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Abstract 

Forecasting influenza in Europe and globally: the role of absolute humidity and human travel, 

and the potential for use in public health decision making 

 

Sarah Corinne Kramer 

 

Influenza causes substantial morbidity and mortality yearly in both temperate and tropical 

regions, as well as sporadic and potentially severe pandemics. Although vaccines for seasonal 

influenza exist, most options for controlling influenza outbreaks are reactive in nature. 

Sufficiently accurate and well-calibrated forecasts, on the other hand, could allow public health 

practitioners, medical professionals, and the public to respond to unfolding influenza outbreaks 

proactively. For example, hospitals could prepare additional beds for a predicted surge, and 

public health experts could redouble vaccination efforts. Recently, skillful forecasts have been 

developed for a range of infectious diseases, including influenza, but this work has been limited 

to only a few countries. In this dissertation, we explore the potential for generating accurate 

influenza forecasts using a publicly-available dataset of country-level epidemiologic and 

virologic surveillance data. In Chapter 2, we use a combined model-inference system to generate 

retrospective forecasts for 64 countries in both temperate and tropical climates. We show that 

forecast accuracy is significantly better in countries with temperate climates, and that inclusion 

of environmental forcing, specifically modulation of viral transmissibility due to variability of 

absolute humidity conditions, also improves forecast accuracy in temperate climates. In Chapter 



 

 

 

3, we develop a metapopulation model of twelve European countries using data on international 

air travel and commuting. We find that this model is unable to produce more skillful forecasts 

than those produced for individual countries in isolation. We make recommendations for 

improvements in data collection and reporting that may increase the success of similar modeling 

efforts in the future. In Chapter 4, we assess the performance of real-time forecasts generated for 

37 countries over two influenza seasons and discuss the potential for their use in public health 

decision making. Finally, in Chapter 5 we describe the results of a small survey of public health 

practitioners in the United States. We find that the majority of respondents desire more effective 

communication between modelers and public health practitioners, and we discuss the importance 

of regular and improved communication in advancing the practical use of forecasts as public 

health decision making tools. This dissertation advances the science of influenza forecasting by 

demonstrating that skillful retrospective and real-time forecasts can be generated for many 

countries where previous forecasting efforts are either minimal or absent. However, it is vital that 

data quality issues be addressed if further progress is to be made. Future work should focus in 

particular on climatic drivers of influenza in the tropics and subtropics, on the role of human 

travel at various spatial scales, and on the development of regional and local forecasting 

capacity. Additionally, dedicated collaboration between modelers and public health practitioners 

will be instrumental for motivating and informing the use of forecasts in combating influenza 

outbreaks. 
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Chapter 1: Introduction 

 

 

 

 

 

 

 

 

Chapter 1 

Introduction 
 

Influenza 

 Influenza is a respiratory disease of both annual and pandemic importance. Seasonal 

influenza, which occurs every year in most locations globally, leads to an estimated one billion 

cases and 290,000 to 650,000 deaths worldwide (Iuliano et al., 2018). Infection with influenza 

typically leads to symptoms including fever, cough, muscle pain, and fatigue (WHO, n.d.-b), 

although milder and even asymptomatic infections also occur (Galanti et al., 2019). While of 

minimal concern to young, healthy people, influenza may cause severe complications in very 

young children, those over the age of 50, people with chronic respiratory or cardiac conditions, 

and those who are immunosuppressed (Grohskopf et al., 2019; WHO, n.d.-b). These yearly 

epidemics also impose a substantial economic toll, on the order of 11 to 14 billion dollars each 
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year in the US alone (Carrat & Flahault, 2007; Putri et al., 2018). In addition to regular 

outbreaks, influenza is the cause of sporadic pandemics, including both the relatively mild 2009 

“swine flu” pandemic (Dawood et al., 2012), and the disastrous 1918 “Spanish flu” pandemic, 

which caused an estimated 50 million deaths worldwide (Taubenberger & Morens, 2006). 

 While there is a myriad of existing control measures against influenza, the majority are 

reactive in nature. In other words, public health officials and medical practitioners must wait for 

a situation to escalate, then respond accordingly. In order to reduce morbidity and mortality more 

effectively, more proactive measures must be developed and effectively integrated into decision 

making. This dissertation focuses specifically on the emerging field of influenza forecasting. 

 

Influenza virology 

 Influenza is caused by the influenza virus (Figure 1), a segmented RNA virus of the 

family Orthomyxoviridae (Payne, 2017). We focus here on the genera, or “types,” A and B, 

which consistently circulate in human populations (Carrat & Flahault, 2007; Cox & Subbarao, 

2000). The infectious potential of influenza viruses is largely driven by two surface proteins: 

hemagglutinin (HA), which binds to host cells and allows the virus entry; and neuraminidase 

(NA), which allows viruses to leave host cells after replication (Tamura et al., 2005; Wille & 

Holmes, 2019). These surface proteins show a high degree of diversity among influenza A 

viruses, and determine to which “subtype” the virus belongs. For example, H3N2 has HA 

belonging to subtype 3 and NA belonging to subtype 2 (Carrat & Flahault, 2007; Cox & 

Subbarao, 2000). To date, eighteen subtypes of HA and eleven of NA have been discovered, 

most of which circulate among wild water- and shorebirds, the natural reservoir of type A 
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influenza (CDC, n.d.-b). Currently, only subtypes H1N1 and H3N2 circulate regularly among 

humans. 

 

Figure 1. The influenza virus. 

Credit: C. Bickel/Science. From 

J. Kaiser. Science 312, 380-2 

(2006). Reprinted with 

permission from AAAS. 

NP: nucleoprotein; NS: non-

structural protein; PA: 

polymerase A; PB1: polymerase 

B1; PB2: polymerase B2 (WHO, 

2011a) 

 

Influenza seasonality 

In temperate regions, 

seasonal influenza outbreaks 

occur during the winter, with 

very few cases observed 

during the summer (Bloom-

Feshbach et al., 2013). In the tropics and subtropics, influenza may cause biannual outbreaks, or 

else transmit continually year-round (Figure 2) (Bloom-Feshbach et al., 2013; WHO, 2011a). 

Notably, these differences in seasonality do not mean that the burden of influenza is lower in the 

tropics and subtropics (Ng & Gordon, 2015; L. Yang et al., 2011), and in fact mortality rates 

from seasonal influenza are highest in sub-Saharan Africa and southeast Asia (Iuliano et al., 

2018). The exact drivers of these patterns are not known, and a range of hypotheses have been 

put forward (Tamerius et al., 2013). In temperate regions, absolute humidity, defined as the 

amount of water vapor in the air, appears to play a significant role, with lower humidity 

associated with higher rates of virus survival and transmission (Barreca & Shimshack, 2012; 
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Shaman & Kohn, 2009). Climatic drivers of outbreak patterns in the tropics and subtropics, 

where absolute humidity is consistently high, are less well-understood. 

 Seasonal influenza patterns are also driven to some extent by host susceptibility. While 

infection with influenza confers longstanding immunity to that particular strain (Carrat & 

Flahault, 2007), there is likely little cross-immunity between subtypes (Tamura et al., 2005), and 

rapid evolution leads influenza viruses to achieve significant antigenic change roughly every 

three to five years, on average (Liu et al., 2015; D. J. Smith, 2004). This immune escape, in 

conjunction with the simultaneous circulation of multiple (sub)types, allows regular outbreaks of 

influenza to occur (Carrat & Flahault, 2007; Cox & Subbarao, 2000), and leads to sometimes 

complicated (sub)type dynamics, with different (sub)types dominating depending on time and 

location (Yaari et al., 2013). 

Figure 2. Seasonality of influenza outbreaks worldwide. 

This figure was adapted from Bloom-Feshbach et al. (2013), Figure 2, under CC Public Domain license. 

It reflects their work determining the month of peak timing and the duration of influenza outbreaks in 77 

locations. The color of the circles and triangles signifies the month of peak influenza activity, while circle 

size represents outbreak duration; for locations where several years of data were available, these values 

are averages. Points shaded with two colors indicate locations with two distinct peaks. The two horizontal 

black lines represent the boundaries of the tropics. 
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 Despite the regularity with which influenza outbreaks occur in temperate regions, 

outbreak timing and intensity varies by season (Bresee & Hayden, 2013; CDC, n.d.-c). Preparing 

for influenza outbreaks in the tropics and subtropics, where there may be no strong pattern to 

outbreak timing, presents additional difficulties (Caini et al., 2016; Hirve et al., 2016). 

 

Human travel and influenza transmission 

 Rapidly increasing global connectivity has greatly impacted the ways in which infectious 

diseases spread through human populations (Colizza et al., 2007). Still, the exact impact of 

different types of travel on disease transmission dynamics, as well as how these effects vary by 

location and spatial scale, are not well understood. Broadly speaking, long-distance air travel 

drives the introduction of pathogens into distant locations (Brockmann & Helbing, 2013; 

Brownstein et al., 2006; Charu et al., 2017; Lemey et al., 2014), and has been integral in the 

rapid global spread of both the 2009 influenza pandemic (Khan et al., 2009) and coronavirus 

disease 2019 (COVID-19) (De Salazar et al., 2020). Meanwhile, shorter-distance travel, such as 

automobile or train travel, are responsible for local transmission after introduction, as well as for 

seeding infection in locations that are not well-connected to air networks (Balcan et al., 2009; 

Charu et al., 2017). Commuting could, in theory, play a particularly important role in shorter-

distance transmission because it represents regular travel, rather than an isolated event; 

commuters may therefore be more likely to be involved in transmission between locations. 

Studies in the US (Bozick & Real, 2015; Viboud et al., 2006) and France (Charaudeau et al., 

2014) support the idea that commuting is an important driver of influenza transmission. 

However, other studies have found conflicting results (Crepey & Barthelemy, 2007), and these 

patterns do not necessarily hold for all countries (Geoghegan et al., 2018). 
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Potential for pandemic emergence 

Although this dissertation focuses primarily on seasonal influenza, the potentially severe impact 

of future influenza pandemics warrants discussion. A total of four influenza pandemics have 

occurred since 1918 (Wille & Holmes, 2019), and the World Health Organization (WHO) 

considers the future emergence of a novel, pandemic influenza virus to be an absolute certainty 

(WHO, 2018a). Currently, while there are sporadic small outbreaks of avian influenza, none of 

the viruses have demonstrated the capacity for sustained human-to-human transmission (WHO, 

2018b). However, evidence suggests only a small number of mutations could allow these viruses 

to spread between humans (Herfst et al., 2012; Imai et al., 2012). Furthermore, the segmented 

nature of the influenza genome allows for reassortment, or the exchange of entire genome 

segments, in an organism simultaneously infected with multiple influenza subtypes (Tamura et 

al., 2005; Wille & Holmes, 2019). If the HA or NA segments of a (sub)type with little or no 

existing human immunity are transferred to an existing human influenza strain, pandemic 

emergence can occur (Carrat & Flahault, 2007). Indeed, this process was likely responsible for at 

least three of the four most recent influenza pandemics (Kawaoka et al., 1989; Scholtissek et al., 

1978; G. J. D. Smith et al., 2009). Compared to seasonal influenza, the nature of a future 

influenza pandemic is extremely uncertain: influenza pandemics often circulate freely outside the 

typical influenza season (Shaman et al., 2011), and severity of past influenza pandemics has 

varied extremely (Kilbourne, 2006).  

 

Options for influenza control 

Vaccines. Influenza vaccines are the most effective tool we currently have in reducing influenza 

impact (Osterholm, Kelley, Manske, et al., 2012; WHO, 2011a). In addition to preventing 
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infection, evidence suggests that those who become infected despite vaccination experience less 

severe disease than those who are unvaccinated (Arriola et al., 2017; Thompson et al., 2018). 

That said, influenza vaccines exhibit several significant drawbacks. Because the immune 

system reacts most strongly to the rapidly evolving viral surface proteins HA and NA (Carrat & 

Flahault, 2007; Osterholm, Kelley, Manske, et al., 2012), current vaccines are strain-specific, 

containing three or four influenza viruses each season (Chen et al., 2020; Grohskopf et al., 2019). 

Coupled with the fact that vaccine production takes six to eight months, this means that vaccine 

efficacy hinges somewhat on experts’ ability to accurately predict the next season’s circulating 

strains several months in advance (Chen et al., 2020; Hay & McCauley, 2018). Mismatch 

between circulating and vaccine strains contributes to low vaccine efficacy. A 2012 meta-

analysis reported an average vaccine efficacy of 59% (Osterholm, Kelley, Sommer, et al., 2012), 

and a recent analysis calculated overall vaccine efficacy in the United Kingdom (UK) during the 

2017-18 season at only 15% (Pebody et al., 2019). Long production times and strain specificity 

also mean that vaccines are unlikely to be available during the early stages of an emerging 

pandemic (Wood, 2001). Indeed, the vaccine against the 2009 pandemic strain was not 

completed until after the outbreak had peaked (Lipsitch et al., 2011). 

 In addition to vaccine efficacy, duration of protection is also in question; vaccine-induced 

immunity may begin to wane within one hundred days of vaccination, particularly in the elderly 

(Castilla et al., 2013). This makes ideal vaccination strategies particularly unclear in the tropics 

and subtropics, where year-round circulation makes it difficult to know when to vaccinate, and 

whether to recommend the northern or southern hemisphere vaccine (Caini et al., 2016; Hirve et 

al., 2016). 
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 Finally, vaccine shortages are relatively common, occurring in some form in six of ten 

Northern hemisphere seasons between 1999 and 2009 (Osterholm, Kelley, Manske, et al., 2012). 

 

Antiviral drugs. Specific antiviral treatments for influenza also exist, the most common of which 

are the neuraminidase inhibitors (Bassetti et al., 2019; Lampejo, 2020). Patients treated within 48 

hours of symptom onset experience both reduced symptom intensity and disease duration (Fiore 

et al., 2011), although evidence suggests that severely ill patients may benefit from treatment 

even after 48 hours (McGeer, 2009). In addition to mitigating disease, treatment with antivirals 

may help prevent onward transmission of influenza (Ng et al., 2010; Pebody et al., 2011), 

although the reduction in transmissibility is likely relatively small (Kramer & Bansal, 2015). 

Neuraminidase inhibitors can also be used prophylactically (Fiore et al., 2011; Lampejo, 2020). 

Although sporadic cases of resistance occur, typically during treatment, widespread circulation 

of resistant strains is uncommon (Bassetti et al., 2019; Lampejo, 2020). 

 

Nonpharmaceutical interventions. In addition to vaccines and antiviral drugs, various 

nonpharmaceutical interventions against influenza are also available. The simplest example is 

hand washing, an intervention recommended by the WHO regardless of outbreak severity 

(WHO, 2019). Additionally, it is recommended that those exhibiting symptoms of influenza self-

isolate to avoid spreading the virus to others, and wear face masks when in contact with 

uninfected individuals (WHO, 2019). 

In the case of a more severe outbreak, community-level interventions may be enacted, as 

in the current COVID-19 pandemic. For example, evidence suggests that school closures can be 

effective in both delaying outbreak peaks and reducing peak intensity, especially when 
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introduced early in an outbreak (Bin Nafisah et al., 2018). Other social distancing measures, such 

as workplace closures or limiting mass gatherings, may also be effective, although they are less 

well studied (Ahmed et al., 2018; Aledort et al., 2007; WHO, 2019). Border screenings and 

travel restrictions may be put into place, although evidence suggests that these measures lead to 

only minimal delays in epidemic arrival and peak timing (Cooper et al., 2006; Epstein et al., 

2007), and are ineffective once local transmission is established (Lipsitch et al., 2011). Unlike 

social distancing, these interventions are not recommended by the WHO (WHO, 2019, 2020). 

However, during more severe outbreaks, countries may turn to these measures regardless, as 

evidenced by extensive between- and within-country travel restrictions in response to COVID-19 

(“Travel Updates,” 2020). 

Like antivirals, nonpharmaceutical interventions are particularly critical for controlling 

emerging influenza pandemics in the absence of an effective vaccine (Aledort et al., 2007). 

However, as observed with both school closures and air travel restrictions, these interventions 

rapidly lose effectiveness if not implemented in a timely fashion. 

 

Influenza surveillance 

 At least 60% of countries operate some form of influenza surveillance system (Hay & 

McCauley, 2018; WHO, 2011a), which may be operational year-round or only during the 

influenza season (WHO, 2011b, 2014). Many of these are sentinel systems, in which surveillance 

is conducted systematically at a number of specifically chosen sites (as opposed to universal 

surveillance) (WHO, 2014). These sites may be outpatient clinics or hospitals, and may include 

facilities serving the general population or facilities, like pediatric clinics, that serve specific 

groups (WHO, 2011a). The number and distribution of sentinel sites will depend on the 
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sociodemographic and climatic characteristics of a country, as well as country capacity (WHO, 

2011a, 2014). Broadly, influenza surveillance falls into two categories: epidemiologic and 

virologic surveillance, each with their own advantages, although the same sentinel systems can 

be used to collect both types of data. 

 

Epidemiologic surveillance: Epidemiologic (or syndromic) surveillance involves recording data 

on patients presenting with certain collections of symptoms. The most common syndromes under 

surveillance are influenza-like illness (ILI) and severe acute respiratory infection (SARI). 

Although definitions vary, the WHO case definition for ILI requires fever of at least 38°C 

(100.4°F) and cough with onset within the past 10 days; patients with SARI have all of these 

symptoms, and require hospitalization (WHO, 2014). Notably, these patients may or may not 

actually have influenza, as a variety of other infections yield similar symptoms (WHO, 2014). 

Ideally, sociodemographic data, as well as data on any conditions known to be risk factors for 

severe influenza, should also be recorded (WHO, 2014). This information can help experts 

identify outbreak onset, understand the relative severity of an outbreak, and identify groups at 

risk for severe illness (ECDC, n.d.-a; WHO, 2011b). 

 

Virologic surveillance: Virologic surveillance for influenza consists of the collection and testing 

of samples from potentially infected patients. This may involve testing of patients identified 

under epidemiologic surveillance as ILI or SARI cases, ideally in some systematic fashion so as 

to minimize bias (WHO, 2014). Additional samples may be taken for diagnostic purposes based 

on the judgement of individual physicians, including those not at sentinel facilities (WHO, 

2011b). In addition to testing for influenza, some samples may be further characterized through 
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subtyping, or may be assessed for antiviral resistance, although these tests are not performed for 

every sample taken (WHO, 2011a). Similar to epidemiologic surveillance, virologic surveillance 

can inform estimates of the relative severity of a given outbreak (WHO, 2011a). Furthermore, 

virologic information helps public health officials understand (sub)type circulation patterns, 

monitor the emergence of antiviral resistance, and decide upon candidate strains for the next 

influenza vaccine (ECDC, n.d.-b; WHO, 2011a). Finally, these surveillance systems act as early 

warning systems in the event of human infection with novel influenza subtypes (Hay & 

McCauley, 2018; WHO, 2011a). 

 

Ideally, surveillance systems collect both virologic and epidemiologic data, although 

virologic surveillance is much more established in most regions (WHO, 2014). The WHO’s 

Global Influenza Surveillance and Response System (GISRS), designed to promote global 

virologic surveillance and virus sharing, has been in place since 1952 (WHO, 2014), and 

currently consists of over 140 laboratories in 115 countries (WHO, n.d.-a, 2011a), although 

countries in the tropics remain underrepresented (Ortiz et al., 2009). In contrast, the importance 

of epidemiologic surveillance has only more recently become widely recognized, in part driven 

by the inability of many surveillance systems to characterize the severity of the 2009 pandemic 

(Ortiz et al., 2009; WHO, 2010, 2014). While the WHO has extensive guidelines for establishing 

sentinel surveillance systems capable of collecting robust and relatively unbiased epidemiologic 

and virologic data, the ability of countries to adopt these measures varies greatly (WHO, 2014), 

and most countries do not achieve the standards in full. 

 Despite these limitations, routine surveillance activities are critical in informing the 

public health response to influenza outbreaks and pandemics. For example, identification of 
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season onset allows practitioners to issue at least a general warning to medical professionals 

about the potential for an upcoming surge in patients, and can help public health officials 

optimize the timing of vaccination (WHO, 2014), especially in the tropics and subtropics (Hirve 

et al., 2016). Information on those most severely affected during a given outbreak can also help 

policy makers prioritize the allocation of vaccines and antivirals, especially in the case of 

shortages (ECDC, n.d.-a; WHO, 2011b). If particularly high attack rates are noticed, strategies 

such as permitting over-the-counter dispensing of antivirals could be considered (Hayden, 2004). 

In sum, high-quality surveillance data facilitate public health response to the unique pressures of 

a given influenza season or pandemic as the outbreak unfolds. 

 

FluNet and FluID 

 In addition to data collection, the WHO recognizes the need for effective sharing of 

influenza surveillance data (WHO, 2014). Although reporting of influenza to the WHO is only 

required for novel viruses (Hay & McCauley, 2018; WHO, 2016), countries are “strongly 

encouraged” to report both virologic and epidemiologic surveillance data to the WHO (WHO, 

2014). Data reported to the WHO, or else collected from WHO regional databases, are organized 

into two publicly available databases: FluNet (WHO, n.d.-d) for virologic data, and FluID 

(WHO, n.d.-c) for epidemiologic data. In accordance with influenza surveillance priorities 

historically, FluNet has existed since 1997 (WHO, n.d.-d), while FluID was only created in 2009 

(Biggerstaff et al., 2019). Ideally, countries submit data weekly; data are then published with a 

one-week lag. 
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Potential of influenza forecasts 

 While the myriad ways in which influenza surveillance data are currently used 

undoubtedly contribute to a reduction in influenza morbidity and mortality, it should be noted 

that the majority of the goals laid out by public health organizations like the WHO (WHO, 2014) 

and the European Centre for Disease Prevention and Control (ECDC) (ECDC, n.d.-a) are 

reactive in nature: patterns in circulation and severity are observed, and control measures are 

applied accordingly (Lutz et al., 2019). Of the control measures available against influenza, only 

vaccination is inherently proactive, but frequent shortages can make it difficult to target vaccine 

allocation effectively (Bansal et al., 2006; Shimabukuro et al., 2007). Furthermore, even seasonal 

influenza routinely overwhelms hospitals and emergency departments (Burmeister et al., 2017; 

Elliot et al., 2008; “Virulent Influenza,” 2013), indicating the need for innovative tools and 

strategies to combat influenza. While there is no doubt that improvements can be made in how 

public health practitioners react to influenza outbreaks as they unfold, greater reductions in 

morbidity and mortality may be possible if public health and medical professionals had more 

time to prepare, rather than reacting in real-time (CDC, n.d.-c). 

 Forecasting involves using data from the past and present to make an informed prediction 

of some future outcome of interest (Lutz et al., 2019). Notably, this involves not only a point 

prediction, but also some measure of forecast certainty. This information is critical, because the 

level of certainty in an outcome can play just as large a role in driving decision making as the 

outcome itself. Consider, for example, the forecasts shown in Figure 3. Both forecasts are 

generated in early December (week 49), and the mean trajectories predict that, during the week 

of January first, one thousand new cases of influenza are expected. The use of these forecasts, 

however, or indeed whether a forecast is strongly considered in public health planning, will 
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depend on the prediction interval around this prediction. In Figure 3A, this interval is relatively 

wide, including anywhere from about 200 to 1500 new cases at the peak. In Figure 3B, however, 

the range is much more narrow, ranging from about 700 to 1300 new cases. While the same 

mean outcome may be forecast, these two prediction intervals indicate drastically different 

certainties. 

 Given sufficient certainty, forecasts could allow public health and medical practitioners 

to better prepare for an unfolding outbreak or pandemic (CDC, n.d.-c). For example, hospitals in 

areas where intense influenza activity is predicted could prepare more beds and personal 

protective equipment, and plan to have more staff on duty. Public health practitioners could use 

forecasts of upcoming outbreak peaks to encourage timely vaccination, or even to develop more 

targeted vaccination policies in the case of a severe season or a vaccine shortage. Finally, the 

general public could use information about upcoming influenza activity to modify their behavior 

accordingly, perhaps by avoiding large events and crowded areas, thereby reducing influenza 

transmission. 

Figure 3. Example influenza forecasts showing identical mean predictions but varying certainty. 

Points represent weekly data available at Week 49 (gray vertical line), and the solid line shows the fit of 

the forecasting model to these data. The dotted line represents the mean expected forecast trajectory; the 

shaded gray areas represent 90% prediction intervals. The week of January first is marked with a black 

vertical line. 
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 In this way, skillful forecasting of influenza activity could drive a paradigm shift in how 

influenza outbreaks are controlled. Rather than waiting for and reacting to increases in influenza 

activity, communities could prepare for and prevent spikes in morbidity and mortality. Notably, 

there are already many examples of skillful influenza forecasts (Moss et al., 2017; Ong et al., 

2010; Shaman et al., 2013; Shaman & Karspeck, 2012; W. Yang et al., 2015). However, use of 

these forecasts in practice remains uncommon, in part because forecasts lack the accuracy and 

certainty needed to support decision making (Biggerstaff et al., 2018; Lipsitch et al., 2011), and 

in part because effective collaboration between the modelers responsible for forecasting and the 

public health professionals responsible for policy decisions remains rare (Driedger et al., 2014; 

Moss et al., 2018). 

 

Public health interest in forecasting 

 In recent years there has been a substantial push for the further development of influenza 

forecasting tools among public health organizations. The United States Centers for Disease 

Control and Prevention (CDC), for example, has held a yearly forecasting challenge since the 

2013-14 influenza season (Biggerstaff et al., 2016), which has encouraged the development and 

improvement of forecasting systems. The forecasting challenge has also acted as an opportunity 

to practice effective communication of the results of forecasting, both between the modelers 

producing forecasts and the CDC (CDC, n.d.-a, n.d.-c), and between the CDC and the American 

public (CDC, n.d.-c). In 2017, the WHO listed the use of models, including forecasts, in public 

health decision making as a topic of high importance for influenza research in the next five years 

(WHO, 2017). The WHO’s commitment to such research can be observed in the recent 

development of the Influenza Incidence Analytics Group (IIAG), a global consortium of 
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researchers working to improve the real-time use of the WHO’s FluNet and FluID data 

(Biggerstaff et al., 2019). The push for the development of more accurate and certain forecasts, 

in combination with emerging interest from public health organizations, suggests a promising 

future for the use of influenza forecasts in practical applications. 

 

Aims 

 This dissertation aims to (1) develop and improve country-level influenza forecasts using 

publicly-available influenza surveillance data from the WHO; (2) explore and discuss barriers to 

the use of forecasts in public health practice. 

 In Chapter 2, we use FluNet and FluID data to generate retrospective forecasts of 

influenza activity in 64 countries, including 18 in the tropics and subtropics. We assess both the 

accuracy and the calibration (i.e., the extent to which forecast variability was indicative of 

outcome accuracy) of these forecasts, and compare forecasts for countries in temperate versus 

tropical regions. We also compare forecasts by the type of epidemiologic data collected (ILI, 

SARI, acute respiratory infection (ARI), or pneumonia). Finally, we assess the influence of 

absolute humidity forcing on forecast accuracy in temperate regions. 

 In Chapter 3, we develop a metapopulation model of influenza transmission for twelve 

countries in Europe, by incorporating both commuting and air travel into the model structure. We 

use this model to generate retrospective forecasts of influenza, and compare our results to 

forecasts generated for individual countries, as in Chapter 2. We also discuss the need for the 

collection and reporting of comparable influenza data between countries. 

 In Chapter 4, we use the forecasting system from Chapter 2 to develop real-time forecasts 

of influenza activity in 37 countries during the 2017-18 and 2018-19 seasons. We compare the 
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accuracy of these forecasts, generated using real-time FluNet and FluID data, to that of forecasts 

generated using data downloaded at the end of the influenza season. 

 Finally, in Chapter 5, we explore the extent to which public health practitioners in the 

United States are aware of and use influenza forecasts in their work. We discuss the implications 

of participants’ responses for the future of influenza forecasting; in particular, we emphasize the 

need for more effective communication between modelers and public health practitioners. 
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Abstract 

Accurate forecasts of influenza incidence can be used to inform medical and public health 

decision-making and response efforts. However, forecasting systems are uncommon in most 

countries, with a few notable exceptions. Here we use publicly available data from the World 

Health Organization to generate retrospective forecasts of influenza peak timing and peak 

intensity for 64 countries, including 18 tropical and subtropical countries. We find that accurate 

and well-calibrated forecasts can be generated for countries in temperate regions, with peak 

timing and intensity accuracy exceeding 50% at four and two weeks prior to the predicted 

epidemic peak, respectively. Forecasts are significantly less accurate in the tropics and subtropics 

for both peak timing and intensity. This work indicates that, in temperate regions around the 

world, forecasts can be generated with sufficient lead time to prepare for upcoming outbreak 

peak incidence. 

 

Author Summary 

Influenza is responsible for an estimated 3-5 million cases and 300-650,000 deaths each year 

worldwide. If produced early enough, accurate forecasts of influenza activity could guide public 

health practitioners and medical professionals in preparing for an outbreak, reducing the 

subsequent morbidity and mortality. For example, hospitals could use these forecasts to 

determine how many beds will be needed when an outbreak is most intense. Despite this 

potential impact, influenza forecasts are primarily generated for the United States, with forecasts 

for other countries being comparatively rare. Here, we use publicly available influenza data to 

forecast influenza activity in 64 countries. We find that accurate forecasts can be produced 

several weeks before the outbreak’s peak in temperate countries, where influenza outbreaks 
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occur regularly during the winter. Forecast accuracy is lower in the tropics and subtropics, where 

outbreaks occur more sporadically. Overall, our results suggest that forecasts have potential as an 

important public health tool in many countries, not only in the US. 
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Introduction 

Forecasting is an important tool in a number of fields, including weather and climate 

(Gneiting & Raftery, 2005; Zebiak et al., 2015; Zebiak & Cane, 1987), agriculture (FAO, 2016; 

Newlands et al., 2014), air quality (Debry & Mallet, 2014; Gaubert et al., 2014), and consumer 

activity (Chen & Lu, 2017; Choi et al., 2014; Mccarthy et al., 2006). When operationalized for 

use in real time, predictions from probabilistic forecasts can be used in decision-making to 

inform, for example, emergency food aid allocation (Newlands et al., 2014) or profit 

maximization (Chen & Lu, 2017). Recently, forecasting systems have also been developed for a 

range of infectious diseases of high public health concern, including influenza (Biggerstaff et al., 

2016; Hickmann et al., 2015; Moss et al., 2016, 2017; Nsoesie et al., 2014; Ong et al., 2010; Pei 

et al., 2018; Shaman et al., 2013; Shaman & Karspeck, 2012; Yang et al., 2015), norovirus (Held 

et al., 2017), dengue (Adde et al., 2016; Johnson et al., 2017; Reich et al., 2016; Shi et al., 2015), 

Ebola (Camacho et al., 2015; Funk et al., 2018; Meltzer et al., 2014; Shaman et al., 2014), and, 

most recently, Zika (Chowell et al., 2016; Huff et al., 2016). 

 The ability to generate accurate, real-time forecasts of infectious disease activity has 

important implications for public health. Currently, response to infectious disease outbreaks is 

primarily reactive: medical and public health professionals attempt to deal with unexpected 

spikes of disease incidence as they occur. By providing information on when an outbreak is 

expected to peak and how many cases are expected at that peak, forecasts have the potential to 

create a paradigm shift in infectious disease control and public health decision-making. For 

example, hospitals expecting a patient surge might ensure that adequate resources are available, 

avoiding bed and staff shortages. 
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 Seasonal influenza produces annual wintertime outbreaks in temperate regions, as well as 

sporadic outbreaks throughout the year in the tropics and subtropics (Bloom-Feshbach et al., 

2013; Ng & Gordon, 2015). The World Health Organization (WHO) estimates that influenza 

causes about 300,000-650,000 deaths and 3-5 million cases of severe illness each year (WHO, 

n.d.-a). To date, forecasts of influenza activity in the United States have been generated and 

operationalized (Biggerstaff et al., 2016; Shaman et al., 2013). However, while influenza 

forecasts have been generated for countries outside the US (Moss et al., 2016, 2017; Nishiura, 

2011; Ong et al., 2010; Viboud et al., 2003; Yang et al., 2015), these efforts are less numerous, 

and many countries have been ignored entirely. The tropics and subtropics are particularly 

neglected, with forecasts attempted for only Hong Kong (Yang et al., 2015) and Singapore (Ong 

et al., 2010). This is true despite evidence suggesting that influenza burden in the tropics is 

similar to that in temperate regions (Ng & Gordon, 2015). 

 The WHO collects influenza data year-round from several member states around the 

world. To our knowledge, no influenza forecasts have yet been generated using these data. Given 

differences in data collection procedures by country, and the importance of high data quality for 

generating accurate forecasts, whether these data can be used to generate accurate forecasts 

remains an open question. Here, we explore the following research questions: 1) Can the WHO 

data be used to generate accurate and well-calibrated retrospective forecasts at the country 

level?; 2) Does forecast accuracy significantly differ between temperate and tropical regions?; 

and 3) What factors are associated with substantial changes in forecast accuracy within both 

temperate and tropical regions? Based on past work, we expect that forecasting will be feasible 

in all regions, but that forecast accuracy will be substantially higher in temperate regions. 
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Materials and Methods 

Influenza Data 

 Influenza syndromic and virologic data were obtained from WHO’s FluID (WHO, n.d.-b) 

and FluNet (WHO, n.d.-c) web-tools, respectively. Briefly, these systems contain aggregated 

influenza data from WHO member states, which are either submitted by member states directly 

or downloaded by the WHO from existing regional databases. Good quality (see S1 Text) 

syndromic and virologic data were available for at least one season from 64 countries, primarily 

in Europe and North America (see Figure 1; S1 Figure). Countries were classified as temperate 

or tropical based on both their latitude and whether they demonstrated seasonal or sporadic 

influenza dynamics (see S1 Text). Overall, eighteen countries were classified as tropical, and 

three (Australia, New Zealand, and Chile) were located in the southern temperate region. 

 

Figure 1. Countries with good quality syndromic and virologic data for at least one season. 

The black dotted lines demarcate the boundaries of the tropics. Countries classified as temperate are 

shaded in blue, and countries classified as tropical are shaded in purple. Of 64 countries, 18 were 

classified as tropical, and 3 as southern temperate. 
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FluID data include diagnostic counts of influenza-like illness (ILI), acute respiratory 

infection (ARI), severe acute respiratory infection (SARI), and pneumonia, with different 

countries preferentially reporting different data types (see S1 Text for additional information). 

Because these data contain no information on laboratory testing, counts include both patients 

infected with influenza and patients infected by other pathogens that lead to similar signs and 

symptoms. To adjust for this lack of specificity, we use FluNet data, which includes the total 

number of tests performed for influenza and the number positive for influenza. Specifically, we 

multiply the syndromic case counts from the FluID tool by the proportion of tests positive for 

influenza in that same country during a given week. This calculation eliminates out-of-season 

syndromic cases that are unlikely to be due to influenza. Further, as the model used in this study 

(described below) simulates the transmission of a single pathogen, the removal of incidence due 

to non-influenza illness increases agreement between model input (data) and output. We refer to 

the resulting measures as ILI+, ARI+, SARI+, or pneumonia+, or, more broadly, syndromic+. 

For this study, we focused specifically on seasonal influenza outbreaks, and excluded the 

2009 pandemic from the main analysis. While pandemic outbreaks often produce a strong 

incidence signal that is forecastable (Ong et al., 2010), they typically appear out-of-season in 

temperate regions.  Seasonal influenza outbreaks, on the other hand, occur with enough 

frequency that, even in the tropics, where outbreak timing is less regular, future epidemics are 

almost certain to occur within the year. To maintain a consistent forecasting approach, we 

therefore focus on seasonal influenza. We present results from forecasting the 2009 pandemic 

alone, as well as associated methods, in S1 Text and S19 Figure. 

