX ≠ ·d Æ max

yœR
ÎxÎy Æ —2ÎxÎX .

Proof. Without loss of generality, we rescale the norm so that Îe
1

ÎXú
= 1, where e

1

is

the first standard basis vector. Consider any x œ Rd with ÎxÎX Æ 1. Then since Î · ÎX

is symmetric, we may assume without loss of generality that all coordinates of x are non-

negative and in non-increasing order. Thus for each y œ L fl {0}, we have ÎxÎy = Èx, yÍ.

The lower bound simply follows from the fact that R(z), other than coordinates less than

67

· , is monotonically above z, and all coordinates in x are non-negative. More specifically,

ÎxÎX = sup

zœLflBXú
Èx, zÍ Æ sup

zœLflBXú
Èx, R(z)Í + ·d = max

yœR
Èx, yÍ + ·d,

where ·d comes from the fact that because ÎxÎX Æ 1, every coordinate of x is at most 1.

On the other hand, we have

max

yœR
Èx, yÍ = —2

max

yœR
Èx,

y

—2

Í Æ —2

sup

zœBXú
Èx, zÍ = —2ÎxÎX ,

where we used the fact that Îy/—2ÎXú Æ 1 by Lemma 2.2.3.

Given Lemma 2.2.5, it follows that we may linearly embed X into ¸t
Œ(¸d

1

(T (c)

)) where

t = |R|, with distortion —2/(1 ≠ ·d) Æ —3 (where we used the fact · = —/d and that

1 + —/d Æ — for a large enough d). The embedding follows by copying the vector x

into the t spaces ¸d
1

(T (c)

) corresponding to each vector y œ R given in Lemma 2.2.4.

The one caveat is that this embedding requires t copies of ¸d
1

(T (c)

), and t is as large as

(log— d + 1)

2 log— d
= dO(log log d). This is because there are at most 2 log— d many levels, and

each contains has number of coordinates being some value in {—i}log— d
i=0

. Thus, our algorithm

becomes inefficient once d Ø 2

Ê
(

log n
log log n).

In order to avoid this problem, we will make the embedding more efficient by showing

that we do not need all of R, but rather a fine net of R. In addition, our net will be of

polynomial size in the dimension, which gives an efficient algorithm for all Ê(log n) Æ d Æ
no(1). We first show that it suffices to consider fine nets of R, and then build a fine net of R
of size poly(d).

Lemma 2.2.6. Fix an “ œ (0, 1/2). Let Î · ÎX be an arbitrary symmetric norm and Î · ÎXú

be its dual norm. If N is a “-net of R with respect to distance given by Î · ÎXú , then

(1 ≠ “ ≠ ·d)ÎxÎX Æ max

yœN
ÎxÎy Æ (—2

+ “)ÎxÎX

Proof. Since the embedding we build is linear, it suffices to show that every vector x œ Rd

68

with ÎxÎX = 1 has

1 ≠ “ ≠ ·d Æ max

yœN
ÎxÎy Æ (—2

+ “).

Consider a fixed vector x œ Rd with ÎxÎX = 1. Additionally, we may assume the

coordinates of x are non-negative and in non-increasing order. We simply follow the

computation:

ÎxÎX = Î|xú|ÎX Æ max

yœR
È|xú|, yÍ + ·d = max

yœN
(È|xú|, yÍ + È|xú|, vÍ) + ·d Æ max

yœN
È|xú|, yÍ + “ÎxÎX + ·d,

where we used Lemma 2.2.5 and the fact that ÎvÎXú Æ “ in a “-net of R with respect to the

distance given by Î · ÎXú . On the other hand,

max

yœN
ÎxÎy = max

yœR
(È|xú|, yÍ + È|xú|, vÍ) Æ max

yœR
ÎxÎy + “ÎxÎX Æ (—2

+ “)ÎxÎX ,

where again, we used Lemma 2.2.5 and the fact that ÎvÎXú Æ “.

Finally, we conclude the theorem by providing a “-net for R of size dO(log(1/“)“≠1

).

Lemma 2.2.7. Fix any symmetric space X with dual Xú. There exists an 8(— ≠ 1)-net of

size dO(log(1/(—≠1))/ log —) for R with respect to distances given by Î · ÎXú .

We defer the proof of Lemma 2.2.7 to the next section. The proof of Theorem 38

follows by combining Lemma 2.2.4, Lemma 2.2.6, and Lemma 2.2.7. In particular, given

a ((— ≠ 1)/8)-net of R, we get an embedding with distortion at most (—2

+ 8(— ≠ 1))(1 +

(8(— ≠ 1) + ·d)

2

) from Lemma 2.2.6. We let · = —/d2 and — =

Ò
1 + ”/100 to get the

desired linear embedding with distortion 1 + ”. We now proceed to proving Lemma 2.2.7,

which gives the desired upper bound on the size of the net.

2.2.1 Proof of Lemma 2.2.7: bounding the net size

We now give an upper bound on the size of a fine net of R. We proceed by constructing a

further simplification of R(x). Intuitively we show that one can ignore the higher levels if

there are fewer coordinates in the higher levels than some lower level.

69

Lemma 2.2.8. Let Î · ÎX be a symmetric norm. Consider any nonnegative vector x œ Rd
+

as well as two indices u, v œ [d]. Let y œ Rd
+

be the vector with:

yk =

Y_____]_____[
xk k œ [d] \ {u, v}

xu + xv k = u

0 k = v

.

Then ÎyÎX Ø ÎxÎX .

Proof. Consider the vector z œ BXú where Èx, zÍ = ÎxÎX . Now, we let zÕ œ Rd be given

by

zÕ
k =

Y_____]_____[
zk k œ [d] \ {u, v}

max{zu, zv} k = u

min{zu, zv} k = v

Note that zÕ is a permutation of z, so zÕ œ BXú . Now,

Èy, zÕÍ = (xu + xv) max{zu, zv} +

ÿ
kœ[d]\{u,v}

xkzk Ø ÿ
kœ[d]

xkzk = Èx, zÍ = ÎxÎX .

Definition 25. Consider a vector x œ R. We define the simplified rounded vector S(x) as

the vector returned by the following procedure.

1: Initialize z = x

2: for k = 0, 1, . . . , 2 log—(d) ≠ 1 do

3: if bk(z) Æ maxj<k+3 log—(—≠1)

bj(z) then

4: Set all coordinates of z of value —≠k to 0 i.e. set bk(z) = 0.

5: end if

6: end for

7: Sort the coordinates of z in non-increasing order and return z.

Next we show that the simplified rounded vector is close to the rounded counts vector.

70

Lemma 2.2.9. Let Î · ÎX be a symmetric norm and let x œ R. Then ÎS(x) ≠ xÎX Æ
2(— ≠ 1)ÎxÎX .

Proof. Consider some k œ [2 log— d ≠ 1] and let Ck(x) µ [d] be set of coordinates where x

is at level k and does not equal S(x) = z, i.e.,

Ck(x) = {i œ [d] | xi = —≠k and xi ”= zi}.

Additionally, for each k œ [2 log— d ≠ 1], let Tk µ [d] be the coordinates at level k in x

which trigger line 3 of S(x), and thus become 0’s in z (we do not need to consider the case

k = 0 since line 3 never triggers, in fact, we do not need to consider k œ [≠3 log—(b ≠ 1)]

either). In other words,

Tk(x) = {i œ [d] | xi = —≠k and at iteration k of S(x), bk(z) Æ max

j<k+3 log—(—≠1)

bj(z)}.

Note that T
1

(x), . . . , T
2 log— d≠1

(x) are all disjoint, and |Ck(x)| Æ q
jœ[k]

|Tj(x)|, since

whenever we zero out coordinates in levels less than or equal to k, S(x) will shift the

coordinates when we sort, causing xi ”= zi. Thus, we may consider an injection sk : Ck(x) æt
jœ[k]

Tj(x), which charges coordinates in Ck(x) to coordinates which were zeroed out in

line 3 of S(x).

Additionally, for each j œ [2 log— d ≠ 1] where Tj(x) ”= ÿ, we let qj be the integer

between 0 and j + 3 log—(— ≠ 1) which triggered line 3 of S(x) at k = j. More specifically,

0 Æ qj Æ j + 3 log—(— ≠ 1) is the integer for which bj(x) Æ bqj
(x).

Finally, for each j œ [2 log— d ≠ 1] where Tj(x) ”= ÿ, we let gj : Tj(x) æ Bqj
(x) (recall

that Bqj
(x) µ [d] are the indices of x at level qj) be an arbitrary injection. Such an injection

exists because bj(x) Æ bqj
(x). We may consider the mapping F :

t
kœ[2 log— d≠1]

Ck(x) æ [d]

where

F (i) = gj(sk(i)) where k and j are such that i œ Ck(x) and sk(i) œ Tj(x).

See Figure 2.2.1 for an example of a coordinate being mapped by F . Let y be the vector

where we “aggregate” coordinates of
t

kœ[2 log—(d)≠1]

Ck(x) of x according to the map F

71

((x =

Bqj
(x)

i
≠3 log—(— ≠ 1)

¸

Tj(x)

iÕ

Ck(x)

sk

gj

Figure 2.1: Example mapping of particular levels of x with F showing aggregation of
coordinates. The coordinate iÕ œ Ck(x) belongs to level k and will be non-zero in x ≠ S(x).
In particular, coordinate iÕ œ Ck(x) is mapped via sk to coordinate ¸ œ Tj(x), which is —≠j

in x and 0 in S(x). Then coordinate ¸ is mapped to i œ Bqj
(x), where qj is the level below

j with bqj
Ø bj . Thus, the composed map F sends iÕ to i.

according to Lemma 2.2.8. In particular, we define y œ Rd where for i œ [d], we let

yi =

ÿ
iÕœF ≠1

(i)

xiÕ .

Note that for each i œ [d], 0 Æ (x ≠ z)i Æ xi, and
t

kœ[2 log—(d)≠1]

Ck(x) µ [d] are the non-

zero coordinates of x ≠ z. Thus, from Lemma 2.2.8, we conclude that Îx ≠ zÎX Æ ÎyÎX .

We now turn to upper-bounding ÎyÎX .

Fix some i œ [d] where xi = —≠j . Then

yi =

ÿ
k>j≠3 log—(—≠1)

Qa ÿ
kÕØk

xs≠1

kÕ (g≠1

k
(i))

Rb ,

where we interpret xs≠1

kÕ (g≠1

k
(i)) as 0 when g≠1

k (i) = ÿ, or s≠1

kÕ (g≠1

k (i)) = ÿ. Note that

whenever xs≠1

kÕ (g≠1

k
(i)) ”= 0, xs≠1

kÕ (g≠1

k
(i)) = —≠kÕ . Thus,

yi Æ ÿ
k>j≠3 log—(—≠1)

Qa ÿ
kÕØk

—≠kÕ

Rb Æ ÿ
k>j≠3 log—(—≠1)

—1≠k

— ≠ 1

Æ —1≠j+3 log—(—≠1)

(— ≠ 1)

2

Æ —(— ≠ 1) · —≠j.

Recall that xi = —≠j , so —(— ≠ 1)x weakly majorizes y, and thus

Îx ≠ zÎX Æ ÎyÎX Æ —(— ≠ 1) · ÎxÎX .

Hence, when — Æ 2, we have Îx ≠ zÎX Æ 2(— ≠ 1)ÎxÎX .

72

Proof of Lemma 2.2.7. We now prove the theorem by showing that the set

N = {S(x) œ Rd | x œ R}

is a “-net of R, and we give an upper bound on the size. By Lemma 2.2.9, Îx ≠ S(x)ÎX Æ
2(— ≠ 1)ÎxÎX Æ 8(— ≠ 1). So it suffices to give an upper bound on the size of N .

We bound from above the number of net points by an encoding argument. Let z = S(x)

and let

tk =

bk(z)

maxj<k+3 log—(—≠1)

bj(z)

.

Let kú œ {0, . . . , 2 log— d ≠ 1} be the smallest level k with non-zero bk(z). For all j >

kú ≠ 3 log—(— ≠ 1), we either have tj(z) = 0 or tj(z) Ø 1. Additionally, z has d coordinates,

so
2 log— d≠1Ÿ

j=kú≠3 log—(—≠1)

max(tj, 1) Æ d≠3 log—(—≠1),

since terms of the product “cancel” except for at most ≠3 log—(— ≠ 1), which are each at

most d.

We will encode z œ N in three steps. In the first step, we use 2 log— d ≠ 1 bits

in order to encode whether bk(z) = 0 or bk(z) > 0. In the second step, we then en-

code the values bkú
+j(z) for j œ {0, . . . , 3 log—(1/(— ≠ 1))}. Finally, we go through

j > kú
+ 3 log—(1/(— ≠ 1)), and encode ti using a prefix-free code, where writing ti uses

at most O (log max(ti, 1)) many bits. Thus, in total, the number of bits we use is

O

Qa
log— d + log d log—

A
1

— ≠ 1

B
+

2 log— d≠1ÿ
j=kú≠3 log—(—≠1)

log max(tj, 1)

Rb
= O

Qa log d · log

1
1

—≠1

2
log —

+ log

Qa 2 log— d≠1Ÿ
j=kú≠3 log—(—≠1)

max(tj, 1)

RbRb
= O

Qa log d · log

1
1

—≠1

2
log —

Rb .

Thus, we obtain N is a 8(— ≠ 1)-net, and the size of N is dO(log(1/(—≠1))/ log —).

73

2.3 Proof of Theorem 34

We now prove our main result, Theorem 34. The algorithm here achieves approximation

O

A
log

2

log n · log log d

Á5

B
.

We proceed by giving an algorithm for ¸t
Œ(¸d

1

(T (c)

)) using Theorem 2, Theorem 5.1.2 from

[5], and Theorem 36.

Lemma 2.3.1. Fix some c
1

, . . . , cd Ø 0. Let ¸d
Œ(T (c)

) be the space with Î · Î(c)

T,Œ : Rd2 æ R

seminorm where for every x = (x
1

, . . . , xd) œ Rd2 ,

ÎxÎ(c)

T,Œ = max

kœ[d]

ckÎxkÎT (k)

.

For every Á œ (0, 1/2), there exists a data structure for ANN over Î ·Î(c)

T,Œ which achieves ap-

proximation O(log log n · log log d/Á3

) using space O (d2 · n1+Á
) and query time O (d2 · nÁ

).

Proof. Given the randomized embedding from Lemma 2.1.2, we can build a data structure

for ckÎ · ÎT (k)

achieving approximation O(log log d/Á2

) using space O(d2n1+Á/2

) and query

time O(d2nÁ/2

). This data structure works in the same way as in the proof of Theorem 37.

We handle the constant ck by rescaling the norm, and since the embeddings are linear, it

does not affect the correctness of the data structure. Then we apply Theorem 2.

Lemma 2.3.2. Fix some c
1

, . . . , cd Ø 0. Let ¸d
1

(T (c)

) be the space with Î · Î(c)

T,1 : Rd2 æ R

seminorm where x = (x
1

, . . . , xm) œ Rd2 ,

ÎxÎ(c)

T,1 =

dÿ
k=1

ckÎxkÎT (k)

.

For every Á œ (0, 1/2), there exists a data structure for ANN over Î · Î(c)

T,1 which achieves

approximation O(log log n · log log d/Á4

) using space O(d2 ·n1+Á
) and query time O(d2 ·nÁ

).

Proof. The proof follows from Theorem 5.1.2 in [5] and Lemma 2.3.1.

74

Finally, we are combine the above results to get an improved algorithm for general

symmetric norms.

Theorem 39. For every d-dimensional symmetric norm Î · ÎX and every Á œ (0, 1/2), there

exists a data structure for ANN over Î·ÎX which achieves approximation O(log

2

log n log log d/Á5

)

using space dO(1) · O(n1+Á
) and query time dO(1) · O(nÁ

).

Proof. Given Theorem 38, we embed Î · ÎX into ¸poly(d)

Œ (¸d
1

(T (c)

)) with approximation

(1 ± 1

10

). The result from Lemma 2.3.2 allows we to apply Theorem 36 to obtain the desired

data structure.

Theorem 39 implies our main result Theorem 34.

2.4 A lower bound for linear embeddings of general

symmetric norms

We show that these techniques do not extend to general norms. In particular, we show there

does not exist a universal norm U for which any norm embeds (possibly randomized) with

constant distortion, unless the blow-up in dimension is exponential. Hence the result from

below applies to cases of U = ¸Œ as well as an (low-dimensional) product spaces.

Theorem 40. For any Á > 0, let U be a dÕ-dimensional normed space such that for any d-

dimensional normed space X , there exists a distribution D supported on linear embeddings

f : Rd æ RdÕ where for every x œ Rd,

ÎxÎX Æ Îf(x)ÎU Æ DÎxÎU

holds with probability at least 2/3 over the draw of f ≥ D, for D = O(d1/2≠Á
). Then

dÕ
= exp (�(d2Á

)).

The following proof presented was suggested by Piotr Indyk. We will prove the above

theorem by showing that if there exists a universal normed space U satisfying the conditions

of Theorem 40 above, then two parties, call them Alice and Bob, can use the embeddings

75

to solve the communication problem INDEX with only a few bits. Let U be a proposed dÕ-

dimensional normed space satisfying the conditions of Theorem 40. By the John’s theorem

[25], we may apply a linear transform so that:

B¸
2

µ BU µ
Ô

dÕB¸
2

Lemma 2.4.1. For any Á > 0, there exists a set of exp (�(d2Á
)) many points on the unit

sphere Sd≠1 such that pairwise inner-products are at most 1/d1/2≠Á. In fact, these points

may consist of points whose coordinates are ±1/
Ô

d.

Proof. Consider picking two random points x, y œ Sd≠1 where each entry is ± 1Ô
d
. Then by

Bernstein’s inequality,

Prx,y

5
|Èx, yÍ| Ø 1

d1/2≠Á

6
Æ 2 exp

1
≠�(d2Á

)

2

We may pick exp (�(d2Á
)) random points and union bound over the probability that some

pair has large inner product.

Fix Á > 0 and C = d1/2≠Á, and let P be set a set of unit vectors with pairwise inner-

product at most 1

C of size exp(�(d2Á
)). For each a œ {0, 1}P consider the following

norm:

ÎxÎa = C · max

yœP :ay=1

|Èx, yÍ|.

Assume there exists a randomized linear embedding f : Rd æ RdÕ with the following

guarantees:

• For every x œ Rd, ÎxÎa Æ Îf(x)ÎU Æ DÎxÎa with probability at least 2

3

.

Note the embedding f can be described by M , a dÕ ◊ d matrix of real numbers. Addi-

tionally, we consider rounding each entry of M by to the nearest integer multiple of 1

poly(d)

to obtain M Õ. For each x œ Sd≠1, Î(M ≠ M Õ
)xÎU Æ Î(M ≠ M Õ

)xÎ
2

Æ 1

poly(d)

. Thus, we

may assume each entry of M is an integer multiple of 1

poly(d)

, and lose (1 ± 1

poly(d)

) factor in

the distortion of the embedding for vectors in B
2

.

76

We now show that the existence of the randomized embedding implies a one-way

randomized protocol for the communication problem INDEX. We first describe the problem.

In an instance of INDEX:

• Alice receives a string a œ {0, 1}n.

• Bob receives an index i œ [n].

• Alice communicates with Bob so that he can output ai.

Theorem 41 ([92]). The randomized one-way communication complexity of INDEX is

�(n).

We give a protocol for INDEX:

1. Suppose Alice has input a œ {0, 1}P . She will generate the norm Î · Îa described

above. Note that f ≥ D has that for each x œ Rd, the embedding preserves the norm

of x up to D with probability 2

3

. In particular, if Bob’s input is i œ |P |, corresponding

to point y, then an embedding f œ D, which we represent as a dÕ ◊ d matrix M ,

satisfies:

ÎyÎa Æ ÎMyÎU Æ DÎyÎa

with probability 2

3

. In particular, with probability 2

3

:

• If ai = 0, then ÎyÎa Æ 1, which implies ÎMyÎU Æ D.

• If ai = 1, then ÎyÎa Ø C, which implies ÎMyÎU Ø C.

Alice computes the set Pc µ P of vectors which satisfy the above property (i.e. the

embedding M preserves increases the norm by at most a factor D).

2. Alice finds a subset B µ Pc of linearly independent vectors such that every x œ Pc we

have x œ span(B). Note that |B| Æ d and for all x œ B, ÎMxÎ
2

Æ Ô
dÕÎMxÎU Æ

C · D · Ô
dÕ. Therefore, each Mx œ RdÕ can be written with ˜O(dÕ

) bits. So Alice sends

the set B, as well as Mx for each x œ B using ˜O(ddÕ
) bits.

3. In order for Bob to decode ai, he first checks whether y œ span(B), and if not, he

77

guesses. If y œ span(B), which happens with probability 2

3

, then Bob writes

y =

ÿ
biœB

cibi

and My =

q
biœB ciMbi. If ÎMyÎU Æ D, then ai = 0 and if ÎMyÎU Ø C then

ai = 1. Thus, if D < C
2

, Bob can recover ai with probability 2

3

.

Alice communicates ˜O(ddÕ
) bits, and Bob is able to recover ai with probability 2

3

. By

Theorem 41, ddÕ Ø ˜

� (|P |), which in turn implies dÕ Ø exp (�(d2Á
)).

78

Chapter 3

ANN via the Cutting Modulus

We now provide the formal arguments for Section 1.3 in Chapter 1, where the main algo-

rithmic contribution is to show that small cutting modulus (Definition 15) yields a new

ANN bit-probe data structure with small approximation, O(�(X, Á)). We recall that a data

structure in the bit-probe model is specified by a preprocessing procedure that encodes the

input as a string of bits, which is the data structure, and a query procedure that inspects

some of the bits in the data structure to answer a given query.

Definition 26 (Re-statement of the Cutting Modulus [14]). Let (X, dX) be a finite metric

space and Á œ (0, 1). The cutting modulus �(X, Á) is the infimum of � > 0 such that the

following holds. For all r Ø 0, and all symmetric probability measures µ supported on

pairs of points X ◊ X at distance at most r in X with marginal distribution fl, either (1)

there exists a set B µ X with fl(B) Ø 1/2 and diamX(B) Æ r · �, or (2) there exists a set

S µ X with conductance

�µ(S) =

µ(S, X \ S)

min{fl(S), 1 ≠ fl(S)} Æ Á.

Theorem 42 (Re-statement of Cell-Probe Data Structure for (�(X, Á) + 1)-ANN [14]).

Let (X, dX) be a metric space of size N and Á œ (0, 1). There exists a data structure for

(�(X, Á) + 1)-ANN over X with space complexity n1+O(Á)

log N(log(1/Á) + log log N) and

cell-probe complexity nO(Á)

log N(log(1/Á) + log log N).

We do not bound the time of the query procedure, only the number of bits read from the

preprocessed memory. To simply store the dataset requires �(n · log N) bits, so the space

overhead of the data structure is essentially nO(Á), up to lower order terms. Finally, the query

procedure is deterministic and the randomness is only used in the preprocessing step.

79

The main tool used to prove Theorem 42 is a new randomized partitioning procedure for

a metric space (X, dX) with guarantees similar to those of data-dependent LSH [13, 10, 18].

Crucially, the quality of the resulting partitions is directly governed by the cutting modulus

�(X, Á). They are also tractable, in the sense that, for any dataset P ™ X , a partition of X

can be specified by a small number of bits. The precise guarantees are given in the following

theorem.

Theorem 43 (Re-statement of the Main Partitioning Theorem[14]). Let (X, dX) be a

metric space of size N , Á œ (0, 1/8), and r Ø 0. There exists a collection F of at

most NO(log(1/Á)+log log N) subsets of X such that the following holds. If, for 1 < m Æ N and

x
1

, . . . , xm œ X , all B µ X with diamX(B) Æ r · �(X, Á) satisfy |B fl {x
1

, . . . , xm}| Æ
m/8, there exists a distribution H supported on F satisfying:

1. A subset S ≥ H satisfies |S fl {x
1

, . . . , xm}| œ [m/8, 7m/8] with probability 1.

2. If y, z œ X satisfy dX(y, z) Æ r, then

Pr
S≥H

[|{y, z} fl S| = 1] Æ 20Á.

3.1 Partitioning general metrics

The proof of Theorem 43 consists of three parts, which are described in the next three

sections. We first set up some notation. For a finite set U , let �(U) be the set of all

probability measures over U , and let �(U) be the set of all symmetric probability measures

over U ◊U . For fl œ �(U) and u œ U , we write fl(u) = fl({u}), and similarly, for µ œ �(U)

and u, v œ U , we write µ(u, v) = µ({(u, v)}). For µ œ �(U), recall that we denote the

marginal probability measure by flµ œ �(U), given by flµ(u) =

q
vœU µ(u, v).

Let (X, dX) be a finite metric space. For r Ø 0, we denote by �r(X) ™ �(X) the set of

all symmetric probability measures over X ◊ X supported on the pairs of points (x, y) with

dX(x, y) Æ r. We use BX(x, r) = {y œ X : dX(x, y) Æ r} to denote the ball of the radius

r centered at x œ X .

80

3.1.1 Cutting Modulus and Partitioning

Definition 27 (Dispersed measures). A measure fl œ �(X) is (R, —)-dispersed for R > 0

and 0 Æ — Æ 1 if every B µ X with diamX(B) Æ R has fl(B) Æ —. The subset

�R,—(X) µ �(X) is the set of all (R, —)-dispersed probability measures over X .

With this definition, we can restate Definition 26 of the cutting modulus �(X, Á) as the

infimum over all � > 0 for which we have that, for every r > 0 and every µ œ �r(X) with

flµ œ �

�·r,1/2

(X), there exists S µ X such that �µ(S) Æ Á. The next two definitions deal

with notions of randomly partitioning a metric space.

Definition 28 (Balanced Cuts). Let U be a finite set, S ™ U and fl œ �(U). Fix 0 Æ — Æ
1/2. We say that S is —-balanced with respect to fl, if — Æ fl(S) Æ 1 ≠ —. Moreover, we say

that a probability distribution D over 2

U is —-balanced with respect to fl if all sets in the

support of D are —-balanced.

Definition 29 (Separating Distribution). We say that a distribution D over subsets of X is

(s, ”)-separating for s > 0 and 0 Æ ” Æ 1, if for every x, y œ X with 0 < dX(x, y) Æ s, one

has: PrS≥D[

---{x, y} fl S
--- = 1] Æ ”.

Theorem 43, stated more concisely now, guarantees that, for every fl œ �

�(X,Á)·r,1/8

(X),

there exists a (r, 20Á)-separating distribution D supported on F , all of which are 1/8-

balanced with respect to fl.

3.1.1.1 Finding balanced sparse cuts

Lemma 3.1.1. Let µ œ �r(X) satisfy flµ œ �R,1/4

(X). Then, there exists a subset S ™ X

which is 1/4-balanced with respect to flµ and satisfies µ(S ◊ (X \ S)) Æ Á/2.

We note that µ œ �r(X) satisfying flµ œ �R,1/4

(X) must also satisfy flµ œ �R,1/2

(X),

so by the definition of the cutting modulus, there exists a subset S µ X with �µ(S) Æ Á.

Since X is a finite metric space, the proof of Lemma 3.1.1 will follow from applying the

following claim.

81

Claim 3.1.2. Let µ œ �r(X) satisfy flµ œ �R,1/4

(X) and suppose S µ X satisfies �µ(S) Æ
Á and flµ(S) < 1/4. Then, there exists a non-empty subset S Õ µ X \ S with flµ(S Õ

) Æ 1/2

satisfying �µ(S fi S Õ
) Æ Á.

Proof. Consider the measure µ̃ œ �r(X) given by conditioning µ on (X \ S) ◊ (X \ S).

We will show that flµ̃ œ �R,1/2

(X), which by the definition of the cutting modulus, implies

there exists a set S Õ µ X with flµ̃(S Õ
) Æ 1/2 and �µ(S Õ

) Æ Á. Then, we will show that

S fi S Õ satisfies �µ(S fi S Õ
) Æ Á.

First, we note that for any subset T µ X ,

flµ̃(T) =

flµ(T) ≠ µ(T ◊ S) ≠ µ((T fl S) ◊ (X \ S))

1 ≠ flµ(S) ≠ µ(S ◊ (X \ S)) ≠ µ((X \ S) ◊ S)

. (3.1)

Since flµ(S) < 1/4 and �µ(S) Æ Á for Á < 1/8, we have flµ̃(T) Æ 2flµ(T). In particular,

this implies that if x œ X and we consider the ball T = BX(x, R), then flµ̃(T) Æ 2flµ(T) Æ
1/2 since flµ œ �R,1/4

. We conclude flµ̃ œ �R,1/2

(X), and let S Õ µ X be a set satisfying

flµ̃(S) Æ 1/2 and �µ̃(S) Æ Á guaranteed to exists since R = �(X, Á) · r. Without loss of

generality, we may assume S Õ µ X \ S, since flµ̃(x) = 0 for all x œ S. Applying (3.1) to

the set S Õ gives flµ(S) Æ 1/2. Finally, since �µ(S) Æ Á and �µ̃(S Õ
) Æ Á, we have:

µ((SfiS Õ
)◊(X \(SfiS Õ

))) Æ Áflµ(S)+Áflµ̃(S Õ
)µ((X \S)◊(X \S)) Æ Á(flµ(S)+flµ(S Õ

)),

which finished the claim.

Proof of Lemma 3.1.1. Let µ œ �r(X) satisfy flµ œ �R,1/4

(X), and let S be the collection

of subsets S µ X with �µ(S) Æ Á and flµ(S) < 3/4, and let Sú œ S be the set of maximum

cardinality (which is well-defined since X is finite). Then, if flµ(Sú
) < 1/4, letting S Õ be the

non-empty set obtained from Claim 3.1.2, we have Sú fi S Õ œ S , which contradicts the fact

Sú has maximum cardinality among all sets in S . Thus, �µ(Sú
) Æ Á and Sú is 1/4-balanced

with respect to flµ, which implies µ(Sú ◊ (X \ Sú
)) Æ Á/2.

Lemma 3.1.3. Suppose that ‹ œ �R,1/7

(X) and µ œ �r(X). Then, there exists a subset

S ™ X , which is 1/7-balanced with respect to ‹ and µ
1
S ◊ (X \ S)

2
Æ 8Á.

82

Proof. Consider the probability measure µ̃ over X ◊ X given by

µ̃(x
1

, x
2

) =

Y__]__[
1

8

· µ(x
1

, x
2

) if x
1

”= x
2

;

1

7

· µ(x
1

, x
1

) +

7

8

· ‹(x
1

) otherwise.

Note µ̃ œ �r(X), and for every S ™ X , flµ̃(S) = flµ(S)/8+7‹(S)/8 and µ̃(S ◊(X \S)) =

µ(S ◊ (X \ S))/8. Furthermore, any ball of radius R has measure at most 1/7 in ‹ and

at most 1 in µ, which gives µ̃ œ �R,1/4

(X). We now apply Lemma 3.1.1 to µ̃ to obtain

a set S µ X which is 1/4-balanced with respect to flµ̃ and has µ̃(S ◊ (X \ S)) Æ Á/2.

Then, by the properties of flµ̃ and µ̃ above, S Õ must be 1/7-balanced with respect to ‹ and

µ(S ◊ (X \ S)) Æ 4Á.

3.1.2 The Multiplicative Weights Update Method

One of the crucial ingredients in our arguments is a version of the Multiplicative Weights

Update algorithm [20]. Before we state the relevant result, let us recall the notion of relative

entropy. Suppose that U is a finite set, and let Â, ‹ be two probability measures over U . We

define the relative entropy RE(ÂÎ‹) as

RE(ÂÎ‹) =

ÿ
uœU

Â(u) · ln

Â(u)

‹(u)

,

where Â(u) · ln

Â(u)

‹(u)

= 0 when Â(u) = 0, and Â(u) · ln

Â(u)

‹(u)

= Œ if ‹(u) = 0 and Â(u) > 0.

The following lemma is implicit in the proof of Theorem 2.4. in [20], and is also used

in [74]. We include a proof for completeness.

Lemma 3.1.4. Let U be a finite set. Let ‹ œ �(U), and 0 Æ ÷ Æ 1. Then, for every S ™ U ,

there exist two probability measures ‹+, ‹≠ œ �(U), with the same support as ‹, such that

for every Â œ �(U):

RE(ÂÎ‹+

) ≠ RE(ÂÎ‹) Æ ÷(‹(S) ≠ Â(S)) + ÷2

RE(ÂÎ‹≠
) ≠ RE(ÂÎ‹) Æ ÷(Â(S) ≠ ‹(S)) + ÷2.

83

Proof. We define the measures as follows: for any u œ U , we set

‹+

(u) =

‹(u)e÷S(x)q
wœU ‹(w)e÷S(w)

, ‹≠
(u) =

‹(u)e≠÷S(x)q
wœU ‹(w)e≠÷S(w)

,

where S(u) equals 1 if u œ S, and 0 otherwise. We prove the lemma for ‹+

(u); the proof

for ‹≠
(u) is analogous.

By the definition of relative entropy, we have

RE(ÂÎ‹+

(u)) ≠ RE(ÂÎ‹) =

ÿ
uœU

Â(u) ln

‹(u)

‹+

(u)

=

ÿ
uœU

Â(u) ln

q
wœU ‹(w)e÷S(w)

e÷S(u)

= ≠÷Â(S) + ln

ÿ
wœU

‹(w)e÷S(w) Æ ≠÷Â(S) + ln

ÿ
wœU

‹(w)(1 + ÷S(w) + ÷2S(w))

= ≠÷Â(S) + ln(1 + ÷‹(S) + ÷2‹(S)) Æ ÷(‹(S) ≠ Â(S)) + ÷2.

The first inequality above follows from ez Æ 1+z+z2 for all |z| Æ 1. The second inequality

follows from ln(1 + z) Æ z.

We will use the following immediate corollary of Lemma 3.1.4.

Corollary 3.1.5. Let U be a finite set. Let ‹ œ �(U), and 0 Æ ” Æ 1. Then, for every

S ™ U , there exist two probability measures ‹+, ‹≠ œ �(U) such that for every Â œ �(U):

• If Â(S) Ø ‹(S) + ”, then RE(ÂÎ‹+

) Æ RE(ÂÎ‹) ≠ ”2

4

;

• If Â(S) Æ ‹(S) ≠ ”, then RE(ÂÎ‹≠
) Æ RE(ÂÎ‹) ≠ ”2

4

.

Proof. Follows from Lemma 3.1.4 by setting ÷ =

”
2

.

3.1.2.1 Weaker version of Theorem 43

Using Lemma 3.1.3, we now show a weaker version of Theorem 43, which will later be

used to show Theorem 43.

Lemma 3.1.6. For every ‹ œ �R,1/7

(X), there exists a (r, 9Á)-separating distribution D
supported on O(Á≠2

log N) subsets of X , all of which are 1/7-balanced with respect to ‹.

84

The key difference between Theorem 43 and Lemma 3.1.6 is that in Lemma 3.1.6 we

do not require the distribution D to be supported on a collection F of subsets of X that is

both of small size (|F| = NO(log N)) and is independent of the measure ‹. This property is

crucial for the ANN application, since it allows to encode a subset sampled from D using

merely O((log N)(log Á≠1

+ log log N)) π N bits. Nevertheless, Lemma 3.1.6 is a useful

step towards Theorem 43.

Proof of Lemma 3.1.6. To give some intuition, let us first show the existence of D supported

on possibly all the 2

N subsets of X . By von Neumann’s minimax theorem,

min

D
max

x
1

,x
2

Pr
S≥D

5---{x
1

, x
2

} fl S
--- = 1

6
= max

µ
min

S
µ(S ◊ (X \ S)),

where D ranges over distributions supported on 1/7-balanced sets with respect to ‹, x
1

, x
2

range over pairs of points in X such that 0 < dX(x
1

, x
2

) Æ r, µ ranges over �r(X), and

S ranges over 1/7-balanced sets. Then, if there is no distribution D as in the statement

in the lemma, there must exist a distribution µ œ �r(X) such that for every set S ™ X

that is 1/7-balanced with respect to ‹, one has µ
1
S ◊ (X \ S)

2
> 8Á. But this directly

contradicts Lemma 3.1.3. In order to also give a bound on the support size of D, we will use

a constructive proof of the minimax theorem, based on the multiplicative weights update

method. The argument follows along the lines of [65] (see also [20]).

For any x
1

, x
2

œ X such that 0 < dX(x
1

, x
2

) Æ r, define Âx
1

,x
1

to be the measure that

assigns 1

2

to (x
1

, x
2

) and to (x
2

, x
1

), and 0 to all other pairs of points. Let µ
0

œ �r(X) be

the uniform probability measure on {(x
1

, x
2

) : 0 < dX(x
1

, x
2

) Æ r}. Let 0 Æ ÷ Æ 1 be a

real parameter, and T be an integer parameter, both to be determined soon. Suppose that we

have defined measures µ
0

, µ
1

, . . . , µt≠1

, where 1 Æ t Æ T is an integer. Let St µ X be a

1/7-balanced set with respect to ‹ such that µt≠1

1
St ◊ (X \ St)

2
Æ 8Á, which is guaranteed

to exist by Lemma 3.1.3. By Lemma 3.1.4, there exists a measure µt = µ+ œ �r(X) such

that, for any distinct x
1

and x
2

satisfying dX(x
1

, x
2

) Æ r,

RE(Âx
1

,x
2

Îµt) Æ RE(Âx
1

,x
2

Îµt≠1

) + 8÷Á ≠ ÷Âx
1

,x
2

(St ◊ (X \ St)) + ÷2.

85

Adding these inequalities over t œ {1, . . . , T} gives that, for all x
1

, x
2

as above,

RE(Âx
1

,x
2

ÎµT) Æ RE(Âx
1

,x
2

Îµ
0

) + 8T÷Á ≠ |{t : |{x
1

, x
2

} fl St| = 1}| + T÷2. (3.2)

Let us set T Ø 4 log(N2

)

Á2

and ÷ =

Ò
log(N2

)

T and, and define D to be distribution of St when t

is sampled uniformly at random from [T]. An easy calculation shows that D(Âx
1

,x
2

Îµ
0

) <

log(N2

), and, by the non-negativity of relative entropy, RE(Âx
1

,x
2

ÎµT) Ø 0. Using these

facts, and rearranging inequality (3.2), we get

Pr
S≥D

5---{x
1

, x
2

} fl S
--- = 1

6
<

log(N2

)

T÷
+ 8Á + ÷ Æ 9Á,

as we wanted to prove.

3.1.2.2 Proof of Theorem 43

We are now ready to prove Theorem 43 using Lemma 3.1.6 as a subroutine.

Lemma 3.1.7. There exists two functions Enc : �R,1/8

(X) æ {0, 1}¸ and Dec : {0, 1}¸ æ
�R,1/7

(X) with ¸ = O((log N)(log Á≠1

+ log log N)) such that for any Â œ �R,1/8

(X),

letting ‹ = Dec(Enc(Â)) and D be the (r, 9Á)-separating distribution which is 1/7-

balanced with respect to ‹ given by Lemma 3.1.6, D is 1/8-balanced with respect to Â.

Proof. For the remainder of the proof, given a distribution ‹ œ �R,1/7

, denote D‹ as

the (r, 9Á)-separating distribution which is 1/7-balanced with respect to ‹, as given by

Lemma 3.1.6. Let us fix some T > 4 · 10

4 · log N . For any Â œ �R,1/7

(X), we consider

the sequence T (Â) = ((‹i, Si) œ �(X) ◊ 2

X
: 0 Æ i Æ T) defined recursively by letting

‹
0

œ �(X) be the uniform distribution and S
0

= ÿ, and when i Ø 1:

• If ‹i≠1

/œ �R,1/7

(X), then we let Si be a ball BX(x, R) for x œ X with ‹i≠1

(Si) Ø
1/7. If there are many such balls, we choose one in some fixed way, e.g. by imposing

an order on X , and picking the ball whose center comes first in the order. Since

Â œ �R,1/8

(X), we have Â(Si) < 1/8, so we let ‹i = ‹≠
i≠1

be the distribution

obtained from applying Corollary 3.1.5 with set Si to ‹i≠1

, Â, and ” = 1/100.

86

• If ‹i≠1

œ �R,1/7

(X), we consider the distribution D‹i≠1

. If every S œ supp(D‹i≠1

) is

1/8-balanced with respect to Â, we let ‹i = ‹i≠1

and Si = ÿ. Otherwise, we let Si be

a set in supp(D‹i≠1

) where Â is not 1/8-balanced. Therefore, |Â(Si) ≠ ‹i≠1

(Si)| Ø
1/100, so let ‹i be the distribution obtained from applying Corollary 3.1.5 with Si≠1

to

‹i≠1

, Â, and ” = 1/100. In particular, if Â(Si) Ø ‹i≠1

(Si) + 1/100, we let ‹i = ‹+

i≠1

,

and if Â(Si) Æ ‹i≠1

(Si) ≠ 1/100, we let ‹i = ‹≠
i≠1

.

We make two crucial observations. The first observation is that for all i Ø 1 whenever

‹i≠1

”= ‹i, D(ÂÎ‹i) Æ RE(ÂÎ‹i≠1

) ≠ ”2/4 (for ” = 1/100) by Corollary 3.1.5. Recall

that relative entropy is always non-negative, so 0 Æ RE(ÂÎ‹i). Moreover, since ‹
0

is

uniform, RE(ÂÎ‹
0

) = log N ≠ H(Â) Æ log N , where H(Â) is the Shannon entropy of

Â. It follows that, for some large i Æ T , we have ‹T = . . . = ‹i = ‹i≠1

and equivalently,

‹T œ �R,1/7

(X) and D‹T
is 1/8-balanced with respect to Â. The second observation is

that for all i Ø 1, ‹i only depends on Si, ‹i≠1

, and on whether Â(Si) > ‹i≠1

(Si), and this

information can be encoded concisely. Next we describe the precise encoding. Let us fix

some ¸Õ
= O(log Á≠1

+ log log N) such that 2

¸Õ ≠ 1 is an upper bound on the support size

of D‹i
, and, for each i Ø 0, fix a bijection fi from the support of D‹i

to {0, 1}¸Õ \ {0}. For

example, we can fix an ordering on X , and, for a set S in the support of D‹i
, let fi(S) be its

rank in the lexicographic ordering of supp(D‹i
). We define ‡i œ {0, 1}¸Õ

+1 for each i Ø 1

as follows:

• If ‹i≠1

”œ �R,1/7

(X), or if ‹i≠1

œ �R,1/7

(X) and every set in the support of D‹i≠1

is

1/8 balanced, we set ‡i = 0.

• If ‹i œ �R,1/7

, then we set ‡i = fi≠1

(Si) ¶ 0 in case Â(Si) > ‹i≠1

(Si), and we set

‡i = fi≠1

(Si) ¶ 1 in case Â(Si) < ‹i≠1

(Si). Here ¶ denotes concatenation.

Then, Enc(Â) equals the concatenation ‡ = ‡
1

¶ . . . ¶ ‡T . Clearly, ¸ = T · (¸Õ
+ 1) =

O((log N)(log Á≠1

+ log log N)) as claimed. The value of the decoding function Dec(‡),

for ‡ œ {0, 1}¸, can be computed by decoding the sequence T (Â), and returning ‹ = ‹T .

In particular, we set ‹
0

to be the uniform distribution on X , and use ‡ to simulate the

recursive construction of T (Â) above. For that purpose, we divide ‡ into ‡
1

, . . . , ‡T , each

a block of ¸Õ
+ 1 bits. If ‡i = 0 and ‹i≠1

”œ �R,1/7

(X), we set Si to be a ball BX(x, R)

87

such that ‹i≠1

(Si) Ø 1/7, and set ‹i = ‹≠
i≠1

. (If there are multiple such balls, we break ties

in the same way we did in the construction of T .) If ‡ = 0 and ‹i≠1

œ �R,1/7

(X), then

we set Si = ÿ and ‹i = ‹i≠1

. If ‡i ”= 0, then we let ‡Õ
i be the first ¸Õ bits of ‡i, and set

Si = f≠1

i (‡Õ
i). If the last bit of ‡i is 0, we set ‹i = ‹+

i≠1

, and if the last bit of ‡i is 1, we set

‹i = ‹≠
i≠1

. It is straightforward to verify that the sequence (‹i, Si)
T
i=0

constructed in this way

equals T (Â). Then, Dec(‡) = ‹T as promised, and, as observed above, we must have that

‹T œ �R,1/7

(X) and D‹T
is 1/8-balanced with respect to Â.

Proof of Theorem 43. For any ‡ œ {0, 1}¸, where ¸ = O((log N)(log Á≠1

+ log log N)) is

as in Lemma 3.1.7, consider the distribution ‹ = Dec(‡) œ �R,1/7

(X), and let D‡ be

the 1/7-balanced, (r, 9Á)-separating distribution supported on O(Á≠2

log N) subsets of X ,

guaranteed to exist by Lemma 3.1.6. We let F =

t
‡œ{0,1}¸ supp(D‡). The cardinality of

F is bounded by O(2

¸Á≠2

log N) = 2

O((log N)(log Á≠1

+log log N)). By Lemma 3.1.7, for every

Â œ �R,1/8

(X), there exists some (r, 9Á)-separating distribution D‡ (namely, the one for

‡ = Enc(Â)) which is 1/8-balanced with respect to Â. By construction, D‡ is supported

on O(Á≠2

log N) of the sets in F , as required.

3.2 Cell-probe ANN data structure

Proof. We first describe a “building block”: the data structure with success probability

n≠O(Á). The final data structure will simply consist of nO(Á) such independent data structures,

and the query algorithm will query each of them. The building block is simply a randomized

decision tree, which we build and query recursively.

During recursion, we will have the following mutually exclusive cases, which cover all

the possibilities.

• Case 1. P = ÿ.

• Case 2. |P | = 1.

• Case 3. |P | > 1 and there is a point x
0

œ X such that |P fl BX(x
0

, r�(X, Á)/2)| >

|P |/8.

88

• Case 4. |P | > 1 and for every x
0

œ X , one has |P fl BX(x
0

, r�(X, Á)/2)| Æ |P |/8.

Preprocessing algorithm During the preprocessing, we do the following depending on

the case.

• Case 1. We do nothing.

• Case 2. We store the only element p
0

œ P .

• Case 3. We store x
0

œ X and an arbitrary point p
0

œ P fl BX(x
0

, r�(X, Á)/2) and

call the preprocessing procedure recursively for the set P \ BX(x
0

, r�(X, Á)/2).

• Case 4. Let Â be the uniform distribution over P . By the assumption, Â œ
�r�(X,Á),1/8

(X), thus we can apply Theorem 43 to it. Theorem 43 gives a distri-

bution D over subsets of X . We sample S ≥ D, and store the description of S using

O(log N(log Á≠1

+ log log N)) bits. Finally, we call the preprocessing procedure

recursively for the sets P fl S and P \ S.

Query algorithm The query algorithm proceeds recursively descending down the tree

built during the preprocessing. Let q œ X be a query point.

• Case 1. We return ‹.

• Case 2. If dX(p
0

, q) Æ (�(X, Á) + 1)r, we return p
0

, otherwise, we return ‹.

• Case 3. If q œ BX(x
0

, (�(X, Á) + 1)r), then we return the point p
0

œ P fl
BX(x

0

, r�(X, Á)/2) we stored, otherwise, we query the data structure for P \
BX(x

0

, r�(X, Á)/2).

• Case 4. If q œ S (to check this, we reconstruct S from the succinct O(log N(log Á≠1

+

log log N))-bit description that we stored), then we query the data structure for P fl S,

otherwise, we query the data structure for P \ S.

Now let us analyze the above algorithm.

Claim 3.2.1. The depth of the built decision tree is O(log n).

Proof. Consider the preprocessing procedure. For Case 3, |P fl BX(x
0

, r�(X, Á)/2)| >

|P |/8, thus, we recurse on the dataset of size (1 ≠ �(1)) · |P |. The same happens for Case

4, since the set S is 1/8-balanced with respect to the uniform distribution over P .

89

Claim 3.2.2. The total number of nodes in the built decision tree is O(n).

Proof. This readily follows from the fact that we always recurse on at most two (possibly

empty) sets of points, which are always disjoint.

Claim 3.2.3. One can store each tree node using O(log N(log Á≠1

+ log log N)) bits.

Proof. In a tree node, we need to store O(1) pointers, O(1) points from X , and at most one

subset S ™ X . Pointers require O(log n) = O(log N) bits, points require O(log N) bits,

and subsets can be encoded using O(log N(log Á≠1

+ log log N)) bits.

Claim 3.2.4. The space required to store the decision tree is O(n · (log N(log Á≠1

+

log log N))) bits.

Proof. This is an easy corollary of Claim 3.2.2 and Claim 3.2.3.

Claim 3.2.5. The query procedure inspects O(log n · (log N(log Á≠1

+ log log N))) bits of

the memory.

Proof. Similar to Claim 3.2.4, this is an immediate corollary of Claim 3.2.1 and Claim 3.2.3.

Claim 3.2.6. For a fixed query point q œ X , which is within r from some pú œ P , the

probability of returning a point p œ P with dX(q, p) Æ (�(X, Á) + 1)r is at least n≠O(Á).

Proof. The desired probability is lower bounded by the probability that q and pú are

not separated in the decision tree in the “Case 4” nodes. This probability is at least

(1 ≠ 9Á)

O(log n)

= n≠O(Á), since by Claim 3.2.1 the depth of the tree is O(log n), and the

distribution D in any “Case 4” tree node is (r, 9Á)-separating.

To get the success probability 0.9, we build nO(Á) decision trees, and when answering

a query, we query all of them. The desired bounds can be easily obtained from the above

claims for a single tree.

90

3.3 An Inefficient Upper Bound on the Cutting Modulus

of any Normed Space

Here, we prove Theorem 24 from Section 1.2 in Chapter 1, which as discussed, immediately

gives an upper bound on the cutting modulus of any d-dimensional normed space.

Definition 30 (Re-statement of Non-Linear Spectral Gaps). Let (X, dX) be a metric space

and for m œ , µ œ �([m]). For p > 0, the inverse of the non-linear spectral gap “(µ, dp
X)

is the infimum over “ > 0 such that for any u
1

, . . . , un œ X ,

E
i,j≥flµ

[dX(ui, uj)

p
] Æ “ E

(i,j)≥µ
[dX(ui, uj)

p
] .

Theorem 44. Let d œ and consider any normed space X = (Rd, Î · ÎX). For m œ
and µ œ �([m]) over [m] ◊ [m],

“(µ, Î · Î2

X) .
A

log d

⁄
2

(Lµ)

B
2

,

where ⁄
2

(Lµ) is the second smallest eigenvalue of the normalized Laplacian matrix Lµ =

In ≠ D≠1/2

µ GµD≠1/2

µ , where Dµ = diag(flµ), and Gµ is the m ◊ m symmetric matrix with

(Gµ)i,j = µ(i, j).

We obtain the following estimate on the cutting modulus of X:

�(X, Á) . 1 + log c
2

(X)

Á2

. 1 + log d

Á2

,

where the second step follows from the bound c
2

(X) Æ Ô
d, which, in turn, is an immediate

corollary of John’s theorem. The remainder of this section is devoted to the proof of

Theorem 44.

Let Vµ µ (Rd
)

m be the following codimension-1 subspace:

Vµ =

I
(v

1

, v
2

, . . . , vm) œ (Rd
)

m

mÿ

i=1

Ò
flµ(i) · vi = 0

J
.

91

We denote by V X
µ = (Vµ, Î · ÎV X

µ
) the normed space where for v = (v

1

, v
2

, . . . , vm) œ Vµ,

the norm is given by ÎvÎV X
µ

= (

qm
i=1

ÎviÎ2

X)

1/2. Denote by Aµ : Vµ æ Vµ the following

linear map:

(Aµv)i =

mÿ
j=1

µ(i, j)Ò
flµ(i)flµ(j)

· vj.

Putting it differently, Aµ acts on a size-m tuple of d-dimensional vectors the same way as

Aµ = D≠1/2

µ GµD≠1/2

µ acts on a size-m tuple of scalars. It is immediate to check that the im-

age of Aµ indeed lies in Vµ; this follows from the fact that (flµ(1)

1/2, flµ(2)

1/2, . . . , flµ(m)

1/2

)

is an eigenvector of Aµ. Let I : Vµ æ Vµ be the identity map.

We show that Theorem 44 readily follows from the following lemma.

Lemma 3.3.1. One has:
...(I ≠ Aµ)

≠1

...
V X

µ æV X
µ

. (1 + log c
2

(X))/⁄
2

(Lµ).

Proof of “Lemma 3.3.1 ∆ Theorem 44”. Indeed, an immediate reformulation of Lemma 3.3.1

is that for every v
1

, v
2

, . . . , vm œ Rd such that
qm

i=1

flµ(i)1/2 · vi = 0,

mÿ
i=1

ÎviÎ2

X .
A

1 + log c
2

(X)

⁄
2

(Lµ)

B
2 mÿ

i=1

......vi ≠
mÿ

j=1

µ(i, j) · vjÒ
flµ(i)flµ(j)

......
2

X

. (3.3)

Our goal is to show that for every u
1

, u
2

, . . . , um œ Rd,

mÿ
i,j=1

flµ(i)flµ(j) · Îui ≠ ujÎ2

X .
A

1 + log c
2

(X)

⁄
2

(Lµ)

B
2 mÿ

i,j=1

µ(i, j) · Îui ≠ ujÎ2

X . (3.4)

Since (3.4) contains only pairwise differences of ui’s, we can assume that
qm

i=1

flµ(i)·ui = 0.

We set v
1

, . . . , vm œ Rd by letting vi = flµ(i)1/2 · ui, so that
qm

i=1

flµ(i)1/2 · vi = 0 and, thus,

(3.3) applies. On the one hand,

mÿ
i,j=1

flµ(i)flµ(j)Îui ≠ ujÎ2

X Æ
mÿ

i,j=1

flµ(i)flµ(j)

3
ÎuiÎX + ÎujÎX

4
2

Æ 2

mÿ
i,j=1

flµ(i)flµ(j)

3
ÎuiÎ2

X + ÎujÎ2

X

4

= 4

mÿ
i=1

flµ(i)ÎuiÎ2

X = 4

mÿ
i=1

ÎviÎ2

X . (3.5)

92

On the other hand,

mÿ
i=1

......vi ≠
mÿ

j=1

µ(i, j) · vjÒ
flµ(i)flµ(j)

......
2

X

=

mÿ
i=1

......
mÿ

j=1

µ(i, j)Ò
flµ(i)

Qa viÒ
flµ(i)

≠ vjÒ
flµ(j)

Rb......
2

X

=

mÿ
i=1

......
mÿ

j=1

µ(i, j)Ò
flµ(i)

· (ui ≠ uj)

......
2

X

Æ
mÿ

i=1

Qa mÿ
j=1

µ(i, j)Ò
flµ(i)

·
...ui ≠ uj

...
X

Rb2

Æ
mÿ

i,j=1

µ(i, j) ·
...ui ≠ uj

...2

X
, (3.6)

where the third step is due to the triangle inequality, and the fourth step is due to Jensen’s

inequality. Combining (3.3), (3.5) and (3.6), we obtain (3.4).

We now proceed to the proof of Lemma 3.3.1. Let H = (Rd, Î · ÎH) be a Hilbert space

such that for every v œ Rd, one has ÎvÎH Æ ÎvÎX Æ c
2

(X) ·ÎvÎH , whose existence follows

from John’s theorem. We define the normed space V H
µ = (Vµ, Î · ÎV H

µ
) similarly to V X

µ : the

norm ÎvÎV H
µ

for v = (v
1

, v
2

, . . . , vm) œ Vµ is given by ÎvÎV H
µ

= (

qm
i=1

ÎviÎ2

H)

1/2. Clearly,

for every v œ V ,

ÎvÎV H
µ

Æ ÎvÎV X
µ

Æ c
2

(X) · ÎvÎV H
µ

. (3.7)

Finally, we define ÂAµ = (Aµ + I)/2 and ÂAµ = (Aµ + I)/2. Let us observe that I ≠ ÂAµ =

(I ≠ Aµ)/2, so Î(I ≠ Aµ)

≠1ÎV X
µ æV X

µ
Æ Î(I ≠ ÂAµ)

≠1ÎV X
µ æV X

µ
/2, thus it is enough to show

that ...(I ≠ ÂAµ)

≠1

...
V X

µ æV X
µ

. 1 + log c
2

(X)

⁄
2

(Lµ)

. (3.8)

One can see that (3.8) is an immediate corollary of the following three statements together

with (3.7). Let us note that Lemma 3.3.4 is the place where the logarithmic dependence on

the distortion shows up.

Claim 3.3.2. One has Î ÂAµÎV X
µ æV X

µ
Æ 1.

Claim 3.3.3. One has Î ÂAµÎV H
µ æV H

µ
Æ 1 ≠ ⁄

2

(Lµ)/2.

Lemma 3.3.4. Let Î · ÎP and Î · ÎQ be two norms on RdÕ such that for some � Ø 1 and

for every u œ RdÕ one has ÎuÎQ Æ ÎuÎP Æ � · ÎuÎQ. Suppose that T : RdÕ æ RdÕ is a

93

linear map such that ÎTÎP æP Æ 1 and ÎTÎQæQ Æ 1 ≠ Á for some 0 < Á < 1. Then,

Î(I ≠ T)

≠1ÎP æP . 1+log �

Á .

Proof of Claim 3.3.2. For every v = (v
1

, v
2

, . . . , vm) œ V X
µ one has

ÎAµvÎ2

V X
µ

=

mÿ
i=1

Î(Aµv)iÎ2

X =

mÿ
i=1

......
mÿ

j=1

µ(i, j) · vjÒ
flµ(i)flµ(j)

......
2

X

Æ
mÿ

i=1

Qa mÿ
j=1

µ(i, j)

flµ(i)

......
ı̂ıÙ flµ(i)

flµ(j)

· vj

......
X

Rb2

Æ
mÿ

i=1

mÿ
j=1

µ(i, j)

flµ(i)

......
ı̂ıÙ flµ(i)

flµ(j)

· vj

......
2

X

=

mÿ
i=1

mÿ
j=1

µ(i, j)

flµ(j)

ÎvjÎ2

X =

mÿ
j=1

ÎvjÎ2

X = ÎvÎ2

V X
µ

,

where the third step is by the triangle inequality, and the fourth step is by Jensen’s inequality.

Hence, ÎAµÎV X
µ æV X

µ
Æ 1. But this implies that Î ÂAµÎV X

µ æV X
µ

Æ 1 as well.

Proof of Claim 3.3.3. Let us first observe that for every u œ Rm such that
qm

i=1

(flµ(i))1/2 ·
ui = 0, one has

Î ÂAµuÎ
2

Æ
A

1 ≠ ⁄
2

(Lµ)

2

B
· ÎuÎ

2

, (3.9)

since ÂAµ is positive semidefinite, its largest eigenvalue is 1, the corresponding eigenvector

is ((flµ(i))1/2

)

m
i=1

, and the second largest eigenvalue is 1 ≠ ⁄
2

(Lµ)/2.

The desired inequality reduces to (3.9) as follows. Since H is a Hilbert space, there exists

an orthogonal (not necessarily orthonormal) basis e
1

, e
2

, . . . , ed œ Rd such that for every

u œ Rd, one has ÎuÎ2

H =

qd
i=1

Èu, eiÍ2. For 1 Æ i Æ d and v = (v
1

, v
2

, . . . , vm) œ V H
µ ,

define fii(v) = (Èv
1

, eiÍ, Èv
2

, eiÍ, . . . , Èvm, eiÍ) œ Rm. Then, ÎvÎ2

V H
µ

=

qd
i=1

Îfii(v)Î2

2

. One

has:

Î ÂAµvÎ2

V H
µ

=

dÿ
i=1

Îfii(
ÂAµv)Î2

2

=

dÿ
i=1

Î ÂAµfii(v)Î2

2

Æ
A

1 ≠ ⁄
2

(Lµ)

2

B
2 dÿ

i=1

Îfii(v)Î2

2

=

A
1 ≠ ⁄

2

(Lµ)

2

B
2

ÎvÎ2

V H
µ

.

Proof of Lemma 3.3.4. For every k Ø 1, one has

ÎT kÎP æP Æ � · ÎT kÎQæQ Æ � · (1 ≠ Á)

k.

94

Thus, we can choose kú . 1+log �

Á such that ÎT kúÎP æP Æ 1/2. Finally, we have:

Î(I≠T)

≠1ÎP æP Æ
Œÿ

k=0

ÎT kÎP æP Æ kú·
Œÿ

i=0

ÎT ikúÎP æP Æ kú·
Œÿ

i=0

(1/2)

i
= 2kú . 1 + log �

Á

as desired.

95

Chapter 4

Constructive Bounds on the Cutting Modulus of Any Norm

In this chapter, we present the formal arguments to claims made in Section 1.4 Chapter 1.

We give various upper bounds on the cutting modulus (recall, Definition 15) which yield

time efficient ANN algorithms.

Definition 31 (Non-linear Rayleigh Quotient). Let (X, dX) be a metric space, and let µ be

any symmetric probability distribution supported on finitely many pairs of X , and let fl be

its marginal distribution. For any r œ (0, Œ), the non-linear Rayleigh quotient is given by

R(µ, dr
X) =

E
(x,y)≥µ

[dX(x, y)

r
]

E
x,y≥fl

[dX(x, y)

r
]

.

The main lemma, which illustrates the approach for bounding the cutting modulus is

summarized in the following lemma.

Lemma 4.0.1 (Comparison of Rayleigh Quotient to ¸
1

). Let d œ and let X = (Rd, Î ·ÎX)

be a normed space. Suppose that for any symmetric probability distribution µ over finitely

many pairs of points in Rd, there exists f : Rd æ Rd such that for � : RØ0 æ RØ0 with

�(Á) æ 0 as Á æ 0 and r > 0,

R(f(µ), Î · Î
1

) Æ �(R(µ, Î · Îr
X)).

Then, �(X, Á) Æ 4(1/�

≠1

(Á))

1/r, where �

≠1

(Á) = sup{Á
0

Ø 0 : ’ÁÕ < Á
0

, �(ÁÕ
) Æ Á}.

Proof. Let µ be any symmetric probability distribution supported on finitely many pairs

of points in Rd within distance at most 1, and let fl be its marginal distribution. Suppose

that for any set B µ Rd with diamX(B) Æ R, we have fl(B) Æ 1/2, where we set

97

R = 4(1/�

≠1

(Á))

1/r. Then, we notice that

E
(x,y)≥µ

[Îx ≠ yÎr
X] Æ 1 and E

x,y≥fl
[Îx ≠ yÎr

X] Ø 1

2

·
3

R

2

4r

,

where in the second inequality, we are using the fact that for any x sampled from fl,

BX(x, R/2) has diameter at most R, and hence with probability at least 1/2 over the

draw of y ≥ fl, Îx ≠ yÎX Ø R/2. Hence, R(µ, Î · Îr
X) Æ 2(2/R)

r, which implies that

R(f(µ), Î · Î
1

) Æ �(2(2/R)

r
) Æ Á. By Lemma 1.4.1, there exists a cut S µ Rd of

conductance �µ(S) Æ Á.

4.1 Relating Rayleigh Quotients with Holder

Homeomorphisms

Definition 32 (Holder Homeomorphism between Spheres). Let X = (Rd, Î · ÎX) and

Y = (RdÕ
, Î·Î) be two normed spaces. For c Ø 0 and – œ (0, 1], function „ : S(X) æ S(Y)

is an –-Holder homeomorphism with Holder constant c if it is bijective and for every

a, b œ S(X),

Î„(a) ≠ „(b)ÎY Æ c · Îa ≠ bÎ–
X .

Lemma 4.1.1 (Radial Extensions of Holder Homeomorphism between Spheres). Let X =

(Rd, Î · ÎX) and Y = (RdÕ
, Î · ÎY) be two normed spaces, and for c Ø 0 and – œ (0, 1], let

„ : S(X) æ S(Y) be an –-Holder homeomorphism with constant c. Then, for r Ø 1, the

radial extension f„,r : Rd æ RdÕ given by

f„,r(x) = ÎxÎr
X · „(x/ÎxÎX) (4.1)

satisfies Îf„,r(x)ÎY = ÎxÎr
X for every x œ Rd, and for every x, y œ Rd,

Îf„,r(x) ≠ f„,r(y)ÎY Æ
1
2

–c + 2

1≠–r
2

Îx ≠ yÎ–
X

1
ÎxÎr≠–

X + ÎyÎr≠–
X

2
. (4.2)

98

Proof. The first claim, that Îf„,r(x)ÎY = ÎxÎr
X is trivial, as

Îf„,r(x)ÎY = ÎxÎr
XÎ„(x/ÎxÎX)ÎY = ÎxÎr

X ,

since „ : S(X) æ S(Y). For the second claim, let x, y œ Rd, and let a = x/ÎxÎX ,

b = y/ÎyÎX , and t = ÎyÎX/ÎxÎX , which we assume without loss of generality, that t Æ 1.

