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Abstract

Tractable Policies in Dynamic Robust Optimization

Omar El Housni

In many sequential decision problems, uncertainty is revealed over time and we need to

make decisions in the face of uncertainty. This is a fundamental problem arising in many

applications such as facility location, resource allocation and capacity planning under demand

uncertainty. Robust optimization is an approach to model uncertainty where we optimize over the

worst-case realization of parameters within an uncertainty set. While computing an optimal

solution in dynamic robust optimization is usually intractable, affine policies (or linear decision

rules) are widely used as an approximate solution approach. However, there is a stark contrast

between the observed good empirical performance and the bad worst-case theoretical

performance bounds. In the first part of this thesis, we address this stark contrast between theory

and practice. In particular, we introduce a probabilistic approach in Chapter 2 to analyze the

performance of affine policies on randomly generated instances and show they are near-optimal

with high probability under reasonable assumptions. In Chapter 3, we study these policies under

important models of uncertainty such as budget of uncertainty sets and intersection of budgeted

sets and show that affine policies give an optimal approximation matching the hardness of

approximation. In the second part of the thesis and based on our analysis of affine policies, we

design new tractable policies for dynamic robust optimization. In particular, in Chapter 4, we

present a tractable framework to design piecewise affine policies that can be computed efficiently

and improve over affine policies for many instances. In Chapter 5, we introduce extended affine

policies and threshold policies and show that their performance guarantees are significantly better

than previous policies. Finally, in Chapter 6, we study piecewise static policies and their

limitations for solving some classes of dynamic robust optimization problems.
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Introduction

In most sequential decision problems, uncertainty is revealed over time and we need to make

decisions in the face of uncertainty. This is a fundamental problem arising in almost every busi-

ness application where real-time decisions are based on the information revealed thus far. For

instance, in capacity planning problems, retailers need to make capacity decisions while the un-

certain demand is sequentially revealed in the market. In facility location problems, manufacturers

need to decide the location of the stores before they observe the uncertain demand requests from

customers.

Stochastic and robust optimization are two widely used paradigms to handle uncertainty. In the

stochastic optimization approach, uncertainty is modeled as a probability distribution and the goal

is to optimize an expected objective [1]. We refer the reader to Kall and Wallace [2], Prekopa [3],

Shapiro [4], Shapiro et al. [5], Birge and Louveaux [6] for a detailed discussion on stochastic op-

timization. On the other hand, in the robust optimization approach, we consider an adversarial

model of uncertainty using an uncertainty set and the goal is to optimize over the worst-case real-

ization from the uncertainty set. This approach was first introduced by Soyster [7] and has been

extensively studied in recent years. While robust optimization approach might seem conservative,

the decision maker can control the level of conservatism by choosing an appropriate uncertainty

set. Moreover, designing an uncertainty set from historical data is significantly less challenging

than estimating a joint probability distribution especially for high-dimensional uncertainty. Fur-

thermore, robust optimization leads to a tractable approach where a feasible static solution can be

computed efficiently for a large class of problems. However, computing an optimal (or dynamic)

1



solution can be hard in general in both the stochastic and robust paradigms due to the “curse of

dimensionality”. This intractability of computing the optimal adjustable solution necessitates con-

sidering approximate solution policies. We refer the reader to Ben-Tal and Nemirovski [8, 9, 10],

El Ghaoui and Lebret [11], Bertsimas and Sim [12, 13], Goldfarb and Iyengar [14], Bertsimas et

al. [15] and Ben-Tal et al. [16] for a detailed discussion of robust optimization.

In this thesis, we focus on the robust optimization framework to model uncertainty. Our goal

is to design and analyze tractable approximation policies and algorithms for dynamic robust op-

timization problems that have both provable theoretical guarantees and can be implemented effi-

ciently in practice. In addition to practical implementation, the worst case performance analysis

allows us to understand both the power and limitations of the approximate policies and provides

insights towards designing more general policies.

Commonly used approximations policies in robust optimization include functional policies

such as static and affine policies where the decision in any period t is restricted to a static or a

linear function of the sample path until period t. Both static and affine policies have been studied

extensively in the literature and can be computed efficiently for a large class of problems. While

the worst-case performance of such approximate policies can be significantly bad as compared to

the optimal dynamic solution, the empirical performance, especially of affine policies, has been

observed to be near-optimal in a broad range of computational experiments. In the first part of

this thesis (Chapters 2 and 3), we aim to bridge the gap between the theoretical and empirical

performance of affine policies by providing an extensive theoretical analysis of their performance

for a wide range of dynamic robust problems. While affine policies provide good theoretical and

empirical approximation in many settings, their performance could be bad for some classes of

uncertainty sets. This motivates us to consider more general policies namely piecewise policies

where we divide the uncertainty set into several pieces and specify an affine or a static solution for

each piece. A significant challenge in designing a practical piecewise policy is to construct good

pieces of the uncertainty set. Based on the insights in our analysis of affine policies, we develop

new piecewise policies that improve significantly over affine and static policies in many settings.

2



In particular, we present a tractable framework to design different classes of piecewise policies and

analyze their performance for a fairly general class of robust optimization problems. We discuss

piecewise affine policies in Chapter 4, threshold and extended affine policies in Chapter 5 and

piecewise static policies in Chapter 6.

This thesis is organized as follows. Chapter 1 is an introduction chapter where we present

an overview of the robust optimization problems that we discuss in this thesis. In particular, we

present the framework of two-stage adjustable robust optimization. We introduce both the two-

stage robust problems with covering constraints and with packing constraints and review couple

of preliminaries and known results in the literature. Note that most of the chapters in this thesis

would focus on covering problems. We include in Chapter 1 an extensive summary of all our con-

tributions in this thesis. In Chapters 2 and 3, we address the stark contrast between the worst-case

theoretical performance and near-optimal empirical performance of affine policies. In particular,

we present a probabilistic analysis of affine policies in Chapter 2 that provides a theoretical justifi-

cation of the good empirical performance of affine policies on random instances of a fairly general

class of robust optimization problems. In Chapter 3, we provide a theoretical study on the perfor-

mance of affine policy on realistic instances under a widely used class of uncertainty sets including

budget of uncertainty sets and intersection of budgeted sets. In Chapter 4, we present a tractable

framework to design piecewise affine policies that can be computed efficiently and improve over

affine policies for a wide range of instances. In Chapter 5, we introduce extended affine policies

and threshold policies and show that they improve significantly over the previous known policies

for many instances. Finally, in Chapter 6, we study piecewise static policies and their limitations

for solving some classes of dynamic robust optimization problems.

3



Chapter 1: Two-stage robust optimization

In this thesis, we focus on a fairly general class of two-stage robust optimization problems,

also known as two-stage adjustable robust optimization, that arises in many applications. The

dynamics of this class of problems are such that the decision maker takes a first stage decision

before observing the realization of uncertain parameters. Then, adversary selects the uncertain

parameters from an uncertainty set. Finally, the decision maker takes a recourse decision after

observing the realization of these uncertain parameters. In this chapter, we first introduce the class

of two-stage robust problems with covering linear constraints and review related literature. Then,

we present a summary of all our contributions in Chapters 2, 3, 4, 5 that would mainly focus on this

class of problems. At the end of this chapter, we introduce the class of two-stage robust problems

with packing linear constraints that we discuss in Chapter 6 and summarize the contributions of

Chapter 6.

1.1 Two-stage robust optimization with covering constraints

Consider the following two-stage adjustable robust linear optimization problem with uncertain

right hand side:

zAR (c, d,A,B,U ) = min
x

cT x +max
h∈U

min
y(h)

dT y(h)

Ax + By(h) ≥ h, ∀h ∈ U

x ∈ X

y(h) ∈ Rn
+, ∀h ∈ U ,

(1.1)

where A ∈ Rm×n,B ∈ Rm×n
+ , c ∈ Rn

+ and d ∈ Rn
+ . The right-hand-side h is uncertain and belongs

to a compact convex uncertainty setU ⊆ Rm
+ . The recourse matrix is non-negative and fixed, i.e.,
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B belongs to the non-negative orthant and does not depend on the uncertain parameter h. The goal

in this problem is to select the first-stage decision x ∈ X, where X is a polyhedral set and the

second-stage recourse decision, y(h), as a function of the uncertain right hand side realization, h

such that the worst-case cost over all realizations of h ∈ U is minimized.

This model has been widely considered in the literature (see for example Bertsimas and de

Ruiter [17], Bertsimas and Goyal [18], Dhamdhere et al. [19], El Housni and Goyal [20], Gupta et

al. [21], Xu and Burer [22], Zhen et al. [23].) It captures many important applications including set

cover, capacity planning, facility location and network design problems under uncertain demand.

Here, the right hand side h models the uncertain demand and the covering constraints capture

the requirement of satisfying the uncertain demand. However, the adjustable robust optimization

problem (1.1) is intractable in general. In fact, Feige et al. [24] show that the two-stage adjustable

problem (1.1) can not be approximated within a ratio better than Ω( log n
log log n ) under a reasonable

complexity assumption, namely, 3SAT can not be solved in time 2O(
√

n) on instances of size n.

In view of the intractability, several approximation policies (or decision rules) have been con-

sidered in the literature for (1.1) including static, piecewise static, affine and piecewise affine

policies. In a static policy, we compute a single optimal solution (x, y) that is feasible for all

realizations of the uncertain right hand side. Bertsimas et al. [25] relate the performance of static

solution to the symmetry of the uncertainty set and show that it provides a good approximation to

the adjustable problem if the uncertainty set verifies some symmetry properties. However, static

policy is too conservative in general and the performance of static solutions can be arbitrarily large

for a general convex uncertainty set.

Ben-Tal et al. [26] introduce affine policy approximation for (1.1), where they restrict the

second-stage decision, y(h) to being an affine function of the uncertain right-hand-side h, i.e.,

y(h) = Ph + q for some decision variables P ∈ Rn×m and q ∈ Rn. Affine policy can be computed

efficiently for a large class of uncertainty sets and therefore, provide a tractable approximation

for the two-stage problem. Furthermore, the empirical performance of affine policies has been

observed to be near-optimal for a large class of instances even though theoretically, optimality of
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affine policies is known in only a few settings. Bertsimas et al. [27] and Iancu et al. [28] show that

affine policy is optimal for multi-stage adjustable problems with a single uncertain parameter at

each stage. Bertsimas and Goyal [18] show that affine policy is optimal for the two-stage adjustable

problem (1.1) if the uncertainty set U is a simplex. However, in the particular case where we

assume only non-negativity constraints on the first stage decision variable, i.e. x ≥ 0, they show

that the worst-case performance of an optimal affine solution is Θ(
√

m) times the optimal cost

of (1.1) [18]. Note that the gap could be even larger for general polyhedral constraints that involves

only x i.e., x ∈ X. Therefore, there is a significant gap between the worst-case performance of

affine policies and the observed empirical performance.

More general decision rules have been considered in the literature for two-stage problems;

binary decision rules (Bertsimas and Georghiou [29]), adjustable solutions via iterative splitting of

uncertainty sets (Postek and Den Hertog [30]), k-adaptibility (Hanasusanto et al. [31], El Housni

and Goyal [32]), segregated linear decision rules (Chen et al. [33]), Fourier–Motzkin elimination

(Zhen et al. [34]), etc. While these decision rules can improve in some instances over affine

policies, they become computationally very challenging especially for large size instances. For a

more extensive review of the literature, we refer the reader to Bertsimas et al. [15], Ben-Tal et al.

[16] and Yanikoglu et al. [35]

1.1.1 Affine policies: Preliminaries.

Affine policies (also known as linear decision rules) are widely used in the literature of robust

optimization. They were introduced by Ben-Tal et al. [26] for the two-stage adjustable problem

(1.1). In an affine solution, we restrict the second stage decision y(h) to be an affine function of

the uncertain parameter h, i.e.,

y(h) = Ph + q,
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and we optimize over the variables P and q. The affine problem is formulated as:

zAff (c, d,A,B,U ) = min
x,P,q

cT x +max
h∈U

dT (Ph + q)

Ax + B (Ph + q) ≥ h, ∀h ∈ U

Ph + q ≥ 0, ∀h ∈ U

x ∈ X.

(1.2)

Affine policy has been widely used as an approximation to (1.1) due to its tractability. In fact,

Ben-Tal et al. [26] show that affine problems have an equivalent standard LP formulation when

the uncertainty set is described by a polyhedral set. The size of the LP is polynomial in the size of

the input parameters (i.e., number of variables and constraints in (1.1) and number of constraints

inU ). For completeness, we briefly discuss the tractability and compact LP formulation of affine

policies. Consider the following polyhedral uncertainty set

U = {h ∈ Rm
+ | Rh ≤ r }, (1.3)

where R ∈ RL×m and r ∈ RL. The affine problem (1.2) can be reformulated as the following

epigraph formulation:

zAff (c, d,A,B,U ) = min cT x + z

z ≥ dT (Ph + q) , ∀h ∈ U

Ax + B (Ph + q) ≥ h, ∀h ∈ U

Ph + q ≥ 0, ∀h ∈ U

x ∈ X, P ∈ Rn×m, q ∈ Rn, z ∈ R.

Note that this formulation can have infinitely many constraints but the separation problem is

tractable. For example, the separation problem for the first set of constraints is: Given z, x,P, q
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decide if

z − dT q ≥ max
h≥0
{dTPh | Rh ≤ r }. (1.4)

This can be done efficiently by solving the above maximization LP. Moreover, Ben-Tal et al. [26]

show that we can formulate (1.2) as a compact LP using standard techniques from duality. For

instance, consider the first set of constraints (1.4), by taking the dual of the maximization problem,

the constraint becomes

z − dT q ≥ min
v≥0
{rT v | RT v ≥ PT d}.

We can then drop the min and introduce v as a variable. Hence, we obtain the following linear

constraints:

z − dT q ≥ rT v, RT v ≥ PT d, v ≥ 0.

We can apply the same techniques for the other constraints. For completeness, we restate the

compact LP formulation of Ben-Tal et al. [26] adapted to our problem in Lemma A.0.2. The

lemma and its proof are deferred to Appendix A.

1.1.2 Affine policies: Summary of contributions of Chapters 2 and 3

The goal of Chapters 2 and 3 is to address the stark contrast between the worst-case and em-

pirical performance of affine policies and provide a fine-grained analysis of affine policies beyond

worst-case.

Chapter 2: Beyond worst-case: a probabilistic analysis of affine policies. In this chapter, we

present a theoretical analysis of the performance of affine policies for synthetic instances of two-

stage robust optimization problem generated from a probabilistic model. More specifically, we

consider random instances of the two-stage adjustable problem (1.1) where the coefficients of the

constraint matrix B are randomly generated and analyze the performance of affine policies for a

large class of distributions. The main contributions of this chapter are summarized below.

Random Constraint Coefficients. We consider probabilistic instances of (1.1) where the columns

of B are generated from independent multivariate distributions, (i.e., for all j ∈ [n], column B j
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is generated from the multivariate distribution Fj independent from the other columns) and show

that affine policy is provably a good approximation with high probability with a bound that is sig-

nificantly better than the worst-case bound for a large class of distributions including distributions

with bounded support and distributions with gaussian and sub-gaussian tails.

1. Distributions with Bounded Support. We first consider the case where the support of

distributions Fj , j ∈ [n] is bounded in, say [0,b]m. For all i ∈ [m], let Fi j denote the

marginal distribution of Bi j where the column B j is distributed according to Fj , and let

µi j = E[Bi j]. We show that for sufficiently large values of m and n, affine policy gives a

b/µ-approximation to the adjustable problem (1.1) where

µ = min
i∈[m]

1
n

n∑
j=1

µi j .

More specifically, with probability at least (1 − 1/m), we have that

zAff(c, d,A,B,U ) ≤
b

µ(1 − ε )
· zAR(c, d,A,B,U ),

where ε = b/µ
√

log m/n (Theorem 2.2.1 in Chapter 2 ).

This bound is significantly better than the worst-case approximation bound of O(
√

m) for

many distributions. As an example, consider the special case where all coefficients Bi j are

i.i.d. according to some distribution with bounded support [0,b] and expectation µ. Then

affine policy gives b/µ-approximation to the two-stage adjustable problem (1.1) with high

probability. Moreover, if the distribution is symmetric (such as uniform or Bernoulli dis-

tribution with parameter p = 1/2), affine policy gives a 2-approximation for the adjustable

problem (1.1).

2. Distributions with Sub-Gaussian tails. While the above analysis leads to a good approxi-

mation for many distributions, the ratio b
µ can be significantly large in general; for instance,

for distributions where extreme values of the support are extremely rare and significantly
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far from the mean. In such instances, the bound b/µ can be quite loose. We can tighten

the analysis by using the concentration properties of distributions and can extend the anal-

ysis even for the case of unbounded support. In particular, we consider the case where for

all j ∈ [n], column B j is distributed according to a multivariate distribution, Fj with (pos-

sibly) unbounded support and a sub-gaussian tail independent of other columns. Then for

sufficiently large values of m and n, with probability at least (1 − 1/m),

zAff(c, d,A,B,U ) ≤ O(
√

log m + log n) · zAR(c, d,A,B,U ).

Here we assume that the parameters of the distributions are independent of the problem

dimension. We prove the case of distributions with sub-gaussian tails in Theorem 2.2.3 of

Chapter 2.

We would like to note that the above performance bounds are in stark contrast with the worst

case performance bound O(
√

m) for affine policies that is tight. For the random instances where

columns of B are independent according to above distributions, with high probability the perfor-

mance bound is significantly better. Therefore, our results provide a theoretical justification of

the good empirical performance of affine policies and close the gap between worst case bound

of O(
√

m) and observed empirical performance. Furthermore, surprisingly these performance

bounds are independent of the structure of the uncertainty set, U unlike in previous work where

the performance bounds depend on the geometric properties of U . Our analysis is based on a

dual-reformulation of (1.1) introduced in [17] where (1.1) is reformulated as an alternate two-

stage adjustable optimization and the uncertainty set in the alternate formulation depends on the

constraint matrix B. Using the probabilistic structure of B, we show that the alternate dual uncer-

tainty set is close to a simplex for which affine policies are optimal.

We would also like to note that our performance bounds are not necessarily tight and the actual

performance on particular instances can be even better. We test the empirical performance of affine

policies for random instances generated according to uniform and folded normal distributions and
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observe that affine policies are nearly optimal with a worst optimality gap of 4% (i.e. approxi-

mation ratio of 1.04) on our test instances as compared to the optimal adjustable solution that we

compute using a mixed integer program (MIP).

Worst-case distribution for Affine policies. While affine policies give with high probability a

good approximation for random instances according to a large class of commonly used distri-

butions, we present a distribution where the performance of affine policies is Ω(
√

m) with high

probability for instances generated from this distribution. In particular, there is no smoothed analy-

sis for affine policies. Moreover, this bound matches the worst-case deterministic bound for affine

policies. We would like to remark that in the worst-case distribution, the coefficients Bi j depend

on the dimension of the problem. This suggests that to obtain bad instances for affine policies,

we need to generate instances using a structured distribution where the structure of the distribution

might depend on the problem structure.

Chapter 3: Affine policies for budget of uncertainty sets. In this chapter, we study the performance

of affine policies for realistic instances of the two-stage adjustable problem (1.1) (in particular the

instances of (1.1) are not drawn randomly from a class of distributions as in the previous chapter).

The focus here is to analyze the performance of affine policie for an important class of uncertainty

sets widely used in practice, namely budget of uncertainty. Again, one of our important goals in this

analysis is to address the stark contrast between the observed near-optimal empirical performance

and the worst-case approximation bound of Θ(
√

m) [18]. Towards this, we consider the class

of budget of uncertainty sets and intersection of budget of uncertainty sets that was introduced in

Bertsimas and Sim [13]. This is widely used class of uncertainty sets in practice where the decision

maker can specify a budget on the sum of adversarial deviations of the uncertain parameter from

the nominal values. In particular, a budget of uncertainty set can be formulated as follows:

U =


h ∈ [0,1]m ����

m∑
i=1

wihi ≤ 1


, (1.5)

where wi ∈ [0,1] for all i ∈ [m]. It is known that the two-stage adjustable problem (1.1) is hard to
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approximate under this class of uncertainty set. In particular, Feige et al. [24] show that the two-

stage adjustable problem (1.1) whereU is the budget of uncertainty set (1.5) is hard to approximate

within a factorΩ( log n
log log n ) even when all wi are equal, A,B are 0-1 matrices andX = Rn

+. The main

contributions of this chapter are the following.

(a) Optimal approximation for budget of uncertainty sets. We show that affine policy gives

an optimal approximation for the two-stage adjustable robust problem for budgeted uncer-

tainty sets. In particular, affine policy gives an O( log n
log log n )-approximation to the two-stage

adjustable problem (1.1) where U is a budget of uncertainty set (1.5). This performance

bound matches the hardness of approximation [24]; thereby, showing that surprisingly affine

policies give an optimal approximation (up to some constant factor) for (1.1) for budget of

uncertainty sets. In other words, there is no polynomial time algorithm with worst-case ap-

proximation guarantee better than affine policies by more than some constant factor. This

bound significantly improves over the previous known bound of O(
√

m) [18, 36] for budget

of uncertainty sets. Moreover, our result holds for general polyhedral constraints on the first

stage variable x ∈ X. In particular, we can model for example upper bounds on x, this is in

contrast with the previous bounds in the literature that have been shown only in the special

case of X = Rn
+.

Our analysis relies on constructing a feasible affine solution whose worst-case cost is within

a factor O( log n
log log n ) of the optimal cost. In particular, we partition the components of U

into inexpensive and expensive components based on a threshold and construct an affine

solution that covers only the inexpensive components using a linear solution. The remaining

components are covered using a static solution. We show that for an appropriately chosen

threshold that depends on the optimal cost, such an affine solution gives an O( log n
log log n )-

approximation for the two-stage problem for the budget of uncertainty set.

Therefore, in addition to establishing the performance bound that matches the hardness of

approximation, our analysis shows there is a near-optimal affine solution whose structure is

closely related to threshold policies that are widely used in many applications. This struc-
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tural property might be of independent interest and also gives an alternate faster algorithm

for computing near-optimal affine solutions for budget of uncertainty sets as we discuss later.

(b) Intersection of budgeted sets. We also consider a more general family of uncertainty sets,

namely the following intersection of budget of uncertainty sets:

U =



h ∈ [0,1]m ���

∑
i∈S`

w`ihi ≤ 1 ∀` ∈ [L]


, (1.6)

where wl ∈ [0,1]m, and S` ⊆ [m] for all ` ∈ [L]. The set (1.6) is defined by the intersection of

L budget constraints. These are an important generalization of the budget of uncertainty set

(1.5) that are widely used in practice. They capture for instance CLT sets [37] and inclusion-

constrained budgeted sets [38].

(i) We first consider the case when the family of subsets S` for ` ∈ [L] are disjoint. We

refer to this class of sets as disjoint constrained budgeted sets. These are essentially

Cartesian product of L budget of uncertainty sets. We show that affine policy is near-

optimal and gives an O
(
log2 n/ log log n

)
-approximation to (1.1) for this class of sets.

We would like to note that the bound is independent of L. Similar to the case of budget

of uncertainty sets, our analysis is based on constructing a near-optimal affine solution

by partitioning components of U into inexpensive and expensive components using

appropriate thresholds for each of the L budgeted sets in the Cartesian product. How-

ever, in this case, we are able to relate the performance of our affine solution to only a

lower bound of zAR(U ). In particular, we use an online algorithm for the fractional

covering problem to both construct thresholds (and therefore, a feasible affine solution)

as well as the lower bound of the optimal value.

(ii) For general intersection of L budgets. Under the assumption that X is a polyhedral

cone (for example X = Rn
+), we show that affine policy gives O

(
log L log n/ log log n

)
to (1.1) for the case where U is permutation invariant. We say that U is permuta-
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tion invariant if for any h ∈ U and any τ permutation of [m], then hτ ∈ U where

hτi = hτ(i). This class captures many important sets such as CLT sets. The perfor-

mance of affine policy depends on L in this case but degrades gracefully. For general

intersection of budgeted sets and X a polyhedral cone, we show a worst-case bound of

O
(
L log n/ log log n

)
on the performance of affine policy for (1.1). We summarize our

results in Table 1.1.

(c) Faster algorithm to compute near-optimal affine solutions. Based on the structural prop-

erties of the near-optimal affine policies constructed for analysis of performance, we present

an alternate algorithm to compute an approximate affine policy for (1.1) for budget of un-

certainty sets that is significantly faster than computing optimal affine policy by solving a

large LP. In particular, our construction partitions the components into inexpensive and ex-

pensive based on a threshold depending on the optimal cost and shows the existence of a

near-optimal affine solution that covers a fraction of inexpensive components using a linear

solution and the remaining components using a static solution.