In addition, individual seasons were removed from the final dataset if: a) five or more 

consecutive weeks of data were missing near the outbreak peak (n = 2); b) the season consisted 
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of fewer than 5 non-NA and non-zero data points (n = 2); c) the total attack rate of the season 

was less than 5% that of the largest outbreak (in other words, if case counts were unrealistically 

low; n = 5); d) data collection began or ended at the outbreak peak (n = 4); or e) no consecutive 

weeks of data were available (in other words, data were only available every other week; n = 1). 

We also removed data from 2010-11 in Mexico due to the continued disruption of typical 

seasonal patterns by the 2009 pandemic. Individual data points were removed if they occurred 

outside of the influenza season (as defined below under “Delineation of Influenza Seasons”) and 

were greater than 50% of the maximum value for the country over all seasons (n = 1). In total, 15 

individual seasons were removed from the dataset, and 64 countries remained. In temperate 

regions, data were available for between one and seven seasons for each country for a total of 

289 seasons. A complete list of countries and seasons used for forecasting can be found in S1 

and S2 Tables. Note that, for the seasonal forecasts, we began fitting tropical data at week 40 of 

2010. 

 

Humidity Data 

 Data on absolute humidity were obtained from NASA’s Global Land Data Assimilation 

System (GLDAS), which uses both observed data and modeling techniques to produce high-

resolution surface meteorological data (Rodell, n.d.). Data were available every three hours at a 

spatial resolution of 1°x1° for the years 1989-2008. Data from each grid cell were aggregated to 

the daily level, and anomalous records were identified by visual inspection and removed. Then, 

climatologies for each grid cell were generated by averaging daily specific humidity on each of 

365 days across twelve to twenty years, depending on the amount of anomalous data removed. 

Finally, climatologies were aggregated to the country level by averaging the climatologies for all 
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grid cells lying within a country, weighted by the proportion of the grid cell situated within the 

country in question. A more detailed description of how the humidity data were processed can be 

found in S1 Text. 

 

Delineation of Influenza Seasons 

 The influenza season in temperate regions of the northern hemisphere is modeled as 

beginning in week 40 and ending in week 20 of the following year (Flu News Europe, n.d.). We 

shift these values by one half-year for temperate regions of the southern hemisphere; thus, the 

influenza season begins in week 14 and continues until week 46. 

 For tropical regions, where consistent seasonality in influenza infection patterns is not 

observed, the above methods are not sufficient. Individual outbreaks are instead identified using 

methodology previously described in Yang et al. (2015). Briefly, outbreak onsets are defined as 

the first of three consecutive weeks where ILI+ rates exceeded the 33rd percentile of non-zero 

ILI+ values across all available data for a country. The end of an outbreak is defined as the first 

of two consecutive weeks below this threshold. To ensure that sporadic spikes in influenza are 

not counted, we remove any outbreaks where ILI+ counts never exceeded three times its 

respective onset threshold value. 

 

Retrospective Forecast Generation 

 Country-level retrospective forecasts are developed using a model-data assimilation 

system consisting of: (1) influenza observations, as described above, (2) a model of influenza 

transmission, and (3) a filter to assimilate observations and optimize model simulation and 
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(1) 

(2) 

ensemble forecast. The final two components are described here. These components differed 

slightly for temperate and tropical regions, and are therefore described separately. 

 

Temperate Regions 

SIRS Model: We model influenza transmission in temperate regions using a compartmental, 

humidity-forced Susceptible-Infected-Recovered-Susceptible (SIRS) model, in which members 

of the model population move through compartments according to the following equations: 

 
𝑑𝑆

𝑑𝑡
=
𝑁 − 𝑆 − 𝐼

𝐿
−
𝛽(𝑡)𝐼𝑆

𝑁
− 𝛼 

 
𝑑𝐼

𝑑𝑡
=
𝛽(𝑡)𝐼𝑆

𝑁
−
𝐼

𝐷
+ 𝛼 

 

where N is the total model population size, set arbitrarily to 100,000 for all countries; S and I are 

the total number of people susceptible and infected, respectively; t is time in days; β(t) is the 

transmission rate at time t; D is the mean infectious period; L is the average duration of 

immunity before recovery; and α represents the rate of influenza importation from outside the 

model population, here set to 0.1, or 1 case per 10 days (Shaman & Karspeck, 2012). The basic 

reproductive number (R0), a key parameter in infectious disease epidemiology representing the 

average number of secondary infections arising from a single primary infection in a fully 

susceptible population, is related to β(t) and D by the expression 𝑅0(𝑡) = 𝛽(𝑡)𝐷. 

Daily specific humidity modulates R0(t) as follows: 

 

𝑅0(𝑡) = 𝑒−180𝑞
(𝑡)+ln(𝑅0𝑚𝑎𝑥−𝑅0𝑚𝑖𝑛

) + 𝑅0𝑚𝑖𝑛
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(3) 

where R0max is the maximum daily basic reproductive number, R0min is the minimum daily basic 

reproductive number, and q(t) is the specific humidity on day t (Shaman & Karspeck, 2012). We 

set a equal to -180, based on laboratory regression of influenza virus survival on specific 

humidity (Shaman & Kohn, 2009). Absolute humidity has been shown to increase influenza 

survival and transmission in laboratory experiments (Shaman & Kohn, 2009), and model studies 

indicate that lower absolute humidity during the winter is a significant driver of influenza 

seasonality in temperate regions (Shaman et al., 2010). Similar models have been used to 

forecast influenza at the city and state level in the US (Shaman et al., 2010, 2013; Shaman & 

Karspeck, 2012), and previous work has shown that inclusion of absolute humidity forcing 

significantly improves forecast performance (Shaman et al., 2017). 

 

Data Assimilation Methods: The above model is fit to the syndromic+ data using the Ensemble 

Adjustment Kalman Filter (EAKF), a data assimilation method used in weather forecasting 

(Anderson, 2001). In practice, we randomly initialize an ensemble of simulations (see Forecast 

Generation below for details) that are then integrated forward per the model equations. At each 

observation the integration is halted and the ensemble observed state is updated using the EAKF 

algorithm and that observation, per Bayes Rule: 

 

𝑝(𝑋𝑡|𝑂1:𝑡) ∝ 𝑝(𝑋𝑡|𝑂1:(𝑡−1)) ∙ 𝑝(𝑂𝑡|𝑋𝑡) 

 

where 𝑝(𝑋𝑡|𝑂1:(𝑡−1)) is the prior distribution of the observed model state (here, the number of 

newly infected individuals) given all observations prior to time t, 𝑝(𝑂𝑡|𝑋𝑡) is the likelihood of 

the observation at time t given the model state at time t, and 𝑝(𝑋𝑡|𝑂1:𝑡) is the posterior 

distribution of the model state given all observations up to and including time t. The probability 
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of the model state is based on the distribution of the ensemble of simulations. Unobserved state 

variables and parameters (S, R0max, R0min, D, and L) are updated according to cross-ensemble 

covariability with the observed model state. More details on the EAKF’s implementation can be 

found in S1 Text, as well as in the literature (Anderson, 2001; Pei et al., 2018; Shaman & 

Karspeck, 2012; Yang et al., 2014). 

 

Forecast Generation: A forecast for week t is produced by first iteratively fitting the ensemble of 

simulations to local observations from the beginning of the season up to and including week t, 

and then integrating the ensemble until the end of the epidemic period using the final inferred 

states and parameters from the training period (i.e. the posterior at week t). This process is 

repeated throughout the season for weeks 44 through 69 in the northern hemisphere, and weeks 

18 through 43 in the southern hemisphere. Thus each ensemble forecast assimilates 5 to 30 

weeks of training data. Prior to simulation and forecast, initial values of states and parameters for 

each ensemble member are randomly selected using Latin hypercube sampling from ranges 

previously reported (1.3 ≤ 𝑅0𝑚𝑎𝑥
≤ 4.0, 0.8 ≤ 𝑅0𝑚𝑖𝑛

≤ 1.2, 1.5 ≤ 𝐷 ≤ 7.0, 365 ≤ 𝐿 ≤ 3650) 

(Shaman & Karspeck, 2012). In order to account for any stochastic effects during this 

initialization 5 separate 300-member ensembles were initialized and used to generate forecasts 

for each location and season. The average results over all ensembles are reported. Variance 

within an ensemble permits assessment of forecast uncertainty (Shaman & Karspeck, 2012). 

 

Tropical Regions 

For the most part, the procedure used to generate retrospective forecasts in the tropics is similar 

to that used in temperate zones. Differences are described briefly here. 
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SIRS Model: Because the relationship between absolute humidity and influenza incidence is less 

clearly understood in the tropics (Deyle et al., 2016; Shaman et al., 2010; Yang et al., 2018), and 

because humidity data quality in the tropics is poor, we use a simplified model for these 

countries that does not incorporate absolute humidity forcing. Here, R0 is defined simply as βD, 

and neither β nor R0 change over time. Thus, one less parameter (R0 vs. R0max and R0min) is fit by 

our model-data assimilation system when simulating influenza transmission in the tropics. Initial 

values of R0 range from 0.8 to 2.2. 

 

Data Assimilation Methods: Because influenza does not exhibit a coherent seasonal pattern in 

the tropics, model fitting cannot be performed as described above for temperate regions. Rather, 

fitting is performed continuously, beginning with the first available observation (as early as 

October 2010) and ending with the last, as described in Yang et al. (2015). 

 

Forecast Generation: Because the duration of influenza outbreaks in the tropics cannot be known 

in real time, forecasts are not run through the end of an outbreak period, as in temperate 

countries. Rather, forecasts for a given week are run 40 weeks into the future. As in temperate 

regions, we perform 5 simulations of 300 ensemble members each. 

 

Choice of Scaling Factors 

 As described above, model output represents true influenza incidence per 100,000 

population. Our data, on the other hand, are obtained by multiplying nonspecific syndromic data 

by influenza positivity rates among those who actively seek medical care. Furthermore, the 
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(4) 

majority of countries included in the WHO data provide no information on the total number of 

patients seen or the size of the catchment areas from which data were obtained. Thus, our data 

represent counts, not rates. In order to properly use the EAKF as described above, we must 

therefore first scale the data such that they are compatible with the model-simulated state space. 

In effect, the scaling factors map the observed syndromic+ data to the model state space.  Scaled 

data, thus, represent the estimated number of syndromic+ cases per 100,000 population, and can 

be used for data assimilation. Model output—the simulations and forecasts—can then be scaled 

back to their original units (e.g. ARI+) for use by individual country public health departments. 

 Our previous work has shown that SIRS simulations perform optimally when 15-50% of 

a model population of 100,000 is infected over the course of a modeled epidemic. Therefore, 

scaling values, 𝛾, for each country were determined by first calculating the range of scaling 

values yielding a total attack rate between 15% and 50% for each season, i, ([𝛾15, i, 𝛾 50, i]), then 

choosing a single country-specific scaling value based on the following rule: 

 

𝛾 =  {
𝑖𝑓∃𝛾 ∈ ℝ ∶  𝛾15,𝑖 < 𝛾 < 𝛾50,𝑖∀𝑖: 𝑚𝑎𝑥𝑖=1

𝑛 (𝛾15,𝑖)

𝑒𝑙𝑠𝑒: 𝑚𝑖𝑛𝑖=1
𝑛 (𝛾50,𝑖)

} 

 

Although forecasts in the tropics were run continuously rather than by season, scaling factors for 

tropical countries were determined similarly using influenza outbreaks as identified under 

“Delineation of Influenza Seasons” above. 

Scaling values were allowed to vary by country, but not by season: that is, for each 

country, a single scaling value was chosen and used in retrospective forecasts of all available 

seasons. As scaling factors are controlling for differences in rates of seeking medical attention, 

size of the catchment area from which influenza data are collected, and overall population size 

by country, they vary substantially, from 0.004 in Mexico to 374 in Peru. 
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Forecast Accuracy and Comparison 

 Forecasts were evaluated based on their ability to accurately predict outbreak peak timing 

(the week with the highest number of influenza cases), peak intensity (the number of influenza 

cases at the peak), and onset timing (the first of three consecutive weeks with influenza activity 

over some baseline value). Onset baseline values were chosen as 500 simulated cases for 

temperate countries, and 300 cases for tropical countries (see S1 Text). A forecast was 

considered accurate for peak timing and onset timing if the predicted value was within one week 

of the observed, and for peak intensity if the predicted influenza case count was within 25% of 

the observed. These thresholds, particularly the 1 week cutoff for peak timing accuracy, have 

been routinely used both in our past work (Kandula et al., 2017; Morita et al., 2018; Moss et al., 

2016, 2017; Pei et al., 2018; Shaman et al., 2017; Yang et al., 2014) and in evaluating forecasts 

submitted to the Centers for Disease Control and Prevention’s (CDC) Predict the Influenza 

Season Challenge (Biggerstaff et al., 2016), allowing for comparison between the results of this 

work and past work. If the mode predicted onset timing is NA (no outbreak), predicted peak 

timing, peak intensity, and onset timing were set to NA, and the forecast was removed from 

consideration. 

 Forecast accuracy was compared for temperate vs. tropical regions, as well as within 

temperate regions by hemisphere, region, data type, season, and scaling, and within the tropics 

by region, data type, and scaling. Because, in real time, the actual time to peak is unknown, we 

evaluated forecast accuracy by predicted lead time (i.e. the difference between the week at which 

a forecast is initiated and predicted peak timing). For most analyses, forecast accuracy was 

assessed at predicted lead weeks -6 to 4 (i.e. six weeks before the predicted peak through four 

weeks after). Comparisons were made for each individual variable using generalized estimating 
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equations (see S1 Text for more details). To assess whether the effects of the explanatory factors 

change over time, GEE models were also run restricting the data to either before or after the 

predicted peak. Seasons with no identified onset (in other words, where no outbreak occurred) 

were removed before analyzing forecast accuracy. Additionally, because individual outbreaks 

within tropical countries are identified during the forecasting process, and therefore were not 

checked for quality previously, outbreaks where a) five or more consecutive weeks of data were 

missing; or b) data collection for an outbreak began at the outbreak peak were removed from 

tropical countries’ results before GEEs were run. 

 To assess the impact of including humidity forcing in the temperate models, we generated 

an additional set of forecasts for the temperate regions, this time without including humidity 

forcing in the model structure (see S1 Text). This resulted in two distinct forecasts for each 

country, season, start week, and run: one incorporating humidity data and one not. In order to 

fully take advantage of this paired design, forecast accuracy was compared by observed lead 

week using the exact binomial test. Because individual comparisons were made for each lead 

week, we applied a Bonferroni correction and considered differences to be statistically 

significant when p-values were less than 0.0045 (p = 0.05 / 11). Unlike in previous analyses, 

rather than removing forecasts predicting no onset, we considered these forecasts to be 

“inaccurate.” This was done to avoid ignoring pairs of forecasts where one failed to recognize an 

oncoming outbreak but the other accurately predicted peak timing or intensity. 

 Sensitivity analyses were performed to test how forecast accuracy changes as a function 

of EAKF observational error variance, onset baseline value, scaling, and accuracy metric. 

Findings from these sensitivity analyses broadly agree with the results presented here (results in 

S1 Text). 
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Results 

Influenza Data 

 Retrospective forecasts were performed using syndromic+ data from 64 countries, of 

which 18 were classified as tropical. In the temperate regions, data were available for between 2 

and 7 seasons, with each country contributing an average of 6 seasons of data (data in S2 Table). 

In the tropics, data were available for between 29 and 345 weeks (mean = 166 weeks; median = 

140 weeks). In the northern temperate region, onset timing occurred between weeks 45 and 64, 

and peak timing occurred between weeks 48 and 67. In the southern temperate region, these 

values were weeks 23 and 33 for onset timing and 29 and 38 for peak timing. 

 

Forecast Feasibility 

 Overall, we found that accurate forecasts of both peak timing and peak intensity for 

influenza outbreaks are possible using publicly available WHO data. In temperate regions, we 

were able to develop country-level, retrospective forecasts that exceeded 50% accuracy for peak 

timing (i.e., 50% of forecasts predicted peak timing within one week of the observed value) up to 

four weeks before the predicted peak, and for peak intensity (within 25% of the observed value) 

two weeks before the predicted peak. Forecasts exceeded 75% accuracy for peak timing one 

week before the predicted peak, and for peak intensity at the predicted peak week (Figure 2A). 

Forecast accuracy was lower in the tropics, never exceeding 50% for either peak timing or peak 

intensity (Figure 2B). As expected (Moss et al., 2016; Ong et al., 2010; Shaman et al., 2013; 

Shaman & Karspeck, 2012; Yang et al., 2015), forecast accuracy varied as a function of lead 

time, with forecasts near and after the forecasted peak typically performing better than forecasts 

generated several weeks before the peak. Similar patterns were seen by observed lead time, 
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although tropical forecast accuracy was much higher after the observed peak, exceeding 70% 

(results in S3 Figure). Broadly, these results remained consistent after altering the cutoff point at 

which forecasts were considered accurate (S11 Figure), and when correlation coefficients and 

symmetric mean absolute percentage error (sMAPE) over the entire forecast period were 

assessed (S12 Figure), although forecast accuracy assessed using sMAPE was comparable 

between temperate and tropical regions. 

 
Table 1. Onset timing accuracy and number of forecasts predicting any onset by predicted onset 

week. 
Lead Week -6 -5 -4 -3 -2 -1 0 1 2 3 4 

Temperate 

(w/ 

humidity) 

Accuracy - - - - - 41.4% 87.0% 95.6% 95.7% 95.5% 95.2% 

# of 

Fcasts 
0 0 0 0 0 29 1076 1257 1335 1319 1320 

Tropical 

Accuracy 13.3% 12.7% 11.1% 10.7% 6.7% 50.0% 47.2% 67.3% 70.7% 69.1% 69.1% 

# of 

Fcasts 
165 267 305 290 104 14 339 284 300 285 285 

 

 For both temperate and tropical regions, forecasts of outbreak onset timing showed high 

accuracy post-onset, but forecasts were rarely generated in advance of the predicted onset week 

Figure 2. Peak timing and intensity forecast accuracy by predicted lead week.  

(A) Forecast accuracy in temperate regions. (B) Forecast accuracy in tropical regions. Peak timing 

accuracy is shown in red, and peak intensity in blue. The size of the circles represents the number of 

forecasts generated at a particular lead week. 
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(Table 1). Specifically, no temperate forecasts predicted that onset would occur with more than a 

one week advanced lead, and very few forecasts in the tropics accurately predicted onset with 

more than a one-week lead. In temperate regions, onset timing accuracy (onset predicted within 

one week of the observed value) quickly increased and remained above 95% as soon as the 

predicted onset was in the past. In the tropics, accuracy reached almost 50% at the predicted 

onset, and remained around 65-70% for all later lead weeks. 

For the tropics only, we also evaluated how often forecasts correctly recognized an 

existing or upcoming outbreak, without mistakenly predicting outbreaks during periods in which 

no outbreaks occurred. Specifically, we calculated sensitivity, specificity, positive predictive 

value, and negative predictive value. We found that both sensitivity (98.56%) and the negative 

predictive value (98.10%) were high, but that specificity (56.22%) and the positive predictive 

value (63.12%) were much lower. Thus, while forecasts are unlikely to predict dormancy before 

or during an outbreak, forecasts suggesting a current or upcoming outbreak were often 

inaccurate. 

 

Comparison to Method of Analogues 

 We also compared our forecasting results to results obtained using the method of 

analogues, a non-mechanistic forecasting method previously used by Viboud et al. (2003) to 

forecast influenza incidence in France. In temperate countries, our mechanistic forecasting 

approach outperformed the method of analogues slightly for peak timing, and substantially for 

peak intensity before the predicted peak (S13 Figure A and B). In the tropics, the two methods 

performed similarly for both peak timing and intensity (S13 Figure C and D) before the peak, 

and the method of analogues performed slightly better after the predicted peak. Thus, the 
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mechanistic forecasting methods used in this work only improve upon the analogue forecasting 

method in temperate regions. Additional details can be found in S1 Text, and in Viboud et al. 

(2003). 

 

Factors Influencing Forecast Accuracy  

Temperate vs. Tropical Regions 

 As expected, forecast accuracy was significantly lower in the tropics than in temperate 

regions. Overall, the odds that a forecast accurately predicted peak timing in the tropics was 

0.123 (95% CI: 0.091, 0.165) times that in temperate regions, and the odds of accurately 

predicting peak intensity in the tropics were 0.103 (95% CI: 0.072, 0.148) times that in temperate 

regions. This pattern held when comparisons were restricted to predicted lead weeks of 0 and 

greater (i.e. forecasts predicting that the peak was either the current week or in the past; peak 

timing aOR = 0.115 (0.084, 0.160); peak intensity aOR = 0.070 (0.045, 0.108)). 

 

Impact of Humidity Forcing 

 Inclusion of humidity forcing in the temperate region forecasts significantly increased 

both peak timing and peak intensity forecast accuracy prior to the observed peak, and peak 

timing accuracy at the observed peak (Table 2). Post-peak, no significant differences in forecast 

accuracy were observed by inclusion of humidity forcing. 

 

Additional Factors 

 Forecast accuracy was also assessed by hemisphere, region, data type, season, and scaling 

in the temperate regions, and by region, data type, and scaling in the tropics. Few consistent, 
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significant relationships were found. In temperate regions, peak timing accuracy was lower for 

countries reporting ARI+ data vs. ILI+ data both before (aOR = 0.645, 95% CI: 0.428-0.973) and 

after (aOR = 0.567, 95% CI: 0.334-0.965) the predicted peak. Peak timing accuracy was highest 

after the peak in Eastern Europe (aOR = 2.068, 95% CI: 1.095-3.889, compared to Southwest 

Europe; see S1 Text for information on how countries were classified into regions). Finally, 

compared to countries with scaling values between 2 and 10, countries using scaling values 

between 0 and 0.5 performed worse for both peak timing (aOR = 0.420, 95% CI: 0.181-0.982) 

and peak intensity (aOR = 0.170, 95% CI: 0.051-0.568) after the predicted peak. Post-peak, 

countries using scaling values between 10 and 20 (aOR = 0.145, 95% CI: 0.038-0.571), 20 and 

100 (aOR = 0.147, 95% CI: 0.033-0.646), and 100 and 500 (aOR = 0.229, 95% CI: 0.066-0.801) 

also performed significantly worse for peak intensity only. No significant differences in forecast 

accuracy were observed by hemisphere or season for either peak timing or intensity (results in S3 

Table). 

  

Because very few forecasts were generated prior to the predicted peak week in the 

tropics, it was only possible to rigorously compare forecast accuracy at and after the predicted 

peak. No statistically significant associations between forecast accuracy and data type, region, or 

scaling value were found for either peak timing or intensity in the tropics (results in S4 Table). 

Table 2. Accuracy of forecasts incorporating vs. omitting absolute humidity forcing by observed 

lead week for both peak timing and intensity. 
Obs. Lead 

Week: -6 -5 -4 -3 -2 -1 0 1 2 3 4 

Timing 

AH 4.8% 18.6% 36.7% 47.3% 54.4% 53.6% 55.4% 70.9% 80.2% 82.1% 82.0% 

No 

AH 
2.0% 13.2% 32.3% 41.8% 50.4% 48.3% 50.4% 71.6% 81.4% 83.6% 83.3% 

Sig. ** ** ** ** ** ** **     

Intensity 

AH 6.9% 10.1% 18.9% 26.3% 40.3% 56.8% 70.1% 86.7% 90.2% 91.0% 90.1% 

No 

AH 
4.2% 7.5% 14.1% 25.2% 41.6% 52.8% 68.4% 87.4% 90.4% 91.8% 91.1% 

Sig. ** ** **   *      

* p<0.001, **p<0.0001 
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Forecast Calibration 

 It is important to consider not only how accurate forecasts are, but also forecast 

uncertainty. This is especially true in the case of real-time forecasting: different medical and 

public health responses might be affected given forecast of an 80% chance of a particular 

outcome rather than a 20% chance. Because each forecast is based on 300 individual ensemble 

members, we could assess forecast certainty through the spread of the ensemble variance, where 

narrower ensemble spread ideally indicated greater certainty. 

 Figures 3A and B show average peak timing and intensity forecast accuracy, respectively, 

for temperate regions plotted against ensemble variance (separated into 10 quantiles). For peak 

timing, we generally saw a slight decrease in forecast accuracy as ensemble variance increases at 

all predicted lead weeks, indicating that we can infer expected forecast accuracy from ensemble 

spread. For peak intensity, this pattern only held prior to the predicted peak. Corresponding plots 

for the tropics are shown in Figures 3C and D. For peak timing, no clear relationship existed 

between ensemble variance and forecast accuracy, indicating that no information about expected 

forecast accuracy can be inferred from ensemble spread. For forecasts of peak intensity, on the 

other hand, increases in ensemble variance corresponded to substantial decreases in forecast 

accuracy. 

We also explored how often the observed peak timing and intensity fall within certain 

prediction intervals of ensemble spread prior to the predicted peak (Figure 4). In a well-

calibrated forecast, we expect that the observed intensity will fall within the nth% prediction 

interval n% of the time. Overall, forecasts appeared to be well calibrated for both peak timing 

and intensity in temperate regions at all lead times, although prediction intervals tended to be too 

wide for peak timing, especially several weeks before the peak. In the tropics, peak intensity 
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forecasts appeared well calibrated, while peak timing forecasts rarely included the observed peak 

timing. 

 Further exploration of forecast calibration can be found in S10 Figure. 

 

Discussion 

While skillful forecasts of influenza activity have repeatedly been shown to be possible 

(Biggerstaff et al., 2016; Brooks et al., 2015; Hickmann et al., 2015; Morita et al., 2018; Moss et 

 

 

 

 

                      

    

    

    

    

    

    

    

    

    

    

                            

 
  
 
 
  
  
 
  
 
 
 
  
  
  
  
 
  

 
  

 
 
 
  
 
 

           

       

       

       

      

     

            

   

   

Figure 3. Forecast calibration as the relationship between forecast accuracy and ensemble spread. 

The relationship between peak timing (A and C) and peak intensity (B and D) ensemble variance and 

forecast accuracy by predicted lead week is shown for temperate (A and B) and tropical (C and D) 

regions. Point size represents how many forecasts are included in the point, and only lead week ranges 

with at least 100 (A and B) or 10 (C and D) forecasts were included. 
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al., 2016, 2017; Ong et al., 2010; Osthus et al., 2017; Shaman et al., 2013; Shaman & Karspeck, 

2012; Viboud et al., 2003), few attempts to forecast non-pandemic influenza outbreaks in areas 

other than the US have been made. Here, we use publicly-available syndromic and virologic data 

to generate retrospective forecasts of influenza transmission at the country scale for 64 countries 

in both temperate and tropical regions. We find that accurate and well-calibrated forecasts are 

possible in temperate regions. On average, peak timing and peak intensity of outbreaks can be 

 

 

 

 

                                       

  

   

   

   

   

   

   

   

   

   

   

  

   

   

   

   

   

   

   

   

   

   

                   

 
  
  
 
 
 
  

  
 
  
  
 

           

        

        

       

Figure 4. Forecast calibration as percent of observed peak timing/intensity values falling within 

prediction intervals. 

Here we show the percentage of forecasts where the observed peak timing (A and C) or intensity (B and 

D) value falls within the 25%, 50%, 80%, 90%, 95%, and 99% prediction intervals of 300 ensemble 

members by predicted lead week for temperate (A and B) and tropical (C and D) regions. The gray line 

represents the expected case in which exactly 25% of observations are falling within the 25% prediction 

interval, and so on. 
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predicted within 1 week and within 25% of the observed values, respectively, over 50% of the 

time starting four (peak timing) and two (peak intensity) weeks before the predicted peak, 

although forecast accuracy differs substantially by country (results in S2 Figure). These results 

are broadly consistent with past forecasting results in various US cities (Shaman et al., 2013; 

Shaman & Karspeck, 2012) as well as in Victoria, Australia (Moss et al., 2016, 2017), indicating 

that the larger spatial scale employed here does not substantially compromise forecast accuracy. 

 As expected, forecasts were both less accurate and less well calibrated in the tropics. 

Typically, peak timing and intensity could not be predicted within 1 week or 25% of observed 

values, respectively, until after the peak was estimated to have occurred, and the proportion of 

forecasts achieving these accuracy levels never exceeded 50%, even several weeks after the 

peak. For peak timing in particular, prediction intervals based on 300 ensemble runs rarely 

included the observed peak week, and ensemble variability was not strongly associated with 

forecast accuracy, making forecast calibration challenging. Finally, while sensitivity and the 

negative predictive value were high, specificity and the positive predictive value were low, 

indicating that forecasts often predicted outbreaks when no outbreaks occurred in reality. 

Previously, Yang et al. (2015) produced forecasts of non-pandemic influenza in Hong Kong 

using methods similar to those employed here, and found that both peak timing and intensity 

accuracy reached 50% by lead week 0. On average, our tropical forecasts perform more poorly, 

although we note that, as in temperate regions, forecast performance varied substantially by 

country (results in S2 Figure). It is possible that the data for many of the tropical countries used 

in forecasting here are simply noisier than the Hong Kong data. If so, this issue may be difficult 

to surmount without changes in surveillance methods: smoothing our tropical data using a simple 

moving average over three weeks did not substantially improve forecast accuracy (results in S1 
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Text and S8 Figure), nor did performing model fitting and forecasting by individual outbreak 

instead of continuously across multiple outbreaks (results in S1 Text and S9 Figure). We also 

emphasize that, while our method is well tested in temperate regions, very little forecasting has 

been performed in the tropics. Our results do not suggest tropical countries will always yield 

forecasts with low accuracy, simply that the combination of data and methods applied in 

temperate countries may be insufficient. 

 Unlike peak timing and intensity, onset timing was not accurately predicted before 

outbreak onset in either temperate or tropical regions. This poor performance is likely due to a 

lack of signal in the data prior to the start of an outbreak, and is not surprising. Past work has 

shown that models including travel between US states (Pei et al., 2018) and boroughs of New 

York City (Yang et al., 2016) significantly improve forecast accuracy, particularly onset timing 

accuracy. Future work will incorporate travel between countries in the model, allowing forecasts 

of onset timing in a given country to be informed by signal from connected countries in which an 

outbreak has already begun. While a variety of models exist for forecasting the spatial dynamics 

of influenza transmission (Geilhufe et al., 2014; Longini et al., 1986; Tizzoni et al., 2012), we 

believe that our approach, in which a model is iteratively fit to influenza observations, can offer 

significant improvements. 

 Significant differences in forecast accuracy were observed by a variety of factors for both 

peak timing and intensity. In temperate regions, forecasts of peak timing are less accurate for 

countries reporting ARI data than for those reporting ILI data. Because ARI is a less specific 

measure than ILI, these data tend to be noisier. This, in turn, likely contributes to the lower 

forecast accuracy. We also observe lower peak timing accuracy with particularly small scaling 
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values, and lower peak intensity accuracy with particularly small or large scaling values, at least 

after the peak. 

 Including absolute humidity forcing in our models improved temperate forecast accuracy 

prior to the observed peak, with no differences observed post-peak. These results are consistent 

with the results of a recent paper by Shaman et al. (2017), which found that, on average, 

including absolute humidity forcing improved forecast accuracy in 95 US cities before the 

predicted peak. Given the large spatial and latitudinal scale of several of the countries examined 

here, it is interesting that mean country-level absolute humidity still significantly improves 

forecast accuracy. Our results suggest that absolute humidity forcing should continue to be 

included in models forecasting influenza in temperate regions, even when humidity must be 

averaged over large regions. Furthermore, given evidence that climatic factors such as absolute 

and relative humidity (Emukule et al., 2016; Imai et al., 2014; Soebiyanto et al., 2014; Tamerius 

et al., 2013) and precipitation (Imai et al., 2014; Soebiyanto et al., 2014; Tamerius et al., 2013; 

Yang et al., 2018) may influence influenza transmission in the tropics and subtropics, future 

work should consider how climatic factors may be incorporated into model fitting and 

forecasting outside of the temperate zones. 

 Despite the novelty of this work, we are cognizant of several important limitations. First, 

our data exhibit a strong spatial bias, with little to no representation in Africa and South 

America. Information on influenza dynamics in general are particularly lacking in the tropics, 

which precludes forecasting. As always, forecast accuracy findings may also be dependent on the 

choice of accuracy metrics, although we note that our results are robust to various accuracy 

cutoffs, as well as to choice of alternative accuracy metrics (see S1 Text; S11 and S12 Figures). 
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Furthermore, our method outperforms the method of analogues, a robust non-mechanistic 

forecasting method (Viboud et al., 2003) in temperate regions (S1 Text and S13 Figure). 

Additionally, as mentioned in the Methods, data do not perfectly reflect reality. All 

syndromic data types include some people with non-influenza respiratory conditions, and 

exclude those with influenza who do not seek treatment or meet specific criteria. Multiplying by 

percent of tests positive for influenza only partially mitigates these issues. In particular, 

differences in noisiness between different data types persist. Information on the size of the 

catchment area from which data were obtained is also largely lacking, so forecasts must be 

generated based on raw counts rather than rates. This leads to substantial variability in case 

counts by country. While this can be partially compensated through the use of scaling factors, it 

is crucial that these values are chosen appropriately (Moss et al., 2017). As we base scaling 

values on past data, forecast accuracy may therefore be compromised when data are not available 

for several past seasons. Furthermore, if new countries begin submitting influenza data, real-time 

forecasts cannot be generated immediately, as at least one full season or outbreak must pass 

before an appropriate scaling can be calculated. 

Finally, all forecasts at this point have been generated at the country level. Thus, while 

our results and future real-time forecasts may be of public health relevance for smaller countries, 

they are likely to provide less actionable results for much larger countries, such as Russia or 

Brazil. Future work should attempt to incorporate subnational data, where available. In addition 

to increased public health relevance, we may also expect forecast accuracy to improve when 

smaller subunits within a country are used for forecasting. We note, however, that real-time 

forecasts are only plausible when data are submitted in a timely fashion. At present, this occurs 
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for most of the northern hemisphere temperate countries included in this study, but is uncommon 

in southern hemisphere temperate countries and for countries in the tropics and subtropics. 

 

Conclusions 

 We have shown that, in temperate regions, accurate and well-calibrated retrospective 

forecasts of seasonal influenza activity are feasible. Work is currently being conducted to 

determine whether real-time forecasts are similarly feasible, and future work will incorporate 

travel between countries with the goal of improving forecast accuracy, particularly onset timing 

accuracy. Although this work is at an early stage, we note the importance of eventually 

incorporating forecasts into medical and public health decision-making. Accurate real-time 

probabilistic forecasts have the potential to inform decisions such as antiviral stockpiling by 

governments or staff and bed management by hospitals, preventing morbidity and mortality. 

Therefore, it is critical that these forecasts not be produced solely as an academic exercise. 
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S1 Text: Supplementary methods and results. 

 

Supplementary Methods 

Influenza Data Processing 

 Both syndromic and virologic data were downloaded from the WHO in April 2018. 

 When a country reported several different types of syndromic data, we used the data type 

that was most consistently reported across all seasons. When two data types were reported with 

roughly equal frequency, we favored ILI, as it is more specific than ARI, but includes a wider 

population than SARI or pneumonia. Data were also examined visually for signal; if one data 

type appeared to produce a much smoother signal than another, it was chosen for use in 

forecasting. France reported ARI data prior to the 2014-15 influenza season, but switched to ILI 

data for the 2014-15 season and all subsequent seasons; all other countries have favored the same 

data type or types over time. 