Îf„,r(x) ≠ f„,r(y)ÎY

ÎxÎr
X

Æ Î„(a) ≠ „(b)ÎY + Î„(b) ≠ tr„(b)ÎY = cÎa ≠ bÎ–
X + (1 ≠ t) · r

Æ cÎa ≠ bÎ–
X + r (Îa ≠ tbÎX) Æ Îa ≠ tbÎ–

X

1
2

–c + rÎa ≠ tbÎ1≠–
X

2
Æ

1
2

–c + 2

1≠–r
2

Îa ≠ tbÎ–
X .

where I used the fact that

Îa ≠ bÎX Æ Îa ≠ tbÎX + Îtb ≠ bÎX = Îa ≠ tbÎX + (1 ≠ t) = Îa ≠ tbÎX + ÎaÎX ≠ tÎbÎY Æ 2Îa ≠ tbÎX .

Therefore, we conclude

Îf„,r(x) ≠ f„,r(y)ÎY Æ
1
2

–c + 2

1≠–r
2

Îx ≠ yÎ–
X · ÎxÎr≠–

X ,

and the remaining term (2

–c + 2

1≠–r) Îx≠yÎ–
X ·ÎyÎr≠–

X is added in case ÎyÎX Ø ÎxÎX .

Theorem 45 (Matousek’s Extrapolation [103, 16]). Let X = (Rd, Î · ÎX) and Y = (RdÕ
, Î ·

ÎY) be any normed spaces, and suppose that for – œ (0, 1] and c Ø 0, there exists an

–-Holder homeomorphism „ : S(X) æ S(Y) with constant c. Let µ be any symmetric

probability distribution supported on finitely many pairs of points in X , and let fl be the

marginal of µ. Suppose that, for r > – and s Ø 1, the distribution fl under f„,r is

approximately centered, i.e.,

.... E
x≥fl

[f„,r(x)]

....
Y

Æ
3

1

2

s+1

· E
x≥fl

[Îf„,r(x)Îs
Y]

4
1/s

, (4.3)

99

then,

R(f„,r(µ), Î · Îs
Y) Æ 2

2s+2

(c + r)

s · R(µ, Î · Îsr
X)

–/r. (4.4)

Proof. We upper-bound the left-hand side of (4.4) by upper bounding and lower bounding

the following quantities, respectively,

E
(x,y)≥µ

[Îf„,r(x) ≠ f„,r(y)ÎY] and E
x,y≥fl

[Îf„,r(x) ≠ f„,r(y)ÎY] .

First, the upper bound follows from Lemma 4.1.1:

E
(x,y)≥µ

[Îf„,r(x) ≠ f„,r(y)Îs
Y] Æ

1
2

–c + 2

1≠–r
2s

E
(x,y)≥µ

Ë
Îx ≠ yÎs–

X

1
ÎxÎsr≠s–

X + ÎyÎsr≠s–
X

2È

Æ 2

1
2

–c + 2

1≠–r
2s

A
E

(x,y)≥µ
[Îx ≠ yÎsr

X]

B–/r 3
E

x≥fl
[ÎxÎsr

X]

4
(r≠–)/r

,

by applying Holder’s inequality with conjugates r/– and r/(r ≠ –). On the other hand, we

use (4.3) and the fact Îf„,r(x)ÎY = ÎxÎr
X for the lower bound. First, notice that

E
x≥fl

[Îf„,r(x)Îs
Y] Æ 2

s E
x≥fl

5....f„,r(x) ≠ E
y≥fl

[f„,r(y)]

....s

Y

6
+ 2

s
.... E

y≥fl
[f„,r(y)]

....s

Y

Æ 2

s E
x,y≥fl

[Îf„,r(x) ≠ f„,r(y)Îs
Y] +

1

2

E
x≥fl

[Îf„,r(x)Îs
Y] ,

where we used the triangle inequality and Jensen inequality (since s Ø 1). This implies

E
x,y≥fl

[Îf„,r(x) ≠ f„,r(y)Îs
Y] Ø 1

2

s+1

E
x≥fl

[Îf„,r(x)Îs
Y] =

1

2

s+1

E
x≥fl

[ÎxÎsr
X] .

Combining the upper and lower bounds, we have

R(f(µ), Î · Îs
Y) Æ 2

1
2

–c + 2

1≠–r
2s · 2

s+1 ·

A
E

(x,y)≥µ
[Îx ≠ yÎsr

X]

B–/r

3
E

x≥fl
[Îf„,r(x)Îsr

X]

4–/r

Æ 2

2s+2 · (c + r)

s · R(µ, Î · Îsr
X)

–/r.

100

4.1.1 ¸p Spaces

Definition 33 (Mazur Map into ¸
1

). Let d œ and p Ø 1. We let Mp,1 : Rd æ Rd be the

map which takes the vector x œ Rd to

(x
1

, . . . , xd)

Mp,1‘≠æ (sign(x
1

) · |x
1

|p, sign(x
2

) · |x
2

|p, . . . , sign(xd) · |xd|p)

Lemma 4.1.2. Fix d œ and p Ø 1. Then Mp,1 : S(¸d
p) æ S(¸d

1

) is a 1-Holder homeomor-

phism of constant at most 2p.

Proof. First, notice that Mp,1 is a bijection, and that for any x œ S(¸d
p),

ÎMp,1(x)Î
1

=

dÿ
i=1

|xi|p = 1.

For the 1-Holder estimate, consider x, y œ S(¸d
p), we upper bound each coordinate by taking

its linear approximation, and then using Holder’s inequality with conjugates p and p/(p ≠ 1).

Specifically, we have

dÿ
i=1

|sign(xi)|xi|p ≠ sign(yi)|yi|p| Æ
dÿ

i=1

p|xi ≠ yi| max {|xi|, |yi|}p≠1

Æ p

A
dÿ

i=1

|xi ≠ yi|p
B

1/p A
dÿ

i=1

max{|xi|, |yi|}p

B
(p≠1)/p

Æ 2

(p≠1)/ppÎx ≠ yÎp,

where we notice that
qd

i=1

max{|xi|, |yi|}p Æ 2 since x, y œ S(¸d
p).

Lemma 4.1.3. Fix d œ and p Ø 1. Let µ be any symmetric probability distribution

supported on finitely many pairs of points in Rd. There exists a point z œ Rd and a function

f : Rd æ Rd such that

f(x) = Mp,1(x ≠ z),

101

and we have

R(f(µ), Î · Î
1

) Æ 24p · R(µ, Î · Îp
p)

1/p.

Proof. Letting fl be the marginal distribution of µ, we first notice that there exists z œ Rd

such that

E
x≥fl

[Mp,1(x ≠ z)] = 0,

which follows from the fact that Mp,1 acts coordinate-wise, and that each i œ [d] has

Ex≥fl [Mp,1(x ≠ z)i] goes from ≠Œ to Œ as zi goes from ≠Œ to Œ. We therefore may

consider the distribution µ̃ given by (x≠z, y≠z) for (x, y) ≥ µ, whose marginal fl̃ satisfies

(4.3) with f„,r : Rd æ Rd for „ = Mp,1 and r = p. In particular, notice that f„,r = Mp,1

when viewed as a map Rd ◊ Rd. Thus, we apply Theorem 45 with s = 1, c = 2p and – = 1

to obtain

R(f(µ), Î · Î
1

) = R(f„,r(µ̃), Î · Î
1

) Æ 24p · R(µ̃, Î · Îp
p)

1/p
= 24p · R(µ, Î · Îp

p)

1/p.

Corollary 4.1.4. For any d œ and any p œ , �(¸d
p, Á) = O(p/Á).

Proof. We apply Lemma 4.1.3 and Lemma 4.0.1.

By utilizing Lemma 4.1.3, it suffices to relate Rayleigh quotients in a metric space to

that of ¸
2

. Since one may then apply M
2,1 in order to relate to Rayleigh quotients in ¸

1

, and

hence obtain sparse cuts.

4.1.2 A Good Translation Always Exists

Theorem 46 (A Good Translation Always Exists [16]). Let X = (Rd, Î · ÎX) and Y =

(RdÕ
, Î · ÎY) be any normed spaces. Suppose that for – œ (0, 1] and c Ø 0, the function

„ : S(X) æ S(Y) is an –-Holder homeomorphism with constant c. For any probability

distribution fl supported on finitely many points in Rd and any r > 1, there exists a point

z œ Rd such that

E
x≥fl

[f„,r(x ≠ z)] = 0.

102

Furthermore, if, for R œ R, fl is supported in BX(0, R), the point z satisfies ÎzÎX Æ 8

r/–R.

Proof. Consider the continuous function h : (Rd, Î ·ÎY) æ (Rd, Î ·ÎY) which maps a vector

u œ Rd by

h(u) = E
x≥fl

Ë
f„,r(x + f≠1

„,r (u))

È
.

We will prove that h is a surjection, so that there exists u œ Rd where h(u) = 0. Then, we

let z = ≠f≠1

„,r (u), and we obtain the desired center. Notice that for a fixed setting of fl, as u

becomes a vector with very large norm, h(u) tends to be very close to u, i.e.,

Îh(u) ≠ uÎY Æ E
x≥fl

Ë...f„,r(x + f≠1

„,r (u)) ≠ f„,r(f
≠1

„,r (u))

...
Y

È
Æ E

x≥fl

Ë
ÎxÎ–

X

1
Îx + f≠1

„,r (u)Îr≠–
X + Îf≠1

„,r (u)Îr≠–
X

2È
Æ 2

r≠– E
x≥fl

[ÎxÎr
X] + E

x≥fl
[ÎxÎ–

X] · 2

r≠–+1 · Îf≠1

„,r (u)Îr≠–
X

= 2

r≠– E
x≥fl

[ÎxÎr
X] + 2

r≠–+1 E
x≥fl

[ÎxÎ–
X] · ÎuÎ1≠–/r

Y = o(ÎuÎY), (4.5)

Claim 4.1.5. Let h : Rd æ Rd be any continuous function such that for some norm Î · Î,

Îh(u) ≠ uÎ Æ o(ÎuÎ). Then, h is surjective.

Consider the basis vector ed+1

œ Sd and let · : Sd≠1 \ {ed+1

} æ Rd be the homeo-

morphism given by stereographic projection, and consider the map ˜h : Sd æ Sd given

by

˜h(v) =

Y_]_[·≠1

(h(·(v))) v ”= ed+1

ed+1

v = ed+1

,

and notice that since h(u) æ Œ as u æ Œ, ˜h is continuous. We verify that ˜h is homotopic

to the identity map by showing that the map ˜F : Sd ◊ [0, 1] æ Sd given by

˜F (v, t) =

Y_]_[ed+1

v = ed+1

·≠1

(t·(v) + (1 ≠ t)h(·(v))) v ”= ed+1

is continuous in Sd◊[0, 1]. Notice that · is a homeomorphism, and (u, t) ‘æ tu+(1≠t)h(u)

is continuous over Rd ◊ [0, 1], it suffices to show that ˜F (v, t) is continuous at ed+1

◊ [0, 1].

103

In order to do this, it suffices to show that for every t œ [0, 1] and for large enough radii

r œ RØ0

, every u œ Rd with ÎuÎ Ø r has Îtu+(1≠ t)h(u)Î Ø ”(r), for ” æ Œ as r æ Œ.

In particular,

Îtu + (1 ≠ t)h(u)Î Ø ÎuÎ ≠ (1 ≠ t)Îh(u) ≠ uÎ Ø (1 ≠ o(1))ÎuÎ.

Hence, ˜h is surjective, and so is h (see Exercise 5 in page 91 of [19]).

When h(u) = 0, then by (4.5), if all x ≥ fl have ÎxÎX Æ R,

ÎuÎY Æ max

Ó
2

r≠–+1Rr, 2

r≠–+2R–ÎuÎ1≠–/r
Y

Ô
.

In the case the maximum is achieved by the left-most term, we have ÎuÎY = ÎzÎr
X Æ

2

r≠–+1Rr, so that ÎzÎX Æ 2R. In the case the maximum is achieved by the right-most term,

then ÎuÎ–/r
Y Æ 2

r≠–+2R–, so that ÎzÎX Æ 8

r/–R.

4.1.3 Schatten-p spaces

Definition 34 (Schatten-p normed space). For d œ and p œ [1, Œ), the normed space

Sp = (Rd◊d, Î · ÎSp) is defined over d ◊ d matrices of real numbers, and the ÎxÎp
Sp

=qd
i=1

|‡i(x)|p, where ‡i(x) is the i-th singular value of x. We note that S
2

is isomorphic

(via identity map) to ¸d◊d
2

.

Definition 35 (Non-commutative Mazur Map into S
2

). Let d œ and p œ [1, Œ).We let

M¶
p,2 : Rd◊d æ Rd◊d be the map, which given a matrix x œ Rd◊d where x = U�V is the

singular value decomposition of x, sets

M¶
p,2(x) = U�

p/2V. (4.6)

Similarly to the case of ¸p, Holder estimates on the map M¶
p,2 give a relation between

Rayleigh quotients in Sp and S
2

, and since S
2

= ¸
2

, we obtain a Rayleigh quotient relation

with ¸
1

. The argument relies on the following estimates.

104

Lemma 4.1.6 (Holder estimates for M¶
p,2 [121]). For any p œ [1, Œ), there exists a constant

cp œ RØ0

such that for any d œ , M¶
p,2 : S(Sp) æ S(S

2

) is min{p/2, 1}-Holder with

constant cp.

We may use Lemma 4.1.6, Theorem 45, and Theorem 46 to relate Rayleigh quotients in

Sp to those in S
2

(and, hence ¸
2

and ¸
1

).

Lemma 4.1.7. Fix d œ and p Ø 1 and p ”= 2. Let µ be any symmetric probability

distribution supported on finitely many pairs of points in Rd◊d. There exists two points

z
1

, z
2

œ Rd◊d and a function f : Rd◊d æ Rd◊d such that

f(x) = M
2,1

1
M¶

p,2(x ≠ z
1

) ≠ z
2

2
,

and

R(f(µ), Î · Î
1

) . p · R(µ, Î · Îp
Sp

)

min{1/2,1/p}.

Proof. Letting fl be the marginal distribution of µ, we apply Theorem 46 with X = Sp,

Y = S
2

, and „ = Mp,2 and r = max{p/2, 1} > min{p/2, 1} = – to find a point z
1

œ Rd◊d

with

E
x≥fl

Ë
M¶

p,2(x ≠ z
1

)

È
= 0,

where I used the fact that the radial extension of M¶
p,2 to Rd◊d applies (4.6). By applying

Theorem 45, to the symmetric probability distribution µ̃ given by (x ≠ z
1

, y ≠ z) with

(x, y) ≥ µ, s = 2, r = p/2, and – = min{p/2, 1}, we have

R(M¶
p,2(µ̃), Î · Î2

S
2

) . p2 · R(µ̃, Î · Îp
Sp

)

min{1,2/p}.

Considering the symmetric probability distribution ˜µ̃ given by (M¶
p,2(x), M¶

p,2(y)) where

(x, y) ≥ µ̃, we may apply Lemma 4.1.3 to obtain that there exists z
2

œ Rd◊d such that

f : Rd◊d æ Rd◊d given by f(x) = M
2,1(x ≠ z

2

) satisfies

R(f(

˜µ̃), Î · Î
1

) Æ 48 · R(

˜µ̃, Î · Î2

2

)

1/2.

105

Combining both Rayleigh quotient relations, as well as noticing that Rayleigh quotients are

invariant to translations, the function F : Rd◊d æ Rd◊d given by F (x) = M
2,1

1
M¶

p,2(x ≠ z
1

) ≠ z
2

2
satisfies

R(F (µ), Î · Î
1

) = R(f(

˜µ̃), Î · Î
1

) Æ 48 · R(

˜µ̃, Î · Î2

2

)

1/2

= 48 · R(M¶
p,2(µ̃), Î · Î2

S
2

)

1/2

. p · R(µ̃, Î · Îp
Sp

)

min{1/2,1/p}
= p · R(µ, Î · Îp

Sp
)

min{1/2,1/p}.

Corollary 4.1.8. For any d œ and any p œ , �(Sd
p , Á) . (p/Á)

max{2/p,1}.

Proof. We apply Lemma 4.1.7 and Lemma 4.0.1.

4.2 A Holder Homeomorphism Between Perturbations of

Spheres

Below, the unit ball and unit sphere of a (complex1) normed space X = (

d, Î · ÎX) are

denoted BX = {x œ d
: ÎxÎX Æ 1} and SX = {x œ d

: ÎxÎX = 1}, respectively.

Theorem 47 (Existence of a Hölder homeomorphism between spheres of perturbed spaces).

Let X = (

d, Î · ÎX) be a normed space and fix –, —, “ œ (0, 1

2

]. Suppose that the inradius

and outradius of BX are r > 0 and R > 0, respectively, i.e., rB¸d
2

µ BX µ RB¸d
2

.

Then there are normed spaces Y = (

d, Î · ÎY) and Z = (

d, Î · ÎZ), and a bijection

„ : SY æ SZ , with the following properties.

1. r2–+—(1≠2–)BY µ BX µ R2–+—(1≠2–)BY .

2. r“(1≠2–)B¸d
2

µ BZ µ R“(1≠2–)B¸d
2

.

3. Î„(y
1

) ≠ „(y
2

)ÎZ . 1Ô
—“

Îy
1

≠ y
2

Î–
Y for all y

1

, y
2

œ SY .

1It is convenient and most natural to carry out the ensuing geometric and analytic considerations for
normed spaces over the complex scalars , but all of their applications that we obtain here hold also for
normed spaces over the real scalars R through a standard complexification procedure which is recalled in
Section 4.3 below.

106

The parameters –, —, “ are chosen to be small, in which case the first two assertions of

Theorem 47 mean that Y and Z are relatively small perturbations of X and ¸d
2

, respectively.

The last assertion of Theorem 47 state that „ is an –-Holder homeomorphism between the

unit spheres of these perturbed spaces with constant O(1/
Ô

—“). The tension is between

the smallness of –, —, “ (thus, the extent to which the initial geometries of X and ¸d
2

were

deformed) and the quality of the continuity of „; the parameters are eventually set to

appropriately balance these competing features.

Theorem 47 is a finite-dimensional quantitative refinement in the spirit of [110] of the

work of Daher [59] which is itself an extension of a landmark contribution of Odell and

Schlumprecht [115] (in unpublished work, Kalton independently obtained the result of [59];

see [30, page 216] or the MathSciNet review of [59]). Our proof of Theorem 47 is an

adaptation of the proof of the corresponding qualitative infinite-dimensional result that

appears in [30, Chapter 9].

Theorem 48. Let 0 < Á < 1 and X = (

d, Î · ÎX) be a d-dimensional normed space. Then

there exists a randomized data structure for c-ANN over X with the following guarantees:

• The approximation is c Æ exp

A
O

3Ô
log d · max

;Ô
log log d, log(1/Á)Ô

log log d

<4B
;

• The query procedure takes nÁ · dO(1) time;

• The space used by the data structure is n1+Á · dO(1);

• The preprocessing time is nO(1) · dO(d).

Both the preprocessing and query procedures access the norm through an oracle, which,

given a vector x œ d, computes ÎxÎX .

4.2.1 Algorithmic version of Theorem 47

For algorithmic applications, we would like to compute the mapping Ï from Theorem 47

efficiently at any given input point in d. The main ingredient in the construction of F is the

notion of complex interpolation between normed spaces, which was introduced in [41]. For

two d-dimensional normed spaces U and V , complex interpolation provides a one-parameter

family of d-dimensional normed spaces [U, V]◊ indexed by ◊ œ [0, 1], such that [U, V]

0

= U ,

[U, V]

1

= V and [U, V]◊ depends, in a certain sense, smoothly on ◊. In particular, we need to

107

compute the norm of a vector in [U, V]◊ given suitable oracles for the norm computation in

U and V . This is a non-trivial task since the norm in [U, V]◊ is defined as the minimum of a

certain functional on an infinite-dimensional space of holomorphic functions. We show how

to properly “discretize” this optimization problem using harmonic and complex analysis,

and ultimately solve it using convex programming (more specifically, the “robust” ellipsoid

method [94]). We expect that the resulting algorithmic version of complex interpolation will

have further applications.

More specifically, for x œ d the interpolated norm ÎxÎ
[U,V]◊

is defined as follows. First,

we consider the space F of functions F : S æ d, where S = {z œ | 0 Æ Rez Æ 1} is

a strip on the complex plane, such that:

• F is bounded and continuous;

• F is holomorphic on the interior of S.

The norm ÎFÎF in the space F is defined as follows:

ÎFÎF = max

I
sup

Rez=0

ÎF (z)ÎU , sup

Rez=1

ÎF (z)ÎV

J
.

Finally, for x œ d, we define:

ÎxÎ
[U,V]◊

= inf

F œF :

F (◊)=x

ÎFÎF . (4.7)

A priori, it is not clear how to solve (4.7), since the space F is infinite-dimensional. However,

we are able to show that one can search for an approximately optimal F œ F of the following

form:

F (z) = eÁz2 · ÿ
|k|ÆM

vke
kz
L ,

for a fixed Á > 0, M and L, and variables are vk œ d. This turns (4.7) into a finite-

dimensional convex program, which we might hope to solve. However, in order for the

optimization procedure to be efficient, one needs to upper bound M and the magnitudes

of vk. This can be done by taking an approximately optimal (in terms of (4.7)) function F ,

smoothing it by convolving with an appropriate Gaussian, and finally considering its Fourier

108

expansion, whose convergence we can control using the classical Fejér’s theorem [86]. To

bound the magnitudes of vk, we need a statement similar to the Paley–Wiener theorem [86].

Finally, to address the issue that the norm in F is defined as a supremum over the infinite set

(the boundary of the strip S), we show how to discretize and truncate the boundary so that

the maximum over the discretization is not too far from the true supremum. This is again

possible due to the bounds on the magnitudes of Á, vk and M we are able to show.

4.3 Preliminaries

Given two quantities a, b > 0, the notation a . b and b & a means a Æ Cb for some

universal constant C > 0. In this work we use some tools from complex analysis. Denote

S = {z œ | 0 < Rez < 1} µ the unit open strip on the complex plane, let

ˆS = {z œ | Rez œ {0, 1}} be its boundary, and, finally, let S = S fi ˆS be the

corresponding closed strip. Given a normed space X defined over a (real or complex) vector

space V , the subset BX µ V is the unit ball of X , i.e., BX = {x œ V : ÎxÎX Æ 1}. For a

measure space (�, µ) and a Banach space X we denote Lp(�, µ, X) the Banach space of

measurable functions f : � æ X such that

⁄
�

ÎfÎp
X dµ < +Œ;

we define the norm to be:

ÎfÎp
Lp(�,µ,X)

=

⁄
�

ÎfÎp
X dµ.

Sometimes, we omit � in the notation if it is clear from the context (or unimportant).

Computational model for general normed spaces

Throughout this work, we deal with computational aspects of ANN defined over general

normed spaces, in particular X = (Rd, Î · ÎX). We work with the standard computational

models for convex sets over Rd. In particular, we may assume the following about X:

• There exists an oracle which, given x œ Rd, computes ÎxÎX ;

109

• The unit ball of X satisfies BX µ B
2

µ dBX for d = poly(d).

The second assumption is essentially without loss of generality. Indeed, if one assumes BX

is contained within the unit Euclidean ball and contains a small Euclidean ball of radius

r = exp(≠poly(d)), then, by the reductions of [72], we may design a separation oracle for

BX , and as noted in Section 1.1 of [84], this means we can transform BX to be in a position

such that the second assumptions holds.

The Poisson kernel for the strip S

For w œ S and z œ ˆS, the Poisson kernel P (w, z) for S is defined as follows:

P (w, z) =

Y__]__[
1

2

· sin fiu
cosh fi(·≠v)≠cos fiu , w = u + iv and z = i·,

1

2

· sin fiu
cosh fi(·≠v)+cos fiu , w = u + iv and z = 1 + i·.

(4.8)

For every w œ S, and every z œ ˆS, one has P (w, z) Ø 0. In addition, for every w œ S,

⁄
ˆS

P (w, z) dz = 1,

which allows us to denote µw the measure on ˆS with the density P (w, ·). We refer the

reader to [133] for further properties of the kernel P (·, ·).

For ◊
1

, ◊
2

œ (0, 1), we let

�(◊
1

, ◊
2

)

def

=

Û3
1

◊
1

+

1

1 ≠ ◊
1

4 3
1

◊
2

+

1

1 ≠ ◊
2

4
, (4.9)

Claim 4.3.1. For any z œ ˆS and ◊
1

, ◊
2

œ (0, 1),

P (◊
1

, z)

P (◊
2

, z)

. �(◊
1

, ◊
2

)

2.

110

Proof. First, consider the case z = i· when · œ R. Then by the first case of (4.8),

P (◊
1

, i·)

P (◊
2

, i·)

=

sin(fi◊
1

)

cosh(fi·) ≠ cos(fi◊
1

)

· cosh(fi·) ≠ cos(fi◊
2

)

sin(fi◊
2

)

. ◊
1

3
1

◊
2

+

1

1 ≠ ◊
2

4
· cosh(fi·) ≠ cos(fi◊

2

)

cosh(fi·) ≠ cos(fi◊
1

)

. ◊
1

3
1

◊
2

+

1

1 ≠ ◊
2

4
·

A
1 +

1

◊2

1

B
,

where in the first line, we use the fact that sin(fi◊) ¥ ◊ when ◊ ¥ 0 and sin(fi◊) ¥ 1 ≠ ◊

when ◊ ¥ 1, and in the second line, we use the fact that cosh(fi·) Ø 1, and the fact that

1 ≠ cos(fi◊) & 1

◊2

. By the second case of (4.8), when z = 1 + i· for · œ R,

P (◊
1

, 1 + i·)

P (◊
2

, 1 + i·)

=

sin(fi◊
1

)

cosh(fi·) + cos(fi◊
1

)

· cosh(fi·) + cosh(fi◊
2

)

sin(fi◊
2

)

. (1 ≠ ◊
1

)

3
1

◊
2

+

1

1 ≠ ◊
2

4
·

A
1 +

1

(1 ≠ ◊
1

)

2

B
,

where we now use the fact that 1 + cos(fi◊) & 1

(1≠◊)

2

.

Harmonic and holomorphic functions on S

Lemma 4.3.2 ([133]). Let f : S æ R be a continuous function which is harmonic (as a

function of two real variables) in S. Moreover, suppose that the integral

⁄
ˆS

|f(z)| dµw(z)

if finite for j = 0, 1 and some w œ S. Then for every w œ S, one has:

f(w) =

⁄
ˆS

f(z) dµw(z).

Corollary 4.3.3. Let f : S æ d be a continuous function which is holomorphic in S.

Moreover, suppose that ⁄
ˆS

...f(z)

... dµw(z) < Œ

111

for some w œ S. Then for every w œ S, one has:

f(w) =

⁄
ˆS

f(z) dµw(z).

Proof. This follows from Lemma 4.3.2 and the fact that the real and the imaginary part of a

holomorphic function are harmonic.

Complexification

Let X = (Rd, Î · ÎX) be a normed space over the vector space Rd. The complexification

of X , denoted by X , is a normed space over d defined as follows. Elements of X are

formal sums u+ iv for u, v œ X . Given u+ iv, w+ iy œ X , addition of (u+ iv)+(w+ iy)

is given by (u+iv)+(w+iy) = (u+w)+i(v+y). Given u+iv œ X and – = p+iq œ ,

scalar multiplication –(u + iv) is given by, –(u + iv) = (pu ≠ qv) + i(pv + qu). Finally,

the norm on X is defined as:

Îu + ivÎ2

X =

1

fi

2fi⁄
0

Îu cos Ï ≠ v sin ÏÎ2

X dÏ. (4.10)

The space X = (

d, Î · ÎX) defined above is indeed a complex normed space and,

moreover, X embeds into X isometrically via the map u ‘æ u + i · 0. In addition, consider

the d-dimensional space (¸d
2

) = (

d, Î · Î
(¸d

2

)

) given by the complexification of the space

¸d
2

= (Rd, Î · Î
2

). We note that:

Îu + ivÎ2

(¸d
2

)

=

1

fi

⁄
2fi

0

Îu cos „ ≠ v sin „Î2

2

d„ =

1

fi

⁄
2fi

0

dÿ
i=1

(ui cos „ ≠ vi sin „)

2d„ = ÎuÎ2

2

+ ÎvÎ2

2

,

which implies that (¸d
2

) is isometric to ¸2d
2

= (R2d, Î · Î
2

), where we consider splitting the

real and imaginary parts of each coordinate, and interpreting these as real numbers. We note

that by a simple calculation, if W
0

= (Rd, Î · ÎW
0

) and W
1

= (Rd, Î · ÎW
1

) are real normed

spaces with BW
0

µ BW
1

µ d · BW
0

, then BW
0

µ BW
1

µ d · BW
0

.

112

Complex interpolation between normed spaces

Let W
0

= (

d, Î · ÎW
0

) and W
1

= (

d, Î · ÎW
1

) be two d-dimensional complex normed

spaces. We will now define a family of spaces [W
0

, W
1

]◊ = (

d, Î · Î
[W

0

,W
1

]◊
) for 0 Æ

◊ Æ 1 that, in a sense we will make precise later, interpolate between W
0

and W
1

. This

definition appeared for the first time in [41], see also the book [31]. Let us first define

an auxiliary (infinite-dimensional) normed space F as the space of bounded continuous

functions f : S æ d, which are holomorphic in S. The norm on F is defined as follows:

ÎfÎF = max

I
sup

Re(z)=0

Îf(z)ÎW
0

, sup

Re(z)=1

Îf(z)ÎW
1

J
.

Now we can define the interpolation norm Î · Î
[W

0

,W
1

]◊
on d as follows:

ÎxÎ
[W

0

,W
1

]◊
= inf

fœF :

f(◊)=x

ÎfÎF . (4.11)

The fact that ÎxÎ
[W

0

,W
1

]◊
is a norm is straightforward to check modulo the property

“ÎxÎ
[W

0

,W
1

]◊
= 0 implies x = 0”. The latter is a consequence of the Hadamard three-

lines theorem [129].

Fact 4.3.4. For every ◊ œ [0, 1], [W
0

, W
1

]◊ = [W
1

, W
0

]

1≠◊.

Fact 4.3.5 (Reiteration theorem). For every 0 Æ ◊
1

Æ ◊
2

Æ 1 and 0 Æ ◊
3

Æ 1, one has:

5
[W

0

, W
1

]◊
1

, [W
0

, W
1

]◊
2

6
◊

3

= [W
0

, W
1

]

(1≠◊
3

)◊
1

+◊
3

◊
2

.

Below is arguably the most useful statement about complex interpolation.

Fact 4.3.6 ([41, 31]). Let W
0

= (

d, Î · ÎW
0

) and W
1

= (

d, Î · ÎW
1

) be d-dimensional

complex normed spaces, and let U
0

= (

dÕ
, Î · ÎU

0

) and U
1

= (

dÕ
, Î · ÎU

1

) be a couple

of dÕ-dimensional ones. Suppose that T :

d æ dÕ be a linear map. Then, for every

0 Æ ◊ Æ 1, one has:

ÎTÎ
[W

0

,W
1

]◊æ[U
0

,U
1

]◊
Æ ÎTÎ1≠◊

W
0

æU
0

· ÎTÎ◊
W

1

æU
1

.

113

Corollary 4.3.7. Let W
0

= (

d, Î · ÎW
0

) and W
1

= (

d, Î · ÎW
1

) be complex normed

spaces such that for some d
1

, d
2

Ø 1 and every x œ d, the following holds:

1

d
1

· ÎxÎW
1

Æ ÎxÎW
0

Æ d
2

· ÎxÎW
1

. (4.12)

Then, for every 0 Æ ◊ Æ 1 and every x œ d, one has:

1

d◊
1

·ÎxÎ
[W

0

,W
1

]◊
Æ ÎxÎW

0

Æ d◊
2

·ÎxÎ
[W

0

,W
1

]◊
and

1

d1≠◊
1

·ÎxÎW
1

Æ ÎxÎ
[W

0

,W
1

]◊
Æ d1≠◊

2

·ÎxÎW
1

.

Proof. This follows from Fact 4.3.6 applied to the identity map.

Fact 4.3.8 ([41, 31]). Let W
0

= (

d, Î · ÎW
0

) and W
1

= (

d, Î · ÎW
1

) be complex normed

spaces, and let W
0

ú
= (

d, Î · ÎW
0

ú
) and W

1

ú
= (

d, Î · ÎW
1

ú
) be the dual spaces,

respectively. For any ◊ œ [0, 1], the dual space to [W
0

, W
1

]◊, given by [W
0

, W
1

]

ú
◊ =

(

d, Î · Î
[W

0

,W
1

]

ú
◊
) is isometric to the space [W

0

ú, W
1

ú
]◊.

Uniform convexity

Let W = (

d, Î · ÎW) be a complex normed space. We give necessary definitions related to

the notion of uniform convexity. For a thorough overview, see [26].

Definition 36. For 2 Æ p Æ Œ, the space W has modulus of convexity of power type p iff

there exists K Ø 1 such that for every x, y œ W :

3
ÎxÎp

W +

1

Kp
ÎyÎp

W

4
1/p

Æ
AÎx + yÎp

W + Îx ≠ yÎp
W

2

B
1/p

.

Definition 37. The infimum of such K is called the p-convexity constant of W and is denoted

by Kp(W).

Claim 4.3.9. One always has KŒ(W) = 1, and for a Hilbert space, one has: K
2

(¸d
2

) = 1.

Claim 4.3.10. One has Kp(W
0

ü
2

W
1

) . max{Kp(W), Kp(W
1

)} for every p Ø 2.

Proof. The claim follows from W
0

ü
2

W
1

being isomorphic to W
0

üp W
1

and the fact that

Kp(W
0

üp W
1

) Æ max{Kp(W), Kp(W
1

)}.

114

Lemma 4.3.11 ([112]). One has Kp(L
2

(µ, W)) . Kp(W) for every p Ø 2.

The following lemma shows how the p-convexity constant interacts with complex

interpolation.

Lemma 4.3.12 ([110]). For every 2 Æ p
1

, p
2

Æ Œ and every 0 Æ ◊ Æ 1, one has:

K p
1

p
2

◊p
1

+(1≠◊)p
2

3
[W

0

, W
1

]◊

4
Æ Kp

1

(W
0

)

1≠◊Kp
2

(W
1

)

◊.

The space F
2

(◊)

Now we define another space related to F . This definition appears in [41], see also [30].

First, for 0 < ◊ < 1, let us consider the normed space G(◊) of continuous functions

f : S æ d, which are holomorphic in S, and

⁄
ˆS

...f(z)

...2

dµ◊(z) < Œ.

The norm ÎfÎG(◊)

is defined as follows:

ÎfÎ2

G(◊)

=

⁄
Re(z)=0

...f(z)

...2

W
0

dµ◊(z) +

⁄
Re(z)=1

...f(z)

...2

W
1

dµ◊(z). (4.13)

Clearly, F µ G(◊). One may naturally view G(◊) as a (not closed) subspace of L
2

({z |
Re(z) = 0}, µ◊, W

0

) ü
2

L
2

({z | Re(z) = 1}, µ◊, W
1

). Now we can define the space F
2

(◊)

as the closure of G(◊) (in particular, G(◊) is dense in F
2

(◊)). An element of F
2

(◊) can

be identified with a function f : S æ d defined almost everywhere on ˆS and defined

everywhere on S such that:

• f restricted on {z | Re(z) = 0} belongs to L
2

({z | Re(z) = 0}, µ◊, W
0

);

• f restricted on {z | Re(z) = 1} belongs to L
2

({z | Re(z) = 1}, µ◊, W
1

);

• f is holomorphic in S;

115

In this representation, the norm is defined similar to (4.13):

ÎfÎ2

F(◊)

=

⁄
Re(z)=0

...f(z)

...2

W
0

dµ◊(z) +

⁄
Re(z)=1

...f(z)

...2

W
1

dµ◊(z).

Fact 4.3.13. For every f œ F
2

(◊) and w œ S, one has:

f(w) =

⁄
ˆS

f(z) dµw(z).

Proof. This identity is true for G(◊) by Corollary 4.3.3. Hence it holds for F
2

(◊), since

every element of F
2

(◊) is a limit of a sequence of elements of G(◊), which converges

pointwise in S and in L
2

in ˆS.

The following gives an alternative definition of an interpolated norm, which should be

compared with the original definition (4.11).

Fact 4.3.14 ([30]). For every x œ d, one has:

ÎxÎ
[W

0

,W
1

]◊
= inf

fœF
2

(◊):

f(◊)=x

ÎfÎF
2

(◊)

. (4.14)

Claim 4.3.15. For every p Ø 2, one has:

Kp(F
2

(◊)) . max{Kp(W
0

), Kp(W
1

)}.

Proof. One has:

Kp(F
2

(◊)) Æ Kp

3
L

2

({z | Re(z) = 0}, µ◊, W
0

) ü
2

L
2

({z | Re(z) = 1}, µ◊, W
1

)

4
. max

;
Kp

3
L

2

({z | Re(z) = 0}, µ◊, W
0

)

4
, Kp

3
L

2

({z | Re(z) = 1}, µ◊, W
1

)

4<
. max{Kp(W

0

), Kp(W
1

)},

where the first step is due to F
2

(◊) being a subspace of L
2

({z | Re(z) = 0}, µ◊, W
0

) ü
2

L
2

({z | Re(z) = 1}, µ◊, W
1

), the second step is due to Claim 4.3.10, and the third step is

116

due to Lemma 4.3.11.

Lemma 4.3.16. For 0 < ◊
1

, ◊
2

< 1, the spaces F
2

(◊
1

) and F
2

(◊
2

) are isomorphic via the

identity map. More specifically, for every f œ F
2

(◊
1

) one has:

ÎfÎF
2

(◊
2

)

Æ �(◊
1

, ◊
2

) · ÎfÎF
2

(◊
1

)

;

and, similarly, for every f œ F
2

(◊
2

), one has:

ÎfÎF
2

(◊
1

)

Æ �(◊
1

, ◊
2

) · ÎfÎF
2

(◊
2

)

.

Proof. This easily follows from the definition of F
2

(◊) and Claim 4.3.1.

4.4 Hölder homeomorphisms: an existential argument

In this section we show the proof of Theorem 47 making the exposition of the result from [59]

in [30] quantitative. We make the construction of the map algorithmic in Section 4.5. Let

X = (

d, Î · ÎX) be a normed space of interest. For a real normed space, one can consider

its complexification, which contains the real version isometrically.

Let us first assume that Kp(X) < Œ for some 2 Æ p < Œ. We start with taking a closer

look at Fact 4.3.14. Suppose that we interpolate between X and ¸d
2

and moreover for some

0 < r < R one has:

rB¸d
2

™ BX ™ RB¸d
2

.

Let F
2

(◊) be defined with respect to X and ¸d
2

.

Fact 4.4.1 ([30]). For every x œ d, in the optimization problem

inf

F œF
2

(◊):

F (◊)=x

ÎFÎF
2

(◊)

the minimum is attained on an element of F
2

(◊). Moreover, the minimizer is unique, and we

denote it by F ú
◊x œ F

2

(◊).

117

Below statement shows that minimizers F ú
◊x have very special structure.

Fact 4.4.2 ([30]). Fix x œ d and 0 < ◊ < 1 and consider F ú
◊x œ F

2

(◊). Then,

• For z œ such that Rez = 0, ÎF ú
◊x(z)ÎX = ÎxÎ

[X,¸d
2

]◊
almost everywhere;

• For z œ such that Rez = 1, ÎF ú
◊x(z)Î¸d

2

= ÎxÎ
[X,¸d

2

]◊
almost everywhere;

• For every 0 < Â◊ < 1, ÎF ú
◊x(

Â◊)Î
[X,¸d

2

]Â◊ = ÎxÎ
[X,¸d

2

]◊
.

Below lemma is the core of the overall argument.

Lemma 4.4.3 (a quantitative version of a statement from [30]). For every 0 < ◊ < 1 and

every x
1

, x
2

œ S
[X,¸d

2

]◊
, one has:

....F ú
◊x

1

≠ F ú
◊x

2

....F
2

(◊)

. Kp(X) · Îx
1

≠ x
2

Î1/p
[X,¸d

2

]◊
.

Proof. By Claim 4.3.15, one has:

Kp(F
2

(◊)) . max{Kp(X), Kp(¸d
2

)} . Kp(X),

where the second step follows from Kp(¸d
2

) . 1. Second, suppose that for x
1

, x
2

œ S
[X,¸d

2

]◊
,

one has Îx
1

≠ x
2

Î
[X,¸d

2

]◊
= Á > 0. Then,

....F ú
◊x

1

+ F ú
◊x

2

....F
2

(◊)

Ø Îx
1

+ x
2

Î
[X,¸d

2

]◊
Ø 2 ≠ Á, (4.15)

where the first step follows from Fact 4.3.14, and the second step follows from x
1

and x
2

being unit and the triangle inequality. Now by the definition of Kp(F
2

(◊)) (Definition 36)

and the fact that the minimizers are unit, we have:

....F ú
◊x

1

+ F ú
◊x

2

....p

F
2

(◊)

+

....F ú
◊x

1

≠ F ú
◊x

2

....p

F
2

(◊)

Kp(F
2

(◊))

p
Æ Î2F ú

◊x
1

Îp
F

2

(◊)

+ Î2F ú
◊x

2

Îp
F

2

(◊)

2

= 2

p. (4.16)

Combining (4.15) and (4.16), we get:

....F ú
◊x

1

≠ F ú
◊x

2

....p

F
2

(◊)

Æ Kp(F
2

(◊))

p · (2

p ≠ (2 ≠ Á)

p
) Æ p2

p≠1 · Kp(F
2

(◊))

p · Á.

118

Finally, we get:

....F ú
◊x

1

≠ F ú
◊x

2

....F
2

(◊)

. Kp(F
2

(◊)) · Á1/p . Kp(X) · Á1/p
= Kp(X) · Îx

1

≠ x
2

Î1/p
[X,¸d

2

]◊

as desired.

Fix 0 < ◊
1

, ◊
2

< 1. Define the map U◊
1

◊
2

: S
[X,¸d

2

]◊
1

æ S
[X,¸d

2

]◊
2

as follows:

x ‘æ F ú
◊

1

x(◊
2

).

The map is well-defined, since by Fact 4.4.2, for every x with ÎxÎ
[X,¸d

2

]◊
1

, one has ÎF ú
◊

1

,x(◊
2

)Î
[X,¸d

2

]◊
2

=

1. One also has: U≠1

◊
1

,◊
2

= U◊
2

,◊
1

, since, again by Fact 4.4.2, for every x œ d, one has:

F ú
◊

2

F ú
◊

1

x
(◊

2

)

= F ú
◊

1

x.

In particular, U◊
1

,◊
2

is a bijection between the unit spheres of [X, ¸d
2

]◊
1

and [X, ¸d
2

]◊
2

.

Lemma 4.4.4 (a quantitative version of the statement from [30]). For x
1

, x
2

œ S
[X,¸d

2

]◊
1

, one

has:

ÎU◊
1

◊
2

(x
1

) ≠ U◊
1

◊
2

(x
2

)Î
[X,¸d

2

]◊
2

. �(◊
1

, ◊
2

) · Kp(X) · Îx
1

≠ x
2

Î1/p
[X,¸d

2

]◊
1

.

Proof. One has:

ÎU◊
1

◊
2

(x
1

) ≠ U◊
1

◊
2

(x
2

)Î
[X,¸d

2

]◊
2

= ÎF ú
◊

1

x
1

(◊
2

) ≠ F ú
◊

1

x
2

(◊
2

)Î
[X,¸d

2

]◊
2

Æ ÎF ú
◊

1

x
1

≠ F ú
◊

1

x
2

ÎF
2

(◊
2

)

Æ �(◊
1

, ◊
2

) · ÎF ú
◊

1

x
1

≠ F ú
◊

1

x
2

ÎF
2

(◊
1

)

. �(◊
1

, ◊
2

) · Kp(X) · Îx
1

≠ x
2

Î1/p
[X,¸d

2

]◊
1

,

where the first step is by the definition of U◊
1

◊
2

, the second step is due to Fact 4.3.14, the

third step is due to Lemma 4.3.16, and the last step is due to Lemma 4.4.3.

The below theorem summarizes the above discussion.

119

Theorem 49. Let X = (

d, Î · ÎX) be a complex normed space such that Kp(X) < Œ
for some 2 Æ p < Œ and for some 0 < r < R, one has: rB¸d

2

™ BX ™ RB¸d
2

. Fix

0 < —, “ Æ 1/2. Then there exist two spaces Y = (

d, Î · ÎY) and Z = (

d, Î · ÎZ) and a

bijection Ï : SY æ SZ such that:

• One has: r—BY ™ BX ™ R—BY ;

• One has: r“B¸d
2

™ BZ ™ R“B¸d
2

;

• for every y
1

, y
2

œ SY , one has: ÎÏ(y
1

) ≠ Ï(y
2

)ÎZ . Kp(X)Ô
—“

· Îy
1

≠ y
2

Î1/p
Y ;

• for every z
1

, z
2

œ SZ , one has: ÎÏ≠1

(z
1

) ≠ Ï≠1

(z
2

)ÎY . Kp(X)Ô
—“

· Îz
1

≠ z
2

Î1/p
Z .

Proof. We set Y and Z to be [X, ¸d
2

]— and [X, ¸d
2

]

1≠“ , respectively. Finally, set Ï to be U—,1≠“ .

Then, the first two inequalities follow from Corollary 4.3.7. The third inequality follows

from Lemma 4.4.4 combined with the estimate �(—, “) . 1Ô
—“

. The fourth inequality is

shown similar to the third taking into account that Ï≠1

= U
1≠“,— .

Now let us turn to the case when X is not necessarily p-convex.

Theorem 50 (Theorem 47, restated). Let X = (

d, Î · ÎX) be a complex normed space

such that for some 0 < r < R, one has: rB¸d
2

™ BX ™ RB¸d
2

. Fix 0 < –, —, “ Æ 1/2. Then

there exist two spaces Y = (

d, Î · ÎY) and Z = (

d, Î · ÎZ) and a bijection Ï : SY æ SZ

such that:

• One has: r2–+—(1≠2–)BY ™ BX ™ R2–+—(1≠2–)BY ;

• One has: r“(1≠2–)B¸d
2

™ BZ ™ R“(1≠2–)B¸d
2

;

• for every y
1

, y
2

œ SY , one has: ÎÏ(y
1

) ≠ Ï(y
2

)ÎZ . 1Ô
—“

· Îy
1

≠ y
2

Î–
Y ;

• for every z
1

, z
2

œ SZ , one has: ÎÏ≠1

(z
1

) ≠ Ï≠1

(z
2

)ÎY . 1Ô
—“

· Îz
1

≠ z
2

Î–
Z .

Proof. Denote A = [X, ¸d
2

]

2–. By Lemma 4.3.12, one has K
1/–(A) Æ 1. Let us now

apply Theorem 49 to A, which yields two spaces Y = [A, ¸d
2

]— and Z = [A, ¸d
2

]“ . By

Fact 4.3.5, one has: Y = [X, ¸d
2

]

2–+—(1≠2–)

and Z = [X, ¸d
2

]

2–+(1≠“)(1≠2–)

, which together

with Corollary 4.3.7 yields the first two items. The third and fourth items follow from

Theorem 49 applied to A.

120

4.5 Computing approximate Hölder homeomorphisms

4.5.1 High-level overview

The goal of this section is to give polynomial time algorithms for computing various

aspects of complex interpolation which completes the description of the approximate Hölder

homeomorphism from Section ??. The data structures for ANN over a real normed space

X = (Rd, Î · ÎX) will compute this map, so we will assume oracle access to computing

Î · ÎX . In particular, we will provide algorithms for the two tasks specified towards the end

of Subsection ??. We will consider a complex normed space W = (

d, Î · ÎW) and the

Hilbert space H = (¸d
2

) , i.e., the complexification of ¸d
2

, and assume

BW µ BH µ d · BW , (4.17)

(note that we may compute ÎxÎH since it is isometrically isomorphic to ¸2d
2

by separating

the real and imaginary parts of each coordinate; see Subsection 4.3).

At a high level, our algorithm will express the algorithmic tasks from Subsection ?? as

the optimums of convex programs, which we then solve using various tools from convex

optimization. We first set up some notation. For a convex set K µ Rm, and a real number

” > 0 we let B(K, ”) = {y œ Rm
: x œ K and Îx ≠ yÎ

2

Æ ”}, and we abuse notation

slightly by letting B(y, ”) = B({y}, ”) for y œ Rm. Then, we let B(K, ≠”) = {y œ Rm
:

B(y, ”) µ K}. We will frequently interpret convex sets K µ m as convex sets of R2m, by

separating the real and imaginary parts of the vectors in m.

Definition 38 (Membership Oracle (MEM(K)) [94]). For a convex set K µ Rm, given

a vector y œ Rm and a real number ” > 0, with probability 1 ≠ ”, either assert that

y œ B(K, ”) or assert y /œ B(K, ≠”).

The goal of this section is to solve the following algorithmic task, which we denote

ApproxRep(x, ◊, Á; W), where we will assume access to MEM(BW), thus, we will mea-

sure the complexity of the algorithm for ApproxRep(x, ◊, Á; W) in the number of calls to

MEM(BW), as well as the error parameter ” > 0 in these calls. In Subsection 4.5.5, we show

121

how the subsequent algorithms are used in our applications to ANN.

Definition 39 (Algorithmic Task ApproxRep(x, ◊, Á; W)). For a complex normed space

W = (

d, Î · ÎW) satisfying

BW µ BH µ d · BW ,

we want to solve the following algorithmic task. Given access to MEM(BW), a parameter ◊ œ
(0, 1), a vector x œ d, and an approximation parameter Á > 0, output the representation

of a function f : S æ d œ F (where F is defined with respect to the couple (W, H)

2)

such that:

• Îf(◊) ≠ xÎ
[W,H]◊

Æ ÁÎxÎ
[W,H]◊

, and

• ÎfÎF = max{suptœR Îf(it)ÎW , suptœR Îf(1 + it)ÎH} Æ (1 + Á
1

)ÎxÎ
[W,H]◊

.

The representation of the function should also have the property that we may compute a

(1 ± Á)-multiplicative approximation to ÎfÎF in poly(d/Á) time, and for any ◊Õ œ (0, 1) we

may compute f(◊Õ
) œ d in poly(d/Á) time.

In the following section, we will assume that Á is a small enough parameter, which will

later be set to 1

poly(d)

. Before proceeding to present an algorithm for ApproxRep(x, ◊, Á; W),

we give the following simple consequence of being able to solve ApproxRep(x, ◊, Á; W),

which solves the first algorithmic task from Subsection ??.

Corollary 4.5.1. For any x œ d, ◊ œ (0, 1) and Á > 0, we may obtain a (1 ± Á)

2-

multiplicative approximation to ÎxÎ
[W,H]◊

from a call to ApproxRep(x, ◊, Á; W).

Proof. Given f œ F as an output of ApproxRep(x, ◊, Á; W), we note that

ÎfÎF Ø Îf(◊)Î
[W,H]◊

Ø ÎxÎ
[W,H]◊

≠ Îf(◊) ≠ xÎ
[W,H]◊

Ø (1 ≠ Á)ÎxÎ
[W,H]◊

,

where we first used the definition of interpolation, and then we utilized the triangle inequality,

as well as the fact that f(◊) is close to x. The upper bound follows by definition of

ApproxRep(x, ◊, Á; W). Finally, we note that we may compute a (1 ± Á)-approximation to

ÎfÎF in poly(d/Á) time.

2see Subsection 4.3 for a formal definition of F

122

For simplicity, when working with a couple (W, H), where W = (

d, Î · ÎW) is a

complex normed space and H = (¸d
2

) is a Hilbert space satisfying (4.17) we denote W◊ =

(

d, Î · Î◊) as the complex normed space given by W◊ = [W, H]◊ and Î · Î◊ = Î · Î
[W,H]◊

.

4.5.2 Discretization of F

We will now give the discretization of F we optimize over. Specifically, we show a

quantitative version of Lemma 4.2.2 from [31]. We will write the discretization of F , where

F is defined with respect to the complex normed spaces W
0

= (

d, Î · ÎW
0

) and W
1

=

(

d, Î · ÎW
1

). In our applications of this discretization to computing ApproxRep(x, ◊, Á; W),

we will set W
0

= W and W
1

= H . Assume that W
0

and W
1

are both close to the Hilbert

space H = (¸d
2

) , i.e., every x œ d satisfies

ÎxÎW
0

Æ ÎxÎH Æ dÎxÎW
0

and ÎxÎW
1

Æ ÎxÎH Æ dÎxÎW
1

. (4.18)

Recall from Subsection 4.3, the space F , defined with respect to W
0

and W
1

, is a space

over bounded continuous functions f : S æ d which are holomorphic in S. We will

consider a x œ d such that ÎxÎ
[W

0

,W
1

]◊
= 1.

Let us first introduce some notation. For f œ F and · œ R, we denote:

BF(f, ·)

def

= max{Îf(i·)ÎW
0

, Îf(1 + i·)ÎW
1

}, and (4.19)

BŒ(f, ·)

def

= max

0ÆuÆ1

Îf(u + i·)Î¸Œ . (4.20)

In addition, for each f œ F , we may view g
0

: R æ d as g
0

(·) = f(i·) and g
1

(·) =

f(1 + i·). Given these definitions, when the derivatives dg
0

d· and dg
1

d· exist, we denote:

DŒ(f, ·)

def

= max

I.....dg
0

d·
(·)

.....
¸Œ

,

.....dg
1

d·
(·)]

.....
¸Œ

J
.

The following lemma is a quantitative version of the classical Fejér’s theorem [86].

Lemma 4.5.2. Let f : R æ to be a differentiable 2fiL-periodic function. Consider its

123

Fourier series:

f ‘æ ÿ
nœ

ane
inx
L ,

where

an =

1

2fiL
·

fiL⁄
≠fiL

f(x)e≠ inx
L dx.

Then the Césaro partial sums

fM(x) =

ÿ
|n|ÆM

3
1 ≠ n

M + 1

4
ane

inx
L

satisfy ÎfM ≠ fÎ¸Œ Æ Á for 0 < Á < 0.1 with

M . ÎfÎ¸Œ · Îf ÕÎ2

¸Œ · L2

Á3

.

Proof. We can assume, by rescaling, that L = 1. Then, one has:

fM = f ú FM ,

where

FM =

1

M

A
sin

Mx
2

sin

x
2

B
2

is the Fejér’s kernel. Thus, for every ” > 0, one has:

|fM(x) ≠ f(x)| =

------ 1

2fi

fi⁄
≠fi

1
f(x ≠ t) ≠ f(x)

2
FM(t) dt

Æ 1

2fi

fi⁄
≠fi

---f(x ≠ t) ≠ f(x)

---FM(t) dt

=

1

2fi

⁄
|t|Æ”

---f(x ≠ t) ≠ f(x)

---FM(t) dt +

1

2fi

⁄
”Æ|t|Æfi

---f(x ≠ t) ≠ f(x)

---FM(t) dt

. ”Îf ÕÎ¸Œ +

ÎfÎ¸Œ

”2M
,

where the first step follows from 1

2fi

fis
≠fi

FM(t) dt = 1, the second step follows from FM(t) Ø

124

0, and the fourth step follows from 1

2fi

fis
≠fi

FM(t) dt = 1, and FM(t) . 1

”2M for ” Æ |t| Æ fi.

Substituting ” ≥
1 ÎfÎ¸Œ

MÎf ÕÎ¸Œ

2
1/3

, we get

|fM(x) ≠ f(x)| .
AÎfÎ¸ŒÎf ÕÎ2

¸Œ

M

B
1/3

,

which implies the desired bound.

Claim 4.5.3. For every x œ d with ÎxÎ
[W

0

,W
1

]◊
= 1 and every Á > 0, there exists fx œ F

such that:

• fx(◊) = x,

• for every · œ R, BF(fx, ·) Æ 1 + Á and BŒ(fx, ·) . d;

Proof. By definition of ÎxÎ
[W

0

,W
1

]◊
from (4.11), let fx œ F be the function with fx(◊) = x

and ÎfxÎF Æ ÎxÎ
[W

0

,W
1

]◊
+ Á Æ 1 + Á. In addition, since ÎfxÎF = sup·œR BF(fx, ·), we

obtain that BF(fx, ·) Æ 1 + Á. Finally, we note that fx is holomorphic on S, continuous on

S, and bounded, so by the Hadamard three-lines theorem, BŒ(fx, ·) Æ supuœ(0,1)

·œR
Îf(u +

i·)ÎH Æ sup·œR max{Îfx(i·)ÎH , Îfx(1 + i·)ÎH} Æ d.

Claim 4.5.4. For every x œ d with ÎxÎ
[W

0

,W
1

]◊
= 1 and every Á > 0, there exists f (2)

x œ F
such that:

• Îf (2)

x (◊) ≠ xÎ¸Œ . Á, and

• for every · œ R, BF(f (2)

x , ·) Æ 1 + Á, BŒ(f (2)

x , ·) . d, and DŒ(f (2)

x , ·) . d2·�(◊,◊)

Á .

Proof. Let fx œ F be from Claim 4.5.3 for the vector x œ d and Á. For ‡ > 0 let

f (2)

x (z)

def

=

E

g≥N(0,‡2

)

fx(z + ig). (4.21)

We note the bounds on BF(f (2)

x , ·) and BŒ(f (2)

x , ·) are immediate from Jensen’s inequality

125

and convexity of Î · Î :

d æ RØ0. In order to bound Îf (2)

x (◊) ≠ xÎ¸Œ , we have

f (2)

x (◊) ≠ fx(◊)

(4.3.3)

=

⁄
ˆS

1
f (2)

x (z) ≠ fx(z)

2
dµ◊(z)

(4.21)

=

⁄
ˆS

A
E

g≥N(0,‡2

)

fx(z + ig) ≠ fx(z)

B
dµ◊(z)

=

E

g≥N(0,‡2

)

⁄
ˆS

(fx(z + ig) ≠ fx(z)) dµ◊(z)

=

E

g≥N(0,‡2

)

⁄
ˆS

fx(z)

3
P (◊, z ≠ ig) ≠ P (◊, z)

4
dz,

where we used the definition of µ◊(z) from Subsection 4.3 in the last line. Therefore,

Îf (2)

x (◊) ≠ fx(◊)Î¸Œ Æ
A

sup

·œR
BŒ(fx, ·)

B
E

g≥N(0,‡2

)

⁄
ˆS

|P (◊, z) ≠ P (◊, z ≠ ig)| dz

. d
E

g≥N(0,‡2

)

⁄
ˆS

|P (◊, z) ≠ P (◊, z ≠ ig)| dz. (4.22)

Note that for ◊ œ (0, 1), P (◊, ·) is symmetric around zero and unimodal, when g Ø 0, we

have P (◊, z) Ø P (◊, z ≠ ig) when Im(z) Æ g
2

and P (◊, z) Æ P (◊, z ≠ ig) when Im(z) Ø g
2

.

So we have that when g Ø 0,

⁄
ˆS

|P (◊, z) ≠ P (◊, z ≠ ig)|dz =

⁄
zœˆS

Im(z)Æ g
2

(P (◊, z) ≠ P (◊, z ≠ ig))dz ≠
⁄

zœˆS
Im(z)Ø g

2

(P (◊, z) ≠ P (◊, z ≠ ig))dz

=

⁄
zœˆS

Im(z)Æ g
2

P (◊, z)dz ≠
⁄

zœˆS
Im(z)Æ≠ g

2

P (◊, z)dz ≠
⁄

zœˆS
Im(z)Ø g

2

P (◊, z)dz +

⁄
zœˆS

Im(z)Ø≠ g
2

P (◊, z)dz

= 2

⁄
zœˆS

|Im(z)|Æ g
2

P (◊, z)dz. (4.23)

The case when g Æ 0 is symmetric, thus, we may combine (4.22) and (4.23) to conclude

Îf (2)

x (◊) ≠ fx(◊)Î¸Œ . d
E

g≥N(0,‡2

)

⁄
zœˆS

|Im(z)|Æ |g|
2

P (◊, z) . d�(◊, ◊)

E

g≥N(0,‡2

)

|g| . d�(◊, ◊)‡ Æ Á

when ‡ . Á
d·�(◊,◊)

, where we used the fact that P (◊, z) . �(◊, ◊) when z œ ˆS and ◊ œ
(0, 1). Now let us upper bound DŒ(f (2)

x , ·). Denote p‡(t) the p.d.f. of N(0, ‡2

). In addition,

if we let g
0

, g
1

, g(2)

0

, g(2)

1

: R æ d have gj(·) = fx(j + i·) and g(2)

j (·) = f (2)

x (j + i·) for

126

j = 0, 1, we have g(2)

j = gj ú p‡(·). Thus, we have dg
(2)

j

d· (·) = gj ú pÕ
‡(·),

..... d

d·
[g(2)

j (·)]

.....
¸Œ

= Îgj ú pÕ
‡Î¸Œ

. d
‡
. d2

�(◊, ◊)

Á
.

Claim 4.5.5. For every x œ d with ÎxÎ
[W

0

,W
1

]◊
= 1 and every Á > 0, there exists f (3)

x œ F
such that:

• Îf (3)

x (◊) ≠ xÎ¸Œ . Á,

• for every · œ R, BF(f (3)

x , ·) Æ (1 + Á) · e
Á(1≠·2

)

d and BŒ(f (3)

x , ·) . d · e≠ Á·2

d , and

• for every · œ R, one has: DŒ(f (3)

x , ·) . d2·�(◊,◊)

Á · e≠ Á·2

d
+ Á|· | · e≠ Á·2

d .

Proof. We may consider f (2)

x œ F from Claim 4.5.4 and set

f (3)

x (z) = e
Áz2

d · f (2)

x (z).

All the desired properties are immediate to check.

Claim 4.5.6. For every x œ d with ÎxÎ
[W

0

,W
1

]◊
= 1 and every Á > 0, there exists f (4)

x œ F
such that:

• Îf (4)

x (◊) ≠ xÎ¸Œ . Á,

• for every · œ R, BF(f (4)

x , ·) Æ 1 + O(Á), BŒ(f (4)

x , ·) . d, DŒ(f (4)

x , ·) . d2·�(◊,◊)

Á ,

and

• f (4)

x is 2fiiL-periodic for

L .
Û

d · log

d
Á

Á
.

Proof. We take f (3)

x from Claim 4.5.5, and set:

f (4)

x (z) =

ÿ
kœ

f (3)

x (z + 2fiiLk).

All the desired properties are immediate to check.

127

Denote for n œ the n-th Fourier coefficient:

an =

1

2fiL

fiL⁄
≠fiL

f (4)

x (i·)e≠ in·
L d· œ d.

Claim 4.5.7. For every 0 Æ Â◊ Æ 1, one has:

1

2fiL

fiL⁄
≠fiL

f (4)

x (

Â◊ + i·)e≠ n(Â◊+i·)

L d· = an.

Proof. First, let us show that the left-hand side, which we denote by A(

Â◊), does not change

when Â◊ is varied in (0; 1). Consider the following contour on the complex plane for k Ø 1:

◊
1

≠ifiLk to ◊
1

+ifiLk to ◊
2

+ifiLk to ◊
2

≠ifiLk to ◊
1

≠ifiLk. On the one hand, the integral

of f (4)

x (z)e≠ nz
L over it equals to zero. On the other hand, it is equal to k · (A(◊

1

) ≠ A(◊
2

))

plus a term that is independent of k. Since k is arbitrary, we get A(◊
1

) = A(◊
2

). On the

other hand, for 0 < ◊ < 1, we have A(◊) = A(0) = A(1) = an, since the function f (4)

x (z)

converges uniformly to the corresponding boundary value as the real part of z converges to

zero or to one.

Claim 4.5.8. One has:

• ÎanÎ¸Œ Æ min{1, e≠n/L} · Îf (4)

x Î¸Œ . min{1, e≠n/L} · d.

• If we denote f (5)

x œ F by

f (5)

x (z) =

ÿ
|n|ÆM

M + 1 ≠ |n|
M + 1

· ane
nz
L ,

then Îf (5)

x (z) ≠ f (4)

x (z)Î¸Œ Æ ÂÁ for

M . d5 · L2 · �(◊, ◊)

2

ÂÁ3

.

Proof. The bound ÎanÎ¸Œ Æ Îf (4)

x Î¸Œ . d is trivial. To show that ÎanÎ¸Œ Æ e≠n/L ·

128

Îf (4)

x Î¸Œ , we just use Claim 4.5.7 with Â◊ = 1:

an =

1

2fiL

fiL⁄
≠fiL

f (4)

x (1 + i·)e≠ n(1+i·)

L d· = e≠n/L · 1

2fiL

fiL⁄
≠fiL

f (4)

x (1 + i·)e≠ in·
L d·.

f (5)

x (z) converges to f (4)

x (z) uniformly in ¸Œ for Rez = 0 by Lemma 4.5.2. But due to

Claim 4.5.7, it is also the case for Rez = 1. We get the required bound on M from the

conclusions of Lemma 4.5.2 and Claim 4.5.6. For 0 < Rez < 1, we simply use the

Hadamard three-line theorem.