From an algorithmic perspective, while we do not know the optimal cost and therefore, the

threshold, we can still use this structure of a near-optimal affine solution to construct a good

affine solution. In particular, our approximate affine solution can be computed efficiently by

solving a single LP covering problem with O(n + m) second stage variables as opposed to

O(nm) second stage variables in the optimal affine policy. Our algorithm scales very well

and is significantly faster than computing affine policies. For instance, for m = n = 100, it

takes several minutes to compute the optimal affine policy whereas our algorithm computes

an approximate affine policy within a few seconds. The comparison becomes even more

stark when we increase the problem size. In particular, for m = n = 200, the average

time for optimal affine policy is more than an hour, whereas our algorithm computes an

approximate affine policy in under 2 minutes. Moreover, our solution remains within 15%

of the optimal affine solution and the sub-optimality gap does not increase with dimension in
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our numerical experiments. We would like to note that since our approximate affine is based

on the construction of affine policy in our analysis, the worst-case approximation bound for

the faster algorithm is also O( log n
log log n ).

(d) General constraint matrices. We show that the assumption on the non-negativity of the

recourse matrix B is crucial for obtaining any non-trivial theoretical bounds on the perfor-

mance of affine policies. We give a family of instances of the two-stage adjustable problem

where the recourse matrix B is a network matrix with entries in {−1,0,1} and show that the

gap between optimal affine and adjustable policies can be unbounded even for the single

budget of uncertainty set. The second-stage matrix being a network matrix captures impor-

tant applications including lot sizing and facility location.

We also show that our results do not extend to the case of uncertainty in the left hand side.

In particular, we give a family of instances of two-stage adjustable problem with a first stage

matrix A that depends on the uncertain parameter h and show that the gap between optimal

affine and adjustable policies can be as bad as Ω(max(m,n)) even for the special case of box

uncertainty sets.

Uncertainty sets Our Bounds

1. Budget of uncertainty set (1.5) O
( log n

log log n

)∗
2. Disjoint Intersection of Budgeted sets (3.10) O

(
log2 n

log log n

)
3. Permutation Invariant Intersection of Budgeted sets (1.6) O

( log L·log n
log log n

)∗∗
4. General Intersection of Budgeted sets (1.6) O

( L·log n
log log n

)∗∗
Table 1.1: Our performance bounds for affine policy under different uncertainty sets including
budget of uncertainty set and intersection of budgeted sets. ∗ denotes that this bound mathches the
approximation hardness of (1.1). ∗∗ denotes that these bounds hold under the assumption that X is
a polyhedral cone.
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1.1.3 Piecewise policies: Summary of contributions of Chapters 4 and 5

Chapters 4 and 5 focus on the design and analysis of new policies that improve significantly

over affine policies including piecewise affine policies (Chapter 4), threshold policies and extended

affine policies (Chapter 5).

Chapter 4: Piecewise affine policies. In this chapter, we present a new framework for constructing

piecewise affine policies (PAP). In a PAP, we consider pieces Ui, i ∈ [k] of U such that Ui ⊆ U

and U is covered by the union of all pieces. For each Ui, we have an affine solution y(h) where

h ∈ Ui. PAP are significantly more general than static and affine policies. For problem (1.1),

with U being a polytope, a PAP is known to be optimal. However, the number of pieces can

be exponentially large. Moreover, finding the optimal pieces is, in general, an intractable task.

In fact, Bertsimas and Caramanis [39] prove that it is NP-hard to construct the optimal pieces,

even for pieceiwse policies with two pieces, for two-stage robust linear programs. Here, we focus

on the case where he first stage decision x ∈ X = Rn
+. We present a tractable framework to

construct piecewise affine policies (PAP) with for (1.1) with approximation bounds that improves

significantly over affine policies in many settings. Our main contributions in this chapter are as

follows.

New Framework for Piecewise affine policy. We present a new framework to efficiently con-

struct a “good” piecewise affine policy for the adjustable robust problem (1.1). As we mentioned

earlier, one of the significant challenges in designing a piecewise affine policy arises from the need

to construct “good pieces" of the uncertainty set. We suggest a new approach where instead of

directly finding an explicit partition ofU , we approximateU with a “simple” set Û satisfying the

following two properties:

1. the adjustable robust problem (1.1) over Û can be solved efficiently,

2. Û “dominates”U , i.e., for any h ∈ U , there exists ĥ ∈ Û such that h ≤ ĥ.

Using the uncertainty set Û instead ofU , the domination property of Û preserves the feasibility

of the adjustable robust problem. Specifically, we choose Û to be a simplex dominating U .
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Therefore, the adjustable robust problem (1.1) over Û can be solved efficiently since Û only has

m+ 1 extreme points. We construct a piecewise affine mapping between the uncertainty setU and

the dominating set Û , i.e. we use a piecewise affine function to map each point h ∈ U to a point

ĥ that dominates h. This mapping leads to our piecewise affine policy which is constructed from

an optimal adjustable solution over Û . We show that the performance of our policy is significantly

better than the affine policy for many important uncertainty sets both theoretically and numerically.

We elaborate on the two ingredients of designing our piecewise affine policy below, namely,

constructing Û and the corresponding piecewise map below.

a) Constructing a dominating uncertainty set. Our framework is based on choosing an ap-

propriate dominating simplex Û based on the geometric structure ofU . Specifically, Û is

taken to be a simplex of the following form

Û = β · conv (e1, . . . , em, v) ,

where β > 0 and v ∈ U are chosen appropriately so that Û dominates U . Solving the

adjustable robust problem over Û gives a feasible solution for problem (1.1) due to the dom-

ination property. Moreover, the optimal adjustable solution over Û gives a β-approximation

for problem (1.1), since Û = β · conv (e1, . . . , em, v) ⊆ β · U . The approximation bound β

is related to a geometric scaling factor that represents the Banach-Mazur distance between

U and Û . We note that Û does not necessarily containU .

b) The piecewise affine mapping. We employ the following piecewise affine mapping ĥ(h) =

βv +
(
h − βv

)+ that maps any h ∈ U to a dominating point ĥ such that h ≤ ĥ. For any h ∈

U , ĥ(h) is contained in the down-monotone completion of 2·Û . The piecewise affine policy

is based on the above piecewise affine mapping and gives a 2β-approximation for problem

(1.1). In this policy, βv is covered by the static component and
(
h − βv

)+ is covered by the

piecewise linear component of our policy. This is quite analogous to threshold policies that
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are widely used in dynamic optimization. Note that ĥ does not necessarily belong to Û but is

contained in the down-monotone completion of 2 ·Û and therefore, we get an approximation

factor of 2β instead of β. We can construct a set-dependent piecewise affine map between

U and Û that allows us to construct a piecewise affine policy with a performance bound of

β. This bound β is not affected by the scaling introduced in Assumption 1.

Given the dominating set, Û , our piecewise affine policy can be computed efficiently; in fact,

it can be computed even more efficiently than an affine solution overU in many cases because the

adjustable problem over Û is a simple LP with only m + 1 constraints while the affine problem

overU is a general convex program for general convex uncertainty sets.

Results for Scaled Permutation Invariant (SPI) Sets. The uncertainty set U is SPI if U =

diag (λ) · V where λ ∈ Rm
+ and V is an invariant set, i.e., if v ∈ V , then any permutation of

the components of v are also in V . SPI sets include ellipsoids, weighted norm-balls, intersec-

tion of norm-balls with budget uncertainty sets and more. SPI sets are commonly used in robust

optimization literature and in practice.

We show that for SPI uncertainty set U , it is possible to construct the dominating set Û and

compute the scaling factor β. In particular, we give an efficiently computable closed-form expres-

sion for β and v ∈ U that are needed to construct Û . Consequently, we can efficiently construct

our piecewise affine decision rule, having a performance bound 2β.

Using this framework, we provide approximation bounds for the piecewise affine policy that

are significantly better than those of the optimal affine policy in [40] for many SPI uncertainty sets.

For instance, we show that our policy gives a O(m1/4)-approximation for the two-stage adjustable

robust problem (1.1) with hypersphere uncertainty set as in (4.1), compared to the affine policy

in [40] that has an approximation bound of O(
√

m). More generally, the performance bound for

our policy for the p-norm ball is O(m
p−1
p2 ) as opposed to O(m

1
p ) given by the affine policy in [40]

1. Table 1.2 summarizes the above comparisons. We also present computational experiments and

observe that our policy also outperforms affine policy in computation time on several examples
1Remark. We note that in [40], in Tables 1 and 2, there is a typo in the performance bound for affine policies for
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of uncertainty sets considered in our experiments including hypersphere, norm-balls and certain

polyhedral uncertainty sets. However, we would like to note that our piecewise affine policy does

not a generalize affine policy and there are instances where affine policy performs better than our

policy. For instance, we observe in our computational experiments that the performance of affine

policy is better than our policy for budget of uncertainty sets.

Results for general uncertainty sets. While the dominating set Û is given in an efficiently

computable closed-form expression for SPI sets, the construction of Û for general uncertainty sets

requires solving a sequence of MIPs which is computationally much harder than for the case of SPI

sets. In Section 4, we give an algorithm for constructing the dominating set Û , and a piecewise

affine policy for general uncertainty set U . Our framework is not necessarily computationally

more appealing than computing optimal affine policies. However, we would like to note that in

practice these MIPs can be solved efficiently. Moreover, the construction of the dominating set Û

is independent of the parameters of the adjustable problem and depends only on the uncertainty set,

U . Therefore, Û can be computed offline and then used to construct the piecewise affine policy

efficiently.

We show that our policy gives a O(
√

m)-approximation for general uncertainty sets which

is same as the worst-case performance bound for affine policy. We also show that the bound of

O(
√

m) is tight. In particular, for the budget uncertainty set

U =


h ∈ Rm

+

����

m∑
i=1

hi =
√

m, 0 ≤ hi ≤ 1 ∀i ∈ [m]


,

the performance bound of our piecewise affine policy is Θ(
√

m). Furthermore, the bound of

Θ(
√

m) holds even if we consider dominating sets with a polynomial number of extreme points

p-norm balls. According to Theorem 3 in [40], the bound should be

m
p−1
p + m

m
p−1
p + m

1
p

= O
(
m

1
p

)
,

instead of m
p−1
p +m

m
1
p +m

as mentioned in Table 2 in [40]).
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that are significantly more general than a simplex. In Chapter 3, we have shown that affine poli-

cies give O( log n
log log n )-approximation for budget of uncertainty. Therefore, affine policy performs

better than our policy for budget of uncertainty sets. While this example shows that the worst-

case performance of our policy could be bad, we would like to emphasize that our policy still

gives a significantly better approximation than affine policies for many important uncertainty sets

including conic sets, and does so in a fraction of computing time (see Section 6.2).

No. Uncertainty set Bounds in [40] Our Bounds
1

{
h ∈ Rm

+
�� ‖h‖2 ≤ 1

}
O

(√
m

)
O

(
m

1
4
)

2
{
h ≥ 0 ���

∑m
i=1 rih2

i ≤ 1
}

O
(√

m
)

O
(
m

1
4
)

3
{
h ∈ Rm

+ | h
TΣh ≤ 1

}
— O

(
m

2
5
)

4
{
h ∈ Rm

+
�� ‖h‖p ≤ 1

}
O

(
m

1
p

)
O

(
m

p−1
p2

)
5

{
h ∈ Rm

+
�� ‖h‖p ≤ 1, ‖h‖q ≤ r

}
O

(
r−1m

1
q

)
O

(
min

(
r

1−p
p m

p−1
pq ,r

1
q m

q−1
q2

))
6

{
h ∈ [0,1]m ��

∑m
i=1 hi ≤ k

}
O

(
k2+mk
k2+m

)
O

(
min

(
k, m

k

))
Table 1.2: Comparison with performance bounds for affine policies in Bertsimas and Bidkhori [40].
The ellipsoid in Example 3 is assumed to be a permutation invariant set. There is no specialized
bound for this Ellipsoid in [40]. For intersection of norm-balls (Example 4 in the table), we assume
m

1
q−

1
p ≥ r ≥ 1. Note that bounds in [40] are not necesserilly tight. For the budget of uncertainty

in Example 6, we have shown in Chapter 3 that affine policies gives O( log n
log log n ) which siginificanly

better than the bound in [40].

Chapter 5: Extended affine and threshold policies. In this chapter, we explore new approaches for

designing near optimal tractable policies for the two-stage adjustable problem (1.1). In particular,

we introduce extended affine policies and threshold polices. We show that that they significantly

improve over the previous known results for approximating (1.1) under some class of uncertainty

sets.

Extended Affine policies. An extended affine policy is an affine policy in a lifted space, i.e., in-

stead of restricting the second stage decision to be an affine function of the uncertain parameter

h ∈ U , we first decompose U into several sets and run an affine policy over the new sets. More

specifically, we present a framework where we decompose an uncertainty setU into a Minkowski
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sum of budget of uncertainty setsU1,U2, . . . ,UL and define our extended affine policy as the sum

of affine policies over Uj for j = 1, . . . ,L. The choice of a decomposition into budget of uncer-

tainty sets is motivated by our results in Chapter 3 on the performance of affine policies for budget

of uncertainty sets. In fact, in Chapter 3 , we show that affine policy gives O( log n
log log )-approximation

to (1.1) under budget of uncertainty sets which matches the hardness of approximation for (1.1)

and therefore affine policy gives an optimal approximation to (1.1).

More formally, letU be an uncertainty set. The framework consists of decomposingU into a

a Minkowski sum of small number of budget of uncertainty setsUj such that eachUj is included

inU andU is within a constant factor fromU1 ⊕ U2 . . . ⊕ UL, i.e.,

• For all j ∈ [L],Uj is a budget of uncertainty set.

• For all j ∈ [L],Uj ⊆ U .

• U ⊆ γ · U1 ⊕ U2 . . . ⊕ UL for some constant γ.

Our extended affine policy is defined as the sum of affine policies over the budgeted sets Uj .

We show that this extended affine policy gives O
(
γL log n
log log n

)
-approximation to (1.1), i.e.,

1
γ

zAR(U ) ≤
L∑

j=1

zAff(Uj ) ≤ O
(

L log n
log log n

)
· zAR(U ),

where zAff(Uj ) is the cost of the optimal affine policy overUj .

We give an explicit construction of this decomposition for important class of uncertainty sets

that can be computed efficiently. We show that our extended affine policy gives O( log n log m
log log n )-

approximation for the important class of permutation invariant sets that includes hypersphere and

q-norm balls. This approximation bound improves significantly over the previous results in the

literature, for instance the best known bound in the litterature is O
(
m

1
4
)

for hypersphere and

O
(
m

q−1
q2

)
[41] for q-norm balls. To the best of our knowledge, the approximation bounds in this

chapter are the first logarithmic approximation bounds for (1.1) under conic uncertainty sets.
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Threshold policies. In the second part of this chapter, our goal is to characterize the structure of

near-optimal solutions for (1.1). In particular, we present threshold policies. These are particular

class of piecewise affine policies where the second-stage decision is restricted to be of the form:

y(h) =
m∑

i=1

(hi − θi)+vi + q.

Here, θ ∈ Rm
+ is the threshold parameter, q ∈ Rn

+ and for all i ∈ [m] vi ∈ Rn
+. Threshold policies are

widely used in practice in many settings and applications (see for instance [42]). They are highly

interpretable and easy to implement in practice. However computing optimal threshold policies is

often a hard problem. Here, our goal is not to compute optimal threshold policies, but to analyze

the structure of a near-optimal policy for (1.1) and show that it could be captured by a threshold

policy. In particular, based on insights from the construction of our extended affine policy, we

show by construction the existence of threshold policies that gives O(log n+ log m) approximation

for (1.1) for hypersphere and q-norm ball uncertainty sets and give O(log n log m)-approximation

for the general class of permutation invariant sets. The construction can be computed efficiently,

however, it needs to guess the value or an approximate value of OPT. These bounds almost match

the hardness of (1.1) and therefore the structure a near-optimal solution for (1.1), could be given

by a threshold policy.

1.2 Two-stage robust optimization with packing constraints

In Chapter 6, we consider two-stage adjustable robust linear optimization problem under un-

certain packing constraints. The problem is given by

zAR(U ) = max cT x + min
B∈U

max
y(B)

dT y(B)

Ax + By(B) ≤ h

x ∈ Rn1
+ , y(B) ∈ Rn2

+ ,

(1.7)
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where A ∈ Rm×n1 , c ∈ Rn1
+ , d ∈ Rn2

+ , h ∈ Rm
+ . Also, U ⊆ Rm×n2

+ is a full dimensional compact

convex down-monotone uncertainty set in the non-negative orthant. Following Bertsimas et al.

[43], we can assume without loss of generality thatU is down-monotone and n1 = n2 = n (A set

S ⊆ Rn
+ is down-monotone if s ∈ S, t ∈ Rn

+ and t ≤ s implies t ∈ S). Note that x represents the

first-stage decisions and y(B) represents the second-stage decisions after observing the uncertain

constraint matrix B ∈ U .

The above formulation models many interesting applications including revenue management

and resource allocation problems with uncertain demand. For instance, in a resource allocation

application, the right hand side h can model the fixed resource capacities and the uncertain co-

efficients in B model the uncertain requirements of resources for demand. The goal is to find an

optimal allocation of resources that maximizes the worst case profit (see Wiesemann [44]). When

m = 1, the above problem reduces to a fractional knapsack problem with uncertain item sizes. The

stochastic version of the knapsack problem has been widely studied in the literature (see Dean et

al. [45], Goel and Indyk [46], Goyal and Ravi [47]).

In general, it is intractable to compute an adjustable robust solution for (1.7). In fact, Awasthi

et al. [48] show that the two-stage adjustable robust problem (1.7) is Ω(log n)-hard to approximate

if the uncertainty set of constraint coefficients belongs to the non-negative orthant. In other words,

there is no polynomial time algorithm that approximates the optimal adjustable solution within a

factor better than log n. Therefore, the goal is to construct approximate policies with good per-

formance. A static solution approach, where we give a single solution feasible for all scenarios,

has been widely studied in the literature. We can formulate the static robust optimization problem

ΠRob(U ) to approximate (1.7) as follows.

zRob(U ) = max cT x + dT y

Ax + By ≤ h ∀B ∈ U

x ∈ Rn
+, y ∈ Rn

+.

(1.8)

An optimal static solution can be computed efficiently for large class of problems (see Bertsimas
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et al. [15], Ben-Tal et al. [16]). Ben-Tal and Nemirovski [9] show that a static solution is optimal

for (1.7) if the uncertainty set is constraint-wise where each constraint is selected independently

from a compact convex set Ui (i.e. U is a Cartesian product of Ui, i = 1, . . . ,m). Bertsimas

et al.[43] generalize the result of [9] and show that a static solution is near optimal for several

interesting families of U . In particular, they give a tight characterization on the performance of

the static solution related to the measure of non-convexity of a transformation of the uncertainty

setU . While a static solution provides a good approximation in many cases, it can be as bad as a

factor m away from the optimal adjustable solution in general.

Piecewise static policies is another solution approach that has been studied in the literature. A

piecewise static policy is a generalization of the static policy where the uncertainty set is divided

into several pieces and we specify a static policy for each piece. Bertsimas and Caramanis [39]

consider a piecewise static solution approach (also referred to as finite K-adaptability) where

they propose a hierarchy of increasing adaptability that bridges the gap between the static robust

formulation, and the fully adaptable formulation. Hanasusanto et al. [31] consider a K-adaptable

solution approach for two-stage robust integers optimization problems.

1.2.1 Summary of contributions of Chapter 6

In Chapter 6, we consider the piecewise static solution approach for two-stage adjustable prob-

lem with capacity constraints (1.7). In particular, we consider a piecewise policy with p pieces (or

subsets): U1, . . . ,Up ofU such that

U = ∪
1≤i≤p

Ui,

where each Ui is convex, compact and down-monotone uncertainty subset. Note that Ui are not

necessarily disjoint. We can formulate the two-stage piecewise robust linear optimization problem
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as follows:

zPR(U1, . . . ,Up) = max cT x + min(dT y1, d
T y2, . . . , d

T yp)

Ax + Bi yi ≤ h ∀i ∈ [p] , ∀Bi ∈ Ui

x ∈ Rn
+, yi ∈ Rn

+ ∀i ∈ [p].

(1.9)

We show that the performance of the optimal piecewise static policy for given pieces is related

to the maximum of the measures of non-convexity of transformations of the pieces Ui; thereby

extending the bound in [43] for piecewise static policies. Note that if the pieces Ui are given

explicitly, we can efficiently compute an optimal piecewise static policy provide we can solve

linear optimization over each Ui efficiently. However, one of the main challenges in designing a

good piecewise static policy, is to construct good pieces of the uncertainty set. In fact, Bertsimas

and Caramanis [39] show that it is NP-hard to construct the optimal pieces for piecewise policies

with only two pieces for two-stage robust linear programs in general.

Our main contribution in this chapter is to show that even if we ignore the computational

complexity of computing optimal pieces, surprisingly the performance of piecewise static policies

with a polynomial number of pieces is not significantly better than a static policy in general. In

particular, we show that there is no piecewise static policy with polynomial number of pieces

that gives an approximation bound better than O(m1−ε ) for any ε > 0 for general uncertainty sets

U ⊆ Rm×n
+ where the approximation bound for the static policy is m. We prove this by constructing

a family of instances of U for any ε > 0, such that the performance of the static policy is m and

the performance of any piecewise policy with polynomial number of pieces is Ω(m1−ε ). Our proof

is based on a combinatorial argument and structural results about piecewise static policies.
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Chapter 2: Beyond worst-case: a probabilistic analysis of affine policies

2.1 Introduction

Affine policies (or control) are widely used as a solution approach in dynamic optimization

where computing an optimal adjustable solution is usually intractable. While the worst case per-

formance of affine policies can be significantly bad, the empirical performance is observed to be

near-optimal for a large class of problem instances. For instance, in the two-stage dynamic ro-

bust optimization problem with linear covering constraints and uncertain right hand side (1.1) , the

worst-case approximation bound for affine policies is O(
√

m) that is also tight (see Bertsimas and

Goyal [18]), whereas observed empirical performance is near-optimal. In this chapter, we aim to

address this stark-contrast between the worst-case and the empirical performance of affine poli-

cies. In particular, we show that with high probability affine policies give a good approximation

for two-stage dynamic robust optimization problems on random instances generated from a large

class of distributions; thereby, providing a theoretical justification of the observed empirical per-

formance. The approximation bound depends on the distribution, but it is significantly better than

the worst-case bound for a large class of distributions.

The rest of this chapter is organized as follows. In Section 2.2, we present our results on

the performance of affine policies for random instances and show that affine policies give with

high probability good approximation to (1.1) for a large class of distributions. In Section 2.3, we

present a class of distributions and bad instances where affine policies perform poorly and match

the worst-case deterministic bound. Finally, we present a computational study to test affine policies

on random instances in Section 2.4.
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2.2 Random instances of two-stage robust optimization problems

Recall the two-stage adjustable problem (1.1) ,

zAR (c, d,A,B,U ) = min
x

cT x +max
h∈U

min
y(h)

dT y(h)

Ax + By(h) ≥ h, ∀h ∈ U

x ∈ X

y(h) ∈ Rn
+, ∀h ∈ U .

In this section, we theoretically characterize the performance of affine policies for random in-

stances of (1.1). In particular, we consider the two-stage problem where coefficients of constraint

matrix B are random and analyze the performance of affine policies for a large class of distribu-

tions. Our analysis of the performance of affine policies does not depend on the structure of first

stage constraint matrix A, cost c or the choice of uncertainty set U . We assume without loss of

generality that c = e and d = d̄ · e (by appropriately scaling A and B). Here, d̄ can interpreted

as the inflation factor for costs in the second-stage. Finally, we assume in this chapter that the first

stage decision x belongs to a polyhedral cone X, i.e., if x ∈ X then αx ∈ X for any α > 0 (for

example X = Rn
+).

Therefore, we restrict our attention only to the distribution of coefficients of the second stage

matrix B. We will use the notation B̃ to emphasize that B is random. For simplicity, we refer to

zAR (c, d,A,B,U ) as zAR (B) and to zAff (c, d,A,B,U ) as zAff (B).

We first consider the case when the columns of B̃, namely B̃ j for j ∈ [n], is distributed ac-

cording to a multivariate distribution Fj with bounded support in [0,b]m (for some constant b),

independent of other columns. We compare the performance of affine policies with respect to the

optimal dynamic solution and present an approximation bound that depends only on the distribu-

tion of B̃ and holds for any uncertainty setU . In particular, we have the following theorem.