Overall, 38 countries reported ILI, 17 reported ARI, 6 reported SARI, one (Honduras) 

reported pneumonia, one (Canada) reported ILI rates rather than counts, and one (France) 

changed preferential data types during the period spanned by the data (from ARI to ILI) (S1 

Table). SARI and pneumonia were only preferentially reported from tropical countries. 

Definitions for all 4 syndromes, however, are not standardized, and therefore the specific 

definitions used vary by member state. Broadly, ILI refers to a respiratory illness involving fever 

and cough, whereas ARI is less strict and captures patients with at least one of several respiratory 

symptoms. A diagnosis of SARI, meanwhile, requires hospitalization (WHO, 2011). 

  Virologic data consisted of the number of tests positive for any influenza strain, as well 

as the number of tests processed and reported. The proportion of tests positive for influenza was 
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calculated by dividing the number of positive tests by the number of tests processed; when no 

information regarding tests processed was available, the number of positive tests was instead 

divided by the number of tests reported. If the resulting proportion exceeded one, the data point 

was removed. 

 Countries were maintained in the dataset if they had good quality syndromic and 

virologic data. In the temperate regions, good quality data were defined as data for which fewer 

than one third of all available seasons met the removal criteria described in the main text (i.e. at 

least 5 consecutive missing data points near the peak); in other words, temperate countries were 

maintained in the dataset if over two thirds of available seasons could be used for forecasting. In 

the tropics, countries were removed from consideration if: 1) over 33% of total observations or 

over 5% of observations during outbreaks were 0, or 2) if the highest peak was over 15 times 

higher than the lowest peak (i.e., if the data showed an unrealistic amount of variation from 

outbreak to outbreak). 

 Finally, several countries were located between temperate and tropical regions in the 

subtropics, whereas others spanned both temperate and tropical regions. To classify these 

countries as “temperate” or “tropical” for the sake of this study, we therefore considered whether 

past influenza outbreaks exhibited a marked seasonal signal consistent with temperate influenza 

activity. If outbreaks occurred once a year and strictly within the seasons defined for temperate 

regions (weeks 40 to 20 in the northern hemisphere, or weeks 14 to 46 in the southern), the 

country was classified as “temperate;” otherwise, we classified it as “tropical.” 

 All data used for forecasting are described in S1 and S2 Tables, and visualized in S1 

Figure. 
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Humidity Data Processing 

We processed the raw data for use in our models as follows. First, daily averages for each 

1°x1° grid cell were calculated to yield daily time series of specific humidity. Next, we searched 

the humidity data visually for anomalies. Three major anomalies were found: 1) in some grid 

cells, humidity increased substantially for the years 1994-1998; 2) in some grid cells, humidity 

was anomalously low in either 1999 or 2003-2004; and 3) in several countries, primarily 

Australia and countries in Eastern Europe, a sharp increase in humidity was observed throughout 

the majority of 1997, excepting the summer. The first two anomalies were addressed by 

removing any years for which yearly average specific humidity was over 1.5 times the 75th 

percentile or less than 0.65 times the 25th percentile of yearly average specific humidity for a 

given grid cell. The third anomaly was identified by visual inspection, and the year 1997 was 

removed from affected grid cells. A total of 469 grid cells were affected by the first anomaly, 44 

by the second, and 1270 by the third; additionally, two grid cells from Chile were removed 

entirely because data shifted substantially upward and downward over time. Overall, 1800 grid 

cells had at least some data removed due to anomalies, leaving 6240 grid cells with no anomalies 

during the 20-year record. 

 Twenty-year climatologies for each grid cell were then generated by averaging daily 

specific humidity on each of 365 days across twenty years. Note that, due to removal of 

anomalous data by year, many grid cells yielded 12 to 19 year climatologies. Each grid cells was 

then assigned to one or more countries using the Clip tool in QGIS 2.18.2. Grid cells belonging 

to more than one country were delegated proportionally to all countries with which they 

overlapped. Finally, climatologies were aggregated to the country level by taking an average of 
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the climatologies for all grid cells assigned to a given country, weighted by the proportion of the 

grid cell situated within the country in question. 

 

Ensemble Adjustment Kalman Filter 

Observational Error Variance: As described in the main text and above, both syndromic and 

virologic data are subject to error from a variety of sources, and thus deviate from the number of 

true influenza cases. However, the extent of this error is unknown. In order to properly use the 

EAKF, we must therefore specify some degree of error in our observations. We account for this 

by calculating observational error variance (OEV), defined as: 

 

𝑂𝐸𝑉𝑡 =
1 × 105 +

(∑
𝑂𝑡
3

𝑡−1
𝑗=𝑡−3 )

2

5
𝑐

 

 

where Ot is the observed syndromic+ data at time t and c can be altered to modify the magnitude 

of the prescribed error, with lower values of c corresponding to higher overall error in the 

observations. All forecasts described in the main text were run with c equal to 1. Results of 

sensitivity analyses using c = 10 are presented below. 

 

Filter Divergence: One prominent issue with the EAKF is that of filter divergence, in which, 

following assimilation of multiple successive observations, the variance of the model ensemble 

decreases, and thus confidence in the model estimates increases to the point where the 

observations are essentially ignored. To prevent filter divergence in temperate regions, we 

multiplicatively inflate the prior model variance by 1.03 times before assimilating each new 

observation (Shaman et al., 2013; Yang, Cowling, et al., 2015). In the tropics, where model 
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fitting is performed over several years, filter divergence is likely to be a more substantial issue 

than over the shorter, seasonal time periods modeled for temperate countries. As in the temperate 

regions, we address filter divergence by multiplicatively inflating the ensemble variance by 1.03 

at each time step. Additionally, per Yang, Cowling et al. (2015), if the model diverges from an 

observation by more than 20% at a given time step, we reinitialize the model completely by 

choosing new initial states and parameters at that time step. These methods are described in more 

detail in Yang, Cowling et al. (2015). 

 

Retrospective Forecast Generation (Temperate without Humidity Forcing) 

 To generate retrospective forecasts in temperate regions with no absolute humidity 

forcing, we used the same SIRS model as for tropical forecasts. As with all other forecasts, we 

ran 5 simulations of 300 ensemble members each. 

 

Comparing Forecast Accuracy 

To compare forecast accuracy in the temperate and tropical regions, as well as by 

hemisphere, region, season, data type, and chosen scaling value, we used generalized estimating 

equations (GEEs) controlling for predicted lead week as a categorical variable with week 0 as the 

reference level. GEEs were chosen for their ability to control for temporal autocorrelation within 

each country and season pair, as the accuracy of successive weekly forecasts in a given country 

are temporally autocorrelated. Further, GEEs were chosen over mixed effects models in order to 

estimate overall effects rather than impact on individual forecasts. An autoregressive AR(1) 

working correlation matrix was assumed. The five replicate forecasts produced for each country, 

season, and start week represent an additional layer of clustering in our results. To control for 
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this, we randomly permuted the results 100 times, each time choosing a single run (among the 5 

replicates) for each country, season, and start week (or, in the tropics, each country, start week, 

and individual outbreak). Final results were drawn from the median coefficients and standard 

errors of these 100 permutations. Results for all tested factors for both temperate and tropical 

regions can be found in S3 and S4 Tables. 

 

Tropical Data Smoothing 

 We hypothesized that forecast accuracy in the tropics could be improved by smoothing 

the syndromic+ data, which was typically substantially noisier than the temperate data (S1 

Figure). In order to test this hypothesis, we applied a simple moving average to the tropical data. 

Because in real-time forecasting no data beyond the current forecast week are available, we 

averaged the data for a given time point with the data from the previous two weeks to create a 3-

week moving average. We then ran retrospective forecasts as described in the main text using the 

smoothed data. 

 

Retrospective Forecast Generation by Tropical Outbreak 

 To assess the role of sporadic outbreak timing on forecast accuracy in the tropics, we also 

ran tropical forecasts for each outbreak individually, similar to how forecasting was performed in 

temperate regions. Outbreaks for each tropical country were identified as described in the main 

text. We then added eight weeks to the beginning and end of each identified outbreak period, 

before performing forecasts as described in the main text for temperate regions, considering each 

outbreak as a “season.” Specifically, fitting began eight weeks before the identified outbreak 

onset, and forecasts were generated starting 3 weeks before outbreak onset (corresponding to 5 
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weeks of training data, as in the temperate regions) through 4 weeks after the outbreak had 

ended. We note that, in temperate countries, model fitting started an average of 13 to 14 weeks 

prior to outbreak onset. However, because outbreaks in the tropics often happen in rapid 

succession, it was not possible to include this amount of lead time around the outbreak periods 

without also including substantial portions of other “outbreaks.” 

 

Sensitivity Analyses for Timing/Intensity Accuracy Cutoffs 

 Because our conclusions regarding forecast accuracy are dependent on the ranges of 

predicted timing and intensity values that we consider to be “accurate,” we also assessed forecast 

accuracy using alternative accuracy definitions, one stricter and one more lenient. Specifically, 

we considered forecasts of peak timing to be accurate (a) only when the forecasted peak timing 

equaled the observed peak timing exactly, or (b) when the forecasted peak timing was within 2 

weeks of the observed peak timing. For peak intensity, we considered forecasts accurate (a) 

when the forecasted value was within 12.5% of the observed value, or (b) when the forecasted 

value was within 50% of the observed value. 

 

Alternative Forecast Accuracy Metrics 

 In addition to the peak timing, peak intensity, and onset timing accuracy metrics defined 

in the main text, we also assessed forecast accuracy over the duration of the forecast using 

correlation coefficients and the symmetric mean absolute percentage error (sMAPE). These 

metrics are calculated by comparing forecast influenza incidence from the time of forecast start 

until 10 weeks post peak with the observed influenza syndromic+ data over the same time 

period. This time period was chosen because, beyond 8 weeks post observed peak, syndromic+ 
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case counts tend to be low, zero, or missing, precluding meaningful error measurements. We 

additionally removed any forecasts with fewer than four non-NA data points. sMAPE is defined 

as: 

 

𝑠𝑀𝐴𝑃𝐸 =
100%

𝑇
∑

|𝐹𝑡 − 𝑂𝑡|

(|𝑂𝑡| + |𝐹𝑡|)/2

𝑇

𝑡=1
 

 

where T is the number of weeks forecasted, Ot is the observed syndromic+ value at time t, and Ft 

is the forecasted influenza incidence at time t (Tofallis, 2015). We chose to use sMAPE rather 

than the more commonly used root mean square error (RMSE) because, unlike RMSE, sMAPE 

controls for the difference in the magnitude of the observed data both at different points in an 

outbreak, as well as between different countries in the dataset. Also, unlike MAPE, sMAPE is 

not highly biased toward forecasts that undershoot observed values (Tofallis, 2015). 

 To test whether significant differences in forecast accuracy exist between temperate and 

tropical regions, we performed Kruskal-Wallis rank sum tests at predicted lead weeks -6 through 

4. Because 5 individual runs were performed for each country and season, we randomly chose a 

single run for each country and outbreak combination 20 separate times, similar to the process 

described in the main text for comparing forecast accuracy. If p-values were below 0.0045 (0.05 

/ 11; p = 0.05 with Bonferroni correction for the 11 distinct lead weeks) for at least 50% of 

randomly selected run combinations, we considered there to be a significant difference in value 

for that lead week. 

 

Method of Analogues 

 We further compared our mechanistic forecasting results with results obtained using the 

method of analogues (Viboud et al., 2003). Explicit methodological detail can be found in 
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Viboud et al. (2003). Briefly, the method involves searching through the entire time series of 

each country for a given number of vectors, or “nearest neighbors,” that most closely match the 

data at the time at which a forecast is desired. We performed the method for each country 

individually at each time point using two nearest neighbors of length four. These nearest 

neighbors were drawn from previous seasons in the temperate regions, and from any previous 

data in the tropics; in other words, neighbors from the current season itself were not permitted 

when forecasting in the temperate regions. Additionally, because missing data were common in 

our dataset, we limited forecasting with the method of analogues to forecast start weeks where at 

least two of the preceding three weeks had data. Finally, as this method relies on patterns 

observed in past data, we do not begin forecasting until two full seasons (temperate) or outbreaks 

(tropics) have occurred. We note that this precludes forecasting in several tropical countries 

(Bangladesh, Bolivia, Brazil, Honduras, Indonesia, Kenya, and Madagascar). In order to fairly 

compare the method of analogues with our methods as described in the main text, we remove 

forecasts from our main results accordingly for this analysis only. 

 

Data Quality Metrics 

 In general, we expect that forecast accuracy will be higher when data of better quality are 

used for model fitting. To test whether this was the case in this study, we calculated three 

measures of data quality: 

1) The proportion of weeks within seasons (temperate countries; weeks 40 to 19 in the 

northern hemisphere and weeks 14 to 45 in the southern hemisphere) or outbreaks 

(tropical countries; outbreaks extended from the end of a previous outbreak to the next 

outbreak endpoint, so as to include both the outbreak itself and the most proximal 
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training data) for which no data were available were calculated overall for each country, 

as well as by season for temperate countries. 

2) Data signal smoothness was calculated using lag-one autocorrelation. 

3) The extent to which a country sampled for influenza was estimated by comparing the 

number of virologic samples taken each week within the influenza season (temperate) or 

throughout the year (tropics) to the country’s total population size. 

These measures were then compared to overall average peak timing and intensity accuracy by 

country (and by season, for temperate countries and measure 1) using Kendall’s rank correlation. 

 

Inferred Model States and Parameters 

 As described in the main text, model state variables (the number susceptible and infected) 

and parameters (R0max, R0min, R0, D, L) are inferred throughout the model fitting process. To 

determine whether inferred values of S0 (the initial number of susceptible individuals in a 

country) and of model parameters substantially differed between temperate and tropic countries, 

by hemisphere, or by data type, we first limited our analysis to the training period of the final 

forecasts run for each country and season, as these were the model fits incorporating the greatest 

number of data points. Then, we calculated R0 for temperate countries according to equation 2 in 

the main text. Finally, Re, or “R effective,” defined as the number of cases caused by each 

infected individual after taking into account the susceptibility of the population, was calculated 

by multiplying R0 by S / N at each time point. The value of S0 for a country and season (or 

country and outbreak in the tropics) was considered to be the maximum inferred value of S over 

the course of the outbreak. R0, Re, D, and L were considered at the time of maximum Re for each 

country and outbreak, as described in Yang, Lipsitch et al. (2015). Finally, values of S0, R0, Re, 
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D, and L were compared by region (temperate vs. tropics), hemisphere, and data type using the 

Kruskal-Wallis rank sum test, as described above under “Alternative Forecast Accuracy 

Methods.” Here, results were considered significant if f p-values were below 0.05 for at least 

50% of randomly selected run combinations. 

 

Inferred Maximum and Minimum R0 by Latitude 

 In each country, R0 is allowed to vary between some maximum R0max and some minimum 

R0min, dependent on absolute humidity (see Eq. 2 in main text). R0max and R0min are fit separately 

for each country, and thus are permitted to vary. If the influence of humidity on influenza 

transmission acts similarly at all latitudes, we expect inferred values of R0max and R0min to also be 

similar at all latitudes. 

 To test this, we identified the inferred values of R0max and R0min for each country and 

season in both the northern and southern temperate regions at maximum Re, as described in the 

previous section. We then compared values of these two parameters between hemispheres, as 

described above, as well as by latitude, using Kendall rank correlation. Again, results were 

considered significant if p-values were below 0.05 for at least 10 of 20 randomly selected 

combinations of model runs. For each country, we tested two different values for latitude: the 

latitude at the center of the country, and the latitude of the country’s capital city. Absolute values 

were used so that countries in both the northern and southern hemispheres could be assessed 

together. 
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Pandemic Forecasts 

 We also generated retrospective forecasts for the 2009 influenza pandemic for the 34 

countries (including 2 in the tropics) reporting data during this period. Because the time of 

pandemic emergence was not known in advance in real time, we did not begin forecasting until 

scaled observations exceeded 50% of the onset baseline value (250 in temperate regions and 150 

in the tropics). At that point, an initial forecast was produced using 10 weeks of training data, 

and forecasting proceeded as described in the main text. For this reason, forecasts of pandemic 

onset were not possible. Note that if the time at which syndromic+ data exceeded baseline onset 

was before the fifth week of data, forecasting was begun after 2 weeks of training, to avoid 

generating forecasts with insufficiently trained models. This was done so that model states and 

parameters had some degree of training before forecasts were produced. Forecasts were then 

generated every week until scaled observations fell below 50% of the onset baseline for >=2 

consecutive weeks (which we considered the pandemic “endpoint” for a country), or until less 

than 4 weeks remained before the beginning of the 2010-11 influenza season (in temperate 

countries). Thus, the exact period over which forecasts were generated varied by country. 

Otherwise, forecasts were run as described in the main text. 

 Countries for which both syndromic and virologic data were available for the 2009 

pandemic included 32 northern hemisphere temperate countries, and 2 tropical countries 

(Honduras and Singapore). A complete list of these countries can be found in S2 Table. 
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Supplementary Results 

Forecast Accuracy by Country 

 As observed in a previous forecasting study focusing on US cities (Shaman et al., 2013) 

and as mentioned in the main text, forecast accuracy varied greatly by individual country (S2 

Figure). 

 

Forecast Accuracy by Observed Lead Week 

 When assessed by observed lead week, retrospective forecasts for temperate regions 

reached 50% accurate from 5 weeks prior to the peak (for peak timing) and 1 week prior to the 

peak (for peak intensity). Peak timing forecasts exceed 75% at 2 weeks post peak, and peak 

intensity forecasts exceed 75% the week after the peak (S3 Figure A). These results are similar to 

those presented for predicted lead week in the main text. 

 Forecasts in the tropics exceed 50% accuracy at the observed peak for both peak timing 

and intensity (S3 Figure B). Forecasts surpass 75% accuracy at one week post peak for peak 

timing, but never reach 75% accuracy for peak intensity. Thus, results are similar to those in the 

main text before the peak, but demonstrate much higher accuracy post-peak. 

 

Choice of OEV Denominator 

 S4 Figure compares peak timing and intensity forecast accuracy for temperate and 

tropical regions when c is set to 10, rather than 1 as in the main text, corresponding to a tenfold 

reduction of error in the syndromic+ observations. S5 Figure compares forecast calibration under 

the same circumstances. In temperate regions, setting c to 10 appears to have little impact on 

forecast accuracy. In the tropics, however, peak intensity accuracy appears substantially higher 
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when c is set to 10 rather than 1. However, for both temperate and tropical regions, and for peak 

intensity in particular, setting c to 1, as presented in the main text, appears to result in better 

forecast calibration, i.e. the prediction intervals for peak intensity are more aligned with the 

spread of observations. Given our goal of producing forecasts that are both accurate and well 

calibrated, using a c of 1 appears preferable to a c of 10. 

 

Choice of Onset 

 In the main text, we set the scaled baseline value to 500 for temperate regions and 300 for 

the tropics. In S6 Figure, we present the overall accuracy of onset timing forecasts when onset is 

set to 300, 400, or 600 in the temperate regions, and 200, 400, or 500 in the tropics. Seasons 

where no onset occurred were removed, and forecasts predicting no onset were counted as 

inaccurate. Forecast accuracy is therefore presented by lead relative to observed onset week, as 

predicted lead onset week does not exist when no onset is predicted. In temperate regions, there 

are no substantial differences in onset timing forecast accuracy by choice of onset value. In the 

tropics, differences are somewhat more pronounced, but the overall structure of accuracy as a 

function of lead is similar; note that for some baseline values more spurious predictions of no 

onset were generated (the smaller dots sizes in S6 Figure). 

 

Choice of Scaling Value 

 In our main analyses, we systematically selected the lowest scaling values that yielded 

overall attack rates between 15% and 50% of the model population for all seasons, where 

possible. Here, we test the sensitivity of our results to this decision by essentially flipping our 
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scaling selection rule (Eq. 4) and choosing the highest scaling values that yield the desired attack 

rates: 

 

𝛾 =  {
𝑖𝑓∃𝛾 ∈ ℝ ∶  𝛾15,𝑖 < 𝛾 < 𝛾50,𝑖∀𝑖: 𝑚𝑖𝑛𝑖=0

𝑛 (𝛾50,𝑖)

𝑒𝑙𝑠𝑒: 𝑚𝑎𝑥𝑖=0
𝑛 (𝛾15,𝑖)

} 

 

 Results of these analyses are shown in S7 Figure. Overall, changing the selection rule has 

little impact on forecast accuracy. 

 

Tropical Forecast Accuracy Using Smoothed Data 

 When forecasting in the tropics is performed using data smoothed with a 3-week moving 

average, forecast accuracy appears to improve slightly for peak intensity, but not for peak timing 

(S8 Figure). However, forecast accuracy remains much lower than in the temperate regions. 

 

Retrospective Forecast Accuracy by Tropical Outbreak 

 When forecasts of tropical outbreaks are performed separately for each outbreak, 

essentially treating each outbreak as a “season,” forecast accuracy before the predicted peak 

appears to increase slightly (S9 Figure). However, forecast accuracy remains low overall 

compared to temperate regions, suggesting that low forecast accuracy in the tropics is not 

primarily due to the irregularity of outbreaks, which prevent recurrent, seasonal model fitting and 

forecasting. Instead, the differences appear to be related to factors such as the high amount of 

noise in tropical observations. 
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Additional Forecast Calibration Results 

 In a properly calibrated forecast, we expect that errors in forecasted peak timing and 

intensity will display some distribution with a mean of 0. In contrast, a non-zero mean indicates 

that forecasts are biased. We assess whether the forecasts generated in the main text are biased 

according to this measure by plotting histograms of the difference between the observed and 

predicted peak timing and peak intensity over time (S10 Figure). In order to standardize errors 

over a wide range of observed peak intensity values by country, we plot the error in peak 

intensity forecasts divided by the observed peak intensity, rather than simply plotting the 

absolute error. Using this metric, we see that good calibration is achieved in the temperate 

regions, particularly directly prior to the peak. Calibration appears substantially worse in the 

tropics, where both peak timing and peak intensity are consistently underestimated. Thus, 

although forecasts of peak intensity in the tropics yield informative and well-constrained credible 

intervals (Figures 3 and 4 in the main text), they display substantial bias. 

 

Forecast Accuracy Using Alternative Accuracy Cutoffs 

 As expected, calculated forecast accuracy decreased when stricter accuracy cutoffs were 

employed (S11 Figure A and B) and increased when less strict cutoffs were used (S11 Figure C 

and D), However, observed patterns in accuracy remained the same: forecast accuracy generally 

increased as predicted lead week increased, and accuracy in temperate regions was noticeably 

higher than in the tropics. 
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Forecast Accuracy Using Correlation Coefficients and sMAPE 

 Correlations between observed and forecasted incidence were significantly higher for 

temperate than tropical countries for all lead weeks except predicted lead week -6, where very 

few forecasts were available (S12 Figure A and B). Also notable were the wide confidence 

intervals around correlation coefficient estimates in the tropics, with 95% credible intervals 

ranging from -0.68 to 0.97 (as opposed to 0.46 to 0.995 in temperate countries). sMAPE values, 

on the other hand, were similar in temperate and tropical regions, with no statistically significant 

differences observed at any predicted lead week. While we believe that the targets used in the 

main text (peak timing and peak intensity) represent metrics of practical importance for 

responding to influenza outbreaks, it is nonetheless important to acknowledge that the impact of 

temperate vs. tropical region on forecast accuracy is dependent on how forecast accuracy is 

measured, and that tropical forecasts may perform better for other metrics not measured here. 

 

Method of Analogues Forecast Accuracy 

 Results are primarily discussed in the main text. However, we note here that, because the 

method of analogues requires information on past outbreaks, early outbreaks could not be 

forecasted for any country, and several tropical countries had to be removed from consideration 

entirely. Before comparing to mechanistic forecasts (S13 Figure), we therefore removed any 

country or season that could not be forecasted using the method of analogues. 

 

Forecast Accuracy by Data Quality 

 All three measures of data quality were found to differ significantly between temperate 

and tropical regions (Kruskal-Wallis one-way analysis of variance, p < 0.01 for all measures). 
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Therefore, the relationship between these measures and forecast accuracy was assessed 

separately for temperate and tropical countries. 

 Greater smoothness of data signal was significantly associated with higher peak intensity 

accuracy among both temperate (Kendal’s tau = 0.262, p < 0.05) and tropical (Kendal’s tau = 

0.464, p < 0.01) countries, but not with peak timing accuracy. Neither proportion of data missing 

nor proportion of population sampled was significantly associated with forecast accuracy in 

either the temperate or tropical regions. 

 

Models States and Parameters 

 Broadly, inferred states and parameters fall within realistic ranges (Carrat & Flahault, 

2007; Mills et al., 2004; Truscott et al., 2009; White & Pagano, 2008), with values between 

about 50% and 90% of the population for S0, 1.0 and 5.3 for Re, 1.4 and 3.1 for R0, 2.3 to 8.4 

days for D, and 3.8 to 7.7 years for L. Compared to temperate countries, countries in the tropics 

yielded significantly lower values of S0, R0, Re, and L (S14 Figure A). Within temperate regions, 

countries located in the northern hemisphere showed significantly higher values of both Re and 

R0 than southern hemisphere countries (S14 Figure B), and countries and seasons reporting ILI+ 

data displayed significantly lower R0 than countries reporting ARI+ data (S14 Figure C). No 

significant differences were observed between data types in the tropics (S14 Figure D). 

 

Inferred Maximum and Minimum R0 by Latitude 

Neither R0max nor R0min varied significantly by hemisphere, but R0max was significantly 

and negatively associated with the absolute value of latitude for both definitions of latitude used 

(S15 Figure A and B). In other words, as the distance from the equator increased, the maximum 
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possible R0 tended to decrease, suggesting a weaker impact of absolute humidity at higher 

latitudes. That said, the relationships were weak, with Kendall’s tau ranging from -0.05 to -0.10 

when capital cities’ latitudes were used, and from -0.10 to -0.15 when centroids were used. Such 

a nominal result is more likely due to the simplicity of our model or the large geographic scale at 

which our model is implemented, than to a true biological process. 

 

Posterior and Forecast Visualizations 

 S16 Figure shows posterior model fits for five countries: Norway, Poland, Italy, Mexico, 

and Ecuador. These countries were chosen because they inhabit a range of latitudes and 

longitudes, and exhibited similar peak weeks (week 8 of 2016 for the four temperate countries, 

and week 17 of the same year for Ecuador). Furthermore, all four temperate countries reported 

ILI data. For the temperate countries, because the model was fit separately for each season, only 

the 2015-16 season was plotted. For Ecuador, which is located in the tropics model fitting is 

shown throughout the entirety of the time series leading up to the peak of interest. The mean 

posterior was plotted for all five model runs. As can be observed, the model was capable of 

closely fitting the data for a range of countries with varying locations and climates. 

 S17 Figure and S18 Figure show forecast trajectories over several lead weeks for the 

same five countries (the four temperate countries in S17 Figure, and Ecuador in S18 Figure). 

Both peak timing and intensity were predicted within 1 week and within 25% of observed values, 

respectively, by 2 weeks prior to the observed peak in Norway, Poland, and Italy, but were not 

both predicted accurately in Mexico until 2 weeks post-peak. In Ecuador, as was common for 

countries in the tropics, neither peak timing nor peak intensity were accurately predicted until the 

peak occurred. Additionally, the model was unable to detect the epidemic signal, with 
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trajectories consistently predicting decreasing rather than increasing incidence, even before the 

peak. 

 

Pandemic Forecast Accuracy 

 In temperate regions, pandemic forecasts appear to perform slightly worse that seasonal 

forecasts prior to the predicted peak for both peak timing and intensity, with peak timing first 

exceeding 50% accuracy 2 weeks before the predicted peak, and peak intensity not exceeding 

50% accuracy until the predicted peak (S19 Figure A). Given that the pandemic often did not 

display the clear signal and single peak typical of regular seasonal outbreaks, this finding is not 

surprising. Also, note that pandemic forecasting often had to be begun abruptly when out-of-

season increases in influenza activity were observed. 

 In the tropics, forecasts of pandemic peak timing were more accurate than similar 

forecasts for “seasonal” influenza outbreaks several weeks before the predicted peak, and post-

peak estimates of pandemic peak intensity also appeared better than analogous estimates for 

epidemic influenza (S19 Figure B). However, it is important to note that, because pandemic data 

were only available for 2 tropical countries, forecast counts are very low, reducing the certainty 

of these results. 
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Supplementary Tables 

S1 Table. Countries used for retrospective forecasting, by region, data type, and scaling. 

 

Country Hemisphere Region Data Type Scaling 

Austria North Southwest Europe ILI 14 

Belgium North Southwest Europe ILI 8.5 

Croatia North Southwest Europe ILI 1.4 

France North Southwest Europe ARI/ILI 1.3/0.03 

Germany North Southwest Europe ARI 0.25 

Greece North Southwest Europe ILI 4 

Italy North Southwest Europe ILI 1 

Luxembourg North Southwest Europe ARI 32 

Netherlands North Southwest Europe ILI 31 

Portugal North Southwest Europe ILI 245 

Serbia North Southwest Europe ILI 0.5 

Slovenia North Southwest Europe ARI 5.8 

Spain North Southwest Europe ILI 2 

Belarus North Eastern Europe ARI 0.2 

Bulgaria North Eastern Europe ARI 1.25 

Czechia North Eastern Europe ILI 0.8 

Georgia North Eastern Europe ILI 15 

Hungary North Eastern Europe ILI 1 

Israel North Eastern Europe ILI 3.5 

Kazakhstan North Eastern Europe ARI 0.35 

Kyrgyzstan North Eastern Europe ARI 0.63 

Poland North Eastern Europe ILI 1.3 

Republic of Moldova North Eastern Europe ARI 2.25 

Romania North Eastern Europe ILI 39 

Russian Federation North Eastern Europe ARI 0.02 

Slovakia North Eastern Europe ILI 0.57 

Turkey North Eastern Europe ILI 3.5 

Ukraine North Eastern Europe ARI 0.03 

Uzbekistan North Eastern Europe ARI 68 

Denmark North Northern Europe ILI 18 

Estonia North Northern Europe ARI 1.5 

Finland North Northern Europe ILI 14 

Iceland North Northern Europe ILI 57 

Ireland North Northern Europe ILI 45 

Latvia North Northern Europe ARI 4.4 

Lithuania North Northern Europe ILI 1.3 

Norway North Northern Europe ILI 1.65 
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Sweden North Northern Europe ILI 132 

United Kingdom North Northern Europe ARI 1.8 

Canada North Northern Hemisphere (non-Europe) ILI Rate 182 

Mexico North Northern Hemisphere (non-Europe) ARI 0.004 

Morocco North Northern Hemisphere (non-Europe) ILI 0.78 

United States of America North Northern Hemisphere (non-Europe) ILI 0.27 

Australia South Southern Hemisphere ILI 32 

Chile South Southern Hemisphere ILI 31 

New Zealand South Southern Hemisphere ILI 16 

Brazil Tropics Latin America SARI 6 

Bolivia Tropics Latin America ARI 0.03 

Colombia Tropics Latin America ARI 0.075 

Cuba Tropics Latin America ILI 127 

Ecuador Tropics Latin America SARI 48 

Honduras Tropics Latin America Pneumonia 2 

Paraguay Tropics Latin America ILI 3.5 

Peru Tropics Latin America SARI 374 

Kenya Tropics Africa/Middle East ILI 10 

Madagascar Tropics Africa/Middle East ILI 6.6 

Oman Tropics Africa/Middle East SARI 6.4 

Pakistan Tropics Africa/Middle East ILI 93 

Bangladesh Tropics South/Southeast Asia SARI 48 

Bhutan Tropics South/Southeast Asia ILI 12 

Cambodia Tropics South/Southeast Asia SARI 90 

Indonesia Tropics South/Southeast Asia ILI 26 

Singapore Tropics South/Southeast Asia ILI 4.7 

Thailand Tropics South/Southeast Asia ILI 0.04 
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S2 Table. Countries and seasons used for retrospective forecasting. Countries used in retrospective 

forecasting of the 2009 pandemic are marked under “09pdm.” 

 
Country 09pdm 10-11 11-12 12-13 13-14 14-15 15-16 16-17 

Austria  x x x x x x x 

Belgium x x x x x x x x 

Croatia x x x x x x x x 

France    x x x x x 

Germany x x x x x x x x 

Greece x x x x x x  x 

Italy x x x x x x x x 

Luxembourg x x x x x x x x 

Netherlands x x x x x x x x 

Portugal  x x x x x x x 

Serbia x x  x x x x  

Slovenia x x x x x x x x 

Spain x x x x x x x x 

Belarus  x x x x x x x 

Bulgaria x x x x x x x x 

Czechia x x x x  x x x 

Georgia x x x x x x x x 

Hungary x x x x x x x x 

Israel x x x x x x x x 

Kazakhstan  x x x x x x x 

Kyrgyzstan x x x x  x x x 

Poland x x  x x x x x 

Republic of Moldova x x x x x x x x 

Romania x x x x x x x x 

Russian Federation x x x x x x x x 

Slovakia x x x x x x x x 

Turkey x x x x x x x x 

Ukraine x x x x x x x x 

Uzbekistan    x x x x x 

Denmark x x x x x x x x 

Estonia x x x x x x x x 

Finland    x x x x x 

Iceland  x x x x x x x 

Ireland  x x x x x x x 

Latvia x x x x x x x x 

Lithuania  x  x  x x x 

Norway x x x x  x x x 

Sweden x x x x x    

United Kingdom x x x x x    

Canada x x x x x  x  

Mexico   x x x x x x 

Morocco x x x x  x x x 

United States of America x x x x x x x x 

Australia   x x x x x x 

Chile       x x 

New Zealand   x x x x x  
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S3 Table. Peak 

timing and intensity 

accuracy overall, 

before the predicted 

peak, and at or 

after the predicted 

peak in temperate 

regions by 

hemisphere, season, 

region, data type, 

and scaling. 
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S4 Table. Peak timing and intensity accuracy at or after the predicted peak in the tropics by 

region, data type, and scaling. Cells shaded in green indicate improved forecast accuracy over the 

reference level, while cells shaded in red indicate reduced accuracy. 

  
Variable Peak Timing aOR (95% CI) Peak Intensity aOR (95% CI) 

Region 

Latin America 1.00 (ref) 1.00 (ref) 

N Africa/Middle East 0.730 (0.420, 1.279) 0.751 (0.412, 1.374) 

SE Asia 0.722 (0.491, 1.057) 0.799 (0.425, 1.516) 

  ILI+ 1.00 (ref) 1.00 (ref) 

Data Type 

ARI+ 0.822 (0.505, 1.341) 1.772 (0.726, 4.335) 

SARI+ 1.158 (0.702, 1.904) 1.182 (0.663, 2.109) 

Pneumonia+ 1.042 (0.756, 1.420) 0.524 (0.207, 1.613) 

Scaling 

(2, 10] 1.00 (ref) 1.00 (ref) 

(0, 2] 0.902 (0.528, 1.539) 0.899 (0.411, 1.942) 

(10, 20] 1.239 (0.707, 2.185) 1.321 (0.704, 2.471) 

(50, 300] 1.012 (0.556, 1.862) 0.700 (0.328, 1.473) 
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Supplementary Figures 

  

  

S1 Figure. Syndromic+ data by region. 

All data are divided by the maximum observed incidence in a given country since the 2010-11 season. 
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S2 Figure. Forecast accuracy by predicted lead week by country. 

(A) Peak timing accuracy. (B) Peak intensity accuracy. NA values are represented by gray boxes. 
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S3 Figure. Peak timing and intensity forecast accuracy by observed lead week. 