Lemma 4.5.9. For every x œ d with ÎxÎ
[W

0

,W
1

]◊
= 1 and every Á > 0, there exists a

function ˜fx œ F with
˜fx(z) = e

z2

M

ÿ
qœ M

vq · eqz,

where M = { s
L : |s| Æ ML} and vq œ d for all q œ M satisfying:

• L . M = poly(d/Á);

• ÎvqÎH . min{1, e≠q} · M ;

• Î ˜fxÎF Æ 1 +

Á
d2

;

• Î ˜fx(◊) ≠ xÎ
[W

0

,W
1

]◊
Æ Á

d2

.

Proof. We take f (5)

x (z) from Claim 4.5.8 with ÂÁ . poly(Á, 1

d). This implies that Îf (5)

x ≠
f (4)

x ÎF . Á

d2

and Îf (5)

x (◊) ≠ xÎ
[W

0

,W
1

]◊
Æ Á

d2

. Finally, setting ˜fx(z) = e
z2

M · f (5)

x (z), and a

similar argument to that of Claim 4.5.5, the required properties hold.

4.5.3 Convex program for ApproxRep(x, ◊, Á; W)

In this subsection, we present a convex program for solving ApproxRep(x, ◊, Á; W) and ar-

gue that a good enough solution to this program can be a valid response for ApproxRep(x, ◊, Á; W).

Given any vector x œ d, we may compute the vector y œ d with y =

x
ÎxÎH

. We

note that since ÎxÎH Æ ÎxÎ◊ Æ dÎxÎH from (4.17), we have 1 Æ ÎyÎ◊ Æ d, and recall

that d = poly(d). Thus, we may assume that calls to ApproxRep(x, ◊, Á; W) always have

129

x œ d satisfying

ÎxÎH = 1 and 1 Æ ÎxÎ◊ Æ d. (4.24)

Given x œ d satisfying (4.24), we will define a convex program Rep(x, ◊, Á; W) which

takes a parameter Á > 0 and has size poly(d/Á) whose optimum will give a valid response

for ApproxRep(x, ◊, 10Á; W). Recall the parameter M = poly(d, 1

Á , �(◊, ◊)), as well as the

definition of the set M µ R from Lemma 4.5.9, and let N . M4d
Á for a large enough

constant.3 For j œ {0, 1}, consider the subset:

D(j)

N
def

=

;
j +

is

N
œ ˆS : s œ , |s| Æ MN

<
.

Let the sequence of vectors V = (vq œ d
: q œ M) define a map fV œ F given by:

fV (z)

def

= e
z2

M

ÿ
qœ M

vq · eqz. (4.25)

The convex program Rep(x, ◊, Á; W) is given by:

Rep(x, ◊, Á; W) =

Y_____________]_____________[

minV œ(

d
)

| M |

–œRØ0

–

s.t i. ’z œ D(0)

N , ÎfV (z)ÎW Æ – + Á

ii. ’z œ D(1)

N , ÎfV (z)ÎH Æ – + Á

iii. ’q œ M , ÎvqÎH max{eq, 1} Æ 2Md
iv. ÎfV (◊) ≠ xÎH Æ 2Á

d

.

(4.26)

In the language of Grötschel, Lovász and Schrijver [72], we will argue that solving the weak

optimization problem of Rep(x, ◊, Á; W) satisfies the requirements of ApproxRep(x, ◊, 8Á; W).

After that, we address the problem of computing Rep(x, ◊, Á; W).

Lemma 4.5.10. For x œ d and Á > 0, and ◊ œ (0, 1) with �(◊, ◊) Æ poly(d), let

3see (4.9) for the definition of �(◊
1

, ◊
2

), and note that �(◊, ◊) = poly(d) for ◊ œ (

1

poly(d)

, 1 ≠ 1

poly(d)

).

130

(V, –) œ (

d
)

| M | ◊ R be a feasible solution to Rep(x, ◊, Á; W), where the optimum of

Rep(x, ◊, Á; W) is at least –≠5Á. Then fV œ F is a valid output of ApproxRep(x, ◊, 8Á; W).

Before giving the proof of Lemma 4.5.10, we give some discussion as well as a sequence

of claims from which Lemma 4.5.10 will easily follow.

Consider the unit vector a =

x
ÎxÎ◊

,4 and let fa œ F be an optimal representative for a

at ◊ in F . In other words, fa(◊) = a and ÎfaÎF = 1. Applying Lemma 4.5.9, there exists

some ˜fa œ F such that:

• ˜fa(z) = e
z2

M
q

qœ N
vqeqz, and for all q œ M , vq œ d with ÎvqÎH · max{eq, 1} Æ

M .

• Î ˜faÎF Æ 1 +

Á
d2

and Î ˜fa(◊) ≠ aÎH Æ Á
d2

.

Therefore, let the function ˜fx œ F be

˜fx(z)

def

= ÎxÎ◊
˜fa(z) (4.27)

which satisfies,

Î ˜fx(◊) ≠ xÎH Æ ÎxÎ◊ · Î ˜fa(◊) ≠ aÎH Æ ÎxÎ◊ · Á

d2

Æ Á

d . (4.28)

In addition, we have:

Î ˜fx(◊) ≠ xÎ◊ Æ dÎ ˜fx(◊) ≠ xÎH Æ Á

d · ÎxÎ◊ (4.29)

ÎxÎ◊ÎvqÎ · max{eq, 1} Æ Md for all q œ M , (4.30)

Î ˜fxÎF Æ ÎxÎ◊ · Î ˜faÎF Æ
3

1 +

Á

d2

4
ÎxÎ◊. (4.31)

We note that the above facts imply that if (V, –) œ (

d
)

| M | ◊R, where V = (vq : q œ M)

and the vectors vq define ˜fx œ F according to (4.25), and – = Î ˜fxÎF , then (V, –) is a

feasible solution for Rep(x, ◊, Á; W).

4algorithmically, we do not have access to this vector

131

Claim 4.5.11. Suppose V = (vq : q œ M), – œ Rd defines a feasible solution for

Rep(x, ◊, Á; W), and suppose z = j + i· œ ˆS with |· | Ø M , then ÎfV (z)ÎH Æ 1

2d .

Proof. We simply follow the computations, using the third constraint of (4.26):

ÎfV (z)ÎH Æ e
j2≠·2

M

Qa ÿ
qœ M

ÎvqÎH · eqj

Rb
Æ e≠ ·2≠1

M
(| M | · 2Md) Æ 1

2d ,

when · Ø M ∫
Ò

M log(d) log(M), since d = poly(d).

Corollary 4.5.12. Let V = (vq : q œ M), – œ R be a feasible solution for Rep(x, ◊, Á; W).

We have that:

ÎfV ÎF = max

I
sup

|· |ÆM
ÎfV (i·)ÎW , sup

|· |ÆM
ÎfV (1 + i·)ÎH

J
.

Proof. From the fourth constraint of (4.26), ÎfV (◊) ≠ xÎ◊ Æ dÎfV (◊) ≠ xÎH Æ 2Á.

Therefore, we have ÎfV ÎF Ø ÎfV (◊)Î◊ Ø ÎxÎ◊ ≠ 2Á Ø 1 ≠ 2Á > 1

2

for small enough

Á < 1

4

. Since by Claim 4.5.11, any |· | Ø M satisfies ÎfV (i·)ÎW Æ dÎfV (i·)ÎH Æ 1

2

and

ÎfV (1 + i·)ÎH Æ 1

2d , we must have

ÎfV ÎF = max

I
sup

|· |ÆM
ÎfV (i·)ÎW , sup

|· |ÆM
ÎfV (1 + i·)ÎH

J
.

Let us write fV : S æ d as fV = (g
1

(z), . . . , gd(z)), where gk : S æ is given by

the k-th coordinate of fV . Then, taking derivatives, all k œ [d] satisfy

gÕ
k(z) = ez2/M

ÿ
qœ M

(vq)keqz
3

q +

2z

M

4
.

Thus, when (V, –) is feasible in Rep(x, ◊, Á; W), the third constraint of (4.26) implies that

132

for each z = j + i· œ ˆS with |· | Æ M and every k œ [d],

|gÕ
k(z)| Æ e · e≠·2/M

ÿ
qœ M

|(vq)k · eq|(q + 2)

Æ e| M | · 2Md · (M + 2) . M4d. (4.32)

Claim 4.5.13. For large enough N . M4d3

Á = poly(d/Á), we have that any (V, –) which is

feasible for Rep(x, ◊, Á; W) satisfies

ÎfV ÎF Æ max

Y][sup

zœD(0)

N

ÎfV (z)ÎW , sup

zœD(1)

N

ÎfV (z)ÎH

Ẑ
\ + Á.

Proof. By definition of D(j)

N , any z œ ˆS with|Im(z)| Æ M and Re(z) = j, there exists

some zÕ œ D(j)

N with |z≠zÕ| Æ 1

N . This implies that every k œ [d] satisfies |gk(z)≠gk(zÕ
)| .

|z ≠ zÕ| · M4d =

M4d
N by (4.32). Thus,

ÎfV (z) ≠ fV (zÕ
)Î2

H Æ
dÿ

k=1

|gk(z) ≠ gk(zÕ
)|2 Æ Á2

d2

,

for a large enough setting of N . Therefore, we have ÎfV (z) ≠ fV (zÕ
)ÎH Æ Á

d , and that

ÎfV (z) ≠ fV (zÕ
)ÎW Æ Á, which completes the proof.

Claim 4.5.14. We have that

ÎxÎ◊ Æ Rep(x, ◊, Á; W) + 3Á.

Proof. Every vector (V, –) which is feasible in Rep(x, ◊, Á; W) defines a function fV œ F
by (4.25), which by Claim 4.5.13, satisfies

ÎfV ÎF Æ max

Y][sup

zœD(0)

N

ÎfV (z)ÎW , sup

zœD(1)

N

ÎfV (z)ÎH

Ẑ
\ + Á.

Therefore, for all (V, –) which are feasible for Rep(x, ◊, Á; W), we have:

ÎxÎ◊ Æ ÎfV (◊)Î◊ + ÎfV (◊) ≠ xÎ◊ Æ ÎfV ÎF + Á Æ – + 3Á,

133

which implies ÎxÎ◊ Æ Rep(x, ◊, Á; W) + 3Á.

Proof of Lemma 4.5.10. First, consider the solution (V, –) whose values of (vq : q œ M)

define the function ˜fx according to (4.25), and – = Î ˜fxÎF . Then, (V, –) lies in the feasible

set of Rep(x, ◊, Á; W). In particular, (4.28) shows that vq satisfies the last constraint of

(4.26). In addition, since ÎxÎ◊ Æ d, the third constraint of (4.26) is also satisfied. Therefore,

we have that the optimal solution of Rep(x, ◊, Á; W) satisfies:

Rep(x, ◊, Á; W) Æ Î ˜fxÎF Æ
3

1 +

Á

d2

4
ÎxÎ◊.

If, in addition, (V, –) has – Æ Rep(x, ◊, Á; W) + 5Á, then by Claim 4.5.14 and ÎxÎ◊ Ø 1,

(1 ≠ 8Á)ÎxÎ◊ Æ – Æ
3

1 +

Á

d2

+ Á
4

ÎxÎ◊,

which is a valid output of ApproxRep(x, ◊, 8Á; W).

4.5.4 Computing ApproxRep(x, ◊, Á; W) with MEM(BW)

In this section, we show how to compute an approximate optimum of Rep(x, ◊, Á; X)

described in (4.26). In particular, we will compute some value (V, –) which satisfies

the conditions of Lemma 4.5.10. In other words, the solution (V, –) is feasible for

Rep(x, ◊, Á; W), and the optimal value of Rep(x, ◊, Á; W) is at least – ≠ 5Á. If the al-

gorithm runs in poly(d/Á) time, by Lemma 4.5.10, this would give us the required algorithm

for ApproxRep(x, ◊, 8Á; X).

Let P µ (

d
)

| M | ◊ RØ0 be the set:

P =

Y____________]____________[
((vq max{eq, 1} : q œ M), –) œ (

d
)

| M | ◊ RØ0

:

i. ’z œ D(0)

N ÎfV (z)ÎW Æ – +

Á
2

ii. ’z œ D(1)

N ÎfV (z)ÎH Æ – +

Á
2

iii. ’q œ M ÎvqÎH max{eq, 1} Æ 3M ·d
2

iv. ÎfV (◊) ≠ xÎH Æ 3Á
2d

v.
q

qœ M
ÎvqÎ2

H max{e2q, 1} + –2 Æ R2

Z____________̂
____________\

,

(4.33)

134

where R = poly(d/Á) is a large enough parameter. In addition, we view the set P µ
(

d
)

| M | ◊ R as a subset of (R2d
)

| M | ◊ R by separating the real and imaginary parts of

the vectors vq for q œ M .

4.5.4.1 Properties of the set P

The following are a couple of useful facts showing that the convex set P is nice. In particular,

we will have that P is convex and inscribed within a Euclidean ball of polynomial radius.

Any solution close to P (by an inverse polynomial amount), gives a feasible solution to

Rep(x, ◊, Á; W). The approximate representative to x, given by ˜fx in (4.27) lies well within

P (by an inverse polynomial amount). Finally, there exists an explicit solution well within

P (by an inverse polynomial amount).

For the remainder of the section, we let ” = poly

1
Á, 1

d

2
be the parameter:

”
def

=

Á

2e · | M | · d .

Fact 4.5.15. The set P is convex and is contained in a Euclidean ball of radius R.

Lemma 4.5.16. Let (U, –) œ B(P, ”) where U = (uq : q œ M), and let V = (vq : q œ
M) where vq =

uq

max{eq ,1} . Then, (V, –) is a feasible solution to Rep(x, ◊, Á; W).

Proof. Consider (U, –) œ B(P, ”) and let (

ÂU, Â–) œ P with Î(U, –) ≠ (

ÂU, Â–)Î
2

Æ ”. We

denote ÂU = (

Êuq : q œ M) and ÂV = (

Êvq : q œ M) where Êvq =

Âuq

max{eq ,1} . Therefore, we

have ÿ
qœ M

Îuq ≠ ÊuqÎ2

H + |– ≠ Â–|2 Æ ”2.

We will check that assuming constraints (i–iv) in (4.33), we can satisfy constraints (i–iv) in

(4.26) for the point (V, –). All the subsequent checks proceed in the same fashion: we first

use the triangle inequality to argue about (

ÂU, Â–) and use (4.17) and the constraints (i–iv) in

(4.33) of (

ÂU, Â–) to deduce (V, –) is feasible for Rep(x, ◊, Á; W).

135

iv. We simply follow the computations:

ÎfV (◊) ≠ xÎH Æ ÎfÂV (◊) ≠ xÎH + ÎfV (◊) ≠ fÂV (◊)ÎH Æ 3Á

2d + e◊2/M
ÿ

qœ M

eq◊Îvq ≠ ÊvqÎH

Æ 3Á

2d + e◊2/M
ÿ

qœ M

eq◊

max{eq, 1}Îuq ≠ ÊuqÎH Æ 3Á

2d + e
ÿ

qœ M

Îuq ≠ ÊuqÎH

Æ 3Á

2d + e| M |” Æ 2Á

d .

iii. For q œ M , we have:

ÎvqÎH max{eq, 1} Æ ÎÊvqÎH max{eq, 1} + Îuq ≠ ÊuqÎH Æ 3M · d
2

+ ” Æ 2M · d.

ii. For z = 1 + i· œ D(1)

N , we have:

ÎfV (z)ÎH Æ ÎfÂV (z)ÎH + ÎfV (z) ≠ fÂV (z)ÎH Æ – +

Á

2

+ e≠ ·2≠1

M

ÿ
qœ M

eqÎÊvq ≠ vqÎH

Æ – +

Á

2

+ e| M |” Æ – + Á.

i. In addition, for z = i· œ D(1)

N , we similarly have,

ÎfV (z)ÎW Æ ÎfÂV (z)ÎW + dÎfV (z) ≠ fÂV (z)ÎH Æ – +

Á

2

+ d · e≠ ·2

M

ÿ
qœ M

ÎÊvq ≠ vqÎH

Æ – +

Á

2

+ d| M |” Æ – + Á.

This completes the proof.

Lemma 4.5.17. We have B((U, –), ”) µ P , where (U, –) is given by U = (vq max{eq, 1} :

q œ M) where the vectors vq œ d define ˜fx in (4.27) according to (4.25), and – = Î ˜fxÎF .

In other words, (U, –) œ B(P, ≠”).

Proof. Consider the point (V, –) where the vectors vq define the function ˜fx œ F from

(4.27) and – = Î ˜fxÎF . Let U = (uq : q œ M) where uq = vq max{eq, 1}. We claim that

B((U, –), ”) µ P . In particular, consider any (U Õ, –Õ
) with U Õ

= (uÕ
q : q œ M) where

136

Î(U Õ, –Õ
) ≠ (U, –)Î

2

Æ ”, i.e.,

ÿ
qœ M

ÎuÕ
q ≠ uqÎ2

H + |–Õ ≠ –|2 Æ ”2.

With arguments very similar to those in the proof of Lemma 4.5.16 above, we may check

that constraints (i–iv) of (4.33) have (U Õ, –Õ
) œ P since vq satisfy (4.29) and (4.30)5. It

remains to check that constraint (v) is satisfied. Letting vÕ
q =

uÕ
q

max{eq ,1} ,

ÿ
qœ M

ÎvÕ
qÎ2

H max{e2q, 1} + –Õ2 Æ ÿ
qœ M

(ÎuqÎH + ÎuÕ
q ≠ uqÎH)

2

+ (– + |–Õ ≠ –|)2

Æ 2

Qa ÿ
qœ M

ÎuqÎ2

H + –2

Rb
+ 2

Qa ÿ
qœ M

ÎuÕ
q ≠ uqÎ2

H + |–Õ ≠ –|2
Rb

Æ 2

Qa ÿ
qœ M

ÎvqÎ2

H max{e2q, 1} + –2

Rb
+ 2”2

Æ 2

1
| M |M2d2

+ d2

2
+ 2”2 Æ R.

Therefore, we may conclude that (U Õ, –Õ
) œ P , which implies that B((U, –), ”) µ

P .

Corollary 4.5.18. We have that min

(V,–)œB(P,≠”)

– Æ Î ˜fxÎF .

In addition, using the very similar arguments as in the proof of Lemma 4.5.16, one may

deduce the following lemma.

Lemma 4.5.19. Let (U, –) be the vector given by:

uq =

Y_]_[x · e≠◊2/M q = 0

0 otherwise
and – = d.

Then, B((U, –), ”) µ P .

5Note that vq here corresponds to vqÎxÎ◊ in (4.29) and (4.30), since in (4.29) and (4.30), vq are the vectors
which define ˜fa, and ˜fx = ÎxÎ◊

˜fa.

137

4.5.4.2 Optimizing over P

In this subsection, we show how to optimize over the convex set P defined in (4.33) using

the tools from [94].

Definition 40 (Optimization Oracle (OPT(K)) [94]). For a convex set K µ Rm, given a

unit vector c œ Rm and a real number ” > 0, with probability 1 ≠ ”, the oracle either finds

a vector y œ Rm such that y œ B(K, ”) and c|x Æ c|y + ” for all B(K, ≠”), or asserts

B(K, ≠”) is empty.

The next lemma, combined with Lemma 4.5.10 shows that in order to solve ApproxRep(x, ◊, Á; W),

it suffices to give an optimization oracle for P , OPT(P).

Lemma 4.5.20. Let (U, –) be the response to a call to OPT(P) with vector c = (0, . . . , 0, ≠1)

and ” =

Á
2e| M |d , and let V = (vq : q œ M) be given by vq =

uq

max{eq ,1} . Then, (V, –) is a

feasible solution for Rep(x, ◊, Á; W) and the optimum of Rep(x, ◊, Á; W) is at least – ≠ 5Á.

Proof. Note from Lemma 4.5.17 that B(P, ≠”) is non-empty, so that OPT(P) always

returns a vector (U, –) œ (R2d
)

| M | ◊ R such that (U, –) œ B(P, ”) and –Õ Ø – ≠ ” for all

(U Õ, –Õ
) œ B(P, ≠”). We note that by Lemma 4.5.16, (V, q) is feasible for Rep(x, ◊, Á; W).

Additionally, let (U Õ, –Õ
) where U Õ

= (vÕ
q max{eq, 1} : q œ M) where the vectors vÕ

q

define ˜fx from (4.27) according to (4.25), and –Õ
= Î ˜fxÎF . By Lemma 4.5.17, (U Õ, –Õ

) œ
B(P, ≠”), which implies – ≠ ” Æ –Õ

= Î ˜fxÎF , and by (4.31), Î ˜fxÎF Æ (1 +

Á
d2

)ÎxÎ◊ .

Finally, using Claim 4.5.14, and the fact that Rep(x, ◊, Á; W) Æ 2d,

– Æ Rep(x, ◊, Á; W) +

2Á

d + 4Á + ” Æ Rep(x, ◊, Á; W) + 5Á,

which completes the proof.

Given Lemma 4.5.20 and Lemma 4.5.10, in order to solve ApproxRep(x, ◊, 8Á; W) it

suffices to give an algorithm which solves OPT(K) with a unit vector c and error ” in time

poly(

d
Á , 1

”). In order to do this, we will utilize the reduction from [94] which reduces the

optimization problem to the separation problem.

138

Definition 41 (Separation Oracle (SEP(K)) [94]). For a convex set K µ Rm, given a

vector y œ Rm and a real number ” > 0, with probability 1 ≠ ”, the oracle either asserts

y œ B(K, ”), or finds a unit vector c œ Rm such that c|x Æ c|y + ” for all x œ B(K, ≠”).

Theorem 51 (Theorem 15 from [94]). Let K µ Rm be a convex set satisfying B(0, r) µ
K µ B(0, 1), and let Ÿ =

1

r . For any ” œ (0, 1), with probability 1 ≠ ”, one can compute

OPT(K) with a unit vector c and parameter ” with O(m log(

mŸ
”)) calls to SEP(K) with

error parameter ”Õ
= poly(m, ”, 1

Ÿ) and poly(m, log(

Ÿ
”)) additional time.

Given Theorem 51, we give an algorithm which solves OPT(P) using calls to SEP(P).

Lemma 4.5.21. There exists an algorithm for OPT(P) with a unit vector c and error param-

eter ” making poly

1
d
Á , log

1
1

”

22
calls to SEP(P) with error parameter ”Õ

= poly

1
d
Á , ”

2
and

poly

1
d
Á , log

1
1

”

22
additional time.

Proof. Recall that by Lemma 4.5.19, there exists a vector (U
0

, –
0

) œ B(P, ≠”), which

we may compute algorithmically. This implies that the set P Õ
= {(U, –) ≠ (U

0

, –
0

) :

(U, –) œ P}, has B(0, ”) µ P Õ µ B(0, 2R). This in turn, implies that the set P
0

=

{ 1

2R(U, –) : (U, –) œ P Õ} has B(0, ”
2R) µ P

0

µ B(0, 1). Suppose (

ÂU, Â–) is the output of

OPT(P
0

) with a unit vector c and error parameter ”
2R . In addition, one may easily verify that

2R(

ÂU, Â–) + (U
0

, –
0

) is a valid output for OPT(P) with unit vector c and error parameter ”.

Given Theorem 51, and the fact that R = poly(d/Á), it suffices to show that one may

implement SEP(P
0

) with SEP(P). Consider a call to SEP(P
0

) with some point (U, –) and

error parameter ”Õ > 0. Let (

ÂU, Â–) = 2R(U, –) + (U
0

, –
0

). Then if (

ÂU, Â–) œ B(P, 2R”Õ
),

then (U, –) œ B(P
0

, ”Õ
). If c is a unit vector where c| · (U Õ, –Õ

) Æ c| · (

ÂU, Â–) + 2R”Õ for all

(U Õ, –Õ
) œ B(P, ≠2R”Õ

), then, the vector c is a valid output of SEP(P
0

).

Thus, given Lemma 4.5.21, it suffices to design an algorithm for SEP(P) which runs in

poly

1
d
Á , ”

2
time with error parameter ”.

Lemma 4.5.22. There exists an oracle for SEP(P) with error parameter ” which makes

poly

1
d
Á

2
calls to an oracle SEP(BW) with error parameter ”Õ

= poly

1
d
Á , 1

”

2
and takes

poly

1
d
Á

2
additional time.

139

Proof. Consider some (U, –) œ (R2d
)

| M | ◊ R with U = (uq : q œ M) which is an input

to SEP(P) with error parameter ”. Let V = (vq : q œ M) have vq =

uq

max{eq ,1} . The

algorithm proceeds as follows:

1. First, check whether constraint (v) in (4.33) is violated by computing Î(U, –)Î2

2

in

poly

1
d
Á

2
time since H = ¸2d

2

. If Î(U, –)Î2

2

Æ R2, then continue. Otherwise, we

output the vector c =

(U,–)

Î(U,–)Î
2

, which is a valid output of SEP(P).

2. Second, we may think of UM as the 2d ◊ | M | matrix, whose columns are the vectors

vq œ R2d. Thus, the constraints (ii–iv) may be written as ÎUM“ÎH Æ ⁄ for some

“ œ R| M | which is a column vector. If none of the constraints (ii–iv) are violated,

then we continue. If some constraint is violated, i.e., ÎUM“ÎH > ⁄, let b = UM“,

so that b|UM “
ÎbÎH

> ⁄, but any (U Õ, –Õ
) œ P with ÎU Õ

M“ÎH Æ ⁄ has b|U Õ
M “

ÎbÎH
Æ ⁄. Thus,

we consider the vector c = (

“qb
ÎbÎH

œ R2d
: q œ M) ◊ (0) œ (R2d

)

| M | ◊ R, so that

c| · (U, –) =

b|UM “
ÎbÎH

. Thus, c
ÎcÎ

2

is a valid output for SEP(P).

3. Finally, we consider constraint (i), which may be written as ÎUM“ÎW Æ ⁄ for some

⁄ œ R with ⁄ œ (

Á
2

, 2R). For each constraint of type (i), we query the oracle

SEP(BW) on the vector y =

UM “(1+”Õd)

⁄ with error parameter ”Õ (which we specify

later). If SEP(BW) asserts y œ B(BW , ”Õ
), then ÎUM“ÎW Æ ⁄. So if all oracle calls

to SEP(BW) assert y œ B(BW , ”Õ
), then since constraints (ii–v) are satisfied as well,

we have (U, –) œ P , so we may assert (U, –) œ B(P, ”).

Otherwise, suppose ÎUM“ÎW > ⁄. Then, we have

⁄

d Æ ÎUM“ÎH Æ ÿ
qœ

|“q|ÎuqÎH Æ Î“Î
1

· M · d.

In this case, SEP(BW) outputs a unit vector b œ R2d where b|Ây Æ b|y + ”Õ for all

Ây œ B(BW , ≠”Õ
). So suppose (

ÂU, Â–) œ P and in particular, Î ÂUM“ÎW Æ ⁄. Then,

letting Ây =

ÂUM “(1≠”Õd)

⁄ , we have Ây œ B(BW , ≠”Õ
). Therefore,

b| ÂUM“ Æ b|UM“ + ”Õ⁄ + ”ÕdÎbÎ
2

Î ÂUM“ÎH Æ b|UM“ + 2”Õ⁄d.

Similarly to step 2 above, we consider the vector c = (“qb : q œ M) ◊ (0) œ

140

(R2d
)

| M | ◊ R which satisfies b|UM“ = c|(U, –) for all (U, –). Recall that since b

is a unit vector in R2d, we have ÎcÎ
2

= Î“Î
2

Ø ÎyÎ
1

2d| M | Ø Á
4dd2M | M | , which in turn,

implies that:

c|

ÎcÎ
2

· (

ÂU, Â–) Æ c|

ÎcÎ
2

· (U, –) +

8d⁄d3M | M |
Á

· ”Õ Æ c|

ÎcÎ
2

· (U, –) + ”,

when ”Õ
=

”Á

8dRd3M | M | .

Finally, we will use a reduction from [94], which asserts that one may implement

SEP(BW) with MEM(BW).

Theorem 52 (Theorem 14 from [94]). Let K µ Rm be a convex body satisfying B(0, r) µ
K µ B(0, 1), and let Ÿ =

1

r . For any ” œ (0, 1), with probability 1 ≠ ”, one can compute

SEP(K) with error parameter ” with O
1
m log

1
mŸ
”

22
calls to MEM(K) with error parameter

”Õ
= poly(”, 1

Ÿ , 1

m) and poly(m, log(

Ÿ
”)) time.

Lemma 4.5.23. There exists an algorithm for SEP(BW) with parameter ” which makes

poly

1
d
Á , log

1
1

”

22
calls to MEM(BW) with parameter ”Õ

= poly(”, Á
d).

Proof. We simply use Theorem 14 from [94], where we note that BW µ B
2

µ dBW , which

implies that B(0, 1

d) µ BW µ B(0, 1).

4.5.5 Summary and instantiation for applications

From the discussion above, we may conclude the following theorem, whose proof simply

follows by combining the reductions given in Lemma 4.5.10, Lemma 4.5.20, Lemma 4.5.21,

Lemma 4.5.22, and Lemma 4.5.23.

Theorem 53. There exists an algorithm which solves ApproxRep(x, ◊, Á; W) with prob-

ability at least 1 ≠ poly(Á, 1

d) making poly(d, 1

Á) calls to MEM(W) and using poly(d, 1

Á)

additional time.

141

In order to see how the above algorithm will be applied, recall from our discussion in

Subsection 4.3, that in designing algorithms for ANN over X , we will assume oracle access

to the real normed space X = (Rd, Î · ÎX).

Lemma 4.5.24. Let Á < 1

10

and assume access to computing Î · ÎX , where X = (Rd, Î · ÎX)

is a real normed space with

BX µ B
2

µ d · BX ,

for d = poly(d). Given a vector x œ d with ÎxÎX , one can compute a multiplicative

(1 ± 4Á)-approximation to ÎxÎX in time poly(d/Á).

Proof. Let x = u + iv œ d. We note that we may compute ÎxÎH for H = (¸d
2

) , so

that the vector y =

x
ÎxÎH

satisfies 1 Æ ÎyÎX Æ d. Thus, we may assume without loss of

generality that 1 Æ ÎxÎX Æ d. For a parameter P > 0 (which we set briefly to poly(d/Á),

consider the set:

D(C)

P =

I
k

P
: 0 Æ k Æ 2fiP

J
.

Then, we note that by differentiation, we have that for all „ œ [0, 2fi], if we let Â„ œ D(C)

P be

the smallest element greater than „, when P =

2R
Á ,

Îu cos

Â„ + v sin

Â„ÎX ≠ Á Æ Îu cos „ + v sin „ÎX Æ Îu cos

Â„ + v sin

Â„ÎX + Á.

The value ¸X (x) =

1

fi·|D(C)

P |
qÂ„œD(C)

P

Îu cos

Â„ + v sin

Â„Î2

X may be computed in poly(

d
Á , R)

time with access to Î · ÎX , and we have:

(1 ≠ 2Á)¸X (x) Æ 1

fi

⁄
2fi

0

Îu cos „ + v sin „Î2

Xd„ Æ (1 + 2Á)¸X (x) + Á2.

Therefore, we have (1 ≠ 2Á)¸X (x) Æ ÎxÎX and ÎxÎX Æ (1 + 2Á)¸X (x) + ÁÎxÎX , so

ÎxÎX Æ (1 + 4Á)¸X (x).

Given Lemma 4.5.24, we may now design a membership oracle for BX .

142

Lemma 4.5.25. Assume oracle access to a real normed space X = (Rd, Î · ÎX) with

BX µ B
2

µ d · BX .

Let BX µ R2d be the convex set given by the unit ball BX µ d. There exists an

membership oracle MEM(BX) running in time poly(d, 1

”).

Proof. Given a vector y œ R2d, first compute ÎyÎ
2

, and if ÎyÎ
2

> 1, assert that y /œ
B(BX , ≠”) since y /œ B

2

and BX µ B
2

. We interpret the vector y œ d and compute

¸X (y) œ RØ0 satisfying

ÎyÎX Æ ¸X (y) Æ
A

1 +

”

2ÎyÎ
2

B
ÎyÎX . (4.34)

Note that since ÎyÎ
2

Æ 1, the computing ¸X (y) takes poly(d, 1

”) time by Lemma 4.5.24. If

¸X (y) Æ 1, then by (4.34), ÎyÎX Æ 1, i.e, y œ BX . This means we may safely assert

that y œ B(X , ”). On the other hand, if ¸X (y) > 1, then by (4.34), ÎyÎX > 1

1+

”
2ÎyÎ

2

.

Therefore, Îy +

”y
ÎyÎ

2

ÎX = (1 +

”
ÎyÎ

2

)ÎyÎX > 1, which implies that B(y, ”) /œ BX , i.e.,

we may safely assert y /œ B(BX , ≠”).

Looking ahead to Section ?? and Section ??, as well as the discussion from Section ??,

starting from oracle access to the normed space X = (Rd, Î · ÎX), we will consider the

normed spaces

A = [X , H]– and Y = [A, H]—,

for some values of –, — œ (0, 1) with 1

d Æ –, — Æ 1 ≠ 1

d (which implies �(–, –) and �(—, —)

are at most poly(d)). During the course of the algorithms in Section ?? and Section ??, we

will need to compute ApproxRep(x, —, Á; A), which is needed for computing norms ÎxÎY

as well as approximate representatives in F defined by the couple [A, H]◊ in the definition

of Section ??.

From Theorem 53, we consider the setting with W = A, so it suffices to construct an

oracle MEM(BA) which runs in poly(d, 1

”) time. Note that we do not have oracle access to

Î · ÎA (which would give MEM(BA)). However, by Corollary 4.5.1, we may design MEM(BA)

143

running in poly(d, 1

”) time by solving ApproxRep(x, –, ”; X) again. Thus, we construct

MEM(BA) by using Theorem 53, this time with W = X , to solve ApproxRep(x, –, ”; X)

using poly(d, 1

”) time and oracle calls to MEM(X). Finally, Lemma 4.5.25 shows how

to solve MEM(X) in poly(d, 1

”) time from oracle access to Î · ÎX . We thus conclude the

discussion below into the following corollary.

Corollary 4.5.26. Assume oracle access to a real normed space X = (Rd, Î · ÎX) with

BX µ B
2

µ d · BX ,

where d = poly(d). Then, letting H = (¸d
2

) ,

A = [X , H] and Y = [A, H],

there exists a poly(d/Á) time algorithm which for each x œ d, computes a (1 ± Á)-

approximation to ÎxÎY with probability at least 1 ≠ Á.

144

Part II

Property Testing of Boolean Functions

145

Chapter 5

A Lower Bound for Non-Adaptive Junta Testing

The main result of this chapter is the following theorem:

Theorem 54 (Lower Bound for Testing k-Juntas Non-adaptively [55]). Let – œ (0.5, 1) be

an absolute constant. Let k = k(n) : N æ N and Á = Á(n) : N æ R>0

be two functions that

satisfy k(n) Æ –n and 2

≠n Æ Á(n) Æ 1/6 for all sufficiently large n. Then any non-adaptive

Á-tester for k-juntas must make Â
�(k3/2/Á) many queries.1

Together with the ÂO(k3/2

)/Á non-adaptive upper bound from [32], Theorem 54 settles

the query complexity of non-adaptive junta testing up to poly-logarithmic factors.

5.1 High-level overview of our approach

Below we provide a high level overview of the proof of the lower bound given by Theorem 54.

First, it is not difficult to show that Theorem 54 is a consequence of the following more

specific lower bound for the case where k = –n:2

Theorem 55. Let – œ (0.5, 1) be an absolute constant. Let k = k(n) : N æ N and

Á = Á(n) : N æ R>0

be two functions that satisfy k(n) = –n and 2

≠(2–≠1)n/2 Æ Á(n) Æ 1/6

for sufficiently large n. Then any non-adaptive Á-tester for k-juntas must make Â
�(n3/2/Á)

many queries.

We now provide a sketch of how Theorem 65 is proved. It may be convenient for the

reader, on the first reading, to consider – = 3/4 and to think of Á as being a small constant

such as 0.01.

1The precise lower bound is �

1
k3/2

Á log

3
(k) log

3
(k/Á)

2
.

2See Section 5.6 for the proof that Theorem 65 implies Theorem 54.

147

Fix a sufficiently large n. Let k = –n and Á = Á(n) with Á satisfying the condition in

Theorem 65.

This lower bound proof consists of two components:

1. A reduction from a simple algorithmic task called Set-Size-Set-Queries (SSSQ for

short), which we discuss informally later in this subsection and we define formally in

Section 5.3. This reduction implies that the non-adaptive deterministic query

complexity of distinguishing Dyes and Dno is at least as large as that of SSSQ.

2. A lower bound of Â
�(n3/2/Á) for the query complexity of SSSQ.

Our yes-functions and no-functions have very similar structure to each other, but are

constructed with slightly different parameter settings. The first step in drawing a random

partition by choosing a uniform random subset M of �(n) “addressing” variables from

x
1

, . . . , xn. A random subset A of the complementary variables M is also selected, and for

each assignment to the variables in M (let us denote such an assignment by i), there is an

independent random function hi over a randomly selected subset Si of the variables in A.

A random function from Dno is constructed in the same way, except that now the random

subset A is chosen to be slightly larger than in the yes-case. This disparity in the size of A

between the two cases causes random functions from Dyes to almost always be k-juntas and

random functions from Dno to almost always be far from k-juntas.

An intuitive explanation of why this construction is amenable to a lower bound for

non-adaptive algorithms is as follows. Intuitively, for an algorithm to determine that it

is interacting with (say) a random no-function rather than a random yes-function, it must

determine that the subset A is larger than it should be in the yes-case. Since the set M of

�(n) many “addressing” variables is selected randomly, if a non-adaptive algorithm uses

two query strings x, xÕ that differ in more than a few coordinates, it is very likely that the

random set M will contain a variable where x and xÕ differ, and therefore, x and xÕ will

correspond to two different random functions hi, hiÕ . Hence, every pair of query strings x, xÕ

that correspond to the same hi can differ only in a few coordinates with high probability.

This phenomenon significantly limits the power of a non-adaptive algorithm distinguishing

148

Dyes and Dno, and allows us to reduce from the algorithmic task SSSQ at the price of only

a small quantitative cost in query complexity, see Section 5.4.

At a high level, the SSSQ task involves distinguishing whether or not a hidden set (cor-

responding to A) is “large.” An algorithm for this task can only access certain random bits,

whose biases are determined by the hidden set and whose exact distribution is inspired by the

exact definition of the random functions hi over the random subsets Si. The SSSQ problem

is much easier to work with compared to the original problem of distinguishing Dyes and

Dno. In particular, we give a reduction from an even simpler algorithmic task called Set-Size-

Element-Queries (SSEQ for short) to SSSQ (see Section 5.5.1) and the query complexity

lower bound for SSSQ follows directly from the lower bound for SSEQ presented in

Section 5.5.2. We hope that the SSSQ problem and/or the SSEQ problem may find other

applications in lower bounds for query algorithms.

Let us give a high-level description of the SSEQ task to provide some intuition for

how we prove a query lower bound on it. Roughly speaking, in this task an oracle holds

an unknown and random subset A of [m] (here m = �(n)) which is either “small” (size

roughly m/2) or “large” (size roughly m/2 + �(

Ô
n · log n)), and the task is to determine

whether A is small or large. The algorithm may repeatedly query the oracle by providing

it, at the j-th query, with an element ij œ [m]; if ij /œ A then the oracle responds “0” with

probability 1, and if ij œ A then the oracle responds “1” with probability Á/
Ô

n and “0”

otherwise. Intuitively, the only way for an algorithm to determine that the unknown set

A is (say) large, is to determine that the fraction of elements of [m] that belong to A is

1/2 + �(log n/
Ô

n) rather than 1/2; this in turn intuitively requires sampling �(n/ log

2 n)

many random elements of [m] and for each one ascertaining with high confidence whether

or not it belongs to A. But the nature of the oracle access described above for SSEQ is

such that for any given i œ [m], at least �(

Ô
n/Á) many repeated queries to the oracle on

input i are required in order to reach even a modest level of confidence as to whether or not

i œ A. As alluded to earlier, the formal argument establishing our lower bound on the query

complexity of SSEQ relies on an upper bound on the total variation distance between two

Binomial distributions.

149

5.2 The Dyes and Dno distributions

Let – œ (0.5, 1) be an absolute constant. Let n be a sufficiently large integer, with k = –n,

and let Á be the distance parameter that satisfies

2

≠(2–≠1)n/2 Æ Á Æ 1/6. (5.1)

In this section we describe a pair of probability distributions Dyes and Dno supported over

Boolean functions f : {0, 1}n æ {0, 1}. We then show that f Ω Dyes is a k-junta with

probability 1 ≠ o(1), and that f Ω Dno is Á-far from being a k-junta with probability

1 ≠ o(1).

We start with some parameters settings. Define

”
def

= 1 ≠ – œ (0, 0.5), p
def

=

1

2

, p
no

def

=

1

2

+

log nÔ
n

,

m
def

= 2”n + ”
Ô

n log n, t
def

= n ≠ m = (2– ≠ 1)n ≠ ”
Ô

n log n, N
def

= 2

t.

A function f Ω Dyes is drawn according to the following randomized procedure:

1. Sample a random subset M µ [n] of size t. Let � = �M : {0, 1}n æ [N] be the

function that maps x œ {0, 1}n to the integer encoded by x|M in binary plus one.

Note that |M| = n ≠ t = m.

2. Sample an A ™ M by including each element of M in A independently with

probability p.

3. Sample independently a sequence of N random subsets S = (Si : i œ [N]) of A as

follows: for each i œ [N], each element of A is included in Si independently with

probability Á/
Ô

n. Next we sample a sequence of N functions H = (hi : i œ [N]), by

letting hi : {0, 1}n æ {0, 1} be a random function over the coordinates in Si, i.e., we

sample an unbiased bit zi(b) for each string b œ {0, 1}Si independently and set

hi(x) = zi(x|Si
).

4. Finally f = fM,A,H : {0, 1}n æ {0, 1} is defined using M, A and H as follows

150

Figure 5.1: An example of how an input x œ {0, 1}n is evaluated by f ≥ Dyes (or Dno). The
relevant variables of x are shaded gray. The output f(x) is computed in two steps. First,
the input x is indexed into one of N functions h

1

, . . . , hN according to �M(x) = x|M + 1.
Second, letting i = �M(x), the output f(x) is equal to hi(x), which depends on the values
of x|Si

for a subset Si µ A.

(note that we can skip S since the choice of S is included in the choice of H):

f(x) = h
�M(x)

(x), for each x œ {0, 1}n.

In words, an input x is assigned the value f(x) as follows: according to the

coordinates of x in the set M (which intuitively should be thought of as unknown),

one of the N functions hi (each of which is, intuitively, a random function over an

unknown subset Si of coordinates) is selected and evaluated on x’s coordinates in Si.

For intuition, we note that both M and M will always be of size �(n), the size of A

will almost always be �(n), and for a given i œ [N] the expected size of Si will

typically be �(Á
Ô

n) (though the size of Si may not be as highly concentrated as the

other sets when Á is tiny).

A function f Ω Dno is generated using the same procedure except that A is a random

subset of M drawn by including each element of M in A independently with probability

p
no

(instead of p). See Figure 5.1 for an example of how an input x œ {0, 1}n is evaluated

by f ≥ Dyes or Dno.

5.2.1 Most functions drawn from Dyes are k-juntas

We first prove that f Ω Dyes is a k-junta with probability 1 ≠ o(1).

151

Lemma 5.2.1. A function f Ω Dyes is a k-junta with probability 1 ≠ o(1).

Proof. By the definition of Dyes, all the relevant variables of f ≥ Dyes belong to M fi A.

Note that |M| = t. On the other hand, the expected size of A is ”n + ”
Ô

n log n/2. By a

Chernoff bound, we have

|A| Æ ”n +

”
Ô

n log n

2

+

”
Ô

n log n

4

< ”n + ”
Ô

n log n

with probability 1 ≠ o(1). When this happens we have |M fi A| < –n = k.

5.2.2 Most functions drawn from Dno are Á-far from k-juntas

Next we prove that f Ω Dno is Á-far from any k-junta with probability 1 ≠ o(1). The details

of the argument are somewhat technical so we start by giving some high-level intuition,

which is relatively simple. Since p
no

= p + log(n)/
Ô

n, a typical outcome of A drawn from

Dno is slightly larger than a typical outcome drawn from Dyes, and this difference causes

almost every outcome of |M fi A| in Dno (with M fi A being the set of relevant variables

for f Ω Dno) to be larger than k by at least 9

Ô
n. As a result, the relevant variables of any

k-junta must miss either (a) at least one variable from M, or (b) at least 9

Ô
n variables from

A. Missing even a single variable from M causes the k-junta to be far from f (this is made

precise in Claim 5.2.4 below). On the other hand, missing 9

Ô
n variables from A means that

with probability �(Á), at least one variable is missing from a typical Si (recall that these are

random (Á/
Ô

n)-dense subsets of A). Because hi is a random function over the variables in

Si, missing even a single variable would lead to a constant fraction of error when hi is the

function determining the output of f .

Lemma 5.2.2. A function f Ω Dno is Á-far from being a k-junta with probability 1 ≠ o(1).

Proof. Fix any subset M µ [n] of size t, and consider f = fM,A,H where A and H are

sampled according to the procedure for Dno. With probability 1 ≠ o(1) over the choice of

A, we have

|A| Ø p
no

m ≠ ”
Ô

n log n

2

Ø ”n + 2”
Ô

n log n and |M fi A| Ø k + ”
Ô

n log n. (5.2)

152

Assume this is the case for the rest of the proof and fix any such set A µ M . It suffices

to show that f = fM,A,H is Á-far from any k-junta with probability 1 ≠ o(1), where H is

sampled according to the rest (steps 3 and 4) of the procedure for Dno (by sampling Si from

A and then hi over Si).

The plan for the rest of the proof is the following. For each V µ M fi A of size 9

Ô
n,

we use EV to denote the size of the maximum set of vertex-disjoint, f -bichromatic edges

along directions in V only. We will prove the following claim:

Claim 5.2.3. For each V µ M fi A of size 9

Ô
n, we have EV Ø Á2

n with probability

1 ≠ exp(≠2

�(n)

) over the choice of H.

Note that when EV Ø Á2

n, we have dist(f , g) Ø Á for every function g that does

not depend on any variable in V . This is because, for every f -bichromatic edge (x, x(¸)

)

along a coordinate ¸ œ V , we must have f(x) ”= f(x(¸)

) since the edge is bichromatic but

g(x) = g(x(¸)

) as g does not depend on the ¸th variable. As a result, f must disagree with g

on at least Á2

n many points.

Assuming Claim 5.2.3 for now, we can apply a union bound over all

A|M fi A|
9

Ô
n

B
Æ

A
n

9

Ô
n

B
Æ 2

O(

Ô
n log n)

possible choices of V µ M fi A to conclude that with probability 1 ≠ o(1), f = fM,A,H is

Á-far from all functions that do not depend on at least 9

Ô
n variables in M fi A. By (5.2),

this set includes all k-juntas. This concludes the proof of the Lemma 5.2.2 modulo the proof

of Claim 5.2.3.

In the rest of the section, we prove Claim 5.2.3 for a fixed subset V µ M fi A of size

9

Ô
n. We start with the simpler case when V fl M is nonempty.

Claim 5.2.4. If V fl M ”= ÿ, then EV Ø 2

n/5 with probability 1 ≠ exp(≠2

�(n)

) over the

choice of H.

Proof. Fix an ¸ œ V fl M ; we will argue that with probability 1 ≠ exp(≠2

�(n)

) there are at

least 2

n/5 f -bichromatic edges along direction ¸. This suffices since such edges are clearly

vertex-disjoint.

153

Observe that since ¸ œ M , every x œ {0, 1}n has �(x) ”= �(x(¸)

). For each b œ {0, 1}M ,

let Xb be the set of x œ {0, 1}n with x|M = b. We partition {0, 1}n into 2

t≠1 pairs Xb

and Xb(¸)

, where b ranges over the 2

t≠1 strings in {0, 1}M with b¸ = 0. For each such pair,

we use Db to denote the number of f -bichromatic edges between Xb and Xb(¸)

. We are

interested in lower bounding
q

b Db.

We will apply Hoeffding’s inequality. For this purpose we note that the Db’s are

independent (since they depend on distinct hi’s), always lie between 0 and 2

m, and each

one has expectation 2

m≠1. The latter is because each edge (x, x(¸)

) has f(x) and f(x(¸)

)

drawn as two independent random bits, which is the case since �(x) ”= �(x(¸)

). Thus, the

expectation of
q

b Db is 2

n≠2. By Hoeffding’s inequality, we have

Pr
5---ÿ Db ≠ 2

n≠2

--- Ø 2

n

20

6
Æ 2 · exp

A
≠2(2

n/20)

2

2

t≠1 · 2

2m

B
= exp

1
≠2

�(n)

2

since t = �(n). This finishes the proof of the claim.

Now we may assume that V µ A (and |V | = 9

Ô
n). We use I to denote the set of

i œ [N] such that Si fl V ”= ÿ. The following claim shows that I is large with extremely

high probability:

Claim 5.2.5. We have |I| Ø 4.4ÁN with probability at least 1 ≠ exp(≠2

�(n)

) over the

choice of S.

Proof. For each i œ [N] we have (using 1 ≠ x Æ e≠x for all x and 1 ≠ x/2 Ø e≠x for

x œ [0, 1.5]):

Pr
Ë
i œ I

È
= 1 ≠

A
1 ≠ ÁÔ

n

B
9

Ô
n

Ø 1 ≠ e≠9Á Ø 4.5Á,

since Á/
Ô

n is the probability of each element of A being included in Si and Á Æ 1/6 so

9Á Æ 1.5.

Using Á Ø 2

≠(2–≠1)n/2 from (5.1), we have E[|I|] Ø 4.5ÁN = 2

�(n). Since the

Si’s are independent, a Chernoff bound implies that |I| Ø 4.4ÁN with probability 1 ≠
exp(≠2

�(n)

).

154

By Claim 5.2.5, we fix S
1

, . . . , SN to be any sequence of subsets of A that satisfy

|I| Ø 4.4ÁN in the rest of the proof, and it suffices to show that over the random choices

of h
1

, . . . , hN (where each hi is chosen to be a random function over Si), EV Ø Á2

n with

probability at least 1 ≠ exp(≠2

�(n)

).

To this end we use fl(i) for each i œ I to denote the first coordinate of Si in V , and

Zi to denote the set of x œ {0, 1}n with �(x) = i. Note that the Zi’s are disjoint. We

further partition each Zi into disjoint Zi,b, b œ {0, 1}Si , with x œ Zi,b iff x œ Zi and

x|Si
= b. For each i œ I and b œ {0, 1}Si with bfl(i) = 0, we use Di,b to denote the number

of f -bichromatic edges between Zi,b and Zi,b(fl(i))

along the fl(i)th direction. It is clear that

such edges, over all i and b, are vertex-disjoint and thus,

EV Ø ÿ
iœI

ÿ
bœ{0,1}Si

bfl(i)

=0

Di,b. (5.3)

We will apply Hoeffding’s inequality. Note that Di,b is 2

m≠|Si| with probability 1/2, and

0 with probability 1/2. Thus, the expectation of the RHS of (5.3) is

ÿ
iœI

2

|Si|≠1 · 2

m≠|Si|≠1

= |I| · 2

m≠2 Ø 1.1Á2

n,

using |I| Ø 4.4ÁN . Since all the Di,b’s are independent, by Hoeffding’s inequality we have

Pr
5 ---RHS of (5.3) ≠ |I| · 2

m≠2

--- Ø 0.01|I| · 2

m≠2

6
Æ 2 · exp

A
≠ 2(0.01|I| · 2

m≠2

)

2q
iœI 2

|Si|≠1 · 2

2(m≠|Si|)

B

Æ exp

1
≠2

�(n)

2
,

since |I| Ø �(ÁN) = 2

�(n). Therefore, with probability 1 ≠ exp

1
2

≠�(n)

2
, we have

EV Ø 0.99 · |I| · 2

m≠2 > Á2

n.

This concludes the proof of Claim 5.2.3.

155

5.3 The Set-Size-Set-Queries (SSSQ) Problem

We first introduce the Set-Size-Set-Queries (SSSQ for short) problem, which is an artificial

problem that we use as a bridge to prove Theorem 65. We use the same parameters p, p
no

and m from the definition of Dyes and Dno, with n being sufficiently large (so m = �(n) is

also sufficiently large).

We start by defining Ayes and Ano, two distributions over subsets of [m]: A ≥ Ayes is

drawn by independently including each element of [m] with probability p and A ≥ Ano is

drawn by independently including each element with probability q. In SSSQ, the algorithm

needs to determine whether an unknown A ™ [m] is drawn from Ayes or Ano. (For intuition,

to see that this task is reasonable, we observe here that a straightforward Chernoff bound

shows that almost every outcome of A ≥ Ayes is larger than almost every outcome of

A ≥ Ano by �(

Ô
n log n).)

Let A be a subset of [m] which is hidden in an oracle. An algorithm accesses A (in order

to tell whether it is drawn from Ayes or Ano) by interacting with the oracle in the following

way: each time it calls the oracle, it does so by sending a subset of [m] to the oracle. The

oracle responds as follows: for each j in the subset, it returns a bit that is 0 if j /œ A, and

is 1 with probability Á/
Ô

n and 0 with probability 1 ≠ Á/
Ô

n if j œ A. The cost of such an

oracle call is the size of the subset provided to the oracle.

More formally, a deterministic and non-adaptive algorithm ALG = (g, T) for SSSQ ac-

cesses the set A hidden in the oracle by submitting a list of queries T = (T
1

, . . . , Td), for

some d Ø 1, where each Ti ™ [m] is a set. (Thus, we call each Ti a set query, as part of the

name SSSQ.)

• Given T , the oracle returns a list of random vectors v = (v
1

, . . . , vd), where

vi œ {0, 1}Ti and each bit vi,j is independently distributed as follows: if j /œ A then

vi,j = 0; if j œ A then

vi,j =

Y__]__[
1 with probability Á/

Ô
n

0 with probability 1 ≠ (Á/
Ô

n).
(5.4)

156

Note that the random vectors in v depend on both T and A.

• Given v = (v
1

, . . . , vd), ALG returns (deterministically) the value of

g(v) œ {“yes”, “no”}.

The performance of ALG = (g, T) is measured by its query complexity and its advantage.

• The query complexity of ALG is defined as
qd

i=1

|Ti|, the total size of all the set

queries. On the other hand, the advantage of ALG is defined as

Pr
A≥Ayes

Ë
ALG(A) = “yes”

È
≠ Pr

A≥Ano

Ë
ALG(A) = “yes”

È
.

Remark 56. In the definition above, g is a deterministic map from all possible sequences of

vectors returned by the oracle to “yes” or “no.” Considering only deterministic as opposed

to randomized g is without loss of generality since given any query sequence T , the highest

possible advantage can always be achieved by a deterministic map g.

We prove the following lower bound for any deterministic, non-adaptive ALG in Sec-

tion 5.5.

Lemma 5.3.1. Any deterministic, non-adaptive ALG for SSSQ with advantage at least

2/3 satisfies
dÿ

i=1

|Ti| Ø n3/2

Á · log

3 n · log

2

(n/Á)

.

5.4 Reducing from SSSQ to distinguishing Dyes and Dno

In this section we reduce from SSSQ to the problem of distinguishing the pair of dis-

tributions Dyes and Dno. More precisely, let ALGú
= (h, X) be a deterministic and non-

adaptive algorithm that makes q Æ (n/Á)

2 string queries3 X = (x
1

, . . . , xq) to a hidden

function f drawn from either Dyes or Dno, applies the (deterministic) map h to return

3Any algorithm that makes more than this many queries already fits the Â
�(n3/2/Á) lower bound we aim

for.

157

h(f(x
1

), . . . , f(xq)) œ {“yes”, “no”}, and satisfies

Pr
f≥Dyes

Ë
ALGú

(f) = “yes”
È

≠ Pr
f≥Dno

Ë
ALGú

(f) = “yes”
È

Ø 3/4. (5.5)

We show how to define from ALGú
= (h, X) an algorithm ALG = (g, T) for the problem

SSSQ with query complexity at most · · q and advantage 2/3, where · = c– · 5 log(n/Á)

and

c– = ≠ 1

log(1.5 ≠ –)

> 0 with (1.5 ≠ –)

c–
= 1/2

is a constant that depends on –. Given this reduction it follows from Lemma 5.3.1 that

q Ø Â
�(n3/2/Á). This finishes the proof of Theorem 65.

We first give a sketch of the reduction and some intuition behind the proof. Fixing

a subset M of [n] of size t, we use X
1

, . . . , Xd, for some d Ø 1, to denote a partition

of the query strings x
1

, . . . , xq such that xi and xj belong to the same X¸ if and only if

(xi)|M = (xj)|M . For each ¸ œ [d], we use T¸ to denote the set of indices k œ M such

that xk ”= yk for some strings x, y œ X¸. The first part of the proof shows that there exists

an M such that (1) ALGú can distinguish Dyes and Dno conditioning on M = M (recall

in both Dyes and Dno, M is a subset of [n] of size t drawn uniformly at random), and (2)

Îx ≠ yÎ
1

Æ · for all ¸ œ [d] and x, y œ X¸, which in turn implies that
q

¸œ[d]

|T¸| Æ · · q.

Indeed we show that most draws from M satisfy both properties; the intuition behind (2) is

that two query strings with a large Hamming distance would have different projections on

M with high probability. Fixing such an M , we identify indices of M as those of [m] in

SSSQ (by picking an arbitrary bijection between them) and show that T = (T
1

, . . . , Td)

can be used to obtain an algorithm ALG = (g, T) for SSSQ, with query complexity at most

· · q, for some appropriate g. The intuition is that in SSSQ we receive intersections of T¸

with random subsets S¸ drawn independently from the hidden subset A, which can be used

to simulate random functions h¸ over S¸ evaluated on strings in X¸.

We start the reduction with some notation. For a fixed M of size t, we use Eyes(M)

to denote the distribution of A and H sampled in the randomized procedure for Dyes,

conditioning on M = M . We define Eno(M) similarly. Then conditioning on M = M ,

f ≥ Dyes is distributed as fM,A,H with (A, H) ≥ Eyes(M) and f ≥ Dno is distributed as

158

fM,A,H with (A, H) ≥ Eno(M). This allows us to rewrite (6.5) as

11
n
t

2 · ÿ
M :|M |=t

A
Pr

(A,H)≥Eyes(M)

Ë
ALGú

(fM,A,H) = “yes”
È

≠ Pr
(A,H)≥Eno(M)

Ë
ALGú

(fM,A,H) = “yes”
ÈB

Ø 3

4

.

We say M µ [n] is good if any two queries xi and xj in X with Hamming distance

Îxi ≠ xjÎ1

Ø · have different projections on M , i.e., (xi)|M ”= (xj)|M . We prove below

that most M ’s are good.

Claim 5.4.1. PrM
Ë
M is not good

È
= o(1).

Proof. For each pair of strings xi and xj in X with Hamming distance at least · , the

probability of them having the same projection on M (drawn uniformly from all size-t

subsets) is at most

1
n≠·

t

2
1

n
t

2
=

(n ≠ · ≠ t + 1) · · · (n ≠ t)

(n ≠ · + 1) · · · n
Æ

3
1 ≠ t

n

4·

Æ
1
2(1 ≠ –) + o(1)

2·
< (1.5 ≠ –)

· Æ O
3

Á

n

4
5

,

by our choices of c– and · . The claim follows by a union bound over at most q2 Æ (n/Á)

4

pairs.

We can split the sum (6.5) into two sums: the sum over good M and the sum over bad

M . By Claim 5.4.1 the contribution from the bad M is at most o(1), and thus we have that

11
n
t

2 · ÿ
good M

A
Pr

(A,H)≥Eyes(M)

Ë
ALGú

(fM,A,H) = “yes”
È

≠ Pr
(A,H)≥Eno(M)

Ë
ALGú

(fM,A,H) = “yes”
ÈB

is at least 3/4 ≠ o(1). Thus, there must exist a good set M µ [n] of size t with

Pr
(A,H)≥Eyes(M)

Ë
ALGú

(fM,A,H) = “yes”
È

≠ Pr
(A,H)≥Eno(M)

Ë
ALGú

(fM,A,H) = “yes”
È

Ø 2/3.

(5.6)

Fix such a good M . We use ALGú
= (h, X) and M to define an algorithm ALG = (g, T)

for SSSQ as follows (note that the algorithm ALG below actually works over the universe

M (of size m) instead of [m] as in the original definition of SSSQ but this can be handled

159

by picking any bijection between M and [m]; accordingly A ≥ Ayes is drawn by including

each element of M with probability p and A ≥ Ano is drawn by including each element of

M with probability p
no

). We start with T :

1. First we use M to define an equivalence relation ≥ over the query set X , where

xi ≥ xj if (xi)|M = (xj)|M . Let X
1

, . . . , Xd, d Ø 1, denote the equivalence classes

of X , and let us write fl(¸) for each ¸ œ [d] to denote the value �(x) œ [N] that is

shared by all strings x œ X¸.

2. Next we define a sequence of subsets of M , T = (T
1

, . . . , Td), as the set queries of

ALG, where

T¸ =

Ó
i œ M : ÷x, y œ X¸ such that xi ”= yi

Ô
. (5.7)

To upper bound |T¸|, fixing an arbitrary string x œ X¸ and recalling that M is good, we have

that

|T¸| Æ ÿ
yœX¸

Îx ≠ yÎ
1

Æ ÿ
yœX¸

· = · · |X¸|.

As a result, the query complexity of ALG (using T as its set queries) is at most

dÿ
¸=1

|T¸| Æ · ·
dÿ

¸=1

|X¸| Æ · · q.

It remains to define h and then prove that the advantage of ALG = (g, T) for SSSQ is

at least 2/3. Indeed the g that we define is a randomized map and we describe it as a

randomized procedure below (by Remark 56 one can extract from g a deterministic map

that achieves the same advantage):

1. Given v
1

, . . . , vd, v¸ œ {0, 1}T¸ , as the strings returned by the oracle upon being given

T , let

R¸ =

Ó
j œ T¸ : v¸,j = 1

Ô
. (5.8)

For each ¸ œ [d], the procedure draws a random function f ¸ : {0, 1}R¸ æ {0, 1}, by

flipping 2

|R¸| many independent and unbiased random bits.

160

2. Next for each query x œ X¸, ¸ œ [d], we feed f ¸(x|R¸
) to h as the bit that the oracle

returns upon the query x. Finally the procedure returns the result (“yes” or “no”) that

h returns.

In the rest of the proof we show that the advantage of ALG = (g, T) is exactly the same as

the LHS of (5.6) and thus, is at least 2/3.

For convenience, we use Vyes to denote the distribution of responses v = (v
1

, . . . , vd) to

T when A ≥ Ayes, and Vno to denote the distribution when A ≥ Ano. Then the advantage

of ALG is

Pr
v≥Vyes

Ë
g(v) = “yes”

È
≠ Pr

v≥Vno

Ë
g(v) = “yes”

È
.

It suffices to show that

Pr
v≥Vyes

Ë
g(v) = “yes”

È
= Pr

(A,H)≥Eyes(M)

Ë
ALGú

(fM,A,H) = “yes”
È

and (5.9)

Pr
v≥Vno

Ë
g(v) = “yes”

È
= Pr

(A,H)≥Eno(M)

Ë
ALGú

(fM,A,H) = “yes”
È

. (5.10)

We show (5.9); the proof of (5.10) is similar. From the definition of Vyes and Eyes(M)

the distribution of (R¸ : ¸ œ [d]) derived from v ≥ Vyes using (5.8) is the same as the

distribution of (Sfl(¸)

fl T¸ : ¸ œ [d]): both are sampled by first drawing a random subset A

of M and then drawing a random subset of A fl T¸ independently by including each element

of A fl T¸ with the same probability Á/
Ô

n (recall in particular equation (5.4) and step 3 of

the randomized procedure specifying Dyes in Section 5.2). Since fM,A,H(x) for x œ X¸ is

determined by a random Boolean function hfl(¸)

from {0, 1}Sfl(¸) to {0, 1}, and since all the

queries in X¸ only differ by coordinates in T¸, the distribution of the q bits that g feeds to h

when v ≥ Vyes is the same as the distribution of (f(x) : x œ X) when f ≥ Eyes(M). This

finishes the proof of (5.9), and concludes our reduction argument.

161

5.5 A lower bound on the non-adaptive query complexity

of SSSQ

We will prove Lemma 5.3.1 by first giving a reduction from an even simpler algorithmic

task, which we describe next in Section 5.5.1. We will then prove a lower bound for the

simpler task in Section 5.5.2.