Theorem 2.2.1 (Distributions with bounded support). Consider the two-stage adjustable problem
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(1.1) where B̃ j for j ∈ [n] is distributed according to a multivariate distribution, Fj with bounded

support in [0,b]m (for some constant b), independent of other columns. Let E[B̃i j] = µi j ∀i ∈

[m] ∀ j ∈ [n]. For n and m sufficiently large, we have with probability at least 1 − 1
m ,

zAR(B̃) ≤ zAff(B̃) ≤
b

µ(1 − ε )
· zAR(B̃)

where µ = mini∈[m]
1
n
∑n

j=1 µi j and ε = b
µ

√
log m

n .

For the special case where B̃i j are i.i.d. according to a bounded distribution with support in

[0,b]. We have the following corollary.

Corollary 2.2.2. Consider the two-stage adjustable problem (1.1) where B̃i j are i.i.d. according

to a bounded distribution with support in [0,b] and expectation µ. For n and m sufficiently large,

we have with probability at least 1 − 1
m ,

zAR(B̃) ≤ zAff(B̃) ≤
b

µ(1 − ε )
· zAR(B̃)

where ε = b
µ

√
log m

n .

The above theorem and corollary show that for sufficiently large values of m and n, the perfor-

mance of affine policies is at most b/µ times the performance of an optimal adjustable solution.

This shows that affine policies give a good approximation (and significantly better than the worst-

case bound of O(
√

m)) for many important distributions. We present some examples below.

Example 1. [Uniform distribution] Suppose for all i ∈ [m] and j ∈ [n] B̃i j are i.i.d. uniform in

[0,1]. Then µ = 1/2 and from Corollary 2.2.2 we have with probability at least 1 − 1/m,

zAR(B̃) ≤ zAff(B̃) ≤
2

1 − ε
· zAR(B̃)

where ε = 2
√

log m/n. Therefore, for sufficiently large values of n and m affine policy gives a

2-approximation to the adjustable problem in this case. Note that the approximation bound of 2 is
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a conservative bound and the empirical performance is significantly better. We demonstrate this in

our numerical experiments.

Example 2. [Bernoulli distribution] Suppose for all i ∈ [m] and j ∈ [n], B̃i j are i.i.d. according

to a Bernoulli distribution of parameter p. Then µ = p, b = 1 and from Corollary 2.2.2 we have

with probability at least 1 − 1
m ,

zAR(B̃) ≤ zAff(B̃) ≤
1

p(1 − ε )
· zAR(B̃)

where ε = 1
p

√
log m

n . Therefore for constant p, affine policy gives a constant approximation to the

adjustable problem (for example 2-approximation for p = 1/2).

Note that these performance bounds are in stark contrast with the worst case performance

bound O(
√

m) for affine policies which is tight. For these random instances, the performance is

significantly better. We would like to note that the above distributions are very commonly used

to generate instances for testing the performance of affine policies and exhibit good empirical

performance. Here, we give a theoretical justification of the good empirical performance of affine

policies on such instances, thereby closing the gap between worst case bound of O(
√

m) and

observed empirical performance.

While the approximation bound in Theorem 2.2.1 leads to a good approximation for many dis-

tributions, the ratio b/µ can be significantly large in general. We can tighten the analysis by using

the concentration properties of distributions and can extend the analysis for the case of distributions

with sub-gaussian tails. In particular, we consider the case where B̃ j is generated according to a

distribution with sub-gaussian tails and show a logarithmic approximation bound for affine poli-

cies. Note that we assume that the parameters of the distribution are independent of the problem

dimensions. We have the following theorem.

Theorem 2.2.3 (Distributions with sub-gaussian tails). Suppose ∀ j ∈ [n], B̃ j = |G̃ j | such that G̃ j

is a sub-Gaussian, independent of G̃i, for all i , j. For n and m sufficiently large, we have with
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probability at least 1 − 1
m ,

zAR(B̃) ≤ zAff(B̃) ≤ κ · zAR(B̃)

where κ = O
( √

log m + log n
)
.

We would like to note that the bound of O
( √

log m + log n
)

depends on the dimension of the

problem unlike the case of uniform bounded distributions. But, it is significantly better than the

worst-case of O(
√

m) [18] for general instances. Furthermore, this bound holds for all uncertainty

sets. We would like to note though that the bounds are not necessarily tight. In fact, in our

numerical experiments where the uncertainty set is a budget of uncertainty, we observe that the

performance is much better than the bounds. We discuss the intuition and the proofs of Theorem

2.2.1 and Theorem 2.2.3 in the following subsections.

2.2.1 Preliminaries

In order to prove Theorem 2.2.1 and Theorem 2.2.3, we need to introduce certain preliminary

results. First, to develop intuition, let us consider the case of polyhedral uncertainty setU , i.e.,

U = {h ∈ Rm
+ | Rh ≤ r } (2.1)

where R ∈ RL×m and r ∈ RL. This is a fairly general class of uncertainty sets that includes many

commonly used sets such as box uncertainty sets and budget of uncertainty sets. In section 2.2.4,

we sketch the extension of our results to general convex uncertainty sets such as ellipsoids.

We first introduce the following formulation for the adjustable problem (1.1) based on ideas in

Bertsimas and de Ruiter [17].

zd−AR(B) = min
x∈X

cT x + max
w∈W

min
λ(w)
−(Ax)Tw + rTλ(w)

RTλ(w) ≥ w, ∀w ∈ W

λ(w) ∈ RL
+, ∀w ∈ W

(2.2)
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where the setW is defined as

W = {w ∈ Rm
+ | B

Tw ≤ d}. (2.3)

We show that the above problem is an equivalent formulation of (1.1).

Lemma 2.2.4. Let zAR(B) be as defined in (1.1) and zd−AR(B) as defined in (2.2). Then,

zAR(B) = zd−AR(B).

The proof follows from [17]. For completeness, we present it in Appendix B.1. Reformulation

(2.2) can be interpreted as a new two-stage adjustable problem over dualized uncertainty setW

and decision λ(w). Following [17], we refer to (2.2) as the dualized formulation and to (1.1) as the

primal formulation. Bertsimas and de Ruiter [17] show that even the affine approximations of (1.1)

and (2.2) (where recourse decisions are restricted to be affine functions of respective uncertainties)

are equivalent. In particular, we have the following Lemma which is a restatement of Theorem 2

in [17].

Lemma 2.2.5. (Theorem 2 in Bertsimas and de Ruiter [17]) Let zd−Aff(B) be the objective value

when λ(w) is restricted to be affine function of w and zAff(B) as defined in (1.2). Then,

zd−Aff(B) = zAff(B).

Bertsimas and Goyal [18] show that affine policy is optimal for the adjustable problem (1.1)

when the uncertainty set U is a simplex. In fact, optimality of affine policies for simplex uncer-

tainty sets holds for more general formulation than considered in [18]. In particular, we have the

following lemma.

Lemma 2.2.6. Suppose the set W is a simplex, i.e. a convex combination of m + 1 affinley in-

dependent points, then affine policy is optimal for the adjustable problem (2.2), i.e. zd−Aff(B) =

zd−AR(B).
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The proof proceeds along similar lines as in [18]. For completeness, we provide it in Appendix

B.1. In fact, if the uncertainty set is not simplex but can be approximated by a simplex within a

small scaling factor, affine policies can still be shown to be a good approximation, in particular we

have the following lemma.

Lemma 2.2.7. DenoteW the dualized uncertainty set as defined in (2.3) and suppose there exists

a simplex S and κ ≥ 1 such that S ⊆ W ⊆ κ · S. Therefore,

zd−AR(B) ≤ zd−Aff(B) ≤ κ · zd−AR(B).

Furthermore,

zAR(B) ≤ zAff(B) ≤ κ · zAR(B).

The proof of Lemma 2.2.7 is presented in Appendix B.1.

2.2.2 Proof of Theorem 2.2.1

We consider instances of problem (1.1) where the columns B̃ j are independently generated

according to bounded distributions with support in [0,b]m. Let E[B̃i j] = µi j for all i ∈ [m], j ∈ [n]

and

µ = min
i∈[m]

1
n

n∑
j=1

µi j .

Denote the dualized uncertainty set

W̃ =

{
w ∈ Rm

+ | B̃
T
w ≤ d̄ · e

}
.

Our performance bound is based on showing that W̃ can be sandwiched between two simplicies

with a small scaling factor. In particular, consider the following simplex,

S =


w ∈ Rm

+

�����

m∑
i=1

wi ≤
d̄
b



. (2.4)
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We will show that

S ⊆ W̃ ⊆
b

µ(1 − ε )
· S

with probability at least 1 − 1
m where ε = b

µ

√
log m

n . First, we show that S ⊆ W̃ . Consider any

w ∈ S. For j = 1, . . . ,n, we have

m∑
i=1

B̃i jwi ≤ b
m∑

i=1

wi ≤ d̄.

The first inequality holds because all components of B̃ are upper bounded by b and the second one

follows from w ∈ S. Hence, we have B̃
T
w ≤ d̄e and consequently S ⊆ W̃ .

Now, we show that the other inclusion holds with high probability. Consider any w ∈ W̃ . We

have B̃
T
w ≤ d̄ · e. Summing up all the inequalities and dividing by n, we get

m∑
i=1

*
,

∑n
j=1 B̃i j

n
+
-
· wi ≤ d̄. (2.5)

The columnds of B are independent, hence using Hoeffding’s inequality [49] with τ = b
√

log m
n

(see Appendix B.2), we have for all i ∈ [m],

P *
,

∑n
j=1 B̃i j

n
− µi ≥ −τ+

-
≥ 1 − exp

(
−2nτ2

b2

)
= 1 −

1
m2

where µi =
1
n
∑n

j=1 µi j . Then, a union bound over i = 1, . . . ,m gives us

P *
,

∑n
j=1 B̃i j

n
≥ µi − τ ∀i ∈ [m]+

-
≥ 1 −

m∑
i=1

P *
,

∑n
j=1 B̃i j

n
< µi − τ+

-
≥ 1 −

m∑
i=1

1
m2 = 1 −

1
m
.

Therefore, with probability at least 1 − 1
m , we have

m∑
i=1

wi ≤

m∑
i=1

1
µi − τ

*
,

∑n
j=1 B̃i j

n
+
-
·wi ≤

1
mini∈[m] µi − τ

·

m∑
i=1

*
,

∑n
j=1 B̃i j

n
+
-
·wi ≤

d̄
µ − τ

=
b

µ(1 − ε )
·

d̄
b
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where the last inequality follows from (2.5). Note that for m sufficiently large , we have µ− τ > 0.

Then, w ∈ b
µ(1−ε ) · S for any w ∈ W̃ . Consequently with probability at least 1 − 1/m, we have

S ⊆ W̃ ⊆
b

µ(1 − ε )
· S.

Finally, we apply the result of Lemma 2.2.7 to conclude. �

2.2.3 Proof of Theorem 2.2.3

Consider instances of problem (1.1) where the columns B̃ j are independently generated ac-

cording to distributions with sub-gaussian tails. In particular, we have for all i, j, B̃i j = |G̃i j | where

G̃i j is a sub-Gaussian random variable. Denote

W̃ = {w ∈ Rm
+ | B̃

T
w ≤ d̄ · e}.

Our goal is to sandwich W̃ between two simplicies and use Lemma 2.2.7. Since G̃i j has a sub-

gaussian tail, there exists positive constants C and vi j such that for any t > 0,

P
(
|G̃i j | ≥ t

)
≤ Ce−vi j t

2
.

Therefore,

P *.
,
B̃i j ≤

√
2 log(mn)

vi j

+/
-
= 1 − P *.

,
|G̃i j | >

√
2 log(mn)

vi j

+/
-

≥ 1 − C exp
(
−2 log(mn)

)
= 1 −

C
(mn)2 .

Denote

κ = max
i,j

*.
,

√
2 log(mn)

vi j

+/
-
.
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We have κ = O
( √

log m + log n
)

because vi j are positive constant independent of the dimensions

m and n of the problem. Therefore by taking a union bound over i ∈ [m] and j ∈ [n] we get,

P
(
B̃i j ≤ κ ∀i ∈ [m],∀ j ∈ [n]

)
≥ 1 −

C
mn

.

Consider the following simplex

S = {w ∈ Rm
+

��
m∑

i=1

wi ≤ d̄}.

For any w ∈ S, we have with probability at least 1 − C
mn ,

m∑
i=1

B̃i jwi ≤ κ

m∑
i=1

wi ≤ κ · d̄ ∀ j ∈ [n].

Hence, with probability at least 1 − C
mn we have, S ⊆ κ · W̃ . Now, we want to find a simplex that

includes W̃ . We follow a similar approach to the proof of Theorem 2.2.1. Consider any w ∈ W̃ .

We have similarly to equation (2.5)

m∑
i=1

*
,

∑n
j=1 B̃i j

n
+
-
· wi ≤ d̄. (2.6)

We have the following concentration inequality for non-negative random variables,

P *
,

∑n
j=1 B̃i j

n
≥ µi − τi+

-
≥ 1 − exp *

,

−nτ2
i

2σ2
i

+
-
= 1 −

1
m2

where τi = 2σi

√
log m

n , µi =
1
n
∑n

j=1 E[B̃i j] and σ2
i = max j Var[B̃i j]. Then, a union bound over

i ∈ [m] gives

P *
,

∑n
j=1 B̃i j

n
≥ µi − τi, ∀i ∈ [m]+

-
≥ 1 −

1
m
,
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which implies

P *
,

∑n
j=1 B̃i j

n
≥ κ′, ∀i ∈ [m]+

-
≥ 1 −

1
m
.

where κ′ = maxi∈[m](µi − τi). Therefore, combining this result with inequality (2.6), we have with

probability at least 1 − 1
m , W̃ ⊆ 1

κ′ · S. Denote, S′ = 1
κS. We have shown that with probability at

least 1 − C/mn, S′ ⊆ W̃ . Therefore, we have with probability at least 1 − 1
m ,

S′ ⊆ W̃ ⊆
κ

κ′
· S′

where
κ

κ′
= O

( √
log m + log n

)
,

for sufficiently large values of m and n. We finally use Lemma 2.2.7 to conclude.

2.2.4 Extension to general convex uncertainty sets

In this section, we show that our results of Theorem 2.2.1 and Theorem 2.2.3 hold as well for

general convex uncertainty sets U including ellipsoids and norm-ball sets that are widely used in

robust optimization. This is based on approximating a convex uncertainty set by a polyhedral set

(possibly given by an exponential number of inequalities). In fact, in Section 2.2.2 and Section

2.2.3, we prove Theorem 2.2.1 and Theorem 2.2.3 for the case of polyhedral uncertainty set U .

Note that the approximation bounds are independent from the description of U and depend only

on the distribution of B̃.

Now, consider a genral convex uncertainty set U ⊆ Rm. For any ε > 0, Deville et al. [50]

show that there exists a polyhedral setV (see Theorem 1.1 in [50]) such that

V ⊆ U ⊆ (1 + ε ) · V . (2.7)

Note that the number of polyhedral inequalities that describes V could be exponential in m and

1/ε . Consider instances of the two-stage adjustable problem (1.1) with random second-stage ma-
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trix B̃. Denote β the approximation bound given by Theorem 2.2.1 or Theorem 2.2.3 on the

performance of affine policies for polyhedral uncertainty sets. Note that β depends only on the

distribution of B̃ and does not depend on the description of the polyhedral uncertainty set. There-

fore,

zAff(B̃,V ) ≤ β · zAR(B̃,V ),

where we use the notation z(B̃,V ) to denote the adjustable or affine problem with random matrix

B̃ and uncertainty setV . Combining the above inequality with (2.7), we get

zAff(B̃,U ) ≤ (1 + ε ) · zAff(B̃,V ) ≤ β(1 + ε ) · zAR(B̃,V ) ≤ β(1 + ε ) · zAR(B̃,U ).

Since ε > 0 could be chosen arbitrary small, then

zAff(B̃,U ) < β · zAR(B̃,U ).

i.e., the same approximation bounds of Theorem 2.2.1 and Theorem 2.2.3 hold as well for general

convex uncertainty sets.

Remark 2.2.8. We would like to note that our results extend as well for two-stage robust opti-

mization problems (1.1) where the constraints matrices A and B̃ could possibly have some neg-

ative components. In fact, the non-negativity assumption on A could be relaxed without loss of

generality since our analysis in the chapter depends only on the second stage matrix B̃. We can

relax the non-negativity of B̃ under two assumptions:

1. The affine problem zAff(B̃) is feasible.

2. For each row i ∈ [m] of B̃,

µi =
1
n

n∑
j=1

E[B̃i j] > 0.

In fact, in the proof of Theorem 2.2.1 and Theorem 2.2.3, we did not require the matrix B̃ to be

non-negative but we used only the fact that µi − τi ≥ 0 for small enough τi. Hence, our second-
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stage matrix B̃ could have negative components as long as µi > 0 for all rows i = 1, . . . ,m. On

the other hand, Assumption 1 is required because feasibility of the affine problem is not necessary

guaranteed if we relax the non-negativity of both matrices A and B̃.

2.3 Family of worst-case distribution

For any m sufficiently large, the authors in [18] present an instance where affine policy is

Ω(m
1
2−δ) away from the optimal adjustable solution. The parameters of the instance in [18] were

carefully chosen to achieve the gapΩ(m
1
2−δ). In this section, we show that the family of worst-case

instances is not a measure zero set. In fact, we exhibit a distribution and an uncertainty set such

that a random instance, B̃ sampled from that distribution achieves a worst-case bound of Ω(
√

m)

with high probability. The coefficients B̃i j in our bad family of instances are independent but they

depend on the dimension of the problem. The instance can be given as follows.

n = m, A = 0, c = 0, d = e, X = Rn
+

U = conv (0, e1, . . . , em,ν1, . . . ,νm) where νi =
1
√

m
(e − ei) ∀i ∈ [m].

B̃i j =




1 if i = j

1√
m
· ũi j if i , j

where for all i , j, ũi j are i.i.d. uniform[0,1].

(2.8)

Theorem 2.3.1. For the instance defined in (2.8), we have with probability at least 1 − 1/m,

zAff(B̃) = Ω(
√

m) · zAR(B̃).

As a byproduct, we also tighten the lower bound on the performance of affine policy toΩ(
√

m)

improving from the lower bound of Ω(m
1
2−δ) in [18]. We would like to note that both uncertainty

set and distribution of coefficients in our instance (2.8) are carefully chosen to achieve the worst-

case gap. Our analysis suggests that to obtain bad instances for affine policies, we need to generate

instances using a structured distribution as above and it may not be easy to obtain bad instances in

a completely random setting as observed in extensive empirical studies.
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To prove Theorem 2.3.1, we introduce the following lemma which shows a deterministic bad

instance where the optimal affine solution is Θ(
√

m) away from the optimal adjustable solution.

Lemma 2.3.2. Consider the two-stage adjustable problem (1.1) where:

n = m, A = 0, c = 0, d = e, X = Rn
+

U = conv (0, e1, . . . , em,ν1, . . . ,νm) where νi =
1
√

m
(e − ei) ∀i ∈ [m].

Bi j =




1 if i = j

1√
m

if i , j

(2.9)

Then, zAff(B) = Ω(
√

m) · zAR(B).

Proof. First, let us prove that zAR(B) ≤ 1. It is sufficient to define an adjustable solution only for

the extreme points ofU because the constraints are linear. We define the following solution for all

i ∈ [m],

x = 0, y(0) = 0, y(ei) = ei, y(νi) =
1
m
e.

We have By(0) = 0. For all i ∈ [m],

By(ei) = ei +
1
√

m
(e − ei) ≥ ei

and

By(νi) =
1
m
Be =

(
1
m
+

m − 1
m
√

m

)
e ≥

1
√

m
e ≥ νi .

Therefore, the solution defined above is feasible. Moreover, the cost of our feasible solution is 1

because for all i ∈ [m], we have

dT y(ei) = dT y(νi) = 1.

Hence, zAR(B) ≤ 1. Now, it is sufficient to prove that zAff(B) = Ω(
√

m). From Lemma 8 in

Bertsimas and Goyal [18], since our instance is symmetric, i.e., the uncertainty set U and the

dualized uncertainty set W are permutation invariant, there exists an optimal solution for the
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affine problem (1.2) of the following form y(h) = Ph + q for h ∈ U where

P =

*..........
,

θ µ . . . µ

µ θ . . . µ

...
...

. . .
...

µ µ . . . θ

+//////////
-

(2.10)

and q = λe. We have y(0) = λe ≥ 0 hence

λ ≥ 0. (2.11)

We know that

zAff(B) ≥ dT y(0) = λm. (2.12)

Case 1: If λ ≥ 1
6
√

m
, then from (2.12) we have zAff(B) ≥

√
m

6 .

Case 2: If λ ≤ 1
6
√

m
. We have,

y(e1) = (θ + λ)e1 + (µ + λ)(e − e1).

By feasibility of the solution, we have By(e1) ≥ e1, hence

(θ + λ) +
1
√

m
(m − 1)(µ + λ) ≥ 1.

Therefore θ + λ ≥ 1
2 or 1√

m
(m − 1)(µ + λ) ≥ 1

2 .

Case 2.1: Suppose 1√
m

(m − 1)(µ + λ) ≥ 1
2 . Therefore,

zAff(B) ≥ dT y(e1) = θ + λ + (m − 1)(µ + λ) ≥
√

m
2
.

where the last inequality holds because θ + λ ≥ 0 as y(e1) ≥ 0.
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Case 2.2: Now suppose we have the other inequality i.e., θ + λ ≥ 1
2 . Recall that we have λ ≤ 1

6
√

m

as well. Therefore,

θ ≥
1
2
−

1
6
√

m
≥

1
3
.

We have,

y(ν1) =
1
√

m
(
(θ + (m − 2)µ)(e − e1) + (m − 1)µe1

)
+ λe.

Therefore,

zAff(B) ≥ dT y(ν1) =
1
√

m
((m − 1)θ + (m − 1)2µ) + λm

≥
m − 1
√

m

(
1
3
+ (m − 1)µ

)
. (2.13)

where the last inequality follows from λ ≥ 0 and θ ≥ 1
3 .

Case 2.2.1: If µ ≥ 0 then from (2.13)

zAff(B) ≥
m − 1
3
√

m
= Ω(

√
m).

Case 2.2.2: Now suppose that µ < 0, by non-negativity of y(ν1) we have,

m − 1
√

m
µ + λ ≥ 0

i.e.,

µ ≥
−λ
√

m
m − 1

,
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and from (2.13)

zAff(B) ≥
m − 1
√

m

(
1
3
+ (m − 1)µ

)
≥

m − 1
√

m

(
1
3
− λ
√

m
)

≥
m − 1
√

m

(
1
3
−

1
6

)
=

m − 1
6
√

m
= Ω(

√
m).

We conclude that in all cases zAff(B) = Ω(
√

m) and consequently zAff(B) = Ω(
√

m) · zAR(B).

�

Proof of Theorem 2.3.1

Denote

W = {w ∈ Rm
+ | B

Tw ≤ d̄e}

and

W̃ = {w ∈ Rm
+ | B̃

T
w ≤ d̄e}

where B is defined in (2.9) and B̃ is defined in (2.8). We know for all i, j in {1, . . . ,m} that

B̃i j ≤ Bi j . Hence, for any w ∈ W , we have B̃
T
w ≤ BTw ≤ d̄e. Therefore w ∈ W̃ and

consequentlyW ⊆ W̃ . Now, suppose w ∈ W̃ , we have for all i ∈ [m],

wi +
1
√

m

m∑
j=1
j,i

ũ jiw j ≤ d̄. (2.14)

By taking the sum over i ∈ [m], dividing by m and rearranging, we get

m∑
i=1

wi

*...
,

1
m
+

1
m
√

m

m∑
j=1
j,i

ũi j

+///
-

≤ d̄. (2.15)
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We apply Hoeffding’s inequality [49] (see appendix B.2) with τ =
√

log m
m−1 ,

P
*..
,

∑m
j=1
j,i

ũi j

m − 1
≥

1
2
− τ

+//
-
≥ 1 − exp

(
−2(m − 1)τ2

)
= 1 −

1
m2 ,

and we take a union bound over j = 1, . . . ,m, we get

P
*..
,

∑m
j=1
j,i

ũi j

m − 1
≥

1
2
− τ ∀ j = 1, . . . ,m

+//
-
≥

(
1 −

1
m2

)m

≥ 1 −
1
m
, (2.16)

where the last inequality follows from Bernoulli’s inequality. Therefore, we conclude from (2.15)

and (2.16), that with probability at least 1 − 1
m we have

β

m∑
i=1

wi ≤ d̄

where

β =
1
m
+

m − 1
m
√

m
(
1
2
− τ) ≥

1
4
√

m

for m sufficiently large. Note from (2.14) that for all i we have wi ≤ d̄. Hence with probability at

least 1 − 1
m , we have for all i = 1, . . . ,m

BT
i w = wi +

1
√

m

m∑
j=1
j,i

w j ≤ d̄ +
d̄

β
√

m
≤ 5 · d̄.