(A) Forecast accuracy in temperate regions. (B) Forecast accuracy in tropical regions. Peak timing 

accuracy is shown in red, and peak intensity in blue. 
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S4 Figure. Forecast accuracy by OEV denominator choice. 

Peak timing (A and C) and intensity (B and D) accuracy for different OEV denominators in temperate 

(A and B) and tropical (C and D) regions. 
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S5 Figure. Forecast calibration by OEV denominator choice. 

Peak timing (A and C) and intensity (B and D) calibration by OEV denominator in temperate (A and B) 

and tropical (C and D) regions. 
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S6 Figure. Forecast accuracy by choice of onset value. 

Onset timing accuracy by choice of onset value in temperate (A-C) and tropical (D-F) regions. 
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S7 Figure. Forecast accuracy by choice of scaling rule. 

Peak timing (A and C) and intensity (B and D) accuracy by choice of scaling rule in temperate (A and B) 

and tropical (C and D) regions. 
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S8 Figure. Forecast accuracy for the tropics using smoothed and unsmoothed data. 

(A) Peak timing accuracy. (B) Peak intensity accuracy. 

S9 Figure. Forecast accuracy for individual tropical outbreaks. 
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S10 Figure. Histograms of peak timing and intensity forecast error. 

Distribution of peak timing (A and C) and intensity (B and D) errors relative to observed for temperate 

(A and B) and tropical (C and D) regions. To make peak intensity errors comparable between countries, 

errors are standardized by the observed peak intensity for a given country and season. 
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S11 Figure. Forecast accuracy using alternative accuracy cutoffs. 

Percent of forecasts accurately predicting peak timing and intensity in temperate (A and C) and tropical 

(B and D) countries. (A and B) Forecasts are considered accurate if they predict peak timing exactly, 

and predict peak intensity within 12.5% of the observed value. (C and D) Forecasts are considered 

accurate when forecasts are within 2 weeks of the observed peak timing and 50% of the observed peak 

intensity. 
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S12 Figure. Forecast accuracy using correlation coefficients and symmetric mean absolute 

percentage error (sMAPE). 

Ranges of correlation coefficients (A and B) and sMAPE (C and D) for temperate (A and C) and tropical 

(B and D) countries. Points represent median values, and error bars show the 95% credible interval. Point 

size represents the number of forecasts contributing data to the point in question. 
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S13 Figure. Forecast accuracy using the method of analogues. 

A comparison of peak timing (A and C) and peak intensity (B and D) accuracy in both temperate (A and 

B) and tropical (C and D) countries between the methods described in the main text (red) and the method 

of analogues (blue). 
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S14 Figure. Inferred model states and parameters. 

Ranges for S0, Re, R0, D, and L by temperate versus tropics designation (A), hemisphere (B), and data 

type separated by temperate (C) and tropical (D) regions. 
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S15 Figure. Ranges of R0max and R0min by latitude. 

Distribution of inferred values for R0max (A and B) and R0min (C and D) by latitude (absolute value), 

defined as the latitude at the country’s centroid (A and C) or the latitude of the country’s capital (B and 

D). Values derived from temperate countries are shown in blue, and values from countries in the tropics 

are in red. 
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S16 Figure. Posterior visualizations. 

Mean posterior fit for 5 models runs of 300 ensemble members each for Norway, Poland, Italy, Mexico, 

and Ecuador. Fit is plotted for the 2015-16 season for the temperate countries, and for the entire duration 

of the available data for Ecuador. Observed data are plotted as black x’s, while the posterior model fit is 

plotted in blue. 
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S17 Figure. Temperate forecast visualizations. 

Forecast trajectories for Norway, Poland, Italy, and Mexico for the 2015-16 season. Forecasts are 

presented starting 6 weeks prior to the observed week through 2 weeks after the peak. Black x’s represent 

observed data, blue lines show model incidence during the training period, and red lines represent 

forecast trajectory. For each forecast, the 5 runs are shown separately. 
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S18 Figure. Tropical forecast visualization. 

Forecast trajectory for the fifth recorded outbreak in Ecuador in our dataset. Forecasts are presented as in 

S17 Figure. Because tropical forecasts were generated by fitting the model to the observations 

continuously, rather than by season, model fitting for all data prior to the fifth outbreak in Ecuador is 

shown. 

  

      

                            

              

 

    

    

    

    

 

    

    

    

    

 

    

    

    

    

 

    

    

    

    

 

    

    

    

    

      

 
 
 
  
  
 
 
 
 

S19 Figure. Forecast accuracy for the 2009 influenza pandemic. 

Peak timing (red) and intensity (blue) accuracy for forecasts of the 2009 pandemic in temperate (A) and 

tropical (B) countries. 
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Chapter 3: Forecasting influenza in Europe using a metapopulation model incorporating cross-

border commuting and air travel 
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Abstract 

Past work has shown that models incorporating human travel can improve the quality of 

influenza forecasts. Here, we develop and validate a metapopulation model of twelve European 

countries, in which international translocation of virus is driven by observed commuting and air 

travel flows, and use this model to generate influenza forecasts in conjunction with incidence 

data from the World Health Organization. We find that, although the metapopulation model fits 

the data well, it offers no improvement over isolated models in forecast quality. We discuss 

several potential reasons for these results. In particular, we note the need for data that are more 

comparable from country to country, and offer suggestions as to how surveillance systems might 

be improved to achieve this goal. 

 

Author Summary 

In our increasingly connected world, infectious diseases are more capable than ever of rapid 

spread over large geographical distances. Previous research has shown that human travel can be 

used to better forecast the transmission of influenza, which may in turn help public health and 

medical practitioners to prepare for outbreaks with increasing lead time. Here, we developed a 

model of twelve European countries, in which countries are connected based on rates of 

commuting and air travel between them. We then used this model, along with publicly available 

influenza incidence data, to forecast future incidence in Europe. We found that forecasts 

produced with the network model were not more accurate than those produced for individual 

countries in isolation. We emphasize the need for aligned influenza data collection practices that 

are comparable between different countries and which will likely improve forecast accuracy. 
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Introduction 

In recent years, multiple studies have demonstrated that skillful influenza forecasts can be 

generated for a range of cities and countries in both temperate (Biggerstaff et al., 2016; Farrow et 

al., 2017; Hickmann et al., 2015; Moss et al., 2017; Nsoesie et al., 2014; Shaman et al., 2013; 

Shaman & Karspeck, 2012; Viboud et al., 2003) and tropical (Ong et al., 2010; Yang et al., 

2015) areas. When operationalized, such forecasts can provide early warning for healthcare 

workers and public health practitioners during both seasonal influenza outbreaks and future 

influenza pandemics, allowing for a more proactive public health response (FluSight: Flu 

Forecasting, n.d.). Given the high toll of seasonal influenza each year (Iuliano et al., 2018; 

WHO, n.d.-b), as well as the potential for future pandemic emergence (Herfst et al., 2012; Imai 

et al., 2012; Taubenberger & Morens, 2006), such proactive responses, informed by real-time 

forecasts, could reduce influenza-related morbidity and mortality. 

Most forecasting to date has been generated for individual locations. City- and country-

level outbreaks, however, do not occur in isolation. Research shows that human travel, ranging 

from long-distance air travel (Brockmann & Helbing, 2013; Brownstein et al., 2006; Crepey & 

Barthelemy, 2007; Lemey et al., 2014) to short-distance commuting (Balcan et al., 2009; Belik et 

al., 2011; Bozick & Real, 2015; Charaudeau et al., 2014; Viboud et al., 2003), influences how 

outbreaks of infectious disease spread. Recent work suggests that, by representing human 

movement between locations in disease models, forecasts of influenza can be significantly 

improved at the borough level in New York City (Yang et al., 2016) and at the state level in the 

United States (Pei et al., 2018). In particular, prediction of local outbreak onset, defined as the 

first of three consecutive weeks influenza incidence rises above a critical threshold, is difficult to 
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accurately forecast for a single location in isolation and can be greatly improved by considering 

commuting and other travel between states (Pei et al., 2018). 

Europe represents an interesting opportunity to test the utility of similar models for 

forecasting international, rather than interstate, influenza transmission. The Schengen Agreement 

allows citizens and residents of participating countries to cross international borders freely and 

without border checks, including for employment (Schengen Area, n.d.). Thus, although Europe 

is made up of multiple sovereign countries, commuting and other forms of travel between these 

countries remain high. 

We recently showed that freely available data from the World Health Organization 

(WHO) can be used to produce skillful forecasts of influenza activity for many European 

countries in isolation (Kramer & Shaman, 2019). The logical next step, then, is to see whether 

considering human movement between these countries can yield improvements in forecast 

accuracy, as was observed at the state level within the United States. 

Here we describe the development of a network model of influenza transmission among 

twelve European countries (Austria, Belgium, Czechia, France, Germany, Hungary, Italy, 

Luxembourg, the Netherlands, Poland, Slovakia, and Spain), incorporating both cross-border 

commuting and air travel. We then generate retrospective forecasts of influenza activity using the 

network model, and compare forecast accuracy to isolated, country-level forecasts. We 

hypothesize that, by incorporating observed human movement between countries, we will 

significantly improve forecast accuracy, particularly for onset timing predictions. 
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Materials and Methods 

Influenza Data 

 Influenza data were obtained from the World Health Organization’s (WHO) FluNet 

(WHO, n.d.-d) and FluID (WHO, n.d.-c) surveillance platforms, which collect virologic and 

clinical data, respectively, from WHO member countries. Clinical data are reported as numbers 

of either influenza-like illness (ILI) or acute respiratory infection (ARI), depending on country 

and season (see Supplementary Materials). Because these measures are based on symptoms that 

are not specific to influenza, they include cases caused by infections with other respiratory 

pathogens. To remedy this lack of specificity, we multiplied weekly cases of ILI/ARI by the 

proportion of tests for influenza that were positive during the same week, as reported in the 

FluNet data. We refer to this measure as syndromic+ (Kramer & Shaman, 2019). 

 Although circulating influenza types and (sub)types are often similar between European 

countries, substantial differences are sometimes observed (see Supplementary Materials). For 

this reason, we calculated (sub)type-specific syndromic+ cases for each country by multiplying 

ILI/ARI cases by the proportion of tests positive for H1N1, H3N2, or B influenza. Tests positive 

for un(sub)typed influenza type A in a given country were assigned as H1N1 or H3N2 in 

proportion to the respective rates of each (sub)type that week. 

 For this study, we focus on seasonal influenza. Thus, data were downloaded and 

processed for the 2010-11 through 2017-18 seasons. Further information on how influenza data 

were processed can be found in Chapter 2 (Kramer & Shaman, 2019). 
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Travel Data 

Data on both air travel and commuting between European countries were obtained from 

EuroStat, the European Union’s (EU’s) statistical office (Home - Eurostat, 2018). Specifically, 

monthly data on the number of passengers carried by aircraft departing from one European 

country and arriving in another from 2010 through 2017 were obtained from (Air Passenger 

Transport, n.d.), while yearly data on the number of individuals living in one country and 

working in another for each country pair from 2010 through 2017 were obtained from the Labour 

Force Survey (LFS - Overview, n.d.). 

Monthly air travel data were averaged over all available years to yield average travel 

flows by month, and these data were converted to daily rates. In order to hold model populations 

constant by country, the travel matrix was made symmetric by averaging the travel rates in both 

directions along each route. 

Unlike the air travel data, commuting data were not available for every possible route. 

Eurostat calculates country-specific thresholds below which data are either not reported 

(threshold a) due to low reliability and concern for anonymity, or are reported with a note 

concerning their reliability (threshold b). We maintained only countries that had at least one 

incoming and at least one outgoing route with reliable data (i.e. above both thresholds). Because 

commuting rates along some routes changed substantially over time, we formed “seasonal” 

commuting matrices by taking the mean of the two yearly matrices contemporary with each 

influenza season (e.g., for the 2010-11 season, we averaged commuting rates for 2010 and 2011), 

rather than using an average over all years. Data from 2017 alone were used when forecasting 

the 2017-18 influenza season. Finally, routes where data were suppressed or unavailable were 

filled using a random value between 0 and the relevant country-specific threshold a. This was 
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done separately for each of the 300 ensemble members used during forecasting (see below) to 

provide a stochastic distribution of possible rates. 

Based on the availability of good-quality influenza, air, and commuting data, we included 

12 European countries in our model (Figure 1A). More detailed information on data processing 

can be found in the Supplementary Materials.  

Humidity Data 

 Absolute humidity data were obtained from NASA’s Global Land Data Assimilation 

System (GLDAS) (Rodell, n.d.). Values were available every three hours and at a spatial 

resolution of 1°x1° for 1989-2008. We formed 20-year climatologies for each country by 

aggregating data to the daily level and averaging each daily value over twenty years. 

Figure 1. Network model development. 

(A) A map of the twelve countries with good-quality influenza and travel data used in the network model. 

(B) A schematic of a network model with 2 countries and 4 subpopulations. Large squares represent 

countries, and smaller squares represent residents who commute internationally. The dotted borders on 

these smaller squares represent their ability to randomly mix with their work country during the day, and 

their home country at night. Arrows with dotted lines represent asymmetric daily commuting flows, and 

the solid, double-headed arrow represents symmetric random air travel. 

A 

B 
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(1) 

(2) 

Climatologies were then aggregated to the country level by averaging the climatologies for each 

individual 1°x1° grid cell within a country, weighted by the number of people living within that 

grid cell. We weighted by population size in order to better estimate climatic conditions in areas 

where more people lived, and where more people would therefore be spreading influenza. A 

more detailed description of these data and how they were processed can be found in Kramer & 

Shaman (2019). 

 

Network Model 

 We constructed a networked metapopulation model for the 12 countries, in which 

subpopulations were assigned to compartments based on both their country of residence and the 

country in which they work. Within each country, influenza transmission is modeled according 

to a simple, humidity-forced SIRS model assuming homogenous mixing: 

 
𝑑𝑆

𝑑𝑡
=
𝑁 − 𝑆 − 𝐼

𝐿
−
𝛽(𝑡)𝐼𝑆

𝑁
 

 
𝑑𝐼

𝑑𝑡
=
𝛽(𝑡)𝐼𝑆

𝑁
−
𝐼

𝐷
 

 

In the above equations, N is the country’s population; S and I are the number of people 

susceptible to and infected with influenza, respectively; t is the time in days; β(t) is the rate of 

transmission at time t; L is the average time before immunity is lost; and D is the mean infectious 

period. The basic reproductive number, R0, at time t is equal to β(t) times D, and humidity-

forcing of transmissibility is modeled by calculating R0 as: 

 

𝑅0(𝑡) = 𝑒
−180𝑞(𝑡)+ln(𝑅0𝑑𝑖𝑓𝑓) + (𝑅0𝑚𝑎𝑥

− 𝑅0𝑑𝑖𝑓𝑓) 
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where R0max is the maximum possible daily basic reproductive number, R0diff is the difference 

between the maximum and minimum possible basic reproductive number, and q(t) is the absolute 

humidity on day t (Shaman & Karspeck, 2012). Past work has demonstrated that virus survival 

and transmissibility between guinea pigs decreases exponentially with increasing absolute 

humidity (Shaman & Kohn, 2009). However, the exact extent to which this impacts person-to-

person transmission remains unknown. R0diff in particular allows modulation of the effect of 

humidity during a given outbreak. Because the model assumes a single pathogen, we assume that 

the model parameters L, D, R0max, and R0diff are the same for all countries. 

 In addition to within-country transmission, individuals are permitted to travel between 

countries by two methods. First, individuals are assigned to be commuters between given 

country pairs according to Eurostat data. These individuals spend daytime (eight hours, or one-

third of each day) in their designated work country, and nighttime (16 hours) in their country of 

residence. Commuters mix homogenously with the entire population of the country in which they 

currently are. Commuting is assumed to be a daily occurrence; thus, commuting in the model 

captures repeated travel done by the same individuals over time. Because commuting 

populations are explicitly modeled, we permit the commuting network to remain asymmetric. 

Any individual in the model population may also travel to another country randomly, 

according to observed monthly rates of air travel between European countries. Unlike 

commuters, “random” travelers are not tracked, and return travel is not explicitly modeled. 

Furthermore, while commuting is a daily occurrence, random travel is a one-time event. To 

maintain stable population sizes, daily air travel rates between each country pair are averaged, 

and this average is used as the rate of travel in both directions. Random travelers may introduce 
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(3) 

new infections to a country through their movement, but any propagation of the outbreak occurs 

solely through the SIRS dynamics. 

Because we are primarily interested in the ability of information on international travel to 

improve forecast accuracy, no random seeding of new infections throughout the outbreak is 

incorporated. The full equations describing the modeling process can be found in the 

Supplementary Materials, and a simplified schematic of the model can be seen in Figure 1B. 

 

Retrospective Forecast Generation 

 We performed retrospective forecasts of (sub)type-specific influenza activity using the 

network model and influenza data described above in conjunction with a Bayesian data 

assimilation method. This process consists of a fitting and a forecasting step. 

 

Model Fitting: First, we initiate an ensemble of model runs using random draws from realistic 

parameter ranges (2.0 < R0max < 2.8, 0.2 < R0diff < 1.0, 2.0 days < D < 7.0 days, 1095 days < L < 

3650 days), and integrate the network model forward in time. At each week, we halt the 

integration and adjust the model state variables (i.e. susceptible, infected, weekly incidence) in 

all 144 compartments along with the system parameters using the Ensemble Adjustment Kalman 

Filter (EAKF), a Bayesian data assimilation method commonly used in weather and influenza 

forecasting (Anderson, 2001; Pei et al., 2018; Shaman & Karspeck, 2012). This adjustment is 

performed by assimilating observations from each of the twelve countries sequentially through 

application of Bayes Rule: 

 

𝑝(𝑋𝑡|𝑂1:𝑡) ∝ 𝑝(𝑋𝑡|𝑂1:(𝑡−1)) ∙ 𝑝(𝑂𝑡|𝑋𝑡) 
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where 𝑝(𝑋𝑡|𝑂1:(𝑡−1)) is the prior distribution of the modeled cases per 100,000 population in a 

country given all observations up to but not including time t, 𝑝(𝑂𝑡|𝑋𝑡) is the likelihood of the 

observed incidence per 100,000 population at time t given the modeled incidence rate at time t, 

and 𝑝(𝑋𝑡|𝑂1:𝑡) is the posterior distribution of the modeled rate at time t given all observations 

thus far. We note that while the model keeps track of the number of newly infected individuals 

per compartment, data are available only at the country level. Therefore, modeled incidence is 

aggregated to the country level prior to the fitting step. Then, the number of susceptible and 

infected people in each individual compartment, as well as the model parameters, are updated 

according to cross-ensemble covariability with the country-level rates. Further details on the 

EAKF and its use in influenza forecasting can be found in the Supplementary Materials and in 

the literature (Anderson, 2001; Pei et al., 2018; Shaman & Karspeck, 2012; Yang et al., 2014). 

 

Forecasting: After model fitting, forecasts are produced by taking the most recently inferred 

model states and parameters and running them forward in free simulation until the end of the 

season. We generate weekly forecasts for each season for weeks 44 through 69, such that 

forecasts are generated throughout the outbreak. To assess the effects of stochasticity during 

model initiation, five separate runs, each consisting of 300 ensemble members, are performed. 

 

Choice of Seasons 

While extensive cocirculation of influenza (sub)types is common, outbreaks tend to be 

dominated by one or two (sub)types. To avoid forecasting a given (sub)type during a season 

where it has little impact, we used a criterion that could also be applied to forecasting in real 

time. Specifically, forecasting only took place if the positivity rate for a (sub)type of interest 
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(4) 

exceeded 10% for three consecutive weeks in at least four of the twelve countries. We therefore 

forecasted influenza H1N1 for seasons: 2010-11, 2012-13, 2013-14, 2014-15, 2015-16, 2017-18; 

H3N2 for seasons: 2011-12, 2012-13, 2013-14, 2014-15, 2016-17; and B for seasons: 2010-11, 

2012-13, 2014-15, 2015-16, 2016-17, 2017-18. 

 

Choice of Scaling Factors 

 As described above, model fitting using the EAKF requires that the model output and the 

data are of the same form. Here, our model output is incidence of a given influenza (sub)type per 

100,000 population. Our data, on the other hand, are count data. As most countries do not report 

reliable or consistent data on the number of patient visits, syndromic+ rates per 100,000 

population cannot be directly calculated. However, in past work we have observed that our 

model systems perform optimally when attack rates fall between 15-50% of a model population 

size within a season. We therefore calculated a scaling factor, γ, for each country and (sub)type 

by calculating the range of values that yield attack rates between 15% and 50% for each season, 

i, ([𝛾15,𝑖, 𝛾50,𝑖]), then selecting a single value based on the rule: 

 

𝛾 =  {
𝑖𝑓∃𝛾 ∈ ℝ ∶  𝛾15,𝑖 < 𝛾 < 𝛾50,𝑖∀𝑖: 𝑚𝑎𝑥𝑖=1

𝑛 (𝛾15,𝑖)

𝑒𝑙𝑠𝑒: 𝑚𝑖𝑛𝑖=1
𝑛 (𝛾50,𝑖)

} 

 

Thus, scaling factors are allowed to vary by country and (sub)type, but not by season. We 

consider the scaled data (i.e., γ times syndromic+) to be the estimated syndromic+ rate per 

100,000. For each (sub)type, only the seasons listed above in the section “Choice of Seasons” 

were considered when calculating scaling factors. We previously used this method to calculate 

scaling factors in our work generating individual country-level forecasts for multiple countries 
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throughout the world, and found forecasting with the resulting scaled data feasible (Kramer & 

Shaman, 2019). Scaling values by country and (sub)type are presented in S1 Table. 

 

Individual Country Forecasts 

 Forecasts for individual countries in isolation were generated as described in Kramer & 

Shaman (2019). As with the network model, forecasts were generated with 5 to 30 weeks of 

training data, and the model was fit to each country’s data separately using the EAKF. Individual 

country forecasts used scaling factors as calculated in the previous section. Because no travel 

between countries is included in the individual models, we seeded new infections in each country 

at a rate of 0.1 cases per day, or one new case every ten days. Because each country was fit 

independently, model parameters were allowed to differ by country, unlike in the network model. 

 

Forecast Assessment 

 We assessed system ability to forecast the timing and magnitude of outbreak peaks (peak 

timing and intensity, respectively), as well as the timing of outbreak onsets. We define outbreak 

onset as the first of the first three consecutive weeks to exceed 500 scaled cases, as in our past 

work using these data (Kramer & Shaman, 2019). For each forecast, we calculated the log score 

for each of these three metrics by assigning individual ensemble member to bins of size one 

week (for peak and onset timing) or of size 500 scaled cases (for peak intensity), then calculating 

the natural logarithm of the proportion of ensemble members falling into the same bin as the 

observed value. Forecasts for which none of the 300 ensemble members fell within the same bin 

as the observed value were given a score of -10. The log score has the advantage of being a 

strictly proper scoring rule, meaning that the expected value has a unique maximum when the 
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forecast distribution matches the true distribution (Gneiting & Raftery, 2007; Rosenfeld et al., 

2018). Additionally, it has been commonly used in past forecasting work, including in the United 

States Centers for Disease Control and Prevention’s (CDC) Predict the Influenza Season 

Challenge (Biggerstaff et al., 2018). 

 Because the network model considers information from several countries, it is capable of 

generating forecasts even at timepoints where a given country has no reported data, unlike an 

isolated model. To ensure fairness when comparing between the network and isolated models, 

we considered only those forecasts which are generated by both models. 

 

Forecast Comparison 

 Although our analysis is not, strictly speaking, paired, we generated forecasts using both 

the network and isolated models for the same countries, seasons, (sub)types, and weeks. To take 

advantage of this design, we performed statistical analyses by observed lead week (i.e., the 

difference between the week of forecast generation and the observed peak or onset week). 

Specifically, we compared log scores for peak timing, peak intensity, and onset timing between 

the network and isolated models for forecasts initiated between six weeks prior to and four 

weeks after the observed peak/onset using the Friedman test (Friedman, 1937). The Friedman 

test works by ranking the two model forms for each country-season-(sub)type-week pair, then 

determining whether either model outperforms the other significantly more often. Because we 

are not interested in forecasts where no onset is predicted, we removed these forecasts from 

consideration, and country-season-(sub)type-week pairs where either the network or the isolated 

model (or both) produce no forecasts predicting an onset were removed entirely. Then, because 

the five model runs for each of these pairs (see Retrospective Forecast Generation above) are not 
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independent, we randomly chose a single run for each country-season-(sub)type-week before 

conducting the Friedman test. This process was repeated 100 times, and the median p-value was 

used. 

 

Results 

Influenza Data 

 Both influenza and travel data were available for a total of 12 countries (Figure 1A). Nine 

countries had good-quality (Kramer & Shaman, 2019) data for all 8 seasons, two for 7, and one 

for 6. Outbreaks occurred in between 2 and 12 countries (mean = 9.94, median = 11.0) during 

each (sub)-type specific seasonal outbreak. Within a given outbreak, the time between the latest 

and earliest onset ranged from 2 to 12 weeks (mean = 7.65, median = 7.0); differences in peak 

timing ranged from 2 to 13 weeks (mean = 7.88, median = 8.0). Descriptive statistics broken 

down by (sub)type can be found in the Supplementary Materials. 

 

Travel Networks 

Air travel: In general, rates of air travel were higher in western than eastern Europe. On average, 

rates of daily air travel were highest in and out of Germany and Spain, while the lowest rates 

were observed in and out of Slovakia and Luxembourg. The mean daily number of passengers 

was 2813.57, compared to a median of 741.98, indicating that travel rates were mostly low, with 

a small number of routes (i.e., country pairs) having particularly high rates. In general, rates of 

air travel are higher in summer, and lower in winter. 
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Commuting: For a given season, commuting data between countries were available for between 

46 and 58 of 132 possible routes. On average, the number of commuters was by far the highest 

from France to Luxembourg, and from Poland to Germany. Net commuter inflow was highest for 

Luxembourg, Germany, and Austria; and net outflow was highest for France, Slovakia, and 

Poland. Commuting rates generally increased or remained steady over time, with the greatest 

growth observed among commuters from Slovakia, Czechia, and Spain into Germany. For routes 

where data in both directions were reported, average commuting rates were highly asymmetric, 

with travel in one direction on average 12.64 (median = 2.78) times higher than in the other. (As 

explained above in the Methods, asymmetric commuting flows were permitted in the model.) 

 

Model Fit 

 In general, the network model was capable of closely fitting the observed data from all 

countries, despite substantial differences in the intensity of (sub)type activity (Figure 2). Peaks 

appear to be well-fit in terms of both timing and intensity, although they are occasionally 

underestimated (see CZ). Fits for all five model runs are very similar, suggesting that the model-

inference system is not particularly sensitive to initial conditions. Similar plots for the same 

season for (sub)types A(H3) and B, found in the supplementary materials (S2 Figure), 

demonstrate that fit quality remains high, but that the model sometimes has trouble fitting late-

season increases in intensity (see S2 Figure B, DE), likely due to filter divergence over time. 

Over all seasons, model fit by RMSE varied significantly both by (sub)type and country 

(Kruskal-Wallis tests, p < 0.00001). Post-hoc Nemenyi tests revealed that fit quality was 

significantly highest for A(H1), and lowest for A(H3) (p < 0.0001 for all comparisons), and that  
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fitting for Luxembourg significantly underperformed in comparison to all other countries (p < 

0.0001 for all comparisons). 

Retrospective Forecast Accuracy 

The mean log scores for predictions of peak timing, peak intensity, and onset timing by predicted 

lead week and by (sub)type are shown in Figure 3. Because the timepoint relative to the peak 

cannot be known in real time, we plot forecast accuracy by predicted lead week, i.e. the 

difference between the week at which a forecast was initiated and the predicted peak week. Any 

Figure 2. Model fit to observed influenza data. 

Scaled observed syndromic+ data for A(H1) throughout the 2012-13 season are shown as points; blue 

lines represent inferred model incidence. Note that, because each timepoint is fit based on activity in all 

countries with data, fits are shown for a country even for weeks where that particular country had no 

available data. Each line represents one of five model runs, each with different starting conditions; 95% 

confidence intervals (calculated using the ensemble mean, �̅�, and standard deviation, σ, as �̅� ± 1.96 ∙ 𝜎) 

for each run are shown in gray. The root mean square error (RMSE) for this season and (sub)type varied 

between 60.36 (ES) and 642.99 (LU), and the mean RMSE over all countries was 241.33 (median = 

200.09). 
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forecast not predicting an onset (i.e., where more ensemble members predicted no onset than any 

single week value) was considered to be unreliable and excluded. 

 We find that the network model was outperformed by the isolated model for peak timing, 

especially when the predicted peak was closer (Figure 3A), and performed similarly to the 

isolated model for peak intensity (Figure 3B). However, we observed a slight improvement in the 

mean log score for onset timing prior to predicted onset, and especially at predicted leads of -6 to 

-3 weeks (Figure 3C). Additionally, we note that the network model produced substantially more 

forecasts than the isolated models at predicted leads -2 and -1, although this pattern does not hold 

for earlier lead weeks (Table 1). When assessed by observed lead week, the same general 

patterns emerge (S3 Figure A-C). 

Figure 3. Retrospective forecast accuracy by predicted lead week. 

Mean log scores for forecasts generated using the network (red) and isolated (blue) models are shown by 

predicted lead week for peak timing (A), peak intensity (B), and onset timing (C). The size of the points 

represents the number of forecasts generated for that lead week for which an onset was predicted. 

 

 
Table 1. Number of forecasts predicting any onset by predicted onset lead week. 

Lead Week -6 -5 -4 -3 -2 -1 0 

Network 2 17 12 31 63 116 696 

Isolated 11 43 20 48 44 37 620 
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 Similar results were observed when forecasts were paired by season, country, subtype, 

and observed lead week, and only those pairs for which both the network and isolated models 

predict any onset were maintained (S3 Figure D-F). Friedman tests on these results revealed that 

the network model performed significantly worse than the isolated model for peak timing (p < 

0.05) and peak intensity (p < 0.03) over all (sub)types and lead weeks combined, although we 

note that the differences in the log scores between the two models is minimal. When forecasts 

with log scores of -10 (i.e., forecasts where no ensemble members correctly forecasted the metric 

in question) were removed, these results were no longer statistically significant (p > 0.05). We 

observed no significant difference in log scores for onset timing predictions (p > 0.1). 

 When results were separated by influenza (sub)type and assessed by predicted lead week, 

the network model only had more accurate early forecasts of onset timing for A(H1); however, at 

one week lead, the network model produced more forecasts of onset for all (sub)types (S4 Figure 

and S2 Table). Friedman tests comparing (sub)type-specific forecasts indicated that the isolated 

model produced more accurate forecasts of peak timing for (sub)type B only (p < 0.03), and 

forecasts of peak intensity for (sub)type A(H3) only (p < 0.02); only the latter remained 

significant after removing forecasts with log scores equal to -10 (p < 0.04). We found no other 

significant differences between the network and isolated models by (sub)type. 

  Because so few forecasts are generated before the predicted onset, meaningful 

comparisons of the results for onset timing by country are not possible. Log scores for peak 

timing and intensity by country are presented in S5 Figure, and are discussed briefly in the 

Supplementary Materials. 
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Forecast Calibration 

 For a forecast to be useful, it needs to communicate not only a prediction, but also a level 

of certainty for that prediction. Although the log score considers both sharpness and calibration, 

we also assessed calibration in isolation by calculating how often observed metrics fell within a 

range of prediction intervals implied by ensemble spread. As in Figure 3, results are shown by 

predicted lead week; we focus here only on predictions made before the predicted peak or onset 

week. Forecasts of peak timing and intensity appear to be well-calibrated for both the network 

and isolated models, and forecasts of peak intensity using the network model appear to be 

slightly better-calibrated than those generated in isolation (Figure 4A-B, D-E). The isolated 

models seem to produce better-calibrated forecasts of onset timing, except at very early leads 

(Figure 4C and F). However, it is important to note that the sample size here is very small, as not 

many forecasts  were produced prior to outbreak onset (see Table 1). 

 

Discussion 

 Here we describe the development of a network model for influenza transmission in 

Europe, and test whether the network model, by incorporating human travel between countries, 

improves upon isolated country models in forecasting influenza activity. We found that the 

network model tended to produce more accurate forecasts of onset timing at early predicted 

leads, and generated substantially more forecasts at predicted leads of -1, indicating that the 

model can better anticipate when an onset will occur in the following week. However, the 

number of forecasts that predict any onset timing prior to the predicted onset was few, and the 

majority of countries and seasons had no or very few forecasts of onset timing until after onset 

occurs. 
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 Additionally, we found that the isolated model significantly outperformed the network 

model in forecasting both peak timing and intensity, although these differences appear to be 

primarily due to a small number of network forecasts where no ensemble members correctly 

predict the peak. Furthermore, the magnitude of the differences in log scores was small, and 

likely not of great practical significance. 

Model fit quality was significantly higher for A(H1), and lowest for A(H3), but this did 

not seem to influence the (sub)type-specific forecasting results. While the network model 

appeared to improve forecasts of onset timing for A(H1) (S4 Figure), very few forecasts were 

generated (S2 Table), and the results were not statistically significant. The reason for this 

discrepancy in fit quality is unclear: all influenza (sub)types generally led to outbreaks in a 

Figure 4. Retrospective forecast calibration for the network (A-C) and isolated (D-F) models. 

Points show the proportion of observed values for peak timing (A and D), peak intensity (B and E), and 

onset timing (C and F) that fell within the 25%, 50%, 80%, 90%, 95%, and 99% prediction intervals of 

300 ensemble members. Colors represent the predicted lead to the peak (A-B, D-E) or to the onset (C 

and F). In a perfectly-calibrated model, we expect n% of observations to fall within the n% prediction 

interval; this situation is shown as a gray line for reference. 
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similar number of countries, and had similar synchrony with regard to onset and peak timings by 

country. We also found no evidence of higher signal smoothness for outbreaks of A(H1). 

However, we did find that scaled outbreaks of A(H3) were significantly larger than outbreaks of 

the other two (sub)types. It is possible that the network model has more trouble fitting larger 

peaks, especially when it must simultaneously fit countries where no outbreak onset has 

occurred. (See Supplementary Materials for descriptive statistics and data quality analyses by 

(sub)type.) 

 Overall, we found that despite the inclusion of human travel, the network model did not 

offer any substantial advantage when it came to influenza forecast generation. These results 

contrast previous findings, which showed that explicitly modeling travel (in particular 

commuting) between US states (Pei et al., 2018) and between New York City boroughs (Yang et 

al., 2016) significantly increased forecast accuracy, especially accuracy for onset timing 

predictions. While it is not possible to determine the exact roots of this discrepancy, it is likely 

that differences in data quality play a large role. In particular, we point to data quality issues that 

hinder comparison between countries. While the influenza data used in this study were likely 

noisier and more prone to missingness than the US data, we have shown that this is not 

necessarily associated with lower forecast accuracy in the isolated model (Kramer & Shaman, 

2019) or in the network model (see Supplementary Materials). That said, we note here that 

noisiness in the data from Luxembourg was associated with lower-quality model fit (see “Model 

Fit” above and Supplementary Materials). It is possible that, while the impact of noisy data may 

be small on the level of the individual country, the influence of several countries is amplified 

when all countries must be fit simultaneously. 
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Likely more important, however, is the requirement that we have some idea of the 

relative intensity of influenza activity by country in order to properly model influenza 

transmission between countries. Unfortunately, the syndromic data as reported to FluID rarely 

have reliable denominator data; countries generally do not report the number of total visitors to 

sentinel facilities, and even reports of the total number of people within surveillance catchment 

areas are either missing or inconsistent over time. For this reason, we are unable to calculate 

rates of ILI or ARI. 