5.5.1 Set-Size-Element-Queries (SSEQ)

Recall the parameters m, p, p
no

and Á and the two distributions Ayes and Ano used in the

definition of problem SSSQ. We now introduce a simpler algorithmic task called the Set-

Size-Element-Queries (SSEQ) problem using the same parameters and distributions. As in

the SSSQ problem, the goal is to distinguish between the case in which a hidden subset A

is drawn from Ayes or from Ano.

Let A be a subset of [m] hidden in an oracle. An algorithm accesses the oracle to tell

whether it is drawn from Ayes or Ano. The difference between SSSQ and SSEQ is the way

A is accessed. In SSEQ, an algorithm ALGÕ
= (h, ¸) submits a vector ¸ = (¸

1

, . . . , ¸m) of

nonnegative integers.

• On receiving ¸, the oracle returns a random response vector b œ {0, 1}m, where each

entry bi is distributed independently as follows: if i /œ A then bi = 0, and if i œ A

then

bi =

Y__]__[
1 with probability ⁄(¸i)

0 with probability 1 ≠ ⁄(¸i)

, where ⁄(¸i) = 1 ≠
A

1 ≠ ÁÔ
n

B¸i

.

Equivalently, for each i œ A, the oracle independently flips ¸i coins, each of which is

1 with probability Á/
Ô

n, and at the end returns bi = 1 to the algorithm if and only if

at least one of the coins is 1. Thus, we refer to each ¸i as ¸i element-queries for the

ith element.

162

• After receiving the vector b from the oracle, ALGÕ returns the value

h(b) œ {“yes”, “no”}. Here h is a deterministic map from {0, 1}m to {“yes”, “no”}.

Similar to before, the performance of ALGÕ is measured by its query complexity and its

advantage:

• The query complexity of ALGÕ
= (h, ¸) is defined as Î¸Î

1

=

qm
i=1

¸i. For its

advantage, we let Byes denote the distribution of response vectors b to query ¸ when

A ≥ Ayes, and Bno denote the distribution when A ≥ Dno. The advantage of

ALGÕ
= (h, ¸) is then defined as

Pr
b≥Byes

Ë
h(b) = “yes”

È
≠ Pr

b≥Bno

Ë
h(b) = “yes”

È
.

Remark 57. It is worth pointing out (we will use it later) that the highest possible advantage

over all deterministic maps h is a monotonically non-decreasing function of the coordinates

of ¸. To see this, let A be the underlying set and let ¸ and ¸Õ be two vectors with ¸i Æ ¸Õ
i for

every i œ [m]. Let b and bÕ be the random vectors returned by the oracle upon ¸ and ¸Õ.

Then we can define bú using bÕ as follows: bú
i = 0 if bÕ

i = 0; otherwise when bÕ
i = 1, we set

bú
i =

Y___]___[
1 with probability ⁄(¸i)/⁄(¸Õ

i)

0 with probability 1 ≠ ⁄(¸i)/⁄(¸Õ
i)

.

One can easily verify that the distribution of b is exactly the same as the distribution of bú.

Hence there is a randomized map hÕ such that the advantage of (hÕ, ¸Õ
) is at least as large as

the highest possible advantage achievable using ¸. The remark now follows by our earlier

observation in Remark 56 that the highest possible advantage using ¸Õ is always achieved

by a deterministic hÕ.

The following lemma reduces the proof of Lemma 5.3.1 to proving a lower bound for

SSEQ.

163

Lemma 5.5.1. Given any deterministic and non-adaptive algorithm ALG = (g, T) for

SSSQ, there is a deterministic and non-adaptive algorithm ALGÕ
= (h, ¸) for SSEQ with

the same query complexity as ALG and advantage at least as large as that of ALG.

Proof. We show how to construct ALGÕ
= (h, ¸) from ALG = (g, T), where h is a random-

ized map, such that ALGÕ has exactly the same query complexity and advantage as those of

ALG. The lemma then follows from the observation we made earlier in Remark 56.

We define ¸ first. Given T = (T
1

, . . . , Td) for some d Ø 1, ¸ = (¸
1

, . . . , ¸m) is defined

as

¸j =

---{i œ [d] : j œ Ti}
---.

So Î¸Î
1

=

qd
i=1

|Ti|. Recall from Section 5.4 that Vyes and Vno denote the distributions

supported on responses v = (v
1

, . . . , vd) to T in SSSQ when A ≥ Ayes and A ≥ Ano,

respectively. To define h, we describe a randomized procedure P that, given any b œ {0, 1}m,

outputs a sequence of random vectors v = (v
1

, . . . , vd) which simulates Vyes if b ≥ Byes

and Vno if b ≥ Bno.In other words, we define P below and prove the following claim:

Claim 5.5.2. If b ≥ Byes (or Bno), then P (b) is distributed the same as Vyes (or Vno,

respectively).

Assuming Claim 5.5.2, we can set h = g ¶ P and the advantage of ALGÕ would be the

same as that of ALG. In the rest of the proof, we describe the randomized procedure P and

prove Claim 5.5.2.

Given b œ {0, 1}m, P outputs a sequence of random vectors v = (v
1

, . . . , vd) as

follows:

• If bj = 0, then for each i œ [d] with j œ Ti, P sets vi,j = 0.

• If bj = 1 (this implies that ¸j > 0 and j œ Ti for some i œ [d]), P sets

(vi,j : i œ [d], j œ Ti) to be a length-r, where r = |{i œ [d] : j œ Ti}|, binary string

in which each bit is independently 1 with probability Á/
Ô

n and 0 with probability

1 ≠ Á/
Ô

n, conditioned on its not being 0

r.

Proof of Claim 5.5.2. It suffices to prove that, fixing any A ™ [m] as the underlying set

hidden in the oracle, the distribution of v is the same as that of P (b). The claim then follows

164

since in the definitions of both Byes and Vyes (or Bno and Vno), A is drawn from Ayes (or Ano,

respectively).

Consider a sequence v of d vectors v
1

, . . . , vd with vi œ {0, 1}Ti for each i œ [d], and let

nj,1 = |{i œ [d] : j œ Ti and vi,j = 1}| and nj,0 = |{i œ [d] : j œ Ti and vi,j = 0}|,

for each j œ [m]. Then the v returned by the oracle (in SSSQ) is equal to v with probability:

1
Ë
’j /œ A, nj,1 = 0

È
· Ÿ

jœA

A
ÁÔ
n

Bnj,1
A

1 ≠ ÁÔ
n

Bnj,0

, (5.11)

since all coordinates vi,j are independent. (Here 1 denotes the indicator function, so 1[E] is

1 if event E holds and is 0 otherwise.) On the other hand, the probability of P (b) = v is

1
Ë
’j /œ A, nj,1 = 0

È
· Ÿ

jœA

Qa1
Ë
nj,0 = ¸j

È
·

A
1 ≠ ÁÔ

n

B¸j

+ 1
Ë
nj,1 Ø 1

È
·

A
ÁÔ
n

Bnj,1
A

1 ≠ ÁÔ
n

Bnj,0
Rb ,

which is exactly the same as the probability of v = v in (5.11).

This finishes the proof of Lemma 5.5.1.

5.5.2 A lower bound for SSEQ

We prove the following lower bound for SSEQ, from which Lemma 5.3.1 follows:

Lemma 5.5.3. Any deterministic, non-adaptive ALGÕ for SSEQ with advantage at least

2/3 satisfies

Î¸Î
1

> s
def

=

n3/2

Á · log

3 n · log

2

(n/Á)

.

Proof. Assume for contradiction that there is an algorithm ALGÕ
= (h, ¸) with Î¸Î

1

Æ s

and advantage at least 2/3. Let ¸ú be the vector obtained from ¸ by rounding each positive

¸i to the smallest power of 2 that is at least as large as ¸i (and taking ¸ú
i = 0 if ¸i = 0).

From Remark 57, there must be a map hú such that (hú, ¸ú
) also has advantage at least 2/3

but now we have 1) Î¸úÎ
1

Æ 2s and 2) every positive entry of ¸ú is a power of 2. Below

we abuse notation and still use ALGÕ
= (h, ¸) to denote (hú, ¸ú

): ALGÕ
= (h, ¸) satisfies

165

Î¸Î
1

Æ 2s, every positive entry of ¸ is a power of 2, and has advantage at least 2/3. We

obtain a contradiction below by showing that any such ¸ can only have an advantage of o(1).

Let L = Álog(2s)Ë = O(log(n/Á)). Given that Î¸Î
1

Æ 2s we can partition {i œ [m] :

¸i > 0} into L + 1 bins C
0

, . . . , CL, where bin Cj contains those coordinates i œ [m] with

¸i = 2

j . We may make two further assumptions on ALGÕ
= (h, ¸) that will simplify the

lower bound proof:

• We may reorder the entries in decreasing order and assume without loss of generality

that

¸ =

Qca2

L, . . . , 2

L¸ ˚˙ ˝
cL

, 2

L≠1, . . . , 2

L≠1¸ ˚˙ ˝
cL≠1

, . . . , 1, . . . , 1¸ ˚˙ ˝
c

0

, 0, . . . , 0

Rdb , (5.12)

where cj = |Cj| satisfies
q

j cj · 2

j Æ 2s. This is without loss of generality since Ayes

and Ano are symmetric in the coordinates (and so are Byes and Bno).

• For the same reason we may assume that the map h(b) depends only on the number

of 1’s of b in each set Cj , which we refer to as the summary S(b) of b:

S(b)
def

=

3
Îb|CL

Î
1

, Îb|CL≠1

Î
1

, . . . , Îb|C
0

Î
1

4
œ ZL+1

Ø0

.

To see that this is without loss of generality, consider a randomized procedure P that,

given b œ {0, 1}m, applies an independent random permutation over the entries of Cj

for each bin j œ [0 : L]. One can verify that the random map hÕ
= h ¶ P only

depends on the summary S(b) of b but achieves the same advantage as h.

Given a query ¸ as in (5.12), we define Syes to be the distribution of S(b) for b ≥ Byes

(recall that Byes is the distribution of the vector b returned by the oracle upon the query ¸

when A ≥ Ayes). Similarly we define Sno as the distribution of S(b) for b ≥ Bno. As h only

depends on the summary the advantage is at most d
TV

(Syes, Sno), which we upper bound

below by o(1).

From the definition of Byes (or Bno, respectively) and the fact that Ayes (or Ano, re-

spectively) is symmetric over the m coordinates, we have that the L + 1 entries of

Syes (of Sno, respectively) are mutually independent, and that their entries for each Cj ,

166

j œ [0 : L], are distributed as Bin(cj, p⁄j) (as Bin(cj, p
no

⁄j), respectively), where we have

⁄j = 1 ≠ (1 ≠ (Á/
Ô

n))

2

j
.

In order to prove that d
TV

(Syes, Sno) = o(1) and achieve the desired contradiction, we

will give upper bounds on the total variation distance between their Cj-entries for each

j œ {0, . . . , L}.

Claim 5.5.4. For every j œ [0 : L], we have d
TV

(X, Y) Æ o(1/L), where X ≥ Bin(cj, p⁄j)

and Y ≥ Bin(cj, p
no

⁄j).

We delay the proof of Claim 5.5.4, but assuming it we may simply apply the following

well-known proposition to conclude that d
TV

(Syes, Sno) = o(1).

Proposition 5.5.5 (Subadditivity of total variation distance). Let X = (X
1

, . . . , Xk) and

Y = (Y
1

, . . . , Yk) be two tuples of independent random variables. Then d
TV

(X, Y) Æqk
i=1

d
TV

(Xi, Yi).

This gives us a contradiction and finishes the proof of Lemma 5.5.3.

Below we prove Claim 5.5.4.

Proof of Claim 5.5.4. Consider any fixed j œ [0 : L]. The claim is trivial when cj = 0 so

we assume below that cj > 0.

Let rj = p⁄j and xj = log n · ⁄j/
Ô

n. Then X ≥ Bin(cj, rj) and Y ≥ Bin(cj, rj + xj).

As indicated in Equation (2.15) of [1], Equation (15) of [124] gives

d
TV

(X, Y) Æ O

A
·j(xj)

(1 ≠ ·j(xj))
2

B
, where ·j(xj)

def

= xj

Û
cj + 2

2rj(1 ≠ rj)
, (5.13)

whenever ·j(xj) < 1. Substituting for xj and rj , we have (using cj Ø 1, rj Æ 1/2 and

p = 1/2)

·j(xj) = O

A
log n · ⁄jÔ

n
·

Û
cj

rj

B
= O

Qa
log n ·

Û
⁄j · cj

n

Rb
= O

Qca 1

L
·

ı̂ıÙ n1/2 · ⁄j

2

j · Á · log n

Rdb ,

167

where the last inequality follows from

cj · 2

j Æ 2s Æ O

A
n3/2

Á · log

3 n · L2

B
.

Finally, note that (using 1 ≠ x > e≠2x for small positive x and 1 ≠ x Æ e≠x for all x):

1 ≠ ⁄j =

A
1 ≠ ÁÔ

n

B
2

j

Ø
1
e≠2Á/

Ô
n

2
2

j

= e≠2

j+1Á/
Ô

n Ø 1 ≠ O(2

jÁ/
Ô

n)

so that
Ô

n · ⁄j

2

j · Á
= O(1). This implies ·j(xj) = o(1/L). The claim then follows from

(5.13).

5.6 Proof of Theorem 54 assuming Theorem 65

We prove the following claim in Appendix 5.6.1.

Claim 5.6.1. Let Á(n) be a function that satisfies 2

≠n Æ Á(n) Æ 1/5 for sufficiently large n.

Then any non-adaptive algorithm that accepts the all-0 function with probability at least

5/6 and rejects every function that is Á-far from (n ≠ 1)-juntas with probability at least 5/6

must make �(1/Á) queries.

Next let k(n) and Á(n) be the pair of functions from the statement of Theorem 54. We

consider a sufficiently large n (letting k = k(n) and Á = Á(n) below) and separate the proof

into two cases:

2

≠(2–≠1)k/(2–) Æ Á Æ 1/6 and 2

≠n Æ Á < 2

≠(2–≠1)k/(2–).

For the first case, if k = O(1) then the bound we aim for is simply Â
�(1/Á), which follows

trivially from Claim 7.3.4 (since k Æ –n < n ≠ 1 and the all-0 function is a k-junta).

Otherwise we combine the following reduction with Theorem 65: any Á-tester for k-juntas

over n-variable functions can be used to obtain an Á-tester for k-juntas over (k/–)-variable

functions. This can be done by adding n ≠ k/– dummy variables to any (k/–)-variable

function to make the number of variables n (as k Æ –n). The lower bound then follows

168

from Theorem 65 since – is a constant. For the second case, the lower bound claimed in

Theorem 54 is Â
�(1/Á), which follows again from Claim 7.3.4. This concludes the proof of

Theorem 54 given Theorem 65 and Claim 7.3.4.

5.6.1 Proof of Claim 7.3.4

Let C be a sufficiently large constant. We prove Claim 7.3.4 by considering two cases:

Á Ø C log n

2

n
and Á <

C log n

2

n
.

For the first case of 2

nÁ Ø C log n, we use D
1

to denote the following distribution over

n-variable Boolean functions: to draw g ≥ D
1

, independently for each x œ {0, 1}n the

value of g(x) is set to 0 with probability 1 ≠ 3Á (recall that Á Æ 1/5) and 1 with probability

3Á.

We prove the following lemma for the distribution D
1

:

Lemma 5.6.2. With probability at least 1 ≠ o(1), g ≥ D
1

is Á-far from every (n ≠ 1)-junta.

Proof. Note that every (n ≠ 1)-junta is such that for some i œ [n], the function does not

depend on the i-th variable; we refer to such a function as a type-i junta. An easy lower bound

for the distance from a function g to all type-i juntas is the number of g-bichromatic edges

(x, x(i)
) divided by 2

n. When g ≥ D
1

each edge (x, x(i)
) is independently g-bichromatic

with probability 6Á(1 ≠ 3Á) Ø 12Á/5 (as Á Æ 1/5). Thus when 2

nÁ Ø C log n, the expected

number of such edges is at least

2

n≠1 · (12Á/5) Ø (6/5) · 2

nÁ Ø (6/5) · C log n.

Using a Chernoff bound, the probability of having fewer than 2

nÁ bichromatic edges along

direction i is at most 1/n2 when C is sufficiently large. The lemma follows from a union

bound over i.

As a result, when 2

nÁ Ø C log n, if A is a non-adaptive algorithm with the property

169

described in Claim 7.3.4, then A must satisfy

Pr
Ë
A accepts the all-0 function

È
≠ Pr

g≥D
1

Ë
A accepts g

È
Ø 2/3 ≠ o(1).

But any such non-adaptive algorithm must make �(1/Á) queries as otherwise with high

probability all of its queries to g ≥ D
1

would be answered 0, and hence its behavior would

be the same as if it were running on the all-0 function.

Finally we work on the case when 1 Æ 2

nÁ = O(log n). The proof is the same except

that we let g be drawn from D
2

, which we define to be the distribution where all entries

of g ≥ D
2

are 0 except for exactly 2

nÁ of them picked uniformly at random. The claim

follows from the following lemma:

Lemma 5.6.3. With probability at least 1 ≠ o(1), g ≥ D
2

is Á-far from every (n ≠ 1)-junta.

Proof. This follows from the observation that, with probability 1 ≠ o(1), no two points

picked form an edge. When this occurs, we have 2

nÁ bichromatic edges along the ith

direction for all i.

170

Chapter 6

Lower Bounds for Testing Monotonicity and Unateness

The main results of this chapter are lower bounds for testing monotonicity and unateness, in

both adaptive, and non-adaptive settings.

Theorem 58 (Adaptive Monotonicity Testing Lower Bound). There exists a constant

Á
0

> 0 such that any two-sided and adaptive algorithm for testing whether an unknown

Boolean function f : {0, 1}n æ {0, 1} is monotone or Á
0

-far from monotone must make

�(n1/3/ log

2 n) queries.

In [34], Belovs and Blais obtained their ˜

�(n1/4

) lower bound using a family of ran-

dom functions known as Talagrand’s random DNFs (or simply as the Talagrand function)

[130]. A function drawn from this family is the disjunction of N © 2

Ô
n many monotone

terms Ti with each Ti being the conjunction of
Ô

n variables sampled uniformly from [n].

So such a function looks like

f(x) =

fl
iœ[N]

Ti(x) =

fl
iœ[N]

Qa fi
kœSi

xk

Rb .

However, it turns out that there is a matching ˜O(n1/4

)-query, one-sided algorithm for

functions of [34]. (See Section 6.5 for a sketch of the algorithm.) So the analysis of [34] is

tight.

Our main contribution behind the lower bound of Theorem 58 is a new and harder

family of random partitions for monotonicity testing, which we call two-level Talagrand

functions. This starts by reexamining the construction of [34] from a slightly different

angle, which leads to both natural generalizations and simpler analysis of such functions.

The techniques developed in the proof of Theorem 58 can be easily adapted to prove a

171

Best Upper Bound Best Lower Bound This Work

Non-adaptive

Monotonicity ˜O(

Ô
n/Á2

) [87] ˜

�(n1/2≠c
) [54] ˜

�(

Ô
n)

Unateness ˜O(n/Á) [43] �(

Ô
n) (one-sided) [24] ˜

�(n) (one-sided)

Adaptive

Monotonicity ˜O(

Ô
n/Á2

) [87] ˜

�(n1/4

) [34] ˜

�(n1/3

)

Unateness ˜O(n2/3/Á2

) [50] ˜

�(n2/3

)

Figure 6.1: Previous work and our results on monotonicity testing and unateness testing.

tight ˜

�(n1/2

) lower bound for non-adaptive monotonicity testing, removing the ≠c in the

exponent of [54] (see Section 6.4).

Theorem 59 (Non-adaptive Monotonicity Testing Lower Bound). There exists a constant

Á
0

> 0 such that any two-sided and non-adaptive algorithm for testing whether an unknown

Boolean function f : {0, 1}n æ {0, 1} is monotone or Á
0

-far from monotone must make

�(

Ô
n/ log

2 n) queries.

Next for testing unateness, we present an ˜

�(n2/3

) lower bound against adaptive algo-

rithms.

Theorem 60 (Adaptive Unateness Testing Lower Bound). There exists a constant Á
0

> 0

such that any two-sided and adaptive algorithm for testing whether an unknown Boolean

function f : {0, 1}n æ {0, 1} is unate versus Á
0

-far from unate must make �(n2/3/ log

3 n)

queries.

The lower bound construction behind Theorem 60 follows a similar framework. Some

of the new ideas and techniques developed for the monotonicity lower bound are adapted to

prove Theorem 60 though with a few twists that are unique to unateness.

Moreover, we obtain a linear lower bound for one-sided and non-adaptive unateness

algorithms. This improves the �(

Ô
n) lower bound of Baleshzar et al. [24] and matches the

upper bound of Chakrabarty and Seshadhri [43] for such algorithms.

172

Theorem 61 (One-sided and Non-adaptive Unateness Testing Lower Bound). There

exists a constant Á
0

> 0 such that any one-sided and non-adaptive algorithm for testing

whether an unknown Boolean function is unate versus Á
0

-far from unate must make

�(n/ log

2 n) queries.

We summarize previous work and our new results in Figure 6.1.

6.0.1 Distance to monotonicity and unateness

We review some characterizations of distance to monotonicity and unateness.

Lemma 6.0.1 (Lemma 4 in [63]). Let f : {0, 1}n æ {0, 1} be a Boolean function. Then

dist

1
f, MONO

2
= |M |

O
2

n,

where M is the maximal set of disjoint violating pairs of f .

Lemma 6.0.2. Given f : {0, 1}n æ {0, 1}, let (E+

i , E≠
i : i œ [n]) be a tuple of sets such

that (1) each set E+

i consists of monotone bi-chromatic edges (x, x(i)
) along direction i with

xi = 0, f(x) = 0 and f(x(i)
) = 1; (2) each set E≠

i consists of anti-monotone bi-chromatic

edges (x, x(i)
) along direction i with xi = 0, f(x) = 1 and f(x(i)

) = 0; (3) all edges in

these 2n sets are disjoint. Then

dist

1
f, UNATE

2
Ø 1

2

n

nÿ
i=1

min

Ó
|E+

i |, |E≠
i |

Ô
.

Proof. By definition, the distance of f to unateness is given by

dist

1
f, UNATE

2
= min

rœ{0,1}n
dist

1
fr, MONO

2
,

where fr(x) = f(x ü r). On the other hand, since all edges in the 2n sets E+

i and E≠
i are

disjoint, it follows from Lemma 6.0.1 that

dist

1
fr, MONO

2
Ø 1

2

n

Qa ÿ
i:ri=0

---E≠
i

--- +

ÿ
i:ri=1

---E+

i

Rb Ø 1

2

n

nÿ
i=1

min

Ó
|E+

i |, |E≠
i |

Ô
.

173

This finishes the proof of the lemma.

6.0.2 Tree pruning lemmas

We consider a rather general setup where a q-query deterministic algorithm A has oracle

access to an object O drawn from a distribution D: Upon each query w, the oracle with

an object O returns ÷(w, O), an element from a finite set P. Such an algorithm can be

equivalently viewed as a tree of depth q, where each internal node u is labelled a query w

to make and has |P| edges (u, v) leaving u, each labelled a distinct element from P. (In

general the degree of u can be much larger than two; this is the case for all our applications

later since we will introduce new oracles that upon a query string x œ {0, 1}n returns more

information than just f(x).) For this section we do not care about labels of leaves of A.

Given A, we present two basic pruning techniques that will help our analysis of algorithms

in our lower bound proofs later.

Both lemmas share the following setup. Given A and a set E of edges of A we use LE

to denote the set of leaves ¸ that has at least one edge in E along the path from the root to ¸.

Each lemma below states that if E satisfies certain properties with respect to D that we are

interested in, then

Pr
O≥D

Ë
O reaches a leaf in LE

È
= o(1). (6.1)

This will later allow us to focus on root-to-leaf paths that do not take any edge in E.

For each node u of tree A, we use Pr[u] to denote the probability of O ≥ D reaching u.

When u is an internal node with Pr[u] > 0 we use q(u) to denote the following conditional

probability:

q(u) = Pr
O≥D

5
O follows an edge in E at u

---- O reaches u
6

=

q
(u,v)œE Pr[v]

Pr[u]

.

We start with the first pruning lemma; it is trivially implied by the second pruning

lemma, but we keep it because of its conceptual simplicity.

Lemma 6.0.3. Given E, if q(u) = o(1/q) for every internal node u with Pr[u] > 0, then

(6.1) holds.

174

Proof. We can partition the set LE of leaves into LE =

t
iœ[q]

Li, where Li contains leaves

with its first edge from E being the ith edge along its root-to-leaf path. We also write Ei

as the set of edges in E at the ith level (i.e., they appear as the ith edge along root-to-leaf

paths). Then for each i,

Pr
O≥D

Ë
O reaches Li

È
Æ ÿ

(u,v)œEi

Pr[v] =

ÿ
u

ÿ
(u,v)œEi

Pr[v] =

ÿ
u

Pr[u] · o(1/q).

Note that the sum is over certain nodes u at the same depth (i≠1). Therefore,
q

u Pr[u] Æ 1

and the proof is completed by taking a union bound over Li, i œ [q].

Next, for each leaf ¸ with Pr[¸] > 0 and the root-to-¸ path being u
1

u
2

· · · uk+1

= ¸,

we let qú
(¸) denote

q
iœ[k]

q(ui). The second pruning lemma states that (6.1) holds if

qú
(¸) = o(1) for all such ¸.

Lemma 6.0.4. If every leaf ¸ of A with Pr[¸] > 0 satisfies qú
(¸) = o(1), then (6.1) holds.

Proof. The first part of the proof goes exactly the same as in the proof of the first lemma.

Let AÕ be the set of internal nodes u with Pr[u] > 0. After a union bound over Li,

i œ [q],

Pr
O≥D

Ë
O reaches LE

È
Æ ÿ

uœAÕ
Pr[u] · q(u).

Let Lu be the leaves in the subtree rooted at u œ AÕ. We can rewrite Pr[u] as
q

¸œLu
Pr[¸].

Thus,

Pr
O≥D

Ë
O reaches LE

È
Æ ÿ

uœAÕ

ÿ
¸œLu

Pr[¸] · q(u) =

ÿ
¸

Pr[¸] · qú
(¸),

where the last sum is over leaves ¸ with Pr[¸] > 0; the last equation follows by switching

the order of the two sums. The lemma follows from qú
(¸) = o(1) and

q
¸ Pr[¸] = 1.

175

6.1 Monotonicity Lower Bound

6.1.1 Distributions

For a fixed n > 0, we describe a pair of distributions Dyes and Dno supported on Boolean

functions f : {0, 1}n æ {0, 1}. We then show that every f ≥ Dyes is monotone, and

f ≥ Dno is �(1)-far from monotone with probability �(1). Recall that N = 2

Ô
n.

A function f ≥ Dyes is drawn using the following procedure:

1. Sample a pair (T , C) ≥ E (which we describe next). The pair (T , C) is then used to

define

a multiplexer map � = �T ,C : {0, 1}n æ (N ◊ N) fi {0

ú, 1

ú}.1

2. Sample H = (hi,j : i, j œ [N]) from a distribution Eyes, where each

hi,j : {0, 1}n æ {0, 1}
is a random dictatorship Boolean function, i.e., hi,j(x) = xk with k sampled

independently for each hi,j and uniformly at random from [n].

3. Finally, f = fT ,C,H : {0, 1}n æ {0, 1} is defined as follows: f(x) = 1 if

|x| > (n/2) +

Ô
n; f(x) = 0 if |x| < (n/2) ≠ Ô

n; if

(n/2) ≠ Ô
n Æ |x| Æ (n/2) +

Ô
n, we have

f(x) =

Y_______]_______[

0 if �(x) = 0

ú

1 if �(x) = 1

ú

h�(x)

(x) otherwise (i.e., �(x) œ N ◊ N)

On the other hand a function f = fT ,C,H ≥ Dno is drawn using the same procedure,

with the only difference being that H = (hi,j : i, j œ [N]) is drawn from Eno (instead of

Eyes): each hi,j(x) = xk is a random anti-dictatorship function with k drawn independently

and uniformly from [n].

1We use 0

ú and 1

ú to denote two special symbols (instead of the Kleene closure of 0 and 1).

176

f

�

h
1,1

h
1,2

h
1,3

hN,N

T C x

f(x)

Figure 6.2: An illustration of the function f = fT,C,H and its dependency on T , C and H .

Remark 62. Given the same truncation done in both Dyes and Dno, it suffices to show a

lower bound against algorithms that query strings in the middle layers only: (n/2) ≠ Ô
n Æ

|x| Æ (n/2) +

Ô
n.

Next we describe the distribution E in details. E is uniform over all pairs (T, C) of the

following form: T = (Ti : i œ [N]) with Ti : [

Ô
n] æ [n] and C = (Ci,j : i, j œ [N]) with

Ci,j : [

Ô
n] æ [n]. We call Ti’s the terms and Ci,j’s the clauses. Equivalently, to draw a pair

(T , C) ≥ E :

• For each i œ [N], we sample a random term T i by sampling T i(k) independently and

uniformly from [n] for each k œ [

Ô
n], with T i(k) viewed as the kth variable of T i.

• For each i, j œ [N], we sample a random clause Ci,j by sampling Ci,j(k)

independently and uniformly from [n] for each k œ [

Ô
n], with Ci,j(k) viewed as the

kth variable of Ci,j .

Given a pair (T, C), we interpret Ti as a (DNF) term and abuse the notation to write

Ti(x) =

fi
kœ[

Ô
n]

xTi(k)

as a Boolean function over n variables. We say x satisfies Ti when Ti(x) = 1. We

177

interpret each Ci,j as a (CNF) clause and abuse the notation to write

Ci,j(x) =

fl
kœ[

Ô
n]

xCi,j(k)

as a Boolean function over n variables. Similarly we say x falsifies Ci,j when Ci,j(x) = 0.

Each pair (T, C) in the support of E defines a multiplexer map � = �T,C : {0, 1}n æ
(N ◊ N) fi {0

ú, 1

ú}. Informally speaking, � consists of two levels: the first level uses the

terms Ti in T to pick the first index iÕ œ [N]; the second level uses the clauses CiÕ,j in C to

pick the second index jÕ œ [N]. Sometimes � may choose to directly determine the value of

the function by setting �(x) œ {0

ú, 1

ú}.

Formally, (T, C) defines � as follows. Given an x œ {0, 1}n we have �(x) = 0

ú if

Ti(x) = 0 for all i œ [N] and �(x) = 1

ú if Ti(x) = 1 for at least two different i’s in [N].

Otherwise there is a unique iÕ with TiÕ
(x) = 1, and the multiplexer enters the second level.

Next, we have �(x) = 1

ú if CiÕ,j(x) = 1 for all j œ [N] and �(x) = 0

ú if CiÕ,j(x) = 0 for

at least two different j’s in [N]. Otherwise there is a unique jÕ œ [N] with CiÕ,jÕ
(x) = 0 and

in this case the multiplexer outputs �(x) = (iÕ, jÕ
).

This finishes the definition of Dyes and Dno. Figure 6.3 above gives a graphical repre-

sentation of such functions. We now prove the properties of Dyes and Dno promised at the

beginning.

Lemma 6.1.1. Every function f in the support of Dyes is monotone.

Proof. Consider f = fT,C,H with (T, C) from the support of E and H from the support of

Eyes. Let x œ {0, 1}n be a string with f(x) = 1 and xi = 0 for some i. Let xÕ
= x(i). We

show that f(xÕ
) = 1.

First note that every term in T satisfied by x remains satisfied by xÕ; every clause satisfied

by x remains satisfied by xÕ. As a result if �(x) = 1

ú then �(xÕ
) = 1

ú as well. Assume

that �(x) = (i, j). Then hi,j(x) = f(x) = 1. For this case we have either �(xÕ
) = 1

ú and

f(xÕ
) = 1, or f(xÕ

) = hi,j(xÕ
) and hi,j(xÕ

) = hi,j(x) = 1 because hi,j here is a dictatorship

function.

Lemma 6.1.2. A function f ≥ Dno is �(1)-far-from monotone with probability �(1).

178

f

T
1

T
2

T
3

T
4

TN

C
2,1 C

2,2 C
2,3 C

2,N

h
2,1 h

2,2 h
2,3 h

2,N

Figure 6.3: Picture of a function f in the support of Dyes and Dno. We think of evaluating f(x)

as following the arrows down the tree. The first level represents multiplexing x œ {0, 1}n

with respect to the terms in T . If x satisfies no terms, or multiple terms, then f outputs 0,
or 1, respectively. If x satisfies Ti for a unique term Ti (T

2

in the picture), then we follow
the arrow to Ti and proceed to the second level. If x falsifies no clause, or multiple clauses,
then f outputs 1, or 0, respectively. If x falsifies a unique clause Ci,j , then we follow the
arrow to Ci,j and output hi,j(x).

Proof. Fix a pair (T, C) from the support of E and an H from the support of Eno. Let

f = fT,C,H .

Consider the set X µ {0, 1}n consisting of strings x in the middle layers (i.e., |x| œ
(n/2) ± Ô

n) with f(x) = 1, �(x) = (i, j) for some i, j œ [N] (instead of 0

ú or 1

ú), and

hi,j being an anti-dictator function on the kth variable for some k œ [n] (so xk = 0). For

each x œ X , we write ÷(x) to denote the anti-dictator variable k in hi,j and use xú to

denote x(÷(x)). (Ideally, we would like to conclude that (x, xú
) is a violating edge of f

as hi,j(xú
) = 0. However, flipping one bit potentially may also change the value of the

multiplexer map �. So we need to further refine the set X .)

Next we define the following two events with respect to a string x œ X (with �(x) =

(i, j)):

• E
1

(x): This event occurs when ÷(x) ”= Ci,j(¸) for any ¸ œ [

Ô
n] (and thus, Ci,j(xú

) =

0);

• E
2

(x): This event occurs when TiÕ
(xú

) = 0 for all iÕ ”= i œ [N].

We use X Õ to denote the set of strings x œ X such that both E
1

(x) and E
2

(x) hold. The

179

following claim shows that (x, xú
) for every x œ X Õ is a violating edge of f .

Claim 6.1.3. For each x œ X Õ, (x, xú
) is a violating edge of f .

Proof. It suffices to show that f(xú
) = 0. As x satisfies a unique term Ti (Ti cannot have

÷(x) as a variable because x÷(x)

= 0), it follows from E
2

(x) that xú uniquely satisfies the

same Ti. It follows from E
1

(x) that xú uniquely falsifies the same clause Ci,j . As a result,

f(xú
) = hi,j(xú

) = 0.

Furthermore, the violating edges (x, xú
) induced by strings x œ X Õ are indeed disjoint.

(This is because, given xú, one can uniquely reconstruct x by locating hi,j using �(xú
) and

flipping the kth bit of xú if hi,j is an anti-dictator function over the kth variable.) Therefore,

it suffices to show that X Õ (as a random set) has size �(2

n
) with probability �(1), over

choices (T , C) ≥ E and H ≥ Eno. The lemma then follows from the characterization of

[63] as stated in Lemma 6.0.1.

Finally we work on the size of X Õ. Fix a string x œ {0, 1}n in the middle layers. The

next claim shows that, when (T , C) ≥ E and H ≥ Eno, X Õ contain x with �(1) probability.

Claim 6.1.4. For each x œ {0, 1}n with (n/2) ≠ Ô
n Æ |x| Æ (n/2) +

Ô
n, we have

Pr
(T ,C)≥E, H≥Eno

Ë
x œ X ÕÈ

= �(1).

Proof. Fix an x œ {0, 1}n in the middle layers. We calculate the probability of x œ X Õ.

We partition the event of x œ X Õ into �(nN2

) subevents indexed by i, j œ [N] and

k œ [n] with xk = 0. Each subevent corresponds to 1) Condition on T : both x and x(k)

satisfy uniquely the ith term; 2) Condition on C: both x and x(k) falsify uniquely the jth

term; 3) Condition on H: hi,j is the anti-dictatorship function over the kth variable. The

probability of 3) is clearly 1/n.

The probability of 1) is at least

Qa
1 ≠

A
n/2 +

Ô
n + 1

n

BÔ
n

RbN≠1

◊
A

n/2 ≠ Ô
n

n

BÔ
n

= �

3
1

N

4
.

180

The probability of 2) is at least

Qa
1 ≠

A
n/2 +

Ô
n

n

BÔ
n

RbN≠1

◊
A

n/2 ≠ Ô
n + 1

n

BÔ
n

= �

3
1

N

4
.

As a result, the probability of x œ X Õ is �(nN2

)◊�(1/N)◊�(1/N)◊�(1/n) = �(1).

From Claim 6.1.4 and the fact that there are �(2

n
) strings in the middle layer, the

expected size of X Õ is �(2

n
). Via Markov, |X Õ| = �(2

n
) with probability �(1). This

finishes the proof.

Given Lemma 6.1.1 and 6.1.2, Theorem 58 follows directly from the following lemma

which we show in the rest of the section. For the rest of the proof we fix the number of

queries q = n1/3/log

2 n.

Lemma 6.1.5. Let B be any q-query, deterministic algorithm with oracle access to f . Then

Pr
f≥Dyes

Ë
B accepts f

È
Æ Pr

f≥Dno

Ë
B accepts f

È
+ o(1).

Since f is truncated in both distributions, we may assume WLOG that B queries strings

in the middle layers only (i.e., strings x with |x| between (n/2) ≠ Ô
n and (n/2) +

Ô
n).

6.1.2 Signatures and the new oracle

Let (T, C) be a pair from the support of E and H be a tuple from the support of Eyes or Eno.

Towards Lemma 6.1.5, we are interested in deterministic algorithms that have oracle access

to f = fT,C,H and attempt to distinguish Dyes from Dno (i.e., accept if H is from Eyes and

reject if it is from Eno).

For convenience of our lower bound proof, we assume below that the oracle returns

more than just f(x) for each query x œ {0, 1}n; instead of simply returning f(x), the

oracle returns a 4-tuple (‡, ·, a, b) called the full signature of x œ {0, 1}n with respect to

(T, C, H) (see Definition 43 below). It will become clear later that f(x) can always be

derived correctly from the full signature of x and thus, query lower bounds against the new

oracle carry over to the standard oracle. Once the new oracle is introduced, we may actually

181

ignore the function f and view any algorithm as one that has oracle access to the hidden

triple (T, C, H) and attempts to tell whether H is from Eyes or Eno.

We first give the syntactic definition of full signatures.

Definition 42. We use P to denote the set of all 4-tuples (‡, ·, a, b) with ‡ œ {0, 1, ú}N

and · œ {0, 1, ú}N fi {‹} and a, b œ {0, 1, ‹} satisfying the following properties:

1. ‡ is either 1) the all-0 string 0

N ; 2) ei for some i œ [N]; or 3) ei,iÕ for some

i < iÕ œ [N].

2. · = ‹ if ‡ is of case 1) or 3). Otherwise (when ‡ = ei for some i), · œ {0, 1, ú}N is

either 1) the all-1 string 1

N ; 2) ej for some j œ [N]; or 3) ej,jÕ for some j < jÕ œ [N].

3. a = b = ‹ unless: 1) If ‡ = ei and · = ej for some i, j œ [N], then a œ {0, 1} and

b = ‹; or 2) If ‡ = ei and · = ej,jÕ for some i œ [N] and j < jÕ œ [N], then

a, b œ {0, 1}.

We next define semantically the full signature of x œ {0, 1}n with respect to (T, C, H).

Definition 43 (Full signature). We say (‡, ·, a, b) is the full signature of a string x œ
{0, 1}n with respect to (T, C, H) if it satisfies the following properties:

1. First, ‡ œ {0, 1, ú}N is determined by T according to one of the following three

cases: 1) ‡ is the all-0 string 0

N if Ti(x) = 0 for all i œ [N]; 2) If there is a unique

i œ [N] with Ti(x) = 1, then ‡ = ei; or 3) If there are more than one index i œ [N]

with Ti(x) = 1, then ‡ = ei,iÕ with i < iÕ œ [N] being the smallest two such indices.

We call ‡ the term signature of x.

2. Second, · = ‹ if ‡ is of case 1) or 3) above. Otherwise, assuming that ‡ = ei,

· œ {0, 1, ú}N is determined by (Ci,j : j œ [N]), according to one of the following

cases: 1) · is the all-1 string 1

N if Ci,j(x) = 1 for all j œ [N]; 2) If there is a unique

j œ [N] with Ci,j(x) = 0, then · = ej; or 3) If there are more than one index j œ [N]

with Ci,j(x) = 0, then · = ej,jÕ with j < jÕ œ [N] being the smallest two such

indices. We call · the clause signature of x.

182

3. Finally, a = b = ‹ unless: 1) If ‡ = ei and · = ej for some i, j œ [N], then

a = hi,j(x) and b = ‹; or 2) If ‡ = ei and · = ej,jÕ for some i, j < jÕ œ [N], then

a = hi,j(x) and b = hi,jÕ
(x).

It follows from the definitions that the full signature of x with respect to (T, C, H) is in

P. We also define the full signature of a set of strings Q with respect to (T, C, H).

Definition 44. The full signature (map) of a set Q ™ {0, 1}n with respect to a triple

(T, C, H) is a map „ : Q æ P such that „(x) is the full signature of x with respect to

(T, C, H) for each x œ Q.

For simplicity, we will write „(x) = (‡x, ·x, ax, bx) to specify the term and clause

signatures of x as well as the values of a and b in the full signature „(x) of x. Intuitively

we may view „ as two levels of tables with entries in {0, 1, ú}. The (unique) top-level table

“stacks” the term signatures ‡x, where each row corresponds to a string x œ Q and each

column corresponds to a term Ti in T . In the second level a table appears for a term Ti if the

term signature of some string x œ Q is ei. In this case the second-level table at Ti “stacks”

the clause signatures ·x for each x œ Q with ‡x = ei where each row corresponds to such

an x and each column corresponds to a clause Ci,j in C. (The number of columns is still N

since we only care about clauses Ci,j , j œ [N], in the table at Ti.)

The lemma below shows that the new oracle is at least as powerful as the standard oracle.

Lemma 6.1.6. Let (T, C) be from the support of E and H from the support of Eyes or Eno.

Given any string x œ {0, 1}n, fT,C,H(x) is determined by its full signature with respect to

(T, C, H).

Proof. First if x does not lie in the middle layers, then f(x) is determined by |x|. Below we

assume that x lies in the middle layers. Let (‡, ·, a, b) be the full signature of x. There are

five cases:

1. (No term satisfied) If ‡ = 0

N , then f(x) = 0.

2. (Multiple terms satisfied) If ‡ = ei,iÕ for some i, iÕ œ [N], then f(x) = 1.

3. (Unique term satisfied, no clause falsified) If ‡ = ei but · = 1

N , then f(x) = 1.

183

4. (Unique term satisfied, multiple clauses falsified) If ‡ = ei but · = ej,jÕ , then

f(x) = 0.

5. (Unique term satisfied, unique clause satisfied) If ‡ = ei and · = ej , then f(x) = a.

This finishes the proof of the lemma.

Given Lemma 6.1.6, it suffices to consider deterministic algorithms with the new oracle

access to a hidden triple (T, C, H), and Lemma 6.1.5 follows directly from the following

lemma:

Lemma 6.1.7. Let B be any q-query algorithm with the new oracle access to (T, C, H).

Then

Pr
(T ,C)≥E,H≥Eyes

5
B accepts (T , C, H)

6
Æ Pr

(T ,C)≥E,H≥Eno

5
B accepts (T , C, H)

6
+ o(1).

Such a deterministic algorithm B can be equivalently viewed as a decision tree of depth

q (and we will abuse the notation to also denote this tree by B). Each leaf of the tree B is

labeled either “accept” or “reject.” Each internal node u of B is labeled with a query string

x œ {0, 1}n, and each of its outgoing edges (u, v) is labeled a tuple from P. We refer to

such a tree as a signature tree.

As the algorithm executes, it traverses a root-to-leaf path down the tree making queries

to the oracle corresponding to queries in the nodes on the path. For instance at node u, after

the algorithm queries x and the oracle returns the full signature of x with respect to the

unknown (T, C, H), the algorithm follows the outgoing edge (u, v) with that label. Once a

leaf ¸ is reached, B accepts if ¸ is labelled “accept” and rejects otherwise.

Note that the number of children of each internal node is |P|, which is huge. Algorithms

with the new oracle may adapt its queries to the full signatures returned by the oracle, while

under the standard oracle, the queries may only adapt to the value of the function at previous

queries. Thus, while algorithms making q queries in the standard oracle model can be

described by a tree of size 2

q, q-query algorithms with this new oracle are given by signature

trees of size (2

�(

Ô
n)

)

q.

184

We associate each node u in the tree B with a map „u : Qu æ P where Qu is the set of

queries made along the path from the root to u so far, and „u(x) is the label of the edge that

the root-to-u path takes after querying x. We will be interested in analyzing the following

two quantities:

Pr
(T ,C)≥E,H≥Eyes

5
(T , C, H) reaches u

6
and Pr

(T ,C)≥E,H≥Eno

5
(T , C, H) reaches u

6
.

In particular, Lemma 6.1.7 would follow trivially if for every leaf ¸ of B:

Pr
(T ,C)≥E,H≥Eyes

5
(T , C, H) reaches ¸

6
Æ (1 + o(1)) · Pr

(T ,C)≥E,H≥Eno

5
(T , C, H) reaches ¸

6
.

(6.2)

However, (6.2) above does not hold in general. Our plan for the rest of the proof is to

prune an o(1)-fraction of leaves (measured in terms of their total probability under the

yes-case) and show (6.2) for the rest. To better understand these probabilities, we need to

first introduce some useful notation.

6.1.3 Notation for full signature maps

Given a map „ : Q æ P for some Q ™ {0, 1}n, we write „(x) = (‡x, ·x, ax, bx) for each

x œ Q and use ‡x,i, ·x,j to denote the ith entry and jth entry of ‡x and ·x, respectively. Note

that ·x,j is not defined if ·x = ‹. (Below we will only be interested in ·x,j if ‡x = ei for

some i œ [N].)

We introduce the following notation for „. We say „ induces a tuple (I; J ; P ; R; A; fl),

where

• The set I ™ [N] is given by I = {i œ [N] : ÷x œ Q with ‡x,i = 1}. (So in terms of

the first-level table, I consists of columns that contain at least one 1-entry.)

• J = (Ji ™ [N] : i œ I) is a tuple of sets indexed by i œ I . For each i œ I , we have

Ji =

Ó
j œ [N] : ÷x œ Q with ‡x = ei and ·x,j = 0

Ô
.

(In terms of the second-level table at Ti, Ji consists of columns that contain at least

185

one 0-entry.) By the definition of P, each x with ‡x = ei can contribute at most two

j’s to Ji. Also x does not contribute any j to Ji if ‡x = ei,iÕ or eiÕ,i, in which case

·x = ‹, or if ‡x = ei but ·x = 1

N . So in general Ji can be empty for some i œ I .

• P = (Pi, Pi,j : i œ I, j œ Ji) is a tuple of two types of subsets of Q. For i œ I and

j œ Ji,

Pi =

Ó
x œ Q : ‡x,i = 1

Ô
and Pi,j =

Ó
x œ Q : ‡x = ei and ·x,j = 0

Ô
.

(In terms of the first-level table, Pi consists of rows that are 1 on the ith column; in

terms of the second-level table at Ti, Pi,j consists of rows that are 0 on the jth

column.) Note that both Pi and Pi,j are not empty by the definition of I and Ji.

• R = (Ri, Ri,j : i œ I, j œ Ji) is a tuple of two types of subsets of Q. For i œ I and

j œ Ji,

Ri =

Ó
x œ Q : ‡x,i = 0

Ô
and Ri,j =

Ó
x œ Q : ‡x = ei and ·x,j = 1

Ô
.

(In terms of the first-level table, Ri consists of rows that are 0 on the ith column; in

terms of the second-level table at Ti, Ri,j consists of rows that are 1 on the jth

column.)

• A = (Ai,0, Ai,1, Ai,j,0, Ai,j,1 : i œ I, j œ Ji) is a tuple of subsets of [n]. For i œ I and

j œ Ji,

Ai,1 =

Ó
k œ [n] : ’x œ Pi, xk = 1

Ô
and Ai,0 =

Ó
k œ [n] : ’x œ Pi, xk = 0

Ô
Ai,j,1 =

Ó
k œ [n] : ’x œ Pi,j, xk = 1

Ô
and Ai,j,0 =

Ó
k œ [n] : ’x œ Pi,j, xk = 0

Ô
.

Note that all the sets are well-defined since Pi and Pi,j are not empty.

• fl = (fli,j : i œ I, j œ Ji) is a tuple of functions fli,j : Pi,j æ {0, 1}. For each

x œ Pi,j , we have fli,j(x) = ax if ·x = ej or ·x = ej,jÕ for some jÕ > j; fli,j(x) = bx

if ·x = ejÕ,j for some jÕ < j.

Intuitively I is the set of indices of terms with some string x œ Q satisfying the term Ti

186

as reported in ‡x, and Pi is the set of such strings while Ri is the set of strings which do

not satisfy Ti. For each i œ I , Ji is the set of indices of clauses with some string x œ Pi

satisfying Ti uniquely and falsifying the clause Ci,j . Pi,j is the set of such strings, and Ri,j

is the set of strings which satisfy Ti uniquely but also satisfy Ci,j . We collect the following

facts which are immediate from the definition.

Fact 6.1.8. Let (I; J ; P ; R; A; fl) be the tuple induced by a map „ : Q æ �. Then we have

• |I| Æ q
iœI |Pi| Æ 2|Q|.

• For each i œ I , |Ji| Æ q
jœJi

|Pi,j| Æ 2|Pi|.
• For each i œ I and j œ Ji, |Ri| and |Ri,j| are at most |Q| (as they are subsets of Q).

• For each i œ I and j œ Ji, Pi,j ™ Pi, Ai,0 ™ Ai,j,0, and Ai,1 ™ Ai,j,1.

Note that |I| and
q

iœI |Ji| can be strictly larger than |Q|, as some x may satisfy more

than one (but at most two) term with ‡x = ei,iÕ and some x may falsify more than one clause

with ·x = ej,jÕ .

The sets in A are important for the following reasons that we summarize below.

Fact 6.1.9. Let „ : Q æ P be the full signature map of Q with respect to (T, C, H). Then

• For each i œ I , Ti(k) œ Ai,1 for all k œ [

Ô
n] and Ti(x) = 0 for each x œ Ri.

• For each i œ I and j œ Ji, Ci,j(k) œ Ai,j,0 for all k œ [

Ô
n] and Ci,j(x) = 1 for each

x œ Ri,j .

Before moving back to the proof, we introduce the following consistency condition on

P .

Definition 45. Let (I; J ; P ; R; A; fl) be the tuple induced by a map „ : Q æ P. We say

that Pi,j for some i œ I and j œ Ji is 1-consistent if fli,j(x) = 1 for all x œ Pi,j , and

0-consistent if fli,j(x) = 0 for all x œ Pi,j; otherwise we say Pi,j is inconsistent.

Let „ be the full signature map of Q with respect to (T, C, H). If Pi,j is 1-consistent,

the index k of the variable xk in the dictatorship or anti-dictatorship function hi,j must lie in

Ai,j,0 (when hi,j is an anti-dictator) or Ai,j,1 (when hi,j is a dictator); the situation is similar

if Pi,j is 0-consistent but would be more complicated if Pi,j is inconsistent. Below we prune

187

an edge whenever some Pi,j in P becomes inconsistent. This way we make sure that Pi,j’s

in every leaf left are consistent.

6.1.4 Tree pruning

Consider an edge (u, v) in B. Let „u : Q æ P and „v : Q fi {x} æ P be the maps

associated with u and v, with x being the query made at u and „v(x) being the label of

(u, v). Let (I; J ; P ; R; A; fl) and (I Õ
; J Õ

; P Õ
; RÕ

; AÕ
; flÕ

) be the two tuples induced by „u and

„v, respectively.

We list some easy facts about how (I; J ; P ; R; A; fl) is updated to obtain (I Õ
; J Õ

; P Õ
; RÕ

; AÕ
; flÕ

).

Fact 6.1.10. Let „v(x) = (‡x, ·x, ax, bx) for the string x queried at u. Then we have

• The new string x is placed in P Õ
i if ‡x,i = 1, and is placed in P Õ

i,j if ‡x = ei and

·x,j = 0.

• Each new set in P Õ (i.e., P Õ
i with i /œ I or P Õ

i,j with either i /œ I or i œ I but j /œ Ji), if

any, is {x} and the corresponding AÕ
i,1 or AÕ

i,j,1 is {k : xk = 1} and AÕ
i,0 or AÕ

i,j,0 is

{k : xk = 0}.

• Each old set in P Õ (i.e., P Õ
i with i œ I or P Õ

i,j with i œ I and j œ Ji) either stays the

same or has x being added to the set. For the latter case, {k : xk = 0} is removed

from Ai,1 or Ai,j,1 and {k : xk = 1} is removed from Ai,0 or Ai,j,0 to obtain the new

sets in AÕ.

Now we are ready to define a set of so-called bad edges of B, which will be used to

prune B. In the rest of the proof we use – to denote a large enough positive constant.

Definition 46. An edge (u, v) is called a bad edge if at least one of the following events occur at

(u, v) and none of these events occur along the path from the root to u (letting „u and „v

be the maps associated with u and v, x be the new query string at u, (I; J ; P ; R; A; fl) and

(I Õ
; J Õ

; P Õ
; RÕ

; AÕ
; flÕ

) be the tuples that „u and „v induce, respectively):

• For some i œ I ,
---Ai,1 \ AÕ

i,1

--- Ø –
Ô

n log n.

• For some i œ I and j œ Ji,
---Ai,j,0 \ AÕ

i,j,0

--- Ø –
Ô

n log n.

188

• For some i œ I and j œ Ji, Pi,j is 0-consistent but P Õ
i,j is inconsistent (meaning that

x is added to Pi,j with fli,j(y) = 0 for all y œ Pi,j but flÕ
i,j(x) = 1, instead of 0).

• For some i œ I and j œ Ji, Pi,j is 1-consistent but P Õ
i,j is inconsistent (meaning that

x is added to Pi,j with fli,j(y) = 1 for all y œ Pi,j but flÕ
i,j(x) = 0, instead of 1).

Moreover, a leaf ¸ is bad if one of the edges along the root-to-¸ path is bad; ¸ is good

otherwise.

The following pruning lemma states that the probability of (T , C, H) reaching a bad

leaf of B is o(1), when (T , C) ≥ E and H ≥ Eyes. We delay the proof to Section 6.1.6.

Lemma 6.1.11 (Pruning Lemma). Pr
(T ,C)≥E,H≥Eyes

Ë
(T , C, H) reaches a bad leaf of B

È
=

o(1).

The pruning lemma allow us to focus on the good leaves ¸ of B only. In particular we

know that along the root-to-¸ path the sets Ai,1 and Ai,j,0 each cannot shrink by more than

–
Ô

n log n with a single query (otherwise the path contains a bad edge and ¸ is a bad leaf

which we ignore). Moreover every set Pi,j in P at the end must remain consistent (either

0-consistent or 1-consistent).

We use these properties to prove the following lemma in Section 6.1.5 for good leaves

of B.

Lemma 6.1.12 (Good Leaves are Nice). For each good leaf ¸ of B, we have

Pr
(T ,C)≥E,H≥Eyes

5
(T , C, H) reaches ¸

6
Æ (1 + o(1)) · Pr

(T ,C)≥E,H≥Eno

5
(T , C, H) reaches ¸

6
.

We can now combine Lemma 6.1.11 and Lemma 6.1.12 to prove Lemma 6.1.7.

Proof of Lemma 6.1.7. Let L be the leaves labeled “accept,” and Lú µ L be the good leaves

labeled “accept.” Below we ignore (T , C) ≥ E in the subscript since it appears in every

189

probability.

Pr
H≥Eyes

5
B accepts (T , C, H)

6
=

ÿ
¸œL

Pr
H≥Eyes

5
(T , C, H) reaches ¸

6

Æ ÿ
¸œLú

Pr
H≥Eyes

5
(T , C, H) reaches ¸

6
+ o(1)

Æ (1 + o(1)) · ÿ
¸œLú

Pr
H≥Eno

5
(T , C, H) reaches ¸

6
+ o(1)

Æ Pr
H≥Eno

5
B accepts (T , C, H)

6
+ o(1),

where the second line used Lemma 6.1.11 and the third line used Lemma 6.1.12.

6.1.5 Proof of Lemma 6.1.12 for good leaves

We prove Lemma 6.1.12 in this section. Let ¸ be a good leaf associated with „¸ and

(I; J ; P ; R; A; fl) be the tuple that „¸ induces. Note that along the root-to-¸ path, when a

set Ai,0, Ai,1, Ai,j,0, Ai,j,1 is created for the first time in A, its size is between (n/2) ± Ô
n

(since all queries made by B lie in the middle layers). As a result, it follows from Definition

46 that for i œ I and j œ Ji:

i) |Ai,1| Ø (n/2) ≠ O(|Pi| · Ô
n log n) and |Ai,j,0| Ø (n/2) ≠ O(|Pi,j| · Ô

n log n);

ii) |Ai,0|, |Ai,1|, |Ai,j,0|, |Ai,j,1| Æ (n/2) +

Ô
n;

iii) Pi,j is consistent (either 1-consistent or 0-consistent).

We start with the following claim:

Claim 6.1.13. For each i œ I and j œ Ji, |Ai,j,1| Ø (n/2) ≠ O
1
|Pi,j|2 · Ô

n log n
2
.

Proof. For any two strings x, y œ Pi,j , we have

---{k œ [n] : xk = yk = 0}
--- Ø |Ai,j,0| Ø (n/2) ≠ O

1
|Pi,j| · Ô

n log n
2
.

As a result, it follows from |{k : yk = 0}| Æ (n/2) +

Ô
n and Pi,j being nonempty that

---{k œ [n] : xk = 1, yk = 0}
--- Æ O

1
|Pi,j| · Ô

n log n
2
.

190

Finally we have

|Ai,j,1| Ø
---{k : xk = 1}

---≠ ÿ
yœPi,j\{x}

---{k : xk = 1, yk = 0}
--- Ø (n/2)≠O

1
|Pi,j|2 ·Ôn log n

2
.

(6.3)

This finishes the proof of the lemma.

Additionally, notice that Ai,1 ™ Ai,j,1; thus from i) we have

|Ai,j,1| Ø |Ai,1| Ø (n/2) ≠ O
1
|Pi| · Ô

n log n
2
. (6.4)

The following claim is an immediate consequence of this fact and Claim 6.1.13.

Claim 6.1.14. For each i œ I and j œ Ji, we have

---|Ai,j,1| ≠ |Ai,j,0|
--- Æ O

1Ô
n log n · min

Ó
|Pi,j|2, |Pi|

Ô2

Proof. We have from i) and ii) that

|Ai,j,1| ≠ |Ai,j,0| Æ (n/2) +

Ô
n ≠

1
(n/2) ≠ O

1
|Pi,j| · Ô

n log n
22

= O
1
|Pi,j| · Ô

n log n
2
.

On the other hand, from ii), (6.3) and (6.4), we have

|Ai,j,0| ≠ |Ai,j,1| Æ O
1Ô

n log n · min

Ó
|Pi,j|2, |Pi|

Ô2
.

Note that |Pi,j| Æ |Pi|. The lemma then follows.

We are now ready to prove Lemma 6.1.12.

Proof of Lemma 6.1.12. Let ¸ be a good leaf and let „ : Q æ P be the map associated with

¸.

191

Let |E| denote the support size of E . We may rewrite the two probabilities as follows:

Pr
(T ,C)≥E,H≥Eyes

5
(T , C, H) reaches ¸

6
=

1

|E|
ÿ

(T,C)

Pr
H≥Eyes

5
(T, C, H) reaches ¸

6

Pr
(T ,C)≥E,H≥Eno

5
(T , C, H) reaches ¸

6
=

1

|E|
ÿ

(T,C)

Pr
H≥Eno

5
(T, C, H) reaches ¸

6
,

where the sum is over the support of E . Hence, it suffices to show that for each (T, C) such

that

Pr
H≥Eyes

5
(T, C, H) reaches ¸

6
> 0, (6.5)

we have the following inequality:

PrH≥Eno [(T, C, H) reaches ¸]

PrH≥Eyes [(T, C, H) reaches ¸]

Ø 1 ≠ o(1). (6.6)

Fix a pair (T, C) such that (6.5) holds. Recall that (T, C, H) reaches ¸ if and only if the

signature of each x œ Q with respect to (T, C, H) matches exactly „(x) = (‡x, ·x, ax, bx).

Given (6.5), the term and clause signatures of x are already known to match ‡x and ·x

(otherwise the LHS of (6.5) is 0). The rest, i.e., ax and bx for each x œ Q, depends on

H = (hi,j) only.

Since ¸ is consistent, there is a fli,j œ {0, 1} for each Pi,j such that every x œ Pi,j should

satisfy hi,j(x) = fli,j . These are indeed the only conditions for H to match ax and bx for

each x œ Q, and as a result, below we give the conditions on H = (hi,j) for the triple

(T, C, H) to reach ¸:

• For Eyes, (T, C, H) reaches ¸, where H = (hi,j) and hi,j(x) = xki,j
, if and only if

ki,j œ Ai,j,fli,j
for each i œ I and j œ Ji (so that each x œ Pi,j has hi,j(x) = fli,j).

• For Eno, (T, C, H) reaches ¸, where H = (hi,j) and hi,j(x) = xki,j
, if and only if

ki,j œ Ai,j,1≠fli,j
for each i œ I and j œ Ji (so that each x œ Pi,j has hi,j(x) = fli,j).

With this characterization, we can rewrite the LHS of (6.6) as follows:

PrH≥Eno [(T, C, H) reaches ¸]

PrH≥Eyes [(T, C, H) reaches ¸]

=

Ÿ
iœI,jœJi

A |Ai,j,1≠fli,j
|

|Ai,j,fli,j
|

B
=

Ÿ
iœI,jœJi

A
1 +

|Ai,j,1≠fli,j
| ≠ |Ai,j,fli,j

|
|Ai,j,fli,j

|
B

.

192

Thus, applying Claim 6.1.14 and noting that |Ai,j,fli,j
| Æ n (whether fli,j = 0 or 1),

PrH≥Eno [(T, C, H) reaches ¸]

PrH≥Eyes [(T, C, H) reaches ¸]

Ø Ÿ
iœI,jœJi

A
1 ≠ O

A
log n · min{|Pi,j|2, |Pi|}Ô

n

BB

Ø 1 ≠ O

A
log nÔ

n

B ÿ
iœI,jœJi

min

Ó
|Pi,j|2, |Pi|

Ô
.

As
q

j |Pi,j| Æ 2|Pi|, q
jœJi

min

Ó
|Pi,j|2, |Pi|

Ô
is maximized if |Ji| = 2

Ò
|Pi| and |Pi,j| =Ò

|Pi|. So ÿ
iœI,jœJi

min

Ó
|Pi,j|2, |Pi|

Ô
Æ ÿ

iœI

2|Pi|3/2 Æ O(q3/2

),

since
q

i |Pi| Æ 2q. This finishes the proof of the lemma since q is chosen to be n1/3/ log

2 n.

6.1.6 Proof of the pruning lemma

Let E be the set of bad edges as defined in Definition 46 (recall that if (u, v) is a bad edge,

then the root-to-u path cannot have any bad edge). We split the proof of Lemma 6.1.11

into four lemmas, one lemma for each type of bad edges. To this end, we define four sets

E
1

, E
2

, E
3

and E
4

(we follow the same notation of Definition 46): An edge (u, v) œ E

belongs to

1. E
1

if |Ai,1 \ AÕ
i,1| Ø –

Ô
n log n for some i œ I;

2. E
2

if |Ai,j,0 \ AÕ
i,j,0| Ø –

Ô
n log n for some i œ I and j œ Ji;

3. E
3

if it is not in E
2

and for some i œ I and j œ Ji, Pi,j is 0-consistent but P Õ
i,j is

inconsistent (when (u, v) œ E
3

and the above occurs, we say (u, v) is E
3

-bad at

(i, j));

4. E
4

if it is not in E
1

or E
2

and for some i œ I and j œ Ji, Pi,j is 1-consistent but P Õ
i,j is

inconsistent (when (u, v) œ E
4

and the above occurs, we say (u, v) is E
4

-bad at

(i, j)).

It is clear that E = E
1

fi E
2

fi E
3

fi E
4

. (These four sets are not necessarily pairwise disjoint

though we did exclude edges of E
2

from E
3

and edges of E
1

and E
2

from E
4

explicitly.)

193

Each lemma below states that the probability of (T , C) ≥ E and H ≥ Eyes taking an edge

in Ei is o(1). Lemma 6.1.11 then follows directly from a union bound over the four sets.

Lemma 6.1.15. The probability of (T , C) ≥ E and H ≥ Eyes taking an edge in E
1

is o(1).