Therefore, w ∈ 5 · W for any w inW and consequently we have with probability at least 1 − 1
m

that, W̃ ⊆ 5 · W . All together we have proved with probability at least 1 − 1
m , that

W ⊆ W̃ ⊆ 5 · W .

This implies with probability at least 1 − 1
m , that zd−Aff(B̃) ≥ zd−Aff(B) and zd−AR(B) ≥ zd−AR(B̃)

5 .
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We know from from Lemma 2.2.5 and Lemma 2.2.4 that the dualized and primal are the same both

for the adjustable problem and affine problem. Hence, with probability at least 1 − 1
m , we have

zAff(B̃) ≥ zAff(B) and zAR(B) ≥ zAR(B̃)
5 .

Moreover, we know from Lemma 2.3.2 that zAff(B) ≥ Ω(
√

m) · zAR(B). Therefore, with

probability at least 1 − 1
m ,

zAff(B̃) ≥ Ω(
√

m)zAR(B̃).

2.4 Performance of affine policy: Empirical study

In this section, we present a computational study to test the empirical performance of affine

policy for the two-stage adjustable problem (1.1) on random instances.

Experimental setup. We consider two classes of distributions for generating random instances:

i) Coefficients of B̃ are i.i.d. uniform [0,1], and ii) Coefficients of B̃ are absolute value of i.i.d.

standard Gaussian. We consider the following budget of uncertainty set.

U =


h ∈ [0,1]m ����

m∑
i=1

hi ≤
√

m


. (2.17)

Note that the set (2.17) is widely used in both theory and practice and arises naturally as a con-

sequence of concentration of sum of independent uncertain demand requirements. We would like

to also note that the adjustable problem over this budget of uncertainty, U is hard to approxi-

mate within a factor better than O( log n
log log n ) [24]. We consider n = m, d = e. Also, we consider

c = 0,A = 0. We restrict to this case in order to compute the optimal adjustable solution in a rea-

sonable time by solving a single MIP. For the general problem, computing the optimal adjustable

solution requires solving a sequence of MIPs each one of which is significantly challenging to

solve. We would like to note though that our analysis does not depend on the first stage cost c and

matrix A and affine policy can be computed efficiently even without this assumption. We consider

values of m from 10 to 50 and consider 20 instances for each value of m. We report the ratio

r = zAff(B̃)/zAR(B̃) in Table 2.1. In particular, for each value of m, we report the average ratio
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ravg, the maximum ratio rmax, the running time of adjustable policy TAR(s) and the running time

of affine policy TAff(s). We first give a compact LP formulation for the affine problem (1.2) and a

compact MIP formulation for the separation of the adjustable problem(1.1).

LP formulations for the affine policies. The affine problem (1.2) can be reformulated as follows

zAff(B) = min
x

cT x + z

z ≥ dT (Ph + q) ∀h ∈ U

Ax + B (Ph + q) ≥ h ∀h ∈ U

Ph + q ≥ 0 ∀h ∈ U

x ∈ X.

Note that this formulation has infinitely many constraints but we can write a compact LP for-

mulation using standard techniques from duality. The LP formulation is given in Lemma A.0.2 in

Appendix A.

MIP Formulation for the adjustable problem (1.1). For the adjustable problem (1.1), we show

that the separation problem (2.18) can be formulated as a mixed integer program (MIP). The sep-

aration problem can be formulated as follows: Given x̂ and ẑ decide whether

max {(h − Ax̂)Tw | w ∈ W ,h ∈ U} > ẑ (2.18)

The correctness of formulation (2.18) follows from equation (B.1) in the proof of Lemma

2.2.4 in Appendix B.1. The constraints in (2.18) are linear but the objective function contains

a bilinear term, hTw. We linearize this using a standard digitized reformulation. In particular,

we consider finite bit representations of continuous variables, hi nd wi to desired accuracy and

introduce additional binary variables, αik , βik where αik and βik represents the kth bits of hi and

wi respectively. Now, for any i ∈ [m], hi ·wi can be expressed as a bilinear expression with products

of binary variables, αik · βi j which can be linearized using additional variable γi j k and standard

linear inequalities: γi j k ≤ βi j , γi j k ≤ αik , γi j k + 1 ≥ αik + βi j . The complete MIP formulation and
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the proof of correctness is presented in Appendix B.3.

For general A , 0, we need to solve a sequence of MIPs to find the optimal adjustable solution.

In order to compute the optimal adjustable solution in a reasonable time, we assume A = 0, c = 0

in our experimental setting so that we only need to solve one MIP.

Results. In our experiments, we observe that the empirical performance of affine policy is near-

optimal. In particular, the performance is significantly better than the theoretical performance

bounds implied in Theorem 2.2.1 and Theorem 2.2.3. For instance, Theorem 2.2.1 implies that

affine policy is a 2-approximation with high probability for i.i.d. random instances from a uniform

distribution (see Corollary 2.2.2). However, in our experiments, we observe that the optimality

gap for affine policies is at most 4% (i.e. approximation ratio of at most 1.04). The same obser-

vation holds for Gaussian distributions as well Theorem 2.2.3 gives an approximation bound of

O(
√

log mn). We would like to remark that we are not able to report the ratio r for large values of

m because the adjustable problem is computationally very challenging and for m ≥ 40, MIP does

not solve within a time limit of 3 hours for most instances . On the other hand, affine policy scales

very well and the average running time is few seconds even for large values of m. This demon-

strates the power of affine policies that can be computed efficiently and give good approximations

for a large class of instances.

m ravg rmax TAR(s) TAff(s)
10 1.01 1.03 10.55 0.01
20 1.02 1.04 110.57 0.23
30 1.01 1.02 761.21 1.29
50 ** ** ** 14.92

(a) Uniform

m ravg rmax TAR(s) TAff(s)
10 1.00 1.03 12.95 0.01
20 1.01 1.03 217.08 0.39
30 1.01 1.03 594.15 1.15
50 ** ** ** 13.87

(b) Folded Normal

Table 2.1: Comparison on the performance and computation time of affine policy and optimal
adjustable policy for uniform and folded normal distributions. For 20 instances, we compute
zAff(B̃)/zAR(B̃) and present the average and max ratios. Here, TAR(s) denotes the running time for
the adjustable policy and TAff(s) denotes the running time for affine policy in seconds. ** Denotes
the cases when we set a time limit of 3 hours. These results are obtained using Gurobi 7.0.2 on a
16-core server with 2.93GHz processor and 56GB RAM.
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Chapter 3: Affine policies for budget of uncertainty sets

3.1 Introduction.

In this chapter, we study the performance of affine policies for two-stage adjustable robust

optimization problem with fixed recourse and uncertain right hand side belonging to a budgeted

uncertainty set. This is an important class of uncertainty sets widely used in practice where we can

specify a budget on the adversarial deviations of the uncertain parameters from the nominal values

to adjust the level of conservatism. The two-stage adjustable robust optimization problem is hard

to approximate within a factor better than Ω( log n
log log n ) even for budget of uncertainty sets where n is

the number of decision variables. Affine policies, where the second-stage decisions are constrained

to be an affine function of the uncertain parameters, provide a tractable approximation for the

problem and have been observed to exhibit good empirical performance. We show that affine

policies give an O( log n
log log n )-approximation for the two-stage adjustable robust problem with fixed

non-negative recourse for budgeted uncertainty sets. This matches the hardness of approximation

and therefore, surprisingly affine policies provide an optimal approximation for the problem (up

to a constant factor). We also show strong theoretical performance bounds for affine policy for

significantly more general class of intersection of budgeted sets including disjoint constrained

budgeted sets, permutation invariant sets and general intersection of budgeted sets. Our analysis

relies on showing the existence of a near-optimal feasible affine policy that satisfies certain nice

structural properties. Based on these structural properties, we also present an alternate algorithm to

compute near-optimal affine solution that is significantly faster than computing the optimal affine

policy by solving a large linear program.

The rest of this chapter is organized as follows. In Section 3.2, we present our performance

analysis for affine policies on budget of uncertainty sets. Then, we focus on the analysis of a
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more general class of uncertainty sets including disjoint constrained budgeted sets (Section 3.3)

and general intersection of budgeted sets (Section 3.4). In Section 3.5, we present our new faster

algorithm to compute affine policies. Finally, we discuss the performance of affine policies for

a broader class of two-stage robust problem where we relax the assumptions on the constraints

matrices. In particular, we discuss the case of general matrix B in Section 3.6 and the case of

uncertainty in constraint matrix A in Section 3.7.

Notations. For simplicity, we refer in this chapter to zAR (c, d,A,B,U ) as zAR (U ) and to

zAff (c, d,A,B,U ) as zAff (U ). We also assume that U ⊆ [0,1]m and ∀i ∈ [m], ei ∈ U . This

assumption is without loss of generality since we can scale the constraint matrices A and B to

satisfy the assumption without changing the optimal.

3.2 Performance analysis for budget of uncertainty sets.

In this section, we consider the class of budget of uncertainty sets (1.5) given by

U =


h ∈ [0,1]m ����

m∑
i=1

wihi ≤ 1


.

As we mention earlier, this class is widely used in the literature of robust optimization both in

theory and practice. It provides the flexibility to adjust the level of conservatism in terms of prob-

abilistic bounds on constraint violations. A special case of this class is when wi are all equal to 1
k

for some parameter k ∈ N. In particular, in this case we have

U =


h ∈ [0,1]m ����

m∑
i=1

hi ≤ k


. (3.1)

The parameter k is the budget of uncertainty that controls the conservatism of the uncertainty

model. This special class (3.1) of budgeted sets is also known as the cardinality constrained set

or k-ones polytope. Recall the two-stage adjustable problem

48



zAR (U ) = min
x

cT x +max
h∈U

min
y(h)

dT y(h)

Ax + By(h) ≥ h, ∀h ∈ U

x ∈ X

y(h) ∈ Rn
+, ∀h ∈ U .

The two-stage adjustable problem (1.1) is known to be Ω( log n
log log n )-hard to approximate under

the class of budget of uncertainty sets even in the special case of (3.1) (Feige et al. [24]). We show

that surprisingly the performance bound for affine policy matches this hardness of approximation.

In particular, we show that affine policy gives O( log n
log log n )-approximation for (1.1) under budget of

uncertainty sets (1.5).

Theorem 3.2.1. Consider the two-stage adjustable problem (1.1) whereU is the budget of uncer-

tainty set (1.5) . Then,

zAff(U ) = O
(

log n
log log n

)
· zAR(U ).

Our analysis significantly improves over the previous best known bound of O(
√

m) for the

performance of affine policies for budget of uncertainty sets. In fact, Bertsimas and Goyal [18]

shows that affine policy gives O(
√

m)-approximation to the adjustable problem (1.1) under this

class of uncertainty sets and X = Rn
+. Bertsimas and Bidkhori [36] provide a geometric bound

O( k2+mk
k2+m ) in the special case of (1.5) where all wi = 1/k and X = Rn

+. This bound is also O(
√

m)

in the worst-case for k =
√

m.

The above two-stage adjustable robust problem (1.1) has also been considered in the context of

combinatorial optimization problems such as network design under demand uncertainty where the

constraint matrices, A,B ∈ {0,1}m×n and the first-stage and second-stage decisions are constrained

to be binary (see for instance, Dhamdhere et al. [19], Feige et al. [24], Gupta et al. [21] and [51]).

Feige et al. [24] and Gupta et al. [21] give an O(log n)-approximation for (1.1) for the special

case when A = B ∈ {0,1}m×n, first and second-stage costs are proportional, i.e., d = λ · c for

some constant λ ≥ 1 and a budget of uncertainty set with wi = 1/k. However, we would like to
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note that the focus of this stream of work is to design approximation algorithms for combinatorial

optimization problems where the decisions are constrained to be binary. Moreover, the algorithms

are not restricted to and do not necessarily give decision rules or functional policy approximations

for the two-stage problem. In contrast, the focus of our work is to analyze the performance of

affine policies for the two-stage adjustable robust problem (1.1) that are widely used in practice

and exhibit strong empirical performance.

Since our performance bound in Theorem 3.2.1 matches the hardness of approximation, affine

policy provides an optimal approximation for (1.1) for budget of uncertainty sets. In particular,

there is no polynomial time algorithm whose worst-case approximation is better than affine policies

by more than a constant factor. Note that the above statements relate to the worst-case performance.

For particular instances, it may be possible to get better solutions than affine policies.

3.2.1 Construction of our affine solution.

Our analysis is based on constructing a good approximate affine solution that has a worst-case

cost being O
( log n

log log n

)
times the optimal cost zAR(U ). In this section, we present the construction

of our affine solution and consequently prove Theorem 3.2.1. Let us first introduce the following

notations.

Notations. We consider an optimal solution x∗, y∗(h) where h ∈ U , for the adjustable problem

(1.1). Let OPT be the optimal cost for (1.1) and OPT1,OPT2 respectively the first stage cost and

the second stage cost associated with x∗, y∗(h), i.e.

OPT1 = cT x∗

OPT2 = max
h∈U

dT y∗(h)

OPT = OPT1 + OPT2 = zAR(U ).

We would like to remark that this split is not unique since there might be other optimal solutions
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for (1.1). For all i ∈ [m], we denote

αi = 1 − (Ax∗)i

In particular, if αi is negative the first stage solution x∗ covers the full unit requirement in the i-th

component, if not αi corresponds to the remaining requirement that needs to be covered eventually

by the second-stage solution y∗(·).

We denote z(h), the cost of covering the requirement h in the second-stage, i.e.

z(h) = min
y≥0

{
dT y

���� By ≥ h
}
. (3.2)

We refer to problem (3.2) as the fractional covering problem. For any W ⊆ [m], we denote

1(W ) ∈ Rm the indicator ofW , i.e.

1(W ) =
∑
i∈W

ei .

For simplicity, we use the following notation

z(1(W )) = z(W ).

Our construction. For all i ∈ [m], recall z(ei) the optimal cost to cover component ei in the

second stage as defined in (3.2). Let vi be the optimal corresponding solution, i.e.,

vi ∈ arg min
y≥0

{
dT y

���� By ≥ ei

}
.

We split the components {1,2, . . . ,m} based on a threshold into two sets I and its complement Ic:

I =

{
i ∈ [m]

���� αi > 0 and
αi z(ei)
wi

≤ β · OPT
}

Ic = [m] \ I,
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where

β =
4 log n

log log n
.

We cover a fraction of I (inexpensive components) using a linear solution and the remaining frac-

tion of I along with Ic (expensive components) using a static solution.

Linear part. We cover a fraction of the components of I using the following linear solution for

any h ∈ U ,

yLin(h) =
∑
i∈I

αihivi . (3.3)

Static part. We use a static solution to cover the remaining components ei where i ∈ Ic and

(1 − αi)+ei for i ∈ I . In particular, we consider the following static problem

(xSta, ySta) ∈ arg min
x∈X,y≥0



cT x + dT y

���� Ax + By ≥
∑
i∈Ic

ei +
∑
i∈I

(1 − αi)+ei



, (3.4)

and denote

zSta = cT xSta + dT ySta.

Therefore our candidate affine solution is

x = xSta

y(h) = yLin(h) + ySta, ∀h ∈ U .

(3.5)

Feasibility. We first show that our candidate solution (3.5) is feasible for the adjustable problem

(1.1). The proof is a direct consequence of our construction. In particular, we have the following

lemma.

Lemma 3.2.2. The affine solution in (3.5) is feasible for the adjustable problem (1.1).

Proof. We have,

ByLin(h) =
∑
i∈I

αihiBvi ≥
∑
i∈I

αihiei,

52



and

AxSta + BySta ≥
∑
i∈Ic

ei +
∑
i∈I

(1 − αi)+ei ≥
∑
i∈Ic

hiei +
∑
i∈I

hi (1 − αi)+ei

where the last inequality holds because hi ∈ [0,1] for all i ∈ [m]. Therefore, the solution in (3.5)

verifies

Ax + By(h) ≥
∑
i∈Ic

hiei +
∑
i∈I

((1 − αi)+ + αi)hiei ≥ h.

x ∈ X

y(h) ≥ 0, ∀h ∈ U .

�

We would like to remark that the construction of the linear ans static parts not only depends on

the uncertainty set U , but also depends on all the parameters of the instance, i.e., A,B, c, d. This

is in contrast to the analysis in [18] where the construction of affine policies depends only onU .

3.2.2 Performance analysis.

We analyze separately the cost of the static and linear parts. For the linear part, the cost analysis

is a direct consequence of our construction. In fact, we leave only inexpensive scenarios to the

linear part, i.e., scenarios αiei such that αi z(ei)/wi is less than the threshold β · OPT. We know

that for all h ∈ U , we have
∑m

i=1 wihi ≤ 1. Hence, the cost of linear part is at most β · OPT. In

particular, we have the following lemma.

Lemma 3.2.3 (Cost of Linear part). The cost of the linear part yLin(h) defined in (3.3) is at most

β · OPT for any h ∈ U .

Proof. We have for all h ∈ U ,

dT yLin(h) =
∑
i∈I

αihid
T vi =

∑
i∈I

αihi z(ei) ≤ β · OPT ·
∑
i∈I

wihi ≤ β · OPT,

53



where the first inequality holds because αi z(ei) ≤ wi β ·OPT for all i ∈ I and the second inequality

follows as
∑

i∈I wihi ≤ 1 for all h ∈ U .

�

The key part is to analyze the cost of the static part. In fact, we show that the cost of the

static part is also O(β) · OPT. This relies on a structural result on fractional covering problems.

Intuitively, let us explain the structural result in the special case (3.1) of the budget of uncertainty

set and αi are 0 or 1. We show that if the cost of covering every single component ei, for i ∈ J

is expensive, i.e. z(ei) > β · OPT/k and the cost of covering any k components is inexpensive,

i.e. less than 2OPT. Then, the cost of covering all components of J is not too costly and can not

exceed β · OPT. The formal general statement is given in the following lemma.

Lemma 3.2.4 (Structural Result). Consider B ∈ Rm×n
+ , d ∈ Rn

+ and J ⊆ [m]. Let z(h) be the

cost of covering h as defined in (3.2). Suppose there exists γ > 0 and wi ∈ (0,1], ∀i ∈ J such

that the following two conditions are satisfied:

1. for all i ∈ J ,
z(ei)
wi

> 4γ ·
log n

log log n
,

2. for allW ⊆ J , ∑
i∈W

wi ≤ 1 implies z(W ) ≤ γ.

Then,

z(J ) ≤ 4γ ·
log n

log log n
.

Lemma 3.2.4 is a generalization of the result in Gupta et al. [21] for the set covering problem

(see Theorem 7.1 in [21]). In particular, our result hold for any constraint matrix B and a budgeted

set with general wi for i ∈ [m], whereas the Gupta et al. [22], discuss the special case when

B ∈ {0,1}m×n, and a budget of uncertainty set with wi = 1/k. Furthermore, we improve the

approximation bound from O(log n) in [21] to O(log n/ log log n). We present the proof of Lemma

3.2.4 later in Section 3.2.3. But let us first use the structural result to show that the cost of the static
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part is O(β) · OPT and consequently prove Theorem 3.2.1. In particular, we have the following

lemma.

Lemma 3.2.5 (Cost of Static part). The cost zSta of the static part (xSta, ySta) defined in (3.4) is

O(β) · OPT.

Proof. Consider the following sets

J1 =

{
i ∈ [m]

���� αi ≤ 0
}
.

and

J2 = I
c \ J1 =

{
i ∈ [m]

���� αi > 0 and
αi z(ei)
wi

> β · OPT
}
.

For i = 1, . . . ,m, denote BT
i the i-th row of B and let B̃

T
i = BT

i /αi. We have for i ∈ [m],

αi z(ei) = min
y≥0

{
dT y

���� B̃y ≥ ei

}
.

We apply the structural Lemma 3.2.4 with the parameters B̃, d,J2 and γ = OPT. Let us verify the

assumptions of Lemma 3.2.4. For all i ∈ J2, we have

αi z(ei)
wi

> β · OPT = 4γ ·
log n

log log n
.

For anyW ⊆ J2 such that
∑

i∈W wi ≤ 1, we have h = 1(W ) ∈ U . By feasibility of the optimal

solution, we know that

Ax∗ + By∗(h) ≥ h,

which implies,

By∗(h) ≥
∑
i∈W

ei −

m∑
i=1

(1 − αi)ei =
∑
i∈W

αiei +
∑
i<W

(αi − 1)ei

In particular, we have for all i ∈ W , (By∗(h))i ≥ αi. Moreover, B and y∗ are non-negative which
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implies that

By∗(h) ≥
∑
i∈W

αiei,

and therefore,

B̃y∗(h) ≥
∑
i∈W

ei = h.

This means that y∗(h) is a feasible solution for the covering problem (3.2) with constraint matrix

B̃ and requirement h. Therefore,

min
y≥0

{
dT y

���� B̃y ≥ h
}
≤ dT y∗(h) ≤ OPT2 ≤ OPT = γ.

This verifies the second assumption of Lemma 3.2.4. Therefore, from the structural result, we have

min
y≥0



dT y

���� B̃y ≥
∑
i∈J2

ei



≤ 4γ

log n
log log n

= β · OPT.

Denote y2 an optimal solution corresponding to the above minimization problem. In particular, we

have dT y2 ≤ β · OPT and

By2 ≥
∑
i∈J2

αiei .

Furthermore, by feasibility of the optimal solution for (1.1), we have

Ax∗ + By∗(0) ≥ 0,

and we know that By∗(0) ≥ 0. This implies,

By∗(0) ≥
m∑

i=1

(αi − 1)+ei .
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Putting all together, we have

Ax∗ + By∗(0) + By2 ≥

m∑
i=1

(1 − αi)ei +

m∑
i=1

(αi − 1)+ei +
∑
i∈J2

αiei

=

m∑
i=1

(1 − αi)+ei +
∑
i∈J2

αiei

=
∑
i∈I

(1 − αi)+ei +
∑
i∈J1

(1 − αi)+ei +
∑
i∈J2

(1 − αi)+ei +
∑
i∈J2

αiei

≥
∑
i∈I

(1 − αi)+ei +
∑
i∈J1

ei +
∑
i∈J2

ei

=
∑
i∈I

(1 − αi)+ei +
∑
i∈Ic

ei

where the last inequality holds because αi ≤ 0 for all i ∈ J1 and (1 − αi)+ + αi ≥ 1 for all i ∈ J2.

Moreover, x∗ ∈ X and (y∗(0) + y2) is non-negative. Hence, we have (x∗, y∗(0) + y2) is a feasible

solution for the static problem in (3.4), therefore

zSta ≤ cT x∗ + dT y∗(0) + dT y2 ≤ OPT + β · OPT = O(β) · OPT.

�

Proof of Theorem 3.2.1. Lemma 3.2.2 show that our affine solution (3.5) is feasible for the

adjustable problem (1.1). Lemma 3.2.3 and 3.2.5 show that the cost of the affine solution (3.5) is

less than β · OPT +O(β) · OPT = O(β) · OPT which implies that

zAff(U ) = O
(

log n
log log n

)
· zAR(U ).

3.2.3 Proof of the Structural Result.

We give a proof by contradiction. The assumptions in Lemma 3.2.4 can be interpreted as fol-

lows. Let η = 4 log n
log log n . The first assumption states that the cost of covering any single component,

ei for i ∈ J is large (at least wiη · γ). The second assumption states that the cost of any feasi-
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ble (integral) scenario, W ⊆ J with
∑

i∈W wi ≤ 1 is at most γ. We need to show that the cost

of covering all the components, J is at most η · γ. For the sake of contradiction, suppose that

z(J ) > ηγ. We will construct a feasible scenario, W ⊆ J (where hi = 1 for all i ∈ W and∑
i∈W wi ≤ 1) where the cost, z(W ) > γ violating the second assumption in Lemma 3.2.4. To

construct this scenario, we consider the dual of the primal covering problem z(J ). The dual is

a packing problem where the ratio of the right hand sides and the constraint coefficients is large

(from the first assumption in the lemma). This allows us to construct an approximate integral dual

solution of the problem (using randomized dual rounding) where we lose only a factor η in the ob-

jective value as compared to the optimal (fractional) dual solution. We then use this approximate

integral dual to construct a scenario W with cost greater than γ that gives us the contradiction.

Details of the proof are provided below.