 Furthermore, although surveillance levels do vary by state within the US, surveillance 

systems are likely much more variable by country in Europe (WHO & ECDC, 2019). Even if it 

were possible to calculate rates of syndromic+ cases, heterogeneities and biases in surveillance 

strategies mean that these country-specific rates may not be comparable to rates from other 

countries. For example, direct comparison is not possible between countries collecting ILI versus 

ARI data, or collecting virologic data from all patients versus only those experiencing severe 

symptoms. These differences, compounded with the lack of denominator data, likely make it 

difficult to properly simulate and forecast international transmission in Europe. While we 

attempted to remedy this issue using scaling factors, this approach imperfectly accounts for 

multiple, possibly shifting, heterogeneities between locations (see Supplementary Materials), and 

may be insufficient for the model-assimilation system developed here. 

 The extent to which these data quality issues reflect how the data are collected at the 

country level, or how the data are reported to the WHO, is unclear. Although a well-established 

network of laboratories reporting virologic data to the WHO exists (WHO, n.d.-a), the push for 

centralized collection of syndromic data is recent (Ortiz et al., 2009; WHO, 2014), and reporting 

of data to FluNet and FluID remains voluntary. It is likely that many countries do not report all 
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of the data they collect. However, obtaining and formatting data from several countries 

independently is time-consuming and, especially in the case of an emerging pandemic, 

impractical. Thus, barriers to timely and skillful forecasts of influenza transmission throughout 

Europe exist due to how data are collected, as well as how and whether data are reported to 

central databases. 

 In order to improve model performance, we recommend that, at minimum, denominator 

data for sentinel surveillance efforts be reported, preferably as the number of total visits (not 

influenza-specific visits) made to sentinel sites. We also recommend that, where possible, 

countries use ILI rather than ARI, as it is more specific, and we have previously shown that ILI 

data yield more skillful forecasts of influenza activity (Kramer & Shaman, 2019). While it would 

of course be helpful if surveillance systems were more similar country to country, we recognize 

that the ideal surveillance strategy for a country will depend on factors such as country size, 

healthcare system, and goals related to surveillance. The WHO does offer extensive guidance on 

improving influenza surveillance systems, particularly syndromic surveillance systems, which 

historically have been less developed than virologic surveillance systems, and are likely 

responsible for the majority of data quality issues encountered in this work (WHO, 2014). We 

note there was a significant push to improve syndromic surveillance and reporting in the wake of 

the 2009 influenza pandemic (Ortiz et al., 2009; WHO, 2010). Thus, we expect that 

improvement is indeed possible, but may depend on the extent to which influenza is seen as a 

public health priority. 

 We also note that the commuting data used here are likely of lower quality than those 

used in the United States. In the US, commuting data are captured by government census. While 

the European Labour Force Survey uses standardized definitions and questionnaires in order to 



 

130 

 

bolster comparability between countries, data collection is still the responsibility of individual 

countries, meaning that data collection is inherently less centralized and standardized than in the 

US (European Commission, 2003). Furthermore, as we note in the Methods above, data below 

certain thresholds are not reported to users at all. However, because commuting along these 

routes is minimal, we do not expect this missingness to have greatly impacted results. Overall, 

we expect that the network model’s inability to improve forecast accuracy is primarily driven by 

low-quality influenza, and not travel, data. 

 It is also possible that the model itself is not properly specified for exploring influenza 

transmission in Europe. In other words, while a model incorporating commuting data between 

locations may be appropriate for interstate influenza transmission in the US, commuting and air 

travel may not be as important at driving cross-border transmission in Europe. Despite high rates 

of cross-border commuting at border regions, international commuting in Europe still only 

accounts for 0.9% of commuting overall (Commuting Patterns, n.d.). Influenza transmission may 

therefore rely more on non-commuting train and automobile traffic, neither of which are 

captured in our model. More robust data on train travel, and especially on automobile travel 

across country borders, could contribute to a better specified model, able to anticipate outbreak 

onsets based on activity in countries heavily linked by train routes and roads. Alternatively, 

commuting may be an important driver of influenza transmission in border regions, but country-

level influenza overall may be much more heavily driven by travel patterns within the country 

itself. Models focusing on travel on this smaller sub-national scale may therefore have more 

success forecasting country-level influenza transmission. 

 Finally, we note that, as with any model, we are unable to capture all features of the 

system we seek to model. R0 is a composite parameter that takes into account the intrinsic 
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transmissibility of a given pathogen, as well extrinsic factors driving transmission, such as 

environmental factors or contact networks (Keeling & Eames, 2005; Lipsitch, 2003). Our 

network model only allows differences in R0 by country on the basis of country-level absolute 

humidity. However, we recognize that contact patterns may be driven by population density, age 

structure, school holiday schedules, and various other demographic and cultural factors not 

captured here that nonetheless can vary greatly by country (Bansal et al., 2007; Eames et al., 

2012; Ferrari et al., 2011). While it may be possible to implicitly consider these differences in 

our model by allowing R0max and R0diff to vary by country, explicit consideration of these 

differences is problematic because we do not understand exactly how they may influence 

influenza transmission. While it can be tempting to add complexity to a model in an effort to 

increase its fit of observations, adding details without understanding their real-life impact has the 

potential to backfire, leading to overfit results that are relevant only to the model population and 

not to reality (Naimi, 2016; Sterman, 2006), and which may also corrupt forecast accuracy. 

Future work should attempt to better understand the drivers of international influenza spread not 

just between European countries, but on a variety of spatial scales, both smaller and larger. 

 

Conclusions 

 Here we present a novel network model of influenza transmission among twelve 

European countries, and test the model ability to improve influenza forecasting accuracy over 

isolated, country-level models. While the network model system was unable to improve forecasts 

in most circumstances, the success of similar network models in the United States suggests that 

this could be a powerful tool for improving influenza forecasts if data quality issues were to be 

addressed. We identify key opportunities for improvement in data collection and sharing that 
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may allow for success in the future. In the meantime, future work should focus on better 

understanding the various drivers of international influenza transmission in Europe and globally, 

so that models can better account for these relevant factors. 
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S1 Text. Supplementary methods and results. 

 

Supplementary Methods 

Influenza Data Processing 

 The syndromic data used for this study were ILI data except in Germany and 

Luxembourg, which preferentially reported ARI data, as well as France, which reported ARI data 

during the 2012-13 and 2013-14 seasons. No virologic (FluNet) data were available for France 

for the 2010-11 and 2011-12 seasons. Additionally, data from Czechia in 2013-14 and Poland in 

2011-12 were removed from consideration because the attack rates of total syndromic+ 

(including all (sub)types) for these outbreaks were less than 5% of the attack rate of the largest 

outbreak in these countries, an exclusion criteria laid out in Kramer & Shaman (2019)). 

 

Travel Data Processing 

Air Data: Because air travel data are collected from both source and destination countries, the 

number of passengers traveling each route is, theoretically, reported twice. Due to close 

agreement between the data reported by source and destination countries, we chose to simply use 

the data as reported by source countries. Data were averaged over all years in order to preserve 

data along routes where data were available some years but not others. Because travel was 

assumed to be symmetric, if data along a route were missing in one direction but not the other, 

the available value was assumed to be the travel rate in both directions. 

 

Commuting Data: The European Union (EU) Labour Force Survey is a survey of private 

households in 35 countries, including all EU member states. Data collection is the responsibility 
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of individual countries, so while questions and definitions remain constant across all countries, 

sampling strategies may not, and results are therefore not perfectly comparable between 

countries (LFS - Main Features, n.d.; European Commission, 2003). Of the routes where no data 

were reported, all but four were unreported due to being below threshold ‘a’ (see main text) and 

were not simply missing. We note that these routes tended to be between countries that were 

geographically distant, or else represented routes where economic incentive to commute was low 

(Mathä & Wintr, 2009; Decoville et al., 2013). Finally, although Ireland had reliable incoming 

and outgoing commuting data, the United Kingdom did not. Removing the United Kingdom 

from the model left Ireland isolated geographically, and we therefore subsequently removed 

Ireland from consideration as well. 

 

Type and Subtype Dynamics in Europe 

 For each season and country, we calculated the percentage of positive influenza tests in 

the FluID data that were H1N1, H3N2, un(sub)typed A, and B. After allocating un(sub)typed 

influenza A proportionally to H1N1 or H3N2, the resulting (sub)type-specific, scaled 

syndromic+ data for each country over the study period can be seen in S1 Figure. Although the 

proportional contribution of each (sub)type by season is broadly similar across countries, 

substantial differences do occur. For example, during the 2014-15 season, A(H1) was the 

dominant (sub)type in Italy (although A(H3) was also present), while A(H3) dominated in most 

other countries. In the 2015-16 season, A(H1) and B circulated in all countries, but the relative 

activity of the two (sub)types varied by country. 
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Network Model 

 The full equations for the network model during daytime are: 
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where any model state 𝑋𝑛
𝑘 is the number of susceptible or infected people who live in country k 

and work in country n, 𝑋𝑛 is the number of susceptible or infected people currently in location n, 

𝛽𝑛 is the transmission rate in country n, and 𝑟(𝑛,𝑚) is the daily rate of air travel from country n 

to country m; all other parameters are as described in the main text. During nighttime, the 

equations are: 
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where 𝑋𝑘 is the number of susceptible or infected people currently in location k, and the other 

states and parameters are as described before. Because individuals are assumed to spend 8 hours 

in the country where they work, and 16 in their home country, daytime equations are multiplied 

by 1/3, and nighttime equations by 2/3. 

 

Scaling Factors 

 The use of scaling factors in influenza forecasting is rooted in Bayes’ Rule, such that: 
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𝑝(𝑖) =
𝑝(𝑚)

𝑝(𝑚|𝑖)
𝑝(𝑖|𝑚) = 𝛾 ∙ (𝑠𝑦𝑛𝑑𝑟𝑜𝑚𝑖𝑐+) 

 

where p(i) is the probability of influenza infection (the quantity estimated by our model), p(m) is 

the probability that one seeks healthcare for any reason, p(m|i) is the probability of seeking 

healthcare among those with an influenza infection, and p(i|m) is the probability that one is 

infected with influenza given that one sought healthcare. This final quantity is analogous to our 

syndromic+ plus measure, which estimates the number of influenza cases at a given time based 

on data collected from those seeking healthcare for ILI or ARI. The scaling factor, γ, therefore 

represents the probability of seeking medical attention for any reason, divided by the probability 

of seeking medical attention conditional on infection with influenza, quantities that may be 

expected to vary based on surveillance systems, disease severity, and health seeking behavior 

(Morita et al., 2018; Shaman et al., 2013). By multiplying syndromic+ data by such scaling 

factors, we are theoretically calculating the probability of influenza infection, which is equivalent 

to the output of our models, and allows the appropriate use of the EAKF. 

 However, as explained in the main text, the WHO data are typically reported as counts, 

not rates. Thus, our scaling factors must also account for differences in country population sizes 

and the size of surveillance catchment areas, and we expect our scaling factors to vary 

considerably by country. Indeed scaling factors range from 0.033 (France, A(H3)) to 83.24 

(Luxembourg, A(H1)) (S1 Table). 

 

Ensemble Adjustment Kalman Filter 

Observational Error Variance: Use of the EAKF requires that the degree of error in both the 

simulated model output and in the data are specified. While the model error can easily be 
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calculated as the variance of the 300 ensemble members, the error in our observations is 

unknown. We specify the observational error variance at time t as: 

 

𝑂𝐸𝑉𝑡 = 𝑏 +
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3
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𝑗=𝑡−2 )

2

𝑐
 

 

where Ot is the observed syndromic+ data at time t. Here, the parameters b and c were set to 1e5 

and 10, respectively, based on a preliminary grid search, but can be altered for different data 

sources (Morita et al., 2018). 

 

Filter Divergence: As the outbreak progresses and successive data point are fit, there is a 

tendency for the variance between the ensemble members to shrink, potentially leading to filter 

divergence, in which the ensemble error variance becomes so low that data points are essentially 

no longer considered in the fitting process. We attempted to prevent divergence by 

multiplicatively inflating the prior model variance by 1.05 at each time step, prior to data 

assimilation (Pei et al., 2018; Shaman et al., 2013). 

 

Supplemental Results 

Descriptive Statistics by (Sub)type 

 The number of countries where outbreaks occurred during a (sub)type-specific seasonal 

influenza outbreak ranged from 8 to 12 countries (mean = 10.8 median = 11.5) for A(H1), from 8 

to 12 countries (mean = 9.6, median = 10.0) for A(H3), and from 2 to 12 countries (mean = 9.3, 

median = 11.5) for B. Therefore, it appears that the number of countries experiencing outbreaks 

did not differ notably by subtype, with the exception of a season where at least 4 countries 



 

143 

 

reported over 10% positivity rates for influenza B, but only two countries experienced any 

outbreak onset as determined using scaled syndromic+ data. We note that this outbreak of B 

influenza was particularly late in the season (onsets at weeks 56 and 58), and that the number of 

clinical cases was already quite low by this point in the outbreak, which explains the lack of 

onsets despite positivity rates being above our threshold of 10%. 

Within an outbreak, the time between the earliest and latest outbreak onsets ranged from 

5 to 11 weeks (mean = 7.3, median = 6.5) for A(H1), 5 to 10 weeks (mean = 8, median = 8) for 

A(H3), and 2 to 12 weeks (mean = 7.7, median = 7) for B; the time between the earliest and 

latest outbreak peaks was between 6 and 13 weeks (mean = 8.3, median = 7) for A(H1), 5 and 11 

weeks (mean = 8, median = 8) for A(H3), and 2 and 12 weeks (mean = 7.3, median = 8) for B. 

This suggests that, by this rough metric, outbreak synchrony between countries did not vary 

substantially by subtype. Finally, we find that peak timing (Kruskal-Wallis test, p < 0.005), but 

not onset timing (p > 0.1), differed significantly by subtype over all available seasons. More 

specifically, post-hoc Nemenyi tests indicate that peak timing tended to be later for outbreaks of 

influenza B (p < 0.01 for comparisons against both A(H1) and A(H3)), although we note that the 

median peak timing for outbreaks of influenza B in our dataset was only 1-2 weeks later than the 

medians for outbreaks of A(H1) or A(H3). 

Because data are not reported as rates, it is difficult to compare peak intensity by subtype. 

In order to explore whether certain subtypes consistently yielded larger or smaller outbreaks, we 

first adjusted observed peak intensity values for each country by dividing by the peak intensity of 

the largest outbreak observed for that country over all seasons and subtypes. We could then 

assess whether these relative outbreaks sizes differed by subtype. We find that outbreaks of 

A(H3) influenza tended to be larger than those of A(H1) (post-hoc Nemenyi test, p < 0.01) or B 
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(p < 0.05). This result is in agreement with previous reports that outbreaks of A(H3) tend to be 

larger and of higher severity than outbreaks of A(H1) (Park & Ryu, 2018). 

 

Additional Model Fit Results 

 As described in the main text, model fits for A(H3) and B influenza during the 2012-13 

season are visualized in S2 Figure. 

 

Results by Observed Lead Week 

 Generally, forecasting results were similar whether they were assessed by predicted 

(Figure 3) or observed (S3 Figure A-C) lead week. This remained true if season-country-

subtype-week pairs were removed because either the network or the isolated models did not 

predict an onset (S3 Figure D-F). Interestingly, if we only include pairs for which both the 

network and isolated models produce forecasts predicting an onset, the observed improvement in 

onset timing accuracy forecasts appears to shrink. This suggests that any improvement the 

network model offers for onset timing predictions is not due to the production of more skillful 

forecasts, but rather due to the recognition of upcoming outbreak onsets not picked up by the 

isolated model. 

 

Results by (Sub)type 

 Results by (sub)type are described in the main text under “Retrospective Forecast 

Accuracy.” Plots of log scores by predicted lead week separated by (sub)type are found in S4 

Figure. 

 



 

145 

 

Results by Country 

 Log scores for peak timing and intensity by country by predicted lead week can be seen 

in S5 Figure. Because so few forecasts of onset timing were produced prior to outbreak onset, we 

refrain from plotting these results. Although the network model offered no improvement in 

forecast accuracy overall, we wondered whether improvement may be observed for specific 

countries. In particular, we might expect that countries with lower-quality data may benefit from 

the inclusion of other countries with higher-quality data, or that countries with larger commuting 

flows may benefit more from a network model like the one developed here. However, there is 

generally very little difference between network and isolated model results in most countries, 

mirroring the results in the main text. Additionally, Luxembourg, the country with the least-

smooth data (see “Data Quality by Country” below), is one of the countries for which the 

network model clearly degraded peak timing forecast accuracy (the others being Hungary, Italy, 

and Poland). Czechia and the Netherlands appear to see the most improvement in forecast 

accuracy when the network model was used, but these improvements are small. Overall, no clear 

patterns emerged concerning network and isolated model performance by country. 

 

Results (Mean Absolute Errors) 

 In addition to log scores, we assessed forecast results using mean absolute errors (MAE), 

a metric which accounts for accuracy but not for certainty or calibration. MAE is calculated by 

taking the absolute value of the difference between the predicted and observed values of a given 

metric for all forecasts, then calculating the mean value over all forecasts. Note that, because 

values for peak intensity varied greatly between countries, we instead calculated mean absolute 
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percentage errors (MAPE) for peak intensity; here we divide the absolute difference by the 

observed peak intensity value before taking the mean. 

When assessed by predicted lead week, the network model appears to improve forecasts 

of both peak and onset timing prior to the predicted peak or onset, although we again note that 

the number of forecasts generated prior to outbreak onsets was small (S6 Figure A and C). Peak 

intensity, however, appears to be more accurately forecasted by the isolated models, particularly 

at lead weeks -4 to -2 (S6 Figure B). Thus, results for peak intensity and for onset timing are 

consistent with those found in the main text using log scores (Figure 3 B and C). Peak timing 

appears to be more accurately predicted by the network model prior to the predicted peak when 

assessed using MAE, yet received lower log scores than the isolated model over the same range 

of lead weeks (Figure 3A). This suggests that network forecasts of peak timing may be closer to 

the observed values on average, but place less confidence in their forecasts (i.e., fewer ensemble 

members fall into the observed bin). 

 MAEs and mean absolute percentage errors (MAPE) separated by (sub)type can be found 

in S7 Figure. Network model improvements for peak timing forecasts appear greatest for 

influenza B (S7 Figure C), while improvements for onset timing are primarily found for 

(sub)type A(H1) (S7 Figure G). As in S6 Figure, the network model appears to degrade peak 

intensity forecasts, with the potential exception of very early forecasts of A(H3) (S7 Figure E). 

However, as with the results for all (sub)types combined, the magnitude of these differences is 

quite small. 
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Alternative Calibration Plots 

 If forecasts are properly calibrated, we expect the distribution of forecast errors to have a 

mean of 0; otherwise, the forecasts are biased. S8 Figure compares the distribution of forecast 

errors for peak timing and intensity for the network and isolated models. Note again that relative 

errors were used for peak intensity, to control for differences in intensity by country. We see 

little difference between the models in terms of bias. Both models appear to produce unbiased 

estimates of peak timing at all lead week ranges, with the distributions becoming narrower as the 

peak approaches and passes. Estimates of peak intensity, on the other hand, appear biased low at 

early lead weeks, but appear relatively unbiased starting at predicted lead week -4, and become 

more precise at later leads. Overall, these results agree with the finding in the main text that both 

the network and isolated models are well-calibrated for forecasting peak timing and intensity 

(Figure 4). 

 

Supplementary Analyses 

Synthetic Testing 

 In order to test whether our model is capable of fitting realistic influenza outbreaks, we 

conducted synthetic testing, wherein we test the model-inference system’s ability to properly fit 

model-generated “outbreak” data. This is done because, unlike for observed outbreaks, we know 

the exact parameter and initial states values that were used to generate synthetic data, allowing 

assessment of the accuracy of the model fitting. 

 We drew 1000 random combinations of initial state and parameter values from realistic 

ranges (see main text) using Latin Hypercube Sampling. Unlike for forecasting, initial values of 

S and I were chosen for each country rather than for each individual compartment. S0 in each 
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commuting compartment was then chosen from a normal distribution around S0 for those living 

and working in the commuters’ home country with standard deviation 0.025. Initial infected 

numbers in a country were distributed among all compartments sharing a home country 

according to relative population size. These state and parameter combinations were then run 

forward for the duration of an influenza season (52 weeks). Commuting flows were set to be the 

mean number of commuters across all seasons; missing routes were filled as described in the 

main text. Realistic outbreaks were determined to be those where: a) at least 7 of 12 countries 

had outbreak onset (defined as in the main text), and b) no more than 1 of those countries with 

onsets had peak timings before week 52 or after week 12. These metrics were based on 

preliminary exploration of the syndromic+ data for each (sub)type. We selected five outbreaks 

on which to perform synthetic testing. As influenza outbreaks in Europe tend to move from west 

to east, we chose four outbreaks that progressed from west to east (one strongly and three 

weakly), and one that moved east to west instead (as observed during the 2015-16 season). 

Parameter values for these outbreaks can be found in S3 Table. 

Because observed data are rarely as smooth as synthetically-generated data, we added 

random error to our synthetic data. Specifically, we added normally-distributed error to each 

point with a mean of zero and standard deviation equal to the square root of the observation error 

variance at that point, calculated as described above under “Ensemble Adjustment Kalman 

Filter,” with b = 1e5 and c = 10. Any resulting negative values were set to zero. 

 We then fit our network model to each of the 5 error-laden synthetic outbreaks, and 

compared the inferred and true values of the model parameters D, R0max, and R0diff; and the 

composite model parameters β, R0 (as defined in Equation 2 in the main text), and Reff (the 

effective reproductive number, or the average number of secondary cases caused by a single 



 

149 

 

initial case, taking population susceptibility into account; calculated as 𝑅0(
𝑆

𝑁
)). Because Reff 

dictates the course of the epidemic, it is particularly important that the model be able to correctly 

infer its value. Comparisons were achieved by calculating errors relative to the true values at all 

time points. 

 Fits for D, R0max, and R0diff over the course of the five synthetic outbreaks can be found 

in S9 Figure. We find that the model-inference system fit D relatively well in most cases, with a 

slight tendency to underestimate its value. R0max and R0diff appear more difficult to accurately 

infer, with the model settling on similar inferred values for all five synthetic outbreaks. This may 

suggest that the model is not particularly sensitive to values of these two parameters, or that 

multiple combinations of R0max and R0diff are capable of producing the same outbreak patterns.  

 The distribution of relative errors for β, R0, and Reff for all countries and synthetic 

outbreaks at timepoints 5, 10, 15, and 20 are shown in S10 Figure. Generally, the inferred values 

of β, R0, and Reff approached the true values over time. R0 was fit quite closely at all timepoints 

(S10 Figure B), while the model seems less capable of correctly inferring β (S10 Figure A). 

Encouragingly, although Reff tended to be underestimated early in the season, it was well-fit 

during the outbreak itself (S10 Figure C). That said, the tendency of the model to underestimate 

Reff before outbreak onset could be why so few early forecasts of onset timing were produced 

(Table 1). 

 

Data Quality by Country 

 While small differences in data quality are not necessarily associated with forecast 

accuracy (Kramer & Shaman, 2019; Morita et al., 2018), we nonetheless expect that particularly 

poor-quality data will be more difficult to fit, and will produce lower-quality forecasts. We 
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briefly assessed data quality by country and subtype, and its association with fit and forecast 

accuracy using two metrics: 

1. The proportion of weeks within an outbreak where no data are available (where 

an outbreak is defined as starting in week 40 and ending in week 19 of the 

following year) 

2. Lag-one autocorrelation by outbreak (a measure of signal smoothness) 

For these analyses, only countries with an observed onset were included for each (sub)type and 

season. 

 First, we note that the two metrics are not significantly correlated with one another, and 

in fact trend towards being slightly negatively associated (Kendall’s tau = -0.101, p < 0.07), 

emphasizing that there is no one measure that perfectly encapsulates data quality. Missingness 

(metric 1) ranges from 0 to 37.5% of time points during a season (mean = 9.67%, median = 

6.25%), whereas smoothness (metric 2) ranges from 0.29 to 0.95 (mean = 0.83, median = 0.87), 

suggesting high variability in data quality, and confirming that both missingness and noisiness 

are prevalent in our data. 

Both metrics above differ significantly by country (Kruskal-Wallis test, p < 0.0001 for 

both metrics). Briefly, Germany has particularly low missingness, and Italy has high 

missingness; Luxembourg has notably low signal smoothness. Because all subtypes make use of 

the same clinical and virologic data points, it is not meaningful to compare missingness by 

subtype. Signal smoothness does not differ significantly by subtype (Kruskal-Wallis test, p = 

0.45). 

Finally, we assessed whether either of these metrics were associated with model fit 

(measured by RMSE) or forecast accuracy (measured by log score). First, RMSE values were 
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averaged over all runs for each country-season-subtype combination, and log scores were 

averaged over all runs and lead weeks (predicted leads -6 through 4). Because we are particularly 

interested in forecast accuracy prior to the peak, we also looked at log scores averaged over 

predicted leads -6 through -1 only. Neither RMSEs nor log scores were significantly associated 

with missingness, and only log scores for peak timing were associated with smoothness. 

Specifically, smoothness was positively associated with peak timing accuracy over the full range 

of predicted leads (Kendall’s tau = 0.112, p < 0.05), as well as when only pre-peak leads were 

included (Kendall’s tau = 0.126, p < 0.02). We note, however, that these associations were fairly 

weak. Therefore, at least using these simple metrics of data quality, we find little evidence that 

data quality differences within our dataset were associated with network model fit quality and 

forecast accuracy. 

 

Inferred States and Parameters 

 If a model can only produce appropriate estimates and forecasts by inferring unrealistic 

values of model states (the number susceptible and infected) and parameters (here, R0max, R0diff, L, 

D, and airScale), it suggests that the model itself may not be well-specified. We therefore 

assessed whether the values of model states and parameters inferred by the network model were 

realistic. Additionally, we explored state and parameter patterns by (sub)type. In addition to the 

model parameters listed, we also looked at inferred values of R0 (the basic reproductive number), 

and Reff. 

 The inferred value of S0 for a given country during a (sub)type-specific outbreak was 

taken to be the maximum inferred proportion susceptible over the time period beginning with the 

first onset observed in that (sub)type-specific outbreak, and ending in week 19 (i.e., the end of 
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the season). Weeks prior to the first onset were removed because, in synthetic testing (see 

above), the proportion susceptible was often overestimated during the first few weeks of fitting, 

particularly in countries with low S0. The maximum Reff for a country during a given (sub)type-

specific outbreak was found using the same method. R0 was taken as the value of R0 during the 

week with maximum Reff. Because our model assumes a single pathogen, we expect R0 to vary 

between countries only according to differences in absolute humidity. Thus, after confirming that 

no significant differences existed for R0 by country (Kruskal-Wallis test, as described in next 

paragraph; all p > 0.05), we calculated an overall estimate of R0 for each (sub)type-specific 

season by taking the mean R0 over all countries. The five model parameters were simply assessed 

at week 7, twenty weeks after fitting begins. 

 Each season and (sub)type was fit five times, with each run having different initial 

conditions and commuting matrices (see main text). Because these runs were not independent, 

we randomly chose a single run for each country-season-(sub)type combination (season-

(sub)type combinations for R0 and model parameters) before checking for significant differences 

using Kruskal-Wallis rank sum tests. This process was repeated 100 times, and differences were 

considered significant if at least 50 of the random permutations yielded p-values less than 0.05 

(see S1 Text from (Kramer & Shaman, 2019)). 

 Estimates for S0 ranged from 5 .   to 95.2  of a country’s population (58.0  to 95.2  

among those countries, seasons, and (sub)types where an onset was observed), and maximum Reff 

fits ranged from 0.68 to 2.10 (0.93 to 2.10 where onsets occurred). We found that estimates of 

maximum Reff differed significantly by (sub)type (S11 Figure B). Post-hoc Nemenyi tests using a 

Bonferroni correction for multiple comparisons, also performed on 100 permutations of the 

estimates, revealed that inferred maximum Reff values were significantly higher for A(H3) than 
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for A(H1), results that are in line with our finding above that A(H3) outbreaks in our dataset 

tended to be larger than those of other (sub)types (see “Descriptive Statistics by (Sub)type”). 

While the initial Kruskal-Wallis test suggested a significant difference in S0 by country, post-hoc 

Nemenyi tests found that none of the pairwise comparisons were significant once a Bonferroni 

correction was applied. That said, Kendall’s rank correlation suggested that countries that are 

further east and further north (using the latitude and longitude of each country’s capital city) 

tended to have lower S0; this pattern may reflect the model’s attempt to fit outbreaks that tend to 

move from west to east. No significant differences in S0 were observed by (sub)type (S11 Figure 

A). 

 Generally, parameters common to all countries also fell within realistic ranges (Carrat & 

Flahault, 2007; Chowell et al., 2008; Mills et al., 2004; Truscott et al., 2009; White & Pagano, 

2008), with values ranging from 1.23 to 2.37 for R0, from 2.56 to 10.93 days for D, and from 4.8 

to 9.5 years for L. Estimated values for airScale fell between 0.82 and 1.33, although we note 

that neither airScale nor L were inferred particularly well in synthetic testing, and results for 

these parameters should be interpreted with caution. Using Kruskal-Wallis tests as described 

above, none of these parameters were significantly associated with (sub)type. However, we note 

that, since only a single value of each parameter is estimated for each season-(sub)type 

combination, the “sample size” here is quite small. In particular, there seems to be a trend toward 

higher estimates for D during outbreaks of A(H3) and B as compared to A(H1) (S11 Figure D). 
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Supplementary Tables 

S1 Table. Scaling factors by country and (sub)type. Note that 

France switched from preferentially collecting ARI to ILI data prior 

to the 2014-15 season; scaling factors for France are listed as 

ARI/ILI. 

Country Scaling (A(H1)) Scaling (A(H3)) Scaling (B) 

Austria 17.53 25.09 23.30 

Belgium 12.98 15.81 15.92 

Czechia 1.22 1.32 1.33 

France 2.08/0.074 3.92/0.033 1.22/0.12 

Germany 0.32 0.41 0.50 

Hungary 1.81 1.18 1.19 

Italy 2.04 1.75 1.19 

Luxembourg 83.24 74.33 82.04 

Netherlands 32.32 46.89 42.13 

Poland 2.56 1.68 1.65 

Slovakia 0.58 1.17 0.81 

Spain 3.27 5.16 6.86 

 

 

S2 Table. Number of forecasts predicting any onset by predicted onset lead week, separated by 

(sub)type. 

 Lead Week -6 -5 -4 -3 -2 -1 0 

A(H1) 
Network 1 1 2 12 15 26 239 

Isolated 6 22 11 25 16 10 205 

A(H3) 
Network 1 14 9 10 30 40 230 

Isolated 3 11 4 13 18 10 186 

B 
Network 0 2 1 9 18 50 227 

Isolated 2 10 5 10 10 17 229 
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S3 Table. Parameters values used to generate synthetic outbreaks, and the number of countries 

with outbreak onsets. 

Synthetic Outbreak L (years) D (days) R0max R0diff airScale # of Countries w/ Onsets 

1 4.61 5.58 2.15 0.48 1.24 10 

2 3.36 6.18 2.28 0.57 0.92 11 

3 4.92 6.14 2.63 0.98 1.17 12 

4 8.56 3.96 2.11 0.90 0.87 7 

5 6.33 4.71 2.33 0.84 1.16 11 
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Supplementary Figures 

  

S1 Figure. Syndromic+ data by country and subtype over the course of the study period. 

The beginning of each season (week 40) is marked on the x-axis. Because France shifted from 

preferentially reporting ARI to ILI data prior to the 2014-15 season, ARI data from the 2012-13 and 

2013-14 seasons are shown as an inset. 
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S2 Figure. Model fitting to observed A(H3) (A) and B (B) influenza data throughout the 2012-13 

season. 

Scaled syndromic+ data are shown as points, while blue lines represent inferred model incidence. Each 

line represents one of five runs, each with different initial conditions. The shaded gray areas represent 

the 95% confidence intervals for each of the runs, calculated using the ensemble means and standard 

deviations. (A) RMSE ranged from 45.60 (ES) to 375.08 (CZ), with mean = 180.45 (median = 166.77). 

(B) RMSE ranged from 106.01 (PL) to 1155.82 (LU), with mean = 364.01 (median = 309.06). 
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S3 Figure. Retrospective forecast accuracy by observed lead week, before (A-C) and after (D-F) 

removing season-country-subtype-week pairs for which either the network or isolated model 

predicted no onset. 

Log scores are shown for peak timing (A and D), peak intensity (B and E), and onset timing (C and F). 

Mean log scores for the network model are shown in red, and scores for the isolated models are shown 

in blue. The size of the points represents the number of forecasts generated at a given lead week for 

which any onset was predicted. 
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S4 Figure. Log scores by predicted lead week for forecasts of peak timing (A-C), peak intensity 

(D-F), and onset timing (G-I), separated by (sub)type. 

Network results are shown in red, and results from the isolated model are shown in blue. Point size 

represents the number of forecasts generated at a given lead week for which an onset was predicted. 
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S6 Figure. Retrospective forecast accuracy by mean absolute (percentage) errors (MA(P)E). 

Results are shown by predicted lead week for peak timing (A), peak intensity (B; MAPE), and onset 

timing (C). Network results are in red and isolated in blue. Point size represents the number of forecasts 

generated for which onsets were predicted. 

S7 Figure. Retrospective forecast accuracy by MAE/MAPE by predicted lead week, separated 

by influenza (sub)type. 

Results are shown for peak timing (A-C), peak intensity (D-F), and onset timing (G-I). Network 

results are in red and isolated in blue. Point size represents the number of forecasts generated for 

which an onset was predicted. 
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S8 Figure. Histograms of forecast error for peak timing (A) and intensity (B), shown by (binned) 

predicted lead week. 

Peak timing error is shown with bins of size 1 week, and relative peak intensity error is shown with bins 

of size 0.1. The y-axis represents the proportion of forecasts falling into a given bin. Results from the 

network model are shown in red; results from the isolated model are shown in blue. 
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S9 Figure. Fittings of model parameters D (A), R0max (B), and R0diff (C) over time. 

Each panel in (A), (B), and (C) represents one of each of five synthetic outbreaks, as described in S3 

Table. Fits at each week are shown as gray points; solid black lines represent the true values. 
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S10 Figure. Histograms of the relative error of fits of β (A), R0 (B), and Reff (C) at four timepoints 

over all countries and synthetic outbreaks. 

The y-axis shows the proportion of fits falling into each bin of size 0.05. Dotted lines show relative error 

equal to 0, for reference. 
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S11 Figure. Values of model states and parameters, as fit by the network model, shown separated 

by (sub)type. 

Fittings are shown for S0 (A), maximum Reff (B), R0 (C), D (D), L (E), and airScale (F). Boxes extend 

from the first to the third quartile, with a horizontal line marking the median, while values more than 1.5 

times the interquartile range below the first quartile or above the third quartile are shown as points. 
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Chapter 4: Real-time Forecasting of the 2017-18 and 2018-19 Influenza Seasons in 37 Countries 
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Abstract 

Accurate and well-calibrated influenza forecasts, generated in real-time, have the potential to 

guide public health preparations for unfolding influenza outbreaks, thereby reducing morbidity 

and mortality. While these systems are becoming more established in the United States and 

Australia, real-time forecasting systems have not been developed for most countries worldwide. 