Proof. Let u be an internal node. We prove that, when (T , C) ≥ E and H ≥ Eyes, either

(T , C, H) reaches node u with probability 0 or

Pr
(T ,C)≥E,H≥Eyes

5
(T , C, H) takes an E

1

-edge at u
---- (T , C, H) reaches u

6
= o(1/q).

(6.7)

Lemma 6.1.15 follows from Lemma 6.0.3. Below we assume that the probability of

(T , C, H) reaching node u is positive. Let „ : Q æ P be the map associated with u,

and let x œ {0, 1}n be the string queried at u. Whenever we discuss a child node v of u

below, we use „Õ
: Q fi {x} æ P to denote the map associated with v and (I; J ; P ; R; A; fl)

and (I Õ
; J Õ

; P Õ
; RÕ

; AÕ
; flÕ

) to denote the tuples „ and „Õ induce. (Note that v is not a specific

node but can be any child of u.)

Fix an i œ I . We upperbound by o(1/q2

) the conditional probability of (T , C, H)

following an edge (u, v) with |Ai,1 \ AÕ
i,1| Ø –

Ô
n log n. (6.7) follows directly from a union

bound over i œ I .

With i fixed, observe that any edge (u, v) has either AÕ
i,1 = Ai,1 or AÕ

i,1 = Ai,1 \ �i with

�i =

Ó
¸ œ Ai,1 : x¸ = 0

Ô
™ Ai,1.

The latter occurs if and only if P Õ
i = Pi fi {x}. Therefore, we assume WLOG that

|�i| Ø –
Ô

n log n (otherwise the conditional probability is 0 for i), and now it suffices to

upperbound by o(1/q2

) the conditional probability of (T , C, H) taking an edge (u, v) with

P Õ
i = Pi fi {x}.

To analyze this conditional probability for i œ I , we fix a triple (T≠i, C, H), where we

use T≠i to denote a sequence of N ≠ 1 terms with only the ith term missing, such that

Pr
T i

Ë
((T≠i, T i), C, H) reaches u

È
> 0,

194

where T i is a term drawn uniformly at random. It suffices to prove for any such (T≠i, C, H):

Pr
T i

Ë
((T≠i, T i), C, H) reaches u and P Õ

i = Pi fi {x}
È

(6.8)

Æ o(1/q2

) · Pr
T i

Ë
((T≠i, T i), C, H) reaches u

È
.

Recalling Fact 6.1.9, the latter event, ((T≠i, T i), C, H) reaching u, imposes two conditions

on T i:

1. For each y œ Pi, T i(y) = 1, and

2. For each z œ Ri, T i(z) = 0.

Let U denote the set of all such terms T :

Ô
n æ [n]. Then equivalently T œ U if and only

if

U : T (k) œ Ai,1 for all k œ [

Ô
n] and each z œ Ri has zT (k)

= 0 for some k œ [

Ô
n].

Regarding the former event in (6.8), i.e. ((T≠i, T i), C, H) reaching u and P Õ
i = Pi fi {x},

a necessary condition over T i is the same as above but in addition we require T i(x) = 1.

(Note that this is not a sufficient condition since for that we also need T i to be one of the

first two terms that x satisfies, which depends on T≠i.) Let V denote the set of all such

terms. Then T œ V if

V : T (k) œ Ai,1 \ �i for all k œ [

Ô
n] and each z œ Ri has zT (k)

= 0 for some k œ [

Ô
n].

In the rest of the proof we prove that |V |/|U | = o(1/q2

), from which (6.8) follows. Let

¸ = log n. First we write U Õ to denote the following subset of U : T Õ œ U is in U Õ if

---{k œ [

Ô
n] : T Õ

(k) œ �i}
--- = ¸,

and it suffices to show |V |/|U Õ| = o(1/q2

). Next we define the following bipartite graph

G between U Õ and V (inspired by similar arguments of [34]): T Õ œ U Õ and T œ V have an

edge if and only if T Õ
(k) = T (k) for all k œ [

Ô
n] with T Õ

(k) /œ �i. Each T Õ œ U Õ has

degree at most |Ai,1 \ �i|¸, as one can only move each T Õ
(k) œ �i to Ai,1 \ �i.

195

To lowerbound the degree of a T œ V , note that one only needs at most q many variables

of T to kill all strings in Ri. Let H µ [

Ô
n] be any set of size at most q such that for each

string z œ Ri, there exists a k œ H with zT (k)

= 0. 2 Then one can choose any ¸ distinct

indices k
1

, . . . , k¸ from H , as well as any ¸ (not necessarily distinct) variables t
1

, . . . , t¸

from �i, and let T Õ be a term where

T Õ
(k) =

Y_]_[
ti k = ki for some i œ [¸]

T (k) otherwise.

The resulting T Õ is in U Õ and (T, T Õ
) is an edge in G. As a result, the degree of T œ V is at

least AÔ
n ≠ q

¸

B
· |�i|¸.

By counting the number of edges in G in two different ways and using |Ai,1| Æ (n/2) +

Ô
n,

|U Õ|
|V | Ø

AÔ
n ≠ q

¸

B
·

A |�i|
|Ai,1 \ �i|

B¸

Ø
AÔ

n

2¸
· –

Ô
n¸

(n/2) +

Ô
n

B¸

> Ê(q2

),

by choosing a large enough constant – > 0. This finishes the proof of the lemma.

Lemma 6.1.16. The probability of (T , C) ≥ E and H ≥ Eyes taking an edge in E
2

is o(1).

Proof. The proof of this lemma is similar to that of Lemma 6.1.15. Let u be any internal

node of the tree. We prove that, when (T , C) ≥ E , H ≥ Eyes, either (T , C, H) reaches u

with probability 0 or

Pr
(T ,C)≥E,H≥Eyes

5
(T , C, H) takes an E

2

-edge at u
---- (T , C, H) reaches u

6
= o(1/q).

(6.9)

Assume below WLOG that the probability of (T , C, H) reaching u is positive.

Fix i œ I and j œ Ji. We upperbound the conditional probability of (T , C, H) taking

an edge (u, v) with |Ai,j,0 \ AÕ
i,j,0| Ø –

Ô
n log n by o(1/q3

). (6.9) follows by a union bound.

2For example, since |Ri| Æ q, one can set H to contain the smallest k œ [

Ô
n] such that zT (k)

= 0, for
each z œ Ri.

196

Similarly let

�i,j =

Ó
¸ œ Ai,j,0 : x¸ = 1

Ô
™ Ai,j,0, (6.10)

and assume WLOG that |�i,j| Ø –
Ô

n log n (as otherwise the conditional probability is 0

for i, j). Then it suffices to upperbound the conditional probability of (T , C, H) going

along an edge (u, v) with P Õ
i,j = Pi,j fi {x} by o(1/q3

). The rest of the proof is symmetric

to that of Lemma 6.1.15.

Lemma 6.1.17. The probability of (T , C) ≥ E and H ≥ Eyes taking an edge in E
3

is o(1).

Proof. We fix any pair (T, C) from the support of E and prove that

Pr
H≥Eyes

Ë
(T, C, H) takes an E

3

-edge
È

= o(1). (6.11)

The lemma follows by averaging (6.11) over all pairs (T, C) in the support of E . To prove

(6.11) we fix any internal node u such that the probability of (T, C, H) reaching u is positive,

and prove that

Pr
H≥Eyes

5
(T, C, H) takes an E

3

-edge leaving u
---- (T, C, H) reaches u

6
= o(1/q). (6.12)

(6.11) follows by Lemma 6.0.3. Below we assume the probability of (T, C, H) reaching u

is positive.

We assume WLOG that there is no edge in E along the root-to-u path; otherwise, (6.12)

is 0. We follow the same notation used in the proof of Lemma 6.1.15, i.e., „u : Q æ P

as the map associated with u, x as the query made at u, and (I; J ; P ; R; A; fl) as the tuple

induced by „u. We also write F to denote the set of pairs (i, j) such that i œ I and j œ J .

Observe that since (T, C) is fixed, the term and clause signatures of every string are

fixed, and in particular the term and clause signatures (denoted ‡x and ·x) of x are fixed.

We assume WLOG that ‡x = ek for some k œ [N] (otherwise x will never be added to any

Pi,j when (T, C, H) leaves u and (6.12) is 0 by the definition of E
3

). In this case we write

D to denote the set of {(k, j) : ·x,j = 0} with |D| Æ 2. As a result, whenever (T, C, H)

takes an E
3

-edge leaving from u, this edge must be E
3

-bad at one of the pairs (k, j) œ D.

197

Thus, the LHS of (6.12) is the same as

ÿ
(k,j)œD

Pr
H≥Eyes

5
(T, C, H) takes a (u, v) that is E

3

-bad at (k, j)

---- (T, C, H) reaches u
6
.

(6.13)

To bound the conditional probability for (k, j) above by o(1/q), we assume WLOG that

(k, j) œ F (otherwise x would create a new Pk,j whenever (T, C, H) takes an edge (u, v)

leaving u, and the latter cannot be E
3

-bad at (k, j)). Next we define (Ak,j,0 below is well

defined since (k, j) œ F)

�k,j =

Ó
¸ œ Ak,j,0 : x¸ = 1

Ô
.

We may assume WLOG that |�k,j| < –
Ô

n log n; otherwise (T, C, H) can never take an

edge (u, v) in E
3

because E
2

-edges are explicitly excluded from E
3

. Finally, we assume

WLOG flk,j(y) = 0 for all y œ Pk,j; otherwise the edge (u, v) that (T, C, H) takes can

never be E
3

-bad at (k, j).

With all these assumptions on (k, j) in place, we prove the following inequality:

Pr
H≥Eyes

5
(T, C, H) takes a (u, v) that is E

3

-bad at (k, j)

6
(6.14)

Æ |�k,j|
|Ak,j,0| · Pr

H≥Eyes

5
(T, C, H) reaches u

6
.

Given |�k,j| = O(

Ô
n log n) and |Ai,j,0| Ø (n/2) ≠ O(q

Ô
n log n) = �(n) (since there is

no bad edge particularly no E
2

-edge, from the root to u), (6.12) follows by summing over

D, with |D| Æ 2.

We work on (6.14) in the rest of the proof. Fix any tuple H≠(k,j)

(with its (k, j)th entry

missing) such that the probability of (T, C, (H≠(k,j)

, h)) reaching u is positive, where h is

a random dictator function with its dictator variable drawn from [n] uniformly. Then (6.14)

follows from

Pr
h

5
(T, C, (H≠(k,j)

, h)) takes (u, v) that is E
3

-bad at (k, j)

6
(6.15)

Æ |�k,j|
|Ak,j,0| · Pr

h

5
(T, C, (H≠(k,j)

, h)) reaches u
6
.

The event on the RHS, i.e., that (T, C, (H≠(k,j)

, h)) reaches u, imposes the following

198

condition on r the dictator variable of h: r œ Ak,j,0, since flk,j(y) = 0 for all y œ Pk,j .

Hence the probability on the RHS of (6.15) is |Ai,j,0|/n. On the other hand, the event on

the LHS of (6.15), that (T, C, (H≠(i,j)

, h)) follows a (u, v) that is E
3

-bad at (k, j), imposes

the following necessary condition for r: r œ �k,j . 3 As a result, the probability on the LHS

of (6.15) is at most |�k,j|/n. (6.15) then follows.

Lemma 6.1.18. The probability of (T , C) ≥ E and H ≥ Eyes taking an edge in E
4

is o(1).

Proof. We fix a pair (T, C) from the support of E and prove that

Pr
H≥Eyes

Ë
(T, C, H) takes an E

4

-edge
È

= o(1). (6.16)

The lemma follows by averaging (6.16) over all (T, C) in the support of E . To prove (6.16),

fix a leaf ¸ such that the probability of (T, C, H) reaching ¸ is positive. Let u
1

· · · utÕutÕ
+1

=

¸ be the root-to-¸ path and let q(us) denote the following conditional probability:

Pr
H≥Eyes

5
(T, C, H) takes an E

4

-edge leaving us

---- (T, C, H) reaches us

6
.

It then suffices to show for every such leaf ¸,

ÿ
sœ[tÕ

]

q(us) = o(1), (6.17)

since (6.16) would then follow by Lemma 6.0.4. To prove (6.17), we use t to denote the

smallest integer such that (ut+1

, ut+2

) is an edge in E
1

or E
2

with t = tÕ by default if there

is no such edge along the path. By the choice of t, there is no edge in E
1

or E
2

along

u
1

· · · ut+1

. For (6.17) it suffices to show

ÿ
sœ[t]

q(us) = o(1). (6.18)

To see this we consider two cases. If there is no E
1

, E
2

edge along the root-to-¸ path,

then the two sums in (6.17) and (6.18) are the same. If (ut+1

, ut+2

) is an edge in E
1

or E
2

,

3Note that this is not a sufficient condition, because the other pair (k, jÕ
) œ D may have |�k,jÕ | Ø

–
Ô

n log n.

199

then q(us) = 0 if s Ø t + 2 (since (u, v) /œ E if there is already an edge in E along the

path to u). We claim that q(ut+1

) must be 0 as well. This is because, given that (T, C) is

fixed and that (T, C, H) takes (ut+1

, ut+2

) with a positive probability, whenever (T, C, H)

follows an edge (ut+1

, v) from ut+1

, v has the same term and clause signatures (‡x, ·x) as

ut+2

and thus, also has the same P and A (as part of the tuple its map induces). As a result

(ut+1

, v) is also in E
1

or E
2

and cannot be an edge in E
4

(recall that we explicitly excluded

E
1

and E
2

from E
4

). Below we focus on us with s œ [t] and upperbound q(us).

For each s œ [t] we write xs to denote the string queried at us and let (Is
; Js

; P s
; Qs

; Rs
; fls

)

be the tuple induced by the map associated with us. We also write Fs to denote the set of

pairs (i, j) with i œ Is, j œ Js
i . Following the same arguments used to derive (6.13) in the

proof of Lemma 6.1.17, let Ds ™ Fs denote the set of at most two pairs (i, j) such that

xs is added to P s
i,j when (T, C, H) reaches us. Note that if xs just creates a new Pi,j (so

(i, j) /œ Fs), we do not include it in Ds. As a result, whenever (T, C, H) takes an E
4

-edge

(u, v), the latter must be E
4

-bad at one of (i, j) œ Ds.

Next for each pair (i, j) œ Ds, we can follow the analysis of (6.14) to show that

Pr
H≥Eyes

5
(T, C, H) takes a (u, v) that is E

4

-bad at (i, j)

6
Æ

---�s
i,j

------As
i,j,1

--- · Pr
H≥Eyes

5
(T, C, H) reaches u

6
,

where the set �

s
i,j is defined as

�

s
i,j =

;
k œ As

i,j,1 : xs
k = 0

<
.

As there is no E
1

or E
2

edge along the path to us, we have by (6.4) that As
i,j,1 has size �(n).

Thus,

q(us) Æ O(1/n) · ÿ
(i,j)œDs

---�s
i,j

--- and
ÿ
sœ[t]

q(us) Æ O(1/n) · ÿ
sœ[t]

ÿ
(i,j)œDs

---�s
i,j

---. (6.19)

Let (Iú
; Jú

; P ú
; Rú

; Aú
; flú

) be the tuple induced by the map associated with ut+1

and

let F ú be the set of (i, j) with i œ Iú and j œ Jú
i . We upperbound the second sum in (6.19)

200

above by focusing on any fixed pair (i, j) œ F ú and observing that

ÿ
s:(i,j)œDs

---�s
i,j

--- +

---Aú
i,j,1

--- Æ (n/2) +

Ô
n.

This is because �

s
i,j and Aú

i,j,1 are pairwise disjoint and their union is indeed exactly the

number of 1-entries of the query string along the path that first creates Pi,j . The latter is

at most (n/2) +

Ô
n because we assumed that strings queried in the tree lie in the middle

layers. On the other hand,

---Aú
i,j,1

--- Ø (n/2) ≠ O
1Ô

n log n · min

Ó
|P ú

i,j|2, |P ú
i |

Ô2
.

This follows directly from (6.3) and (6.4) and our choice of t at the beginning of the proof

so that there is no E
1

or E
2

edge from u
1

to ut+1

. We finish the proof by plugging the two

inequalities into (6.19) and follow the same arguments used at the end of the proof of the

lemma for good leaves.

6.2 Unateness Lower Bound

We start with some notation for strings. Given A ™ [n] and x œ {0, 1}n, we use xA to

denote the string in {0, 1}A that agrees with x over A. Given y œ {0, 1}A and z œ {0, 1}A,

we use x = y ¶ z (as their concatenation) to denote the string x œ {0, 1}n that agrees with

y over A and z over A. Given x œ {0, 1}n and y œ {0, 1}A with A ™ [n], we use x ü y to

denote the n-bit string xÕ with xÕ
i = xi for all i /œ A and xÕ

i = xi ü yi for all i œ A, i.e., xÕ is

obtained from x by an XOR with y over A.

6.2.1 Distributions

For a fixed n > 0 we describe a pair of distributions, Dyes and Dno, supported on Boolean

functions f : {0, 1}n æ {0, 1} that will be used to obtain a two-sided and adaptive lower

bound for unateness testing. After defining the distributions, we show in this subsection that

any f ≥ Dyes is unate, and f ≥ Dno is �(1)-far from being unate with probability �(1).

201

Let N be the following parameter:

N =

A
1 +

1Ô
n

Bn/4

¥ e
Ô

n/4.

A function f ≥ Dyes is drawn using the following procedure:

1. Sample a subset M µ [n] uniformly at random from all subsets of size n/2.

2. Sample T ≥ E(M) (which we describe next). T is a sequence of terms

(Ti : i œ [N]). T is then used to define a multiplexer map

� = �T : {0, 1}n æ [N] fi {0

ú, 1

ú}.

3. Sample H ≥ Eyes(M) where H = (hi : i œ [N]). For each i œ [N],

hi : {0, 1}n æ {0, 1} is a dictatorship function hi(x) = xk with k sampled

independently and uniformly from M. We will refer to hi as the dictatorship function

and xk (or simply its index k) as the special variable associated with the ith term Ti.

4. Sample two strings r œ {0, 1}M and s œ {0, 1}M uniformly at random. Finally, the

function f = fM,T,H,r,s : {0, 1}n æ {0, 1} is defined as follows:

fM,T,H,r,s(x) = fM,T,H
1
x ü (r ¶ s)

2
,

where fM,T,H is defined as follows (with the truncation done first):

fM,T,H(x) =

Y______________]______________[

0 if |xM| < (n/4) ≠ Ô
n

1 if |xM| > (n/4) +

Ô
n

0 if �(x) = 0

ú

1 if �(x) = 1

ú

h�(x)

(x) otherwise (i.e., when �(x) œ [N])

This finishes the definition of our yes-distribution Dyes.

A function f = fM,T,H,r,s ≥ Dno is drawn using a similar procedure, with the only

difference being that H = (hi : i œ [N]) is sampled from Eno(M) instead of Eyes(M):

202

each hi is a dictatorship function hi(x) = xk with probability 1/2 and an anti-dictatorship

hi(x) = xk with probability 1/2, where k is chosen independently and uniformly at random

from M. We will also refer to hi as the dictatorship or anti-dictatorship function and xk as

the special variable associated with Ti.

Remark 63. Note that the truncation in fM,T,H,r,s is done after sampling r. As a result,

we may not assume all queries are made in the middle layers, like we did in Section 6.1.

Fixing an M µ [n] of size n/2, we now describe T ≥ E(M) to finish the description of

the two distributions. Each term Ti in T, i œ [N], is drawn independently and is a random

subset of M with each j œ M included with probability 1/
Ô

n independently. We also

abuse the notation and interpret each term Ti as a Boolean function that is the conjunction

of its variables:

Ti(x) =

fi
jœTi

xj.

Note that, for some technical reason that will become clear later in the proof of Lemma

6.2.13, the definition of terms here is slightly different from that used in the monotonicity

lower bound, though both are the conjunction of roughly
Ô

n/2 (
Ô

n in monotonicity)

variables. Given T, the multiplexer map �T : {0, 1}n æ [N] fi {0

ú, 1

ú} indicates the index

of the term Ti that is satisfied by x, if there is a unique one; it returns 0

ú if no term is

satisfied, or 1

ú if more than one term are satisfied:

�T(x) =

Y______]______[

0

ú ’ i œ [N], Ti(x) = 0

1

ú ÷ i ”= j œ [N], Ti(x) = Tj(x) = 1

i Ti(x) = 1 for a unique i œ [N]

We give some intuition for the reason why the two distributions are hard to distinguish

and can be used to obtain a much better lower bound for unateness testing, despite of

being much simpler than the two-level construction used in the previous section. Note that

Dyes and Dno are exactly the same except that (1) in Dyes, hi’s are random dictatorship or

anti-dictatorship functions (if one takes s into consideration) but are consistent in the sense

that all hi’s with the same special variable xk are either all dictatorship or anti-dictatorship

203

functions; (2) in contrast, whether hi is a dictatorship or anti-dictatorship is independent

for each i œ [N] in Dno. Informally, the only way for an algorithm to be sure that f is from

Dno (instead of Dyes) is to find two terms with the same special variable xk but one with a

dictatorship and the other with an anti-dictatorship function over xk. As a result, one can

interpret our ˜

�(n2/3

) lower bound (at a high level) as the product of two quantities: the

number of queries one needs to breach a term Ti (see Section 6.2.3 for details) and find its

special variable, and the number of terms one needs to breach in order to find two with the

same special variable. This is different from monotonicity testing since we are done once a

term is breached there, and enables us to obtain a much better lower bound for unateness

testing.

Next we prove that f ≥ Dyes is unate and f ≥ Dno is far from unate with high

probability.

Lemma 6.2.1. Every f in the support of Dyes is unate.

Proof. Given the definition of f = fM,T,H,r,s using fM,T,H , it suffices to show that fM,T,H

is monotone. The rest of the proof is similar to that of Lemma 6.1.1.

Lemma 6.2.2. A function f ≥ Dno is �(1)-far from unate with probability �(1).

Proof. Consider a fixed subset M µ [n] of size n/2. It suffices to prove that, when

T ≥ E(M) and H ≥ Eno(M), the function f = fM,T,H is �(1)-far from unate. This is due

to the fact that flipping variables of a function as we do using r and s does not change its

distance to unateness.

Fix T in the support of E(M) and H in the support of Eno(M). We let X µ {0, 1}n

denote the set of x œ {0, 1}n in the middle layers (i.e. |xM | is within n/4 ± Ô
n) such that

�T (x) = i for some i œ [N] (rather than 0

ú or 1

ú). For each x œ X with �T (x) = i, we also

let fl(x) = k be the special variable associated with Ti (i.e., hi(x) = xk or hi(x) = xk). As

fl(x) œ M and �T (x) depends only on variables in M , we have that

�T

1
x(fl(x))

2
= �T (x),

204

i.e., after flipping the fl(x)th bit of x, the new string still satisfies uniquely the same term as

x.

Let xú
= x(fl(x)) for each string x œ X (then (xú

)

ú
= x). The claim below shows that

(x, xú
) is a bi-chromatic edge along the fl(x)th direction. As a result, one can decompose

|X| into |X|/2 many disjoint bi-chromatic edges (x, xú
).

Claim 6.2.3. For all x œ X , (x, xú
) is a bi-chromatic edge of fM,T,H .

Proof. Let k = fl(x) œ M . Then fM,T,H(x) and fM,T,H(xú
) are either xk and xú

k or xk and

xú
k. The claim follows directly from xú

= x(k) and thus, xú
k = xk.

For each k œ M , we partition strings x œ X with fl(x) = k and f(x) = 0 into

X+

k =

Ó
x œ X : fl(x) = k, xk = 0, f(x) = 0

Ô
and X≠

k =

Ó
x œ X : fl(x) = k, xk = 1, f(x) = 0

Ô
.

Note that for each x œ X+

k , (x, xú
) is a monotone bi-chromatic edge; for each x œ X≠

k ,

(x, xú
) is an anti-monotone bi-chromatic edge. Since all these |X|/2 edges are disjoint, by

Lemma 6.0.2 we have:

dist

1
fM,T,H , UNATE

2
Ø 1

2

n
· ÿ

kœM

min

Ó
|X+

k |, |X≠
k |

Ô
.

Therefore, it suffices to show that with probability �(1) over T ≥ E(M) and H ≥ Eno(M),

both X+

k and X≠
k (as random variables derived from T and H) have size �(2

n/n) for every

k œ M .

To simplify the proof we introduce a new distribution E Õ
(M) that is the same as E(M)

but conditioned on that every Ti in T contains at least n1/3 elements. Our goal is to show

that

Pr
T≥E Õ

(M), H≥Eno(M)

5
’k œ M , both X+

k and X≠
k have size �(2

n/n)

6
= �(1). (6.20)

This implies the desired claim over T ≥ E(M) as the probability of T ≥ E(M) lying in the

support of E Õ
(M) is at least 1 ≠ exp (≠�(

Ô
n)). To see this is the case, the probability of

205

Ti having less than n1/3 many elements can be bounded from above by

Pr
Ë
|Ti| Æ n1/3

È
=

ÿ
jÆn1/3

A
n/2

j

B
·

A
1 ≠ 1Ô

n

Bn/2≠j

·
A

1Ô
n

Bj

Æ (n1/3

+ 1) ·
A

n/2

n1/3

B
·

A
1 ≠ 1Ô

n

Bn/2≠n1/3

< e≠0.49

Ô
n.

Taking a union bound over all N ¥ e
Ô

n/4 terms, we conclude that T ≥ E(M) lies in the

support of E Õ
(M) with probability at least 1 ≠ exp(≠0.24

Ô
n).

In Claim 6.2.4, we prove a lower bound for the expectation of |X|:

Claim 6.2.4. We have (below we use H as an abbreviation for H ≥ Eno(M))

E
T≥E(M), H

5
|X|

6
= �(2

n
) and E

T≥E Õ
(M), H

5
|X|

6
= �(2

n
). (6.21)

Proof. By linearity of expectation, we have

E
T≥E(M), H

5
|X|

6
=

ÿ
middle x

Pr
T≥E(M), H

Ë
x œ X

È
.

Fix a string x œ {0, 1}n in the middle layers (i.e., |xM | lies in n/4±Ô
n). We decompose

the probability on the RHS for x into N disjoint subevents. The ith subevent corresponds to

Ti being the unique term which x satisfies. The probability of the ith subevent is at least

A
1 ≠ 1Ô

n

B n
4

+

Ô
n

◊
Qa

1 ≠
A

1 ≠ 1Ô
n

B n
4

≠Ô
n

RbN≠1

= �

3
1

N

4
.

As a result, the probability of x œ X is N · �(1/N) = �(1). The first part of (6.21) follows

from the fact that there are �(2

n
) many strings x in the middle layers.

The second part of (6.21) follows from the first part and the fact that |X| Æ 2

n and

T ≥ E(M) does not lie in the support of E Õ
(M) with probability o(1) as shown above.

Let µú
= �(2

n
) be the expectation of |X| over T ≥ E Õ

(M) and H ≥ Eno(M), and let p

206

be the probability of |X| Ø µú/2. Then we have

µú Æ p · 2

n
+ (1 ≠ p) · (µú/2) Æ p · 2

n
+ µú/2

and thus, p = �(1). As a result, it suffices to consider a T in the support of E Õ
(M) that

satisfies |X| Ø µú/2 and show that, over H ≥ Eno(M), all |X+

k | and |X≠
k | are �(2

n/n) with

probability �(1). To this end, we focus on X+

k and then use symmetry and a union bound

on all the n sets.

Given T and its X (with |X| Ø µú/2), we note that half of x œ X have xk = 0 (since

whether x œ X only depends on xM) and for each x œ X with xk = 0, the probability of

x œ X+

k (over H) is 1/(2n). Hence, the expectation of |X+

k | is |X|/4n Ø µú/8n = �(2

n/n).

Let µ = |X|/4n. To obtain a concentration bound on |X+

k |, we apply Hoeffding’s inequality

over H ≥ Eno(M) in the next claim.

Claim 6.2.5. For each k œ M , we have

Pr
H≥Eno(M)

5
µ ≠ |X+

k | Ø µ/2

6
Æ exp

1
≠�

1
2

n1/3

/n2

22
.

Proof. Consider the size of X+

k as a function over h
1

, . . . , hN for a particular fixed T in the

support of E Õ
(M) with |X| Ø �(2

n
). We have that X+

k is a sum of independent random

variables taking values between 0 and 2

n≠n1/3 , and the expectation of |X+

k | is µ because

the choices in H partitions half of X into 2n disjoint parts. Therefore, we can now apply

Hoeffding’s inequality:

Pr
H≥Eno(M)

5
µ ≠ |X+

k | Ø µ

2

6
Æ exp

A
≠�(2

2n/n2

)

2

2n≠n1/3

B

As each term has length at least n1/3, each Ti can add at most bi < (1/2) · 2

n≠n1/3 to |X+

k |,
then ÿ

iœ[N]

b2

i Æ 2

n≠n1/3

ÿ
iœ[N]

bi Æ 2

2n≠n1/3

.

This finishes the proof of the claim.

The same argument works for |X≠
k |. (6.20) then follows from a union bound on k œ M

207

and both sets X+

k and X≠
k . This finishes the proof of Lemma 6.2.2.

Given Lemmas 6.2.1 and 6.2.2, our lower bound for testing unateness (Theorem 60)

follows directly from the lemma below. We fix q = n2/3/log

3 n as the number of queries in

the rest of the proof. The remainder of this section will prove the following lemma.

Lemma 6.2.6. Let B be any q-query deterministic algorithm with oracle access to f . Then

Pr
f≥Dno

Ë
B rejects f

È
Æ Pr

f≥Dyes

Ë
B rejects f

È
+ o(1).

6.2.2 Balanced decision trees

Let B be a q-query deterministic algorithm, i.e., a binary decision tree of depth at most q

in which each internal node is labeled a query string x œ {0, 1}n and each leaf is labelled

“accept” or “reject.” Each internal node u has one 0-child and one 1-child. For each internal

node u, we use Qu to denote the set of strings queried so far (not including the query x to

be made at u).

Next we give the definition of a q-query tree B being balanced with respect to a subset

M µ [n] of size n/2 and a string r œ {0, 1}M (as the M and r in the procedure that

generates Dyes and Dno). After the definition we show that, when both M and r are drawn

uniformly at random (as in the procedure), B is balanced with respect to M and r with

probability at least 1 ≠ o(1).

Definition 47 (Balance). We say B is balanced with respect to a subset M µ [n] of size n/2

and r œ {0, 1}M if for every internal node u of B (letting x be the query at u) and every

Q ™ Qu, with

A =

Ó
k œ [n] : ’y, yÕ œ Q, yk = yÕ

k

Ô
and AÕ

=

Ó
k œ [n] : ’y, yÕ œ Qfi{x}, yk = yÕ

k

Ô
,

(6.22)

the set � = A \ AÕ having size at least n2/3

log n implies that

�

1

=

Ó
k œ � fl M : xk ü rk = 0 and ’y œ Q, yk ü rk = 1

Ô
(6.23)

208

has size at least n2/3

log n/8.

Lemma 6.2.7. Let B be a q-query decision tree. Then B is balanced with respect to a

subset M µ [n] of size n/2 and an r œ {0, 1}M, both drawn uniformly at random, with

probability at least 1 ≠ o(1)

Proof. Fix an internal node u and a Q ™ Qu such that |�| Ø n2/3

log n. Then the

probability over the draw of M and r of �
1

being smaller than n2/3

log n/8 is at most

exp(≠�(n2/3

log n)) using the Chernoff bound. The lemma follows by a union bound as

there are at most O(2

q
) choices for u and 2

q choices for Q.

Lemma 6.2.6 follows from the following lemma.

Lemma 6.2.8. Let B be a q-query tree that is balanced with respect to M and r. Then we

have

Pr
T,H≥Eno(M),s

Ë
B rejects fM,T,H,r,s

È
Æ Pr

T,H≥Eyes(M),s

Ë
B rejects fM,T,H,r,s

È
+ o(1). (6.24)

where T ≥ E(M) and s ≥ {0, 1}M .

Proof of Lemma 6.2.6 assuming Lemma 6.2.8. To simplify the notation, in the sequence of

equations below we ignore in the subscripts names of distributions from which certain

random variables are drawn when it is clear from the context. Using Lemma 6.2.7 and

Lemma 6.2.8, we have

Pr
M,T,H≥Eno(M),r,s

Ë
B rejects fM,T,H,r,s

È

Æ 1

2

n/2 ·
1

n
n/2

2 · ÿ
M,r

Pr
T,H≥Eno(M),s

Ë
B rejects fM,T,H,r,s

È

Æ 1

2

n/2 ·
1

n
n/2

2 · ÿ
M,r: balanced B

Pr
T,H≥Eno(M),s

Ë
B rejects fM,T,H,r,s

È
+ o(1)

Æ 1

2

n/2 ·
1

n
n/2

2 · ÿ
M,r: balanced B

Pr
T,H≥Eyes(M),s

Ë
B rejects fM,T,H,r,s

È
+ o(1)

Æ Pr
M,T,H≥Eyes(M),r,s

Ë
B rejects fM,T,H,r,s

È
+ o(1).

209

This finishes the proof of Lemma 6.2.6.

To prove Lemma 6.2.8, we may consider an adversary that has M of size n/2 and

r œ {0, 1}M in hand and can come up with any q-query decision tree B as long as B is

balanced with respect to M and r. Our goal is to show that any such tree B satisfies (6.24).

This inspires us to introduce the definition of balanced decision trees.

Definition 48 (Balanced Decision Trees). A q-query tree B is said to be balanced if it is

balanced with respect to Mú
= [n/2] and rú

= 0

[n/2] œ {0, 1}M . Equivalently, for every

internal node u of B and every Q ™ Qu (letting A and AÕ denote the sets as defined in

(6.22)), if � = A \ AÕ has size at least n2/3

log n, then the set �

1

as defined in (6.23) using

Mú and rú has size at least n2/3

log n/8.

With Definition 48 in hand, we use the following lemma to prove Lemma 6.2.8.

Lemma 6.2.9. Let B be a balanced q-query decision tree. Then we have

Pr
T,H≥Eno(Mú

),s

Ë
B rejects fMú,T,H,rú,s

È
Æ Pr

T,H≥Eyes(Mú
),s

Ë
B rejects fMú,T,H,rú,s

È
+ o(1),

(6.25)

where T ≥ E(Mú
) and s ≥ {0, 1}Mú .

Proof of Lemma 6.2.8 assuming Lemma 6.2.9. Let B be a q-query tree that is balanced with

respect to M and r œ {0, 1}M , which are not necessarily the same as Mú and rú. Then we

use B, M and r to define a new q-query tree BÕ that is balanced (i.e., with respect to Mú

and rú): BÕ is obtained by replacing every query x made in B by xÕ, where xÕ is obtained by

first doing an XOR of x with r over coordinates in M and then reordering the coordinates

of the new x using a bijection between M and Mú. Note that BÕ is balanced and satisfies

that the LHS of (6.24) for BÕ is the same as the LHS of (6.25). The same holds the RHS as

well. Lemma 6.2.8 then follows from Lemma 6.2.9.

For simplicity in notation, we fix M and r to be [n/2] and 0

[n/2] in the rest of the section.

We also write E for E(M), Eyes for Eyes(M), and Eno for Eno(M). Given T in the support of

210

E , H from the support of Eyes or Eno, and s œ {0, 1}M , we write

fT,H,s
def

= fM,T,H,r,s

for convenience. Then the goal (6.25) of Lemma 6.2.9 becomes

Pr
T,H≥Eno,s

Ë
B rejects fT,H,s

È
Æ Pr

T,H≥Eyes,s

Ë
B rejects fT,H,s

È
+ o(1),

where T ≥ E and s ≥ {0, 1}M in both probabilities.

Remark 64. Since B works on fT,H,s and r is all-0, the multiplexer �T is first truncated

according to |xM |, the number of 1’s in the first n/2 coordinates. As a consequence, we

may assume without loss generality from now on that B only queries strings x that have

|xM | lying between n/4 ± Ô
n. We will refer to them as strings in the middle layers in the

rest of the section.

6.2.3 Balanced signature trees

At a high level we proceed in a similar fashion as in the monotonicity lower bound. We first

define a new and stronger oracle model that returns more than just f(x) œ {0, 1} for each

query x œ {0, 1}n. Upon each query x œ {0, 1}n, the oracle returns the so-called signature

of x œ {0, 1}n with respect to (T, H, s) when hidden function is fT,H,s (and it will become

clear that fT,H,s(x) is determined by the signature of x); in addition, the oracle also reveals

the special variable k of a term Ti when the latter is breached (see Definition 52). Note

that the revelation of special variables is unique in the unateness lower bound. On the other

hand, the definition of signatures in this section is much simpler due to the single-level

construction of the multiplexer map.

After the introduction of the stronger oracle model, ideally we would like to prove that

every q-query deterministic algorithm C with access to the new oracle can only have at most

o(1) advantage in rejecting the function fT,H,s when T ≥ E , H ≥ Eno and s ≥ {0, 1}M as

compared to T, H ≥ Eyes and s. It turns out that we are only able to prove this when C is

represented by a so-called balanced signature tree, a definition closely inspired by that of

211

balanced decision trees in Definition 48. This suffices for us to prove Lemma 6.2.9 since

only balanced decision trees are considered there.

Recall the definition of ei and ei,iÕ from Section 6.1. We first define signatures syntacti-

cally and then semantically. The two definitions below are simpler than their counterparts

in Section 6.1 (as we only have one level of multiplexing in �T). By Remark 64, we can

assume without loss of generality that every string queried lies in the middle layers.

Definition 49. We use P to denote the set of all triples (‡, a, b), where ‡ œ {0, 1, ú}N and

a, b œ {0, 1, ‹} satisfy the following properties:

1. ‡ is either 1) the all 0-string 0

N , 2) ei for some i œ [N], or 3) ei,iÕ for some

i < iÕ œ [N].

2. If ‡ is of case 1), then a = b = ‹. If ‡ is of case 2), then a œ {0, 1} and b = ‹.

Lastly, if ‡ is of case 3), then we have a, b œ {0, 1}.

Definition 50. We say (‡, a, b) œ P is the signature of a string x œ {0, 1}n in the middle

layers with respect to (T, H, s) if it satisfies the following properties:

1. ‡ œ {0, 1, ú}N is set according to the following three cases: 1) ‡ = 0

N if Ti(x) = 0

for all i œ [N]; 2) ‡ = ei if Ti(x) = 1 is the unique term that is satisfied by x; 3)

‡ = ei,iÕ if i < iÕ and Ti(x) = TiÕ
(x) = 1 are the first two terms that are satisfied by

x.

2. If ‡ is in case 1), then a = b = ‹. If ‡ is in case 2) with ‡ = ei, then a = hi(x ü s)

4

and b = ‹. If ‡ is in case 3) with ‡ = ei,iÕ , then a = hi(x ü s) and b = hiÕ
(x ü s).

The signature of a set Q µ {0, 1}n of strings in the middle layers with respect to (T, H, s)

is the map „ : Q æ P such that „(x) is the signature of x with respect to (T, H, s).

Next we show that fT,H,s(x) is uniquely determined by the signature of x. Thus, the new

oracle is at least as powerful as the standard one. The proof is similar to that of Lemma 6.1.6.

4Recall that x ü s is the n-bit string obtained from x after an XOR with s over coordinates in M .

212

Lemma 6.2.10. Let T be from the support of E , H be from the support of Eyes or Eno and

s œ {0, 1}M . Given an x œ {0, 1}n in the middle layers, fT,H,s(x) is uniquely determined

by the signature (‡, a, b) of x with respect to (T, H, s).

Proof. Let f = fT,H,s. We consider the following three cases:

1. (No term is satisifed) If ‡ = 0

N , then f(x) = 0.

2. (Unique term satisfied) If If ‡ = ei for some i œ [N], then f(x) = hi(x ü s) = a.

3. (Multiple terms satisfied) If ‡ = ei,iÕ for some i < iÕ œ [N], then f(x) = 1.

This finishes the proof of the lemma.

We have defined the signature of x with respect to (T, H, s), which is the first thing that

the new oracle returns upon a query x. Let Q µ {0, 1}n be a set of strings in the middle

layers (and consider Q as the set of queries made so far by an algorithm). Next we define

terms breached by Q with respect to a triple (T, H, s). Upon a query x, the new oracle

checks if there is any term(s) newly breached after x is queried; if so, the oracle also reveals

its special variable in M .

For this purpose, let „ : Q æ P be the signature of Q with respect to (T, H, s), where

„(x) = (‡x, ax, bx). We say „ induces a 5-tuple (I; P ; R; A; fl) if it satisfies the following

properties:

1. The set I ™ [N] is given by

I =

Ó
i œ [N] : ÷x œ Q with ‡x,i = 1

Ô
.

2. P = (Pi : i œ I) and R = (Ri : i œ I) are two tuples of subsets of Q. For each i œ I ,

Pi =

Ó
x œ Q : ‡x,i = 1

Ô
and Ri =

Ó
x œ Q : ‡x,i = 0

Ô
.

3. A = (Ai, Ai,0, Ai,1 : i œ I) is a tuple of subsets of [n]. For each i œ I , Ai = Ai,0fiAi,1

and

Ai,1 =

Ó
k œ [n] : ’x œ Pi, xk = 1

Ô
and Ai,0 =

Ó
k œ [n] : ’x œ Pi, xk = 0

Ô
.

213

4. fl = (fli : i œ I) is a tuple of functions fli : Pi æ {0, 1} with fli(x) = ax if either

‡x = ei

or ‡x = ei,iÕ for some iÕ > i, and fli(x) = bx if ‡x = eiÕ,i for some iÕ < i, for each

x œ Pi,

i.e., fli(x) gives us the value of hi(x ü s) for each x œ Pi.

The following fact is reminiscent of Fact 6.1.9.

Fact 6.2.11. Let „ : Q æ P be the signature of Q with respect to (T, H, s). Then for each

i œ I , we have Ti ™ Ai,1 fl M , Ti(x) = 0 for all x œ Ri, and hi(x ü s) = fli(x) for each

x œ Pi.

We introduce the similar concept of consistency as in Definition 45.

Definition 51. Let (I; P ; R; A; fl) be the tuple induced by „ : Q æ P. For each i œ I ,

we say Pi is 1-consistent if fli(x) = 1 for all x œ Pi, and 0-consistent if fli(x) = 0 for all

x œ Pi. We say Pi is consistent if it is either 1-consistent or 0-consistent; we say Pi is

inconsistent otherwise.

We are now ready to define terms breached by Q with respect to (T, H, s).

Definition 52 (Breached Terms). Let Q µ {0, 1}n be a set of strings in the middle layers.

Let T be from the support of E , H be from the support of Eyes or Eno, and s œ {0, 1}M . Let

(I; P ; R; A; fl) be the tuple induced by the signature of Q with respect to (T, H, s). We say

the ith term is breached by Q with respect to (T, H, s), for some i œ I , if at least one of the

following two events occurs: (1) Pi is inconsistent or (2) |Ai fl M | Æ n/10. We say the ith

term is safe if it is not breached.

We can now finish the formal definition of our new oracle model. Upon each query

x, the oracle first returns the signature of x with respect to the hidden triple (T, H, s). It

then examines if there is any newly breached term(s) (by Definition 52 there can be at most

two such terms since x can be added to at most two Pi’s) and return the special variable

k œ M of the newly breached term(s). As a result, if Q is the set of queries made so far, the

information returned by the new oracle can be summarized as a 6-tuple (I; P ; R; A; fl; ”),

where

214

1. (I; P ; R; A; fl) is the tuple induced by the signature of Q with respect to (T, H, s);

2. Let IB ™ I be the set of indices of terms breached by Q, and let IS = I \ IB denote

the safe terms. Then ” : IB æ M satisfies that k = ”(i) is the special variable of the

ith term in hi.

We view a q-query deterministic algorithm C with access to the new oracle as a sig-

nature tree, in which each leaf is labeled “accept” or “reject” and each internal node u is

labeled a query string x œ {0, 1}n in the middle layers. Each internal node u has |P| · O(n2

)

children with each of its edges (u, v) labeled by (1) a triple (‡, a, b) œ P as the signature of

x with respect to the hidden (T, H, s), and (2) the special variable of any newly breached (at

most two) term(s). Each node u is associated with a set Qu as the set of queries made so far

(not including x), its signature „ : Qu æ P, and a tuple (I; P ; R; A; fl; ”) as the summary

of all information received from the oracle so far. (Note that one can fully reconstruct the

signature „ from (I; P ; R; A; fl) so it is redundant to keep „. We keep it because sometimes

it is (notation-wise) easier to work with „ directly.)

Finally we define balanced signature trees.

Definition 53 (Balanced Signature Trees). We say that a signature tree C is balanced if

for any internal node u of C (letting x be the query to make and (I; P ; R; A; fl; ”) be the

summary so far) and any i œ I , � = {j œ Ai : xj disagrees with yj of y œ Pi} having size

at least n2/3

log n implies that �

1

= {k œ � fl M : xk = 0 and ’y œ Pi, yk = 1} has size

at least n2/3

log n/8.

Note that the definition above is weaker compared to Definition 48 of balanced decision

trees, in the sense that the condition on �

1

in the latter applies to any subset of queries

Q ™ Qu (instead of only Pi’s). Lemma 6.2.9 follows from the lemma below on balanced

signature trees.

Lemma 6.2.12. Let C be a q-query balanced signature tree. Then we have

Pr
T,H≥Eno,s

Ë
C rejects (T, H, s)

È
Æ Pr

T,H≥Eyes,s

Ë
C rejects (T, H, s)

È
+ o(1). (6.26)

215

Proof of Lemma 6.2.9 assuming Lemma 6.2.12. Let B be a q-query balanced decision tree. We

use B to obtain a q-query algorithm C with access to the new oracle by simulating B as

follows: Each time a string x is queried, C uses the signature of x returned by the oracle to

extract f(x) (using Lemma 6.2.10) and then continue the simulation of B. One can verify

that the corresponding signature tree of C is balanced and the probabilities of C rejecting

(T, H, s) in both cases are the same as B.

Before moving on to the proof of Lemma 6.2.12, let us remark on how the new oracle

may help an algorithm distinguish between functions in Dyes and Dno. Suppose that a

deterministic algorithm C is at some internal node u with a tuple (I; P ; R; A; fl; ”). For each

breached i œ IB , the algorithm knows that hi is either a dictator or anti-dictator with special

variable xk with k = ”(i). By inspecting the yk of a y œ Pi and fli(y), the algorithm can

also deduce whether hi(x ü s) is xk or xk. The former suggests that xk is monotone and the

latter suggests that xk is anti-monotone.

However, unlike monotonicity testing, observing hi(x ü s) = xk has no indication

on whether f is drawn from Dyes or Dno: indeed hi(x ü s) is equally possible to be xk

or xk in both distributions because of the random bit sk. But if the algorithm observes a

so-called collision, i.e. i, iÕ œ IB such that hi(x ü s) = xk and hi(x ü s) = xk, then one

can safely assert that the hidden function belongs to Dno. This gives us the crucial insight

(as sketched earlier in Section 6.2.1) that leads to a higher unateness testing lower bound

than monotonicity testing: for testing monotonicity, deducing that a variable goes in an

anti-monotone direction suffices for a violation; for testing unateness, however, one needs

to find a collision in order to observe a violation. While the proof of Lemma 6.2.12 is quite

technical, it follows the intuition that with q queries, it is hard for a balanced signature tree

to find a collision in breached terms IB, and when no collision is found, it is hard to tell

where the hidden function is drawn from.

6.2.4 Tree pruning

To prove Lemma 6.2.12 on a given balanced q-query signature tree C, we start by identifying

a set of bad edges of C and using them to prune the tree.

216

Definition 54. An edge (u, v) in C is a bad edge if at least one of the following events occurs

at (u, v) and none of these events occurs along the root-to-u path (letting x be the string

queried at u, and (IB fi IS; P ; R; A; fl; ”) and (I Õ
B fi I Õ

S; P Õ
; RÕ

; AÕ
; flÕ

; ”Õ
) be the summaries

at u and v, respectively):

1. For some i œ IS , |Ai \ AÕ
i | Ø n2/3

log n;

2. |I Õ
B| > n1/3

O
log n; or

3. There exist two distinct indices i, j œ I Õ
B with ”Õ

(i) = ”Õ
(j).

We say a leaf ¸ of C is a good leaf if there is no bad edge along the root-to-¸ path;

otherwise, ¸ is bad. The following lemma allows us to focus on good leaves. We defer the

proof to Section 6.2.6.

Lemma 6.2.13 (Pruning Lemma). Let C be a balanced q-query signature tree. Then

Pr
T,H≥Eno,s

Ë
(T, H, s) reaches a bad leaf

È
= o(1).

We prove the following lemma for good leaves in Section 6.2.14:

Lemma 6.2.14 (Good Leaves are Nice). For any good leaf ¸ of C, we have

Pr
T,H≥Eno,s

Ë
(T, H, s) reaches ¸

È
Æ (1 + o(1)) · Pr

T,H≥Eyes,s

Ë
(T, H, s) reaches ¸

È
.

Assuming Lemma 6.2.13 and Lemma 6.2.14, we can prove Lemma 6.2.12:

Proof of Lemma 6.2.12 assuming Lemma 6.2.13 and Lemma 6.2.14. Let L be the set of leaves

217

of C that are labeled “reject” and let Lú ™ L be the good ones in L. Then we have

Pr
T,H≥Eno,s

Ë
C reject (T, H, s)

È
=

ÿ
¸œL

Pr
T,H≥Eno,s

Ë
(T, H, s) reaches ¸

È
Æ ÿ

¸œLú
Pr

T,H≥Eno,s

Ë
(T, H, s) reaches ¸

È
+ o(1)

Æ (1 + o(1)) · ÿ
¸œLú

Pr
T,H≥Eyes,s

Ë
(T, H, s) reaches ¸

È
+ o(1)

Æ (1 + o(1)) · Pr
T,H≥Eyes,s

Ë
C rejects (T, H, s)

È
+ o(1)

Æ Pr
T,H≥Eyes,s

Ë
C rejects (T, H, s)

È
+ o(1),

where we used Lemma 6.2.13 in the second line and Lemma 6.2.14 in the third line.

6.2.5 Proof of Lemma 6.2.14 for good leaves

The proof of Lemma 6.2.14 is similar in spirit to Lemma 6.1.12 for monotonicity.

Fix a good leaf ¸ in C. We let Q be the set of queries made along the root-to-¸ path,

„ : Q æ P be the signature of Q with „(x) = (‡x, ax, bx) for each x œ Q, and let

(IB fi IS; P ; R; A; fl; ”) be the summary associated with ¸. Since ¸ is a good leaf, there are

no bad edges along the root-to-¸ path. Combining this with the definition of breached/safe

terms, we have the following list of properties:

1. For each i œ IS , |Ai fl M | Ø n/10;

2. Every i œ IS is either 1-consistent or 0-consistent;

3. |IB| Æ n1/3

O
log n; and

4. For any two distinct indices i, j œ IB, we have ”(i) ”= ”(j).

Let D = {”(i) : i œ IB} µ M be the special variables of breach terms. We have |D| = |IB|.
Next we fix a tuple T from the support of E such that the probability of (T, H, s)

reaching ¸ is positive, when H ≥ Eno and s ≥ {0, 1}M . It then suffices to show that

Pr
H≥Eyes,s

Ë
(T, H, s) reaches ¸

È
Ø (1 ≠ o(1)) Pr

H≥Eno,s

Ë
(T, H, s) reaches ¸

È
. (6.27)

218

The properties below follow directly from the assumption that the probability of (T, H, s)

reaching ¸ is positive when H ≥ Eno and s ≥ {0, 1}M :

1. For every x œ Q and i œ [N] such that ‡x,i œ {0, 1}, we have Ti(x) = ‡x,i; and

2. For each i œ IB, letting k = ”(i), there exists a bit b such that fli(x) = xk ü b for all

x œ Pi.

For each i œ IB fi IR we pick a string yi from Pi arbitrarily as a representative and let

–i = fli(yi).

We first derive an explicit expression for the probability over Eno in (6.27). To this

end, we note that, given properties listed above, (T, H, s) (with H from the support of Eno)

reaches ¸ iff

1. For each i œ IS , let k be the special variable of hi. Then we have k œ Ai fl M , and hi

is a dictatorship function if yi,k ü sk = –i or an anti-dictatorship if yi,k ü sk ”= –i;

2. For each i œ IB , the special variable of hi is the same as k = ”(i) and similarly, hi is

a dictatorship function if yi,k ü sk = –i or an anti-dictatorship if yi,k ü sk ”= –i.

Thus, once s is fixed, there is exactly one choice of hi for each i œ IB and |Ai fl M | choices

of hi for each i œ IS . Since there are (n/2) · 2 choices overall for each hi, the probability

over Eno in (6.27) is 3
1

n

4|IB |
· Ÿ

iœIS

A |Ai fl M |
n

B
.

Next we work on the more involved probability over Eyes in (6.27). Given properties

listed above (T, H, s) (with H from the support of Eyes so every hi is a dictatorship function)

reaches ¸ iff

1. For each i œ IS , let k be the special variable of the dictatorship function hi. Then we

have k œ Ai fl M and sk satisfies that yi,k ü sk = –i;

2. For each i œ IB , the special variable of hi is the same as k = ”(i) and yi,k ü sk = –i.

Note that once s is fixed, these are independent conditions over hi’s (among the overall

219

n/2 choices for each hi). As a result, we can rewrite the probability for Eyes as

E
s≥{0,1}M

C Ÿ
iœI

Zi

D
, (6.28)

where Zi’s are (correlated) random variables that depend on s. For each i œ IB , Zi = 2/n if

–i = yi,”(i) ü s”(i)

and Zi = 0 otherwise. For each i œ IS , we have

Zi =

|{k œ Ai fl M : yi,k ü sk = –i}|
n/2

For some technical reason, for each i œ IS , let Bi be the following random set that depends

on s:

Bi =

Ó
k œ (Ai fl M) \ D : yi,k ü sk = –i

Ô
.

Using |D| = |IB|, we may now simplify (6.28) by:

E
s≥{0,1}M

C Ÿ
iœI

Zi

D
=

1

2

|IB | ·
3

2

n

4|IB |
E

s≥{0,1}M\D

SU Ÿ
iœIS

Zi

TV Ø
3

1

n

4|IB |
E

s≥{0,1}M\D

SU Ÿ
iœIS

A |Bi|
n/2

B TV .

Therefore, it remains to show that

E
s≥{0,1}M\D

SU Ÿ
iœIS

A
2|Bi|

|Ai fl M |

B TV Ø 1 ≠ o(1). (6.29)

Next we further simplify (6.29) by introducing new, simpler random variables. We may

re-write

|Bi| =

ÿ
kœ(AiflM)\D

Xi,k, where Xi,k =

Y__]__[
1 if yi,k ü sk = –i

0 otherwise

220

For each i œ IS and k œ (Ai fl M) \ D, let Yi,k and Yi be the following random variables:

Yi,k =

1 ≠ 2Xi,k + 2·i

|Ai fl M | and Yi =

ÿ
kœAiflM\D

Yi,k, where ·i =

|Ai fl M fl D|
2|(Ai fl M) \ D| .

(Note that |(Ai fl M) \ D| is �(n) so ·i’s are well-defined.) A simple derivation shows that

Ÿ
iœIS

A
2|Bi|

|Ai fl M |

B
=

Ÿ
iœIS

Qa
1 ≠ ÿ

kœ(AiflM)\D

Yi,k

Rb
=

Ÿ
iœIS

1
1 ≠ Yi

2
. (6.30)

Using the fact that each fraction on the LHS is between 0 and 2, we have that Yi always

satisfies |Yi| Æ 1. The difficulty in lowerbounding (6.30) is that Yi’s are not independent.

But with a fixed i, Yi,k’s are indeed independent with respect to the randomness in s and

each Yi,k is either

1

|Ai fl M | + O

A
1

n5/3

log n

B
or ≠ 1

|Ai fl M | + O

A
1

n5/3

log n

B

with equal probabilities, where we used the fact that |AiflM | = �(n) and |D| Æ n1/3/ log n.

For each i œ IS , let Wi be the random variable defined as

Wi =

Y__]__[
Yi if |Yi| Æ log

2 n/
Ô

n

2|IS| otherwise

We prove the following claim that helps us avoid the correlation between Yi’s.

Claim 6.2.15. The following inequality always holds:

Ÿ
iœIS

1
1 ≠ Yi

2
Ø

1
1 ≠ o(1)

2
·

Qa
1 ≠ ÿ

iœIS

Wi

Rb .

Proof. The inequality holds trivially if |Yj| Ø log

2 n/
Ô

n for some j œ IS . This is because

|Yi| Æ 1 and thus, the LHS is nonnegative. On the other hand Wj = 2|IS| implies that the

RHS is negative even when every other Wi is ≠1. So we may assume that |Yi| Æ log

2 n/
Ô

n

for every i. The proof in this case follows directly from Claim ?? in the appendix.

221

Given Claim 6.2.15, it suffices to upperbound the expectation of each Wi over s ≥
{0, 1}M\D:

E
s≥{0,1}M\D

Ë
Wi

È
Æ E

s≥{0,1}M\D

Ë
Yi

È
+

1
2|IS|+1

2
·Prs

Ë
Yi Ø log

2 n/
Ô

n
È

= O

A
1

n2/3

log n

B
(6.31)

where we used |IS| Æ n2/3 and that the probability of Yi Ø log

2 n/
Ô

n is superpolynomially

small, by a Chernoff bound. Our goal, (6.29), then follows directly from (6.31) and Claim

6.2.15.

6.2.6 Proof of the pruning lemma

Let E be the set of bad edges in C. We start by partitioning E into three (disjoint) sub-

sets E
1

, E
2

and E
3

according the the event that occurs at (u, v) œ E. Let (u, v) œ E

and let (IB fi IS; P ; R; A; fl; ”) and (I Õ
B fi I Õ

S; P Õ
; RÕ

; AÕ
; flÕ

; ”Õ
) be the summaries associated

with u and v, respectively. Then

1. (u, v) œ E
1

if for some i œ IS , we have |Ai \ AÕ
i| Ø n2/3

log n;

2. (u, v) œ E
2

if (u, v) /œ E
1

and |I Õ
B| Ø n1/3/log n; or

3. (u, v) œ E
3

if (u, v) /œ E
1

fi E
2

and for two distance indices i, j œ I Õ
B, we have

”(i) = ”(j).

Note that E
1

, E
2

and E
3

are disjoint. Moreover, by the definition of bad edges none of these

events occurs at any edge along the root-to-u path.

Our plan below is to show that the probability of (T, H, s), as T ≥ E , H ≥ Eno and

s ≥ {0, 1}M , passing through an edge in Ei is o(1) for each i. The pruning lemma follows

from a union bound.

For edge sets E
1

and E
3

, we show that for any internal node u of C, the probability

of (T, H, s) taking an edge (u, v) that belongs to E
1

or E
3

is at most o(1/q), conditioning

on (T, H, s) reaching u when T ≥ E , H ≥ Eno and s ≥ {0, 1}M . This allows us to apply

Lemma 6.0.3. We handle E
2

using a different argument by showing that, roughly speaking,

IB goes up with very low probability after each round of query and thus, the probability of

|IB| reaching n1/3/ log n is o(1).

222

Edge Set E
1

. Fix an internal node u of C. We show that the probability of (T, H, s)

leaving u with an E
1

-edge, conditioning on it reaching u, is o(1/q). It then follows from

Lemma 6.0.3 that the probability of (T, H, s) passing through an E
1

-edge is o(1).

Let x be the query made at u, and let (IB fi IS; P ; R; A; fl; ”) be the summary associated

with u. Fix an index i œ IS . We upperbound by o(1/q2

) the conditional probability of

(T, H, s) taking an E
1

-edge with |Ai \ AÕ
i| Ø n2/3

log n. The claim follows by a union

bound on i œ IS (as |I| = O(q)).

Note that either AÕ
i = Ai or AÕ

i = Ai \ �, where

� =

Ó
k œ Ai : xk disagrees with yk of y œ Pi

Ô
.

Thus, a necessary condition for |Ai \ AÕ
i| Ø n2/3

log n to happen is |�| Ø n2/3

log n and

Ti(x) = 1.

Since C is balanced, |�| Ø n2/3

log n implies that

�

1

=

Ó
k œ Ai fl M : xk = 0 and yk = 1, y œ Pi

Ô

has size at least n2/3

log n/8. On the other hand, fix any triple (T≠i, H, s), where T≠i is a

tuple of N ≠ 1 terms with Ti missing, H is from the support of Eno and s œ {0, 1}M such

that

Pr
Ti

Ë
((T≠i, Ti), H, s) reaches u

È
> 0, (6.32)

where Ti is drawn by including each index in M with probability 1/
Ô

n. It suffices to show

that

Pr
Ti

Ë
((T≠i, Ti), H, s) reaches u and Ti(x) = 1

È
Æ o(1/q2

)·Pr
Ti

Ë
((T≠i, Ti), H, s) reaches u

È
.

(6.33)

For this purpose, note that given (6.32), the event on the RHS of (6.33) occurs at Ti if and

only if Ti is a subset of Aú
i,1 = Ai,1 fl M and Ti(y) = 0 for every y œ Ri; we use U to

denote the set of all such terms Ti (U cannot be empty by (6.32)). On the other hand, the

event on the LHS of (6.33) occurs if and only if Ti further avoids picking variables from �

1

,

223

i.e. Ti ™ Aú
i,1 \ �

1

. We use V to denote the set of all such Ti’s. To prove (6.33), note that

we can take any Ti in V , add an arbitrary subset of �

1

, and the result must be a set in U . As

a result we have (note that the bound is very loose here)

Pr[Ti œ V]

Pr[Ti œ U]

Æ
A

1 ≠ 1Ô
n

B|�
1

|
= o(1/q2

).

This finishes the proof for E
1

. Next we work on the edge set E
3

.

Edge set E
3

. Fix an internal node u of C. We show that the probability of (T, H, s)

leaving u with an E
3

-edge, conditioning on it reaching u, is o(1/q). By definition, we can

assume that there is no bad edge along the root-to-u path and thus, |IB| Æ n1/3/ log n and

IB has no collision, i.e. there are no distinct i, j œ IB such that ”(i) = ”(j). For (T, H, s)

to leave u with an E
3

-edge, it must be the case that some (at most two) terms are breached

after the query x and a collision occurs (either between a newly breached term and a term in

IB, or between the two newly breached terms).

Fix a pair (T, s), where T is from the support of E and s œ {0, 1}M , such that (T, H, s)

reaches u with a non-zero probability when H ≥ Eno. It suffices to show that

Pr
H

Ë
(T, H, s) reaches u and a collision occurs

È
Æ o(1/q) · Pr

H

Ë
(T, H, s) reaches u

È
.

(6.34)

Note that set of (at most two) i œ IS such that x is added to Pi after it is queried is determined

by T (if x starts a new Pi, then this i is safe for sure). If there exists no such i, then the

probability on the LHS of (6.34) is 0 since no term is newly breached and we are done.

Below we prove (6.34) for the case when i œ IS is the only index such that x is added to Pi.

The case when there are two such i’s can be handled similarly.

The proof of (6.34) easily follows from the following simple but useful claim:

Claim 6.2.16. Let T and s be such that (T, H, s) reaches u with non-zero probability when

H ≥ Eno. Then conditioning on reaching u, hi has its special variable uniformly distributed

in Ai fl M .

Proof. As i œ IS , Pi is consistent. For (T, H, s) to reach u, the only condition on hi and its

224

special variable k is that (1) if yk ü sk = fli(y) for some y œ Pi, then hi is a dictatorship

function xk; (2) if yk ü sk ”= fli(y) for some y œ Pi, then hi is an anti-dictatorship function

xk. Given T and s, there are |Ai fl M | choices for hi among the 2 · (n/2) choices and they

are all equally likely.

Our goal, (6.34), follows easily from |Ai fl M | = �(n) since i œ IS , Claim 6.2.16,

|IB| Æ n1/3/ log n, our choice of q = n2/3/ log

3 n, and the fact that, for the event on the

LHS to happen, the special variable of hi must fall inside IB.

Edge set E
2

. Let (u, v) be a bad edge in E
2

with |I Õ
B| Ø n1/3/ log n. We decompose I Õ

B

into K and L: i œ I Õ
B is in K if at the edge (uÕ, vú

) along the root-to-v path where i becomes

newly breached, we have |Aú
i fl M | Æ n/10, where Aú

i is the set at vú, and i œ I Õ
B is in L

otherwise (i.e. |Aú
i fl M | > n/10 but P ú

i at vú becomes inconsistent after the query at uÕ).

The claim below shows that K is small:

Claim 6.2.17. For every E
2

-bad edge (u, v), we have |K| Æ O(n1/3/ log

2 n).

Proof. Fix an i œ K and let (uÕ, vú
) be the edge along the root-to-v path where i becomes

breached. Note that when Ai is first created along the path, Ai = M and |Ai fl M | = n/2

(since at that time Pi consists of a single string). As we walk down the root-to-uú path, every

time a string is added to Pi, the size of Ai can only drop by n2/3

log n (otherwise, this edge

is an E
1

-edge, contradicting with the assumption that (u, v) œ E
2

since E
1

edges have a

higher priority) and thus, |Ai fl M | can drop by at most n2/3

log n. As a result, we have that

|P ú
i | at vú is at least

1 +

n/2 ≠ n/10

n2/3

log n
= �

A
n1/3

log n

B
.