For all k ∈ J , recall vk the optimal solution corresponding to z(ek ). We have ‖vk ‖0 = 1, i.e.

z(ek ) = d`vk` where

` = arg min
j=1,...,n
Bk j,0

d j

Bk j
.

In particular, we have for all j ∈ [n] such that Bk j , 0,

d j

Bk j
≥

d`
Bk`
= d`vk` = z(ek ) > ηγwk ,

i.e., for all j ∈ [n],

d j ≥ ηγ ·max
k∈J

(wk Bk j ).

For j ∈ [n], denote

d̂ j =
d j

ηγ ·maxk∈J (wk Bk j )
,

and for all i ∈ J , j ∈ [n],

B̂i j =
wi Bi j

maxk∈J (wk Bk j )
.

In particular, we have for all i ∈ J , j ∈ [n], B̂i j ∈ [0,1] and for all j ∈ [n], d̂ j > 1. For any
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W ⊆ J , consider the following problem

ẑ(W ) = min
y≥0



d̂

T
y

���� B̂y ≥
∑
i∈W

wiei



. (3.6)

We show that for anyW ⊆ J , ẑ(W ) is just a scaling of z(W ). In particular, we have,

Claim 3.2.6. z(W ) = ηγ · ẑ(W ).

We present the proof of Claim 3.2.6 in Appendix C.1. To show that z(J ) ≤ ηγ, we show equiv-

alently that ẑ(J ) ≤ 1. For the sake of contradiction, suppose that ẑ(J ) > 1. Our goal is to

construct a scenario that contradicts condition 2 of the lemma. We use ideas on dual rounding and

randomized solutions from [24] and [21]. In particular, let the dual problem of ẑ(J ) be

∆̂J = max
z≥0




∑
i∈J

wi zi
����
∑
i∈J

B̂i j zi ≤ d̂ j ∀ j ∈ [n]


. (3.7)

Denote z∗ the optimal solution for the dual problem (3.7). By strong LP duality, we have

∆̂J = ẑ(J ),

and therefore,

∆̂J =
∑
i∈J

wi z∗i > 1.

We define the following randomized solution for all i ∈ J ,

Zi = bz∗i c + ξi,

where ξi, for i ∈ J are independent Bernoulli variables with parameter z∗i − bz
∗
i c, i.e.,

ξi = Ber(z∗i − bz
∗
i c).
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Claim 3.2.7. With probability at least 1 −O(1/n),

(
2Zi

η
, i ∈ J

)
,

is a feasible solution to the dual problem (3.7).

We show that
(

2Zi

η , i ∈ J
)

satisfies the constraints of (3.7) with high probability by using Chernoff

bound concentration inequalities. The proof of Claim 3.2.7 is presented in Appendix C.1. Fur-

thermore, we show that the cost of our randomized solution
(

2Zi

η , i ∈ J
)

is greater than 1
η with a

constant probability. In particular, we have the following claim.

Claim 3.2.8. P
(∑

i∈J wi Zi >
1
2

)
≥ 1 − e−

1
8 .

We use a concentration bound to prove Claim 3.2.8. The proof is presented in Appendix C.1.

Putting Claim 3.2.7 and Claim 3.2.8 together, we have that

(
2Zi

η
, i ∈ J

)
,

is feasible for (3.7) with high probability and has a cost
∑

i∈J wi
2Zi

η strictly greater than 1
η with

a non-zero constant probability. Therefore, there exists a deterministic solution for problem (3.7)

with a cost at least 1
η . For simplicity of notations, let us assume that

(
2Zi

η , i ∈ J
)

is such a solution.

Let us order wi Zi in an increasing order, i.e.,

w(1) Z(1) ≥ w(2) Z(2) ≥ . . . ≥ w( |J |) Z(|J |) .

We know that
∑

i∈J wi Zi >
1
2 . Denote L the index such that

L−1∑
i=1

w(i) Z(i) ≤
1
2

and
L∑

i=1

w(i) Z(i) >
1
2
.
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Note that Z(i) are integral and Z(L) , 0. Hence for all i = 1, . . . ,L, Z(i) ≥ 1. Therefore,

L−1∑
i=1

w(i) ≤

L−1∑
i=1

w(i) Z(i) <
1
2
.

Note that if L = 1,
∑L

i=1 w(i) = w(1) ≤ 1 because all wi are in [0,1]. On the other hand, if L ≥ 2,

then

w(L) ≤ w(L) Z(L) ≤ w(1) Z(1) ≤

L−1∑
i=1

w(i) Z(i) <
1
2
,

and therefore,
L∑

i=1

w(i) =

L−1∑
i=1

w(i) + w(L) ≤
1
2
+

1
2
= 1.

Therefore, in both cases we have
∑L

i=1 w(i) ≤ 1. DenoteW ⊆ J the set of indices corresponding

to the top L of w(i) Z(i). In particular, we have,

∑
i∈W

wi ≤ 1.

Note that
∑

i∈W wi Zi >
1
2 , and consequently,

∑
i∈W

wi
2Zi

η
>

1
η
.

Consider the following problem

∆̂W = max
z≥0




∑
i∈W

wi zi
����

∑
i∈W

B̂i j zi ≤ d̂ j ∀ j ∈ [n]



(3.8)

and its dual,

ẑ(W ) = min
y≥0



d̂

T
y

���� B̂y ≥
∑
i∈W

wiei



. (3.9)

We have shown the existence of a solution ( 2Zi

η )i∈W to problem (3.8) with a cost strictly greater

than 1
η . Hence, by LP duality

ẑ(W ) >
1
η
.
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Note that z(W ) = ηγ · ẑ(W ). Hence, z(W ) > γ which contradicts condition 2 of our lemma.

3.3 Intersection of disjoint budget constraints.

In this section, we consider more general uncertainty sets that are defined by intersection of

budget constraints that model many practical settings. We first consider the case where the budget

constraints are disjoint. In particular, consider S1,S2, . . . ,SL a partition of {1,2, . . . ,m}, i.e.

L⋃
`=1

S` = [m] and Si ∩ Sj = ∅, ∀i , j.

We define disjoint constrained budgeted sets as follows

U =



h ∈ [0,1]m ����

∑
i∈S`

w`ihi ≤ 1 ∀` ∈ [L]


. (3.10)

where S`, ` = 1, . . . ,L is a partition of [m]. This is an important class of uncertainty sets that

generalizes the budget of uncertainty set (1.5). These are essentially Cartesian product of L budget

of uncertainty sets. A special case of this class of uncertainty sets where all w`i are equal has been

considered for example in Gupta et al. [51] and Feige et al. [24]. Recall for L = 1, namely the

budget of uncertainty set (1.5), affine policy gives the optimal approximation to (1.1) (see Theorem

3.2.1). Our result in this section show that the performance of affine policy remains near-optimal

for the more general class (3.10). In particular, we have the following theorem.

Theorem 3.3.1. Consider the two-stage adjustable problem (1.1) where U is the disjoint con-

strained budgeted set (3.10). Then,

zAff(U ) = O
(

log2 n
log log n

)
· zAR(U ).

Our analysis relies on constructing a feasible affine solution for (1.1) and relating the worst-

case performance to a lower bound of (1.1). In particular, we consider the online fractional
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covering problem and use an online algorithm with O(log n)- competitive ratio to both construct

a feasible affine and also a lower bound for (1.1). The performance bound of our feasible affine

is related to the competitive ratio of the online algorithm. We first introduce some preliminaries

before discussing our construction and analysis.

3.3.1 Online fractional covering.

Recall, for i = 1, . . . ,m, αi = 1 − (Ax∗)i. We consider B̃ ∈ Rm×n
+ where the i-th row B̃

T
i =

BT
i /αi if αi > 0 and B̃

T
i = BT

i otherwise. Note that B̃ is a non-negative matrix. We consider the

(offline) fractional covering problem

Θ(h) = min
y≥0

{
dT y �� B̃y ≥ h

}
,

for any requirement h ∈ {0,1}m. The online fractional covering problem is an online version of the

covering problem where the requirements are revealed online in a sequential manner. In particular,

at each step we get a new constraint
∑n

j=1 B̃i j y j ≥ 1 for some i and the algorithm needs to augment

the current solution to satisfy the new requirement in each step.

This problem has been studied in the literature. We refer the reader to Buchbinder and Naor

[52] for an extensive discussion of the problem. Buchbinder and Naor [53] give an online al-

gorithm A for the online fractional covering problem that is O(log n)-competitive (see Theorem

4.1 in [53]). In other words, the cost of the solution given by A for any set and sequence of re-

quirements is at most O(log n) times the cost of the optimal solution of the corresponding offline

covering problem where all the requirements are known upfront. In particular, for any sequence of

requirements τ, we have

max
τ

A(τ)
Θ(τ)

= O(log n),

where A(τ) is the online covering cost and Θ(τ) is the offline covering cost. Note that the com-

petitive ratio guarantee also holds for the case where in each step, we get a subset of constraints

instead of just a single constraint. We consider the algorithm A of Buchbinder and Naor [53] for
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our analysis. Let us introduce some notations that we will use for our construction and analysis.

Notations. Consider a sequence of subsets of constraints given by (S1, . . . ,SR) where Sr ⊆ [m]

and Sr ∩ Sr ′ = ∅ for all r , r′. In particular, in step r we get subset Sr of constraints

n∑
j=1

B̃i j y j ≥ 1 ∀i ∈ Sr .

For brevity of notations, let

hr = 1(Sr ).

In particular, the sequence (h1,h2, . . . ,hR) verifies hr ∈ {0,1}m for all r ∈ [R] and
∑R

r=1 hr ≤ e.

We introduce the following definitions.

1. Online cost. We denote A(h1,h2, . . . ,hr ) the (online) cost of covering the sequence

(h1,h2, . . . ,hr ) using the online algorithm A.

2. Online augmenting cost. We denote A(hr+1 | h1,h2, . . . ,hr ) the extra cost to cover hr+1

using the online algorithm A when the algorithm have already covered the sequence

(h1,h2, . . . ,hr ). By definition, the online augmenting cost is given by

A(hr+1 |h1,h2, . . . ,hr ) = A(h1,h2, . . . ,hr ,hr+1) − A(h1,h2, . . . ,hr ). (3.11)

3. Greedy augmenting cost. We denote Aug(hr+1 | h1,h2, . . . ,hr ) the optimal cost to cover

hr+1 given that the sequence (h1,h2, . . . ,hr ) was already covered by the online algorithm

A. In particular, the greedy augmenting cost is given by

Aug(hr+1 | h1,h2, . . . ,hr ) = min
y≥0

{
dT y �� B̃

(
y + yAr

)
≥ hr+1

}
, (3.12)

where yAr is the online solution corresponding to the cost A(h1,h2, . . . ,hr ).
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4. Offline cost. Denote Θ(h1,h2, . . . ,hr ) the optimal (offline) cost to cover (h1,h2, . . . ,hr )

i.e.,

Θ(h1,h2, . . . ,hr ) = Θ *
,

r∑
i=1

hi+
-
= min

y≥0



dT y

���� B̃y ≥
r∑

i=1

hi



.

Since A is O(log n)-competitive. Then for any sequence (h1,h2, . . . ,hr ),

A(h1,h2, . . . ,hr ) = O(log n) · Θ *
,

r∑
i=1

hi+
-
. (3.13)

3.3.2 Construction of our affine solution.

Similar to the proof of Theorem 3.2.1, we construct a feasible affine solution where we split the

components of [m] into two subsets and cover one using a linear solution and the remaining com-

ponents using a static solution. Consider 1,2, . . . ,L the blocks of components of the the disjoint

constrained budgeted set (3.10). For each block of components, we construct a threshold using the

online fractional covering algorithmA. This threshold defines the expensive components that we

cover using a static solution and inexpensive components that we cover using a linear solution.

Construction of thresholds. Let

T =

{
i ∈ [m]

���� αi ≤ 0
}
,

T c = [m] \ T .

For ` = 1, . . . ,L, denote

Ŝ` = S` ∩ T c.

Let us define the following sets for all ` ∈ [L],

U` =



h ∈ {0,1}m ���

∑
i∈Ŝ`

w`ihi ≤ 1 and hi = 0 ∀i < Ŝ`


.

Note that ⊕L
`=1U` ⊆ U . We construct a greedy sequence (a1, a2, . . . , aL) where each a` is cho-
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sen from some set U` such that it maximizes the online augmenting cost (3.11) of the sequence.

Algorithm 1 describes the procedure in details.

Algorithm 1 Computing a greedy scenario a

1: Initialize L = {1,2, . . . ,L}.
2: for ` = 1, . . . ,L do
3: (s, b) = arg max

s∈L, b∈Us

A(b | a1, a2, . . . , a`−1)

4: Set a` = b, update L = L \ s
5: end for

Algorithm 1 constructs the greedy sequence when the covering constraint matrix is B̃ and

therefore, the guarantee of the online algorithmA gives us a bound of O(log n) between the online

cost,A(a) and offline cost, Θ(a) of the covering problem with B̃ for the greedy sequence, a. The

following lemma relates this cost with OPT for (1.1).

Lemma 3.3.2. For all ` ∈ [L], denote ν` the cost of covering the sequence (a1, a2, . . . , a`) using

the online algorithm A, i.e.,

ν` = A(a1, a2, . . . , a`).

We have

νL = O(log n) · OPT.

Proof. We suppose wlog that the sequence (a1, a2, . . . , aL) belongs respectively toU1,U2, . . . ,UL

and let

a =
L∑
`=1

a` ∈ U .

Then,

Ax∗ + By∗(a) ≥ a.

Denote a =
∑

i∈S ei. Hence,

By∗(a) ≥
∑
i∈S

ei −

m∑
i=1

(1 − αi)ei,
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i.e.,

By∗(a) ≥
∑
i∈S

αiei −
∑
i<S

(1 − αi)ei .

Moreover, B and y∗(a) are non-negative. Hence, By∗(a) ≥ 0 and therefore,

By∗(a) ≥
∑
i∈S

αiei,

which is equivalent to

B̃y∗(a) ≥
∑
i∈S

ei = a.

Therefore,

Θ(a) = min
y≥0

{
dT y

���� B̃y ≥ a
}
≤ dT y∗(a) ≤ OPT.

Finally,

νL = O(log n) · Θ(a) = O(log n) · OPT,

where the first equality follows from (3.13). �

Now, we are ready to construct our feasible affine solution that has a cost O
(

log2 n
log log n

)
times

zAR(U ) using a linear and a static part. Recall for all i ∈ [m], z(ei) the cost of covering component

ei in the second stage as defined in (3.2) and vi an optimal corresponding solution. For all ` =

1, . . . ,L, we consider the following sets of components

Ì =

{
i ∈ S`

���� αi > 0 and
αi z(ei)
w`i

≤ β · (ν` − ν`−1)
}
,

where

β =
8 log n

log log n
,

and

ν` − ν`−1 = A(a` |a1, a2, . . . , a`−1),
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as defined in (3.11). Denote

I =

L⋃
`=1

Ì .

and Ic its complement, i.e., Ic = [m] \ I.

Linear part. We cover a fraction of the components of I using the following linear solution for

any h ∈ U ,

yLin(h) =
∑
i∈I

αihivi . (3.14)

Static part. We use a static solution to cover the remaining components ei where i ∈ Ic and

(1 − αi)+ei for i ∈ I . In particular, similar to (3.4) we consider the following static problem

(xSta, ySta) ∈ arg min
x∈X,y≥0



cT x + dT y

���� Ax + By ≥
∑
i∈Ic

ei +
∑
i∈I

(1 − αi)+ei



, (3.15)

and denote zSta = cT xSta + dT ySta. Our affine solution is given by

x = xSta

y(h) = yLin(h) + ySta, ∀h ∈ U .

(3.16)

We can show that the affine solution (3.16) is feasible for (1.1). In particular, we have

Lemma 3.3.3 (Feasibility). The affine solution in (3.16) is feasible for the adjustable problem

(1.1).

The proof is similar to the proof of Lemma 3.2.2.

3.3.3 Cost analysis.

In the following two lemmas, we analyze the cost of the linear and static parts in our affine

solution (3.16).

Lemma 3.3.4 (Cost of Linear part). The cost of the linear part yLin(h) defined in (3.16) is

O(β log n) · OPT for any h ∈ U .
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Proof. We have,

dT yLin(h) =
L∑
`=1

∑
i∈Ì

αihid
T vi =

L∑
`=1

∑
i∈Ì

αihi z(ei) ≤
L∑
`=1

β · (ν` − ν`−1)
∑
i∈Ì

w`ihi

≤ β

L∑
`=1

(ν` − ν`−1)

= β · νL

= O(β log n) · OPT.

where the first inequality holds because αi z(ei) ≤ βw`i · (ν` − ν`−1) for all i ∈ Ì and ` ∈ [L], the

second inequality holds because
∑

i∈Ì w`ihi ≤ 1 for any h ∈ U and the last equality follows from

Lemma 3.3.2.

�

Lemma 3.3.5 (Cost of Static part). The cost of the static part (xSta, ySta) defined in (3.15) is

O(β log n) · OPT.

Proof. Denote yA the solution provided by the online algorithm A that covers the sequence

(a1, a2, . . . , aL). Consider

J1 =

{
i ∈ [m]

���� (B̃yA )i ≥
1
2

and αi > 0
}
.

We have for all i ∈ J1, 2ByA ≥ αiei, i.e.,

2ByA ≥
∑
i∈J1

αiei .

and from Lemma 3.3.2,

2dT yA = 2νL = O(log n) · OPT.
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Now, we focus on the set of the remaining components. Denote

J2 = I
c \ {T ∪ J1}

and for ` = 1, . . . ,L denote

V` = J2 ∩ S` .

For each ` ∈ [L], we apply the structural result in Lemma 3.2.4 for the subsetV` with parameters

w`i, γ = 2(ν` − ν`−1), cost vector d and constraint matrix B̃. The first condition of Lemma 3.2.4 is

satisfied because for any i ∈ V`,

αi z(ei)
w`i

=
Θ(ei)
w`i

> β(ν` − ν`−1) = 4γ
log n

log log n
.

Consider anyW ⊆ V` such that
∑

i∈W w`i ≤ 1. We have 1(W ) ∈ U`. Moreover, yA covers less

than 1
21(W ). Therefore,

1
2
Θ (W ) ≤ Aug

(
1(W )�� a1, a2, . . . , aL

)
.

Furthermore,

Aug
(
1(W )�� a1, a2, . . . , aL

)
≤ Aug

(
1(W )�� a1, a2, . . . , a`−1

)
≤ A

(
1(W )�� a1, a2, . . . , a`−1

)
≤ A

(
a`�� a1, a2, . . . , a`−1

)
= ν` − ν`−1,

where the first inequality holds because the cost of covering 1(W ) given the online solution for

(a1, a2, . . . , aL) is smaller than the cost of covering 1(W ) given the online solution for

(a1, a2, . . . , a`−1). The second inequality holds because the cost of the online algorithm is less than

the offline cost and the third one follows from Step 3 in the construction of the greedy scenario a
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in Algorithm 1. Hence,

Θ (W ) ≤ 2(ν` − ν`−1) = γ.

Therefore, the second condition of Lemma 3.2.4 is also satisfied and consequently,

Θ(V`) ≤ 4γ
log n

log log n
= β(ν` − ν`−1).

By taking the sum over all ` = 1, . . . ,L, we get

L∑
`=1

Θ(V`) ≤ βνL = O(β log n) · OPT.

For ` ∈ [L], denote y` an optimal solution corresponding to Θ(V`). In particular,

L∑
`=1

By` ≥
∑
i∈J2

αiei .

By feasibility of the optimal solution, we have

Ax∗ + By∗(0) ≥ 0,

i.e.,

By∗(0) ≥
m∑

i=1

(αi − 1)ei .

Moreover, since B and y∗(0) are non-negative, we have

By∗(0) ≥
m∑

i=1

(αi − 1)+ei .
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Therefore, we have the following candidate static solution for (3.15):

xSta = x∗

ySta = y∗(0) + 2yA +
L∑
`=1

y` .

Putting it all together,

Ax∗ + By∗(0) + 2ByA +
L∑
`=1

By` ≥
m∑

i=1

(1 − αi)ei +

m∑
i=1

(αi − 1)+ei +
∑
i∈J1

αiei +
∑
i∈J2

αiei

=

m∑
i=1

(1 − αi)+ei +
∑

i∈J1∪J2

αiei

=
∑
i∈I

(1 − αi)+ei +
∑
i∈Ic

(1 − αi)+ei +
∑

i∈J1∪J2

αiei

=
∑
i∈I

(1 − αi)+ei +
∑
i∈τ

(1 − αi)+ei +
∑

i∈J1∪J2

(1 − αi)+ei + αiei

≥
∑
i∈I

(1 − αi)+ei +
∑
i∈τ

ei +
∑

i∈J1∪J2

ei

=
∑
i∈I

(1 − αi)+ei +
∑
i∈Ic

ei

where the last inequality holds because αi ≤ 0 for all i ∈ τ and (1−αi)++αi ≥ 1 for all i ∈ J1∪J2.

Therefore,

zSta ≤ cT x∗ + dT y∗(0) + 2dT yA +
L∑
`=1

z(V`)

≤ OPT +O(log n) · OPT +O(β log n) · OPT

= O(β log n) · OPT.

�
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Proof of Theorem 3.3.1. Lemma 3.3.3 show that our affine solution (3.16) is feasible for the

adjustable problem (1.1). Lemma 3.3.4 and 3.3.5 show that the cost of the feasible affine solution

is less than

O(β log n) · OPT +O(β log n) · OPT = O
(

log2 n
log log n

)
· OPT

which implies that,

zAff(U ) = O
(

log2 n
log log n

)
· zAR(U ).

We would like to note that Gupta et al. [51] give O(log n)-approximation to (1.1) in the special

case A,B ∈ {0,1}m×n, d = λc and w`i = w are all `, i for some constant w. Therefore, for

this special case the bound of [51] is stronger than our bound in Theorem 3.3.1. However, their

algorithm does not give a functional policy approximation. Here, our focus is different, namely,

to analyze the performance of affine policies that are widely used in practice and exhibit strong

empirical performance. Our analysis shows that the performance of affine policies for disjoint

constrained budgeted sets is near-optimal and nearly matches the hardness of the problem. Note

that our bound in Theorem 3.3.1 is not necessarily tight. It is an interesting open question to

study if affine policies also give an optimal approximation for this more general class of budgeted

uncertainty sets.

3.4 General intersection of budgeted uncertainty sets.

In this section, we consider the general intersection of budget of uncertainty sets given by (1.6)

U =



h ∈ [0,1]m ���

∑
i∈S`

w`ihi ≤ 1 ∀` ∈ [L]


,

where w` ∈ [0,1]m and S` for ` ∈ [L] is a general family of subsets of [m]. This class is a general-

ization of the single budget of uncertainty set (1.5). It captures many important sets including CLT

sets considered in Bertsimas and Bandi [37] and inclusion-constrained budgeted sets considered

in Gounaris et al. [38]. In this section , we study the performance of affine policies for intersection
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of budget of uncertainty sets (1.6) and show strong theoretical guarantees. We start by the case

when the set (1.6) verifies some symmetric properties ( permutation invariant sets) and then we

give our results for the general form (1.6).

3.4.1 Permutation Invariant Sets.

We consider intersection of budgeted sets that are permutation invariant.

Definition 3.4.1 (Permutation Invariant Sets). We say that U is a permutation invariant set if

x ∈ U implies that for any permutation τ of {1,2, . . . ,m}, xτ ∈ U where xτi = xτ(i).

This class of sets captures many important sets including CLT sets that have been considred in

Bertsimas and Bandi [37]. Note that a CLT set is given by

U =


h ∈ [0,1]m ���

∑
i∈S

hi ≤ Γ ∀S ⊆ [m], |S| = k


, (3.17)

for some k ∈ N. The following theorem gives our performance bound for affine policies under the

class of intersection of budgeted sets that are permutation invariant.

Theorem 3.4.2. Consider the two-stage adjustable problem (1.1) whereU is the intersection of L

budget constraints (1.6). Suppose thatU is permutation invariant set and X is a polyhedral cone.

Then,

zAff(U ) = O
(
log L ·

log n
log log n

)
· zAR(U ).

Proof. Our proof relies on a geometric property that we show for budgeted uncertainty sets that

are permutation invariant. In particular, we show that for anyU permutation invariant, there exists

a (single) budget of uncertainty setV of the form (1.5) such that

1
4 log L

· V ⊆ U ⊆ 2V . (3.18)
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SinceU is permutation invariant,

γe ∈ arg max
{
eTh

���� h ∈ U
}
,

for some γ ∈ [0,1]. Consider

ξi
i.i.d.
∼ Ber(γ) i = 1, . . . ,m,

i.e., ξ1, ξ2, . . . , ξm are i.i.d. Bernoulli random variables of parameter γ. Let

ξ = (ξ1, ξ2, . . . , ξm).