Here we describe the generation of real-time forecasts for 37 countries over the course of two 

influenza seasons, which were published weekly online. Here we show that, while forecast 

quality varied by season and country, forecast skill was on par with that of previously published 

retrospective forecasts. Forecasts of peak intensity in particular were found to outperform 

methods relying on historical expectance alone in the weeks directly before peak influenza 

incidence. Furthermore, updates made to the data over the course of the season were not found to 

negatively influence forecast accuracy. While evidence from future seasons will be critical in 

confirming these findings, our results suggest that real-time influenza forecasts could begin to be 

operationalized for several countries in Europe. 
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Introduction 

 Influenza causes regular, seasonal outbreaks each year in temperate regions (Bloom-

Feshbach et al., 2013). Although we can confidently say that these outbreaks will occur during 

the winter, the exact progression of a given outbreak is not known. Accurate, real-time forecasts 

of influenza outbreaks, if produced with sufficient lead time, could allow both public health and 

medical professionals to better prepare for specific outbreaks of influenza as they occur. 

 Previous work has shown that skillful forecasts of influenza activity are possible 

(Hickmann et al., 2015; Moss et al., 2017; Nsoesie et al., 2014; Pei et al., 2018; Shaman & 

Karspeck, 2012; Yang et al., 2015). However, with a few exceptions (Farrow et al., 2017; Moss 

et al., 2018; Ong et al., 2010; Shaman et al., 2013), most of these studies have been performed 

retrospectively; in other words, forecasts have been generated for influenza outbreaks that have 

already occurred. Forecasting in real-time presents additional challenges, in that it relies on 

prompt and accurate data reporting. Since the 2013-14 influenza season, the Center for Disease 

Control and Prevention (CDC) in the United States has hosted an influenza forecasting 

challenge, in which various research groups submit real-time influenza forecasts, which are then 

scored and compared (Biggerstaff et al., 2016). In addition to participating in these challenges, 

our group has been producing real-time forecasts for all 50 US states, as well as around 80 US 

cities, since 2012, and has published these results online since 2013 (Columbia University 

Mailman School of Public Health, n.d.). In Melbourne, Australia, Moss et al. (2018) have been 

collaborating with the local Health Department since 2015 to improve real-time influenza 

forecasts based on discussions between modelers and those in charge of surveillance. 

We have previously shown that skillful retrospective forecasts can be generated for 

several countries in temperate regions using publicly-available data from the World Health 
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Organization (WHO) (Kramer & Shaman, 2019, or Chapter 2). Here, we expand these efforts to 

produce real-time forecasts in 37 temperate countries. We explore the timeliness of reporting to 

the WHO, and compare real-time and retrospective forecasts to quantify the extent to which data 

updates over time impact forecast accuracy. We also compare our real-time forecasts to forecasts 

based on historical expectance. Given previous findings, we hypothesize that our forecasts will 

provide additional information over historical expectancy alone, but that this will depend on the 

timely and accurate submission of surveillance data. 

 

Methods 

Influenza Data 

 Country-level influenza data were downloaded weekly from the WHO’s FluNet and 

FluID platforms, which collect virologic and epidemiologic surveillance data, respectively 

(WHO, n.d.-b, n.d.-a). Epidemiologic surveillance data consisted of cases of influenza-like 

illness (ILI) in 24 countries and acute respiratory infection (ARI) in 13 countries. A map of 

countries with available data and the type of epidemiologic data reported can be seen in Figure 1. 

As in past work, we multiply ILI and ARI cases by the proportion of tests conducted during a 

given week that were positive for influenza in order to control for lack of specificity (Kramer & 

Shaman, 2019; Shaman et al., 2013). We refer to the resulting data as ILI+ or ARI+. We note 

that data are reported to the WHO with a one-week lag, meaning that data downloaded each 

week reflect influenza activity during the previous week. 
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Humidity Data 

 Data on absolute humidity were obtained from NASA’s Global Land Data Assimilation 

System (GLDAS) (Rodell, n.d.). The data were processed and aggregated to the country level as 

described in Chapter 2. 

 

Real-Time Forecast Generation 

 Real-time forecasts were generated using the model-inference system described in 

Chapter 2. Briefly, a humidity-forced, compartmental SIRS model was fit to available data for 

each country using the Ensemble Adjustment Kalman Filter (EAKF), a Bayesian data 

assimilation method (Anderson, 2001). Then, using the estimated model states (number of 

people susceptible and infected) and parameters (transmission rate, recovery rate, rate of 

immunity loss), the model was run forward in free simulation through the end of the season. As 

described previously, we repeat this process five times for each country, each time with different 

initial conditions, in order to account for stochasticity. Each forecast is the mean of 300 

Figure 1. Countries submitting data in real-time, by syndromic data type. This map shows the 37 

countries for which real-time forecasting was attempted for at least one season. Countries shown in blue 

report ILI data, while countries in red report ARI data. 
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individual ensemble members, which allows assessment of the certainty and calibration of the 

forecasts (Pei et al., 2018; Shaman et al., 2013; Shaman & Karspeck, 2012; Yang et al., 2015). 

This process was conducted in real-time, such that the forecasts for each week reflected the state 

of data availability that week. For the sake of consistency, we began generating forecasts in week 

48 (early October) and stopped at week 17 of the following year (mid April) for both seasons. 

Forecasts were not produced if a country reported 0 cases for a given week, as counts of zero 

early in an outbreak are unlikely to yield accurate forecasts (historical expectance is more 

accurate at that stage), and zeros during an outbreak were deemed to be unreliable reporting 

errors. 

  

Retrospective Forecasts 

 Even when data, e.g. ILI+, are made available in a timely manner, these data are not 

always final and may be updated in subsequent weeks over the course of an outbreak. It is 

consequently not unusual for retrospective forecasts, which use more accurate, finalized data, to 

outperform real-time forecasts. To test this effect of data updating, we generated retrospective 

forecasts for each season, using data downloaded at the end of the full 52-week season in 

question (i.e., week 39 of 2018 for the 2017-18 season and of 2019 for the 2018-19 season). 

These forecasts were generated using the same methods as described above and in Chapter 2. 

 

Scaling Factors 

 While model output represents the number of new influenza cases in a given week, our 

data estimate the number of people with influenza who sought medical treatment. In order for 

our model-inference system to function, data and model output must be in the same form. 
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Additionally, because we are using count, not rate, data, we must also account for differences in 

population size and the size of surveillance catchment areas. This was accomplished using 

country-level scaling factors, calculated as described in Chapter 2. Because these scaling factors 

are determined based on the range of attack rates observed in previous seasons, scaling factors 

for real-time forecasts are updated at the end of each new season, as needed. Country-level 

scaling factors for each season can be found in S1 Table. 

 

Forecast Evaluation 

 Forecasts were evaluated based on their ability to accurately predict peak timing (i.e., the 

week at which influenza incidence was highest) and peak intensity (i.e., influenza incidence at 

the peak week). Specifically, forecasts were considered accurate for peak timing if the mean 

peak week predicted by the 300 ensemble members fell within one week of the observed week, 

and forecasts were considered accurate for peak intensity if the mean predicted intensity fell 

within 25% of the observed value. Observed peak timing and intensity values were calculated 

based on the data downloaded at the end of the season. These metrics and thresholds are the 

same as those used in our recent work generating retrospective forecasts for these countries (see 

Chapter 2), allowing for comparison of the results. 

 

Forecast Comparison 

 As in Chapter 2, forecast accuracy by season, data type, and region (S1 Table lists 

countries by data type and region) was compared using generalized estimating equations (GEEs), 

which are able to control for temporal autocorrelation between forecasts for the same country-

season pair over time. Because the observed time to the peak cannot be known in real-time, we 
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compared forecasts by predicted lead week, or the difference between the current week and the 

predicted peak timing. Forecasts for which no onset was predicted were removed from 

consideration, where outbreak onset was defined as the first of three consecutive weeks with 

scaled incidence over 500. To control for the lack of independence between the five runs of each 

forecast, we ran GEEs on 100 permutations of our results, each time randomly choosing a single 

run of each forecast. The median coefficients and standard errors were then used to calculate the 

adjusted odds ratios and 95% confidence intervals (see the Supplementary Materials from 

Chapter 2 for more details). 

 Because real-time and retrospective forecasts were generated for the same countries, 

seasons, and forecast start weeks, we chose to analyze these results by observed lead week using 

exact binomial tests for lead weeks -6 through 4, with a Bonferroni correction to account for 

multiple tests. Here, forecasts incorrectly predicting no onset were treated as “inaccurate,” in 

order to avoid discounting forecast pairs where one accurately anticipated epidemic activity and 

the other did not. 

 

Processing for Display on Website 

 Ideally, we would only display forecasts believed to be accurate and certain enough to be 

informative. However, waiting too long to display results prohibits early forecasts from offering 

what information they can. To balance these needs, we began displaying forecasts online as soon 

as scaled incidence for a country exceeds 300 cases. However, we also displayed the distribution 

of predicted onset timing, peak timing, and peak intensity over all 300 ensemble members, to 

enable users to assess forecast certainty. Finally, to enable comparison between countries, we 

reported intensity relative to the historical maximum incidence observed for a country since the 
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beginning of the 2010-11 season. Like scaling factors, the historical maximum values are 

updated yearly as needed.  

 

Results 

Description of website 

 Screenshots of the real-time forecasting website (Columbia University Mailman School 

of Public Health, n.d.) can be found in Figure 2. Current influenza incidence (here at week 60, or 

mid-February, of the 2019-20 season), as a percentage of the historical maximum incidence, can 

be observed under the “World Map” tab (Figure 2A). Hovering over a country provides the user 

with the exact percentage of the historical maximum, along with the unscaled ILI+ or ARI+ 

incidence for that country. Maps for previous weeks within the same season can be observed 

using the “Select Week” drop-down menu. 

Clicking on a country leads to a page resembling Figure 2B (here shown for Poland, also 

at week 60). The top plot shows the observed, unscaled incidence so far, with the predicted peak 

labeled with a vertical red line. The mean forecast trajectory for that week is shown plus or 

minus the standard deviation across all ensemble members (the shaded region). Exact values can 

be seen by hovering over the points. Forecasts generated at previous weeks can be observed 

simultaneously using the “History Off/On” switch. Predicted peak timing, peak intensity, and 

onset timing, along with standard deviation, are found in the upper left corner. The middle set of 

plots displays the distribution of ensemble members predicting various values for onset timing, 

peak timing, and peak intensity. Hovering over a bar provides the estimated probability 

associated with that week or intensity range. Finally, the bottom plot displays unscaled influenza 

incidence for the country over all previous seasons with available data. 
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Figure 2. The real-time influenza forecasting website interface. (A) World map showing country-level 
ILI and ARI incidence, relative to each country’s historical maximum, for week 60 of the 2019-20 
season. (B) Real-time forecasting results for Poland for the same week, including the mean trajectory, 
distribution of timing and intensity metrics, and historical incidence. Additional details can be found 
under “Description of website.”
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Description of seasons 

 Reliable and consistent data were available for 37 countries during the 2017-18 season 

and 35 countries (all except the Netherlands and Uzbekistan, which reported only early in the 

season or only sporadically, respectively) during the 2018-19 season. Georgia did not have an 

outbreak onset during the 2017-18 season, while all countries with available data had outbreaks 

during the 2018-19 season. 

 Both seasons in Europe were characterized by moderate but varied intensity. The 2017-

18 season had somewhat early onset but longer duration of activity than in previous seasons. The 

timing of the 2018-19 season was in line with past seasons but varied noticeably by country. 

Interestingly, the 2017-18 season in Europe was dominated by influenza B; during the 2018-19 

season, both H1N1 and H3N2 circulated, with H1N1 dominating in the east and north, and both 

subtypes circulating in the west (Hammond et al., 2018, 2019). 

 

Timeliness of data reporting 

 During the 2017-18 and 2018-19 influenza seasons, the percentage of weeks during 

which a country reported no data, making real-time forecasting impossible, ranged from 0 to 

0.909 (mean = 0.251; median = 0.205). If reports of 0 cases are included, these numbers rise to 0 

to 0.955 (mean = 0.312; median = 0.273). Consistently high rates of reporting were observed 

among Luxembourg, Portugal, and Slovakia, while the highest rates of missingness were 

observed for Kyrgyzstan (>80% for both seasons). Only Portugal and Spain achieved reporting 

every week for the 2018-19 season. During the 2017-18 season, there were two weeks (52 and 

64) where no country reported data. We found no significant differences in data missingness by 

season, both excluding and including reports of 0 cases (Kruskal-Wallis test, p > 0.35 for both 
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tests). Rates of missingness were much lower in the data used for retrospective forecasting, 

although some missingness persists (mean = 0.024 excluding 0s, mean = 0.101 when 0s are 

included). 

 Even when data are reported in real-time, values are sometimes updated at later weeks as 

more information becomes available (Figure 3). Throughout a given season, the proportion of 

real-time data values that were later updated ranges from 0 to 1 (mean = 0.414; median = 0.199), 

although we note that many times these updates were relatively small in magnitude (Figure 3A-

C), and seven countries had no updates for either season. Typically, the real-time values 

underestimated the end-of-season values, although this was not always the case (Figure 3C). 

Furthermore, real-time values were sometimes adjusted to their final values as soon as the next 

week (Figure 3A), but could also be adjusted over the course of several weeks (Figure 3C-D). As 

with missingness, there was no significant difference in update rates by season (Kruskal-Wallis 

test, p > 0.85). 

 

 

 

Figure 3. Representative examples of data updates over time. Black lines represent the final unscaled 

data values, downloaded after the end of the season (week 39). Orange points show the data downloaded 

each week in real-time. Data are displayed for (A) Ireland, 2018-19; (B) Italy, 2018-19; (C) the 

Netherlands, 2017-18; and (D) Norway, 2017-18. 
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Real-time forecast accuracy 

 In general, we found that skillful real-time forecasts of influenza activity for the 2017-18 

and 2018-19 seasons were possible (Figure 4). We note here that, because data are reported with 

a one-week lag, a predicted lead week of -1 in reality represents a forecast generated at the 

predicted peak. Forecast accuracy was higher during the 2018-19 season than the 2017-18 season 

for both peak timing and peak intensity at almost all predicted lead weeks. The proportion of 

forecasts accurately predicting peak timing consistently exceeded 50% starting at predicted lead 

week -1 for the 2017-18 season and at week -3 for the 2018-19 season; accuracy exceeded 75% 

beginning at lead week 3 for 2017-18 and week -1 for 2018-19. For peak intensity, forecast 

accuracy first exceeded 50% at a predicted lead week of 0 for 2017-18 and -1 for 2018-19, and 

also exceeded 75% starting at lead week -1 during the 2018-19 season; accuracy never exceeded 

75% during the 2017-18 season. The difference in accuracy by season was found to be 

statistically significant overall (peak timing: aOR = 2.404, 95% CI: 1.198–4.813; peak intensity: 

aOR = 2.295, 95% CI: 1.243–4.199), but not before the predicted peak. Similar patterns emerge 

when results are assessed by observed lead week (S1 Figure). 

 We previously observed that retrospective forecasts were significantly less accurate for 

countries reporting ARI data than for countries reporting ILI data (see Chapter 2). Here, we find 

that countries reporting ILI data yielded more accurate forecasts for peak timing but not for peak 

intensity, and that countries reporting ARI data actually appeared to produce more accurate 

forecasts of peak intensity at lead weeks -4 through -2 (S2 Figure). While the difference in peak 

timing accuracy (aOR = 0.413, 95% CI: 0.189–0.896) was significant before the predicted peak, 

the difference in peak intensity accuracy was not. No significant patterns were observed by 

region (S3 Figure). Adjusted odds ratios for all comparisons can be found in S2 Table. 
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 Compared to historical expectance: We compared our real-time forecasts to forecasts 

produced using the method of analogues, a non-mechanistic method that produces forecasts 

based on historical patterns (Viboud et al., 2003). We found that our methods and the method of 

analogues perform similarly for the 2017-18 season, but that our methods outperformed the 

method of analogues for the 2018-19 season beginning at predicted lead week -1 for peak timing 

and -3 for peak intensity (S4 Figure). 

Compared to retrospective forecast accuracy: Forecasts produced using complete and 

updated data from the end of the season did not appear more accurate than real-time forecasts, 

although the number of forecasts produced at each predicted lead week was slightly higher for 

retrospective than real-time forecasts (Figure 5). When assessed by observed lead week, 

including only those forecast pairs produced both in real-time and retrospectively, retrospective 

forecasts performed significantly better than real-time forecasts at lead weeks -5 and -1 for peak 

Figure 4. Real-time forecast accuracy by predicted lead week. Forecast accuracy is shown for (A) 

peak timing and (B) peak intensity. Results for the 2017-18 season are shown in red, and results for 

2018-19 are in blue. The size of the points represents the number of forecasts generated for that predicted 

lead week. 

  

                                  

    

    

    

    

    

               

 
  
 
 
  
  
 
  
 
 
 
  
  
  
  
 
  

 
  

 
 
  
 
 
 

      

       
       

           

  
  
   
   



 

182 

 

timing, and at lead weeks -2 and -1 for peak intensity (Table 1). Note that we used a Bonferroni-

corrected p-value cutoff of 0.05 / 11 = 0.0045. 

 

 

Real-time forecast calibration 

 In addition to being accurate, a skillful forecast should also be well-calibrated. That is, 

ensemble forecasts with less variability between ensemble members should indicate higher 

certainty. Here, we define a well-calibrated model as one in which the observed peak timing or 

intensity falls within the nth prediction interval, as delineated by ensemble variance, n% of the 

time. Figure 6 compares forecast calibration before the predicted peak for real-time and 

Table 1. Accuracy of retrospective vs. real-time forecasts by observed lead week. 

 
Obs. Lead Week: -6 -5 -4 -3 -2 -1 0 1 2 3 4 

Timing Retro. 11.3% 24.7% 31.7% 48.3% 54.6% 61.3% 67.7% 79.3% 90.7% 90.5% 94.0% 

RT 11.3% 20.0% 28.3% 42.8% 50.8% 56.5% 66.8% 81.3% 91.8% 91.3% 93.6% 

Sig.  **    *      

Intensity Retro. 9.2% 10.6% 15.7% 25.5% 43.1% 51.9% 71.0% 86.3% 90.7% 90.9% 90.2% 

RT 5.6% 10.6% 16.7% 20.7% 32.2% 45.2% 70.0% 87.0% 91.4% 89.1% 90.6% 

Sig.     ** *      

* p<0.0045 

**p<0.001 

  

                                  

    

    

    

    

    

               

 
  
 
 
  
  
 
  
 
 
 
  
  
  
  
 
  

 
  

 
 
  
 
 
 

      

         
             

           

  
   
   

Figure 5. Real-time versus retrospective forecast accuracy. Forecast accuracy for (A) peak timing and 

(B) peak intensity is shown for both real-time (in black, with solid lines) and retrospective (in gray, with 

dotted lines) forecasts. The size of each point represents the number of forecasts generated. 
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retrospective forecasts. We found that both real-time and retrospective forecasts were relatively 

well-calibrated, and that retrospective forecasts did not appear to be any better calibrated than 

real-time forecasts. 

Discussion 

Forecasts are a potentially important tool for public health response against seasonal 

influenza outbreaks, because high-quality forecasts could provide the public health and medical 

 

 

 

 

                                      

 

  

  

  

  

  

  

  

  

  

   

 

  

  

  

  

  

  

  

  

  

   

                   

 
  
  
 
 
 
  
  
 
  
  
 

           

       
       
       

Figure 6. Real-time and retrospective forecast calibration. Calibration is shown as the percentage of 

observations (on the y-axis) that fell within various forecast prediction intervals (x-axis), where 

prediction intervals are calculated based on the distribution of ensemble members, for a range of 

predicted lead weeks. (A) Real-time forecasts, peak timing; (B) Real-time forecasts, peak intensity; (C) 

Retrospective forecasts, peak timing; (D) Retrospective forecasts, peak intensity 
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communities with several weeks of additional preparation time. Here, we describe the results 

from two seasons of real-time forecasting of influenza outbreaks in Europe, using data sources 

and models previously shown to be capable of producing skillful retrospective forecasts in the 

same countries. We find that real-time forecasting accuracy was broadly consistent with these 

past retrospective results (Chapter 2). Forecast accuracy was significantly higher for the 2018-19 

season than for the 2017-18 season, and only the 2018-19 season was consistently more 

accurately forecasted using our model-inference system than by the method of analogues, a 

method based on historical expectance. While it is difficult to say what exactly drove this 

difference, it is possible that the extended duration of the 2017-18 season made it more difficult 

to forecast using a simple compartmental model. Consistent with our past findings, we find that 

real-time forecast accuracy for peak timing was higher for countries reporting ILI data than for 

countries reporting ARI data, at least before the predicted peak. As ILI data are more specific 

and tend to be less noisy, this finding is not surprising. 

 It was encouraging to see that, despite substantial late reporting and data updating over 

time, real-time forecasts were not significantly less accurate than retrospective forecasts at most 

timepoints, nor were they less well-calibrated. This suggests that small errors in data reported in 

real-time are unlikely to greatly impact forecast quality. Moss et al. (2018) compared real-time 

and retrospective forecasts for a season with unusually long delays in reporting and found 

retrospective forecasts to be noticeably more accurate, suggesting that this finding may not hold 

in the case of larger updates. Future work should explore the incorporation of backcasts, which 

attempt to correct for these inaccuracies throughout the existing data, as such work has 

previously been shown to improve forecast accuracy (Kandula et al., 2019). 
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 Although data reported in real-time were generally not updated substantially throughout 

the season, countries reported no real-time data for roughly 30% of weeks, on average. This lack 

of timely reporting led to significant missed opportunities, as no real-time forecasts could be 

generated for these countries and weeks. Timely reporting was particularly rare over the winter 

holidays (weeks 51 and 52). While modelers need to improve forecast model systems in order to 

produce more skillful real-time forecasts, the importance of delivering available, timely and 

accurate data streams must continue to be emphasized. The development of partnerships between 

modelers and surveillance experts, as cultivated by Moss et al. (2018), and as further discussed 

below, could be beneficial here: insight from public health professionals can guide model 

adjustments to help compensate for reporting delays (Moss et al., 2018, 2019), while public 

health practitioners exposed to the potential benefits of forecasting may be more likely to push 

for more timely and accurate reporting. 

We have discussed the primary limitations of the FluNet and FluID data, including lack 

of specificity and denominator data, in Chapter 2. Here, we focus on limitations with particular 

relevance for real-time forecasting. First, we reiterate that data are reported with a one-week lag, 

meaning that the forecasts are not truly produced in “real time,” and that one-week-ahead 

forecasts are actually “nowcasts” (Lampos et al., 2015). This is a common issue with influenza 

surveillance data (Biggerstaff et al., 2018; Kandula et al., 2019). Future work should consider 

alternative data streams and nowcasting methods, i.e. methods for estimating the current number 

of cases, which are unobserved due to the one-week lag in reporting, which may improve 

forecast accuracy (Kandula et al., 2017). 

 Secondly, because we have results for only two influenza seasons, the practical utility of 

these forecasts should be judged as preliminary. However, we note that forecasts of peak 



 

186 

 

intensity for both seasons outperformed the method of analogues, a robust method based on 

historical expectance, in the three weeks leading up to the predicted peak. Thus, although peak 

intensity forecast accuracy was generally below 50% before the peak, our forecasts still provide 

more information about the magnitude of an upcoming peak than can be gleaned using historical 

data alone, and can therefore contribute to better-informed decisions during the weeks leading up 

to the peak. Additionally, forecasts for the 2018-19 season were very accurate after the predicted 

peak had passed. If this holds for future seasons, real-time forecasts would allow for higher 

certainty when declaring that an outbreak is in decline. Overall, it appears that real-time forecasts 

could begin to be operationalized for countries where forecasts outperform historical expectance, 

but that modelers and practitioners should proceed with caution until more evidence from future 

seasons is amassed. Finally, we note that country-level forecasts may be of limited use in 

particularly large countries. Regional or city-level data could allow for the development of more 

local forecasts, which may yield more practical results. 

 Finally, we note that accurate and well-calibrated models face several barriers to use. 

Many public health practitioners lack knowledge of or trust in mathematical models (Driedger et 

al., 2014; Muscatello et al., 2017), and convincing them to use models in developing outbreak 

responses will likely require improved communication between modelers and practitioners, as 

well as longstanding partnerships (Driedger et al., 2014; Metcalf et al., 2015; Moghadas et al., 

2009, 2015; Moss et al., 2018). That said, the use of models to inform public health decisions 

regarding seasonal influenza is not unprecedented. The United Kingdom’s Joint Committee on 

Vaccination and Immunisation (JCVI, n.d.), for example, takes results from mathematical 

modeling efforts into account when deciding on seasonal influenza vaccination strategies (Joint 

Committee on Vaccination and Immunisation, 2020). Models also helped to inform the 
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implementation of various control measures during the 2009 H1N1 pandemic (Lee et al., 2013), 

and models were used as early as the 1970s to anticipate influenza activity in the Soviet Union 

(Ivanov & Leonenko, 2017; Longini, 1988). Promisingly, both the WHO and the CDC show 

interest in the further development and use of forecasts to be used in the public health response 

to influenza (Biggerstaff et al., 2018, 2019).  

 

Conclusions 

 We have shown that skillful real-time forecasts of influenza activity can be produced for 

several countries, and that current levels of late and inaccurate reporting do not appear to 

substantially reduce forecast quality.  The lack of timely reporting is of particular importance, as 

no new forecast can be produced for a given week if new data are not reported, representing a 

substantial missed opportunity. On the modeling side, the usefulness of nowcasting methods in 

improving forecast accuracy should be considered. Future work should also explore the potential 

for forecasting on smaller spatial scales, as well as optimal ways of communicating forecast 

certainty to non-modelers. Finally, while the recent interest of organizations such as the WHO 

and CDC in forecasting is encouraging, efforts to build long-lasting relationships between 

modelers and public health practitioners remain important. These relationships not only help to 

build trust in models among non-modelers, but also provide modelers with valuable insight into 

the data we use.  
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Supplementary Tables 

S1 Table. Countries used for real-time forecasting by region, data type, and season-specific 

scaling. Values that change for the 2018-19 season are bolded and italicized. 

 

Country Region Data Type Scaling (17-18) Scaling (18-19) 

Austria Southwest Europe ILI 14.0 14.0 

Belgium Southwest Europe ILI 8.5 8.5 

Croatia Southwest Europe ILI 1.4 1.4 

France Southwest Europe ILI 0.03 0.03 

Germany Southwest Europe ARI 0.25 0.25 

Greece Southwest Europe ILI 4.0 4.0 

Italy Southwest Europe ILI 1.0 0.75 

Luxembourg Southwest Europe ARI 32.0 32.0 

Netherlands Southwest Europe ILI 31.0 26.0 

Portugal Southwest Europe ILI 245.0 245.0 

Serbia Southwest Europe ILI 0.5 0.5 

Slovenia Southwest Europe ARI 5.8 5.8 

Spain Southwest Europe ILI 2.0 2.0 

Belarus Eastern Europe ARI 0.2 0.2 

Bulgaria Eastern Europe ARI 1.25 1.25 

Czechia Eastern Europe ILI 0.8 0.80 

Georgia Eastern Europe ILI 15.0 15.0 

Hungary Eastern Europe ILI 1.0 1.0 

Israel Eastern Europe ILI 3.5 3.5 

Kazakhstan Eastern Europe ARI 0.35 0.35 

Kyrgyzstan Eastern Europe ARI 0.63 0.63 

Poland Eastern Europe ILI 1.3 1.0 

Republic of Moldova Eastern Europe ARI 2.25 2.25 

Romania Eastern Europe ILI 39.0 39.0 

Russian Federation Eastern Europe ARI 0.02 0.02 

Slovakia Eastern Europe ILI 0.57 0.57 

Turkey Eastern Europe ILI 3.5 3.5 

Ukraine Eastern Europe ARI 0.03 0.03 

Uzbekistan Eastern Europe ARI 68.0 54.0 

Denmark Northern Europe ILI 18.0 18.0 

Estonia Northern Europe ARI 1.5 1.5 

Finland Northern Europe ILI 14.0 7.0 

Iceland Northern Europe ILI 57.0 57.0 

Ireland Northern Europe ILI 45.0 45.0 

Latvia Northern Europe ARI 4.4 4.4 

Lithuania Northern Europe ILI 1.3 1.2 

Norway Northern Europe ILI 1.65 1.1 
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S2 Table. Real-time forecast 

accuracy overall, and before the 

predicted peak, by season, data 

type, and region. 
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Supplementary Figures 

 

  

S1 Figure. Real-time forecast accuracy by observed lead week. Forecast accuracy for (A) peak timing 

and (B) peak intensity are shown for the 2017-18 (red) and 2018-19 (blue) seasons. The number of 

forecasts generated at each lead week is represented by point size. 

S2 Figure. Real-time forecast accuracy by data type. (A) Peak timing and (B) peak intensity forecast 

accuracy are compared for countries reporting ILI (red) and ARI (blue) data. Point size indicates the 

number of forecasts generated at each lead week. 
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S3 Figure. Real-time forecast accuracy by region. The accuracy of (A) peak timing and (B) peak 

intensity forecasts is shown by region. Point size indicates the number of forecasts produced. 
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S4 Figure. Comparing forecast accuracy using the method of analogues. Peak timing (A and C) and 

peak intensity (B and D) forecast accuracy is shown separately for the 2017-18 season (A and B) and the 

2018-19 season (C and D). Forecasts using the methods described in the main text are shown in red, 

while results obtained using the method of analogues are shown in blue. The size of the points shows 

how many forecasts were generated at each predicted lead week. 
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Abstract 

Although forecasts and other mathematical models have the potential to play an important role in 

mitigating the impact of infectious disease outbreaks, the extent to which these tools are used in 

public health decision making in the United States is unclear. Throughout 2015, we invited 

public health practitioners belonging to three national public health organizations to complete a 

cross-sectional survey containing questions on model awareness, model use, and communication 

with modelers. Of 39 respondents, 46.15% used models in their work, and 20.51% reported 

direct communication with those who create models. Over half (64.10%) were aware that 

influenza forecasts exist. The need for improved communication between practitioners and 

modelers was overwhelmingly endorsed, with over 50% of participants indicating the need for 

models more relevant to public health questions, increased frequency of telecommunication, and 

more plain language in discussing models. Model use for public health decision making must be 

improved if models are to reach their full potential as public health tools. Increased quality and 

frequency of communication between practitioners and modelers could be particularly useful in 

achieving this goal. It is important that improvements be made now, rather than waiting for the 

next public health crisis to occur. 
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Background 

Numerical forecasting—the computational real-time generation of calibrated predictions 

on time scales allowing application and validation—has a long history of use in the fields of 

weather and climate (Gneiting & Raftery, 2005; Zebiak et al., 2015; Zebiak & Cane, 1987). In 

recent decades, numerical forecasts have been developed for and applied to a number of new 

industries and disciplines, including agriculture (FAO, 2016; Newlands et al., 2014), air quality 

(Debry & Mallet, 2014; Gaubert et al., 2014), consumer activity (Chen & Lu, 2017; Choi et al., 

2014; Mccarthy et al., 2006), fiscal policy (Sun, 2014), and political elections (Berg et al., 2008). 

These forecasts allow stakeholders to prepare for predicted future events and to respond 

accordingly. For example, forecasts of crop yields help governments decide whether food must 

be imported to meet population needs, and inform decisions concerning the receipt of emergency 

food aid (Newlands et al., 2014). Meanwhile, many companies use sales forecasting when 

deciding how much of a product to stock in order to maximize profits (Chen & Lu, 2017). In 

public health, forecasting methods have been developed using mathematical models and 

Bayesian inference methods and used to predict the growth and spread of infectious diseases 

such as influenza (Hickmann et al., 2015; Ong et al., 2010; Shaman et al., 2013; Shaman & 

Karspeck, 2012; Viboud et al., 2003; Yang et al., 2015), dengue (Adde et al., 2016; Reich et al., 

2016; Shi et al., 2015), Ebola (Camacho et al., 2015; Meltzer et al., 2014; Shaman et al., 2014), 

and, most recently, Zika (Chowell et al., 2016; Huff et al., 2016). 

In the United States, influenza is estimated to kill tens of thousands of people and cost 

over $87 billion each year (Molinari et al., 2007). Several research groups, including ours, have 

developed forecasts of influenza incidence in the United States (CDC, n.d.). These forecasts 

estimate future incidence levels for a developing influenza outbreak with particular focus on 
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metrics such as when the outbreak will be most severe or how many cases will occur during the 

most severe week of the outbreak. In our own efforts, forecasts have been generated for 

municipalities and states throughout the US, as well as for several European countries, and 

operationalized for real-time delivery over an online portal (Columbia University Mailman 

School of Public Health, n.d.). These quantitative forecasts are updated weekly during the flu 

season and have the potential to reduce morbidity, mortality, and healthcare spending by 

influencing decision making and resource allocation among healthcare providers, public health 

practitioners, and the general public alike. For example, hospitals may use the forecast peak 

timing of an influenza outbreak to prepare for an influx of patients, and the public may be more 

motivated to practice proper hand hygiene when high influenza incidence is predicted. However, 

these benefits will only be fully realized if public health practitioners are aware of this work and 

use these findings in decision making. 

Research on the extent to which public health practitioners utilize mathematical models is 

limited. Indeed, to our knowledge, no existing studies assess the use of mathematical models in 

public health decision making in the US. Driedger et al. (2014) interviewed four public health 

practitioners and four mathematical modelers in order to assess the integration of modeling in 

decision making during the 2009 influenza pandemic in Canada. They concluded that improved 

communication between practitioners and modelers was needed. Specifically, they found that 

practitioners desired greater clarity in model interpretation, and modelers wanted a better 

understanding of the questions practitioners needed modeled. Both groups expressed the need for 

longstanding partnerships in order to increase efficiency, understanding, and trust between the 

two groups. An earlier Canadian study also found need for more and better communication 

between practitioners and modelers (Moghadas et al., 2009). Most recently, Moss et al. (2018) 
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shared weekly forecasts of influenza activity in Melbourne, Australia with the local health 

department, and updated their forecasts based on insights from the practitioners there. They 

report that these collaborations were instrumental in improving forecast accuracy. 

Here, we addressed these issues using a different approach. We employed a short survey 

to assess the extent to which US public health professionals are aware of and use mathematical 

models, including influenza forecasts, in making decisions on the job. Through this preliminary 

effort, we seek to build the evidence base describing the integration of numerical 

epidemiological modeling, including seasonal influenza forecast, and public health decision 

making. 

 

Methods 

Participants 

We recruited survey participants via email through contacts at three U.S. public health 

organizations: the Association of State and Territorial Health Officials (ASTHO), the Council of 

State and Territorial Epidemiologists (CSTE), and the National Association of County and City 

Health Officials (NACCHO). Although we do not know how many practitioners ultimately 

received a link to our survey, these organizations represent a large number of employees in the 

fields of public health, epidemiology, and influenza control across the US, ensuring that our 

survey was sent to a representative sample of US public health practitioners. 

 

Materials 

We designed a survey containing 25 multiple-choice and Likert scale questions (see 

Supplementary Information). The survey included questions on basic demographics, awareness 
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of influenza forecasts, whether the respondents used epidemiological models in their work, and 

whether they applied model results to public health decision making. Participants were also 

asked if they communicated with modelers, and how such communication could be improved. 

Finally, we inquired about personal use of influenza vaccination for the current and previous 

seasons. This work was approved by and performed under Columbia University Medical Center 

IRB (approval number CUMC IRB-AAAO9952). The IRB-approved survey was distributed 

online through SurveyMonkey, and informed consent was acquired through a checkbox on the 

survey’s first page. All results were de-identified. 