Using the fact that each of the q queries can be added to at most two Pi’s, we have

|K| Æ 2q

�(n1/3/ log n)

= O

A
n1/3

log

2 n

B
.

This finishes the proof of the claim.

It follows directly from Claim 6.2.17 that every bad (u, v) œ E
2

has |L| Ø n1/3/(2 log n).

This inspires us to consider the following random process of walking down the tree C from

225

its root, with respect to (T, H, s) over T ≥ E , H ≥ Eno, and s ≥ {0, 1}M . As we walk

down an edge (u, v) of C, letting (IB fi IS; P ; R; A; fl; ”) and (I Õ
B fi I Õ

S; P Õ
; RÕ

; AÕ
; flÕ

; ”Õ
) be

the summaries associated with u and v, if |Ai \ AÕ
i| Ø n2/3

log n for some i œ IS , then

we fail and terminate the random process; if not we add the newly breached term(s) i

with and |AÕ
i fl M | > n/10 (so P Õ

i becomes inconsistent), if any, to L. We succeed if

|L| Ø n1/3/(2 log n), and it suffices for us to show that we succeed with probability o(1)

over T, H and s.

For the analysis, let u be an internal node of C, and fix any pair (T, s) such that (T, H, s)

can reach u with a non-zero probability. As discussed earlier, the set of (at most two)

Pi, i œ IS , that the query string x joins is determined only by T . If one of them has

|Ai \ AÕ
i| Ø n2/3

log n then the process would always fail; otherwise, we have that L

can grow by at most two and this occurs with probability (over the randomness of H but

conditioning on (T, H, s) reaching u) at most

p = O

A
n2/3

log n

n

B
= O

A
log n

n1/3

B

because |Ai fl M | = �(n) (i œ IS), the special variable of hi is uniform over Ai fl M by

Claim 6.2.16, and for i to be added to L, the special variable of hi must lie in Ai \ AÕ
i (of

size at most n2/3

log n).

In summary, after each query the random process either fails, or if it does not fail, L can

grow by at most two with probability at most p. Therefore, the probability that we succeed

is at most

Pr
m≥Bin(q,p)

C
2m Ø n1/3

2 log n

D
= o(1),

since q = n2/3/log

3 n and p = O(log n/n1/3

).

This finishes the proof that (T, H, s) passes through an edge in E
2

with probability

o(1).

226

6.3 Non-Adaptive One-Sided Unateness Lower Bound

In this section we prove Theorem 61: an �(n/ log

2 n) lower bound on the query complexity

of testing unateness for one-sided and non-adaptive algorithms. This lower bound matches

the upper bound of [43] up to a poly-logarithmic factor. Our arguments are an adaptation of

Theorem 19 of [63] to the setting of unateness, with one additional observation that allows

us to obtain a higher lower bound. Previously [24] proved a lower bound of � (

Ô
n) for

one-sided, non-adaptive algorithms. For the rest of the section, we fix q = n/log

2 n.

For a fixed n > 0, we describe a distribution Dno supported on Boolean functions f over

n + 2 variables. We then show that every f ≥ Dno is �(1)-far from unate. An f ≥ Dno

is drawn by first drawing an index i ≥ [n] uniformly at random, and then letting f = fi,

where for each x œ {0, 1}n:

fi(0, 0, x) = 0,

fi(0, 1, x) = xi,

fi(1, 0, x) = xi,

fi(1, 1, x) = 1.

In order to simplify the notation, given a, b œ {0, 1} and i œ [n], we write fi,ab : {0, 1}n æ
{0, 1} to denote the function fi,ab(x) = fi(a, b, x) that agrees with fi when a and b are the

first two inputs.

Figure 6.4 gives a simple visual representation of fi. We show that fi is the �(1)-far

from unate.

Lemma 6.3.1. For all i œ [n], fi is �(1)-far from unate.

Proof. This is immediate from Lemma 6.0.2, because there are �(2

n
) monotone bi-chromatic

edges in direction i, as well as �(2

n
) anti-monotone bi-chromatic edges in direction i.

We consider non-adaptive, one-sided, deterministic q-query algorithm B with oracle

access to a Boolean function. Note that a non-adaptive, deterministic algorithm B is simply

a set of q query strings x
1

, . . . , xq, as well as a decision procedure which outputs “accept” or

227

000

n

111

n
011

n

100

n
•

• •

•

0

xi 1

xi

Figure 6.4: An illustration of fi : {0, 1}n+2 æ {0, 1}. The first two coordinates index the
sub-cubes.

“reject” given f(xk) for each k œ [q]. Furthermore, since B is one-sided, B outputs “reject”

only if it observes a violation to unateness (which we formally define next).

Definition 55. A violation to unateness for a function f : {0, 1}n æ {0, 1} is a function

v : {0, 1}n æ ({0, 1}n
)

2, such that for each r œ {0, 1}n: v(r) = (x, y) where x, y œ {0, 1}n

and

x ü r ª y ü r and f(x) = 1, f(y) = 0.

Intuitively, a violation to unateness consists of a violation to monotonicity, for every

possibly orientation r œ {0, 1}n. We refer to f r
: {0, 1}n æ {0, 1} as the function f r

(x) =

f(x ü r), for any r œ {0, 1}n. So a violation to unateness for f consists of a violation to

monotonicity for each f r.

Thus, the algorithm B with oracle access to f : {0, 1}n æ {0, 1} works in the following

way:

1. Query the oracle with queries Q = {x
1

, . . . , xq} µ {0, 1}n.

2. If there exists a violation to unateness of f , v : {0, 1}n æ ({0, 1}n
)

2 where the image

of v, {v(r) : r œ {0, 1}n}, is a subset of Q◊Q, then output “reject"; otherwise, output

“accept".

Note that if B does not find a violation, then there exists some unate function f Õ
: {0, 1}n æ

228

{0, 1} which is consistent with Q (i.e., f Õ
(xk) = f(xk) for all k œ [q]). In order to say that

B does not find a violation, it suffices to exhibit some r œ {0, 1}n such that B does not

find a violation to monotonicity of f r. Given Lemma 6.3.1, Theorem 61 follows from the

following lemma:

Lemma 6.3.2. For any q-query non-adaptive algorithm B, there exists some r œ {0, 1}n+2

such that with probability 1 ≠ o(1) over i ≥ [n], B does not observe any violations to

monotonicity of f r
i .

Proof of Theorem 61 assuming Lemma 6.3.2. Lemma 6.3.2 implies that with probability

1 ≠ o(1) over the draw of f ≥ Dno, B does not observe any violation to unateness, since

there is some r œ {0, 1}n+2 where B does not observe any violation for monotonicity of

f r. Thus, any q-query algorithm B does not output “reject" on inputs drawn from Dno with

probability at least 2

3

.

We now proceed to prove Lemma 6.3.2. For two strings y, z œ {0, 1}n, we denote the

Hamming distance between y and z as d(y, z) = |{k œ [n] : yk ”= zk}|.

Lemma 6.3.3. For any q strings x
1

, . . . , xq œ {0, 1}n, there exists an r œ {0, 1}n such that

for any j, k œ [q], if xj ü r ª xk ü r, then d(xj, xk) Æ 2 log n.

Proof. Consider a random n-bit r ≥ {0, 1}n. Suppose xj and xk have d(xj, xk) > 2 log n.

Then:

Pr
r≥{0,1}n

Ë
xj ü r ª xk ü r

È
< 2

≠2 log n
= n≠2,

since if xj and xk differ at i, ri can only take one of two possible values to make them

comparable. Thus we can union bound over all possible pairs of queries with distance at

least 2 log n to obtain

Pr
r≥{0,1}n

Ë
÷j, k œ [q], d(xj, xk) > 2 log n and xj ü r ª xk ü r

È
< n2/n2

= 1.

Therefore, there exists an r such that for all j, k œ [q], xj ü r ª xk ü r implies d(xj, xk) >

2 log n.

229

Proof of Lemma 6.3.2. Consider a non-adaptive, deterministic algorithm B making q queries

xÕ
1

, . . . , xÕ
q œ {0, 1}n+2, and let x

1

, . . . , xq be the last n bits of these strings. We will focus

on x
1

, . . . , xq and refer to the sub-functions the strings query. For example xk will query

the sub-function fab corresponding to a = xÕ
k,1 and b = xÕ

k,2. We may partition the set of

queries Q = {x
1

, . . . , xq}, according to the sub-function queried:

Q
00

= {xk œ Q : xÕ
k,1 = xÕ

k,2 = 0}
Q

01

= {xk œ Q : xÕ
k,1 = 0, xÕ

k,2 = 1}
Q

10

= {xk œ Q : xÕ
k,1 = 1, xÕ

k,2 = 0}
Q

11

= {xk œ Q : xÕ
k,1 = xÕ

k,2 = 1}.

Let r œ {0, 1}n be the string such that all comparable pairs among x
1

ü r, . . . , xq ü r

have distance at most 2 log n, which is guaranteed to exist by Lemma 6.3.3. We will show

that when rÕ
= (0, 0, r) œ {0, 1}n+2, with probability 1 ≠ o(1) over the draw of i ≥ [n], B

does not observe any violation to monotonicity of f rÕ
i .

Consider any i œ [n] and one possible violation to monotonicity, given by the pair

(xk, xj) where

xÕ
k ü rÕ ª xÕ

j ü rÕ and f rÕ

i (xÕ
k) = 1, f rÕ

i (xÕ
j) = 0

Then xk /œ Q
00

and xj /œ Q
11

since f r
i,00

and f r
i,11

are the constant 0 and 1 functions,

respectively. Additionally, if xj œ Q
00

, then xk œ Q
00

since rÕ
1

= rÕ
2

= 0, but this

contradicts the fact that f rÕ
i (xÕ

k) = 1, so xj /œ Q
00

. Similarly, xk /œ Q
11

.

Additionally, if xk œ Q
01

(or Q
10

) and xj œ Q
10

(or Q
01

), xÕ
k and xÕ

j are incomparable,

so xÕ
k ürÕ and xÕ

j ürÕ are incomparable. Also, for any i œ [n], either f r
i,01

or f r
i,10

is monotone,

so it suffices to consider pairs (xk, xj) where either both xk, xj œ Q
01

, or both xk, xj œ Q
10

.

Consider the case f r
i,10

is monotone, since the other case is symmetric. Therefore, it suffices

to show that with probability 1 ≠ o(1) over the choice of i ≥ [n], B does not observe any

violations to monotonicity for f r
i,01

from queries in Q
01

.

Similarly to [63], consider the graph of the queries where xj and xk are connected if

xj ü r and xk ü r are comparable. Additionally, consider a spanning forest T over this

230

graph. For any i œ [n], if f r
i,01

(xj) ”= f r
i,01

(xk) when xj and xk are connected in T , then

there exists an edge in T , (y, z), where f r
i,01

(y) ”= f r
i,01

(z). Thus, it suffices to upper-bound

the probability that some edge (y, z) in T has f r
i,01

(y) ”= f r
i,01

(z), and this only happens

when y ü r and z ü r differ at index i.

We have:

Pr
i≥[n]

Ë
÷ (y, z) œ T : f r

i,01

(y) ”= f r
i,01

(z)

È
Æ q · 2 log n

n

since the two end points of each edge have hamming distance at most 2 log n (recall our

choice for r). We union bound over at most q edges in T to conclude that with probability at

least 1 ≠ 2q log n/n over the draw i ≥ [n], B does not observes a violation to monotonicity

for f r
i,01

in Q
01

. When q = n/log

2 n, this probability is at least 1 ≠ o(1).

6.4 Non-Adaptive Monotonicity Lower Bound

In this section, we present the proof that non-adaptive monotonicity testing requires ˜

�(

Ô
n)

queries. The previous best non-adaptive lower bound for testing monotonicity is from [54],

where they show that for any c > 0, testing monotonicity requires �(n1/2≠c
) many queries.

Since this lower bound matches the known upper bound from [87], our result is tight up to

poly-logarithmic factors. The following distribution and proof is very similar to the work in

[34].

We use distributions over Boolean functions very similar to the distributions used in

[34]. A function f ≥ Dyes is drawn using the following procedure:

1. Sample T ≥ E (E is the same distribution over terms used in Section 6.2). Then T is

used to define the multiplexer map � = �T : {0, 1}n æ [N] fi {0

ú, 1

ú}.

2. Sample H = (hi : i œ [N]) from a distribution Eyes, where each

hi : {0, 1}n æ {0, 1} is a random dictatorship Boolean function, i.e., hi(x) = xk

with k sampled independently and uniformly at random from [n].

3. Finally, f : {0, 1}n æ {0, 1} is defined as follows: f(x) = 1 if |x| > (n/2) +

Ô
n;

231

f(x) = 0 if |x| < (n/2) ≠ Ô
n; if (n/2) ≠ Ô

n Æ |x| Æ (n/2) +

Ô
n, we have

f(x) =

Y_____]_____[
0 �(x) = 0

ú

1 �(x) = 1

ú

h�(x)

(x) otherwise (i.e., �(x) œ [N])

A function f ≥ Dno is drawn using the same procedure, with the only difference being

that H = (hi : i œ [N]) is drawn from Eno (instead of Eyes): each hi(x) = xk is a random

anti-dictatorship Boolean function with k drawn independently and uniformly from [n].

Similarly to Section 6.1, the truncation allows us to show lower bounds against algo-

rithms that query strings in the middle layers. The following two lemmas are easy extensions

of Lemma 6.1.1 and Lemma 6.1.2 in Section 6.1.

Lemma 6.4.1. Every function in the support of Dyes is monotone.

Lemma 6.4.2. A function f ≥ Dno is �(1)-far from monotone with probability �(1).

Below, we fix q =

Ô
n/ log

2 n. Recall from Section 6.3 that a non-adaptive, deterministic

algorithm B is a set of q query strings x
1

, . . . , xq, as well as a decision procedure which

outputs “accept” or “reject” given f(xk) for each k œ [q]. Thus, in order to prove the lower

bound, it suffices to prove the following lemma:

Lemma 6.4.3. Let B be any non-adaptive deterministic algorithm with oracle access to f

making q =

Ô
n/ log

2 n queries. Then

Pr
f≥Dyes

[B accepts f] Æ Pr
f≥Dno

[B accepts f] + o(1)

We follow in a similar fashion to Subsection 6.2.3 by considering a stronger oracle model

that results more than just f(x) œ {0, 1}. In particular, we will use the oracle model from

Subsection 6.2.3, where on query x œ {0, 1}n, the oracle reveals the signature of x with

respect to (T, H) as described in Definition 50. From Lemma 6.2.10, this new oracle is at

least as powerful as the standard oracle. Recall the definitions of the 5-tuple (I; P ; R; A; fl)

from Subsection 6.2.3. To summarize, the algorithm B with oracle access to the signatures

with respect to (T, H) works in the following way:

232

1. Query the oracle with queries Q = {x
1

, . . . , xq} µ {0, 1}n.

2. Receive the full signature map of Q with respect to (T, H), and build the 5-tuple

(I; P ; R; A; fl).

3. Output “accept” or “reject".

We think of an algorithm B as a list of possible outcome, L = {¸
1

, ¸
2

, . . . }, where each

outcome corresponds to an execution of the algorithm. Thus, each ¸i is labelled with a

full-signature map of Q (and therefore, a 5-tuple) as well as “accept” or “reject”. These

possible outcomes are similar in nature to the leaves in Section 6.1 and Section 6.2.

We proceed in a similar fashion to Section 6.1 and Section 6.2, by first identifying some

bad outcomes, and then proving that for the remaining good outcomes, B cannot distinguish

between Dyes and Dno. Note that since our algorithm is non-adaptive, B is not a tree; thus,

there are no edges like in Section 6.1 and Section 6.2. For the remainder of the section, we

let – > 0 be a large constant.

Definition 56. For a fixed 5-tuple, (I; P ; R; A; fl), we say the tuple is bad if:

• For some i œ I , there exists x, y œ Pi where

|{k œ [n] | xk = yk = 1}| Æ (n/2) ≠ –
Ô

n log n.

• For some i œ I , Pi is inconsistent (recall definition of inconsistent from

Definition 51).

We will say an outcome ¸ is bad if the 5-tuple at ¸, given by (I; P ; R; A; fl) from the

full signature map at ¸ is bad. Thus, we may divide the outcomes into LB, consisting of

the bad outcomes, and LG, consisting of the good outcomes. Similarly to Section 6.1 and

Section 6.2, Lemma 6.4.3 follows from the following two lemmas.

Lemma 6.4.4. Let B be a non-adaptive q-query algorithm. Then

Pr
T≥E,H≥Eyes

[(T, H) results an outcome in LB] = o(1).

We prove the following lemma for good outcomes.

233

Lemma 6.4.5. For any non-adaptive, q-query algorithm B, if ¸ œ LG is a good outcome,

Pr
T≥E,H≥Eyes

[(T, H) results in outcome ¸] Æ (1+o(1)) Pr
T≥E,H≥Eno

[(T, H) results in outcome ¸].

Proof. Fix a good outcome ¸ œ LG, and let „ : Q æ P be the associated full signature map

and (I; P ; R; A; fl) be the associated 5-tuple. Since (I; P ; R; A; fl) is not bad:

• For all i œ I , and x, y œ Pi, |{k œ [n] | xk = yk = 1}| Ø (n/2) ≠ –
Ô

n log n; hence,

by Lemma 19 in [34],

----|Ai,1| ≠ |Ai,0|
---- Æ O(|Pi|

Ô
n log n)

• For all i œ I , Pi is either 1-consistent, or 0-consistent. We use the fli to denote the

value fli(x) shared by all x œ Pi.

Consider a fixed T in the support of E such that the probability of (T, H) resulting in

outcome ¸ is positive when H ≥ Eyes. Then it suffices to show that

PrH≥Eno [(T, H) results in outcome ¸]

PrH≥Eyes [(T, H) results in outcome ¸]
Ø 1 ≠ o(1).

We know that T matches the full signature „ at ¸. Now, to match the ax and bx for each

x œ Q given in „, H (from either Eyes and Eno) needs to satisfy the following condition:

• If H = (hi : i œ [N]) is from the support of Eyes, then the dictator variable of each hi,

i œ I , is in Ai,fli
.

• If H = (hi : i œ [N]) is from the support of Eno, then the dictator variable of each hi,

i œ I , is in Ai,1≠fli
.

• If i /œ I , there is no condition posed on hi.

234

As a result, we have:

PrH≥Eno [(T, H) results in outcome ¸]

PrH≥Eyes [(T, H) results in outcome ¸]
=

Ÿ
iœI

A |Ai,1≠fli
|

|Ai,fli
|

B

Ø Ÿ
iœI

Qa
1 ≠

---|Ai,fli
| ≠ |Ai,1≠fli

|

|Ai,fli
|

Rb
Ø Ÿ

iœI

A
1 ≠ O

A |Pi| log nÔ
n

BB
= 1 ≠ o(1),

when q =

Ô
n/ log

2 n.

We now prove Lemma 6.4.4, which allows us to only consider good outcomes.

Proof of Lemma 6.4.4. We first handle the first case of bad outcomes: some i œ I has

x, y œ Pi where |{k œ [n] | xk = yk = 1} Æ (n/2) ≠ –
Ô

n log n. This case is almost

exactly the same as Lemma 16 of [34]. Since the probability some T ≥ E is sampled with

the above event happening is at most:

2

Ô
nq2

A
(n/2) ≠ –

Ô
n log n

n

BÔ
n

= q2

1
1 ≠ –n≠1/2

log n
2Ô

n Æ q2n≠–
= o(1)

since – > 0 is a large constant and q2 Æ n. Thus, by Lemma 19 in [34], all i œ I satisfy

----[n] \ Ai,0 \ Ai,1

---- Æ O(|Pi|
Ô

n log n).

For the second case, in order for some Pi to be inconsistent, hi(x) = xk sampled according

to Eyes must have k œ [n] \ Ai,0 \ Ai,1. Thus, taking a union bound over all possible i œ I ,

the probability over H ≥ Eyes of resulting in an outcome where some i œ I is inconsistent is

at most ÿ
iœI

Qa
---[n] \ Ai,0 \ Ai,1

n

Rb Æ ÿ
iœI

A
O(|Pi|Ôn log n)

n

B
= o(1)

since
q

iœI |Pi| Æ 2q = 2

Ô
n/ log

2 n.

235

6.5 Tightness of Distributions for Monotonicity

In this section, we provide the reader with some intuition of why the analyses of [34] and

this thesis are tight. In particular, we sketch one-sided algorithms to find violating pairs

in the far-from-monotone functions from the distributions considered. We maintain this

discussion at a high level.

6.5.1 An O(n1/4

)-query algorithm for distributions of [34]

Belovs and Blais define a pair of distributions Dú
yes and Dú

no over functions of n variables. To

describe Dú
yes and Dú

no, recall Talagrand’s random DNF [130] (letting N = 2

Ô
n): A function

f drawn from Tal is the disjunction of N terms Ti, i œ [N], where each Ti is the conjunction

of
Ô

n variables sampled independently and uniformly from [n].

Next we use Tal to define Tal±. To draw a function g from Tal±, one samples an f

from Tal and a random
Ô

n-subset S of [n]. 5 Then g(x) = f(x(S)

), where x(S) is the string

obtained from x by flipping each coordinate in S. Equivalently variables in Ti fl S appear

negated in the conjunction of Ti. The Dú
yes distribution is then the truncation of Tal, and the

Dú
no distribution is the truncation of Tal±. Every f ≥ Dú

yes is monotone by definition; [34]

shows that g ≥ Dú
no is far from monotone using the extremal noise sensitivity property of

Talagrand functions [107].

We now sketch a O(n1/4

)-query one-sided algorithm that rejects g ≥ Dú
no with high

probability. Note that the description below is not a formal analysis; the goal is to discuss

the main idea behind the algorithm. Let g be a function in the support of Dú
no defined by Ti

and S with T Õ
i = Ti \ S. Then the algorithm starts by sampling a random x œ {0, 1}n in the

middle layers with g(x) = 1. It is likely (�(1) probability by a simple calculation) that:

1. x satisfies a unique term T Õ
k among all T Õ

i ’s.

2. Tk fl S contains a unique ¸ œ [n] (by 1).

3. Tk = T Õ
k fi {¸} and x has x¸ = 0 (since g(x) = 1).

5Formally, S is sampled by including each element of [n] independently with probability 1/
Ô

n.

236

Assume this is the case, and let A
0

and A
1

denote the set of 0-indices and 1-indices of x,

respectively. Then T Õ
k ™ A

1

and ¸ œ A
0

.

The first stage of the algorithm goes as follows:

Stage 1. Repeat the following for n1/4 times: Pick a random subset R µ A
1

of size
Ô

n and query g(x(R)

). By 1) and 2) above, g(x(R)

)) = 1 if and only if R fl T Õ
k = ÿ,

which happens with �(1) probability. Let AÕ
1

denote A
1

after removing those indices

of R with g(x(R)

)) = 1 encountered. Then we have T Õ
k µ AÕ

1

and most likely,

C = A
1

\ AÕ
1

has size �(n3/4

).

After the first stage, the algorithm has shrunk A
1

by �(n3/4

) while still making sure that

variables of T Õ
k lie in AÕ

1

. In the second stage, the algorithm takes advantage of the smaller

A
1

to search for ¸ in A
0

, with each query essentially covering �(n3/4

) indices of A
0

:

Stage 2. Randomly partition A
0

into O(n1/4

) many disjoint parts A
0,1, A

0,2, . . ., each

of size |C| = �(n3/4

). For each A
0,j , query g(x(A

0,jfiC)

). For each A
0,j with

¸ /œ A
0,j , g must return 1; for the A

0,h with ¸ œ A
0,h, g returns 0 with �(1)

probability6 and when this happens, the algorithm has found a O(n3/4

)-size subset

A
0,h of A

0

containing ¸. Let y = x(A
0,jfiC).

Note that the algorithm cannot directly query g(x(A
0,j)

) since the new string will be outside

of the middle layers (unless |A
0,j| = O(

Ô
n), in which case one needs �(

Ô
n) queries to

cover A
0

). This is only achieved by flipping A
0,j and C at the same time (in different

directions) and this is the reason why we need the first stage to shrink A
1

. In the last stage,

the algorithm will find a violation for y, by providing z ª y with g(z) = 1.

Stage 3. Randomly partition A
0,h into O(n1/4

) many disjoint parts �

1

, �

2

, . . ., each

of size O(

Ô
n). For each �i, query g(y(�i)

). When ¸ œ �i, g(y(�i)
) = 1 with

probability �(1), and y(�i) ª y.

237

Ti

C
1

C

Ci,j

C
0

¸

Figure 6.5: A visual representation of the algorithm for finding violations in the two-level
Talagrand construction. The whole rectangle represents the set [n], which is shaded for
coordinates which are set to 1, and clear for coordinates which are set to 0. Ti is the unique
term satisfied and Ci,j is the unique clause falsified. The functions hi,j is an anti-dictator of
coordinate ¸. The sets illustrated represent the current knowledge at the end of Stage 3 of the
algorithm. Note that |C

1

| = �(n5/6

), |C| = �(n2/3

), |C
0

| = n5/6, |Ti| = |Ci,j| = �(

Ô
n).

6.5.2 An O(n1/3

)-query algorithm for our distributions

The idea sketched above can be applied to our far from monotone distribution Dno from

Section 6.1. It is slightly more complicated, since now the algorithm must attack two levels

of Talagrand, which will incur the query cost of ˜O(n1/3

) rather than O(n1/4

). Similarly to

Subsection 6.5.1 above, we will give a high level description, and not a formal analysis. The

goal is to show the main obstacle one faces in improving the lower bound.

Assume g is in the support of Dno. The algorithm works in stages and follows a similar

pattern to the one described in Subsection 6.5.1 above. We may assume the algorithm has a

string x œ {0, 1}n where x satisfies a unique term Ti, and falsifies no clauses, so g(x) = 1

(this happens with �(1) probability for a random x).

Stage 1. Repeat the following for n1/3 times: Pick a random subset R µ A
1

of size
Ô

n

6Informally speaking, this is because the values of g(x) and g(y) essentially become independent when x
and y are far from each other.

238

and query g(x(R)

). Let AÕ
1

denote A
1

after removing those indices of R with

g(x(R)

)) = 1 encountered. Then we have Ti µ AÕ
1

and most likely, C
1

= A
1

\ AÕ
1

has

size �(n5/6

).

The following stages will occur n1/6 many times, and each makes n1/6 many queries.

Stage 2. Pick a random subset C
0

µ A
0

of size n5/6. Let y = x(C
1

fiC
0

) and query

g(y). With probability �(1), g(y) satisfies the unique term Ti (as did x), falsifies a

unique clause Ci,j , and hi,j(y) = 0. Additionally, with probability �(n≠1/6

),

hi,j(y) = y¸, where ¸ œ C
0

.

Assume that ¸ œ C
0

, which happens with �(n≠1/6

) probability. In the event this happens,

we will likely find a violation.

Stage 3. Repeat the following for n1/6 times: Pick a random subset R µ A
0

\ C
0

of

size
Ô

n and query g(y(R)

). Let AÕ
0

denote A
0

\ C
0

after removing those indices of R

with g(y(R)

) = 0. Let C = (A
0

\ C
0

) \ AÕ
0

, where very likely |C| = �(n2/3

). Our

sets satisfy the following three conditions: 1) Ti µ AÕ
1

, 2) Ci,j µ AÕ
0

fi C
1

\ C
0

, and

3) ¸ œ C
0

. See Figure 6.5 for a visual representation of these sets.

Stage 4. Partition C
0

into O(n1/6

) many disjoint parts C
0,1, C

0,2, . . . , each of size

�(n2/3

) and query g(y(C
0,jfiC)

). For each C
0,j with ¸ /œ C

0,j and no new terms are

satisfied, g must return 0. If for some sets C
0,j , g returns 1, then either ¸ œ C

0,j and

no new terms are satisfied, or new terms are satisfied; however, we can easily

distinguish these cases with a statistical test.

The final stage is very similar to the final stage of Subsection 6.5.1. After Stage 4, we assume

we have found a set C
0,j containing ¸. We further partition C

0,j (when g(y(C
0,jfiC)

) = 1) into

O(n1/6

) parts of size
Ô

n to find a violation. One can easily generalize the above algorithm

sketch to O(1)-many levels of Talagrand. This suggests that the simple extension of our

construction to O(1) many levels (which still gives a far-from-monotone function) cannot

achieve lower bounds better than n1/3.

239

Chapter 7

An Algorithm for Testing Unateness

Our main contribution is an ˜O(n2/3/Á2

)-query, adaptive algorithm for testing unateness.

This essentially settles the problem since it matches the ˜

�(n2/3

) adaptive lower bound of

[51] up to a poly-logarithmic factor (when Á is a constant).

Theorem 65 (Main). There is an ˜O(n2/3/Á2

)-query, adaptive algorithm with the following

property: Given Á > 0 and query access to an unknown Boolean function f : {0, 1}n æ
{0, 1}, it always accepts when f is unate and rejects with probability at least 2/3 when f is

Á-far from unate.

Progress made on the upper bound side is due, in part, to new directed isoperimetric

inequalities on the hypercube. In particular, [43] and [87] showed that various isoperimetric

inequalities on the hypercube have directed analogues, where the edge boundary is now

measured by considering anti-monotone bichromatic edges1. In addition to the bipartite

graph structure implied by the isoperimetric inequality of [87], the algorithm relies on novel

applications of the standard binary search procedure on long random paths.

Given a path between two points x and y in the hypercube with f(x) ”= f(y), the binary

search (see Figure 7.1) returns a bichromatic edge along the path with log ¸ queries where ¸

is the length of the path. The idea of using binary search in Boolean function property testing

is not new. In every application we are aware of in this area (e.g., in testing conjunctions [62,

53], testing juntas [33, 99], unateness [89] and monotonicity [45]), one runs binary search

to find bichromatic edges (or pairs, as in testing juntas) that can be directly used to form

a violation (or at least part of it) to the property being tested. This is indeed how we use

1An edge (x, x(i)
) (where x(i) denotes the point obtained from x by flipping the ith bit) in {0, 1}n is

bichromatic if f(x) ”= f(x(i)
), is monotone (bichromatic) if xi = f(x), and is anti-monotone (bichromatic) if

xi ”= f(x).

241

binary search in one of the cases of the algorithm (Case 2) to search for an edge violation

(i.e., a pair of bichromatic edges along the same variable, one is monotone and the other is

anti-monotone). However, in the most challenging case (Case 1) of the algorithm, binary

search plays a completely different role. Instead of searching for an edge violation, binary

search is used to preprocess a large set S
0

™ [n] of variables to obtain a subset S ™ S
0

.

This set S is used to search for bichromatic edges more efficiently using a procedure called

AE-SEARCH from [52]. Analyzing the performance of S for AE-SEARCH is technically

the most demanding part of the proof, where new ideas are needed for understanding the

behavior of binary search running along long random paths in the hypercube.

7.0.1 Technical overview

In this section we present a high-level overview of the algorithm, focusing on why and how

we use binary search in Case 1 of the algorithm. For simplicity we assume Á is a constant.

First our algorithm rejects a function only when an edge violation to unateness is found.

Since an edge violation is a certificate of non-unateness, the algorithm always accepts a

function when it is unate and thus, it makes one-sided error. As a result, it suffices to show

that the algorithm finds an edge violation with high probability when the unknown function

f is far from unate.

For simplicity, we explain Case 1 of the algorithm using the following setting:2

All edge violations of f are along a hidden set I µ [n] of �(n) variables. For each

variable i œ I, there are �(2

n/n) monotone edges and �(2

n/n) anti-monotone

edges. Let P +

i denote the set of points incident on monotone edges along i and P ≠
i

denote the set of points incident on anti-monotone edges along i. The sets P +

i ’s for

i œ I are disjoint, so monotone edges along variables in I form a matching of size

�(2

n
); similarly, the sets P ≠

i ’s are disjoint and anti-monotone edges along I also

form a matching of size �(2

n
). Along each i /œ I, there are �(2

n/
Ô

n) bichromatic

edges along i which are all either monotone or anti-monotone, but not both.

2The following conditions on the function f are satisfied by the hard functions in [51] used for proving
the ˜

�(n2/3

) lower bound.

242

This particular case will highlight some of the novel ideas in the algorithm and the

analysis, so we focus on this case for the technical overview.

An appealing approach for finding an edge violation is to keep running binary search on

points x, y that are drawn independently and unifomly at random. Since a function that is

far from unate must be Á-far from constant as well, f(x) ”= f(y) with a constant probability

and when this happens, binary search returns a bichromatic edge. Now in order to analyze

the chance of observing an edge violation by repeating this process, two challenges arise.

First, the output distribution given by the variable of the bichromatic edge found by binary

search can depend on f in subtle ways, and becomes difficult to analyze formally (partly

because of its adaptivity). Second, since the influence of variables outside I is �(1/
Ô

n), a

random path between x and y of �(n) edges may often cross �(

Ô
n) bichromatic edges

along variables outside of I and O(1) bichromatic edges along variables in I. In this case,

binary search will likely return a bichromatic edge along a variable outside I, which is

useless for finding an edge violation.

A less adaptive (and thus much simpler to analyze) variant of binary search called

AE-SEARCH was introduced [52] to overcome these two difficulties. The subroutine

AE-SEARCH (f, x, S)

3 queries f and takes two additional inputs: x œ {0, 1}n and a set

S ™ [n] of variables, uses O(log n) queries and satisfies the following property:

Property of AE-SEARCH: If (x, x(i)
) is a bichromatic edge with i œ S and

both x

and x(i) are (S \ {i})-persistent (which for x informally means that f(x) =

f(x(T)

)

with high probability when T is a uniformly random subset of S \ {i} of half of

its

size), then AE-SEARCH (f, x, S) finds the edge (x, x(i)
) with probability at

least 2/3.

(1)

3See Figure 7.14 in Appendix 7.9 for a formal description of the AE-SEARCH subroutine.

243

In some sense, AE-SEARCH (f, x, S) efficiently checks whether there exists an i œ S such

that (x, x(i)
) is bichromatic, whereas the trivial algorithm for this task takes O(|S|) queries.4

In this simplified setting, the algorithm of [52] starts by drawing a size-
Ô

n set S ™ [n]

uniformly at random and runs AE-SEARCH(f, x, S) on independent samples x for n3/4

times, hoping to find an edge violation. To see why this works we first note that |S fl I| =

�(

Ô
n) with high probability. Moreover, the following property holds for S:

Property of the Random Set S: With �(1) probability over the randomness

of S, most i œ S fl I satisfy that most points in P +

i and P ≠
i are (S \ {i})-

persistent.

(2)

We sketch its proof since it highlights the technical challenge we will face later.

First we view the sampling of S as SÕ fi {i}, where SÕ is a random set of size
Ô

n ≠ 1

and i is a random variable in [n]. Since the influence of each variable in SÕ is at most

O(1/
Ô

n), for many points x œ {0, 1}n most random paths of length O(

Ô
n) along variables

in SÕ starting at x will not cross any bichromatic edges. In other words, most random

sets SÕ of size
Ô

n ≠ 1 satisfy that most of points in {0, 1}n are SÕ-persistent with high

constant probability. Given that fiiP
+

i and fiiP
≠
i are both �(1)-fraction of {0, 1}n, most

points in fiiP
+

i and fiiP
≠
i must be SÕ-persistent as well. On the other hand, given that i is

independent from SÕ and that I is �(n), with probability �(1) many points in P +

i and P ≠
i

are SÕ-persistent. The property of S follows by an argument of expectation.

With properties of both S and AE-SEARCH in hand in (1) and (2), as well as the fact

that |S fl I| = �(

Ô
n) with high probability, we expect to find a bichromatic edge along a

variable in S fl I after
Ô

n executions of AE-SEARCH (since the union of P +

i and P ≠
i for

i œ S fl I consists of �(1/
Ô

n)-fraction of {0, 1}n). Moreover, the variable is (roughly)

uniformly over S fl I and (roughly) equally likely to be monotone or anti-monotone. It

follows from the birthday paradox that repeating AE-SEARCH for O(n1/4

) · Ô
n rounds is

enough to find an edge violation.

4See Definition 57 and its relation to the performance of AE-SEARCH in Lemma 7.1.2 for a formal
description

244

The natural question is whether we can make S larger (e.g., of size n2/3) without

breaking property (2). This would lead to an ˜O(n2/3

)-query algorithm (for the simplified

setting). However, it is no longer true that many random paths of length �(n2/3

) do not cross

bichromatic edges because the influence of variables along variables in S \ I is �(1/
Ô

n).

Therefore, large S may not satisfy property (2) and as a result, AE-SEARCH may never

output bichromatic edges along variables in S fl I. This limit to sets of size at most O(

Ô
n)

was a similar bottleneck in [87], and the connection between |S| and the total influence of f

was later explored in [45]. Indeed, if (2) held for S of size larger than
Ô

n, then one could

improve on the O(

Ô
n)-query algorithm of [87] for testing monotonicity. Consequently,

if one believes that monotonicity testing requires �(

Ô
n) adaptive queries, it is natural to

conjecture that the algorithm in [52] is optimal for testing unateness.

The key insight in this work is to preprocess the set S before using AE-SEARCH. For

our simplified setting, we first sample S
0

µ [n] of size n2/3 (much larger than what the

analysis in [87, 52, 45] would allow) uniformly at random. Then, we set S = S
0

, and repeat

the following steps for n2/3 · polylog(n) many iterations:

Preprocess: Sample x œ {0, 1}n uniformly at random. Check if x is

S-persistent by drawing polylog(n) many subsets T ™ S of half of its size

uniformly at random. If a T with f(x) ”= f(x(T)

) is found, run binary search

on a random path from f(x) to f(x(T)

) to find a bichromatic edge along

variable i and remove i from S.

At a high level, the analysis of the algorithm would proceed as follows. At the end of

Preprocess, for every i œ S, most points in {0, 1}n are (S \ {i})-persistent. Otherwise,

Preprocess would remove more variables from S since points which are not (S \ {i})-

persistent cannot be very S-persistent. At the same time, most variables in S
0

fl I at the

beginning survive in S at the end (given that variables in I have very low influence). It may

seem that we can now conclude property (2) holds for S, and that a violation is found after

O(n2/3

) rounds of AE-SEARCH(f, x, S) when x is uniform.

However, the tricky (and somewhat subtle) problem is that, even though most points

in {0, 1}n are (S fl {i})-persistent for every i œ S fl I, it is not necessarily the case that

245

points inside P +

i and P ≠
i are (S fl {i})-persistent, since P +

i fi P ≠
i is only a O(1/n)-fraction

of the hypercube. Compared with the argument from [52] above for
Ô

n-sized uniformly

random sets, after preprocessing S
0

(which was a uniform random set) with multiple rounds

of binary search, the set S left can be very far from random. More specifically, the set S

obtained from S
0

will heavily depend on the function f and, in principle, a clever adversary

could design a function so that Preprocess running on S
0

deliberately outputs a set S that

where points in P +

i and P ≠
i are not (S \ {i})-persistent.

The main technical challenge is to show that this is not possible when variables in

I have low influence,5 and the desired property for S remains valid. To this end, we

show that for any variable i with low influence, the following two distributions supported

on preprocessed sets S have small total variation distance. The first distribution samples

SÕ
0

µ [n] of size (n2/3 ≠ 1) and outputs the set SÕ fi {i} obtained from preprocessing SÕ
0

.

The second distribution SÕ
0

µ [n] of size (n2/3 ≠ 1) and outputs the set S obtained from

preprocessing SÕ
0

fi {i}. Intuitively this means that a low-influence variable i has little

impact on the result S of Preprocess and thus, Preprocess is oblivious to i and cannot

deliberately exclude P +

i and P ≠
i from the set of S-persistent points.

To analyze the total variation distance between the results of running Preprocess on

SÕ
0

and SÕ
0

fi{i}, we need to understand how a low-influence variable i can affect the result of

a binary search on a long random path (given that Preprocess is just a sequence of calls to

binary search). The random paths have length |S
0

| = n2/3 at the beginning of Preprocess,

and are repeated for ˜O(n2/3

) rounds. Giving more details, we show that a variable i with

influence Inf f [i] can affect the result of a binary search on a random path of length ¸ with

probability at most log ¸ · Inf f [i], instead of the trivial upper bound of ¸ · Inf f [i], which is

the probability that a variable i affects the evaluation of f on vertices of a random path of

length ¸. This is proved in Claim 7.2.3 (although the formal statement is slightly different

since we need to introduce a placeholder when running binary search on the set without i so

that the two paths have the same length; see Section 7.1.1).

In order to go beyond the assumptions on the function given in this overview, the

5In the simplified setting, each variable i œ I has influence only O(1/n); In the real situation, we need to
handle the case even when each variable has influence as high as 1/n2/3.

246

algorithm needs to deal with more general cases: (1) Monotone (or anti-monotone) edges of

I may not form a matching, but rather, a large and almost-regular bipartite graph whose

existence follows from the directed isoperimetric inequality of [87]. (2) Although [87]

implies the existence of such graphs with bichromatic edges from I, there may be more

bichromatic edges along I outside of these two graphs, which would raise the influence

of these variables to the point where Preprocess is no longer oblivious of these variables.

Intuitively, this implies that bichromatic edges which give rise to edge violations are

abundant, so finding them becomes easier. This is handled in Case 2, where we give an

algorithm (also based on binary search) which finds many bichromatic edges along these

high influence variables, and combine it with the techniques from [52] to find an edge

violation. (3) The set I can be much smaller than n, in which case, the techniques from [52]

actually achieves better query complexity. We formalize this in Case 3 of the algorithm.

Organization We review preliminaries, recall the binary search procedure and review

the definition of persistency and the AE-SEARCH procedure in Section 7.1. We present

the preprocessing procedure in Section 7.2 and prove that a low-influence variable has

small impact on its output. We use the directed isoperimetric lemma of [87] to establish a

so-called Scores Lemma in Section 7.3, which roughly speaking helps us understand how

good the set S is after preprocessing (in terms of using it to run AE-SEARCH to find a

bichromatic edge along a certain variable). We separate our main algorithm into three cases

in Section 7.4, depending on different combinations of parameters. Case 1, 2 and 3 of the

algorithm are presented and analyzed in Sections 7.5, 7.7 and 7.8, respectively. Section 7.6

presents a procedure used in Case 2 to find bichromatic edges of variables with relatively

high influence.

7.1 Preliminaries

We will use bold-faced letters such as T and x to denote random variables. For n Ø 1, we

write [n] = {1, . . . , n}. In addition, we write g =

˜O(f) to mean g = O(f · polylog(f)) and

g =

˜

�(f) to mean g = �(f/polylog(f)).

247

For x œ {0, 1}n, and a set S µ [n], we write x(S) œ {0, 1}n as the point given by letting

x(S)

k = xk for all k /œ S, and x(S)

k = 1 ≠ xk for all k œ S (i.e., x(S) is obtained from x by

flipping variables in S). When S = {i} is a singleton set, we abbreviate x(i)
= x({i}) and

say that x(i) is obtained from x by flipping the ith variable. Throughout the chapter, we use

n + 1 as the name of a placeholder variable (i.e., a dummy variable). If x œ {0, 1}n and

S ™ [n + 1], then x(S)

:= x(S\{n+1}), and in particular, x(n+1)

= x. We will refer to this as

flipping variable n + 1 (see Section 7.1.1) although no change is made on x. For a subset

S ™ [n + 1] and a variable i œ [n], we let Sub(S, i) ™ [n + 1] be the subset obtained by

substituting n + 1 with i and i with n + 1. In other words,

Sub(S, i) =

Y_______]_______[

S if i, n + 1 œ S or i, n + 1 /œ S

(S fi {n + 1}) \ {i} if i œ S and n + 1 /œ S

(S fi {i}) \ {n + 1} if n + 1 œ S and i /œ S.

We will at times endow S ™ [n + 1] with an ordering fi : [|S|] æ S which is a bijection

indicating that fi(i) is the ith element of S under fi. When T µ S, the ordering · : [|T |] æ T

obtained from fi is the unique bijection such that for all i, j œ T , ·≠1

(i) < ·≠1

(j) if and

only if fi≠1

(i) < fi≠1

(j). Moreover, when S ™ [n + 1] and fi is an ordering of S, the

ordering fiÕ of Sub(S, i) obtained from fi is obtained by substituting n + 1 with i and i with

n + 1 in the ordering, i.e., fiÕ
(k) = fi(k) when fi(k) /œ {i, n + 1}, fiÕ

(k) = n + 1 if fi(k) = i

and fiÕ
(k) = i if fi(k) = n + 1.

Given a Boolean function f : {0, 1}n æ {0, 1}, and a variable i œ [n], we say that

(x, x(i)
) is a bichromatic edge of f along variable i if f(x) ”= f(x(i)

); it is monotone

(bichromatic) if xi = f(x) and anti-monotone (bichromatic) if xi ”= f(x). The influence of

variable i in f is defined as

Inf f [i] = Pr
x≥{0,1}n

Ë
f(x) ”= f(x(i)

)

È
,

which is twice the number of bichromatic edges of f along i divided by 2

n. The total

influence of f , If =

q
iœ[n]

Inf f [i], is twice the number of bichromatic edges of f divided

248

by 2

n. Given distributions µ
1

and µ
2

on some sample space �, the total variation distance

between µ
1

and µ
2

is given by

d
TV

(µ
1

, µ
2

) = max

S™�

---µ
1

(S) ≠ µ
2

(S)

---.

7.1.1 Binary search with a placeholder

We use the subroutine BinarySearch (f, x, S, fi) described in Figure 7.1, where f : {0, 1}n æ
{0, 1} is a Boolean function, x œ {0, 1}n, S is a nonempty subset of [n + 1], and fi is an

ordering of S.

When S ™ [n], BinarySearch (f, x, S, fi) performs as the standard binary search

algorithm: x = x
0

, x
1

, . . . , x|S| = x(S) is a path from x to x(S) in which xt is obtained from

xt≠1

by flipping variable fi(t) œ S ™ [n], and when f(x) ”= f(x(S)

), the binary search is

done along this path to find an edge that is bichromatic. Now in general S may also contain

n + 1, which we use as the name of a placeholder variable. Similarly, when f(x) ”= f(x(S)

),

the binary search is done along the path x = x
0

, x
1

, . . . , x|S| = x(S) (recall that x(S) is

defined as x(S\{n+1}) when S contains n + 1) where xt is obtained from xt≠1

by flipping

variable fi(t) (in particular, when fi(t) = n + 1, xt = xt≠1

).

Note that even though n + 1 is a placeholder variable, given S ™ [n + 1] with

n + 1 œ S and an ordering fi of S, queries made by BinarySearch (f, x, S, fi) and

BinarySearch (f, x, S \ {n + 1}, fiÕ
) (where fiÕ is the ordering of S \ {n + 1} obtained

from fi) are different, so their results may also be different. We summarize properties of

BinarySearch in the following lemma.

Lemma 7.1.1. BinarySearch(f, x, S, fi) uses O(log n) queries and satisfies the following

property. If f(x) = f(x(S)

), it returns nil; if f(x) ”= f(x(S)

), it returns a variable

i œ S \ {n + 1} and a point y œ {0, 1}n along the path from x to x(S) with ordering fi such

that (y, y(i)
) is bichromatic.

249

Subroutine BinarySearch (f, x, S, fi)

Input: Query access to f : {0, 1}n æ {0, 1}, a point x œ {0, 1}n, a nonempty set
S ™ [n + 1] and an ordering fi of S.
Output: Either i œ S and a point y œ {0, 1}n where (y, y(i)

) is a bichromatic edge, or
nil.

1. Query f(x) and f(x(S)

) and return nil if f(x) = f(x(S)

).
2. Let m = |S| and x = x

0

, x
1

, . . . , xm = x(S) be the sequence of points obtained
from x by flipping variables in the order of fi(1), . . . , fi(m): xi = x(fi(i))

i≠1

. Let
¸ = 0 and r = m.

3. While r ≠ ¸ > 1 do
4. Let t = Á(¸ + r)/2Ë and query f(xt). If f(x¸) ”= f(xt) set r = t; otherwise

set ¸ = t.
5. Return fi(r) and y = x¸.

Figure 7.1: Description of the binary search subroutine for finding a bichromatic edge.

7.1.2 Persistency with respect to a set of variables

We need the following notion of persistency for points and edges with respect to a set of

variables.

Definition 57. Given a Boolean function f : {0, 1}n æ {0, 1}, a set S ™ [n+1] of variables

and a point x œ {0, 1}n, we say that x is S-persistent if the following two conditions hold:

Pr
T™S

|T|=Â|S|/2Ê

Ë
f(x) = f(x(T)

)

È
Ø 1≠ 1

log

2 n
and Pr

T™S
|T|=Â|S|/2Ê+1

Ë
f(x) = f(x(T)

)

È
Ø 1≠ 1

log

2 n
.

where T is a subset of S of certain size drawn uniformly at random. Note that when S = ÿ,

every point in {0, 1}n is trivially S-persistent.

Let e be an edge in {0, 1}n. We say that e is S-persistent if both points of e are S-

persistent.

The notion of persistency above is useful because it can be used to formulate a clean

sufficient condition for AE-SEARCH (f, x, S) to find a bichromatic edge (x, x(i)
) for some

i œ S with high probability. This is captured in Lemma 7.1.2 (see Lemma 6.5 in [52]) below.

250

For completeness we include the description of AE-SEARCH [52] and the proof of Lemma

7.1.2 in Appendix 7.9.

Lemma 7.1.2. Given a point x œ {0, 1}n and a set S ™ [n + 1], AE-SEARCH (f, x, S)

makes O(log n) queries to f , and returns either an i œ S such that (x, x(i)
) is a bichromatic

edge, or “fail.”

Let (x, x(i)
) be a bichromatic edge of f along i œ [n]. If i œ S and (x, x(i)

) is

(S \ {i})-persistent, then both AE-SEARCH (f, x, S) and AE-SEARCH (f, x(i), S) output i

with probability at least 2/3.

Lemma 7.1.2 has the following immediate corollary.

Corollary 7.1.3. Given a set S ™ [n + 1] and a point x œ {0, 1}n, there exists at most one

variable i œ S such that (x, x(i)
) is both bichromatic and (S \ {i})-persistent.

Proof. If the condition holds for both i ”= j œ S, then from Lemma 7.1.2 AE-SEARCH (f, x, S)

would return both i and j with probability at least 2/3, a contradiction.

7.2 Preprocessing Variables

Our goal in this section is to present a preprocessing procedure called Preprocess. Given

query access to a Boolean function f : {0, 1}n æ {0, 1}, a nonempty set S
0

™ [n + 1]

(again, n + 1 serves here as a placeholder variable), an ordering fi of S
0

and a parameter

› œ (0, 1), Preprocess(f, S
0

, fi, ›) makes (|S
0

|/›)·polylog(n) queries and returns a subset

S of S
0

. At a high level, Preprocess keeps running BinarySearch to remove variables

from S
0

until the set S ™ S
0

left satisfies that at least (1 ≠ ›)-fraction of points in {0, 1}n

are S-persistent (recall Definition 57).

In addition to proving the above property for Preprocess in Lemma 7.2.1, we show

in Lemma 7.2.2 the following: When i œ S
0

™ [n] has low influence, then the result of

running Preprocess on S
0

is close (see Lemma 7.2.1 for the formal statement) to that of

running it on Sub(S
0

, i) (in which we substitute i with the placeholder variable n + 1).

251

Subroutine CheckPersistence (f, S, fi, ›)

Input: Query access to f : {0, 1}n æ {0, 1}, a nonempty set S ™ [n + 1], an ordering
fi of S and a parameter › œ (0, 1).
Output: Either nil or a variable i œ S.

1. Repeat the following steps log

4 n/› many times:
a) Sample a point x from {0, 1}n uniformly at random.

b) Flip a fair coin and perform one of the following tasks:

• Sample T ™ S with size Â|S|/2Ê uniformly. Run
BinarySearch(f, x, T, fiÕ

) where fiÕ is the ordering of T defined by
fi restricted on T. If BinarySearch(f, x, T, fiÕ

) returns a variable i
and a point y, output i.

• Sample T ™ S with size Â|S|/2Ê + 1 uniformly. Run
BinarySearch(f, x, T, fiÕ

) where fiÕ is the ordering of T defined by
fi restricted on T. If BinarySearch(f, x, T, fiÕ

) returns a variable i
and a point y, output i.

2. If BinarySearch always returned nil, output nil.

Figure 7.2: Description of the subroutine CheckPersistence.

7.2.1 The preprocessing procedure

The procedure Preprocess (f, S
0

, fi, ›) is described in Figure 7.3. It uses a subroutine

CheckPersistence (f, S, fi, ›) described in Figure 7.2. Roughly speaking, CheckPersistence

checks if at least (1 ≠ ›)-fraction of points in {0, 1}n are S-persistent for the current set S.

This is done by sampling points x and subsets T of S of the right sizes uniformly at random,

and checking if f(x) = f(x(T)

), for log

4 n/› many rounds. If CheckPersistence finds x

and T such that f(x) ”= f(x(T)

), it runs binary search on them to find a bichromatic edge

along some variable i œ S and outputs i; otherwise it returns nil.

The main property we prove for CheckPersistence (see Lemma 7.10.1 in Appendix

7.10) is that when the fraction of points that are not S-persistent is at least ›, it returns a

variable i œ S with high probability.

The procedure Preprocess (f, S
0

, fi, ›) sets S = S
0

and · = fi at the beginning and

keeps calling CheckPersistence (f, S, ·, ›) and removing the variable CheckPersistence(f, S, ·, ›)

252

Procedure Preprocess (f, S
0

, fi, ›)

Input: Query access to f : {0, 1}n æ {0, 1}, a nonempty set S
0

™ [n + 1], an ordering
fi of S

0

and a parameter › œ (0, 1).
Output: A subset S ™ S

0

.
1. Initially, let S = S

0

and · = fi.
2. While S is nonempty do
3. Run CheckPersistence (f, S, ·, ›).
4. If it returns nil, return S; otherwise (it returns an i œ S), remove i from S

and · .
5. Return S (which must be the empty set to reach this line).

Figure 7.3: Description of the procedure Preprocess for preprocessing a set of variables.

returns from both S and the ordering · , until CheckPersistence returns nil or S becomes

empty in which case Preprocess terminates and returns S. As a result, Preprocess makes

at most |S
0

| calls to CheckPersistence. Using the property of CheckPersistence from

Lemma 7.10.1, it is unlikely that ›-fraction of points are not S-persistent but somehow

CheckPersistence (f, S, ·, ›) returns nil. This implies that at least (1 ≠ ›)-fraction of

{0, 1}n are S-persistent for S = Preprocess (f, S
0

, fi, ›) at the end with high probability.

We summarize our discussion above in the following lemma but delay its proof to

Appendix 7.10 since it follows from standard applications of Chernoff bounds and union

bounds.

Lemma 7.2.1. Given a Boolean function f : {0, 1}n æ {0, 1}, a nonempty S
0

™ [n + 1],

an ordering fi of S
0

and a parameter › œ (0, 1), Preprocess (f, S
0

, fi, ›) makes at most

O(|S
0

| log

5 n/›) queries to f and with probability at least 1 ≠ exp

1
≠�(log

2 n)

2
, it outputs

a subset S ™ S
0

such that at least (1 ≠ ›)-fraction of points in {0, 1}n are S-persistent.

7.2.2 Low influence variables have low impact on Preprocess

In the rest of the section, we show that when S
0

™ [n], a variable i œ S
0

with low influence

Inf f [i] has low impact on the result of S = Preprocess(f, S
0

, fi, ›). More formally,

253

we show that one can substitute i by the placeholder n + 1 and the result of running

Preprocess on Sub(S
0

, i) is almost the same (after substituting n+1 back to i in the result

of Preprocess).

This is made more precise in the following lemma:

Lemma 7.2.2. Let f : {0, 1}n æ {0, 1} be a Boolean function. Let i œ S
0

™ [n], fi be an

ordering of S and › œ (0, 1). Let S Õ
0

= Sub(S
0

, i) be the subset of [n + 1] and let fiÕ be the

ordering of S Õ
0

obtained from fi by substituting i with n + 1. Then we have

d
TV

3
Preprocess (f, S

0

, fi, ›), Sub
1
Preprocess (f, S Õ

0

, fiÕ, ›), i
24

Æ O

A |S
0

| log

5 n

›

B
·Inf f [i].

Because Preprocess keeps calling CheckPersistence which keeps calling BinarySearch,

we start the proof of Lemma 7.2.2 with the following claim concerning the binary search

procedure.

Claim 7.2.3. Let i œ S ™ [n] and fi be an ordering of S. Let S Õ
= Sub(S, i), and fiÕ be the

ordering of S Õ obtained from fi by substituting i with n + 1. We let u and v be the random

variables where

• u is the output of BinarySearch (f, x, S, fi) when x is drawn from {0, 1}n

uniformly, and

• v is the output of BinarySearch (f, z, S Õ, fiÕ
) when z is drawn from {0, 1}n

uniformly.

Then, we have d
TV

(u, v) Æ O(log n) · Inf f [i].

Proof. Our plan is to show that for every point x œ {0, 1}n with a certain property, we have

Ó
BinarySearch (f, x, S, fi), BinarySearch (f, x(i), S, fi)

Ô
(7.1)

as a multiset is the same as

Ó
BinarySearch (f, x, S Õ, fiÕ

), BinarySearch (f, x(i), S Õ, fiÕ
)

Ô
. (7.2)

254

It turns out that the property holds for most points in {0, 1}n. The lemma then follows.

To describe the property we let m = |S| = |S Õ| and let k = fi≠1

(i) (with fiÕ
(k) = n + 1).

We let J ™ [0 : m] denote the set of indices taken by variables ¸ and r (see Figure 7.1 for

settings of ¸ and r) in an execution of BinarySearch along a path of length m that outputs

the kth edge at the end. For example, ignoring the rounding issue, J always contains 0, m

and m/2: these are indices of the first three points that binary search examines. It contains

3m/4 if k > m/2, or m/4 if k Æ m/2, so on and so forth. The set J also always contains

k ≠ 1 and k: these are indices of the last two points that binary search examines before

returning the kth edge.

Now we describe the property. Given x œ {0, 1}n we let x = x
0

, . . . , xm = x(S) with

xt = x(fi(t))
t≠1

for all t œ [m]. We let C(x) be the indicator of the condition that:

f(xj) = f(x(i)
j), for all j œ J. (7.3)

We show that x ≥ {0, 1}n satisfies C(x) with high probability. Because x is drawn

uniformly from {0, 1}n, xj defined above is also distributed uniformly for each j œ J and

thus, the probability that a specific j œ J violates the condition above is at most Inf f [i].

It then follows from a union bound over j œ J that the fraction of points that violate the

condition C(x) is at most Inf f [i] · O(log n).

It suffices to prove that when x œ {0, 1}n satisfies C(x), the two multisets in (7.1) and

(7.2) are the same. To this end we write down the two paths in the multiset (7.1) that start

with x and x(i) as

x
0

, x
1

, . . . , xm and y
0

, y
1

, . . . , ym

in which xt = x(fi(t)
t≠1

and yt = x(i)
t . Similarly we write down the two paths for (7.2) as

z
0

, z
1

, . . . , zm and w
0

, w
1

, . . . , wm,

in which we have zt = xt for all t < k and zt = yt for all t Ø k; wt = yt for all t < k and

255

wt = xt for all t Ø k. It follows from the property (7.3) of x that

f(xj) = f(yj) = f(zj) = f(wj), for all j œ J . (7.4)

Since 0, m œ J we have that f(x
0

) = f(xm) implies the same holds for y, z and w in which

case (7.1) and (7.2) are trivially the same since they all return nil. So we assume below that

f(x
0

) ”= f(xm) and thus, all four binary searches return a variable and a bichromatic edge.

Next, since k ≠ 1, k œ J we have

f(xk≠1

) = f(xk) = f(yk≠1

) = f(yk) = f(zk≠1

) = f(zk) = f(wk≠1

) = f(wk).

As a result, the kth edge is not bichromatic in all four paths and thus, during each run of

binary search, k is removed from the interval [¸ : r] (see Figure 7.1) after a certain number

of rounds. Moreover, it follows from the definition of J and (7.4) that in all four runs of

binary search, the values of ¸ and r are the same at the moment when k is removed from

consideration (i.e., at the first time when either ¸ or r is updated so that k /œ [¸ : r]. We

consider two cases for the values of ¸ and r.

1. ¸ > k: In this case, BinarySearch (f, x, S, fi) continues to search on the path

x¸, . . . , xr and BinarySearch (f, x(i), S Õ, fiÕ
) continues to search on the path

w¸, . . . , wr which is the same as x¸, . . . , xr given that ¸ > k. As a result, their outputs

are the same. Similarly we have that BinarySearch (f, x(i), S, fi) is the same as

BinarySearch (f, x, S Õ, fiÕ
) in this case. See Figure 7.4 for example executions.

2. r < k: In this case, BinarySearch (f, x, S, fi) continues to search on the path

x¸, . . . , xr and BinarySearch (f, x, S Õ, fiÕ
) continues to search on the path z¸, . . . , zr

which is the same as x¸, . . . , xr given that r < k. As a result, their outputs are the

same. Similarly we have that BinarySearch (f, x(i), S, fi) is the same as

BinarySearch (f, x(i), S Õ, fiÕ
) in this case. See Figure 7.5 for example executions.

As a result, the two multisets are the same when x satisfies the condition C(x).

Claim 7.2.3 gives the following corollary using a union bound:

256

x = x
0

w
0

= x(i)

xm = x(S)

wm

xj
1

wj
1

xj
2

wj
2

wj
3

xj
3

i n + 1

x = z
0

x(i)
= y

0

ym = x(S\{i})

yj
2

yj
3

yj
1

zj
2

zj
1

zj
3

zm

in + 1

Figure 7.4: Example executions of BinarySearch(f, x, S, fi) and
BinarySearch(f, x(i), S Õ, fiÕ

) on the left-hand side, and executions of
BinarySearch(f, x, S Õ, fiÕ

) and BinarySearch(f, x(i), S, fi) on the right-hand side, as-
suming that C(x) is satisfied, and corresponding to the case when k Æ ¸. Queries made only
during executions of BinarySearch(f, x, S, fi) and BinarySearch(f, x(i), S, fi) are dis-
played by red dots, and the corresponding paths considered are outlined in red; queries made
only during executions of BinarySearch(f, x, S Õ, fiÕ

) and BinarySearch(f, x(i), S Õ, fiÕ
)

are displayed by blue dots, and the corresponding paths considered are outlined in blue.
Points are filled in with black if f evaluates to 1, and points which are not filled in if f
evaluates to 0. Dotted lines indicates that condition C(x) or the fact that n + 1 is a dummy
variable implies points evaluate to the same value under f . From the above executions,
it is clear to see that BinarySearch(f, x, S, fi) on the left-hand side considers the path
(drawn in red) between xj

3

and xj
1

, and BinarySearch(f, x(i), S Õ, fiÕ
) considers the path

between wj
3

and wj
1

(drawn in blue); since variable n + 1 represents a dummy variable, f
has the same evaluation on both of these paths, so both output the same variable. Similarly,
BinarySearch(f, x(i), S, fi) on the right-hand side considers the path (drawn in red)
between yj

3

and yj
1

, and BinarySearch(f, x(i), S Õ, fiÕ
) considers the same path between

zj
3

and zj
1

(drawn in blue); as a result of n + 1 being a dummy variable, both output the
same variable.

257

x = x
0

= z
0

x(i)

xm = x(S)

zm

xj
1

zj
1

xj
2

= zj
2

xj
3

= zj
3

i
n + 1

x x(i)
= y

0

= w
0

ym = x(S\{i})

wm

yj
2

= wj
2

yj
3

= wj
3

wj
1

yj
1

i n + 1

Figure 7.5: Example executions of BinarySearch(f, x, S, fi) and
BinarySearch(f, x, S Õ, fiÕ

) on the left-hand side, and executions of
BinarySearch(f, x(i), S, fi) and BinarySearch(f, x(i), S Õ, fiÕ

) on the right-hand side, as-
suming that C(x) is satisfied, and corresponding to the case when k > r. Queries made only
during executions of BinarySearch(f, x, S, fi) and BinarySearch(f, x(i), S, fi) are dis-
played by red dots, and the corresponding paths considered are outlined in red; queries made
only during executions of BinarySearch(f, x, S Õ, fiÕ

) and BinarySearch(f, x(i), S Õ, fiÕ
)

are displayed by blue dots, and the corresponding paths considered are outlined in blue;
queries which are made during both are displayed with purple dots, and the intersection of
the paths considered in both are purple. Similarly to Figure 7.4, points filled in evaluate
to 1 under f , and points which are not filled in evaluates to 0 under f . Dotted lines
implies points evaluate to the same value under f . Note that BinarySearch(f, x, S, fi)

considers the path (drawn in purple) between xj
2

and xj
3

, and BinarySearch(f, x, S Õ, fiÕ
)

considers the same path between zj
2

and zj
3

; thus, both output the same variable. Similarly,
BinarySearch(f, x(i), S, fi) considers the path (drawn in purple) between yj

2

and yj
3

, and
BinarySearch(f, x(i), S Õ, fiÕ

) considers the same path between wj
2

and wj
3

; as a result,
both output the same variable.