Consider the following budget of uncertainty set

Ṽ =


h ∈ [0,1]m

�����

m∑
i=1

hi ≤

m∑
i=1

ξi



.

Note that Ṽ is random depending on the realization of ξ1, ξ2, . . . , ξm . We show that

P
(

1
4 log L

· Ṽ ⊆ U ⊆ 2Ṽ
)
> ε,

for some constant ε > 0 which implies the existence of Ṽ such that (3.18) is verified. For that

purpose, we show first that the right inclusion holds with a constant probability and then the left

one holds with high probability.

Claim 3.4.3. P
(
U ⊆ 2Ṽ

)
≥ 1 − e−

1
8 .

Let us prove the above claim. Note that,

γm = max
h∈U

eTh.
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Suppose that,

γm ≤ 2eTξ .

Then for all h ∈ U ,

eTh ≤ 2eTξ

i.e., for all h ∈ U

h ∈ 2Ṽ .

Hence, γm ≤ 2eTξ implies thatU ⊆ 2Ṽ . Therefore,

P
(
U ⊆ 2Ṽ

)
≥ P

(
2eTξ ≥ γm

)
= P *

,

m∑
i=1

ξi ≥
1
2
γm+

-
.

We know that E
(∑m

i=1 ξi
)
= γm. Therefore, from the Chernoff inequality in Lemma C.2.2, we

have,

P *
,

m∑
i=1

ξi ≥
1
2
γm+

-
≥ 1 − exp

(
−
γm
8

)
≥ 1 − e−

1
8 .

where the last inequality holds because γm ≥ 1 since ei ∈ U for all i andU is convex.

Claim 3.4.4. P
(
Ṽ ⊆ 4 log L · U

)
≥ 1 − 1

L .

Note that ξ is an extreme point of Ṽ and that all pareto extreme points of Ṽ are just permutation of

ξ . Moreover, we know thatU is permutation invariant set, hence ifU contains ξ thenU contains

all pareto extreme points ofU and consequently containsU by down-monotonicity. Therefore,

P
(
Ṽ ⊆ 4 log L · U

)
≥ P

(
ξ ∈ 4 log L · U

)
= P

(
νT
` ξ ≤ 4 log L, ∀` ∈ [L]

)
= 1 − P

(
∃` ∈ [L], νT

` ξ > 4 log L
)

≥ 1 −
L∑
`=1

P
(
νT
` ξ > 4 log L

)
,
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where the last inequality follows from a union bound. We have E(νT
`
ξ ) = νT

`
γe ≤ 1 ≤ log L for

L ≥ 2 because γe is a feasible point inU . Therefore, from Lemma C.2.1 with δ = 3.

P
(
νT
` ξ > 4 log L

)
≤

(
e3

44

) log L

≤
(
e−2

) log L
=

1
L2 .

We conclude that,

P
(
Ṽ ⊆ 4 log L · U

)
≥ 1 −

L∑
`=1

1
L2 = 1 −

1
L
.

Hence, from Claim 3.4.3 and Claim 3.4.4, there exists a budget of uncertainty set Ṽ with a non

zero probability that verifies the inclusion in (3.18). Therefore,

zAff(U ) ≤ 2 · zAff(Ṽ )

= 2 · O
(

log n
log log n

)
· zAR(Ṽ )

≤ 2 · O
(

log n
log log n

)
· 4 log L · zAR(U ) = O

(
log n

log log n
· log L

)
· zAR(U ),

where the first inequality holds because U ⊆ 2Ṽ and 2 · X ⊆ X (X is a polyhedral cone). The

first equality follows from Theorem 3.2.1 because Ṽ is a budget of uncertainty set, and finally the

last inequality holds because Ṽ ⊆ 4 log L · U and 4 log L · X ⊆ X (X is a polyhedral cone). �

We would like to note that the result of Theorem 3.4.2 extends as well to the class of intersection

of budgeted sets that are scaled permutation invariant. We say that U is a scaled permutation

invariant set if there exists λ ∈ Rm
+ andV a permutation invariant set such that

U = diag(λ) · V .

In fact, for a given scaled permutation invariant set U , it is possible to scale the two-stage ad-
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justable problem (1.1) and get a new problem where the uncertainty set is permutation invariant.

Indeed, suppose U = diag(λ) · V where V is a permutation invariant set; by multiplying the

constraint matrices A and B by diag(λ)−1, we get a new problem where the uncertainty set now

is permutation invariant. The performance of affine policy is not affected by this scaling and the

bound given by Theorem 3.4.2 still hold.

3.4.2 General intersection of budgets.

Consider the general intersection of budgeted sets (1.6) which is given by

U =



h ∈ [0,1]m ���

∑
i∈S`

w`ihi ≤ 1 ∀` ∈ [L]


.

We show that affine policy gives a worst-case bound of O
(
L · log n

log log n

)
where L is the number of

constraints inU . In particular, we have the following theorem.

Theorem 3.4.5. Consider the two-stage adjustable problem (1.1) whereU is the intersection of L

budgeted sets given by (1.6). Suppose that X is a polyhedral cone. Then,

zAff(U ) = O
(
L ·

log n
log log n

)
· zAR(U ).

Proof. Denote for all ` ∈ [L],

w` =
∑
i∈S`

w`iei

and let

w̄ =
1
L

L∑
`=1

w` .

Consider the following budget of uncertainty set,

V =

{
h ∈ [0,1]m

�����
w̄Th ≤ 1

}
.

We show that U ⊆ V ⊆ L · U . Suppose h ∈ U . Then, for any ` ∈ [L], we have wT
`
h ≤ 1.
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Therefore, by summing up all these inequalities and dividing by L, we get w̄Th ≤ 1, i.e., h ∈ V .

Hence U ⊆ V . Conversely, suppose h ∈ V . For any ` ∈ [L], we have wT
`
h ≤

∑L
`=1 w

T
`
h ≤ L,

hence h ∈ L · U and consequentlyV ⊆ L · U . Therefore,

zAff(U ) ≤ zAff(V )

= O
(

log n
log log n

)
· zAR(V )

≤ O
(

log n
log log n

)
· L · zAR(U ),

where the first inequality holds because U ⊆ V , the second one is a consequence of Theorem

3.2.1 since V is a budget of uncertainty set of the form (1.5), and finally the last inequality holds

becauseV ⊆ L · U and L · X ⊆ X (X is a polyhedral cone).

�

3.5 Faster algorithm for near-optimal affine solutions.

In this section, we present an algorithm to compute an approximate affine policy for (1.1) un-

der budget of uncertainty sets, that is significantly faster than solving the optimization program

(A.1) that computes the optimal affine policy. Our algorithm is based on the analysis of the per-

formance of affine policies that shows the existence of a good affine solution that satisfies certain

nice structural properties. In particular, our construction of approximate affine solution in Section

3.1 partitions the components into expensive and inexpensive components based on a threshold.

We cover a fraction of the inexpensive components using a linear solution and the remaining com-

ponents using a static solution. In particular, we show that there exists an affine solution with such

a structure and cost at most O
(
log n/ log log n

)
times the optimal optimal cost of (1.1) for some

partition of components into expensive and inexpensive. Based on this structure, we give a faster

algorithm to compute an approximate affine solution for budget of uncertainty sets.
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3.5.1 Our algorithm.

LetU be the budget of uncertainty set (1.5) given by

U =


h ∈ [0,1]m ���

m∑
i=1

wihi ≤ 1


.

Recall from the proof of Theorem 3.2.1, we construct our candidate affine solution by partitioning

the components of [m] into two subsets I and its complement Ic. The linear solution (3.3) is given

by

yLin(h) =
∑
i∈I

αihivi

where

I =

{
i ∈ [m]

����
αi z(ei)
wi

≤ β · OPT
}
,

and for all i ∈ [m],

αi = 1 − (Ax∗)i,

vi ∈ arg min
y≥0

{
dT y

���� By ≥ ei

}
.

Let

Y = [v1 | v2 | . . . |vm].

Based on the structure of the linear part, we propose the following approximate affine solution:

y(h) = Y · diag(α) · h + q

where Y is a constant that can be computed efficiently upfront and αi for i ∈ [m] are non-negative

variables. This structure captures our candidate solution (3.3). Hence, we reduce the number of

second stage variables from O(nm) in (1.2) to O(n + m). Moreover, the non-negativity constraint

on y(h) reduces to α ≥ 0 and q ≥ 0 in this special class of affine solutions. Restricting to the
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above class of affine solutions, we have the following optimization problem.

min
x,α,q

cT x +max
h∈U

dT (
Y · diag(α) · h + q

)
Ax + B

(
Y · diag(α) · h + q

)
≥ h, ∀h ∈ U

x ∈ X,α ∈ Rm
+ , q ∈ Rn

+.

(3.19)

Using similar reformulations as in Lemma (A.0.2), the above problem can be formulated as the

following LP:

min cT x + z

z − dT q ≥ rT v

RT v ≥ Y · diag(α)T d

Ax + Bq ≥ VT r

RTV ≥ Im − BY · diag(α)

x ∈ X, v ∈ RL
+, U ∈ RL×n

+ , V ∈ RL×m
+

α ∈ Rm
+ q ∈ Rn

+, z ∈ R.

(3.20)

The above formulation is significantly faster than solving (1.2) as we observe in our numerical

experiments. Algorithm 2 describes the detail of our algorithm.
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Algorithm 2 Computing Approximate Affine Policy
1: for i = 1, . . . ,m do

2:

vi ∈ arg min
y≥0

{
dT y

���� By ≥ ei

}
.

3: end for

4:

Y = [v1 | v2 | . . . |vm].

5: Solve the LP :
zAlg = min cT x + z

z − dT q ≥ rT v

RT v ≥ Y · diag(α)T d

Ax + Bq ≥ VT r

RTV ≥ Im − BY · diag(α)

x ∈ X, v ∈ RL
+, U ∈ RL×n

+ , V ∈ RL×m
+

α ∈ Rm
+ q ∈ Rn

+, z ∈ R.

6: return zAlg.

We would like to note that since our approximate affine solution is based on the construction

of affine policy in our analysis, the worst-case approximation bound for our approximate affine

solution is also O( log n
log log n ).

3.5.2 Numerical experiments.

We study the empirical performance of our algorithm for budget of uncertainty sets both from

the perspective of computation time and the quality of the solution.

Experimental setup. We use the same test instances as in Ben-Tal et al. [41]. In particular, we

choose n = m, c = d = e and A = B where B is randomly generated as B = Im + G,where Im is
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the identity matrix and G is a random normalized Gaussian, i.e. Gi j = |Yi j |/
√

m where Yi j are i.i.d.

standard Gaussians. Let consider the following budget of uncertainty sets:

U1 =


h ∈ [0,1]m

�����

m∑
i=1

hi ≤ k



(3.21)

U2 =


h ∈ [0,1]m

�����

m∑
i=1

wihi ≤ 1


. (3.22)

For our numerical experiments, we choose k = c
√

m with c a random uniform constant be-

tween 1 and 2 for the first uncertainty set U1. For the second uncertainty set U2, we choose w

a normalized Gaussian vector, i.e., wi = |Gi |/‖G‖2 where Gi are i.i.d. standard Gaussians. We

consider values of m from m = 10 to m = 200 in increments of 10 and consider 20 instances for

each value of m.

We compute the optimal affine solution by solving the LP formulation (A.1). We compute our

approximate affine solution returned by Algorithm 2. We denote zAlg(U ) and zAff(U ) respectively

the cost of our affine solution returned by Algorithm 2 and the cost of the optimal affine solution.

For each m from m = 10 to m = 200, we report the average ratio zAlg(U )/zAff(U ), the running

time of Algorithm 2 in seconds (TAlg(s)) and the running time of the optimal affine policy in

seconds (Taff(s)). We present the results of our computational experiments in Table 3.1. The

numerical results are obtained using Gurobi 7.0.2 on a 16-core server with 2.93GHz processor and

56GB RAM.

Results. We observe from Table 3.1 that our algorithm is significantly faster than the optimal affine

policy. In fact, Algorithm 2 scales very well and the average running time is only a few seconds

even for large values of m. On the other hand, computing the optimal affine solution becomes

computationally challenging for large values of m. For example, for m = 100, the average running

time is around 3 minutes for U1 and more than 11 minutes for U2. For m = 200, the average

running time is more than an hour forU1 and more than 3 hours forU2. Furthermore, we observe
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that the gap between our affine solution and the optimal one is under 15%. Moreover, this gap does

not increase with the dimension of m, thereby confirming that our affine solution performs well

even for large values of m.

m Taff(s) TAlg(s) zAlg/zAff
10 0.009 0.022 1.146
20 0.137 0.105 1.111
30 0.304 0.300 1.155
40 1.268 0.692 1.126
50 4.007 1.370 1.120
60 9.461 3.089 1.135
70 17.38 3.417 1.147
80 44.75 5.626 1.103
90 80.20 10.18 1.114

100 153.3 13.23 1.149
200 5137 69.33 1.061

(a) Budget of uncertainty (3.21)

m Taff(s) TAlg(s) zAlg/zAff
10 0.011 0.021 1.108
20 0.200 0.110 1.092
30 1.219 0.353 1.103
40 4.887 0.812 1.093
50 17.13 1.388 1.096
60 54.03 2.259 1.086
70 129.7 3.625 1.088
80 248.1 5.069 1.082
90 390.9 6.381 1.080

100 692.9 8.705 1.082
200 ** 68.62 **

(b) Budget of uncertainty (3.22)

Table 3.1: Comparison on the performance and computation time of the optimal affine policy and
our approximate affine policy. For 20 instances, we compute zAlg(U )/zAff(U ) for U the budget
of uncertainty sets (3.21) and (3.22). Here, TAlg(s) denotes the running time for our approximate
affine policy and Taff(s) denotes the running time for affine policy in seconds. ∗∗ denotes the cases
when we set a time limit of 3 hours. These results are obtained using Gurobi 7.0.2 on a 16-core
server with 2.93GHz processor and 56GB RAM.

Remark. The formulation (3.19) provides an approximate affine policy for solving our two-stage

adjustable problem under any uncertainty set and not only a single budget of uncertainty set. This

approximate affine policy is significantly faster than computing optimal affine policy and has a

worst-case approximation bound of O( log n
log log n ) for single budget of uncertainty set. While our

analysis does not provide theoretical guarantees on the performance of this approximate affine

policy for general uncertainty sets, it still gives a feasible policy that is significantly faster than

computing the optimal affine policy. Moreover, we observe in our extended numerical experiments

in Appendix C.3 that the empirical performance of our approximate solution is still good even for

intersection of budget of uncertainty sets and the gap is within 20% of the optimal affine policy.

However, for general conic sets including ellipsoidal uncertainty sets, the gap between optimal

affine policy and our approximate affine policy could be large for some cases (up to a factor of
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two). We refer the reader to Appendix C.3 for more details.

3.6 General case of recourse matrix

In this section, we consider the two-stage adjustable problem (1.1) with general recourse matrix

B where we relax the non-negativity assumption on B. In particular, we consider cases where some

of the coefficients in B could be negative. We show that in this case, the gap between the optimal

affine policy given by (1.2) and the optimal adjustable problem (1.1) could be arbitrary large.

Therefore, the non-negativity assumption on the coefficients of B is crucial for affine policies to

have a good performance with respect to the optimal adjustable solution.

We consider a two-stage lot-sizing problem to construct a family of instances of (1.1) with

general recourse matrix B such that the gap between the optimal adjustable solution and optimal

affine policies is unbounded.

Two-stage robust lot-sizing problem. We are given a set of m nodes with pairwise distances di j

between node i and node j. Each node i ∈ [m] has cost ci per unit inventory at node i and has a

capacity of Ki. Each node i faces an uncertain demand hi that is realized in the second-stage. In the

first-stage, the decision maker needs to decide the inventory levels, xi for each node i ∈ [m]. We

model uncertain demand as an adversarial selection from a pre-specified uncertainty set U after

the adversary observes the first-stage inventory decisions. In the second-stage, the decision maker

can make recourse transportation decisions after observing the uncertain demand to satisfy it using

the first-stage inventory. The goal is to make the first-stage inventory decisions such that the sum of

first-stage inventory costs and the worst case second-stage transportation costs is minimized. This

problem has been studied extensively in the literature (see for example Bertsimas and de Ruiter

[17]).

We can formulate the above problem in our framework of (1.1) where the recourse matrix B is
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a network matrix with entries in {−1,0,1}. The epigraph formulation is the following.

min
x,z

m∑
i=1

ci xi + z

z ≥
m∑

i=1

m∑
j=1

di j yi j (h)

xi +

m∑
j=1

y ji (h) −
m∑

j=1

yi j (h) ≥ hi, ∀i ∈ [m], ∀h ∈ U

0 ≤ xi ≤ Ki, ∀i ∈ [m]

y(h) ∈ Rm2

+ , ∀h ∈ U .

(3.23)

Family of large gap instances. We consider the following family of instances for the robust

lot-sizing problem (3.23). Consider a bipartite network (J1, J2) where |J1 | = |J2 | = m/2 (m is

even). We consider a budget of uncertainty set to model demand uncertainty. The inventory cost

ci, capacity Ki for all i ∈ [m], distances di j , i, j ∈ [m] and the formulation for the uncertainty set

are given as follows.

ci =




0 if i ∈ J1

1 if i ∈ J2



.

Ki = 1 ∀i ∈ [m]

di j =




0 if i ∈ J1, j ∈ J2

∞ otherwise.



.

U =


h ∈ [0,1]m

�����

m∑
i=1

hi ≤ m/2


.

(3.24)

For the above family of instances (3.24), we show that the gap between optimal affine and ad-

justable policies is unbounded. In particular, we have the following lemma.
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Lemma 3.6.1. For the family of instances (3.24), the optimal adjustable solution is zAR(U ) = 0

and the optimal affine solution is zAff(U ) = m/2 − 1. In particular the gap between affine and

adjustable policies is unbounded.

The proof of Lemma 3.6.1 is presented in Appendix C.4. Lemma 3.6.1 shows that the assump-

tion on the non-negativity of the recourse matrix B is necessary and crucial to obtain the theoretical

bounds in Table 1.1. Relaxing this assumption can result in an unbounded gap. It is an interest-

ing question to develop approximation algorithms and policies for two-stage robust problem with

provable theoretical guarantees when the recourse matrix has negative components, or in particular

is a network matrix.

3.7 General case of uncertainty in the constraint matrix.

In this section, we consider the case where the left hand side constraint matrix A in (1.1) depend

on the uncertain parameter h. We show that even in the case where A(h) is an affine function of

h, the gap between the optimal affine solution and the optimal adjustable solution can be bad and

scales linearly with the dimensions of the problem n and m. This shows that our results in Table

1.1 do not extend to the case of uncertainty in the left hand side. Recall the two-stage adjustable

problem (1.1) and suppose that the first stage constraint matrix A depends on h, i.e.,

zAR(U ) = min
x

cT x +max
h∈U

min
y(h)

dT y(h)

A(h)x + By(h) ≥ h, ∀h ∈ U

x ∈ X

y(h) ∈ Rn
+, ∀h ∈ U .

(3.25)

Suppose that A(h) ∈ Rm×n is an affine function of h, i.e.,

A(h) =
m∑

i=1

hiAi + A0
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where for all i = 0, . . . ,m, Ai ∈ Rm×n.

Family of Large Gap Instances. We consider the following family of instances of problem

(3.25),

n = m X = Rm
+ c = 0 d = e

A0 = 0 Ai = (e − ei)eT , ∀i ∈ [m] B = Im

U =
{
h ∈ [0,1]m}

.

(3.26)

Note that the uncertainty setU is a box of uncertainty set which is a special case of the budget of

uncertainty set (3.1) with k = m. Even under this special case, we show that the gap between the

optimal affine solution and the optimal adjustable solution is bad and grows linearly with m. In

particular, we have the following lemma.

Lemma 3.7.1. For the family of instances (3.26), the optimal adjustable solution is zAR(U ) =

1 and the optimal affine solution is zAff(U ) = m/2. In particular, the gap between affine and

adjustable policies grows linearly with the dimension of the problem m.

The proof of Lemma 3.7.1 is presented in Appendix C.5. Lemma 3.7.1 shows that our results

on the performance of affine policies in Table 1.1 do not extend to the class of problems with left

hand side uncertainty where the gap could be as bad as Ω(m).
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Chapter 4: Piecewise affine policies

4.1 Introduction

We consider the problem of designing piecewise affine policies for two-stage adjustable robust

linear optimization problems under right-hand side uncertainty. It is well known that a piecewise

affine policy is optimal although the number of pieces can be exponentially large. A significant

challenge in designing a practical piecewise affine policy is constructing good pieces of the uncer-

tainty set. Here we address this challenge by introducing a new framework in which the uncer-

tainty set is “approximated” by a “dominating” simplex. The corresponding policy is then based

on a mapping from the uncertainty set to the simplex. Although our piecewise affine policy has

exponentially many pieces, it can be computed efficiently by solving a compact linear program

given the dominating simplex. Furthermore, we can find the dominating simplex in a closed form

if the uncertainty set satisfies some symmetries and can be computed using a MIP in general. The

performance of our policy is significantly better than the affine policy for many important uncer-

tainty sets, such as ellipsoids and norm-balls, both theoretically and numerically. For instance,

for hypersphere uncertainty set, our piecewise affine policy can be computed by an LP and gives a

O(m1/4)-approximation whereas the affine policy requires us to solve a second order cone program

and has a worst-case performance bound of O(
√

m).

More specifically, recall the two-stage adjustable robust problem (1.1) with covering con-

straints and uncertain right-hand side:
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zAR (U ) = min
x

cT x +max
h∈U

min
y(h)

dT y(h)

Ax + By(h) ≥ h, ∀h ∈ U

x ∈ Rn
+

y(h) ∈ Rn
+, ∀h ∈ U ,

As expressed in the above formulation, we refer to zAR (c, d,A,B,U ) as zAR (U ) in this chap-

ter for the sake of simplicity. Moreover, we assume in this chapter that the first-stage decision x

belongs to the non-negative orthant, i.e., x ∈ X = Rn
+. We assume that the uncertainty set U

satisfies the following assumption.

Assumption 1. U ⊆ [0,1]m is convex, full-dimensional with ei ∈ U for all i = 1, . . . ,m, and

down-monotone, i.e., h ∈ U and 0 ≤ h′ ≤ h implies that h′ ∈ U .

We would like to emphasize that the above assumption can be made without loss of generality

since we can appropriately scale the uncertainty set, and consider a down-monotone completion,

without affecting the two-stage problem (1.1).

Recall that in a Piecewise affine policies (PAP), we consider piecesUi, i ∈ [k] ofU such that

Ui ⊆ U andU is covered by the union of all pieces. For eachUi, we have an affine solution y(h)

where h ∈ Ui. PAP are significantly more general than static and affine policies. For problem

(1.1), withU being a polytope, a PAP is known to be optimal. However, the number of pieces can

be exponentially large. Moreover, finding the optimal pieces is, in general, an intractable task. In

fact, Bertsimas and Caramanis [39] prove that it is NP-hard to construct the optimal pieces, even

for pieceiwse policies with two pieces, for two-stage robust linear programs. In this chapter, we do

not attempt to directly find a partition ofU , but we present a tractable new framework to construct

piecewise affine policies (PAP) via dominating the uncertainty set with a simplex, solving our

robust problem over the simplex and recovering a solution overU .

The rest of this chapter is organized as follow. In Section 4.2, we present the new framework for

approximating the two-stage adjustable robust problem (1.1) via dominating uncertainty sets and
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constructing piecewise affine policies. In Section 4.3, we provide improved approximation bounds

for (1.1) for scaled permutation invariant sets. We present the case of general uncertainty sets in

Section 4.4. In Section 4.5, we present a family of lower-bound instances where our piecewise

affine policy has the worst performance bound and finally in Section 4.6, we present a computa-

tional study to test our policy and compare it to an affine policy overU .

4.2 A new framework for piecewise affine policies

We present a piecewise affine policy to approximate the two-stage adjustable robust prob-

lem (1.1). Our policy is based on approximating the uncertainty set U with a simple set Û such

that the adjustable problem (1.1) can be efficiently solved over Û . In particular, we select Û such

that it dominates U and it is close to U . We make these notions precise with the following

definitions.

Definition 4.2.1. (Domination) Given an uncertainty set U ⊆ Rm
+ , Û ⊆ Rm

+ dominates U if for

all h ∈ U , there exists ĥ ∈ Û such that ĥ ≥ h.