 

Procedure 

Participants were recruited through broadcast emails to the members of each of the three 

organizations. We collected responses over roughly a six-month period. Most of the responses 

from one organization were collected during March and April 2015, and other responses were 

completed during September 2015. The difference in timing was due to differing availability to 

contact their members. In addition, in August 2015 we changed the word ‘survey’ to 

‘assessment’ in order to comply with a request from one organization and gather more responses. 

Thus, a majority of participants saw ‘assessment’, although we believe this wording change had 

little effect, if any, on the results. 

 

Results 

Data 

A total of 51 individuals responded to the survey, 42 (82.4%) of whom indicated 

employment in a public health field. Because we are primarily interested in awareness and use of 
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models among public health practitioners, we restricted our analysis to these individuals. 

Furthermore, we removed three other participants whose responses were inconsistent; 

specifically, two individuals reported a frequency of model use while simultaneously reporting 

that they did not use models in their work, and one participant reported acquiring influenza data 

from both Columbia University and none of the sources listed on the survey. This left us with 

data on 39 participants. All 39 participants reported that their work-related responsibilities 

included planning for and dealing with influenza outbreaks. The majority of respondents (38, 

97.4%) worked for the government, and one worked for an NGO. 

 

Demographics 

Demographic information is 

summarized in Table 1. Briefly, the majority 

of respondents (22, 56.4%) were between 

the ages of 30 and 49. Years in public health 

was fairly evenly distributed, with the 

largest group being those who had been in 

the field for 4-6 years (13, 33.3%). Two-

thirds of respondents (26, 66.7%) reported 

being female, and most (33, 84.6%) had at 

least a graduate degree. Respondents were 

spread geographically across 35 states and 

territories. Regional totals are based on 

Table 1. Demographic Characteristics of 39 

Public Health Practitioners Surveyed Concerning 

Awareness and Use of Mathematical Models. 

Gender  

Female 26 (66.7%) 

Male 12 (30.8%) 

Age  

18-29 9 (23.1%) 

30-49 22 (56.4%) 

50-64 5 (12.8%) 

65+ 1 (2.6%) 

Degree obtained  

Bachelor’s degree 6 (15.4%) 

Graduate degree 33 (84.6%) 

Years in public health  

0-3 years 5 (12.8%) 

4-6 years 13 (33.3%) 

7-10 years 6 (15.4%) 

11-15 years 8 (20.5%) 

16+ years 6 (15.4%) 

Region  

West 10 (25.6%) 

South 10 (25.6%) 

Northeast 7 (17.9%) 

Midwest 10 (25.6%) 

Territories 1 (2.6%) 
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divisions defined by the United States Census Bureau (HHS, n.d.). Due to the small sample size 

obtained here, it was not plausible to use more narrow regional divisions. 

Use of Models 

 Almost half of respondents (18, 46.2%) reported using models in their work, and that use 

differed significantly by region (two-tailed Fisher’s exact test, P=0.0311; regions are defined as 

described under “Demographics” above). Specifically, use was highest in the West and lowest in 

the South and Midwest. Use of models was not significantly related to other demographic 

variables. Most of these individuals considered the models to be valuable (Figure 1) and used 

them relatively frequently (Figure 2). Satisfaction with this frequency varied (Figure 2), but was 

significantly higher with higher frequency of use (two-tailed Fisher’s exact test, P=0.003).  

Figure 1. Reported value of models among eighteen public health practitioners who reported using 

models on the job. 
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Communication with Modelers 

A total of eight (20.5%) respondents indicated communication directly with those who 

develop and create models; seven of these individuals also used models in their own work. 

Although this interaction occurred fairly rarely (Figure 3), most participants were satisfied with 

this low level of communication. Again, there was a tendency for satisfaction to be higher with 

more frequent communication (two-tailed Fisher’s exact test, P=0.043), but the sample size 

(n=8) was very small. 

When asked how communication with modelers could be improved, 26 (66.7%) 

respondents indicated that models should be more relevant to public health questions, 23 (59%) 

wanted increased frequency of telecommunication, 20 (51.3%) desired more plain language from 

Figure 2. Reported frequency of model use and satisfaction with this frequency among eighteen 

public health practitioners who reported using models on the job. 
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modelers, and 13 (33.3%) wanted more face-to-face conversation. Three individuals entered their 

own responses, which were: “Models designed taking into account US jurisdictions outside the 

contine[n tal US,” “Provide more information on the value of models to support questions from 

other health professionals and the media,” and “Greater availability of models. I did not know 

these existed.” 

Awareness of Influenza Forecasts 

Twenty-five (64.1%) respondents were aware that forecasts for influenza are available, 

and 18 (72%) of these individuals had seen one in the past 12 months. These rates were no 

higher among those who used models in their work than among those who did not (chi-squared 

test, P=1 and P=0.4423, respectively). Furthermore, participant ratings of model usefulness did 

Figure 3. Frequency with which public health practitioners communicated with people who 

develop mathematical models of influenza and satisfaction with this frequency among eight 

participants who reported ever communicating. 
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not differ significantly based on whether or not the participant was aware of or had seen forecasts 

(Fishers exact test, P=0.509 and P=0.597, respectively.) 

Only seven participants (18% of the total; 38.9% of those who had seen a forecast) 

reported that they or their colleagues had accessed Columbia University’s forecasts specifically. 

Among these seven, three agreed that the forecasts were trustworthy and the other four rated 

their trustworthiness as neutral. Most (five) said that the forecasts were released neither 

frequently nor infrequently, and “somewhat frequently” and “very rarely” were also endorsed by 

one individual each. Finally, only two respondents actually used these forecasts in decision 

making, with one reporting that the forecasts changed communication strategies with the public 

and stakeholders and influenced preparedness in a healthcare facility, and the other reporting that 

the forecasts “supported our regional risk activity assessment.” 

 

Data Sources 

Of the 39 respondents, 34 (87.2%) reported obtaining influenza incidence or forecast data 

from the Centers for Disease Control and Prevention (CDC), 14 (35.9%) from Google Flu 

Trends, five (12.8%) from Columbia University, four (10.3%) from HealthMap FluCast, and 

seven (18%) from other sources, most commonly state and local ILI (influenza-like illness) 

reports. Only one respondent reported using no sources at all.  However, we note that most 

(13/14) respondents who said they used Google Flu Trends did so after Google Flu Trends was 

taken offline in July 2015. Thus, although these individuals used Google Flu Trends in the past, 

we do not know if they continued to access influenza data from other sources. 

 



 

208 

 

Discussion 

 Despite the potential benefits of using mathematical models, including forecasts, to 

address public health questions, knowledge of whether and how US-based public health 

practitioners incorporate model-generated information into decision making is limited. Here, we 

examine this situation using a cross-sectional survey of 39 public health practitioners in the 

United States. 

 Almost half of respondents reported using models in some capacity, and most rated the 

value of models highly. Future work should determine why some participants view models as 

more valuable or use models more frequently than others, and efforts should be taken to increase 

access to, utility of, and user-friendliness of models and model-generated information. Influenza 

forecasts in particular could be of use to public health practitioners, in that accurate predictions 

of influenza outbreak metrics, such as peak timing and intensity, could inform vaccination 

strategies, resource allocation, and communication with the public. Notably, all of our 

respondents reported that they frequently work with influenza outbreaks. For this reason, it was 

promising to observe that almost half of surveyed practitioners had seen or had a colleague who 

had seen an influenza forecast in the past 12 months. However, those who had seen a forecast 

were not more likely to use models in their work than those who had not, suggesting that these 

forecasts are not often put to practical use. In fact, although we only asked about forecast use 

among those who accessed Columbia’s forecasts specifically, only two of seven respondents 

reported actually using the forecasts in public health decision making. 

Suboptimal use of available forecasts is an issue in many fields, and is particularly well-

studied in agriculture. A study of the use of monsoon forecasts in India found that many farmers 

complained that forecasts were not available when they were needed, emphasizing the 
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importance of generating forecasts with appropriate lead time (Martin, 2013). Additionally, a 

separate review of forecast use in agriculture implicates insufficient forecast quality, both real 

and perceived, for preventing forecast use in decision making (Kusunose & Mahmood, 2016). 

Due to the potential severity of influenza, it is logical that the prospect of acting on an inaccurate 

forecast is concerning to practitioners. Kusunose and Mahmood (2016) suggest that expectations 

of forecasts might be made more realistic by incorporating the degree of uncertainty associated 

with predictions, something our group has developed for influenza (Shaman et al., 2013; Shaman 

& Kandula, 2015). Future studies should further explore the reasons public health practitioners 

are hesitant to rely on influenza forecasts, as well as the formats and modes of delivery most 

useful to practitioner work, so that such concerns can be better addressed. 

 Perhaps our most salient result concerns the overwhelming endorsement of several ways 

for improving public health practitioner communication with modelers. This finding is in line 

with previous reviews and qualitative studies (Driedger et al., 2014; Lee et al., 2013; Moghadas 

et al., 2009, 2015; Moss et al., 2018). To improve communication between modelers and 

practitioners, both knowledge- and trust-related issues that prevent practitioners from using 

models effectively should be addressed. For instance, the development of specific guidelines on 

using mathematical models to answer public health questions may help to clear up 

misconceptions concerning the capacity of models. Additionally, past qualitative work has found 

consistency of language and clear communication of model assumptions to be of particular 

importance (Driedger et al., 2014; Lee et al., 2013; Moghadas et al., 2015). Increased trust in 

modeling methods and results might also be cultivated by forming longstanding collaborations 

between practitioners and modelers (Moghadas et al., 2009; Moss et al., 2018). Future work 

could survey practitioners participating in collaborations with modelers to determine which 
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communication practices have been most and least effective. While nuanced and detailed 

communication efforts will be necessary, basic informational campaigns can also play a role: 

One participant did not know that models existed before taking our survey.  

Finally, in addition to the questions posed concerning communication frequency and 

quality, future surveys should assess how participants communicate with modelers, what topics 

are discussed, and their endorsement of a variety of ways to improve communication. They 

should also allow for qualitative responses from participants; these responses could suggest 

effective methods for increasing communication quality and frequency that may be less obvious 

to modelers. 

 

Limitations 

 Despite the novelty of this work, several limitations should be addressed. First, although 

we attempted to contact a large number of public health practitioners, our response rate was 

small, making it difficult to draw concrete conclusions, or to statistically assess whether model 

use differed by variables such as years working in public health. Furthermore, our sample is a 

convenience sample, and may not be representative of the wider group of public health 

practitioners. Unfortunately, we know neither the demographic distributions among 

nonrespondents nor the number of practitioners our survey reached, and can therefore report 

neither adjusted results nor an overall response rate. However, given that our sample is likely 

biased toward practitioners with greater knowledge of and interest in mathematical models, we 

expect that these measures would be even lower among a truly random sample. Thus, our 

conclusion that model use is below 50%, at least, is likely to hold among US-based public health 

practitioners in general. 
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 We also note that the definition of the word “model” in our survey was ambiguous. 

Although we hope that the questions on influenza forecasts prompted participants to think in 

terms of mechanistic models, it is possible that some respondents took the survey with other 

types of models, such as regression models, in mind. Similarly, exactly what constitutes model 

“use” could be anything from simply viewing model output to being actively involved in the 

development and execution of a model; unfortunately, we cannot tell where each participant falls 

on this spectrum. 

Given that three data points were removed due to inconsistent responses, and that several 

participants reported using an unavailable data source (GFT), an increased focus on response 

credibility is indicated. A clear definition of “model” and “model use” will be instrumental in 

increasing the credibility of future survey results. Reliability can be further enhanced by asking 

respondents to elaborate their responses, such as through providing a specific categorization or 

description of the context and form of model used. 

 

Conclusions 

 Among 39 surveyed public health professionals, both model use and familiarity with 

influenza forecasts were reported by almost half of participants, but communication with model 

developers was rare. Improved communication between modelers and practitioners in particular 

seems to be key for increasing the frequency and effectiveness of model use among public health 

practitioners. Although more research on why forecasts and other models are not commonly used 

is necessary, initial improvements should be made now, in the absence of urgent pandemic 

threats. Participants in a previous qualitative study of eight modelers and public health 

practitioners noted that effective use of models during the 2009 influenza pandemic suffered 
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because partnerships between modelers and practitioners were not formed until the pandemic 

was underway (Driedger et al., 2014). Importantly, communication is a two-way street: Modelers 

must be more clear about the capabilities and limitations of mathematical models, as well as 

model interpretation; meanwhile, practitioners must better communicate the information needed 

from models to better protect the public from outbreaks. Without such communication and use, it 

is clear that models will not reach their full potential as public health tools. 
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Supplementary Information 

 

Columbia University Pilot Project Survey 

Page 1 

Thank you for participating in our survey.  We are interested in learning more about the use of 

influenza forecasts in public health decision making.  This survey should only take a few minutes 

to complete, and your answers will help us better understand the use of forecasts.  Your 

responses are confidential.  In addition, this survey is voluntary.  If you have questions about the 

survey, please email cfd2113@columbia.edu.  Thank you for helping with this study. 

 

Page 2 

Influenza forecasts are predictions of future influenza incidence and are generated during the 

influenza season. They provide predictions of the epidemiological progression of a local 

outbreak, including local number of weekly cases, outbreak duration, and the week when 

influenza incidence peaks. 

1. Are you aware that influenza forecasts are currently available? 

 

• Yes 

• No  

Page 3 

2. Have you or any colleagues seen a flu forecast in the last 12 months? 

 

• Yes 

• No 

 Page 4 
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3. What sources do you use to get influenza incidence or forecast information?  Please select all 

that apply. 

 

• CDC 

• Google Flu Trends 

• Columbia University 

• HealthMap FluCast 

• I don’t use any of these sources listed 

• Other (please specify) 

Page 5 

4. Have you or your colleagues accessed the influenza forecasts from Columbia University at 

http://cpid.iri.columbia.edu/flu.html? 

 

• Yes (sends to Page 6) 

• No (sends to Page 9) 

Page 6 

5. How have you used the influenza forecasts in decision making at work?  Please select all that 

apply. 

 

• Reallocated money. 

• Changed communication to public or key stakeholders. 

• Affected preparedness in healthcare facilities. 

• Spurred new research. 

• I have not used them in decision making. 

• Other (please specify) 

Page 7 

6. The influenza forecasts from Columbia University are trustworthy. 

 

• Strongly disagree 

• Disagree 

• Neither disagree nor agree 

• Agree 

• Strongly agree 

Page 8 

http://cpid.iri.columbia.edu/flu.html
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7. The influenza forecasts from Columbia University are released 

 

• Very rarely 

• Somewhat rarely 

• Neither rarely nor frequently 

• Somewhat frequently 

• Very frequently 

Page 9 

8. Do you use epidemiological models in your work, such as, but not limited to, infectious 

disease forecasts or quantitative estimates of diseases or conditions? 

 

• Yes (sends to Page 10) 

• No (sends to Page 12) 

Page 10 

9. How valuable is influenza and epidemiological modeling in your work? 

 

• Not at all 

• A little bit 

• Some 

• Quite a bit 

• A tremendous amount 

Page 11 

10. How often do you use these models? 

 

• Very rarely 

• Somewhat rarely 

• Neither rarely nor frequently 

• Somewhat frequently 

• Very frequently 

 

11. How satisfied are you with this amount of use? 

 

• Very dissatisfied 
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• Somewhat dissatisfied 

• Neither dissatisfied nor satisfied 

• Somewhat satisfied 

• Very satisfied 

Page 12 

12. Do you directly communicate with those who develop and create the models? 

 

• Yes (send to Page 13) 

• No (send to Page 14) 

Page 13 

13. How often do you directly communicate with mathematical modelers for influenza? 

 

• Very rarely 

• Somewhat rarely 

• Neither rarely nor frequently 

• Somewhat frequently 

• Very frequently 

 

14. How satisfied are you with this amount of communication? 

 

• Very dissatisfied 

• Somewhat dissatisfied 

• Neither dissatisfied nor satisfied 

• Somewhat satisfied 

• Very satisfied 

Page 14 

15. Communication between public health professionals and modelers could improve in which 

ways?  Please select all that apply. 

 

• Increased frequency of telecommunication. 

• Increased frequency of face-to-face meetings. 

• More plain language from modelers. 

• Improved relevancy of models to public health questions. 

• Other (please specify) 

Page 15 
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16. Do you work in a public health field? 

 

• Yes (send to Page 16) 

• No (send to Page 17) 

Page 16 

17. In which sector do you work? 

 

• Government 

• Industry 

• NGO 

• Academia 

Page 17 

18. Do your job duties involve planning for, responding to, or dealing with seasonal influenza 

and its epidemiology? 

 

• Yes 

• No 

Page 18 

19. What is your age?  

 

• 18-29 years old 

• 30-49 years old 

• 50-64 years old 

• 65 years and over 

 

20. What is your gender? 

 

• Female 

• Male 

 

21. How many years have you worked in public health and/or epidemiology? 

 

• 0-3 years 

• 4-6 years 

• 7-10 years 

• 10-15 years 

• >15 years 
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22. What is the highest level of school you have completed or the highest degree you have 

received? 

 

• Less than high school degree 

• High school degree or equivalent (e.g., GED) 

• Some college but no degree 

• Associate degree 

• Bachelor degree 

• Graduate degree 

 

23. In what state or U.S. territory do you live? 

 

 

• Alabama 

• Alaska 

• American Samoa 

• Arizona 

• Arkansas 

• California 

• Colorado 

• Connecticut 

• Delaware 

• District of Columbia (DC) 

• Florida 

• Georgia 

• Guam 

• Hawaii 

• Idaho 

• Illinois 

• Indiana 

• Iowa 

• Kansas 

• Kentucky 

• Louisiana 

• Maine 

• Maryland 

• Massachusetts 

• Michigan 

• Minnesota 

• Mississippi 

• Missouri 
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• Montana 

• Nebraska 

• Nevada 

• New Hampshire 

• New Jersey 

• New Mexico 

• New York 

• North Carolina 

• North Dakota 

• North Marianas Islands 

• Ohio 

• Oklahoma 

• Oregon 

• Pennsylvania 

• Puerto Rico 

• Rhode Island 

• South Carolina 

• South Dakota 

• Tennessee 

• Texas 

• Utah 

• Vermont 

• Virginia 

• Virgin Islands 

• Washington 

• West Virginia 

• Wisconsin 

• Wyoming 

 

Page 19 

24. Have you received the flu vaccine this season? 

 

• Yes 

• No 

 

25. Have you had influenza in the past five years? 

 

• Yes 

• No 

End 
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Chapter 6: Conclusion 

 

 

 

 

 

 

 

 

Chapter 6 

Conclusion 
 

In this dissertation, we sought to advance the use of forecasting as a tool to reduce 

morbidity and mortality due to seasonal influenza outbreaks. Specifically, we greatly expanded 

the geographic range over which skillful influenza forecasts have been generated, and explored 

the potential for both model improvement and forecast operationalization. In this chapter, we 

discuss in greater detail the barriers to (1) increasing forecast accuracy and calibration, and (2) 

practical forecast use. We furthermore make suggestions for future research and collaborations 

that may help alleviate these barriers. Finally, we briefly discuss implications of this work 

beyond forecasting, as well as for diseases other than influenza. We organize this discussion into 

distinct sections accordingly. 
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6.1: Forecast accuracy and calibration must be improved 

Summary of findings (Chapters 2-4) 

 Chapters 2-4 describe our efforts to develop country-level influenza forecasts using 

publicly-available data from the World Health Organization (WHO). In Chapter 2, we 

demonstrated that, although the epidemiologic data from FluID often lacked consistent or 

meaningful denominator data, accurate and well-calibrated forecasts could still be generated for 

countries located in temperate regions. Furthermore, we contributed to the evidence base 

showing that using humidity-forced models significantly improves forecast accuracy in 

temperate regions (Shaman et al., 2017). Forecasts generated for countries in the tropics and 

subtropics, however, were significantly less accurate, even when data were smoothed or 

forecasts were generated for individual outbreaks, indicating the need for improvements in data 

quality, and for greater understanding of the implications of climatic factors in these regions. 

 In Chapter 3, we showed that, despite the success of a similar model in the United States 

(US), introducing connections between countries based on observed commuting and air travel 

flows was not able to improve forecast accuracy, and in some cases significantly reduced it. We 

primarily attributed this result to data issues, particularly the lack of denominator data and 

therefore lack of comparable epidemiologic data between countries. However, we also noted that 

commuting between countries might not be as important a driver of influenza transmission in 

Europe as in the US, and furthermore that substantial differences in (sub)type dynamics by 

country suggest that other factors not captured in our model may play significant roles. 

 Finally, in Chapter 4, we extended our work from Chapter 2 to generate real-time 

forecasts of influenza in several temperate countries. During the 2018-19 season the real-time 

forecasts performed similarly to retrospective forecasts, and on average outperformed methods 
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based on historical expectance; forecasts for the 2017-18 season were comparable or better than 

historical expectance. These findings indicate that real-time forecasts could be used to provide 

national public health organizations valuable information concerning estimated outbreak timing 

and intensity. In the future, more timely data submissions from reporting countries should be 

encouraged in order to facilitate production of more real-time forecasts, and continued work is 

needed to advance forecasting in subsequent seasons.   

 

Improving surveillance data 

 Model performance is strongly constrained by the quality of available data (George et al., 

2019; Keeling, 2005). Throughout Chapters 2-4, we found that data smoothness, and the use of 

more specific influenza-like illness (ILI) (vs. acute respiratory infection, or ARI) data, was 

associated with higher forecast accuracy. In Chapter 3, we found that a lack of comparable data 

between countries limited our ability to build potentially informative metapopulation models (Pei 

et al., 2018; Yang et al., 2016). In the same chapter, we discussed at length the particular need 

for denominator data from epidemiologic sentinel systems, so we will not cover this requirement 

in detail here. We only want to emphasize the importance of collecting visits made to sentinel 

sites in particular as denominator data. Indeed, the WHO describes such data as “essential” for 

assessing the burden of influenza (WHO, 2015). While catchment area sizes are more 

informative than no denominator, they do not account for differences in health seeking behavior, 

which may be quite substantial between countries. Data on the total number of patients who visit 

a sentinel site, on the other hand, partially control for these differences. 
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Barriers to influenza surveillance in the tropics/subtropics 

High-quality data are particularly lacking in the tropics and subtropics. In particular, data 

were either completely unavailable or very low-quality for most countries in Africa. In the 

Supplemental Materials for Chapter 2, we found that data smoothness was associated with 

improved forecasts of peak intensity in the tropics, and furthermore that data smoothness was 

significantly lower in the tropics than in temperate regions. While the regular and systematic 

collection of ILI and virologic data would undoubtedly improve forecasting capacity in these 

regions, such a recommendation cannot be made without recognizing the substantial barriers to 

timely influenza surveillance faced in many countries located in these regions. 

In many countries, resources available for public health are scarce, and competing 

healthcare needs mean that influenza is rarely a priority (Cummings et al., 2016; Katz et al., 

2012; Yang et al., 2018). In sub-Saharan Africa in particular, malaria is a prominent competing 

health priority, and often presents with symptoms similar to those of influenza, making it 

particularly difficult to recognize influenza cases (Yazdanbakhsh & Kremsner, 2009). This is 

further compounded by the fact that influenza has only fairly recently been recognized as an 

important cause of morbidity and mortality in the tropics and subtropics (Viboud, Alonso, et al., 

2006; Yazdanbakhsh & Kremsner, 2009). Finally, limited laboratory capacity makes 

improvements to virologic surveillance difficult (Cummings et al., 2016; Katz et al., 2012; 

Polansky et al., 2016), while lack of access to healthcare in some regions means that less-severe 

cases in particular are likely to be missed (Yang et al., 2018). 

Given these barriers, and in particular the high prevalence of other infectious diseases such 

as HIV/AIDS and malaria in some regions (Yang et al., 2018), it seems reasonable that some 

countries do not currently prioritize high-quality surveillance systems for influenza (Lipsitch et 
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al., 2011). Nonetheless, researchers emphasize that those countries that can afford to improve 

their surveillance systems should do so to the best of their ability (Radin et al., 2012; 

Yazdanbakhsh & Kremsner, 2009). These improvements are not only useful for forecasting, but 

will also help to better characterize influenza seasonality (or lack thereof) in different regions 

(Bloom-Feshbach et al., 2013; Ng & Gordon, 2015), improve clinical care among those 

presenting with nonspecific ILI (Yazdanbakhsh & Kremsner, 2009), and support decision 

making concerning vaccine choice and timing (Caini et al., 2016; Hirve et al., 2016; Radin et al., 

2012). 

 

Potential for successful surveillance improvement 

Rigorous surveillance systems collecting high-quality epidemiologic and virologic data 

require substantial time, money, and personnel investments (WHO, 2011, 2014), and 

improvement to current systems will not occur in the absence of sufficient political will. 

However, we do not believe that the recommendations made above and in Chapter 3 are 

unrealistic. Indeed, substantial improvement over time in the number of countries consistently 

reporting data to FluNet and FluID is readily observed (Figure 1), although we note that, as the 

data were downloaded retrospectively, we cannot judge the timeliness of reporting. While much 

of this improvement was driven by the 2009 influenza pandemic, which led to calls for improved 

surveillance, particularly epidemiologic surveillance (Ortiz et al., 2009; WHO, 2010), positive 

trends can be observed already before the pandemic (for FluNet, Figure 1A) as well, indicating 

that improvement is possible even in the absence of an immediate pandemic threat. In particular, 

it is encouraging to see substantial increases in reporting over time from countries in the tropics 
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and subtropics, despite the barriers discussed above. These improvements were partially driven 

by partnerships between these countries and the US Centers for Disease Control and Prevention 

(CDC), the WHO, and other national and international organizations (Polansky et al., 2016; 

Radin et al., 2012); similar initiatives could be considered to improve surveillance in additional 

countries. We also note that partnerships between scientists generating forecasts and practitioners 

using them for decision making could further incentivize the collection of better-quality data, as 

described more fully below. Finally, we reiterate that we do not know the extent to which data 

quality in FluNet and FluID are due to issues with collection versus reporting. If some countries 

                                              

 
 

  
  
  
  
  
  
  
  
  
  
  

                                                                                            

    

 
  
 
 
 
  
  
 

                

                      

 
 

  
  
  
  
  
  
  
  
  
  
  

                                            

    

 
  

 
 
 
  
  
 

                

                      

 
 

  
  
  
  
  
  
  
  
  
  
  

                                            

    

 
  

 
 
 
  
  
 

                

Figure 1. Improvement in reporting of influenza surveillance data to the WHO over time. Bar 

height shows the number of countries and territories each year that consistently reported (A) positive and 

total tests for influenza to FluNet; (B) number or rates of ILI to FluID; or (C) number or rates of ILI, 

ARI, SARI, or pneumonia to FluID. Consistent reporting was defined as submitting data for at least 90% 

of weeks during the influenza season (weeks 40-19 in the northern hemisphere; weeks 14-45 in the 

southern hemisphere) in temperate regions, or for at least 90% of week throughout the year in the tropics. 

Countries and territories were labeled as temperate or tropical as described in Chapter 2. Data through 

2015 were downloaded in late 2016; data for 2016-2019 were downloaded in 2020. 
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already collect good-quality denominator data, encouraging them to report these to the WHO 

should be much less challenging than making changes to a country’s surveillance system itself. 

 

Improving models of influenza transmission 

 In addition to better data, forecast accuracy may be improved through the development 

and use of models that consider additional critical drivers of influenza transmission. In this 

section, we first cover areas where a better understanding of influenza dynamics and their drivers 

will be required prior to model improvement, then discuss model improvements that may be 

made with current knowledge. 

 

Understanding the role of environmental drivers in the tropics/subtropics 

 By incorporating absolute humidity-forcing into our models, we were able to 

significantly improve forecast accuracy in temperate countries in Chapter 2; Shaman et al. (2017) 

previously reached similar conclusions in the US. It is therefore reasonable to assume that a 

better understanding of the climatic drivers of influenza transmission in the tropics and 

subtropics could help to close the gap in accuracy observed in Chapter 2. However, a monotonic 

relationship between absolute humidity and R0 is insufficient to explain transmission patterns in 

the tropics and subtropics, where absolute humidity remains high year-round (Tamerius et al., 

2011). 

 A small number of studies have instead suggested that the influence of humidity on 

influenza survival and transmission is bimodal. Yang et al. (2012), for example, found that 

influenza viruses survived best at relative humidity values both below 50% and around 100%. 

Tamerius et al. (2013) found that outbreak peaks in many tropical regions were associated with 
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“humid-rainy” conditions, suggesting a role for high humidity and precipitation. Finally, Deyle 

et al. (2016) showed that the negative relationship between absolute humidity and influenza 

transmission only held below temperatures of about 24°C (75°F); at warmer temperatures, higher 

absolute humidity appeared to drive higher influenza activity levels. 

Notably, the studies (Harper, 1961; Lowen et al., 2007) used by Shaman and Kohn (2009) 

to demonstrate a monotonic, negative relationship between absolute humidity and the survival 

and transmission of influenza only explored the impact of humidity either at temperatures below 

this cutoff, or at 30°C and above, temperatures at which aerosol transmission of influenza has 

consistently been found to be prohibited (Deyle et al., 2016; Lowen et al., 2007, 2008). For this 

reason, additional laboratory studies exploring the impact of relative and absolute humidity on 

virus survival and transmission at temperatures between 20°C and 30°C in particular are needed.  

The collection of better-quality influenza and climate (Heaney et al., 2016) data throughout 

the tropics and subtropics would also facilitate further observational studies comparing observed 

influenza dynamics and various potential environmental drivers. Finally, modeling studies could 

assess whether various environmental forcing functions are capable of reproducing influenza 

patterns in the tropics and subtropics. For example, ongoing work attempts to recreate influenza 

patterns in Hong Kong using a temperature-mediated absolute humidity forcing function (W. 

Yang, personal communication). Although such studies cannot confirm the role of different 

environmental drivers, they can help determine which hypotheses are feasible. 

 

Identifying important drivers of spatial dynamics in Europe 

 The spatial patterns of influenza outbreaks in Europe are fairly well-characterized. 

Typically, outbreaks peak earlier in western than in eastern Europe (Paget et al., 2007). As we 
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described in Chapter 3, circulating subtypes can be similar throughout Europe, but may also 

differ substantially, even between neighboring countries. The fact that our metapopulation model 

was unable to improve upon forecasts generated at the individual country level could indicate 

that our model is misspecified; i.e., it does not properly account for those factors most important 

in driving these spatial patterns throughout Europe. Here we discuss several potential drivers of 

influenza transmission throughout Europe and highlight critical gaps in knowledge. While we 

focus specifically on Europe, we expect that many of the recommendations for further study may 

also apply more broadly. 

 

Human travel: As described in Chapter 1, the role of various types of human travel on influenza 

transmission is not well-understood. Unlike in the US, where circulating subtypes are typically 

similar across regions (CDC, n.d.-b), influenza outbreaks in Europe appear to be less well-mixed 

between countries, perhaps indicating that between-country travel does not have as strong an 

influence on transmission patterns as does interstate travel in the US. Thus, while future work 

should continue to interrogate the role of international travel, including train travel, especially 

between countries that tend to have similar circulating subtypes, the role of travel on other spatial 

scales must also be explored. 

Given the low rates of cross-border commuting, and the frequency with which dominating 

subtypes vary by country, we may expect within-country travel to play a dominant role in driving 

influenza dynamics at the individual country level. Indeed, studies of the spatial patterns of 

influenza in France have suggested that commuting (Charaudeau et al., 2014), as well as train 

and auto travel in general (Crepey & Barthelemy, 2007), are associated with influenza synchrony 

between locations. Similar descriptive studies should be conducted in a variety of countries to 
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determine how the potential influence of various types of travel differs by country. With the 

improvements in data collection suggested above, these studies could be performed for both 

within and between country travel, and the results compared to discover which spatial scale is 

more important in driving transmission, as well as which types of travel are most important at 

various spatial scales. Additionally, metapopulation models similar to that described in Chapter 3 

could be used to explore how different travel types might influence the spread of influenza 

throughout a country. Models incorporating commuting, train travel, and automobile travel could 

be fit to observed influenza outbreaks, and the resulting parameters could be used to run the 

model in free simulation, iteratively removing different types of travel and observing the impact 

on outbreak timing and intensity across regions. Of course, such studies would require good-

quality subnational data, and will therefore only be possible in countries with geographically and 

demographically representative surveillance systems, as in France (Flahault et al., 2006; Valleron 

et al., 1986). The prevalence of such surveillance systems among other European countries is 

unclear. 

 Spatial patterns could also be partly dependent on repeated introductions of influenza 

from outside Europe. Evidence suggests that seasonal outbreaks of H3N2 are primarily caused 

by strains originating each year in East and Southeast Asia, and not by viruses that persist 

between seasons (Bedford et al., 2010; Russell et al., 2008), although this is not necessarily true 

for H1N1 and influenza B (Bedford et al., 2015). It follows that international, and specifically 

intercontinental, air travel could help drive observed patterns of influenza spread, in that areas 

that are better connected to non-European countries may be seeded with new influenza strains 

earlier and more frequently than other locations, potentially leading to earlier outbreaks. Indeed, 

Brownstein et al. (2006) suggested that international air travel contributes to the timing of 
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influenza mortality in the US, and Geoghegan et al. (2018) found that outbreak patterns in 

Australia can be partially explained by multiple introductions from outside the country. Further 

phylogeographic studies, in which genetic, spatial, and temporal information are considered in an 

attempt to reconstruct a species’ evolutionary history (Lemey et al., 2009), can help improve our 

understanding of how viruses circulate throughout Europe. In particular, they can demonstrate 

whether new strains are introduced to Europe and circulate widely, implicating a greater role of 

travel within Europe, or whether repetitive introductions occur across Europe, implicating air 

travel on the global scale. In this way, such studies may help inform whether it makes sense to 

model influenza transmission across Europe as a metapopulation, or whether country-specific 

models, incorporating seeding from highly-connected countries, might better represent observed 

influenza dynamics. We note that care must be taken in conducting these studies to avoid 

contributing to the racism and xenophobia that can be exacerbated by fear of infectious disease 

introduction from other countries, as observed during the current pandemic of coronavirus 

disease 2019 (COVID-19) (Haynes, 2020; “Stop the Coronavirus Stigma Now,” 2020) and 

throughout the recent European migrant crisis (Khan et al., 2016). 

 

Climate: As noted above, observed influenza patterns in Europe progress from west to east 

during most influenza seasons. Due to the geography of Europe, this also implies earlier 

outbreaks at lower latitudes in many seasons, where humidity is perhaps counterintuitively 

higher (Figure 2A). Throughout this dissertation, we have treated all European countries as 

having temperate climates. However, parts of Portugal, Spain, and Italy in particular have more 

subtropical climates. Thus, while a monotonic humidity forcing function, in which lower 

humidity leads to higher transmission, is not incompatible with observed influenza dynamics in 
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Europe, a better understanding of the role of climatic factors in the subtropics, as discussed 

above, may yield a more complete picture. 

Figure 2. Mean 

absolute humidity 

throughout (A) 

January and (B) July 

over 20 years in 

Europe, by country. 

Data were obtained 

from NASA’s Global 

Land Data 

Assimilation System 

(GLDAS), and 

aggregated to the 

country level as 

described in Chapter 

2. The twelve 

countries included in 

the metapopulation 

model in Chapter 3 are 

outlined in bold. 

Humidity values are 

shown in kg/kg.  