258

Corollary 7.2.4. Let i œ S ™ [n] and fi be an ordering of S. Let S Õ
= Sub(S, i) and fiÕ be

the ordering of S Õ obtained from fi by substituting i with n + 1. Then we have

d
TV

3
CheckPersistence (f, S, fi, ›), CheckPersistence (f, S Õ, fiÕ, ›)

4
Æ O

A
log

5 n

›

B
·Inf f [i].

Proof. We use the following coupling to run CheckPersistence (f, S, fi, ›) and CheckPersistence (f, S Õ, fiÕ, ›)

in parallel.

For each round of CheckPersistence we first flip a fair coin and draw a subset T

of S of the size indicated by the coin uniformly. Then we couple the binary search on

x ≥ {0, 1}n and T and the binary search on z ≥ {0, 1}n and Sub(T, i) using the best

coupling between them.

It then follows from Claim 7.2.3 and a union bound over the log

4 n/› rounds that the prob-

ability of this coupling of CheckPersistence (f, S, fi, ›) and CheckPersistence (f, S Õ, fiÕ, ›)

returning different results is at most

(log

4 n/›) · Inf f [i] · O(log n).

This finishes the proof of the corollary.

Now we prove Lemma 7.2.2.

Proof of Lemma 7.2.2. Let m = |S| = |S Õ|. For each j œ [m], let Xj denote the output

of the jth call to CheckPersistence in Preprocess (f, S
0

, fi, ›) with Xj set to nil by

default if the procedure terminates before the jth call. Similarly we use Yj to denote

the output of the jth call in Preprocess (f, S Õ
0

, fiÕ, ›). Let X = (X
1

, . . . , Xm) and Y =

(Y
1

, . . . , Ym). Then X = Y implies that S = Preprocess (f, S
0

, fi, ›) is the same as

SÕ
= Preprocess (f, S Õ

0

, fiÕ, ›). As a result, it suffices to show that

d
TV

(X, Y) Æ m log

5 n

›
· Inf f [i].

To this end, we first note that by Corollary 7.2.4 the total variation distance between X
1

and Y
1

is at most — := O(log

5 n/›) · Inf f [i]. On the other hand, note that if the outputs

259

from the first ¸ ≠ 1 calls in Preprocess (f, S
0

, fi, ›) and Preprocess (f, S Õ
0

, fiÕ, ›) are the

same, say a
1

, . . . , a¸≠1

, then before the ¸th call, the set S in the former still contains i and

the SÕ in the latter can be obtained by substituting its i with n + 1. It follows from Corollary

7.2.4 that, for any ¸ > 1 and any a
1

, . . . , a¸≠1

, the total variation distance between the

distribution of X¸ conditioning on X
1

= a
1

, . . . , X¸≠1

= a¸≠1

and the distribution of Y¸

conditioning on Y
1

= a
1

, . . . , Y¸≠1

= a¸≠1

is also at most —. We prove that these properties

together imply that d
TV

(X, Y) Æ m—, from which the lemma follows.6

For this purpose we use the following coupling of X and Y. First we use the best

coupling for the distribution of X
1

and the distribution of Y
1

to draw (a
1

, b
1

). Then we

draw (a
2

, b
2

) from the the best coupling for the distribution of X
2

conditioning on X
1

= a
1

and the distribution of Y
2

conditioning on Y
1

= b
1

. We then repeat until (am, bm) is drawn.

It follows from the description that the marginal distribution of a = (a
1

, . . . , am) is the

same as X and the marginal distribution of b = (b
1

, . . . , bm) is the same as Y. Moreover,

we have

d
TV

(X, Y) Æ Pr
Ë
a ”= b

È
= Pr

Ë
a

1

”= b
1

È
+ Pr

Ë
a

1

= b
1

· a
2

”= b
2

È
+ · · · + Pr

Ë
aj = bj for j < m · am ”= bm

È
,

which is at most m— by the description of the coupling and properties of X and Y.

7.3 The Scores Lemma

By definition when f is Á-far from unate, f(x ü a) is Á-far from monotone for every

a œ {0, 1}n. This means that we can utilize the directed isoperimetric inequality of [87]

to show the existence of relatively large and almost-regular bipartite graphs that consist of

bichromatic edges (see Definition 60 and Lemma 7.3.3). The goal of this section is to show

that, using these bipartite graphs, there exist certain probability distributions over subsets of

variables such that a set S drawn from any of these distributions can be used to search for

bichromatic edges via AE-SEARCH efficiently.

6We suspect that this is probably known in the literature but were not able to find a reference.

260

To this end, we start by introducing three distributions H›,m, D›,m and Pi,m in Section

7.3.1. We then use them to define a score for each variable i œ [n] which aims to quantify

the chance of finding a bichromatic edge along i using AE-SEARCH and a set S drawn from

some of those distributions. Finally we prove the Scores Lemma in Section 7.3.2, which

shows that the sum of scores over i œ [n] is large when f is Á-far from unate and has total

influence O(

Ô
n).

7.3.1 Distributions D›,m, H›,m and Pi,m and the definition of scores

We start by defining two distributions D›,m and H›,m.

Definition 58. Given › œ (0, 1) and m : 1 Æ m Æ n, we let D›,m denote the following distri-

bution supported on subsets of [n]: S ≥ D›,m is drawn by first sampling a subset S
0

of [n] of

size m and an ordering fi of S
0

uniformly at random. We then call Preprocess(f, S
0

, fi, ›)

to obtain S.

Similarly, let H›,m denote the following distribution supported on subsets of [n + 1]:

S ≥ H›,m is drawn by first sampling a subset S
0

of [n + 1] of size m with n + 1 œ S
0

and

an ordering fi of S
0

uniformly at random. We then call Preprocess(f, S
0

, fi, ›) to obtain

S. Notice that as n + 1 is just a placeholder, we always have n + 1 œ S ≥ H›,m.

As it will become clear later, our unateness tester will sample subsets according to the

distribution D›,m and use them to find an edge violation to unateness when f is far from

unate. While this section is mainly concerned about H›,m, it will only be used in the analysis

to help us understand how good those samples from D›,m are in terms of revealing an edge

violation to unateness.

Let � = Á2 log(n/Á)Ë in the rest of the chapter. Given i œ [n] and m : 1 Æ m Æ n ≠ 1

we use Pi,m to denote the uniform distribution over all size-m subsets of [n] \ {i}.

Next we use H›,m and Pi,m to define strong edges.

Definition 59 (Strong edges). Let e be a bichromatic edge of f along variable i œ [n]. We

say e is ¸-strong, for some integer ¸ œ [�], if the following two conditions hold:

261

1. For every m Æ n2/3 as a power of 2 and every › = 1/2

k with ¸ Æ k Æ �, the edge e

is S-persistent (recall Definition 57) with probability at least 1 ≠ (1/ log n) when

S ≥ H›,m.

2. The edge e is S-persistent with probability at least 1 ≠ (1/ log n) when

S ≥ Pi,ÁÔ
n/2

¸Ë.

For each i œ [n] and ¸ œ [�], we define

SCORE+

i,¸(f) =

1

2

n
· number of ¸-strong monotone edges along variable i.

We analogously define SCORE≠
i,¸(f) for anti-monotone edges along variable i. Finally we

define

SCORE+

i (f) = max

¸œ[�]

;
SCORE+

i,¸(f) · 1

2

¸

<
, (7.5)

and we analogously define SCORE≠
i (f).

7.3.2 The Scores Lemma

We state the Scores Lemma:

Lemma 7.3.1 (The Scores Lemma). Let f : {0, 1}n æ {0, 1} be a Boolean function that is

Á-far from unate with total influence If < 6

Ô
n. Then we have

ÿ
iœ[n]

min

;
SCORE+

i (f), SCORE≠
i (f)

<
Ø �

A
Á2

�

8

B
.

We note that our Scores Lemma above looks very similar to Lemma 4.3 from [52].

Thus the proof follows a similar trajectory. The main difference is that we are varying the

distributions from which the set S of variables is drawn. Compared to [52] we not only

consider the quality of S drawn from the P distribution in the definition of strong edges

but also those drawn from H›,m with a number of possible combinations of › and m in the

indicated range. This makes the proof of the lemma slightly more involved than that of

Lemma 4.3 in [52].

262

We prove Lemma 7.3.1 by proving the following simpler version, which avoids the

minimum.

Lemma 7.3.2. Assume that f is Á-far from monotone and satisfies If < 6

Ô
n. Then we have

ÿ
iœ[n]

SCORE≠
i (f) Ø �

A
Á2

�

8

B
.

Proof of Lemma 7.3.1 assuming Lemma 7.3.2. Let f : {0, 1}n æ {0, 1} be a Boolean func-

tion which is Á-far from unate. We let a œ {0, 1}n be defined by setting, for each i œ [n],

ai =

Y_]_[
0 if SCORE+

i (f) Ø SCORE≠
i (f)

1 otherwise
.

Consider the function g : {0, 1}n æ {0, 1} defined using f by g(x) = f(x ü a). We note

that If = Ig and g is Á-far from unate and thus, Á-far from monotone. So Lemma 7.3.2

implies that ÿ
iœ[n]

SCORE≠
i (g) Ø �

A
Á2

�

8

B
. (7.6)

Finally, we claim that out choice of s implies that

min

Ó
SCORE+

i (f), SCORE≠
i (f)

Ô
= SCORE≠

i (g). (7.7)

This can be observed by checking that (1) the distributions H›,m defined using f and g are

exactly the same; and (2) a point x œ {0, 1}n is S-persistent for some S ™ [n + 1] in f

if and only if x ü a is S-persistent in g. As a result, an edge (x, x(i)
) is ¸-strong in f if

and only if (x ü a, x(i) ü a) is ¸-strong in g but of course whether they are monotone or

anti-monotone may change depending on ai. (7.7) follows from these observations and

Lemma 7.3.1 follows from (7.6) and (7.7).

Before proving Lemma 7.3.2, we need a definition and a key technical lemma from [87].

Definition 60. Given a Boolean function f : {0, 1}n æ {0, 1}, we write G≠
f to denote its

bipartite graph of anti-monotone edges:

263

1. Vertices on the LHS of G≠
f correspond to points x œ {0, 1}n with f(x) = 1 and

vertices on the RHS correspond to points y œ {0, 1}n with f(y) = 0;

2. (x, y) is an edge in G≠
f if and only if (x, y) is an anti-monotone edge in f .

Let G = (U, V, E) be a subgraph of Gf , where U is a set of points x with f(x) = 1, V

is a set of points y with f(y) = 0, and E consists of all anti-monotone edges between U and

V (i.e., G is the induced subgraph of G≠
f on (U, V). We say that G is right-d-good for some

positive integer d if the degree of every y œ V lies in [d : 2d] and the degree of every x œ U

is at most 2d; We say that G is left-d-good if the degree of every x œ U lies in [d : 2d] and

the degree of every y œ V is at most 2d.

Lemma 7.3.3 (Lemma 7.1 in [87]). If f : {0, 1}n æ {0, 1} is Á-far from monotone, G≠
f

contains a bipartite subgraph G = (U, V, E) induced on (U, V) that satisfies one of the

following conditions:

1. G is left-d-good for some positive integer d and ‡ = |U |/2

n satisfies

‡2d = �

A
Á2

log

4 n

B
. (7.8)

2. G is right-d-good for some positive integer d and ‡ = |V |/2

n satisfies (7.8).

We note that each vertex in G≠
f has degree at most n. As a result, the two parameters d

and ‡ in Lemma 7.3.3 always satisfy that 1 Æ d Æ n and

1 Ø ‡ Ø �

A
ÁÔ

n log

2 n

B
. (7.9)

Proof of Lemma 7.3.2. Let f : {0, 1}n æ {0, 1} be a function that is Á-far from monotone

with total variance If Æ 6

Ô
n. It follows from Lemma 7.3.3 that there is a subgraph

G = (U, V, E) of G≠
f that satisfies one of the two conditions in Lemma 7.3.3. Below we

assume without loss of generality that G is left-d-good and ‡ = |U |/2

n satisfies (7.8); the

proof for G being right-d-good is symmetric.

264

In the rest of the proof we set ¸ to be the positive integer such that

1

2

¸
<

‡

�

4

Æ 1

2

¸≠1

.

So ¸ œ [�] using (7.9). Our goal is to show that at least half of edges in G are ¸-strong. As a

result,

ÿ
iœ[n]

SCORE≠
i (f) Ø ÿ

iœ[n]

SCORE≠
i,¸(f)· 1

2

¸
Ø �(|E|)

2

n
· 1

2

¸
= �(‡d)· 1

2

¸
= �

3
‡d · ‡

�

4

4
= �

A
Á2

�

8

B
.

The fact that at least half of edges in G are ¸-strong follows directly from the next two

claims:

Claim 7.3.4. At least (1 ≠ o(1))-fraction of edges in G satisfy the first condition of being

¸-strong.

Claim 7.3.5. At least (1 ≠ o(1))-fraction of edges in G satisfy the second condition of being

¸-strong.

The proof of Claim 7.3.5 follows from the arguments in Section 6.2 in [52]. Specifically,

given the definition of robust sets for a bichromatic edge e of a certain size in Definition 6.4

of [52], Claim 7.3.5 is equivalent to applying Lemma 6.11 and Lemma 6.12 twice.

We prove Claim 7.3.4 in the rest of the proof. To this end, let m Æ n2/3 and › Æ 1/2

¸

such that both m and 1/› are powers of 2. We consider the quantity – as the fraction of

e œ E such that e is not S-persistent with probability at least 1/ log n when S ≥ H›,m.

Using – we have

Pr
e,S

Ë
e is S-persistent

È
Æ (1 ≠ –) + –

A
1 ≠ 1

log n

B
= 1 ≠ –/ log n,

where e is drawn uniformly from E and S ≥ H›,m. On the other hand, we consider the

probability

Pr
e,S

Ë
e is not S-persistent

È
.

265

By Lemma 7.2.1, as well as the fact that each vertex of G is incident to at most 2d edges

in E, for at least (1 ≠ exp(≠�(log

2 n)))-fraction of S ≥ H›,m, there are at most 2›d · 2

n

many edges which are not S-persistent out of a total of at least ‡d ·2n edges in E. Therefore,

we have

Pr
e,S

Ë
e is not S-persistent

È
Æ exp

1
≠�(log

2 n)

2
+

1
1 ≠ exp

1
≠�(log

2 n)

22
· O (›/‡) ,

which is O(1/�

4

). Combining these inequalities we have that – = O(log n/�

4

). Claim

7.3.4 follows from a union bound over O(log n) · � Æ O(�

2

) many choices of the two

parameters m and ›.

7.3.3 Bucketing scores

We will now use standard grouping techniques to make Lemma 7.3.1 easier to use.

From (7.5), we say that i œ [n] is of type-(s, t) for some s, t œ [�] if

SCORE+

i = SCORE+

i,s · 1

2

s
and SCORE≠

i = SCORE≠
i,t · 1

2

t
.

From Lemma 7.3.1, there exist s, t œ [�] such that

ÿ
iœ[n]

type-(s, t)

min

Ó
SCORE+

i , SCORE≠
i

Ô
Ø �

A
Á2

�

10

B
. (7.10)

Furthermore, we say a variable i œ [n] has weight k for some positive integer k if

1

2

k
< min

Ó
SCORE+

i , SCORE≠
i

Ô
Æ 1

2

k≠1

.

266

Therefore, we have

ÿ
iœ[n]

type-(s, t)

min

Ó
SCORE+

i , SCORE≠
i

Ô
=

ÿ
kØ1

ÿ
iœ[n]

type-(s, t)
weight k

min

Ó
SCORE+

i , SCORE≠
i

Ô

Æ ÿ
kœ[3�]

ÿ
iœ[n]

type-(s, t)
weight k

min

Ó
SCORE+

i , SCORE≠
i

Ô
+ n ·

3
Á

n

4
3

,

which implies by (7.10) that there exists some h œ [3�] such that

ÿ
iœ[n]

type-(s, t)
weight h

min

Ó
SCORE+

i , SCORE≠
i

Ô
Ø �

A
Á2

�

11

B
. (7.11)

We let

Iú
=

Ó
i œ [n] : i is of type-(s, t) and weight h

Ô
,

and let I be a subset of Iú such that |I| is the largest power of 2 that is not larger than |Iú|.
We summarize the above discussion in the following lemma.

Lemma 7.3.6. Let f : {0, 1}n æ {0, 1} be Á-far from unate with If < 6

Ô
n. Then there are

s, t œ [�], h œ [3�] and a set I ™ [n] such that |I| is a power of 2, |I|/2

h
= �(Á2/�

11

)

and every i œ I has

min

;
SCORE+

i,s · 1

2

s
, SCORE≠

i,t · 1

2

t

<
Ø 1

2

h
. (7.12)

7.4 The Main Algorithm

We now describe the main algorithm for testing unateness. The algorithm rejects a function

f only when an edge violation has been found. As a result, for its correctness it suffices

to show that when the input function f is Á-far from unate, the algorithm finds an edge

violation with probability at least 2/3. For convenience we will suppress polylog(n/Á)

factors using ˜O(·) in the rest of analysis.

267

The main algorithm has four cases. Case 0 is when the input function f satisfies

If > 6

Ô
n. In this case an ˜O(

Ô
n)-query algorithm is known [23] (also see Lemma 2.1 of

[52]).

From now on, we assume that f is not only Á-far from unate but also satisfies If Æ 6

Ô
n.

Then there are parameters s, t œ [�] and h œ [3�] and a set I ™ [n] with which Lemma

7.3.6 holds for f . We may assume that the algorithm knows s, t, h and |I| = 2

¸ (by trying all

possibilities, which just incurs an addition factor of O(�

4

) in the query complexity). We may

further assume without loss of generality that s Ø t since the case of s < t is symmetric.

We consider the following three cases of f :

Case 1: |I|/2

t Ø n2/3 and and at least half of i œ I satisfy

Inf f [i] Æ
A

Á2

�

13

B
· n1/3

|I| ; (7.13)

Case 2: |I|/2

t Ø n2/3 and and at least half of i œ I violate (7.13); and

Case 3: |I|/2

t Æ n2/3.

We prove the following two lemmas in Section 7.5 and 7.7 which cover the first two

cases.

Lemma 7.4.1. Let s Ø t œ [�], h œ [3�], and ¸ œ [Âlog nÊ] with 2

¸/2

t Ø n2/3. There is

a ˜O(n2/3/Á2

)-query algorithm with the following property. Given any Boolean function

f : {0, 1}n æ {0, 1} that satisfies (i) Lemma 7.3.6 holds for f with s, t, h and a set I ™ [n]

with |I| = 2

¸; and (ii) at least half of i œ I satisfy (7.13), the algorithm finds an edge

violation to unateness with probability at least 2/3.

Lemma 7.4.2. Let s Ø t œ [�], h œ [3�], and ¸ œ [Âlog nÊ] with 2

¸/2

t Ø n2/3. There is

an algorithm that makes ˜O(n2/3/Á2

) queries and satisfies the following property. Given any

Boolean function f : {0, 1}n æ {0, 1} that satisfies (i) Lemma 7.3.6 holds for f with s, t, h

and a set I ™ [n] with |I| = 2

¸ and (ii) at least half of i œ I violate (7.13), the algorithm

finds an edge violation to unateness with probability at least 2/3.

Case 3 can be handled using an algorithm presented in [52]. We include its description

and the proof of the following lemma in Section 7.8 for completeness.

268

Lemma 7.4.3. Let s Ø t œ [�], h œ [3�], and ¸ œ [Âlog nÊ] with 2

¸/2

t Æ n2/3.

There is an algorithm that makes ˜O(n2/3

+

Ô
n/Á2

) queries and satisfies the following

property. Given any Boolean function f : {0, 1}n æ {0, 1} that satisfies Lemma 7.3.6 with

s, t, h and a set I ™ [n] of size |I| = 2

¸, the algorithm finds an edge violation of f to

unateness with probability at least 2/3.

Theorem 65 follows by combining all these lemmas.

7.5 The Algorithm for Case 1

Let s Ø t œ [�], h œ [3�] and ¸ œ [Âlog nÊ]. In Case 1 the input function f : {0, 1}n æ
{0, 1} satisfies Lemma 7.3.6 with parameters s, t, h and I ™ [n] of size |I| = 2

¸, with

|I|/2

t Ø n2/3. At least half of the variables i œ I have low influence as given in (7.13). Let

i be such a variable. Then by (7.13),

A
Á2

�

13

B
· n1/3

|I| > Inf f [i] Ø 2 · SCORE+

i,s Ø 2

s

2

h
.

Letting › = 1/2

s throughout this section, it follows from Lemma 7.3.6 that

› = �

A
�

13

Á2

· |I|
2

hn1/3

B
= �

A
�

2

n1/3

B
. (7.14)

7.5.1 Informative sets

We start with the notion of informative sets. Note that we will have different notions of

informative sets in different cases of the algorithm. We use the same name because they

serve similar purposes.

Given i œ [n] and a set S ™ [n + 1] we use PE+

i (S) to denote the set of s-strong

monotone edges along variable i that are S-persistent. We define PE≠
i (S) similarly for

antimonotone edges.

Definition 61 (Informative Sets). A set S ™ [n + 1] is i-informative for monotone edges if

|PE+

i (S)|
2

n
Ø SCORE+

i,s

4

Ø 2

s≠h

4

(7.15)

269

and that S ™ [n + 1] is i-informative for anti-monotone edges if

|PE≠
i (S)|
2

n
Ø SCORE≠

i,t

4

Ø 2

t≠h

4

. (7.16)

We simply say that S ™ [n + 1] is i-informative if S satisfies both (7.15) and (7.16).

Lemma 7.5.1. For each i œ I and each positive integer m Æ n2/3 that is a power of 2,

S ≥ H›,m is i-informative with probability at least 1 ≠ o(1).

Proof. We first show that S ≥ H›,m satisfies (7.15) with probability at least 1 ≠ o(1). The

same argument works to show S ≥ H›,m satisfies (7.16). The lemma then follows from

a union bound. To this end, let – be the probability of S ≥ H›,m being i-informative for

monotone edges. We examine

Pr
e,S

Ë
e is S-persistent

È
,

where e is an s-strong monotone edge along variable i drawn uniformly at random and

S ≥ H›,m. It follows from the definition of strong edges that the probability is at least

1 ≠ 1/ log n. On the other hand, we can also upperbound the probability using – (and

the definition of i-informative sets) as (1 ≠ –)/4 + –. Solving the inequality we get

– Ø 1 ≠ o(1).

Next we introduce two new families of distributions that will help us connect H›,m with

D›,m.

Definition 62. Given › œ (0, 1), m : 1 Æ m Æ n and i œ [n], we let D›,m,i denote the

following distribution supported on subsets of [n]: S ≥ H›,m,i is drawn by first sampling a

subset S
0

of [n] of size m with i œ S
0

and an ordering fi of S
0

uniformly at random. We

then call Preprocess(f, S
0

, fi, ›) and set S to be its output.

Similarly, H›,m,i denotes the following distribution supported on subsets of [n + 1]:

S ≥ H›,m,i is drawn by first sampling a subset S
0

of [n + 1] \ {i} of size m with n + 1 œ S
0

and an ordering fi of S
0

uniformly at random. We then call Preprocess(f, S
0

, fi, ›) and

set S to be its output.

270

Using the fact that the total variation distance between the S
0

used in H›,m (at the

beginning of the process) and the S
0

used in H›,m,i is at most m/n, we have

d
TV

1
H›,m, H›,m,i

2
Æ m/n

and the following corollary from Lemma 7.5.1.

Corollary 7.5.2. For every i œ I and every positive integer m Æ n2/3 as a power of 2, we

have that S ≥ H›,m,i is i-informative with probability at least 1 ≠ o(1).

The next two lemmas allow us to draw random subsets and still obtain i-informative

sets. They enable us to use techniques from [52] for particular cases of our algorithm.

Lemma 7.5.3. For every i œ I we have T ≥ Pi,ÁÔ
n/2

tË is i-informative for anti-monotone

edges with probability at least 1 ≠ o(1).

Proof. Similarly to the proof of Lemma 7.5.1, we write – to denote the probability of

T ≥ Pi,ÁÔ
n/2

tË being i-informative for anti-monotone edges. We examine

Pr
e,T

Ë
e is T-persistent

È
,

where e is a t-strong anti-monotone edge along variable i drawn uniformly and T ≥
Pi,ÁÔ

n/2

tË. It follows from the definition of strong edges that this probability is at least

1 ≠ 1/ log n. On the other hand, we can also upperbound the probability using – (and the

definition of i-informative sets for anti-monotone edges) as (1 ≠ –)/4 + –. Solving the

inequality we get – Ø 1 ≠ o(1).

Similarly, we may conclude the analogous lemma for monotone edges, whose proof

follows similarly to Lemma 7.5.3.

Lemma 7.5.4. For every i œ I we have that S ≥ Pi,ÁÔ
n/2

sË is i-informative for monotone

edges with probability at least 1 ≠ o(1).

271

7.5.2 Catching variables: Relating D›,m and H›,m

Now we focus on the variables in I that satisfy (7.13). To this end, we let Iú be a subset of

I of size Á|I|/2Ë such that all variables in Iú satisfy (7.13). Given that the algorithm knows

the size of I, it also knows the size of Iú (though not variables within). Next we use m

to denote the largest power of 2 that is at most ›|I|/n1/3. In other words, m is the unique

power of 2 satisfying

›|I|
2n1/3

< m Æ ›|I|
n1/3

. (7.17)

Given that |I| Ø |I|/2

t Ø n2/3 and (7.14), we have mg1 and m = �(›|I|/n1/3

).

We now turn to analyzing the distribution D›,m with the m defined above.

Definition 63 (Catching Variables). Let i œ Iú. We say that a set S ™ [n] catches the

variable i if i œ S and Sub(S, i) = (S fi {n + 1}) \ {i} is i-informative (see Definition 61).

We let

CAUGHT(S) =

Ó
i œ Iú

: S catches i
Ô
.

Intuitively, if we sample S ≥ D›,m and i œ CAUGHT(S), then we have an upper bound

for how many samples x we need for AE-SEARCH(f, x, Sfi{n+1}) to reveal a bichromatic

edge along i.

Claim 7.5.5. For every i œ Iú, we have

Pr
S≥D›,m,i

Ë
S catches i

È
Ø Pr

T≥H›,m,i

Ë
T is i-informative

È
≠ o(1).

Proof. We show the total variation distance between S ≥ D›,m,i and Sub(T, i) over T ≥
H›,m,i is

O

A
m log

8 n

›
· Inf f [i]

B
= O

A |I| log

8 n

n1/3

· Inf f [i]

B
= o(1), (7.18)

given (7.13) and i œ Iú. The lemma follows from the observations that Sub(T, i) contains

i and when T is i-informative, Sub(T, i) catches i.

To upperbound the total variation distance between S ≥ D›,m,i and Sub(T, i) over

T ≥ H›,m,i, we use the following coupling. First we draw a subset S
0

of [n] with i œ S
0

272

Procedure AlgorithmCase1.1(f)

Input: Query access to a Boolean function f : {0, 1}n æ {0, 1}
Output: Either “unate,” or two edges constituting an edge violation of f to unateness.

1. Repeat the following O(1) times:
2. Draw S ≥ D›,m: First draw a size-m subset S

0

of [n] and an ordering fi of
S

0

uniformly at random and then call Preprocess(f, S
0

, fi, ›).
3. Repeat q times, where q = O

1
n2/3

�

13

O
Á2

2
:

4. Draw an x œ {0, 1}n uniformly and run
AE-SEARCH (f, x, S fi {n + 1})

5. Let A be the set of i œ [n] such that an anti-monotone edge along i is found
6. Repeat q times:
7. Draw an y œ {0, 1}n uniformly and run

AE-SEARCH (f, y, S fi {n + 1})

8. Let B be the set of i œ [n] such that a monotone edge along variable i is
found

9. If A fl B ”= ÿ, output an edge violation of f to unateness.
10. Output “unate.”

Figure 7.6: Algorithm for Case 1.1

and an ordering fi of S
0

uniformly at random. Then we set SÕ
0

= Sub(S
0

, i) and fiÕ to be

the ordering of SÕ
0

obtained from fi by replacing i with n + 1. Finally we draw the output

from the best coupling for Preprocess(f, S
0

, fi, ›) and Sub(Preprocess(f, SÕ
0

, fiÕ, ›), i).

The upper bound in (7.18) follows directly from Lemma 7.2.2.

7.5.3 Algorithm for Case 1.1

There are two sub-cases in Case 1. Specifically, for the remainder of Section 7.5.3, we

assume that

m Ø n1/3

log

2 n

2

t
, (7.19)

273

and handle the other case in Case 1.2. We let

r :=

m|Iú|
n

= �(log

2 n), (7.20)

the expected size of the intersection of a random size-m subset of [n] with Iú, where we

used (7.19) and |Iú|/2

t
= �(n2/3

). Note that both m and r are known to the algorithm.

We prove Lemma 7.4.1 assuming (7.19) using AlgorithmCase1.1 in Figure 7.6, with the

following query complexity.

Claim 7.5.6. The query complexity of AlgorithmCase1.1 is ˜O(n2/3/Á2

).

Proof. By Lemma 7.2.1, line 2 of AlgorithmCase1.1 requires ˜O(m/›) queries. By (7.17),

m

›
= O

A
›|I|

› · n1/3

B
= O

A |I|
n1/3

B
= O(n2/3

)

using the trivial bound of |I| Æ n. The claim then follows from our choice of q in the

algorithm.

The algorithm for Case 1.1 starts by sampling a set S ≥ D›,m. It then keeps drawing

points x uniformly at random to run AE-SEARCH (f, x, S fi {n + 1}) to find bichromatic

edges, with the hope to find an edge violation along one of the variables in Iú. We break lines

3–8 into the search of anti-monotone edges and the search of monotone edges separately

only for the analysis later; algorithm wise there is really no need to do so. (The reason

why we use S fi {n + 1} instead of S in the algorithm will become clear in the proof of

Lemma 7.5.7; roughly speaking, we need it to establish a connection between D›,m and

H›,m so that we can carry the analysis on H›,m that has been done so far over to D›,m.)

On the one hand, recall from Lemma 7.1.2 that if i œ S ™ [n] and a bichromatic edge e

along variable i is Sub(S, i) = (S fi {n + 1}) \ {i}-persistent, then running AE-SEARCH

on S fi {n + 1} and any of the two points of e would reveal e with high probability. On the

other hand, if a set (e.g., Sub(S, i)) is i-informative then it is persistent on a large fraction

of edges along variable i.

Our first goal is to prove Lemma 7.5.7, which states that S ≥ D›,m catches many

variables.

274

Lemma 7.5.7. We have |CAUGHT(S)| Ø r/6 with probability �(1).

Proof. Let – be the probability we are interested in:

– = Pr
S≥D›,m

5---CAUGHT(S)

--- Ø r

6

6
.

For each i œ Iú, as the S
0

drawn in D›,m at the beginning contains i with probability m/n,

we have

Pr
S≥D›,m

Ë
S catches i

È
Ø m

n
· Pr

S≥D›,m,i

Ë
S catches i

È
Ø m

n
·

A
Pr

T≥H›,m,i

Ë
T is i-informative

È
≠ o(1)

B
Ø (1 ≠ o(1)) · m

n
.

Furthermore, since S ≥ D›,m is a subset of S
0

drawn at the beginning which is a random

subset of [n] of size m, we have by Lemma 7.11.1 that with probability at least 1 ≠
exp(≠�(r)) over the draw of S ≥ D›,m that |S fl Iú| Æ 4r. Therefore, we have

(1 ≠ o(1))r = (1 ≠ o(1)) · m|Iú|
n

Æ ÿ
iœIú

Pr
S≥D›,m

Ë
S catches i

È
= E

S≥D›,m

5---CAUGHT(S)

---6

Æ m · exp

1
≠�(log

2 n)

2
+ (1 ≠ –) · r

6

+ – · 4r.

Solving for – gives the desired bound of – = �(1).

Given Lemma 7.5.7, a constant fraction of the intersection of S and Iú will be caught,

and therefore, AE-SEARCH (f, x, S fi {n + 1}) will output a bichromatic edge along a

variable from these caught coordinates for sufficiently many points x. In the rest of the

proof, we fix S to be a set that catches at least r/6 many variables in Iú, and prove in the

rest of the proof that during this loop, an edge violation is found with probability 1 ≠ o(1).

Given S, we write J ™ Iú to denote the set of variables caught by S with |J | Ø r/6.

Then by definition we have that J ™ S and Sub(S, j) is j-informative for every j œ J .

We start by showing that A fl J is large with high probability.

Lemma 7.5.8. We have |A fl J | Ø �

1
m2

t/n1/3

2
with probability at least 1 ≠ o(1).

275

Proof. For each j œ J , we let Xj be the set of x œ {0, 1}n such that AE-SEARCH (f, x, Sfi
{n + 1}) returns an anti-monotone edge along h with probability at least 2/3. Then by

definition we have

|Xj| = �

A
2

t

2

h

B
· 2

n,

and the Xj’s are disjoint by Corollary 7.1.3 so we have r2

t/2

h
= O(1). To analyze A fl J ,

we break the rounds on line 3 into Ám2

t/n1/3Ë many phases, each consisting of

G
2

h

r2

t

H
· log

2 n = O

A
2

h

r2

t
· log

2 n

B

many iterations of line 4 (using r2

t/2

h
= O(1)). The q rounds we have are enough since

G
m2

t

n1/3

H
· O

A
2

h

r2

t
· log

2 n

B
= O

A
m2

h
log

2 n

n1/3r

B
= O

1
n2/3

�

13/Á2

2

using r = �(m|I|/n) and |I|/2

h
= �(Á2/�

11

). Also note r = �(m2

t/n1/3

) using

|I| Ø n2/3

2

t.

At the beginning of each phase, either �(r) anti-monotone edges along different vari-

ables in J have already been found, and we are done, or the number of variables in J \ A

at the moment is at least �(r). As a result, their union of Xj for such j is �(r2

t/2

h
) · 2

n.

Using the number of rounds in each phase, the probability of not finding any new anti-

monotone edge along J during this phase is at most 1/poly(n), and it remains negligible

even after a union bound over the number of phases. The lemma follows from the fact that

the number of phases is at least �(m2

t/n1/3

).

Fix an A such that C = A fl J satisfies the lower bound of Lemma 7.5.8. We finally

show that C fl B with high probability. This finishes the proof of correctness in Case 1.

Lemma 7.5.9. We have that C fl B is not empty with probability at least 1 ≠ o(1).

Proof. For each j œ C, let Yj denote the set of y œ {0, 1}n such that AE-SEARCH (f, y, S fi
{n + 1}) returns a monotone edge along variable j with probability at least 2/3. Then we

have

|Yj| = �

3
2

s

2

h

4
· 2

n.

276

Procedure AlgorithmCase1.2(f)

Input: Query access to a Boolean function f : {0, 1}n æ {0, 1}
Output: Either “unate,” or two edges constituting an edge violation of f to unateness.

1. Repeat the following O(1) times:
2. Draw a set T µ [n] of size p uniformly at random.
3. Repeat O

1
n2/3

�

11

log

2 n
O

Á2

2
times:

4. Draw an x œ {0, 1}n uniformly and run AE-SEARCH (f, x, T)

5. Let A be the set of i œ [n] such that an anti-monotone edge along i is found.
6. Repeat O

1
n1/3

log

3 n
O

(m2

t
)

2
times:

7. Draw S by first drawing a subset S
0

of T of size m and an ordering
fi of S

0

both uniformly at random and then call
Preprocess(f, S

0

, fi, ›).
8. Repeat O

1
(2

h/2

s
) · log n

2
times:

9. Draw y œ {0, 1}n uniformly and run
AE-SEARCH (f, y, S fi {n + 1}).

10. Let B be the set of i œ [n] such that a monotone edge along variable i is
found.

11. If A fl B ”= ÿ, output an edge violation of f to unateness.
12. Output “unate.”

Figure 7.7: Algorithm for Case 1.2

Since they are disjoint, the fraction of points that Yj , j œ C, cover is at least

�

A
2

s

2

h
· m2

t

n1/3

B
Ø �

A
2

s

2

h
· ›|I|

n1/3

· 2

t

n1/3

B
= �

A
Á2

n2/3

�

11

B

using s Ø t and m2

t Ø n1/3

log

2 n. The lemma follows from our choice of q in the

algorithm.

7.5.4 Algorithm for Case 1.2

The second subcase of Case 1 occurs when

m <
n1/3

log

2 n

2

t
, (7.21)

277

and the crucial difference is that unlike Case 1.1, we cannot conclude with (7.20). More

specificially, two potential issues which were not present in Section 7.5.3 may arise: 1)

sampling a set S ≥ D›,m may result in CAUGHT(S) = ÿ, and 2) even if |CAUGHT(S)| is

large, too few points x may result in AE-SEARCH (f, x, S) returning an anti-monotone

edge (for instance, when 2

t
= 1 and 2

h
= n). Thus, we address these two problems with

AlgorithmCase1.2, which is described in Figure 7.7.

At a high level, AlgorithmCase1.2 proceeds by sampling a set T ™ [n] of size

p := ÁÔ
n/2

tË + 1 = �(

Ô
n/2

t
)

uniformly at random, and directly uses the set T to search for anti-monotone edges by

repeating AE-SEARCH (f, x, T) for ˜O(n2/3/Á2

) many iterations. We show at the end the

algorithm will obtain anti-monotone edges along at least �(n1/6

) variables in T fl I (as

an anti-monotone edge is found every ˜O(

Ô
n/Á2

) iterations of AE-SEARCH (f, x, S)). The

algorithm will then sample S
0

µ T of size m (notice that m π p by (7.21)), pass it

through Preprocess to obtain S ™ S
0

, and then repeat AE-SEARCH (f, y, S
0

) in hopes

of observing an edge violation. In order to do so, S must contain a variable where the

algorithm has already observed an anti-monotone edge. Since the number of variables with

anti-monotone edges observed may be O(n1/6

) and m · n1/6 could be much smaller than p,

the algorithm needs to sample the subset S
0

from T multiple times.

We state the query complexity of the algorithm for Case 1.2, where we note that the

upper bound will follow from (7.21), (7.14), (7.17), the fact that 2

t Ø 1 and 2

h/I Ø ˜

�(Á2

).

Lemma 7.5.10. The query complexity of AlgorithmCase1.2 is (using (7.14))

˜O

A
n2/3

Á2

B
+

˜O

A
n1/3

m2

t

B A
˜O

A
m

›

B
+

˜O

A
2

h

2

s

BB
=

˜O(n2/3/Á2

).

In order to analyze AlgorithmCase1.2 we consider one of the main iterations and let T

denote the set drawn in line 2. We define the following subset C ™ T fl Iú to capture how

good T is: A variable i œ T fl Iú belongs to C if it satisfies both of the following conditions:

(i) The set T \ {i} is i-informative for anti-monotone edges; and

278

(ii) If we draw S by first drawing a subset S
0

of T of size m conditioning on i œ S
0

and

an ordering of fi of S
0

uniformly at random and then calling

Preprocess(f, S
0

, fi, ›) to

get S, then the probability that S catches i is at least 1/2.

We prove that when T is a random size-p set, the set C is large with constant probability.

Lemma 7.5.11. With probability at least �(1) over the draw of T µ [n] in line 2, we have

|C| = �

A
p|Iú|

n

B
.

Proof. We first note that p|Iú|/n = �(n1/6

) since |Iú|/2

t
= �(n2/3

). By Lemma 7.11.1,

|C| Æ |T fl Iú| Æ 4p|Iú|/n

with probability at least 1 ≠ exp(≠�(n1/6

)). We consider the quantity

– = Pr
Tµ[n]

C
|C| Ø 1

10

· p|Iú|
n

D
,

which we will lower bound by �(1) by proving both upper and lower bounds for ET[|C|].
For the lower bound, we use the following claim which we prove next.

Claim 7.5.12. For every i œ Iú, we have

Pr
Tµ[n]

5
T and i satisfy conditions (i) and (ii)

---- i œ T
6

Ø 1 ≠ o(1).

It follows from Claim 7.5.12 that

E
Tµ[n]

Ë
|C|

È
=

ÿ
iœIú

Pr
Tµ[n]

Ë
i œ T

È
· Pr

Tµ[n]

5
(i) and (ii) satisfied

---- i œ T
6

Ø (1 ≠ o(1)) · p|Iú|
n

.

On the other hand, we may upper bound ET[|C|] using the definition of –,

E
Tµ[n]

Ë
|C|

È
Æ n·exp

1
≠�(n1/6

)

2
+

1
1 ≠ exp

1
≠�(n1/6

22 A
– · 4p|Iú|

n
+ (1 ≠ –) · p|Iú|

10n

B
,

279

which in turn, implies that – = �(1).

Proof of Claim 7.5.12. Consider a fixed i œ Iú, we will show that sampling T and con-

ditioning on i œ T, the probability of i satisfying condition (i) is at least 1 ≠ o(1), and

likewise, the probability of i satisfying condition (ii) is also at least 1 ≠ o(1). The claim

then follows from a union bound.

First, T µ [n] conditioned on i œ T is distributed exactly as TÕ fi {i} where TÕ ≥
Pi,ÁÔ

n/2

tË, by our choice of p. The part on condition (i) follows directly from Lemma 7.5.3.

Second, let — be the probability over T µ [n] conditioning on i œ T that (ii) is not

satisfied. We consider the following quantity

Pr
S≥D›,m,i

Ë
S catches i

È
.

On the one hand, we can we bound it from above by 1 ≠ o(1) by combining Claim 7.5.5

and Corollary 7.5.2. On the other hand, S ≥ D›,m,i is exactly distributed as first sampling

T µ [n], then sampling S
0

µ T conditioned on i œ S
0

and finally running Preprocess

using S
0

to get S. Thus, we may use the definition of — to upperbound the probability by

—/2 + 1 ≠ —, which implies — = o(1).

Having established Lemma 7.5.11, we consider a fixed iteration of line 2 where the set

C obtained from T satisfies the size lower bound from Lemma 7.5.11. Note that since line

2 is executed O(1) times, this will happen with large constant probability. After fixing T

and C, we will show that in this iteration, AlgorithmCase1.2 finds an edge violation to

unateness with high probability.

Lemma 7.5.13. With probability 1 ≠ o(1) over the randomness in lines 3–5, |A fl C| Ø
�(n1/6

).

Proof. We consider breaking up the execution of lines 3–4 into O(n1/6

) phases, each

consists of

O

AÔ
n�

11

log

2 n

Á2

B

280

execution of line 4 each. We note that

|C| = �

A
p|Iú|

n

B
= �(n1/6

)

since |I|/2

t Ø n2/3. Consider a particular phase of the algorithm, and assume that the

number of anti-monotone edges along variables in C observed is less than |C|/2 (otherwise,

we are done since |C| = �(n1/6

)). In this case, for each j œ C along which the algorithm

has not observed an anti-monotone edge, we let Xj be the set of points x œ {0, 1}n such

that AE-SEARCH (f, x, T) will output j with probability at least 2/3. By condition (i), we

have that

|Xj| = �

A
2

t

2

h

B
· 2

n,

and that the Xj’s are disjoint by Corollary 7.1.3. As a result, there are at least

�

A
2

t

2

h

B
· 2

n · |Iú|
2

t
Ô

n
= �

A |Iú|
2

h
Ô

n

B
· 2

n
= �

A
Á2

Ô
n · �

11

B
· 2

n

many such points x œ {0, 1}n. By the number of queries we have in each phase, we

will observe an anti-monotone edge along some variable in C not yet seen with high

probability.

By Lemma 7.5.13 we consider the case when |A fl C| = �(n1/6

). Fix a particular A

and a subset of J = A fl C such that |J | = �(n1/6

).

Lemma 7.5.14. With probability at least 1 ≠ o(1), at least one of the S sampled in line 7

catches at least one variable in J .

Proof. Let — be the probability that S catches at least one variable in J . Consider

E
S

5Ó
j œ J : S catches j

Ô6
.

Using condition (ii) on variables in J , we have

E
S

5Ó
j œ J : S catches j

Ô6
=

ÿ
jœJ

Pr
Ë
S

0

contains j
È
·Pr

5
S catches j

---- j œ S
0

6
= �

A
m2

t

n1/3

B
.

281

Since S
0

is a uniform subset of T of size m, and |J | = �(n1/6

), the expectation of

|S
0

fl J | is

�

A
mn1/6

Ô
n/2

t

B
= �

A
m2

t

n1/3

B
= O(log

2 n).

Therefore, the probability of |S fl J | Æ |S
0

fl J | being at most O(log

2 n) is at least

1 ≠ exp(≠�(log

2 n)) by Lemma 7.11.1. Thus, we may upperbound the above expectation

using the definition of — by

— · O(log

2 n) + |J | · exp

1
≠ �(log

2 n)

2
,

which gives the following lower bound on —:

— Ø �

A
m2

t

n1/3

log

2 n

B
.

The lemma follows from the number of times we repeat in line 7.

Finally we show that if S catches a j œ J , then line 9 finds a monotone edge along j.

Lemma 7.5.15. If S catches j œ J in line 7, then line 9 finds a monotone edge along

variable j with probability at least 1 ≠ o(1).

Proof. Since S catches j, the number of points x œ {0, 1}n such that AE-SEARCH (f, x, S)

returns a monotone edge along j with probability at least 2/3 is at least

�

3
2

s

2

h

4
· 2

n

The lemma then follows from the number of times the algorithm repeats in line 8.

7.6 Finding Bichromatic Edges of High Influence

Variables

The goal of this section is to present a procedure Find-Hi-Inf which will be used in

our algorithm for Case 2. The procedure Find-Hi-Inf takes four inputs: query access

282

to a Boolean function f , a set S ™ [n] of variables, a positive integer m and a parameter

– œ (0, 1]. When f satisfies:

There is a hidden subset H ™ S such that |H| Ø m and every h œ H satisfies Inf f [h] Ø –,

(7.22)

the procedure Find-Hi-Inf efficiently finds a bichromatic edge for almost all variables

in H .

At a high level, the procedure Find-Hi-Inf (described in Figure 7.11) will exploit the

fact that if there is a hidden set H of variables with high influence, there will be sufficiently

many points in the hypercube which are sensitive along many variables from H . As a result,

every time one such high sensitivity point is identified, we may use it to observe bichromatic

edges along multiple variables.

7.6.1 Revealing points

We start with the definition of revealing points. These are points that, once identified,

can be used to observe bichromatic edges along multiple variables. We then present

two subroutines that will be used in Find-Hi-Inf. Given a revealing point, the first

subroutine Get-Revealing-Edges (see Figure 7.8) uses it to find bichromatic edges

along a large number of variables. While it is expensive to run, we present a second

subroutine Check-Revealing (see Figure 7.9) that can check whether a given point is

revealing so we only run the first one when we are sure that the point is revealing.

Definition 64. Let ” œ (0, 1] and T = {Tj}jœ[r]

be a collection of disjoint (but possibly

empty) subsets of [n] for some r Ø 1. Given a point x œ {0, 1}n, we consider the set:

REVEAL (x, T, ”) =

I
j œ [r] : Pr

R™Tj

Ë
f(x) ”= f(x(R)

)

È
Ø ”

J
,

where R ™ Tj is subset of Tj drawn uniformly at random (i.e., each element of Tj is

included in R with probability 1/2 independently). Moreover, for “ œ (0, 1], we say x is

(“, ”)-revealing for T if ---REVEAL (x, T, ”)

--- Ø “ · r.

283

Subroutine Get-Revealing-Edges(f, x, T, ”)

Input: Query access to f : {0, 1}n æ {0, 1}, a point x œ {0, 1}n, a collection of
disjoint subsets T = {Tj}jœ[r]

of [n] for some r Ø 1, and ” œ (0, 1].
Output: Two random sets B and Q, where B is a set of bichromatic edges of f and Q
is a subset of the union of Tj’s.

• Initialize B = Q = ÿ. Repeat the following for each j œ [r] for log

2 n/”
iterations each.

1. Sample R ™ Tj uniformly at random, and let fi be an arbitrary ordering on
R.

2. Run BinarySearch(f, x, T, fi). If it outputs nil, do nothing. If it outputs
a bichromatic edge e along variable i œ T. Set B Ω B fi {e} and
Q Ω Q fi {i}.

• Output B and Q.

Figure 7.8: The subroutine Get-Revealing-Edges.

Next we present the first subroutine Get-Revealing-Edges. Given x œ {0, 1}n,

T = {Tj}jœ[r]

, and ” œ (0, 1], Get-Revealing-Edges(f, x, T, ”) (see Figure 7.8)

makes ˜O(r/”) queries and outputs a set of bichromatic edges which contains one bichromatic

edge for each variable in REVEAL (x, T, ”).

Lemma 7.6.1. Let x œ {0, 1}n, ” œ (0, 1] and T = {Tj}jœ[r]

be a collection of r disjoint

subsets of [n] for some r Ø 1. Then, Get-Revealing-Edges(f, x, T, ”) uses ˜O(r/”)

queries and always returns a set Q of variables and a set B of bichromatic edges such that

Q is a subset of the union of Tj’s and B contains a bichromatic edge along each variable in

Q. Furthermore, Q contains REVEAL (x, T, ”) with probability at least 1 ≠ 1/poly(n).

Proof. For each index j œ REVEAL(x, T, ”), the probability that none of the log

2 n/” many

random subsets R of Tj satisfies f(x) ”= f(x(R)

) is at most

(1 ≠ ”)

log

2 n
” π 1/poly(n),

When this happens BinarySearch (f, x, R, fi) finds a bichromatic edge along a variable

in R which is also in Tj . The lemma then follows from a union bound over all j œ

284

Subroutine Check-Revealing(f, x, T, “, ”)

Input: Query access to f : {0, 1}n æ {0, 1}, a point x œ {0, 1}n, a collection of
disjoint subsets T = {Tj}jœ[r]

of [n] for some r Ø 1, and “, ” œ (0, 1].
Output: Either “accept” or “reject.”

1. Initialize b = 0.
2. Repeat the following steps for log

2 n/“ iterations:

• Sample an index j ≥ [r] uniformly at random and initialize c = 0.
• Repeat the following log

2 n/” iterations:

– Sample a subset R ™ Tj uniformly and increment c if f(x(R)

) ”= f(x).

• If c Ø 3 log

2 n/4, increment b.

3. If b Ø 3 log

2 n/4, output “accept;” otherwise, output “reject.”

Figure 7.9: The subroutine Check-Revealing.

REVEAL(x, T, ”).

Next we describe the second subroutine Check-Revealing in Figure 7.9, which we

use to check whether a given point x is (“, ”)-revealing with respect to T .

Lemma 7.6.2. Let “, ” œ (0, 1], x œ {0, 1}n and T = {Tj}jœ[r]

be a collection of disjoint

subsets of [n] for some r Ø 1. Then, Check-Revealing(f, x, T, “, ”) makes ˜O(1/(“”))

many queries and satisfies the following two conditions: (1) If x is (“, ”)-revealing with

respect to T , then it outputs “accept" with probability at least 1 ≠ 1/poly(n); (2) If x is

not (“/2, ”/2)-revealing with respect to T , then it outputs “reject" with probability at least

1 ≠ 1/poly(n).

Proof. Suppose that x is (“, ”)-revealing. It follows from Chernoff bound that with prob-

ability at least 1 ≠ 1/poly(n), the number of iterations in which the index j œ [r] lies in

REVEAL(x, T, ”) is at least 3 log

2 n/4. Moreover, for every such index j, the counter b is

incremented with probability at least 1 ≠ 1/poly(n). By a union bound, the subroutine

accepts with probability 1 ≠ poly(n).

285

Suppose that x is not (“/2, ”/2)-revealing. Then we have that |REVEAL(x, T, ”/2)| Æ
“r/2. The claim follows similarly by applying Chernoff bounds and then a union bound.

We can combine Lemma 7.6.1 and 7.6.2 to conclude that when Check-Revealing (x, T, “, ”)

returns “accept,” it is safe to run Get-Revealing-Edges (x, T, ”/2) and we should ex-

pect the latter to find at least “r/2 many bichromatic edges along different variables from

the union of Tj’s.

7.6.2 The Find-Revealing procedure

Recall that we are given an S ™ [n] and two parameters m and –, and we are interested in

the case when S contains a hidden set H ™ S that satisfies (7.22).

Assuming this is the case, we prove in Corollary 7.6.6 that there exist many points z such

that, with probability �(1) over the draw of a random partition T of S, z is (�(1), �(1))-

revealing for T. We then present a procedure called Find-Revealing that takes advan-

tage of this property to find bichromatic edges along many different variables in S. Note

that in establishing Corollary 7.6.6, we assume that there is a subset H of S that satisfies

(7.22), and H is used in the analysis (and known to us in the proofs of these lemmas), even

though H is hidden from the procedure Find-Revealing.

We start by using the set H to define the following bipartite graph G
0

= (U
0

, V
0

, E
0

)

consisting of bichromatic edges of f along variables in H:

• U
0

™ {0, 1}n is the set of left vertices that contain all x œ {0, 1}n with f(x) = 0.

• V
0

™ {0, 1}n is the set of right vertices that contain all x œ {0, 1}n with f(x) = 1.

• E
0

is the set of bichromatic edges of f connecting vertices between U
0

and V
0

along

variables in H . Given that Inf f [i] Ø –, we have |E
0

| Ø (–|H|/2) · 2

n Ø (–m/2) · 2

n.

Recall the definition of left-d-good and right-d-good bipartite graphs. The next lemma,

similar to Lemma 6.5 of [87], shows the existence of an induced subgraph of G
0

that has

roughly the same number of edges as G
0

but is either left-d-good or right-d-good.

Lemma 7.6.3. There exist a positive integer d Æ |H| that is a power of 2 as well as subsets

U ™ U
0

and V ™ V
0

such that the subgraph G = (U, V, E) of G
0

induced by vertices

286

(U, V) satisfies:

• G is either left-d-good or right-d-good (letting ‡ = |U |/2

n or |V |/2

n accordingly),

and

• ‡ and d satisfy ‡d Ø –m/(6 log n).

Proof. Note that G
0

has degree at most |H|. Consider the following procedure:

• Iterate through d = 2

k, 2

k≠1, . . . , 1, where 2

k is the largest power of 2 that is at most

|H|, while maintaining a set of vertices D (as vertices deleted so far) which is

initially empty:

1. Consider the subgraph GÕ of G
0

induced by (U
0

\ D, V
0

\ D) and let

Uú
=

Ó
x œ U

0

\D : degGÕ(x) Ø d
Ô

and V ú
=

Ó
y œ V

0

\D : degGÕ(y) Ø d
Ô
.

2. Terminate if either Uú or V ú has size at least

–m

6d log n
· 2

n.

3. Otherwise, we update D Ω D fi Uú fi V ú (i.e., delete all vertices in Uú and V ú).

By induction, we have that at the beginning of each round, every vertex in GÕ has degree at

most 2d. As a result, if the procedure terminates during one of the iterations, we have that

the subgraph of G
0

induced by either (Uú, V
0

\ D) or (U
0

\ D, V ú
) satisfies both properties

and we are done.

So it suffices to show that the procedure terminates. Assume for contradiction that it does

not terminate. Then the number of edges deleted (i.e., those adjacent to vertices in Uú fi V ú)

during each iteration is at most (–m/(3 log n)) · 2

n. Since there are no more than log n

iterations, the total number of edges deleted is at most (–m/3) · 2

n. This contradicts with

the fact that all edges of H
0

will be deleted at the end if the procedure does not terminate,

and that |E
0

| Ø (–m/2) · 2

n.

287

Consider such a subgraph G = (U, V, E) of G
0

with parameters d and ‡, given by

Lemma 7.6.3. We assume without loss of generality G is left-d-good since the proof of

Corollary 7.6.6 is symmetric when G is right-d-good by considering f Õ given by f Õ
(x) =

f(x) ü 1. For each z œ U fi V , we define

N(z) =

Ó
i œ H : (x, x(i)

) œ E
Ô
.

Thus, |N(z)| = degG(z). Corollary 7.6.6 follows from two technical lemmas (Lemma 7.6.4

and Lemma 7.6.5). Before stating them we need the following definition.

Definition 65. Let “
0

= ”
0

= ÷
0

= 0.1 be three constants and r = 100d. We say that a

point y œ V is good for r-partitions of S if with probability at least ÷
0

over a uniformly

random r-partition T = {Tj}jœ[r]

of S \ N(y), y is (“
0

, ”
0

)-revealing with respect to T.

(To be more formal, such a partition T is drawn by first sampling a map g from S \ N(y)

to [r] uniformly at random, i.e., each element is mapped to an index in [r] uniformly and

independently, and then setting Tj = g≠1

(j).)

We use GOOD(S) to denote the set of points y œ V that are good for r-partitions of S.

We delay the proof of the following two technical lemmas.

Lemma 7.6.4. For each point y œ GOOD(S), with probability at least ÷
0

/2 over the draw

of a random r-partition T of S, y is (“
0

/2, ”
0

/2)-revealing for T.

Lemma 7.6.5. If |GOOD(S)| Æ (‡/100) · 2

n, there exist ‡2

n/2 points x œ U such

that with probability at least 1/3 over the draw of a random r-partition T of S, x is

(1/4000, (1 ≠ ”
0

)/2)-revealing for T.

Using constants ÷
1

, “
1

and ”
1

defined in Figure 7.10, we get the following corollary:

Corollary 7.6.6. Assume that there is an H ™ S that satisfies (7.22). Then there are at

least �(‡2

n
) many points z œ {0, 1}n such that, with probability at least ÷

1

over the draw

of a random r-partition T of S, z is (“
1

, ”
1

)-revealing for T.

288

Procedure Find-Revealing (f, S, m, –)

Input: Query access to f : {0, 1}n æ {0, 1}, S ™ [n], m Ø 1 and – œ (0, 1].
Output: Either a set of bichromatic edges B and a subset Q of S, or “fail.”

• Let ÷
1

= min

1
÷

0

/2, 1/3

2
, “

1

= min

1
“

0

/2, 1/4000

2
and

”
1

= min

1
”

0

/2, (1 ≠ ”
0

)/2

2
.

• Repeat the following for all dú being a power of 2 less than |S| from small to
large:

1. Let rú
= 100dú and ‡ú

= –m/(6dú
log n). Skip this iteration if ‡ú > 1.

2. Sample t = log

2 n/‡ú points x
1

, . . . , xt from {0, 1}n uniformly at random.
3. For each point xj , for log

2 n/÷
1

times, let T be an rú-partition of S drawn
uniformly at random, and run Check-Revealing (f, xj, T, “

1

, ”
1

).

– If it outputs “reject,” do nothing.
– If it outputs “accept,” run Get-Revealing-Edges (f, xj, T, ”

1

/2)

to get B and Q. If |Q| < “
1

rú/2, output “fail” and terminate;
otherwise, output (Q, B).

• When this line is reached (i.e. all calls to Check-Revealing return “fail”)
output “fail.”

Figure 7.10: The procedure Find-Revealing.

Proof. We consider two cases: |GOOD(S)| Ø (‡/100) · 2

n and |GOOD(S)| Æ (‡/100) · 2

n.

Then the statement follows from Lemma 7.6.4 and Lemma 7.6.5 for these two cases

respectively.

The property stated in Corollary 7.6.6 inspires our next procedure Find-Revealing

described in Figure 7.10. We use Corollary 7.6.6 to prove the following lemma:

Lemma 7.6.7. Let f : {0, 1}n æ {0, 1}, S ™ [n], m Ø 1, and – œ (0, 1]. Find-Revealing (f, S, m, –)

outputs either “fail” or a pair (Q, B) such that Q ™ S is nonempty and B contains one

bichromatic edge for each variable in Q. The number of queries it uses can be bounded

289

from above by

Y___]___[
˜O(|Q|) +

˜O
1
|Q|

O
(–m)

2
when it outputs a pair (B, Q); and

˜O(|S|) +

˜O
1
|S|

O
–m

2
when it outputs “fail.”

Furthermore, when S contains a subset H that satisfies (7.22), Find-Revealing (f, S, m, –)

outputs a pair (B, Q) with probability at least 1 ≠ 1/poly(n).

Proof. It follows from Lemma 7.6.1 that when Find-Revealing outputs a pair (Q, B),

Q is a subset of S and B contains one bichromatic edge for each variable in Q. We also

have that Q is nonempty since we compare |Q| with “
1

rú/2 > 0 before returning (B, Q).

The number of queries used when Find-Revealing outputs “fail” follows from its

description. Next we bound the number of queries used when it outputs a pair (Q, B).

Let dÕ be the value of dú when Find-Revealing terminates. Then we have |Q| Ø
“

1

rÕ/2, where rÕ
= 100dÕ. The number of queries used by Check-Revealing in each

iteration is at most

log

2 n · 6dú
log n

–m
· O(log

2 n) · ˜O(1) =

˜O

A
dú

–m

B
.

As a result, the total number of queries used by Check-Revealing is at most

˜O

A
1 + 2 + · · · + dÕ

–m

B
=

˜O

A
dÕ

–m

B
=

˜O

A |Q|
–m

B
.

On the other hand, we only make one call to Get-Revealing-Edges during the last

iteration of dÕ. So the number of queries it uses is at most ˜O(rÕ
) =

˜O(|Q|). It then follows

that the total number of queries used can be bounded using the expression given in the

lemma.

It is left to show that Find-Revealing returns a pair (B, Q) with high probability.

Note that it returns “fail” for two cases. Either all calls to Check-Revealing return “fail”

or one of these calls returns “accept” but the next call to Get-Revealing-Edges returns

“fail.” The first event happens with small probability because when dú
= d, we have ‡ Ø ‡ú

290

from Lemma 7.6.3 and therefore, with probability at least 1 ≠ exp(≠ log

2 n) we get a point

x that satisfies Corollary 7.6.6 on line 2. For this x with probability 1 ≠ exp(≠ log

2 n) we

get a T such that x is (“
1

, ”
1

)-revealing for T on line 3. When this happens, it follows from

Lemma 7.6.2 that the subroutine Check-Revealing outputs “accept” with probability

at least 1 ≠ 1/poly(n).

For the second event to happen, either one of the calls to Check-Revealing (f, x, T, “
1

, ”
1

)

returns “accept” while x is not (“
1

/2, ”
1

/2)-revealing for T, or the only call to Get-Revealing-Edges

(f, x, T, ”
1

/2) fails to find enough bichromatic edges while x is indeed (“
1

/2, ”
1

/2)-

revealing for T. It follows from Lemma 7.6.1 and 7.6.2 and a union bound that this

happens with low probability.

Next we prove Lemma 7.6.4 and Lemma 7.6.5. We start with Lemma 7.6.4.

Proof of Lemma 7.6.4. Consider the following procedure to draw an r-partition T =

{Tj}jœ[r]

of S:

1. Sample g
0

: S \ N(y) æ [r] uniformly at random; let T(0)

=

Ó
T(0)

j

Ô
jœ[r]

with

T(0)

j = g≠1

0

(j).

2. Sample g
1

: N(y) æ [r] uniformly at random; let T(1)

=

Ó
T(1)

j

Ô
jœ[r]

with T(1)

j =

g≠1

1

(j).

3. Let T =

Ó
Tj

Ô
jœ[r]

be given by Tj = T(0)

j fi T(1)

j .

We note that the above procedure samples a uniformly random r-partition T of S. Consider

the following set P ™ [r] defined using T(0) and T(1):

P =

Ó
i œ [r] : i œ REVEAL(y, T(0), ”

0

) and
---T(1)

i

--- Æ 1

Ô
.

We note that every i œ P satisfies

Pr
R™Ti

Ë
f(y) ”= f(y(R)

)

È
Ø Pr

R™Ti

Ë
R fl T(1)

i = ÿ
È

· Pr
R™Ti

Ë
f(y) ”= f(y(R)

)

--- R fl T(1)

i = ÿ
È

Ø 0.5 · Pr
R™T(0)

i

Ë
f(y) ”= f(y(R)

)

È
Ø ”

0

/2,

291

where we used the fact that i œ P implies |T(1)

i | Æ 1 so that R fl T(1)

i = ÿ with probability

at least 1/2, and the fact that i œ REVEAL(y, T(0), ”
0

).

Therefore, it suffices to show that with probability at least ÷
0

/2 over the draw of T,

|P| Ø “
0

r/2. Towards this goal, we consider the event E which occurs when y is (“
0

, ”
0

)-

revealing with respect to T(0). Since y œ GOOD(S), the event E occurs with probability at

least ÷
0

.

Fix an r-partition T (0) of S\N(y) such that E occurs, and let REVEAL = REVEAL(y, T (0), ”
0

).