Definition 4.2.2. (Scaling factor) Given a full-dimensional uncertainty setU ⊆ Rm
+ and Û ⊆ Rm

+

that dominatesU . We define the scaling factor β(U ,Û ) as following

β(U ,Û ) = min
{
β > 0 | Û ⊆ β · U

}
.

For the sake of simplicity, we denote the scaling factor β(U ,Û ) by β in the rest of this chapter.

The scaling factor always exists since U is full-dimensional. Moreover, it is greater than one

because Û dominates U . Note that the dominating set Û does not necessarily contain U . We

illustrate this in the following example.

Example. Consider the uncertainty set

U = {h ∈ Rm
+ | | |h | |2 ≤ 1}. (4.1)
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which is the intersection of the unit `2-norm ball and the non-negative orthant. We show later in

this chapter (Proposition 4.3.6) that the simplex Û dominatesU where

Û = m
1
4 · conv

(
e1, . . . , em,

1
√

m
e

)
. (4.2)

Figures 4.1 and 4.2 illustrate the sets U and Û for m = 3. Note that Û does not contain U but

only dominatesU . This is an important property in our framework.

Figure 4.1: The uncertainty set (4.1) Figure 4.2: The dominating set Û (4.2)

The following theorem shows that solving the adjustable problem over the set Û gives a β-

approximation to the two-stage adjustable robust problem (1.1).

Theorem 4.2.3. Consider an uncertainty set U that verifies Assumption 1 and Û ⊆ Rm
+ that

dominates U . Let β be the scaling factor of (U ,Û ). Moreover, let zAR(U ) and zAR(Û ) be the

optimal values for (1.1) corresponding toU and Û , respectively. Then,

zAR(U ) ≤ zAR(Û ) ≤ β · zAR(U ).

The proof of Theorem 4.2.3 is presented in Appendix E.1.
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4.2.1 Choice of Û

Theorem 4.2.3 provides a new framework for approximating the two-stage adjustable robust

problem ΠAR(U ) (1.1). Note that we require Û to be such that it dominatesU and that ΠAR(Û )

can be solved efficiently over Û . In fact, the latter is satisfied if the number of extreme points of

Û is small and is explicitly given (typically polynomial of m). In our framework, we choose the

dominating set to be a simplex of the following form

Û = β · conv (e1, . . . , em, v) , (4.3)

for some v ∈ U . The coefficient β and v ∈ U are chosen such that Û dominatesU . For a given

Û (i.e., β and v ∈ U), the adjustable robust problem, ΠAR(Û ) (1.1) can be solved efficiently as it

can be reduced to the following LP:

zAR(Û ) = min cT x + z

z ≥ dT yi, ∀i ∈ [m + 1]

Ax + Byi ≥ βei, ∀i ∈ [m]

Ax + Bym+1 ≥ βv

x ∈ Rn
+, yi ∈ Rn

+, ∀i ∈ [m + 1].

4.2.2 Mapping points inU to dominating points

Consider the following piecewise affine mapping for any h ∈ U :

∀h ∈ U , ĥ(h) = βv + (h − βv)+. (4.4)

We show that this maps any h ∈ U to a dominating point contained in the down-monotone com-

pletion of 2 · Û . First, the following structural result is needed.

Lemma 4.2.4. (Structural Result) Consider an uncertainty setU that verifies Assumption 1.
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a) Suppose there exists β and v ∈ U such that Û = β · conv (e1, . . . , em, v) dominates U .

Then,
1
β

m∑
i=1

(
hi − βvi

)+
≤ 1, ∀h ∈ U . (4.5)

b) Moreover, if there exists β and v ∈ U satisfying (4.5). Then,

2β · conv (e1, . . . , em, v) dominatesU .

The proof of Lemma 4.2.4 is presented in Appendix E.2.

The following lemma shows that the mapping in (4.4) maps any h ∈ U to a dominating point

that belongs to the down-monotone completion of 2 · Û .

Lemma 4.2.5. For all h ∈ U , ĥ(h) as defined in (4.4) is a dominating point that belongs to the

down-monotone completion of 2 · Û .

Proof. It is clear that ĥ(h) dominates h because ĥ(h) ≥ βv + (h − βv) = h. Moreover, for all

h ∈ U , we have

ĥ(h) = βv +
1
β

m∑
i=1

(hi − βvi)+ βei

≤ βv︸︷︷︸
∈Û

+
1
β

m∑
i=1

(hi − βvi)+ βei + (1 −
1
β

m∑
i=1

(hi − βvi)+) βv︸                                                             ︷︷                                                             ︸
∈Û

∈ 2 · Û

where the inequality

1 −
1
β

m∑
i=1

(hi − βvi)+ ≥ 0.

follows from part a) of Lemma 4.2.4. Therefore, ĥ(h) belongs to the down-monotone completion

of 2 · Û . �

4.2.3 Piecewise affine policy

We construct a piecewise affine policy over U from the optimal solution of ΠAR(Û ) based on

the piecewise affine mapping in (4.4). Let x̂, ŷ(ĥ) for ĥ ∈ Û be an optimal solution of ΠAR(Û ).
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Since Û is a simplex, we can compute this efficiently.

The piecewise affine policy (PAP)

x = 2x̂

y(h) =
1
β

m∑
i=1

(
hi − βvi

)+ ŷ(βei) + ŷ(βv), ∀h ∈ U .
(4.6)

The following theorem shows that the above PAP gives a 2β-approximation for (1.1).

Theorem 4.2.6. Consider an uncertainty setU that verifies Assumption 1 and

Û = β · conv (e1, . . . , em, v)

be a dominating set where v ∈ U . The piecewise affine solution in (4.6) is feasible and gives a

2β-approximation for the adjustable robust problem (1.1).

Proof. First, we show that the policy (4.6) is feasible. We have,

Ax + By(h) = 2Ax̂ + B *
,

1
β

m∑
i=1

(
hi − βvi

)+ ŷ(βei) + ŷ(βv)+
-

=
(
Ax̂ + Bŷ(βv)

)
+ Ax̂ +

1
β

m∑
i=1

(
hi − βvi

)+ Bŷ(βei)

≥
(
Ax̂ + Bŷ(βv)

)
+

1
β

m∑
i=1

(
hi − βvi

)+ (
Bŷ(βei) + Ax̂

)
≥ βv +

m∑
i=1

(
hi − βvi

)+ ei

≥ βv +
m∑

i=1

(
hi − βvi

)
ei = h,

where the first inequality follows from part a) of Lemma 4.2.4 and the non-negativity of x̂ and A.

The second inequality follows from the feasibility of x̂, ŷ(ĥ).
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To compute the performance of (4.6), we have for any h ∈ U ,

cT x + dT y(h) = 2 *
,
cT x̂ + dT *

,

1
2β

m∑
i=1

(
hi − βvi

)+ ŷ(βei) +
1
2
ŷ(βv)+

-
+
-

≤ 2 *
,
cT x̂ +max

ĥ∈Û
dT ŷ(ĥ) *

,

1
2β

m∑
i=1

(
hi − βvi

)+
+

1
2

+
-

+
-

≤ 2
(
cT x̂ +max

ĥ∈Û
dT ŷ(ĥ)

)
= 2 · zAR(Û ),

where the second last inequality follows from part a) of Lemma 4.2.4. From Theorem 4.2.3,

zAR(Û ) ≤ β · zAR (U ). Therefore, the cost of the piecewise affine policy for any h ∈ U

cT x + dT y(h) ≤ 2β · zAR (U ) ,

which implies that the piecewise affine solution (4.6) gives a 2β-approximation for the adjustable

robust problem (1.1). �

The above proof shows that it is sufficient to find β and v ∈ U satisfying (4.5) in Lemma 4.2.4

to construct a piecewise affine policy that gives a 2β-approximation for (1.1). In particular, we

summarize the main result in the following theorem.

Theorem 4.2.7. Let the uncertainty set U satisfy Assumption 1. Consider any β and v ∈ U

satisfying (4.5). Then, the piecewise affine solution in (4.6) gives a 2β-approximation for the

adjustable robust problem (1.1).

We would like to note that our piecewise affine policy in not necessarily an optimal piecewise

policy. However, for a large class of uncertainty sets, we show that our policy is significantly better

than affine policy and can even be computed more efficiently than an affine policy.
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4.3 Performance Bounds for Scaled Permutation Invariant Sets

In this section, we present performance bounds of our policy for the class of scaled permutation

invariant sets. This class includes ellipsoids, weighted norm-balls, intersection of norm-balls and

budget of uncertainty sets. These are widely used uncertainty sets in theory and in practice.

Definition 4.3.1. Scaled Permutation Invariant Sets (SPI)

1. U is a permutation invariant set if x ∈ U implies that for any permutation τ of {1,2, . . . ,m},

xτ ∈ U where xτi = xτ(i).

2. U is a scaled permutation invariant set if there exists λ ∈ Rm
+ and V a permutation

invariant set such thatU = diag(λ) · V .

For a given SPI set U , it is possible to scale the two-stage adjustable problem (1.1) and get

a new problem where the uncertainty set is permutation invariant (PI). Indeed, suppose U =

diag(λ) · V whereV is a permutation invariant set; by multiplying the constraint matrices A and

B by diag(λ)−1, we get a new problem where the uncertainty set now is PI. The performance of

our policy is not affected by this scaling. Therefore, without loss of generality, we consider in the

rest of this section, the case of permutation invariant uncertainty sets.

We first introduce some structural properties of PI sets. LetU be PI satisfying Assumption 1.

For all k = 1, . . . ,m, let

γ(k) =
1
k
·max




k∑
i=1

hi
��� h ∈ U



. (4.7)

The coefficients, γ(k) for all k = 1, . . . ,m affect the geometric structure of U . In particular, we

have the following lemma.

Lemma 4.3.2. LeU be a permutation invariant set and γ(·) be as defined in (4.7). Then,

γ(k) ·
k∑

i=1

ei ∈ U , ∀k = 1, . . . ,m
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We present the proof of Lemma 4.3.2 in Appendix E.3. For the sake of simplicity, we denote

γ(m) by γ in the rest of the chapter. From the above lemma, we know that γ · e ∈ U .

4.3.1 Piecewise affine policy for Permutations Invariant Sets

For any PI set U , we consider the following dominating uncertainty set, Û of the form (4.3)

with v = γe, i.e.,

Û = β · conv
(
e1, e2, . . . , em, γe

)
(4.8)

where β is the scaling factor guaranteeing that Û dominates U . This dominating set Û is moti-

vated by the symmetry of the permutation invariant set U . In this section, we show that one can

efficiently compute the minimum β such that Û in (4.8) dominatesU . In particular, we derive an

efficiently computable closed-form expression for β, for any PI setU .

From Theorem 4.2.7 we know that to construct a piecewise affine policy with an approximation

bound of 2β, it is sufficient to find β such that

1
β

max
h∈U

m∑
i=1

(
hi − βγ

)+
≤ 1 (4.9)

and any β implies that 2β · conv
(
e1, e2, . . . , em, γe

)
dominates U (see Lemma 4.2.4b). Finding

the minimum β that satisfies (4.9) requires solving:

min


β ≥ 1 ���

1
β

max
h∈U

m∑
i=1

(
hi − βγ

)+
≤ 1



. (4.10)

The following lemma characterizes the structure of the optimal solution for the maximization prob-

lem in (4.9) for a fixed β.

Lemma 4.3.3. Consider the maximization problem in (4.9) for a fixed β. There exists an optimal

solution h∗ such that

h∗ = γ(k) ·
k∑

i=1

ei,

for some k = 1, . . . ,m.
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We present the proof of Lemma 4.3.3 in Appendix E.4. The following lemma characterizes the

optimal β for (4.10).

Lemma 4.3.4. Let U be a permutation invariant uncertainty set satisfying Assumption 1. Then

the optimal solution for (4.10) is given by

β = max
k=1,...,m

γ(k)

γ + 1
k

. (4.11)

Proof. Using Lemma 4.3.3, we can reformulate (4.10) as follows.

min


β ≥ 1 ���

1
β

max
k=1,...,m

k∑
i=1

(
γ(k) − βγ

)
≤ 1



,

i.e.,

min


β ≥ 1 ��� β ≥

γ(k)

γ + 1
k

, ∀k = 1, . . . ,m


.

Therefore,

β = max
k=1,...,m

γ(k)

γ + 1
k

.

�

The above lemma computes the minimum β that satisfies (4.9). Therefore, from Theorem 4.2.7,

we have the following theorem.

Theorem 4.3.5. Let U be a permutation invariant set satisfying Assumption 1. Let γ = γ(m) be

as defined in (4.7) and β be as defined in (4.11), and

Û = β · conv
(
e1, . . . , em, γe

)
.

Let x̂, ŷ(ĥ) for ĥ ∈ Û be an optimal solution for ΠAR(Û ) (1.1). Then the following piecewise
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affine solution

x = 2x̂

y(h) =
1
β

m∑
i=1

(
hi − βγ

)+ ŷ(βei) + ŷ(βγe) ∀h ∈ U ,
(4.12)

gives a 2β-approximation for (1.1). Moreover, the set 2 · Û dominatesU .

The last claim that 2 · Û dominatesU is a straightforward consequence of part(b) of Lemma

4.2.4.

As a consequence of Theorem 4.3.5, for any permutation invariant uncertainty set, U , we

can compute the piecewise-affine policy for (1.1) efficiently. In fact, for many cases, even more

efficiently than an affine policy.

4.3.2 Examples

We present the approximation bounds for several permutation invariant uncertainty sets that are

commonly used in the literature and in practice, including norm balls, intersection of norm balls

and budget of uncertainty sets. In particular, it follows that for these sets, the performance bounds

of our piecewise affine policy are significantly better than the best known performance bounds for

affine policy.

Propostion 4.3.6. (Hypersphere) Consider the uncertainty setU = {h ∈ Rm
+ | | |h | |2 ≤ 1} which

is the intersection of the unit hypersphere and the nonnegative orthant. Then,

Û = m
1
4 · conv

(
e1, e2, . . . , em,

1
√

m
e

)
,

dominatesU and our piecewise affine solution (4.12) gives O(m
1
4 ) approximation to (1.1).

Proof. We have for k = 1, . . . ,m,

γ(k) =
1
k
·max




k∑
i=1

hi | h ∈ U


=

1
√

k
.
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In particular, γ = 1√
m

. From Lemma 4.3.4 we get,

β = max
k=1,...,m

γ(k)

γ(m) + 1
k

= max
k=1,...,m

1√
k

1√
m
+ 1

k

.

The maximum of this problem occurs for k =
√

m. Then, β = m
1
4

2 . We conclude from Theo-

rem 4.3.5 that Û dominatesU and our piecewise affine policy gives O(m
1
4 ) approximation to the

adjustable problem (1.1). �

Remark. Consider the following ellipsoid uncertainty set



h ≥ 0

������

m∑
i=1

rih2
i ≤ 1



. (4.13)

This is widely used to model uncertainty in practice and is just a diagonal scaling of the hyper-

sphere uncertainty set. As we mention before, the performance of our policy is not affected by

scaling. Hence, our piecewise affine policy gives an O(m
1
4 )-approximation to the adjustable prob-

lem (1.1) for ellipsoid uncertainty sets (4.13) similar to hypersphere. We analyze the case of more

general ellipsoids in Proposition 4.3.9.

Propostion 4.3.7. (p-norm ball). Consider the p-norm ball uncertainty set

U =
{
h ∈ Rm

+
�� ‖h‖p ≤ 1

}

where p ≥ 1. Then

Û = 2β · conv
(
e1, e2, . . . , em,m

− 1
p e

)
dominatesU with

β =
1
p

(p − 1)
p−1
p · m

p−1
p2 = O(m

p−1
p2 ).
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Our piecewise affine solution (4.12) gives O(m
p−1
p2 ) approximation to (1.1).

Proof. We have for k = 1, . . . ,m,

γ(k) =
1
k
·max




k∑
i=1

hi | h ∈ U


= k

−1
p .

In particular, γ = m
−1
p . From Lemma 4.3.4 we get,

β = max
k=1,...,m

γ(k)

γ(m) + 1
k

= max
k=1,...,m

k
−1
p

m
−1
p + 1

k

=
1
p

(p − 1)
p−1
p · m

p−1
p2 = O

(
m

p−1
p2

)
.

We conclude from Theorem 4.3.5 that Û dominates U and our piecewise affine policy gives

O(m
p−1
p2 ) approximation to the adjustable problem (1.1). �

Propostion 4.3.8. (Intersection of two norm balls) ConsiderU the intersection of the norm balls

U1 =
{
h ∈ Rm

+
�� ‖h‖p ≤ 1

}
and

U2 =
{
h ∈ Rm

+
�� ‖h‖q ≤ r

}
where p > q ≥ 1 and m

1
q−

1
p ≥ r ≥ 1. Then,

Û = β · conv
(
e1, e2, . . . , em,

(
rm−

1
q

)
e
)
,

where

β = min(β1, β2), β1 = r
1−p
p m

p−1
pq , and β2 = r

1
q m

q−1
q2 .

Our piecewise affine solution (4.12) gives a 2β approximation to (1.1).

Proof. To prove that Û dominatesU1 ∩U2, it is sufficient to consider h in the boundary ofU1 or
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U2 and find α1,α2, . . . ,αm+1 ≥ 0 with α1 + . . . + αm+1 = 1 such that for all i ∈ [m],

hi ≤ β
(
αi + rm−

1
q αm+1

)
.

Case 1: β = β1.

Let h ∈ U1 such that ‖h‖p = 1, we take αi =
hp
i

p for i ∈ [m] and αm+1 =
p−1

p . First, we have∑m+1
i=1 αi = 1 and for all i ∈ [m],

β
(
αi + rm−

1
q αm+1

)
= β1 *

,

hp
i

p
+

p − 1
p

rm−
1
q +

-

≥ β1
(
hp

i

) 1
p

(
rm−

1
q

) p−1
p

= hi,

where the inequality follows from the weighted inequality of arithmetic and geometric means

(known as Weighted AM-GM inequality). Therefore Û dominatesU1 ∩U2.

Case 2: β = β2.

Let h ∈ U2 such that ‖h‖q = r , we take αi =
hqi

rqq for i ∈ [m] and αm+1 =
q−1

q . First, we have∑m+1
i=1 αi = 1 and for all i ∈ [m],

β
(
αi + rm−

1
q αm+1

)
= β2 *

,

hq
i

rqq
+

q − 1
q

rm−
1
q +

-

≥ β2 *
,

hq
i

rq
+
-

1
q (

rm−
1
q

) q−1
q

= hi,

where the inequality followed from the weighted AM-GM inequality. Therefore, Û dominates

U1 ∩U2. �

We also consider a permutation invariant uncertainty set that is the intersection of an ellipsoid
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and the non-negative orthant , i.e.,

U =
{
h ∈ Rm

+ | h
TΣh ≤ 1

}
(4.14)

where Σ � 0. For U to be a permutation invariant set satisfying Assumption 1, Σ must be of the

following form

Σ =

*..........
,

1 a . . . a

a 1 . . . a
...

...
. . .

...

a a . . . 1

+//////////
-

(4.15)

where 0 ≤ a ≤ 1.

Propostion 4.3.9. (Permutation invariant ellipsoid) Consider the uncertainty set U defined in

(4.14) where Σ is defined in (4.15). Then

Û = β · conv
(
e1, e2, . . . , em, γe

)
,

dominatesU with

β =
*.
,

a
2
+

(1 − a)
1
2(

am2 + (1 − a)m
) 1

4

+/
-

−1

= O
(
m

2
5

)
and

γ =
1√(

am2 + (1 − a)m
) .

Our piecewise affine policy (4.12) gives O
(
m

2
5
)

approximation to the adjustable robust problem

(1.1).

The proof of Proposition 4.3.9 is presented in Appendix E.5.

Propostion 4.3.10. (Budget of uncertainty set) Consider the budget of uncertainty set

U =


h ∈ [0,1]m ��

m∑
i=1

hi ≤ k


. (4.16)
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Then,

Û = β · conv
(
e1, e2, . . . , em,

k
m
e

)
where β = min

(
k, m

k

)
. In particular, our piecewise affine policy (4.12) gives 2β approximation to

the adjustable problem (1.1).

The proof of Proposition 4.3.10 is presented in Appendix E.6.

4.3.3 Comparison to affine policy

Table 1.2 summarizes the performance bounds for our piecewise affine policy and the best

known performance bounds in the literature for affine policies [40]. As can be seen, our piece-

wise affine policy performs significantly better than the known bounds for affine policy for many

interesting sets, including hypersphere, ellipsoid and norm-balls. For instance, our policy gives

O(m
1
4 )-approximation for the hypersphere and O(m

p−1
p2 )-approximation for the p-norm ball, while

affine policy gives O(m
1
2 )-approximation for hypersphere and O(m

1
p )-approximation for the p-

norm ball [40], respectively. However, as we mentioned before, our policy is not a generalization of

affine policies and, in fact, affine policies may perform better for certain uncertainty sets. However,

we present a family of examples where an optimal affine policy gives an Ω(
√

m)-approximation,

while our policy is near-optimal for the adjustable robust problem (1.1). In particular, we consider

the following instance motivated from the worst-case examples of affine policy in [18] and [20].

n = m, r = dm −
√

me, N =
(
m
r

)

Bi j =




1 if i = j

1√
m

if i , j



.

A = B, c =
1

15
e, d = e

U = conv (0, e1, . . . , em,ν1, . . . ,νN )

where ν1 =
1
√

m
· [1, . . . ,1︸  ︷︷  ︸

r

,0 . . . ,0];

(4.17)
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ν1 has exactly r non-zero coordinates, each equal to 1√
m

. The extreme points νi of ν1, are permu-

tations of the non-zero coordinates of ν1. Therefore,U has exactly
(

m
r

)
+ m + 1 extreme points.

Lemma 4.3.11. Our piecewise affine policy (4.6) gives an O(1 + 1√
m

)-approximation for the ad-

justable robust problem (1.1) for instance (4.17).

We can prove Lemma 4.3.11 by constructing a dominating set within a scaling factor O(1+ 1√
m

)

fromU . We present the complete proof of Lemma 4.3.11 in Appendix E.7.

Lemma 4.3.12. Affine policy gives an Ω(
√

m)-approximation for the adjustable robust prob-

lem (1.1) for instance (4.17). Moreover, for any optimal affine solution, the cost of the first-

stage solution x∗Aff is Ω(
√

m) away from the optimal adjustable problem (1.1), i.e. cT x∗Aff =

Ω(m1/2) · zAR(U ).

We present the proof of Lemma 4.3.12 in Appendix E.8. From Lemma 4.3.12 and 4.3.11, we

conclude that our policy is near-optimal whereas affine policy is Ω(
√

m) away from the optimal

adjustable solution for the instance (4.17). Hence our policy provides a significant improvement.

We would like to note that since Û is a simplex, an affine policy is optimal for ΠAR(Û ). In

particular, we have the following

zAR(U ) ≤ zAR(Û ) = zAff(Û ) ≤ O
(
1 +

1
√

m

)
· zAR(U ),

where the first inequality follows as Û dominatesU and the last inequality follows from Lemma 4.3.11.

Moreover, from Lemma 4.3.12, we know that for instance (4.17),

zAff(U ) = Ω(
√

m) · zAR(U ).

Therefore,

zAff(U ) = Ω(
√

m) · zAff(Û ),

which is quite surprising since Û dominates U . We would like to emphasize that Û only domi-

natesU and does not contain it and this is crucial to get a significant improvement for our piecewise
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affine policy constructed through the dominating set.

Comparison to re-solving policy: In many applications, a practical implementation of affine

policy only implements the first stage solution x∗Aff and re-solve (or recompute) the second-stage

solution once the uncertainty is realized. The performance of such a re-solving policy is at least

as good as affine policy and in many cases significantly better. Lemma 4.3.12 shows that for in-

stance (4.17), such a re-solving policy is Ω(
√

m) away from the optimal adjustable policy whereas

we show in Lemma 4.3.11 that our piecewise affine policy is near-optimal. Hence, our piecewise

affine policy for instance (4.17) is performing significantly better not only than affine policy but

also the re-solving policy.

4.4 General uncertainty set

In this section, we consider the case of general uncertainty sets. The main challenge in our

framework of constructing the piecewise affine policy is the choice of the dominating simplex, Û .

More specifically, the choice of β and v ∈ U such that β · conv (e1, . . . , em, v) dominatesU . For

a permutation invariant set,U , we choose v = γe and we can efficiently find β using Lemma 4.3.4

to construct the dominating set. However, this does not extend to general sets and we need a new

procedure to find those parameters.