 

 

 

 

 

 

 

 

 Here, the cases of Brazil and Australia, two countries comparable in size to Europe and 

spanning wide geographic ranges, may be illustrative. Alonso et al. (2007) observed that 

seasonal outbreaks of influenza in Brazil had earlier peaks in the northern, subtropical states than 

in the southern, temperate states. This pattern was observed despite higher population density 
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and rates of human travel in the south, suggesting that climatic and not demographic drivers were 

responsible. Future studies on the role of climate in the subtropics, as discussed above, may help 

reveal if similar mechanisms are responsible in Brazil and Europe. In Australia, substantial 

between-season circulation was found to occur in subtropical and tropical regions (Geoghegan et 

al., 2018), occasionally even seeding new seasonal outbreaks (Patterson Ross et al., 2015). 

Currently, influenza surveillance during the summer is absent or greatly reduced in most 

European countries. Increased surveillance would allow for the study of out-of-season circulation 

patterns, which would reveal whether positivity rates are higher in subtropical regions of Europe 

during the summer, as well as whether subtropical regions seed seasonal outbreaks, or are simply 

able to sustain transmission of seeded strains earlier than temperate regions. Based on patterns of 

summer humidity, regions on the Adriatic Sea may be of particular interest (Figure 2B), although 

subtropical climates in Spain and Portugal should also be explored. While persistence of H3N2 

influenza between seasons is rare (Bedford et al., 2010; Russell et al., 2008), continual 

circulation of H1N1 and B influenza between seasons (Bedford et al., 2015; Patterson Ross et al., 

2015) could allow influenza in these regions to seed outbreaks in temperate Europe. 

 

Population susceptibility: As we have observed, (sub)type circulation patterns often differ 

between European countries. Historical patterns of (sub)type circulation, coupled with 

differences in outbreak intensity and vaccine uptake, could lead to complex and highly varying 

immunity profiles in different countries. In both Chapters 2 and 3, our model displayed a 

tendency to infer higher values of initial population susceptibility in countries in southwest 

Europe, although whether this reflects reality or was simply the model’s attempt to fit observed 

geographic patterns by assigning fewer susceptible people to locations with lower absolute 
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humidity is unclear. Serological surveillance, a pilot of which was recently proposed in the 

United Kingdom (UK) (de Lusignan et al., 2019), could help to reveal the extent to which overall 

and (sub)type-specific immunity differs by country. Recording of influenza vaccine uptake 

among healthy adults (rather than only among high-risk groups (ECDC, 2018)) would also be 

informative. 

 

Sociodemographic factors: Finally, a substantial body of work has identified several 

sociodemographic factors that may play a role in driving influenza incidence patterns. Age in 

particular may be an important driver. Contact patterns are highly assortative by age (Mossong et 

al., 2008), and children are especially likely to contribute to transmission (Lau et al., 2015; 

Viboud, Boëlle, et al., 2004). Indeed, past modeling studies have suggested that school holidays 

can help explain spatial patterns of both seasonal and pandemic influenza outbreaks. 

Specifically, simultaneous school vacations can drive increased outbreak synchrony between 

locations (Ewing et al., 2016), while school vacation timing in conjunction with differences in 

specific humidity can exacerbate outbreak timing differences between locations (Tamerius et al., 

2015). Meanwhile, analyses of age patterns among local and imported cases during the 2009 

pandemic suggested that adults may be most likely to transmit influenza between locations 

(Apolloni et al., 2013), a conclusion also supported by studies showing a strong influence of 

commuting on transmission patterns (Pei et al., 2018; Viboud, Bjørnstad, et al., 2006). For these 

reasons, differences in age structure between populations could contribute to observed influenza 

transmission patterns. Notably, FluNet and FluID report age-specific data, which may allow 

models to estimate rates of transmission within and between age groups in different countries. 

Detailed data on contact rates by age could help to validate results (Mossong et al., 2008). 
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However, we have not explored the extent to which good-quality, age-specific data are reported 

by different countries, and the lack of denominator data may hinder comparability between age 

groups. 

 Differences between countries in the distribution of other sociodemographic factors could 

also help to explain differences in outbreak timing and intensity. For example, city population 

size has been previously associated with both the extent to which influenza outbreaks are 

concentrated in time (Dalziel et al., 2018) and with synchrony between locations (Morris et al., 

2018). Thus, outbreak patterns could depend partially on the number, size, and population 

density of urban population centers. Socioeconomic factors, including educational attainment 

and poverty rates, also vary substantially throughout Europe (European Commission & 

Statistical Office of the European Union, 2018). Although research on the relationship between 

socioeconomic status (SES) and influenza is sparse, particularly in Europe, a study of 

hospitalization rates in Spain during the 2009 pandemic found that risk of hospitalization was 

lower among those with secondary or higher education (Mayoral et al., 2013), and several 

studies have reported a positive association between influenza vaccination and both education 

and income (Lucyk et al., 2019). Future studies must continue to assess the extent to which 

geographic differences in various sociodemographic factors drive differences in influenza 

outbreak characteristics; results of such studies have important implications not only for 

modeling, but for public health in general (Semenza, 2010). 
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Improving model specification using existing knowledge 

 While a better understanding of the points discussed above is important for eventually 

constructing better models, it is important to also consider what modelers can do now to improve 

model specification. 

 

(Sub)type-specific forecasts: In Chapter 3, we describe (sub)type-specific forecasts motivated in 

part by observed differences in dominant (sub)types between countries. However, (sub)type-

specific forecasts may also improve forecast quality at the isolated country level. The SIRS 

model describes the transmission dynamics of a single pathogen; thus, modeling individual 

influenza (sub)types, rather than total influenza, improves model specification. Previous work 

has shown that, when forecasting total influenza in US cities and states, the sum of (sub)type-

specific forecasts generally outperformed forecasts treating influenza as a single pathogen 

(Kandula, Yang, et al., 2017). Moving forward, similar methods should be tested at the country 

level. Distinguishing between (sub)types may be particularly relevant in the tropics and 

subtropics, where lack of cross-immunity between (sub)types may help account for sequential 

outbreaks of influenza. 

 

Incorporating school schedules: As discussed above under “Sociodemographic factors,” the 

incorporation of school schedules into models of influenza transmission can improve model 

agreement with observed influenza activity (Ewing et al., 2016; Tamerius et al., 2015; Yaari et 

al., 2016). Thus, it makes sense for future work to assess the impact of accounting for school 

holidays in the models described in this dissertation, at least in countries where the timing of 

school holidays is consistent across regions. School holidays could be implemented simply by 
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reducing β multiplicatively during the corresponding calendar weeks; the exact extent of this 

reduction could be fit. If age structure is incorporated into future models, a reduction in β 

between children specifically would become possible (Ewing et al., 2016; Yaari et al., 2016). 

 

Explicit observation models: The wide range of case counts observed in the WHO data suggest 

that surveillance systems and health seeking behavior vary extensively by country. Models that 

explicitly distinguish between influenza cases that are observed by the healthcare system, and 

those that remain unobserved, can more directly account for these differences than the wide 

range of scaling factors we have employed throughout this work. At the country level, such 

models can be constructed by simply dividing the infected compartment (I) into observed and 

unobserved infecteds. The percentage of cases who are observed would depend on parameters 

describing the size of the population under surveillance and the rate of healthcare seeking for 

influenza among this population (Yaari et al., 2016). Priors for the latter parameter could be 

based on published rates at which individuals infected with influenza seek medical attention 

(Galanti et al., 2020; Metzger et al., 2004), recognizing that both of the cited studies were limited 

to New York City. The size of catchment areas is freely available in some countries (WHO & 

ECDC, 2019) but in many cases may require contacting public health workers from each 

country. 

Accounting explicitly for case observation rates may not only improve model 

specification (Osthus et al., 2019), but the inferred values of rates of healthcare seeking in 

different countries could be compared to help understand how such behaviors may vary by 

country, as well as season to season (Moss, Zarebski, Carlson, et al., 2019). This will, however, 

depend on how well the models are able to fit this parameter. As observed in our sensitivity 
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analyses in Chapter 3, as well as in the literature (Pei et al., 2018; Yang et al., 2014), some model 

parameters are easier to accurately estimate than others. Synthetic testing, both for isolated 

countries and the metapopulation model, will help to determine whether or not this is likely to be 

a plausible approach. 

 

Alternative approaches to calculating scaling factors for a network model: Should a 

metapopulation model explicitly incorporating observed vs. unobserved influenza cases prove 

implausible, alternative approaches to implicitly account for differences in surveillance systems 

and rates of healthcare seeking may also be explored. Pei et al. (2018), for example, calculated 

scaling factors based on the intensity of synthetic outbreaks generated using their metapopulation 

model in each state. A similar approach could be attempted using the metapopulation model in 

Chapter 3. Obtaining more information on the size of catchment areas in each country, as 

discussed above, could also inform the choice of scaling factors. 

 

Exploring alternative filters and models 

Throughout this dissertation, all fitting and forecasting work was performed using a 

mechanistic SIRS model in conjunction with an EAKF. However, countless other methods exist 

for producing influenza forecasts. Yang et al. (2014), for example, assessed the capabilities of six 

different filtering methods, including the EAKF, in fitting and forecasting influenza in several 

US cities, and found that, in general, particle filters were superior to ensemble filters at 

forecasting peak timing prior to the predicted peak. While particle filters are not a plausible 

choice for the metapopulation model in Chapter 3 due to the high dimensionality of the model 



 

242 

 

(Snyder et al., 2008), these methods could be tested in isolated, country-level forecasts, and 

results compared to those found in Chapters 2 and 4. 

In future work, the potential of alternative model forms (e.g. the SEIRS model, which 

explicitly accounts for individuals who are exposed but not yet infectious) could also be explored 

(Yang et al., 2014). Furthermore, various statistical methods are capable of generating good-

quality influenza forecasts. These methods are non-mechanistic, meaning that they do not 

explicitly model the transmission of influenza throughout a population. The method of 

analogues, which we have used and discussed briefly in Chapters 2 and 4, is one such method, 

and has been shown to be capable of producing accurate influenza forecasts in France (Viboud et 

al., 2003). Other statistical methods employing time series models, regression analyses, Bayesian 

approaches, machine learning methods, and combinations thereof have also been used to 

generate influenza forecasts (Brooks et al., 2015; Kandula et al., 2018; Soebiyanto et al., 2010; 

Su et al., 2019; Wang et al., 2015). To our knowledge, much of the WHO data used throughout 

this dissertation have not been used in forecasting efforts outside of this work; for this reason, it 

would be useful for future studies to compare a range of forecasting methods, both mechanistic 

and statistical. Given that the method of analogues performed similarly to or better than our 

model-inference system for tropical countries in Chapter 2, non-mechanistic methods may be of 

particular utility in these regions. Methods like the method of analogues or the Bayesian 

weighted outbreaks method, which base predictions on patterns observed in previous outbreaks, 

are also likely to produce better forecasts of outbreak onset, at least in isolated models (Kandula 

et al., 2018). 

Finally, while comparing the potential of the various forecasting methods discussed 

above, both overall and by country, is certainly important, optimal forecast performance is likely 
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to be achieved when multiple methods are considered simultaneously. Superensembles combine 

forecasts from several models by weighting according to forecast performance in a training 

dataset (Yamana et al., 2017). Recent work has shown that, in the US, superensembles perform 

similarly to or better than a wide range of individual forecasting methods; in particular, forecast 

quality tends to be more consistent across lead weeks (Kandula et al., 2018; Ray & Reich, 2018; 

Yamana et al., 2017). Future work should assess the performance of superensemble forecasts of 

influenza in different countries. Furthermore, comparing the weights assigned to different 

component models between countries and regions could be helpful in understanding 

geographical differences in outbreak dynamics. 

 

Incorporating error correction and post-processing 

In a nonlinear system such as the SIRS model, rapid error growth can substantially 

degrade forecast accuracy, even at short timescales (Pei & Shaman, 2017). The use of data 

assimilation methods alone does not fully account for the resulting error. A handful of recent 

studies have shown that, by incorporating methods of error correction commonly used in weather 

and climate forecasting, accuracy and calibration of influenza forecasts can be further improved. 

More specifically, Pei and Shaman (2017) used error breeding methods in conjunction with an 

EAKF to improve forecast accuracy. Later, Pei et al. (2019) showed that widening ensembles 

using optimal perturbation of ensemble members improved both the accuracy and calibration of 

short-term forecasts, particularly around the time of the predicted peak. 

Error impacting forecast accuracy may also stem from model misspecification. Osthus et 

al. (Osthus et al., 2019) developed a model accounting for historical discrepancies between 

observed data and best-fit SIR models, which produced high-quality forecasts of ILI in the US. 
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Finally, forecasts may additionally benefit from ad-hoc adjustments made based on 

modeler and practitioner expertise (Kandula et al., 2018; Morita et al., 2018). For example, 

weights allocated to different values for peak timing, peak intensity, and onset timing may be 

edited by modelers after forecasts are produced. This may be done if, for example, experts 

believe that the forecast has placed too much confidence in a given bin, or to avoid bins 

receiving a weight of zero (Kandula et al., 2018). 

Future work should explore the utility of various error correction and post-processing 

methods for improving the forecasts discussed in this dissertation. The potential of these methods 

to improve not only accuracy but also calibration may be of particular interest in the case of the 

metapopulation model, which on average produced forecasts of peak timing with lower MAE 

than the isolated models, but also with lower log scores, indicating calibration issues. 

 

Determining how spatial scale impacts forecast accuracy 

 Throughout this dissertation, we have produced forecasts at the country level. As noted in 

Chapter 2, these forecasts were generally comparable in quality to forecasts made for individual 

cities in the US (Shaman et al., 2013) and Australia (Moss et al., 2017). Furthermore, absolute 

humidity aggregated to the country level was still able to improve forecast accuracy. Finally, we 

did not observe any noticeable patterns in forecast accuracy by country size. Altogether, these 

results suggest that our forecasts did not suffer due to the larger spatial scale at which they were 

generated. 

 Nevertheless, several researchers have expressed a need for good-quality forecasts at 

smaller spatial scales (Kandula, Hsu, et al., 2017; Morita et al., 2018; Muscatello et al., 2017), 

which may be more practical and relevant for mounting a public health response. For this reason, 
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future work should explore how spatial scale impacts forecast quality in countries where data on 

several scales are available, and how differences in data quality at different scales contribute to 

differences in forecast quality. These questions are relevant not only to isolated forecasts, but 

also to forecasts using improved network models: a metapopulation model incorporating 

commuting flows was found to improve forecast accuracy in New York City when influenza was 

modeled at the borough scale, but often reduced accuracy when modeled at the smaller, 

neighborhood scale (Yang et al., 2016). Results of such studies may help motivate higher quality 

and more widespread surveillance at local scales and could inform decisions on the ideal spatial 

scale of real-time forecasts. Of course, such decisions will also be informed by collaborations 

with public health and medical practitioners, as discussed below, as practitioners will have 

insight into the spatial scales at which forecasts are likely to be useful. 

 

Exploring the potential of nowcasting methods 

 Although the real-time forecasts described in Chapter 4 were relatively accurate and well-

calibrated, data are submitted to the FluNet and FluID databases with a one-week lag, meaning 

that forecasts are not truly generated in real-time. While more timely submission of traditional 

surveillance data may be impractical, various alternative data sources, including Google search 

data (Kandula, Hsu, et al., 2017; Lampos et al., 2015; Lu et al., 2019), Wikipedia page visits 

(Zimmer et al., 2018), and tweets (Paul et al., 2014), are published in near real-time and can be 

used to produce nowcasts, or estimates of current influenza incidence (Lampos et al., 2015). 

Using such nowcasts to estimate influenza incidence during the week at which a forecast is 

generated can significantly improve real-time forecast accuracy (Kandula et al., 2019; Paul et al., 

2014; Zimmer et al., 2018). However, nowcasting models have primarily been validated against 
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influenza surveillance data from the US. While there has been some work exploring the 

association between Google search and influenza surveillance data in several European countries 

(Samaras et al., 2017; Valdivia et al., 2010; Vandendijck et al., 2013), further research to adapt 

nowcasting methods to these countries is needed. Specifically, future work should explore 

whether there are differences in the predictability of Internet search behavior by country, and to 

what extent the use of nowcasts improves real-time forecasts of influenza. We note, however, 

that results may be tentative at this point, as we only have access to two seasons of real-time 

data. 

 

6.2: Options for operationalizing forecasts must be pursued 

Summary of findings (Chapter 5) 

In Chapter 5, we describe the results of a small, cross-sectional survey of US public health 

practitioners working with influenza. We found that, while many respondents were familiar with 

models and forecasts, both communication with modelers and use of forecasts to support 

decision making were uncommon. Most respondents indicated that increased communication 

between modelers and practitioners was needed, but also that modelers needed to communicate 

more clearly, conclusions that agree with similar past studies (Driedger et al., 2014; Lee et al., 

2013; Moghadas et al., 2015). Respondents also indicated that models needed to be more 

relevant to public health. We concluded by emphasizing the importance of longstanding 

collaboration between modelers and public health practitioners in achieving these goals, and in 

effectively operationalizing forecasts. 
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Meaningful collaborations with public health practitioners and clinicians must be 

built and maintained 

 As discussed in Chapter 5, several others have emphasized the need for longstanding, 

formal collaborations between modelers and public health practitioners (Driedger et al., 2014; 

Moghadas et al., 2015; Rivers et al., 2019). Here, we suggest that clinicians should also be 

involved in such collaborations. Figure 3A highlights the main contributions that modelers, 

practitioners, and clinicians can make to these partnerships, as well as the benefits gained by 

each group. We describe how such a community would function in more detail here. 

 In such collaborations, one of the roles of public health practitioners (including 

epidemiologists, data analysts, and policymakers (Lofgren et al., 2014)) and of clinicians 

(including department heads and hospital administrators) is to determine which forecasting 

targets are most relevant to their ability to respond to an outbreak (Driedger et al., 2014; Lutz et 

al., 2019; Metcalf et al., 2015; Moghadas et al., 2015). We and others (Biggerstaff et al., 2018, 

2019; Farrow et al., 2017; George et al., 2019; Moss et al., 2018; Shaman et al., 2013; WHO, 

2017) have emphasized the potential that skillful forecasts have to guide responses taken by both 

public health practitioners and medical professionals during an influenza outbreak. By involving 

these stakeholders in planning for forecast outcomes, this potential is more likely to be met. 

 Practitioners and clinicians can also offer important insights into the data used for 

forecasting (Biggerstaff et al., 2019; Moss et al., 2018). While some information on surveillance 

systems is publicly available (WHO & ECDC, 2019), the exact process behind data collection is 

not obvious. The insider knowledge provided by public health practitioners and especially 

clinicians, who collect the primary epidemiologic and virologic data, can reveal attributes and 

biases of the data that would otherwise have remained unclear. This knowledge can be used to  
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improve forecast accuracy, as observed in a collaboration between Moss et al. (2018) and 

Australian health departments, where practitioner knowledge of increases in influenza testing 

allowed the authors to edit model parameters accordingly mid-season. Input from both clinicians 

and public health practitioners is also likely to be particularly critical when attempting to 

consolidate data from different regions or countries, as in Chapter 3. Even if data on outpatient 

visits were available, differences in sentinel surveillance systems in different countries could still 
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• Communication of which forecast 
outputs are most relevant to public 
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• Communication of model capabilities, 
limitations, and assumptions 
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 • Forecasts with higher applicability 

• Better understanding of forecast 
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A 

Figure 3. Summary of collaborations between modelers and public health and medical 

practitioners. (A) Contributions of and benefits to public health practitioners and medical professionals 

(left) and modelers (right). (B) Potential positive feedback loops resulting from longstanding 

collaboration. 
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lead to noticeable biases in resulting syndromic+ rates. A better understanding of these 

differences may enable a more appropriate accounting for these biases. 

 Meanwhile, modelers involved in these collaborations have the responsibility to clearly 

communicate not only the general abilities and limitations of forecasting models (Metcalf et al., 

2015), but also the parameter requirements and assumptions of the specific models being used 

(Muscatello et al., 2017). Modelers will also need to explain and contextualize the results from 

any forecasts generated (Lutz et al., 2019; Muscatello et al., 2017). (We discuss the 

communication of model certainty in more detail below.) These contributions will enable 

meaningful interpretation and utilization of forecast results by non-modelers (Moghadas et al., 

2015). We note that even relatively simple forecasting models can require modeling expertise to 

properly parameterize (Morita et al., 2018). Thus, it is not enough for modelers to simply create 

models, explain their use, and disseminate them to public health agencies. Rather, modelers must 

be involved in the actual generation of the forecasts themselves. This involvement has the added 

benefit of allowing model adjustments to be made mid-outbreak, as done by Moss et al. (2018). 

 Importantly, the above contributions alone are insufficient; participants will need to 

engage in significant back-and-forth conversation to truly achieve the goals of the collaboration 

(Driedger et al., 2014; Moghadas et al., 2015). For example, modelers will need to assess 

whether the goals put forward by practitioners and clinicians are practical (Driedger et al., 2014). 

If they are not, modelers will need to explain why, and assist in editing the goals. These 

discussions may also motivate additional data collection, if certain data are required to produce 

forecasts capable of influencing policy (Lofgren et al., 2014; Moghadas et al., 2015; Van 

Kerkhove & Ferguson, 2012). In this way, initial ideas can be carefully refined based on both 
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practitioners’ experience concerning what information is useful in responding to seasonal 

outbreaks, and modelers’ knowledge of the capabilities of various models used for forecasting. 

While such discussions may be difficult at first, over successive influenza seasons, 

modelers will gain a better understanding of the needs of practitioners and clinicians, and 

practitioners and clinicians will gain more insight into what models can and cannot do. This will 

not only contribute to increased trust in models among non-modelers, but also has the potential 

to initiate several positive feedback loops capable of further advancing both the quality of 

forecasts and their use in practice (Figure 3B). As practitioners gain a greater understanding of 

models and their capabilities, they will be better able to identify public health questions to which 

forecasts are applicable. Similarly, the expansion of forecasts with direct relevance to public 

health, and the resulting improvement in decision-making ability, can encourage the generation 

of novel policy questions, leading to novel forecasting innovation, and so on (Lofgren et al., 

2014; Metcalf et al., 2015). These experiences could be particularly informative in more 

strategically utilizing forecasts during future pandemics (Driedger et al., 2014; Lee et al., 2013), 

perhaps avoiding some of the mistakes made during the current COVID-19 pandemic (see 

“Precedent for using forecasts in decision making” below). Finally, developing forecasts based 

on extensive stakeholder input would enable demonstration of the potential for forecasts to 

produce relevant, actionable results, and would help legitimize forecasts in the eyes of public 

health practitioners and clinicians (Driedger et al., 2014). This in turn has the potential to 

motivate the collection of better-quality surveillance data (Biggerstaff et al., 2019), which itself 

allows for better-quality forecasts to be produced. Here again the inclusion of clinicians is of 

particular relevance: clinicians are responsible for collecting surveillance data, but may not see 

any direct benefits from their efforts, limiting the incentive to spend additional time and 
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resources improving surveillance. Forecasts that are of use to clinicians have the power to 

change this (ECDC, 2014). 

 While we do not know of any longstanding communities matching what we have 

described here, several nascent communities and collaborations exist involving both public 

health practitioners and forecasters. In Chapter 1, we mentioned the Influenza Incidence 

Analytics Groups (IIAG), a community of modelers and practitioners (including the author of 

this dissertation) organized by the WHO with the broad goal of advancing the use of WHO 

influenza data in real-time (Biggerstaff et al., 2019). We discuss above the ongoing collaboration 

of modelers and health departments in Australia, and the ways in which these communities have 

led to improvements in forecast skill (Moss et al., 2018; Moss, Zarebski, Dawson, et al., 2019). 

Other communities include a collaboration between the Council of State and Territorial 

Epidemiologists (CSTE) and the CDC’s Epidemic Prevention Initiative (EPI) (CDC, n.d.-a; The 

Epidemic Prediction Initiative, n.d.) beginning in 2017, which is exploring ways of using 

forecasts in public health decision making (Lutz et al., 2019); and mod4PH (Mod4PH, n.d.), an 

online network of modelers and public health practitioners dedicated to discussing the potential 

of mathematical models in public health decision making (Milwid et al., 2016; Mod4PH, n.d.). 

 

Improving the calculation and communication of forecast certainty 

We have already discussed the importance of forecasts being not only accurate, but well-

calibrated. However, it is also vital that we communicate information on certainty clearly to 

stakeholders. Although their work focused on weather and not infectious disease forecasts, 

Kusunose and Mahmood (2016) suggest that providing meaningful and clear information on 

certainty is critical in driving practical forecast use, and Van Kerkhove and Ferguson (2012) 
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observed that unclear communication of uncertainty hindered the practical use of models during 

the 2009 influenza pandemic. 

Despite this importance, it is unclear exactly how uncertainty can best be communicated to 

decision makers. Indeed, different researchers have chosen a variety of certainty metrics to 

present (Columbia University Mailman School of Public Health, n.d.; Moss et al., 2018; Shaman 

& Kandula, 2015). It is important that certainty is presented in such a way that practitioners can 

make informed and contextualized decisions, but without including so much information that the 

big picture becomes obscured. Crucially, forecast calibration also plays a role. As discussed in 

Chapters 2 and 4, a 90% prediction interval based on ensemble spread, for example, may not 

contain exactly 90% of observed values, and is therefore not a perfectly honest indication of 

certainty. A method similar to that reported by Shaman and Kandula (2015), in which forecast 

calibration is assessed over several seasons to determine which prediction intervals actually 

capture different percentages of observed values, will therefore be important for communicating 

certainty accurately. These findings would then need to be updated each year as more data 

become available. 

Insight into how best to communicate forecast certainty will naturally emerge from 

collaborations of the sort described above, but even in the absence of such communities, future 

work should explore how different ways of communicating certainty are received by 

practitioners. An ongoing CDC project exploring different ways to visualize forecasting results 

may provide initial information (Lutz et al., 2019). 
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Precedent for using forecasts in decision making 

 As infectious disease forecasting is a relatively new field, there are not currently many 

examples of forecasts being integrated into decision making (Morgan, 2019; Rivers et al., 2019), 

although this is beginning to change (George et al., 2019). As discussed previously, Moss et al. 

(2018; 2019) collaborate with state- and city-level public health departments not only to share 

forecasting results but also to gain valuable feedback on model assumptions and communication 

of results. Furthermore, forecasts generated as part of the CDC’s FluSight initiative, a component 

of EPI, are used by the CDC to broadly evaluate risk in the upcoming weeks, which is then used 

in both internal and public communication (CDC, n.d.-a; Lutz et al., 2019; The Epidemic 

Prediction Initiative, n.d.). In this way, forecasts are beginning to inform practitioners’ and the 

public’s expectations about how outbreaks will unfold. However, this is the extent to which real-

time forecasts are used during seasonal outbreaks of influenza at present. Thus, it is helpful to 

briefly consider the use of real-time forecasting for other infections, namely Ebola and COVID-

19. 

 Early real-time projections of the 2014-2016 Ebola epidemic, showing that the number of 

cases would increase dramatically in the absence of proper control strategies (Meltzer et al., 

2014), played an important role in urging governments to take action (Funk et al., 2019; Morgan, 

2019; Rivers et al., 2019). (Here we describe simulations as “projections” rather than “forecasts,” 

as resulting predictions are based on considerable assumptions regarding which public health 

measures will or will not be taken.) Although early projections had a tendency to overestimate 

peak intensity, this can be at least partly explained by ensuing actions to control outbreak spread 

(Chowell et al., 2017); in other words, we have no way of knowing how accurate the predictions 

would have been had no mitigating actions been taken. As incidence decreased, real-time 
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forecasts showed that the number of expected future cases would likely be too low to support 

randomized controlled trials of potential Ebola vaccines, and thus contributed to the development 

and use of novel vaccine study designs (George et al., 2019; Mohammadi, 2015; “The Ring 

Vaccination Trial,” 2015). While these successes are encouraging, the lack of prior 

communication and collaboration between modelers and decision makers made the practical use 

of forecasts difficult (Rivers et al., 2019). In particular, low data quality presented a significant 

obstacle to the development of skillful real-time forecasts (Chowell et al., 2017). 

Many groups and individuals are developing real-time projections for the current COVID-

19 pandemic, and it is difficult to assess the quality and policy impact of each one. However, 

broadly speaking, projections generated in collaboration with national governments have had 

substantial policy impact, contributing to decisions to implement extensive school and workplace 

closures, border control, and other social distancing measures (Adam, 2020; Enserink & 

Kupferschmidt, 2020). Thus, these projections have contributed to policy decisions that have 

drastically reduced morbidity and mortality. However, early projections of COVID-19 in the UK 

initially contributed to the adoption of less-severe control measures, before updates to model 

parameters revealed that these measures would be insufficient, leading to the uptake of additional 

measures (Adam, 2020). Some uncertainty in projection results is to be expected during an 

emerging pandemic, when information needed to parameterize models is lacking. However, this 

means that caution must be taken when applying results to policy, as decisions based on 

inaccurate projections not only risk contributing to increased morbidity and mortality, but also 

degrade trust among both public health practitioners and the general public. Indeed, there has 

already been substantial criticism of what is perceived as the UK’s overreliance on projections in 

making these decisions (Alwan et al., 2020; Enserink & Kupferschmidt, 2020). Thus, while it is 
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encouraging that projections have seen practical use in reducing the burden of COVID-19 

worldwide, whether public perception of projections and of forecasts will be driven more by 

these successes, or by perceived failures, remains to be seen. 

Notably, both Ebola and especially COVID-19 are emerging infectious diseases, for which 

little prior knowledge exists for informing forecasting models. While the same will be true for 

future influenza pandemics, we know much more about the epidemiologic parameters realistic 

for seasonal flu (although, as discussed throughout this chapter, several gaps in our knowledge 

do remain). Furthermore, we have shown that real-time forecasts are plausible at the country 

level for several countries, and generally outperform methods based on historical expectance (see 

Chapter 4); similar results have been found in both US (Shaman et al., 2013) and Australian 

(Moss et al., 2018) cities. The above examples show that practitioners and policymakers are 

willing to incorporate forecasts into their decision making, and furthermore are even willing to 

trust forecasts during high-stakes pandemics. Given this, the outlook for operationalizing real-

time forecasts of seasonal influenza outbreaks appears optimistic. Again, the collaborations 

discussed above will be helpful in making this step, not only because of the increase in 

meaningful communication concerning forecast results and assumptions, but also because 

modelers involved in such collaborations may gain better access to data in real-time (Lipsitch et 

al., 2011). 

 

6.3: Implications beyond forecasting and for other diseases 

Beyond forecasting 

 While the bulk of this dissertation has focused on forecasting, our work has broader 

implications for the study of influenza. For example, we observed in Chapter 3 that (sub)type 
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dynamics were not always consistent between European countries. Future studies could use 

WHO data to assess (sub)type dynamics in countries reporting good-quality data (see Chapter 2). 

In particular, describing patterns in (sub)type dominance between consecutive outbreaks could 

improve our understanding of how influenza immunity contributes to transmission patterns, and 

identifying countries with a tendency to report similar or dissimilar dynamics could improve our 

understanding of the role of travel. 

 Influenza seasonality is well-understood in temperate regions, but patterns in the tropics 

and subtropics remain poorly characterized in many countries (Cummings et al., 2016; Shek & 

Lee, 2003). In Chapter 2, we find that eighteen countries in tropical and subtropical regions 

report good-quality data to the WHO, and many of these countries have historical data spanning 

multiple years. These data could be used to better characterize influenza seasonality, or lack 

thereof, in these countries, and to compare outbreak patterns between countries. Results could 

contribute to a better understanding of climatic and other factors that drive influenza outbreaks in 

tropical regions. 

 We have explained that the need for influenza forecasts stems partially from the fact that, 

even when outbreaks in a given location display a clear seasonal pattern, substantial 

heterogeneities in outbreak timing and intensity are observed. Understanding the drivers behind 

these heterogeneities could further improve influenza preparedness. Future work should explore 

how outbreak timing and intensity vary by observed absolute humidity (Shaman et al., 2010), as 

well as by longer-term climate phenomena such as the El Niño-Southern Oscillation and the 

North Atlantic Oscillation (Oluwole, 2015; Viboud, Pakdaman, et al., 2004; Zaraket et al., 2008). 
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Beyond influenza 

 As discussed throughout this dissertation, syndromic data such as ILI are not specific for 

influenza. Therefore, countries with viral positivity data for other respiratory infections of public 

health importance, such as respiratory syncytial virus (RSV), human parainfluenza virus, human 

metapneumovirus, respiratory adenovirus, and rhinovirus (Pavia, 2011), could use these in 

conjunction with FluID data to calculate syndromic+ data for a variety of infections. Because 

there are likely substantial differences in health seeking behavior between viruses based on the 

severity of clinical disease they cause (Galanti et al., 2020), these data will not necessarily reflect 

the relative intensity of the different infections. However, such data could still be useful in 

exploring the seasonality of these pathogens, for example, as long as summer sampling is 

sufficient. While past work exists exploring the seasonality of most of these pathogens (Bloom-

Feshbach et al., 2013, p.; Li et al., 2019; Maykowski et al., 2018; Monto, 2002), particularly 

RSV, further work is needed. Analyses of the seasonal drivers of most of these pathogens in 

particular appear to be lacking (Martinez, 2018). Importantly, as discussed earlier in this chapter, 

within-country drivers likely play a large role in shaping influenza transmission dynamics at the 

country-level; we may expect key drivers to be even more localized in the case of infections that 

primarily occur in children, as children are less likely to engage in travel between locations 

(Apolloni et al., 2013; Charaudeau et al., 2014). These data could also be used to develop 

forecasting systems for a variety of infections, something that has shown promise for RSV in the 

US (Reis et al., 2019), and which can improve forecasts of overall ILI (Pei & Shaman, 2020). 

The existence of good-quality influenza data, as well as skillful influenza forecasting 

systems, can be relevant for chronic disease epidemiology, as well. Influenza can increase the 

risk of cardiovascular disease-related mortality, and was found to be predictive of cardiovascular 
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mortality, particularly myocardial infarctions, among adults aged 65 and older in New York City 

(Nguyen et al., 2016). A recent study found that other non-respiratory conditions, in particular 

sepsis and acute kidney injury, were also common among adults hospitalized with influenza 

(Chow et al., 2020). The fact that we can skillfully forecast influenza in many countries means 

that predictions of increased rates of these non-respiratory conditions may also be possible, albeit 

at the country scale. Influenza forecasts and nowcasts may also help inform practitioners as to 

when influenza should be considered in patients hospitalized for certain non-respiratory 

conditions, which may in turn lead to improved rates of antiviral prescription among these 

patients (Chow et al., 2020). 

 

Conclusion 

 Influenza causes substantial morbidity and mortality worldwide, both through regular 

outbreaks and sporadic, potentially severe pandemics (Dawood et al., 2012; Iuliano et al., 2018; 

Taubenberger & Morens, 2006). Accurate and well-calibrated forecasts have the potential to 

reduce this morbidity and mortality if used to support public health decision making. In this 

dissertation, we explored the potential of forecasts in several countries worldwide, with a 

particular focus on Europe, and highlighted several issues hindering both forecast quality and 

forecast operationalization. Specifically, countries should continue to invest in improving their 

influenza surveillance programs, and the WHO should push countries to report more informative 

denominator data, particularly for epidemiologic surveillance data. Further research is also 

needed to better understand the drivers of influenza transmission, including climatic drivers, in 

both temperate and tropical regions. While these improvements will be impactful, we have also 

highlighted several steps that can be taken to improve forecast performance using the tools and 
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information currently available. Finally, modelers must work together with public health and 

medical professionals to develop forecasts that are relevant to public health practice, and to 

integrate these forecasts into decision making. Since the ultimate goal of forecasting is to 

improve public health, this last step is particularly crucial. 
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