Then for each j œ REVEAL the probability of |T(1)

j | Ø 2 is at most (using r = 100d)

A
2d

2

B
· 1

r2

Æ 1

5000

.

So the number of j œ REVEAL with |T(1)

j | Ø 2 being more than |REVEAL|/2 can only

happen with probability at most 1/2500, and when this does not happen, the size of P is at

least |REVEAL|/2 Ø “
0

r/2. Overall, this happens with probability at least ÷(1≠1/2500) Ø
÷

0

/2.

Finally we prove Lemma 7.6.5. We start with some notation. Given a point x œ U , we

let

Y (x) =

Ó
x(i) œ V : i œ N(x)

Ô
denote the set of neighbors of x in G, where |Y (x)| = degG(x) œ [d : 2d]. Given a

y œ Y (x) and an r-partition T = {Ti} of S, let T (0,y)

= {T (0,y)

i } denote the r-partition of

S \ N(y) with

T (0,y)

i = Ti \ N(y).

Proof of Lemma 7.6.5. Let U Õ
=

Ó
x œ U : |Y (x) fl GOOD(S)| Ø (3/4) · |Y (x)|

Ô
. We note

that:

|U Õ| · d Æ ÿ
xœU Õ

degG(x) Æ |GOOD(S)| · 2d.

Using |GOOD(S)| Æ (‡/100) · 2

n and |U | Ø ‡2

n, at least ‡2

n/2 many points x œ U satisfy

|Y (x) fl GOOD(S)| Æ (3/4) · |Y (x)|. We prove in the rest of the proof that every such

292

x œ U is (1/4000, (1 ≠ ”
0

)/2)-revealing for T with probability at least 1/3 over the draw

of a random r-partition T of S.

Given a partition T = {Tj}r
j=1

of S we consider the following subset A(T) of Y (x) \
GOOD(S):

Y__]__[x(i)
= y œ Y (x) \ GOOD(S) : for the k œ [r] with i œ Tk,

(i) Tk fl (N(x) fi N(y)) = {i}
(ii) k /œ REVEAL(y, T (0,y), ”

0

)

Z__̂
__\ .

For each x(i)
= y œ A(T), let k œ [r] be the index with i œ Tk. Then we have

Pr
R™Tk

Ë
f(x) ”= f(x(R)

)

È
Ø Pr

R™Tk

Ë
i œ R

È
· Pr

R™Tk

Ë
f(x) ”= f(x(R)

)

--- i œ R
È

= 0.5 · Pr
RÕ™T

(0,y)

k

Ë
f(x) ”= f(x(RÕfi{i})

)

È
(7.23)

= 0.5 · Pr
RÕ™T

(0,y)

k

Ë
f(y) = f(y(RÕ

)

)

È
Ø (1 ≠ ”

0

)

O
2. (7.24)

Here (7.23) follows from the fact i œ R with probability 1/2; In that case, letting RÕ
=

R\{i} gives x(R)

= y(RÕ
), and because Tk flN(y) = {i} we have that R ™ Tk conditioning

on i œ R is distributed as RÕ fi {i} with RÕ ™ T (0,y)

k . Additionally, (7.24) follows

from the fact that f(x) ”= f(y) since (x, y) is a bichromatic edge of f , and the fact that

k /œ REVEAL(y, T (0,y), ”
0

).

Since Tk fl N(x) = {i} the number of k œ [r] for which (7.24) holds is at least |A(T)|.
As a result, x is (|A(T)|/r, (1 ≠ ”

0

)/2)-revealing for T . Therefore, in order to show the

lemma it suffices to show that |A(T)| Ø d/40 with probability at least 1/3 over the draw of

a random r-partition T of S.

For this purpose, we consider a fixed x(i)
= y œ Y (x) \ GOOD(S) and show that

y œ A(T) with probability at least 1/2. Similarly to the proof of Lemma 7.6.4, we can

equivalently draw a uniformly random r-partition T = {Tj}jœ[r]

of S by first drawing two

uniformly random r-partitions

T(0,y)

=

Ó
T(0,y)

j

Ô
jœ[r]

and T(1,y)

=

Ó
T(1,y)

j

Ô
jœ[r]

293

of S \ N(y) and N(y), respectively, and then setting Tj = T(0,y)

j fi T(1,y)

j for each j œ [r].

Then we have

Pr
T

Ë
y /œ A(T)

È
Æ Pr

T

Ë
the k œ [r] with i œ Tk satisfies Tk fl (N(x) fi N(y)) ”= {i}

È
+ Pr

T

Ë
y is (“

0

, ”
0

)-revealing for T(0,y)

È
+ Pr

T

Ë
y is not (“

0

, ”
0

)-revealing for T(0,y) and Tk – i has k /œ REVEAL(y, T(0,y), ”
0

)

È
Æ

A |N(x) fi N(y)| ≠ 1

r

B
+ ÷

0

+ (1 ≠ ÷
0

)“
0

Æ 4d

r
+ ÷

0

+ “
0

< 1/2,

using r = 100d. Therefore, the expected size of A(T) is at least |Y (x) \ GOOD(S)|/2.

Writing

— = Pr
T

C
|A(T)| Ø |Y (x) \ GOOD(S)|

10

D
,

we have 1/2 Æ — + (1 ≠ —)/10 and thus, — Ø (1/2) ≠ (1/10) > 1/3. So with probability

at least 1/3,

A(T) Ø |Y (x) \ GOOD(S)|
10

Ø 1

10

· |Y (x)|
4

Ø d

40

since |Y (x) fl GOOD(S)| Æ (3/4) · |Y (x)|. This finishes the proof of the lemma.

7.6.3 The Find-Hi-Inf procedure

Finally we describe the procedure Find-Hi-Inf in Figure 7.11 and prove the following

lemma.

Lemma 7.6.8. Let S ™ [n], m Ø 1 and – œ (0, 1]. Then Find-Hi-Inf (f, S, m, –)

makes at most
˜O

A
|S| +

|S|
–m

B

queries to f . When S contains a subset H that satisfies (7.22), with probability at least

1 ≠ 1/poly(n) Find-Hi-Inf (f, S, m, –) outputs (Q, B) such that

|Q fl H| Ø |H| ≠ m

294

Subroutine Find-Hi-Inf (f, S, m, –)

Input: Query access to f : {0, 1}n æ {0, 1}, S ™ [n], m Ø 1 and – œ (0, 1].
Output: A set of bichromatic edges B of f whose variables form a subset Q ™ S.

1. Initialize Q = B = ÿ, and Sú
= S.

2. Repeatedly run Find-Revealing (f, Sú, m, –):

• If it outputs “fail,” terminate and output Q and B.
• Otherwise, if Find-Revealing outputs (BÕ, QÕ

), update the sets as

Q Ω Q fi QÕ, B Ω B fi BÕ and Sú Ω Sú \ QÕ.

Figure 7.11: The procedure Find-Hi-Inf.

and B contains one bichromatic edge for each variable in Q.

Proof. First note that the procedure terminates once Find-Revealing outputs “fail.”

On the other hand, whenever Find-Revealing outputs a pair (BÕ, QÕ
), |Sú| decreases

by |QÕ|. It then follows from Lemma 7.6.7 that the total number of queries used by calls to

Find-Revealing except the last one that outputs “fail” is ˜O(|S|) +

˜O(|S|/(–m)) since

the total size of QÕ’s they output is at most |S|. By Lemma 7.6.7, the number of queries

used by the last call can be bounded by the same expression.

Suppose that at some moment of the execution, we have |Q fl H| < |H| ≠ m. Then

Sú
= S \ Q satisfies |Sú fl H| > m. This implies that, for |Q fl H| < |H| ≠ m to

happen at the end, a necessary condition is that one of the calls to Find-Revealing has

|Sú fl H| > m in input but outputs “fail.” It follows from Lemma 7.6.7 and a union bound

on at most |S| Æ n many calls to Find-Revealing that this happens with probability at

most 1/poly(n).

7.7 The Algorithm for Case 2

Below, we study Case 2 of the algorithm as described in Section 7.4. Let s Ø t œ [�], h œ
[3�], and ¸ œ [Âlog nÊ]. We assume in Case 2 that the input function f : {0, 1}n æ {0, 1}

295

Procedure AlgorithmCase2(f)

Input: Query access to a Boolean function f : {0, 1}n æ {0, 1}
Output: Either “unate,” or two edges constituting an edge violation of f to unateness.

1. Repeat the following O(1) times:
2. Draw S µ [n] of size n2/3 uniformly at random, and let k = Á |Iú|

n1/3

log n
Ë.

3. Let (Q, B) Ω Find-Hi-Inf (f, S, k, –).
4. Repeat O (

Ô
n�

14/Á2

) times:
5. Sample T µ S uniformly at random of size

ÏÔ
n

2

s

Ì
.

6. Sample x œ {0, 1}n uniformly at random and run
AE-SEARCH(f, x, T)

7. Let A
+

be the set of i œ [n] such that a monotone edge along variable i is
found

8. Repeat O (

Ô
n�

14/Á2

) times:
9. Sample T µ S uniformly at random of size

ÏÔ
n

2

t

Ì
.

10. Sample an x œ {0, 1}n uniformly at random and run
AE-SEARCH(f, x, T)

11. Let A≠ be the set of i œ [n] such that an anti-monotone edge along variable
i is found

12. Output an edge violation of f to unateness if one is found in B, A
+

and A≠.
13. Output “unate.”

Figure 7.12: Algorithm for Case 2

satisfies Lemma 7.3.6 with parameters s, t, h, ¸ on a set I µ [n] of size |I| = 2

¸. Every

variable i œ I satisfies

SCORE+

i,s Ø 2

s≠h SCORE≠
i,t Ø 2

t≠h, and
|I|
2

h
= �

A
Á2

�

11

B
. (7.25)

We assume

|I| · 1

2

s
Ø |I| · 1

2

t
Ø n2/3, (7.26)

296

and that for al least half of the variables i œ I,

Inf f (i) Ø – :=

Á2 · n1/3

|I| · �

13

. (7.27)

Similarly to case 1 in Section 7.5, we consider the subset Iú ™ I of size at least Á |I|
2

Ë
satisfying (7.27) for all i œ Iú.

This algorithm AlgorithmCase2, show in Figure 7.12, finds an edge violation with

high probability. At a high level, the algorithm first samples a uniformly random set S of

siz e n2/3 and uses Find-Hi-Inf to find bichromatic edges along almost all variables

in S fl Iú. Suppose first, that most of the bichromatic edges from S fl Iú found during

Find-Hi-Inf are anti-monotone edges. Then via a similar analysis to [52], after running

AE-SEARCH(f, x, S) on a uniform random sets T µ S of size ÁÔ
n/2

sË and a uniform

point x ≥ {0, 1}n for ÂO(

Ô
n/Á2

) many iterations, we expect to find a monotone edge along

some direction in S fl Iú. Since the algorithm had already found an anti-monotone edge

along many variables in S fl Iú, the algorithm will very likely find a violation to unateness.

Similarly, if most of the bichromatic edges along variables in SflIú during Find-Hi-Inf

are monotone, then AE-SEARCH(f, x, T) will likely find an edge violation when T is a

random set of S of size ÁÔ
n/2

tË after ˜O(

Ô
n/Á2

) iterations.

Lemma 7.7.1 (Query complexity of AlgorithmCase2). AlgorithmCase2(f) makes

˜O
1
n2/3/Á2

2

queries to f .

Proof. The query complexity of AlgorithmCase2(f) follows from the description in

Figure 7.12. In particular, we lines 4–12 make a total of ˜O(

Ô
n/Á2

), so it remains to

upper-bound the query complexity of line 3 invoking Find-Hi-Inf. By Lemma 7.6.8,

Find-Hi-Inf(f, S, k, –), where

|S| = n2/3 and k = Á |Iú|
n1/3

log n
Ë,

297

makes
˜O

A
|S| +

|S|
–k

B
=

˜O
1
n2/3/Á2

2
,

using the assumptions of Case 2 in (7.25), (7.26), and (7.27).

We start the analysis of AlgorithmCase2 by defining the notion of informative sets for

case 2. Recall that, in Section 7.5, Definition 61 gave a different definition of informative

sets for case 1. Since these definitions serve very similar purposes in the analysis of the

algorithm, we use the same name. Furthermore, for T µ [n] of size Á
Ô

n
2

s Ë, PE+

i (T) is

the set of s-strong monotone edges along variable i which are T -persistent. Similarly, for

T µ [n]\{i} of size Á
Ô

n
2

t Ë, PE≠
i (T) is the set of t-strong anti-monotone edges along variable

i that are T -persistent. Note that the definitions of these sets are slightly different than in

Subsection 7.5.1.

Definition 66. We say that a set S µ [n] \ {i} of size (n2/3 ≠ 1) is i-informative if the

following two conditions hold:

i. with probability at least 1/10 over the draw of T µ S of size ÁÔ
n/2

sË, |PE+

i (T)| Ø
2

s≠h

10

· 2

n.

ii. with probability at least 1/10 over the draw of T µ S of size ÁÔ
n/2

tË, |PE≠
i (T) Ø

2

t≠h

10

· 2

n.

Lemma 7.7.2. For every i œ Iú, when sampling S µ [n] uniformly of size n2/3, we have

Pr
Sµ[n]

[i œ S and S \ {i} is i-informative] Ø 1

2n1/3

.

Proof. Recall that for m œ , Pi,m is the uniform distribution over subsets of [n] \ {i} of

size m ≠ 1. For m = n2/3, we define the quantity:

“ = Pr
S≥Pi,m

[S does not satisfy (i) in Definition 66] .

For m
1

=

ÏÔ
n

2

s

Ì
Æ m, consider the quantity

Pr
e,T

Ë
e œ PE+

i (T)

È
,

298

where e is an s-strong monotone edge sampled uniformly at random, and T ≥ Pi,m
1

. By

the definition of s-strong monotone edges, we have the above probability is at least 1 ≠ o(1).

On the other hand, we may use the definition of “ to upper bound the above probability by

“(

1

10

+

9

10

· 1

10

) + (1 ≠ “), which implies “ = o(1). Analogously, letting m
2

= Á
Ô

n
2

t Ë, we

define the quantity:

— = Pr
S≥Pi,m

2

[S does not satisfy (ii) in Definition 66] .

Similarly as above, we considering Pr[e œ PE≠
i (T)], for T ≥ Pi,m

2

and e a uniformly

random t-strong anti-monotone edge, to conclude — = o(1). Therefore, the probability

over S ≥ Pi,m that S is i-informative is at least 1 ≠ “ ≠ — Ø 1 ≠ o(1). Finally,

Pr
Sµ[n]

[i œ S and S \ {i} is i-informative] Ø Pr
Sµ[n]

[i œ S] · Pr
SÕ≥Pi,m

[SÕ is i-informative] Ø 1

2n1/3

.

When sampling a set S µ [n] of size n2/3 in line 2 of AlgorithmCase2(f), we may

define the set

J = {i œ Iú
: i œ S and S \ {i} is i-informative} . (7.28)

By Lemma 7.7.2, we immediately obtain

E
Sµ[n]

[|J |] Ø |Iú|
2n1/3

= �

A
2

h · Á2

n1/3 · �

11

B
, (7.29)

where the second inequality follows from (7.25). We consider the event E , defined over the

randomness of sampling S in line 2, which occurs when |S fl Iú| Æ 4|Iú|
n1/3

and |J | Ø |Iú|
10n1/3

.

Lemma 7.7.3. In every iteration of line 2 of AlgorithmCase2(f), event E occurs with

probability at least �(1).

Proof. By (7.26) and the fact that 1

2

s Æ 1, ES[|S fl Iú|] Ø |Iú|/n1/3 Ø n1/3. Thus, by

Lemma 7.11.1, |S fl Iú| Æ 4|Iú|/n1/3 with probability at least 1 ≠ exp

1
≠�(n1/3

)

2
. Let

299

— be the probability over S µ [n] that |J | Ø |Iú|/(10n1/3

). We may then upper bound

E[|J |] using the definition of — by

exp(≠�(n1/3

)) · n2/3

+ — · 4|Iú|
n1/3

+ (1 ≠ —) · |Iú|
10n1/3

,

which, combined with the lower bound in (7.29), implies — Ø �(1). Thus, the probability E
occurs is at least — ≠ exp(≠�(n1/3

)) = �(1).

Thus, consider some iteration of AlgorithmCase2(f) where event E occurs, and by

Lemma 7.7.3 there exists such an iteration with high constant probability. The rest of this

section is devoted to showing that the iteration of AlgorithmCase2(f) where E occurs will

find a violation to unateness with high probability.

Lemma 7.7.4. Suppose that a particular iteration of AlgorithmCase2(f), event E occurs.

At that iteration, AlgorithmCase2(f) finds a violation with high probability.

Proof. Fix the particular iteration where event E occurs. We apply Lemma 7.6.8 with the

hidden set H = J to conclude that at line 3 of AlgorithmCase2, the set of variables Q for

which bichromatic edges are observed during Find-Hi-Inf satisfies

|Q fl J | Ø |J | ≠ k Ø |Iú|
20n1/3

, (7.30)

with probability at least 1 ≠ 1/poly(n), where in the last inequality, we used the fact that

k Æ |J |/2, as well as the fact that |J | Ø |Iú|/(10n1/3

) when E occurs. Assume that for

most of the variables in Q fl J , B contains anti-monotone edges in these variables, and let

C µ Q fl J be the set of these variables, which by assumption,

|C| Ø |I|
40n1/3

. (7.31)

The case when most variables in Q fl J contain monotone edges will follow by a symmetric

argument. We will now show that during the execution of lines 4–7 of AlgorithmCase2(f),

A
+

will contain a monotone edge along some variable in C with high probability.

300

Towards this goal, consider a particular execution of line 5 which samples a set T µ S

of size m
1

=

ÏÔ
n

2

s

Ì
uniformly at random, and let

D =

I
i œ C fl T :

|PE+

i (T \ {i})|
2

n
Ø 2

s≠h

10

J
.

We note that since C µ J , every i œ C satisfies

Pr
TµS

[i œ D] = Pr
TµS

[i œ T] · Pr
TÕ≥Pi,m

1

C |PE+

i (TÕ
)|

2

n
Ø 2

s≠h

10

D

Ø m
1

n2/3

· 1

10

Ø 1

10 · 2

s · n1/6

.

which implies that the parameter

— = E
TµS

[|D|] Ø |C| · 1

10 · 2

s · n1/6

Ø |Iú|
400 · 2

s · Ô
n

(7.32)

by (7.31), and similarly, note that E[|C fl T|] = �(—).

Suppose first that — Æ log

2 n, so that E[|C fl T|] = O(log

2 n). Then, by Lemma 7.11.1,

|D| Æ O(log

2 n) with probability at least 1 ≠ exp

1
≠�(log

2 n)

2
. This implies that during

the execution of line 5 and 6,

Pr
TµS

x≥{0,1}n

Ë
÷i œ D and x œ PE+

i (T \ {i})

È
Ø Pr

TµS
[|D| Ø 1] · 2

s≠h

10

= �

A
—

log

2 n
· 2

s≠h

10

B

(7.33)

Ø �

A
1

log

2 n
· |Iú|

400 · 2

s · Ô
n

· 2

s≠h

10

B
(7.34)

Ø �

A |Iú|
2

h · Ô
n · log

2 n

B
Ø �

A
Á2

�

13

Ô
n

B
.

(7.35)

We note (7.33) follows from the fact that i œ D implies PE+

i (T \ {i}) Ø 2

n · 2

s≠h

10

and the

fact that Pr[|D| Ø 1] = �(

—
log

2 n
); (7.34) follows from (7.32); and, (7.35) follows from

(7.25). Thus, at least one iteration of the O(

Ô
n·�14

Á2

) iterations of lines 5 and 6 will output a

monotone edge in some variable in C with high probability.

301

Suppose that — Ø log

2 n. In this case, with probability at least 1 ≠ exp

1
≠�(log

2 n)

2
,

|D| Ø —

4

,

and when this occurs,

Pr
x≥{0,1}n

Ë
÷i œ D and x œ PE+

i (T \ {i})

È
Ø —

4

· 2

s≠h

10

= �

A
Á2

�

11

Ô
n

B

by (7.32) and (7.25). Thus, in this case again, we may conclude that at least one iteration of

lines 5 and 6 will output a monotone edge from C with high probability.

7.8 The Algorithm for Case 3

Below, we prove correctness of AlgorithmCase3(f), which covers Case 3 of the al-

gorithm. We let s Ø t œ [�], h œ [3�], and l œ [Álog nË] be parameters, so that

f : {0, 1}n æ {0, 1} is Á-far from unate and satisfies Lemma 7.3.6 with s, t, h, ¸, for a

hidden set I µ [n] of size |I| = 2

¸. Similarly to case 1 and case 2, we assume the

parameters s, t, h, ¸, and the set I satisfy that every i œ I,

SCORE+

i,s Ø 2

s≠h SCORE≠
i,t Ø 2

t≠h and
|I|
2

h
= �

A
Á2

�

11

B
. (7.36)

Lastly, we assume that I is not too large, i.e.,

|I| · 1

2

s
Æ |I| · 1

2

t
Æ n2/3. (7.37)

Instantiating the algorithm of [52] with the additional assumptions corresponding to

Case 3 from Section 7.4 would give the desired upper bound on the query complexity.

Specifically, one may derive from (7.37), that ESµ[n]

[|S fl I|] Æ n1/6, which corresponds

to the parameter – in [52]. As a result of Fact 5.4 and Fact 5.12, the query complexity of the

302

Procedure AlgorithmCase3(f)

Input: Query access to a Boolean function f : {0, 1}n æ {0, 1}
Output: Either “unate,” or two edges constituting an edge violation of f to unateness.

1. Repeat the following O
1
Á2

tÔ
n log

2 n
|I| Ë

2
times:

2. Draw T µ [n] of size Á
Ô

n
2

t Ë uniformly at random.

3. Repeat O
1

2

h

2

t log

2 n
2

times:
4. Sample x œ {0, 1}n uniformly at random and run

AE-SEARCH(f, x, T)

5. Let A be the set of i œ [n] such that an anti-monotone edge along variable i
is found.

6. Repeat O (2

s/2

t
) times:

7. Draw S µ T of size Á
Ô

n
2

s Ë uniformly at random.

8. Repeat O
1

2

h

2

s log

2 n
2

times:
9. Sample an y œ {0, 1}n uniformly at random and run

AE-SEARCH(f, y, S)

10. Let B be the set of i œ [n] such that a monotone edge along variable i is
found

11. Output an edge violation of f to unateness if one is found in B.
12. Output “unate.”

Figure 7.13: Algorithm for Case 3

algorithm in [52] is

˜O(

Ô
–n/Á2

) Æ ˜O(n7/12/Á2

) and ˜O(

Ô
n/Á2

),

which are ˜O(n2/3/Á2

). However, there is a (minor) technical caveat in the different defini-

tions for strong edges and SCORE in Definition 59 and the analogous definitions in [52]. For

the sake of completeness, we include a simple algorithm achieving an ˜O(n2/3/Á2

)-query

upper bound in Figure 7.13.

Lemma 7.8.1 (Query complexity of AlgorithmCase3). AlgorithmCase3(f) makes

303

at most

O

AG
2

tÔn log

2 n

|I|
HB A

˜O

A
2

h

2

t

B
+ O

3
2

s

2

t

4
· ˜O

A
2

h

2

s

BB
=

˜O(

Ô
n/Á2

) +

˜O(n2/3

).

queries to f

Proof. The query complexity upper bound is divided into two cases. If 2

tÔn log

2

= �(|I|),

then the query complexity is ˜O (

Ô
n/Á2

). Otherwise, the query complexity is ˜O(

2

h

2

t) =

˜O(|I|/2

t
) and the bound follows from (7.37).

We will use the definition of i-informative for monotone and anti-monotone edges given

in Definition 61. The following lemma simply follows from applying Lemma 7.5.3 and

Lemma 7.5.4, and taking a union bound.

Claim 7.8.2. With probability 1≠o(1) over the draw of T and S in lines 2 and 3 conditioned

on i œ S µ T, S \ {i} is i-informative for monotone edges and T \ {i} is i-informative for

anti-monotone edges.

Furthermore, assuming that i œ S µ T is sampled in line 2 and 3, where T \ {i} is

i-informative for anti-monotone edges, and S \ {i} is i-informative for monotone edges,

it follows that there exists two sets of points Xi and Yi of size �(

2

t

2

h) · 2

n and �(

2

s

2

h) · 2

n,

respectively, such that if x ≥ Xi and y ≥ Yi are sampled in lines 5 and 8, an edge violation

is found with probability at least �(1). Since lines 5 and 8 are repeated sufficiently many

times, such points x and y will be sampled from Xi and Yi, respectively. Therefore, since

S is sampled at least ˜O(max{2

s/2

t, 2

sÔn/|I|}) times, it suffices to prove the following

claim.

Claim 7.8.3. With probability �(max{1, |I|
2

s
Ô

n log

2 n
}) over the draw of T and S in lines 2

and 3, S fl I ”= ÿ.

Proof. Let “ be the probability over S µ [n] that S fl I ”= ÿ, which we will lower bound in

the remainder of the proof. Consider the quantity

E
Sµ[n]

[|S fl I|] ,

304

Subroutine AE-SEARCH (f, x, S)

Input: Query access to f : {0, 1}n æ {0, 1}, x œ {0, 1}n, and a nonempty set S ™ [n].
Output: Either a variable i œ S with f(x(i)

) ”= f(x), or “fail.”
1. Query f(x) and set b Ω f(x).
2. Draw L = Á4 log nË subsets T

1

, . . . , TL ™ S of size t = Â(|S| ≠ 1)/2Ê + 1

uniformly.
3. Query f(x(T¸)

) and set the output to be b¸ for each ¸ œ [L]. Let C ™ S where

C =

‹
¸œ[L] : b¸ ”=b

T¸ (C = ÿ by default if b¸ = b for all ¸).

4. If C = {i} for some i, query f(x(i)
) and return i if f(x(i)

) ”= b; otherwise return
“fail.”

Figure 7.14: Description of the adaptive edge search subroutine.

and note that since S is a uniform random subset of [n] of size ÁÔ
n/2

sË, the above expec-

tation is at least |I|/(2

sÔn). By Lemma 7.11.1, |S fl I| Æ 4 max{log

2 n, |I|/(2

sÔn)}
with probability at least 1 ≠ exp

1
≠�(log

2 n)

2
. As a result, we may upper bound the above

expectation using the definition of “ by

n exp

1
≠�(log

2 n)

2
+ “ · 4 max{log

2 n, |I|/(2

sÔn)}

which gives the desired lower bound on “.

7.9 Adaptive Edge Search

For completeness we present the adaptive edge search algorithm, AE-SEARCH in Fig-

ure 7.14, which first appeared in [52]. We recall the lemma and include its proof below.

Lemma 7.9.1. Given a point x œ {0, 1}n and a set S ™ [n + 1], AE-SEARCH (f, x, S)

makes O(log n) queries to f , and returns either an i œ S such that (x, x(i)
) is a bichromatic

edge, or “fail.”

305

Let (x, x(i)
) be a bichromatic edge of f along i. If i œ S and (x, x(i)

) is (S \ {i})-

persistent, then both AE-SEARCH (f, x, S) and AE-SEARCH (f, x(i), S) output i with prob-

ability at least 2/3.

The first part of the lemma follows directly from the description of AE-SEARCH. For the

second part, we prove it for AE-SEARCH(f, x, S) since the proof for AE-SEARCH(f, x(i), S)

is symmetric. The proof proceeds by exactly the same as Claim 6.6 and 6.7 of [52], except

for some minor notational differences. We present a proof of the claims but adapted to the

notation of this chapter.

Claim 7.9.2. Let (x, x(i)
) be a bichromatic edge and i œ S ™ [n + 1]. If (x, x(i)

) is

(S \ {i})-persistent, then, in line 3 of AE-SEARCH (f, x, S), i œ C with probability at least

1 ≠ o(1).

Proof. Let T
1

, . . . , TL ™ S be subsets sampled in line 2 of AE-SEARCH. The parameter t

satisfies

t =

E |S| ≠ 1

2

F
+ 1 Ø |S|

2

.

We note that there are two events where i /œ C: (1) either all T¸ satisfy f(x(T¸)

) = b, or (2)

there is an ¸ œ [L] with i /œ T¸ and f(x(T¸)

) ”= b. We show that the probability of either

event occurring is at most o(1), so the claim follows by a union bound.

For the first event, a single sample of a random set T ™ S of size t satisfies

Pr
T™S
|T|=t

Ë
f(x(T)

) ”= b
È

Ø Pr
T™S
|T|=t

Ë
i œ T

È
· Pr

TÕ™S\{i}
|TÕ|=t≠1

Ë
f(x(ifiTÕ

)

) ”= b
È

Ø t

|S| ·
A

1 ≠ 1

log

2 n

B
Ø 1

2

≠ o(1),

where we used the fact that f(x(i)
) ”= b since (x, x(i)

) is bichromatic, and the assumption

that x(i) is (S \ {i})-persistent. Thus the probability that all T¸ satisfy f(x(T¸)

) = b is

(0.5 + o(1))

L
= o(1).

For the second event, using the assumption that x is (S \ {i})-persistent, we have that

Pr
T

1

,...,TL

Ë
÷¸ œ [L] : f(x(T¸)

) ”= b and i /œ T¸

È
Æ L · Pr

T™S
|T|=t

Ë
f(x(T)

) ”= b
--- i /œ T

È
Æ L

log

2 n
= o(1).

306

This finishes the proof of the claim.

Claim 7.9.3. Let (x, x(i)
) be a bichromatic edge and i œ S ™ [n + 1]. If (x, x(i)

) is

(S \ {i})-persistent, then in line 3 of AE-SEARCH (f, x, S), C does not contain any j ”= i

with probability at least 1 ≠ o(1).

Proof. Fix a j œ S but j ”= i. Note that in order for j œ C, every ¸ œ [L] with f(x(T¸)

) ”= b

satisfies j œ T¸. However, since x(i) is (S \ {i})-persistent we have

Pr
T™S
|T|=t

Ë
j /œ T and f(x(T)

) ”= b
È

Ø Pr
T™S
|T|=t

Ë
i œ T

È
· Pr

TÕ™S\{i}
|TÕ|=t≠1

Ë
j /œ TÕ and f(x(TÕfi{i})

) ”= b
È

Ø t

|S| ·
A

1 ≠ t ≠ 1

|S| ≠ 1

≠ 1

log

2 n

B
Ø 1

4

≠ o(1).

Therefore, j œ C with probability (3/4 + o(1))

L
= o(1/n). The claim follows from a union

bound.

It follows by combining these two claims that C = {i} in line 4 with probability at least

1 ≠ o(1). This finishes the proof of the lemma.

7.10 Analysis of the Preprocessing Procedure

We start with the following property of CheckPersistence:

Claim 7.10.1. Given a nonempty set S ™ [n + 1], an ordering fi of S and › œ (0, 1),

CheckPersistence (f, S, fi, ›) makes O(log

5 n/›) many queries to f . Furthermore, if

the fraction of points that are not S-persistent is at least ›, CheckPersistence (f, S, fi, ›)

returns a variable i œ S with probability at least 1 ≠ exp(≠�(log

2 n)).

Proof. The first part of the claim follows from the description of CheckPersistence. For

the second part we note that if the fraction of points that are not S-persistent is at least ›,

then the probability of x and T with f(x) ”= f(x(T)

) is �(›/ log

2 n). It then follows from

the number of times we repeat in CheckPersistence.

We recall the lemma we need for Preprocess:

307

Lemma 7.10.2. Given a Boolean function f : {0, 1}n æ {0, 1}, a nonempty S
0

™ [n + 1],

an ordering fi of S
0

and a parameter › œ (0, 1), Preprocess (f, S
0

, fi, ›) makes at most

O(|S
0

| log

5 n/›) queries to f and with probability at least 1 ≠ exp

1
≠�(log

2 n)

2
, it returns

a subset S ™ S
0

such that at least (1 ≠ ›)-fraction of points in {0, 1}n are S-persistent.

Proof. The query complexity follows from the fact that Preprocess makes at most |S
0

|
many calls to CheckPersistence. In addition, for each call, it follows from Claim 7.10.1

that the probability of CheckPersistence returning nil while S is actually persistent over

less than (1 ≠ ›)-fraction of points is at most exp(≠�(log

2 n)). The lemma follows from a

union bound over |S
0

| Æ n calls.

7.11 Overlap of Two Random Sets of Certain Sizes

Let k, ¸ œ [n] be two positive integers with – = k¸/n. We are interested in the size of

|S fl T| where S is a random k-sized subset of [n] and T is a random ¸-sized subset of [n],

both drawn uniformly.

Lemma 7.11.1. For any t Ø 4–, the probability of |S fl T| Ø t is at most exp(≠�(t)).

Proof. We assume without loss of generality that k Ø ¸. If ¸ > n/2, the claim is trivial as

– > n/4 and t Ø 4– > n. We assume ¸ Æ n/2 below.

We consider the following process. We draw S first. Then we add random (and distinct)

indices of [n] to T round by round for ¸ rounds. In each round we pick an index uniformly

at random from those that have not been added to T yet. Clearly this process generates the

same distribution of S and T that we are interested in.

For each i œ [¸], we let Xi be the random variable that is set to 1 if the index in the ith

round belongs to S and is 0 otherwise. Although Xi’s are not independent, the probability of

Xi = 1 is at most k/(n ≠ ¸) Æ 2k/n using ¸ Æ n/2, for any fixed values of X
1

, . . . , Xi≠1

.

Thus, the expectation of
q

iœ[¸]

Xi is at most 2k¸/n = 2–. The lemma follows directly from

the Chernoff bound (together with a standard coupling argument).

308

Bibliography

[1] José A Adell and Pedro Jodrá. “Exact Kolmogorov and total variation distances
between some familiar discrete distributions.” In: Journal of Inequalities and Appli-
cations 2006.1 (2006), pp. 1–8.

[2] Thomas D. Ahle, Rasmus Pagh, Ilya Razenshteyn, and Francesco Silvestri. “On
the Complexity of Inner Product Similarity Join.” In: Proceedings of the 35th
ACM Symposium on Principles of Database Systems (PODS ’2016). Available as
arXiv:1510.02824. 2016, pp. 151–164.

[3] Noga Alon, Yossi Matias, and Mario Szegedy. “The space complexity of approxi-
mating the frequency moments.” In: Journal of Computer and System Sciences 58.1
(1999), pp. 137–147.

[4] Noga Alon and Vitaly D. Milman. “⁄1, isoperimetric inequalities for graphs, and
superconcentrators.” In: Journal of Combinatorial Theory, Series B 38.1 (1985),
pp. 73–88.

[5] Alexandr Andoni. “Nearest Neighbor Search: the Old, the New, and the Impossible.”
PhD thesis. MIT, 2009.

[6] Alexandr Andoni and Piotr Indyk. “Near-Optimal Hashing Algorithms for Ap-
proximate Nearest Neighbor in High Dimensions.” In: Proceedings of the 47th
Annual IEEE Symposium on Foundations of Computer Science (FOCS ’2006). 2006,
pp. 459–468.

[7] Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. “Earth mover distance
over high-dimensional spaces.” In: Proceedings of the 19th ACM-SIAM Symposium
on Discrete Algorithms (SODA ’2008). 2008, pp. 343–352.

[8] Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. “Overcoming the ¸
1

Non-
Embeddability Barrier: Algorithms for Product Metrics.” In: Proceedings of the 20th
ACM-SIAM Symposium on Discrete Algorithms (SODA ’2009). 2009, pp. 865–874.

309

[9] Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. “Approximate nearest neigh-
bor search in high dimensions.” In: Proceedings of the International Congress of
Mathematicians (ICM ’2018). 2018.

[10] Alexandr Andoni and Ilya Razenshteyn. “Optimal Data-Dependent Hashing for
Approximate Near Neighbors.” In: Proceedings of the 47th ACM Symposium on
the Theory of Computing (STOC ’2015). Available as arXiv:1501.01062. 2015,
pp. 793–801.

[11] Alexandr Andoni and Ilya Razenshteyn. “Tight Lower Bounds for Data-Dependent
Locality-Sensitive Hashing.” In: Proceedings of the 32nd International Symposium
on Computational Geometry (SoCG ’2016). Available as arXiv:1507.04299. 2016,
9:1–9:11.

[12] Alexandr Andoni, Huy L. Nguyen, Aleksandar Nikolov, Ilya Razenshteyn, and
Erik Waingarten. “Approximate near neighbor for general symmetric norms.” In:
Proceedings of the 50th ACM Symposium on the Theory of Computing (STOC ’2017).
2017.

[13] Alexandr Andoni, Piotr Indyk, Huy L. Nguyen, and Ilya Razenshteyn. “Beyond
Locality-Sensitive Hashing.” In: Proceedings of the 25th ACM-SIAM Symposium on
Discrete Algorithms (SODA ’2014). Available as arXiv:1306.1547. 2014, pp. 1018–
1028.

[14] Alexandr Andoni, Assaf Naor, Aleksandar Nikolov, Ilya Razenshteyn, and Erik
Waingarten. “Data-dependent Hashing via Non-linear Spectral Gaps.” In: Proceed-
ings of the 50th ACM Symposium on the Theory of Computing (STOC ’2018).
2018.

[15] Alexandr Andoni, Khanh Do Ba, Piotr Indyk, and David Woodruff. “Efficient
sketches for earth-mover distance, with applications.” In: Proceedings of the 50th
Annual IEEE Symposium on Foundations of Computer Science (FOCS ’2009). 2009.

[16] Alexandr Andoni, Assaf Naor, Aleksandar Nikolov, Ilya Razenshteyn, and Erik
Waingarten. “Hölder Homeomorphism and Approximate Nearest Neighbors.” In:
Proceedings of the 59th Annual IEEE Symposium on Foundations of Computer
Science (FOCS ’2018). 2018.

[17] Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. “Lower
Bounds on Time–Space Trade-Offs for Approximate Near Neighbors.” Available as
arXiv:1605.02701. 2016.

310

[18] Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. “Opti-
mal Hashing-based Time–Space Trade-offs for Approximate Near Neighbors.” In:
Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA ’2017).
Available as arXiv:1608.03580. 2017.

[19] Mark Anthony Armstrong. Basic Topology. Springer-Verlag, 1983.

[20] Sanjeev Arora, Elad Hazan, and Satyen Kale. “The multiplicative weights update
method: a meta-algorithm and applications.” In: Theory of Computing 8.1 (2012),
pp. 121–164.

[21] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom.
“Models and issues in data stream systems.” In: Proceedings of the 21st ACM
Symposium on Principles of Database Systems (PODS ’2002). 2002.

[22] Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S. Pallavoor, Sofya
Raskhodnikova, and C. Seshadhri. “A lower bound for nonadaptive, one-sided error
testing of unateness of Boolean functions over the hypercube.” In: arXiv preprint
arXiv:1706.00053 (2017).

[23] Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S. Pallavoor, Sofya
Raskhodnikova, and C. Seshadhri. “Optimal Unateness Testers for Real-Values
Functions: Adaptivity Helps.” In: Proceedings of the 44th International Colloquium
on Automata, Languages and Programming (ICALP ’2017). 2017.

[24] Roksana Baleshzar, Meiram Murzabulatov, Ramesh Krishnan S. Pallavoor, and So-
fya Raskhodnikova. “Testing unateness of real-valued functions.” In: arXiv preprint
arXiv:1608.07652 (2016).

[25] Keith Ball. An Elementary Introduction to Modern Convex Geometry. Vol. 31. MSRI
Publications. Cambridge University Press, 1997.

[26] Keith Ball, Eric A. Carlen, and Elliott H. Lieb. “Sharp uniform convexity and
smoothness inequalities for trace norms.” In: Inventiones Mathematicae 115.1
(1994), 463––482.

[27] Yair Bartal and Lee-Ad Gottlieb. “Approximate nearest neighbor search for ¸p-
spaces (2 < p < Œ) via embeddings.” In: Theoretical Computer Science 757
(2019), pp. 27–35.

311

[28] Aleksandrs Belovs and Eric Blais. “A polynomial lower bound for testing mono-
tonicity.” In: Proceedings of the 48th ACM Symposium on the Theory of Computing
(STOC ’2016). 2016, pp. 1021–1032.

[29] Yoav Benyamini and Joram Lindenstrauss. Geometric Nonlinear Functional Analy-
sis. Vol. 1. American Mathematical Society, 1998.

[30] Yoav Benyamini and Joram Lindenstrauss. Geometric Nonlinear Functional Analy-
sis. Vol. 48. American Mathematical Society, 2000.

[31] Jöran Bergh and Jörgen Löfström. Interpolation Spaces. Springer-Verlag, 1976.

[32] Eric Blais. “Improved bounds for testing juntas.” In: Approximation, Randomiza-
tion and Combinatorial Optimization. Algorithms and Techniques. Springer, 2008,
pp. 317–330.

[33] Eric Blais. “Testing juntas nearly optimally.” In: Proceedings of the 41st ACM
Symposium on the Theory of Computing (STOC ’2009). 2009, pp. 151–158.

[34] Eric Blais and Aleksandrs Belovs. “Quantum algorithm for monotonicity testing on
the hypercube.” In: Theory of Computing 11.16 (2015), pp. 403–412.

[35] Jaroslaw Blasiok, Vladimir Braverman, Stephen R. Chestnut, and Robert Krauthgam-
erand Lin F. Yang. “Streaming symmetric norms via measure concentration.” In:
Proceedings of the 50th ACM Symposium on the Theory of Computing (STOC ’2017).
2017.

[36] Avrim Blum. Relevant Examples and Relevant Features–Thoughts from Computa-
tional Learning Theory. Tech. rep. AAAI Fall Symposium on Relevance, 1994.

[37] Avrim Blum and Pat Langley. “Selection of Relevant Features and Examples in
Machine Learning.” In: Artificial Intelligence 97.1-2 (1997), pp. 245–271.

[38] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. “Self-Testing/Correcting with
Applications to Numerical Problems.” In: Journal of Computer and System Sciences
47.3 (1993), pp. 549–595.

[39] Jean Bourgain. “On Lipschitz embedding of finite metric spaces in Hilbert space.”
In: Israel Journal of Mathematics 52.1-2 (1985), pp. 46–52.

312

[40] Andrei Z. Broder. “On the Resemblance and Containment of Documents.” In:
Proceedings of the Compression and Complexity of Sequences (SEQUENCES ’1997).
1997, pp. 21–29.

[41] Alberto Calderón. “Intermediate spaces and interpolation, the complex method.” In:
Studia Mathematica 24.2 (1964), pp. 113–190.

[42] Clément L. Canonne and Tom Gur. “An adaptivity hierarchy theorem for property
testing.” In: arXiv preprint arXiv:1702.05678 (2017).

[43] Deeparnab Chakrabarty and Seshadhri Comandur. “An o(n) monotonicity tester
for boolean functions over the hypercube.” In: SIAM Journal on Computing 45.2
(2016), pp. 461–472.

[44] Deeparnab Chakrabarty and C. Seshadhri. “A ÂO(n) non-adaptive tester for unate-
ness.” In: arXiv preprint arXiv:1608.06980 (2016). URL: http://arxiv.org/
abs/1608.06980.

[45] Deeparnab Chakrabarty and C. Seshadhri. “Adaptive Boolean Monotonicity Test-
ing in Total Influence Time.” In: Proceedings of the 2019 ACM Conference on
Innovations in Theoretical Computer Science (ITCS ’2019). 2019.

[46] Girish Chandrashekar and Ferat Sahin. “A survey on feature selection methods.” In:
Computers & Electrical Engineering 40.1 (2014), pp. 16–28.

[47] Moses Charikar. “Similarity estimation techniques from rounding algorithms.” In:
Proceedings of the 34th ACM Symposium on the Theory of Computing (STOC ’2002).
2002, pp. 380–388.

[48] Jeff Cheeger. “A lower bound for the smallest eigenvalue of the Laplacian.” In:
Proceedings of the Princeton conference in honor of Professor S. Bochner. 1969,
pp. 195–199.

[49] Xi Chen, Rocco A. Servedio, and Li-Yang Tan. “New algorithms and lower bounds
for monotonicity testing.” In: Proceedings of the 55th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’2014). 2014, pp. 285–295.

[50] Xi Chen and Erik Waingarten. “Testing Unateness Nearly Optimally.” In: Pro-
ceedings of the 51th ACM Symposium on the Theory of Computing (STOC ’2019).
2019.

313

http://arxiv.org/abs/1608.06980
http://arxiv.org/abs/1608.06980

[51] Xi Chen, Erik Waingarten, and Jinyu Xie. “Beyond Talagrand functions: new lower
bounds for testing monotonicity and unateness.” In: Proceedings of the 50th ACM
Symposium on the Theory of Computing (STOC ’2017). 2017.

[52] Xi Chen, Erik Waingarten, and Jinyu Xie. “Boolean unateness testing with Â
�(n3/4

)

adaptive queries.” In: Proceedings of the 58th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS ’2017). 2017.

[53] Xi Chen and Jinyu Xie. “Tight Bounds for the Distribution-Free Testing of Monotone
Conjunctions.” In: Proceedings of the 27th ACM-SIAM Symposium on Discrete
Algorithms (SODA ’2016). 2016.

[54] Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. “Boolean function
monotonicity testing requires (almost) n1/2 non-adaptive queries.” In: Proceedings
of the 47th ACM Symposium on the Theory of Computing (STOC ’2015). 2015,
pp. 519–528.

[55] Xi Chen, Rocco A. Servedio, Li-Yang Tan, Erik Waingarten, and Jinyu Xie. “Settling
the query complexity of non-adaptive junta testing.” In: Proceedings of the 32nd
Conference on Computational Complexity (CCC ’2017). 2017.

[56] Xi Chen, Rocco A. Servedio, Li-Yang Tan, Erik Waingarten, and Jinyu Xie. “Settling
the query complexity of non-adaptive junta testing.” In: Journal of the ACM 65.6
(2018), pp. 1–18.

[57] Hana Chockler and Dan Gutfreund. “A lower bound for testing juntas.” In: Informa-
tion Processing Letters (2004), pp. 301–305.

[58] Tobias Christiani. “A framework for similarity search with space-time tradeoffs
using locality-sensitive filtering.” In: Proceedings of the 28th ACM-SIAM Symposium
on Discrete Algorithms (SODA ’2017). 2017.

[59] Mohamed Daher. “Homéomorphismes uniformes entre les sphères unité des espaces
d’interpolation.” In: Comptes Rendus Mathematique 316.10 (1993), 1051–1054.

[60] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. “Locality-
sensitive hashing scheme based on p-stable distributions.” In: Proceedings of the
20th ACM Symposium on Computational Geometry (SoCG ’2004). 2004, pp. 253–
262.

314

[61] Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron,
and Alex Samorodnitsky. “Improved testing algorithms for monotonocity.” In:
Approximation, Randomization and Combinatorial Optimization. Algorithms and
Techniques. 1999.

[62] Elya Dolev and Dana Ron. “Distribution-Free Testing for Monomials with a Sublin-
ear Number of Queries.” In: Theory of Computing 7.1 (2011), pp. 155–176.

[63] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld,
and Alex Samorodnitsky. “Monotonicity testing over general poset domains.” In:
Proceedings of the 34th ACM Symposium on the Theory of Computing (STOC ’2002).
2002, pp. 474–483.

[64] Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samordinsky.
“Testing juntas.” In: Journal of Computer and System Sciences 68.4 (2004), pp. 753–
787.

[65] Yoav Freund and Robert E. Schapire. “Adaptive game playing using multiplicative
weights.” In: Games and Economic Behavior 29.1-2 (1999), pp. 79–103.

[66] Oded Goldreich. Introduction to property testing. Cambridge University Press, 2017.

[67] Oded Goldreich, ed. Property Testing: Current Research and Surveys. Vol. 6390.
Springer-Verlag Berlin Heidelberg, 2010.

[68] Oded Goldreich, Shafi Goldwasser, and Dana Ron. “Property testing and its connec-
tion to learning and approximation.” In: Journal of the ACM 45.4 (1998), pp. 653–
750.

[69] Oded Goldreich and Dana Ron. “Algorithmic aspects of property testing in the dense
graph model.” In: Approximation, Randomization and Combinatorial Optimization.
Algorithms and Techniques. 2009.

[70] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samordinsky.
“Testing Monotonicity.” In: Combinatorica 20.3 (2000), pp. 301–337.

[71] Mira Gonen and Dana Ron. “On the benefits of adaptivity in property testing of
dense graphs.” In: Algorithmica 58.4 (2010), pp. 811–830.

315

[72] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms
and combinatorial optimization. Vol. 2. Springer Science & Business Media, 2012.

[73] Isabelle Guyon and André Elisseeff. “An introduction to variable and feature selec-
tion.” In: Journal of Machine Learning Research 3 (2003), pp. 1157–1182.

[74] Moritz Hardt and Guy N. Rothblum. “A multiplicative weights mechanism for
privacy-preserving data analysis.” In: Proceedings of the 51st Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS ’2010). 2010, pp. 61–70.

[75] Kevin Hartnett. Universal Method to Sort Complex Information Found. Quanta
Magazine. https://www.quantamagazine.org/universal-method-
to-sort-complex-information-found-20180813/. Aug. 2018.

[76] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Elements of statistical
learning: data mining, inference, and prediction. Springer, 2001.

[77] Piotr Indyk. “Approximate nearest neighbor algorithms for Fréchet distance via
product metrics.” In: Proceedings of the 18th ACM Symposium on Computational
Geometry (SoCG ’2002). 2002, pp. 102–106.

[78] Piotr Indyk. “On Approximate Nearest Neighbors under ¸Œ Norm.” In: Journal of
Computer and System Sciences 63.4 (2001), pp. 627–638.

[79] Piotr Indyk and Rajeev Motwani. “Approximate Nearest Neighbors: Towards Re-
moving the Curse of Dimensionality.” In: Proceedings of the 30th ACM Symposium
on the Theory of Computing (STOC ’1998). 1998, pp. 604–613.

[80] Piotr Indyk and Assaf Naor. “Nearest-neighbor-preserving embeddings.” In: ACM
Transactions on Algorithms 3.3 (2007).

[81] Piotr Indyk and Nitin Thaper. “Fast Color Image Retrieval via Embeddings.” In:
Workshop on Statistical and Computational Theories of Vision (at ICCV). 2003.

[82] Fritz John. “Extremum problems with inequalities as subsidiary conditions.” In:
Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948.
Interscience Publishers Inc. New York, N. Y., 1948, pp. 187–204.

316

[83] William B. Johnson and Gideon Schechtman. “Embedding ¸m
p into ¸n

1

.” In: Acta
Mathematica 149 (1982), pp. 71–85.

[84] Ravi Kannan, László Lovász, and Miklós Simonovits. “Random walks and an o*(n5)
volume algorithm for convex bodies.” In: Random Structures & Algorithms 11.1
(1997), pp. 1–50.

[85] Michael Kapralov and Rina Panigrahy. “NNS Lower Bounds via Metric Expan-
sion for ¸Œ and EMD.” In: Proceedings of the 39th International Colloquium on
Automata, Languages and Programming (ICALP ’2012). 2012, pp. 545–556.

[86] Yitzhak Katznelson. An introduction to harmonic analysis. Cambridge University
Press, 2004.

[87] Subhash Khot, Dor Minzer, and Muli Safra. “On monotonicity testing and boolean
isoperimetric type theorems.” In: Proceedings of the 56th Annual IEEE Symposium
on Foundations of Computer Science (FOCS ’2015). IEEE Computer Society. 2015,
pp. 52–58.

[88] Subhash Khot, Dor Minzer, and Muli Safra. “On monotonicity testing and Boolean
isoperimetric-type theorems.” In: SIAM Journal on Computing 47.6 (2018), pp. 2238–
2276.

[89] Subhash Khot and Igor Shinkar. “An ÂO(n) queries adaptive tester for unateness.”
In: Approximation, Randomization and Combinatorial Optimization. Algorithms
and Techniques. 2016, 37:1–37:7.

[90] Erica Klarreich. “Good algorithms make good neighbors.” In: Communications of
the ACM 62.7 (2019), pp. 11–13.

[91] Robert Krauthgamer and James R. Lee. “The black-box complexity of nearest-
neighbor search.” In: Theoretical Computer Science 348.2-3 (2005), pp. 262–276.

[92] Ilan Kremer, Noam Nisan, and Dana Ron. “On randomized one-round communica-
tion complexity.” In: Computational Complexity (1999), pp. 21–49.

[93] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. “Efficient Search for Ap-
proximate Nearest Neighbor in High Dimensional Spaces.” In: SIAM Journal on
Computing 30.2 (2000), pp. 457–474.

317

[94] Yin Tat Lee, Aaron Sidford, and Santosh Vempala. “Efficient convex optimiza-
tion with membership oracles.” In: Proceedings of the 31st Annual Conference on
Learning Theory (COLT ’2018). 2018.

[95] Tom Leighton and Satish Rao. “Multicommodity max-flow min-cut theorems and
their use in designing approximation algorithms.” In: Journal of the ACM 46.6
(1999), pp. 787–832.

[96] Amit Levi and Erik Waingarten. “Lower Bounds for Tolerant Junta and Unateness
Testing via Rejection Sampling of Graphs.” In: Proceedings of the 2019 ACM
Conference on Innovations in Theoretical Computer Science (ITCS ’2019). 2019.

[97] Nathan Linial, Eran London, and Yuri Rabinovich. “The geometry of graphs and
some of its algorithmic applications.” In: Combinatorica 15.2 (1995), pp. 215–245.

[98] Huan Liu and Hiroshi Motoda. Feature selection for knowledge discovery and data
mining. Vol. 454. Springer Science & Business Media, 2012.

[99] Zhengyang Liu, Xi Chen, Rocco A. Servedio, Ying Sheng, and Jinyu Xie. “Distribution-
free junta testing.” In: ACM Transactions on Algorithms 15.1 (2018), pp. 1–23.

[100] Michael W. Mahoney. “Randomized algorithms for matrices and data.” In: Founda-
tions and Trends R� in Machine Learning 3.2 (2011), pp. 123–224.

[101] Jiří Matoušek. Lecture notes on metric embeddings. Tech. rep. ETH Zürich, 2013.

[102] Jiří Matoušek. Lectures on discrete geometry. Vol. 212. Graduate texts in mathemat-
ics. Springer, 2002.

[103] Jiří Matoušek. “On embedding expanders into ¸p spaces.” In: Israel Journal of
Mathematics 102 (1997), pp. 189–197.

[104] Stanisław Mazur. “Une remarque sur l’homéomorphie des champs fonctionnels.”
In: Studia Mathematica 1.1 (1929), pp. 83–85.

[105] Manor Mendel and Assaf Naor. “Nonlinear spectral calculus and super-expanders.”
In: Publications mathématiques de l’IHÉS 119.1 (2014), pp. 1–95.

318

[106] Marvin Minsky and Seymour Papert. Perceptrons - an introduction to computational
geometry. MIT Press, 1987.

[107] Elchanan Mossel and Ryan O’Donnell. “On the noise sensitivity of monotone
functions.” In: Random Structures and Algorithms 23.3 (2003), pp. 33–50.

[108] Elchanan Mossel, Ryan O’Donnell, and Rocco A. Servedio. “Learning juntas.” In:
Proceedings of the 35th ACM Symposium on the Theory of Computing (STOC ’2003).
2003, pp. 206–212.

[109] S. Muthukrishnan. “Data Streams: Algorithms and Applications.” In: Foundations
and Trends R� in Theoretical Computer Science 1.2 (2005), pp. 117–236.

[110] Assaf Naor. “A spectral gap precludes low-dimensional embeddings.” In: Proceed-
ings of the 33rd International Symposium on Computational Geometry (SOCG ’2017)
(2017).

[111] Assaf Naor. “An average John theorem.” In: arXiv preprint arXiv:1905.01280
(2019).

[112] Assaf Naor. “An introduction to the Ribe program.” In: Japanese Journal of Mathe-
matics 7.2 (2012), pp. 167–233.

[113] Assaf Naor. “Comparison of metric spectral gaps.” In: Analysis and Geometry in
Metric Spaces 2.1 (2014).

[114] Assaf Naor and Yuval Rabani. “On approximate nearest neighbor search in ¸p,
p > 2.” Manuscript. 2006.

[115] Edward Odell and Thomas Schlumprecht. “The distortion problem.” In: Acta Math-
ematica 173 (1994), pp. 259–281.

[116] Rafail Ostrovsky and Yuval Rabani. “Low distortion embeddings for edit distance.”
In: Journal of the ACM 54.4 (2007), p. 23.

[117] Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Erik Waingarten. “Ap-
proximating the Distance to Monotonicity of Boolean Functions.” In: Proceedings
of the 31st ACM-SIAM Symposium on Discrete Algorithms (SODA ’2020). 2020.

319

[118] Rina Panigrahy, Kunal Talwar, and Udi Wieder. “Lower Bounds on Near Neighbor
Search via Metric Expansion.” In: Proceedings of the 51st Annual IEEE Symposium
on Foundations of Computer Science (FOCS ’2010). 2010, pp. 805–814.

[119] Franco P. Preparata and Michael Ian Shamos. Computational Geometry - An Intro-
duction. Texts and Monographs in Computer Science. Springer, 1985.

[120] Ilya Razenshteyn. “High-Dimensional Similarity Search and Sketching: Algorithms
and Hardness.” PhD thesis. Massachusetts Institute of Technology, 2017.

[121] Éric Ricard. “Hölder estimates for the noncommutative Mazur maps.” In: Archiv
der Mathematik 104.1 (2015), pp. 37–45.

[122] Dana Ron. “Algorithmic and analysis techniques in property testing.” In: Founda-
tions and Trends R� in Theoretical Computer Science 5.2 (2010), pp. 73–205.

[123] Dana Ron. “Property testing: A learning theory perspective.” In: Foundations and
Trends R� in Machine Learning 1.3 (2008), pp. 307–402.

[124] Bero Roos. “Binomial approximation to the Poisson binomial distribution: the
Krawtchouk expansion.” In: Theory of Probability & Its Applications 45.2 (2001),
pp. 258–272.

[125] Ronitt Rubinfeld and Madhu Sudan. “Robust characterization of polynomials with
applications to program testing.” In: SIAM Journal on Computing 25.2 (1996),
252––271.

[126] Mert Saglam. “Near log-convexity of measured heat in (discrete) time and conse-
quences.” In: Proceedings of the 59th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’2018). 2018.

[127] Steven L. Salzberg, David B. Searls, and Simon Kasif. Computational methods in
molecular biology. Elsevier, 1998.

[128] Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk. Nearest-Neighbor Methods
in Learning and Vision: Theory and Practice. MIT Press, 2006.

[129] Elias M. Stein and Rami Shakarchi. Complex Analysis. Princeton University Press,
2003.

320

[130] Michel Talagrand. “How much are increasing sets positively correlated?” In: Com-
binatorica 16.2 (1996), pp. 243–258.

[131] Michel Talagrand. “Isoperimetry, logarithmic Sobolev inequalities on the discrete
cube, and Margulis’ graph connectivity theorem.” In: Geometric & Functional
Analysis 3.3 (1993), pp. 295–314.

[132] Gregory Valiant. “Finding Correlations in Subquadratic Time, with Applications
to Learning Parities and the Closest Pair Problem.” In: Journal of the ACM 62.2
(2015), p. 13.

[133] David V. Widder. “Functions harmonic in a strip.” In: Proceedings of the American
Mathematical Society 12.1 (1961), pp. 67–72.

[134] Ryan Williams. “A new algorithm for optimal 2-constraint satisfaction and its
implications.” In: Theoretical Computer Science 348.2-3 (2005), pp. 357–365.

[135] Virginia Vassilevska Williams. “On some fine-grained questions in algorithms and
complexity.” In: Proceedings of the International Congress of Mathematicians
(ICM ’2018). 2018.

[136] David P. Woodruff. “Sketching as a tool for numerical linear algebra.” In: Founda-
tions and Trends R� in Theoretical Computer Science 10.1–2 (2014), pp. 1–157.

321

	List of Figures
	Acknowledgments
	Bibliographic Note
	Introduction
	I Approximate Nearest Neighbor Search in General Metric Spaces
	1 Overview of the Results
	1.1 The Embedding's Approach and ANN for Symmetric Norms
	1.2 A Lower Bound in the List-of-Points Model
	1.3 The Cutting Modulus and Random Partitions
	1.3.1 Data-dependent randomized space partitions from bounds on the cutting modulus
	1.3.2 Proof of Theorem 25

	1.4 Upper Bounds on the Cutting Modulus
	1.4.1 The cutting modulus of 1d
	1.4.2 Bounding the Cutting Modulus via Holder Maps of Unit Spheres

	1.5 Time Efficient Algorithms for Any Norm

	2 ANN for General Symmetric Norms
	2.1 An algorithm for Orlicz norms
	2.2 Embedding symmetric norms into product spaces
	2.2.1 Proof of Lemma 2.2.7: bounding the net size

	2.3 Proof of Theorem 34
	2.4 A lower bound for linear embeddings of general symmetric norms

	3 ANN via the Cutting Modulus
	3.1 Partitioning general metrics
	3.1.1 Cutting Modulus and Partitioning
	3.1.2 The Multiplicative Weights Update Method

	3.2 Cell-probe ANN data structure
	3.3 An Inefficient Upper Bound on the Cutting Modulus of any Normed Space

	4 Constructive Bounds on the Cutting Modulus of Any Norm
	4.1 Relating Rayleigh Quotients with Holder Homeomorphisms
	4.1.1 p Spaces
	4.1.2 A Good Translation Always Exists
	4.1.3 Schatten-p spaces

	4.2 A Holder Homeomorphism Between Perturbations of Spheres
	4.2.1 Algorithmic version of Theorem 47

	4.3 Preliminaries
	4.4 Hölder homeomorphisms: an existential argument
	4.5 Computing approximate Hölder homeomorphisms
	4.5.1 High-level overview
	4.5.2 Discretization of F
	4.5.3 Convex program for ApproxRep(x, , ; W)
	4.5.4 Computing ApproxRep(x, , ; W) with MEM(BW)
	4.5.5 Summary and instantiation for applications

	II Property Testing of Boolean Functions
	5 A Lower Bound for Non-Adaptive Junta Testing
	5.1 High-level overview of our approach
	5.2 The Dyes and Dno distributions
	5.2.1 Most functions drawn from Dyes are k-juntas
	5.2.2 Most functions drawn from Dno are -far from k-juntas

	5.3 The Set-Size-Set-Queries (SSSQ) Problem
	5.4 Reducing from SSSQ to distinguishing Dyes and Dno
	5.5 A lower bound on the non-adaptive query complexity of SSSQ
	5.5.1 Set-Size-Element-Queries (SSEQ)
	5.5.2 A lower bound for SSEQ

	5.6 Proof of Theorem 54 assuming Theorem 65
	5.6.1 Proof of Claim 7.3.4

	6 Lower Bounds for Testing Monotonicity and Unateness
	6.0.1 Distance to monotonicity and unateness
	6.0.2 Tree pruning lemmas
	6.1 Monotonicity Lower Bound
	6.1.1 Distributions
	6.1.2 Signatures and the new oracle
	6.1.3 Notation for full signature maps
	6.1.4 Tree pruning
	6.1.5 Proof of Lemma 6.1.12 for good leaves
	6.1.6 Proof of the pruning lemma

	6.2 Unateness Lower Bound
	6.2.1 Distributions
	6.2.2 Balanced decision trees
	6.2.3 Balanced signature trees
	6.2.4 Tree pruning
	6.2.5 Proof of Lemma 6.2.14 for good leaves
	6.2.6 Proof of the pruning lemma

	6.3 Non-Adaptive One-Sided Unateness Lower Bound
	6.4 Non-Adaptive Monotonicity Lower Bound
	6.5 Tightness of Distributions for Monotonicity
	6.5.1 An O(n1/4)-query algorithm for distributions of BB15
	6.5.2 An O(n1/3)-query algorithm for our distributions

	7 An Algorithm for Testing Unateness
	7.0.1 Technical overview
	7.1 Preliminaries
	7.1.1 Binary search with a placeholder
	7.1.2 Persistency with respect to a set of variables

	7.2 Preprocessing Variables
	7.2.1 The preprocessing procedure
	7.2.2 Low influence variables have low impact on Preprocess

	7.3 The Scores Lemma
	7.3.1 Distributions D,m, H,m and Pi,m and the definition of scores
	7.3.2 The Scores Lemma
	7.3.3 Bucketing scores

	7.4 The Main Algorithm
	7.5 The Algorithm for Case 1
	7.5.1 Informative sets
	7.5.2 Catching variables: Relating D,m and H,m
	7.5.3 Algorithm for Case 1.1
	7.5.4 Algorithm for Case 1.2

	7.6 Finding Bichromatic Edges of High Influence Variables
	7.6.1 Revealing points
	7.6.2 The Find-Revealing procedure
	7.6.3 The Find-Hi-Inf procedure

	7.7 The Algorithm for Case 2
	7.8 The Algorithm for Case 3
	7.9 Adaptive Edge Search
	7.10 Analysis of the Preprocessing Procedure
	7.11 Overlap of Two Random Sets of Certain Sizes

	Bibliography