Theorem 4.2.7 shows that to construct a good piecewise affine policy overU , it is sufficient to

find β and v ∈ U such that for all h ∈ U

1
β

m∑
i=1

(
hi − βvi

)+
≤ 1. (4.18)

In this section, we present an iterative algorithm to find such β and v ∈ U satisfying (4.18). In

each iteration t, the algorithm maintains a candidate solution, βt and vt ∈ U . Let ut = βt · vt . The

algorithm solves the following maximization problem:

max
h∈U

m∑
i=1

(
hi − ut

i

)+
(4.19)
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Algorithm 3 Computing β and v for general uncertainty sets

1: Initialize t = 0, u0 = 0
2: while

{
max
h∈U

∑m
i=1

(
hi − ut

i

)+
> t

}
do

3: ht ∈ argmax
h∈U

∑m
i=1

(
hi − ut

i

)+
4: for i = 1, . . . ,m do
5: if ut

i = 1 then ht
i = 0

6: end if
7: ut+1

i = min(1,ut
i + ht

i )
8: end for
9: t = t + 1

10: end while
11: return β = t, v = ut

β .

The algorithm stops if the optimal value is at most βt in which case, Condition (4.18) is verified

for all h ∈ U . Otherwise, let ht be an optimal solution of problem (4.19). The current solutions

are updated as follows:

βt+1 = βt + 1

ut+1
i = min

(
1,ut

i + ht
i

)
.

This corresponds to updating vt+1 = 1
βt+1 · u

t+1. Algorithm 3 presents the steps in detail.

The number of β-iterations is finite since U is compact. The following theorem shows that v

returned by the algorithm belongs toU and the corresponding piecewise affine policy is a O(
√

m)-

approximation for the adjustable problem (1.1).

Theorem 4.4.1. Suppose Algorithm 3 returns β, v. Then v ∈ U . Furthermore, the piecewise

affine policy (4.6) with parameters β and v gives a O(
√

m)-approximation for the adjustable

problem (1.1).

Proof. Suppose Algorithm 3 returns β, v. Note that β is the number of iterations in Algorithm 3.

First, we have

u β ≤

β−1∑
t=0

ht .

Moreover 1
β ·

∑β−1
t=0 ht ∈ U since U is convex. Therefore v = uβ

β ∈ U by down-monotonicity of
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U .

Let us prove that β = O(
√

m). First, note that, when we set ht
i = 0 for ut

i = 1, the objective

of the maximization problem in the algorithm does not change and ht still belongs toU by down-

monotonicity. Then, for any t = 0, . . . , β − 1

m∑
i=1

(
ht

i − ut
i

)+
> t.

Moreover, ht
i ≥ 0 and ut

i ≥ 0, hence ht
i ≥ (ht

i − ut
i )
+ and therefore for all t = 0, . . . , β − 1

m∑
i=1

ht
i > t.

Then,
β−1∑
t=0

m∑
i=1

ht
i >

β−1∑
t=0

t =
1
2
β(β − 1). (4.20)

Note that, if ut
i = 1 at some iteration t, then ht ′

i = 0 for any t′ ≥ t. Hence, for any i ∈ [m],

β−1∑
t=0

ht
i ≤ uβi + 1 ≤ 2. (4.21)

Hence, from (4.20) and from (4.21) we get, 2m > 1
2 β(β−1), i.e., β · (β−1) ≤ 4m,which implies,

β = O(
√

m). �

We note that the maximization problem (4.19) that Algorithm 3 solves in each iteration t is not
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a convex optimization problem. However, (4.19) can be formulated as the following MIP:

max
m∑

i=1

zi

zi ≤ (hi − ut
i ) + (1 − xi) ∀i ∈ [m],

zi ≤ xi ∀i ∈ [m]

zi ≥ 0, ∀i ∈ [m]

xi ∈ {0,1} ∀i ∈ [m]

h ∈ U .

(4.22)

Therefore, for general uncertainty set U , the procedure to find β and v ∈ U is computationally

more challenging than for the case of permutation invariant sets.

Remark. Since the computation of β and v depends only on U , and not on the problem

parameters (i.e., the parameters A,B, c and d), one can compute them offline and then use them to

efficiently construct a good piecewise affine policy.

Connection to Bertsimas and Goyal [18]. We would like to note that Algorithm 3 is quite anal-

ogous to the explicit construction of good affine policies in [18]. The analysis of the O(
√

m)-

approximation bound for affine policies is based on the following projection result (which is a

restatement of Lemma 8 and Lemma 9 in [18]).

Theorem 4.4.2. [Bertsimas and Goyal 2011] Consider any uncertainty setU satisfying Assump-

tion 1. There exists β ≤
√

m, v ∈ U such that

∑
j:βv j<1

h j ≤ β, ∀h ∈ U .

Suppose J = { j | βv j < 1}. The affine solution in [18] covers βv using the static component

and the components J using a linear solution. The linear solution does not exploit the coverage

of βvi for i ∈ J from the static solution. The approximation factor is O(β) since for all h ∈ U ,
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∑
j∈J h j ≤ β.

Our piecewise affine solution given by Algorithm 3 finds analogous β, v ∈ U such that

m∑
i=1

(hi − βvi)+ ≤ β, ∀h ∈ U .

In the piecewise affine solution, the static component covers βv and the remaining part (h− βv)+ is

covered by a piecewise-linear function that exploits the coverage of βv. This allows us to improve

significantly as compared to the affine policy for a large family of uncertainty sets. We would like

to note again that our policy is not necessarily an optimal one and there can be examples where

affine policy is better than our policy.

4.5 A worst case example for the domination policy

From Theorem 4.4.1, we know that our piecewise affine policy gives an O(
√

m)-approximation

for the adjustable robust problem (1.1). In this section, we show that this bound is tight for the

following budget of uncertainty set:

U =


h ∈ Rm

+

����

m∑
i=1

hi =
√

m, 0 ≤ hi ≤ 1 ∀i ∈ [m]


. (4.23)

We show that our dominating simplex based piecewise affine policy gives anΩ(
√

m)-approximation

to the adjustable robust problem (1.1). The lower bound of Ω(
√

m) holds even when we consider

more general dominating sets than simplex. We show that for any ε > 0, there is no polynomial

number of points inU such that the convex hull of those points scaled by m
1
2−ε dominatesU . In

particular, we have the following theorem.

Theorem 4.5.1. Given any 0 < ε < 1/2, and k ∈ N, consider the budget of uncertainty set,

U (4.23) with m sufficiently large. Let P(m) ≤ mk . Then for any z1, z2, . . . zP(m) ∈ U , the set

Û = m
1
2−ε · conv

(
z1, z2, . . . zP(m))

)
,

111



does not dominateU .

Proof. Suppose for a sake of contradiction that there exists z1, z2, . . . , zP(m) ∈ U such that Û =

m
1
2−ε · conv

(
z1, z2, . . . zP(m)

)
dominatesU .

By Caratheodory’s theorem, we know that any point in U can be expressed as a convex com-

bination of at most m + 1 extreme points ofU . Therefore

Û ⊆ m
1
2−ε · conv

(
y1, y2, . . . , yQ(m))

)
,

where y1, y2, . . . , yQ(m) are extreme points ofU and

Q(m) ≤ (m + 1) · P(m) = O(mk+1).

Consider any I ⊆ {1,2, . . . ,m} such that |I | =
√

m. Let h be an extreme point of U corre-

sponding to I, i.e., hi = 1 if i ∈ I and hi = 0 otherwise. Since we assume that Û dominates U ,

there exists ĥ ∈ Û such that h ≤ ĥ. Let

ĥ = m
1
2−ε

Q(m)∑
j=1

α j y j ,

where
∑Q(m)

j=1 α j = 1 and α j ≥ 0 for all j = 1,2, . . . ,Q(m). We have

1 = hi ≤ ĥi ∀i ∈ I

i.e.

1 ≤ m
1
2−ε

Q(m)∑
j=1

α j y ji, ∀i ∈ I .

Summing over i ∈ I, we have,

√
m = |I | ≤ m

1
2−ε

∑
i∈I

Q(m)∑
j=1

α j y ji .
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Therefore,

mε ≤

Q(m)∑
j=1

α j

∑
i∈I

y ji,

≤
*.
,

Q(m)∑
j=1

α j
+/
-
· max

j=1,2,...,Q(m)

∑
i∈I

y ji

= max
j=1,2,...,Q(m)

∑
i∈I

y ji =
∑
i∈I

y j∗i,

where the second inequality follows from taking the max of the inner sum over indices j and j∗ is

the index corresponding to the maximum sum.

Therefore, for any I ⊆ {1,2, . . . ,m} with cardinality |I | =
√

m, there exists j = 1,2, . . . ,Q(m)

such that ∑
i∈I

y ji ≥ mε .

Denote F =
{
I ⊆ {1,2, . . . ,m} �� |I | =

√
m

}
which represents the set of all subsets of {1,2, . . . ,m}

with cardinality
√

m. Note that the cardinality of F is

|F | =

(
m
√

m

)
.

We know that for any I ∈ F there exists y j ∈ {y1, y2, . . . yQ(m)} such that

∑
i∈I

y ji ≥ mε .

We have
(

m√
m

)
possibilities for I and Q(m) possibilities for y j , hence by the pigeonhole principle,

there exists a fixed y ∈ {y1, y2, . . . yQ(m)} and F̃ ⊆ F such that

|F̃ | ≥
1

Q(m)

(
m
√

m

)
, and

∑
i∈I

yi ≥ mε , ∀I ∈ F̃ .

(4.24)
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Note that y is an extreme point of U . Hence, y has exactly
√

m ones and the remaining compo-

nents are zeros. The maximum cardinality of subsets I ⊆ [m] that can be constructed to satisfy∑
i∈I yi ≥ mε is

k=
√

m∑
k=mε

(√
m

k

)
·

(
m −

√
m

√
m − k

)
.

By over counting, the above sum can be upper-bounded by

(√
m

mε

)
·

(
m − mε

√
m − mε

)
.

Therefore, cardinality of F̃ should be less that the above upper bound, i.e.,

(√
m

mε

)
·

(
m − mε

√
m − mε

)
≥ |F̃ | ≥

1
Q(m)

(
m
√

m

)

Then, (√
m

mε

)
·
(

m−mε
√

m−mε

)
(

m√
m

) ≥
1

Q(m)
. (4.25)

which is a contradiction. The contradiction is derived by analyzing the order of the fractions in

(4.25)) (see Appendix E.9). �

4.6 Computational study

In this section, we present a computational study to compare the performance of our policy

with affine policies both in terms of objective function value of problem (1.1) and computation

times. We explore both cases of permutation invariant sets and non-permutations invariant sets.

4.6.1 Experimental setup

Uncertainty sets. We consider the following classes of uncertainty sets for our computational

experiments.
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1. Hypersphere. We consider the following unit hypersphere defined in (4.1),

U = {h ∈ Rm
+ | | |h | |2 ≤ 1}.

2. p-norm balls. We consider the following sets defined in Proposition 4.3.7.

U =
{
h ∈ Rm

+
�� ‖h‖p ≤ 1

}
.

For our numerical experiments, we consider the cases of p = 3 and p = 3/2.

3. Budget of uncertainty set. We consider the following set defined in (4.16),

U =


h ∈ [0,1]m

�����

m∑
i=1

hi ≤ k


.

Here, k denotes the budget. For our numerical experiments, we choose k = c
√

m where c is

a random uniform constant between 1 and 2.

4. Intersection of budget of uncertainty sets. We consider the following intersection of L

budget of uncertainty sets:

U =



h ∈ [0,1]m

�����

m∑
j=1

αi j h j ≤ 1, ∀i = 1, . . . ,L


. (4.26)

Here, αi j are non-negative scalars. Note that the intersection of budget of uncertainty sets are

not permutation invariant. For our numerical experiments, we generate αi j i.i.d. according

to absolute value of standard Gaussians and we normalize | |αi | |2 to 1 for all i (i.e. αi =

|Gi |/| |Gi | |2 where Gi are i.i.d. according to N (0, Im)). We consider L = 2 and L = 5 for

our experiments.
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5. Generalized budget of uncertainty set. We consider the following set

U =


h ∈ [0,1]m

�����

m∑
`=1

h` ≤ 1 + θ(hi + h j ) ∀i , j


. (4.27)

This is a generalized version of the budget of uncertainty set (4.16) where the budget θ is not

a constant but depends on the uncertain parameter h. In particular, the budget in the set (4.27)

depends on the sum of the two lowest components of h. For our numerical experiments, we

choose θ = O(m).

Instances. We construct test instances of the adjustable robust problem (1.1) as follows. We

choose n = m, c = d = e and A = B where B is randomly generated as

B = Im + G,

where Im is the identity matrix and G is a random normalized gaussian. In particular, for the

hypersphere uncertainty set, the budget of uncertainty set, the intersection of budget of uncertainty

sets and the generalized budget, we conisder Gi j = |Yi j |/
√

m. For the 3-norm ball, Gi j = |Yi j |/m
1
3

and for the 3
2 -norm ball, Gi j = |Yi j |/m

2
3 ,where Yi j are i.i.d. standard gaussian. We consider values

of m from m = 10 to m = 100 in increments of 10 and consider 50 instances for each value of m.

Our piecewise affine policy. We construct the piecewise affine policy based on the dominating

simplex Û as follows. For permutation invariant sets, we use the dominating simplex that can be

computed in closed form. In particular, for the hypersphere uncertainty set, we use the dominating

set Û in Proposition 4.3.6. For the p-norm balls, we use the dominating set Û in Proposition 4.3.7.

For the budget of uncertainty set, we use the dominating set Û in Proposition 4.3.10 and for the

generalized budget of uncertainty set (4.27), we use the dominating set Û in Proposition E.11.1

(see Appendix E.11).

For non-permutation invariant sets, we use Algorithm 3 to compute the dominating simplex.

In particular, we get β and v that satisfies (4.5) and 2β · conv (e1, . . . , em, v) is a dominating set
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(see Lemma 4.2.4-b). We can also show that the following set (4.28) is a dominating set (see

Proposition E.10.1 in Appendix E.10),

Û = β · conv (v, e1 + v, . . . , em + v) . (4.28)

While the worst case scaling factor for the above dominating set can be 2β and therefore the

theoretical bounds do not change, computationally (4.28) can provide a better policy and we use

this in our numerical experiments for the intersection of budget of uncertainty sets (4.26).

4.6.2 Results

Let zp−aff(U ) denote the worst-case objective value of our piecewise affine police. Note that

the piecewise affine policy over U is computed by solving the adjustable robust problem over Û

and zp−aff(U ) = zAR(Û ). For each uncertainty set we report the ratio r = zAff(U )
zp−aff(U ) for m = 10

to 100. In particular, for each value of m, we report the average ratio (Avg), the maximum ratio

(Max), the minimum ratio (Min), the quantiles 5%,10%,25%,50% for the ratio r , the running

time of our policy (Tp−aff(s)) and the running time of affine policy (Taff(s)). In addition, for the

intersection of budget of uncertainty sets, we also report the computation time to construct Û via

Algorithm 3 (TAlg1(s)). The numerical results are obtained using Gurobi 7.0.2 on a 16-core server

with 2.93GHz processor and 56GB RAM.

Hypersphere and Norm-balls. We present the results of our computational experiments in

Tables 4.1, 4.2 and 4.3 for the hypersphere and norm-ball uncertainty sets. We observe that the

piecewise affine policy performs significantly better than affine policy for our family of test in-

stances. In Tables 4.1, 4.2 and 4.3, we observe that the ratio r = zAff(U )
zp−aff(U ) increases significantly

as m increases which implies that our policy provides a significant improvement over affine policy

for large values of m. We also observe that the ratio for the hypersphere is larger than the ratio

for norm-balls. This matches the theoretical bounds presented in Table 1.2 which suggests that the

improvement over affine policy is the highest for p = 2 for p-norm balls.
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We note that for the smallest values of m (m = 10), the performance of affine policy is better

than our policy. However, for m > 10, the performance of our policy is significantly better for all

these three uncertainty sets: hypersphere, 3-norm ball and 3/2-norm ball.

Furthermore, our policy scales well and the average running time is less than 0.1 second even

for large values of m. On the other hand, computing the optimal affine policy over U becomes

computationally challenging as m increases. For instance, the average running time for computing

an optimal affine policy for m = 100 is around 9 minutes for the hypersphere uncertainty set,

around 17 minutes for the 3-norm ball and around 16 minutes for the 3/2-norm ball.

Budget of uncertainty sets. We present the results of our computational experiments in Tables

4.4, 4.5, 4.6 and 4.7 for the single budget of uncertainty set, the intersection of budget sets and the

generalized budget.

For the budget of uncertainty set (4.16), we observe that affine policy performs better than our

piecewise affine policy for our family of test instances. Note that as we mention earlier, our policy

is not a generalization of affine policies and therefore is not always better. For our experiments,

we use k = c
√

m which gives the worst case theoretical bound for our policy (see Theorem 4.5.1),

but the performance of our policy is still reasonable and the average ratio r = zAff(U )
zp−aff(U ) over all

instances is around 0.88 as we can observe in Table 4.4. On the other hand, as in the case of conic

uncertainty sets, our policy scales well with an average running time less than 0.1 second even

for large values of m, whereas affine policy takes for example more than 6 minutes on average for

m = 100.

Tables 4.5 and 4.6 present the results for intersection of budget of uncertainty sets. We observe

that affine policy outperforms our policy as in the case of a single budget. This confirms that

affine policy performs very well empirically for this class of uncertainty sets. We also observe that

the performance of our policy improves when we increase the number of budget constraints. For

example, for m = 100, the average ratio r = zAff(U )
zp−aff(U ) increases from 0.79 in the case of L = 2 to

0.88 for L = 5. This suggests that the performance of our policy gets closer to the one of affine

policy as long as we add more budgets constraints. While affine policy performs better than our

118



policy for budget of uncertainty sets, we would like to note that this is not necessarily true for any

polyhedral uncertainty set. In particular, we also test our policy with the generalized budget (4.27)

and observe that our policy is significantly better than affine even when the set is polyhedral.

Table 4.7 presents the results for the generalized budget set (4.27). We observe that our piece-

wise affine policy outperforms affine policy both in terms of objective value and computation time.

The gap increases as m increases which implies a significant improvement over affine policy for

large values of m. Furthermore, unlike the piecewise affine policy, computing an affine solution

becomes challenging for large values of m.

For the intersection of budget of uncertainty sets (4.26) that are not permutation invariant, we

compute the dominating set (in particular β and v) using Algorithm 3. We report the average

running time, TAlg1 of Algorithm 3 which solves a sequence of MIPs in Tables 4.5 and 4.6. We

note that there is no need to solve MIPs optimally in Algorithm 3; one can stop when a feasible

solution with an objective value greater than t is found. We observe that the running time of

Algorithm 3 is reasonable as compared to that of affine policy. For example, the average running

time of Algorithm 3 for m = 100 and L = 5 is 7 min whereas affine policy takes 10 min in average.

For large values of m and a large number of budget constraints, the running time of Algorithm 1

might increase significantly and exceed the computation time of affine policy. However, we would

like to emphasize that β and v given by Algorithm 3 do not depend on the parameters (A,B, c, d)

and only depend on the uncertainty set. Therefore, they can be computed offline and can be used

to solve many instances of the problem parameters for the same uncertainty set.
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m Avg Max Min 5% 10% 25% 50% Tp−aff(s) Taff(s)
10 0.955 1.006 0.875 1.003 0.988 0.971 0.960 0.001 0.221
20 1.120 1.168 1.076 1.152 1.141 1.132 1.122 0.002 0.948
30 1.218 1.251 1.180 1.243 1.238 1.225 1.221 0.003 2.753
40 1.288 1.328 1.238 1.318 1.312 1.299 1.291 0.006 6.479
50 1.349 1.382 1.319 1.375 1.370 1.357 1.349 0.009 14.678
60 1.399 1.429 1.366 1.418 1.415 1.408 1.398 0.013 32.323
70 1.443 1.472 1.454 1.460 1.457 1.451 1.440 0.019 58.605
80 1.485 1.509 1.485 1.505 1.499 1.491 1.482 0.033 107.898
90 1.523 1.549 1.527 1.539 1.532 1.530 1.525 0.040 200.134
100 1.557 1.578 1.560 1.574 1.570 1.564 1.557 0.081 564.772

Table 4.1: Comparison on the performance and computation time of affine policy and our piece-
wise affine policy for the hypersphere uncertainty set. For 50 instances, we compute zAff(U )

zp−aff(U )
and present the average, min, max ratios and the percentiles 5%,10%,25%,50%. Here, Tp−aff(s)
denotes the running time for our piecewise affine policy and Taff(s) denotes the running time for
affine policy in seconds.

m Avg Max Min 5% 10% 25% 50% Tp−aff(s) Taff(s)
10 0.975 1.049 0.907 1.023 1.017 0.991 0.971 0.001 0.743
20 1.082 1.141 1.042 1.128 1.119 1.097 1.080 0.002 3.714
30 1.157 1.195 1.094 1.190 1.177 1.167 1.158 0.003 12.386
40 1.218 1.247 1.184 1.236 1.233 1.226 1.219 0.006 31.687
50 1.270 1.294 1.245 1.293 1.284 1.275 1.271 0.009 69.302
60 1.312 1.346 1.274 1.335 1.325 1.319 1.312 0.013 117.949
70 1.345 1.363 1.323 1.361 1.358 1.351 1.347 0.020 258.862
80 1.378 1.402 1.356 1.396 1.393 1.384 1.378 0.031 435.629
90 1.408 1.429 1.389 1.421 1.418 1.413 1.409 0.043 728.436
100 1.434 1.457 1.419 1.447 1.443 1.438 1.433 0.050 1033.174

Table 4.2: Comparison on the performance and computation time of affine policy and our piecewise
affine policy for the 3-norm ball uncertainty set.

120



m Avg Max Min 5% 10% 25% 50% Tp−aff(s) Taff(s)
10 0.904 0.952 0.817 0.939 0.932 0.918 0.905 0.001 0.728
20 1.028 1.058 0.992 1.051 1.044 1.036 1.031 0.002 3.462
30 1.115 1.144 1.095 1.132 1.128 1.122 1.115 0.003 10.896
40 1.174 1.190 1.161 1.184 1.183 1.177 1.174 0.005 29.209
50 1.226 1.244 1.204 1.240 1.235 1.232 1.227 0.009 70.099
60 1.266 1.278 1.255 1.275 1.274 1.269 1.267 0.013 123.518
70 1.303 1.311 1.292 1.310 1.309 1.305 1.303 0.019 267.450
80 1.335 1.345 1.328 1.341 1.339 1.337 1.335 0.034 458.791
90 1.363 1.372 1.353 1.370 1.369 1.366 1.363 0.044 701.262
100 1.387 1.395 1.381 1.392 1.391 1.389 1.387 0.056 967.773

Table 4.3: Comparison on the performance and computation time of affine policy and our piecewise
affine policy for the 3/2-norm ball uncertainty set.

m Avg Max Min 5% 10% 25% 50% Tp−aff(s) Taff(s)
10 0.906 0.989 0.766 0.986 0.974 0.957 0.915 0.001 0.014
20 0.897 0.963 0.780 0.957 0.951 0.939 0.916 0.002 0.207
30 0.891 0.961 0.765 0.957 0.945 0.923 0.906 0.004 0.803
40 0.882 0.954 0.753 0.950 0.946 0.928 0.900 0.006 2.997
50 0.899 0.954 0.763 0.950 0.947 0.937 0.914 0.011 11.687
60 0.879 0.956 0.772 0.953 0.948 0.932 0.896 0.015 26.760
70 0.887 0.958 0.911 0.951 0.950 0.936 0.909 0.020 71.167
80 0.882 0.954 0.768 0.951 0.946 0.937 0.902 0.047 147.376
90 0.890 0.953 0.765 0.950 0.949 0.936 0.917 0.039 220.809
100 0.886 0.955 0.750 0.946 0.943 0.931 0.900 0.066 397.981

Table 4.4: Comparison on the performance and computation time of affine policy and our piecewise
affine policy for the budget of uncertainty set with a budget k = c

√
m where for each instance

we generate c uniformly from [1,2].
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m Avg Max Min 5% 10% 25% 50% Tp−aff(s) TAlg1(s) Taff(s)
10 0.814 0.881 0.700 0.861 0.851 0.833 0.821 0.002 0.191 0.013
20 0.805 0.866 0.716 0.850 0.838 0.825 0.807 0.016 0.723 0.227
30 0.770 0.847 0.701 0.827 0.808 0.787 0.773 0.091 0.386 0.931
40 0.801 0.839 0.702 0.832 0.828 0.814 0.810 0.270 1.399 3.731
50 0.781 0.825 0.726 0.818 0.814 0.803 0.784 0.656 2.081 12.056
60 0.805 0.841 0.752 0.829 0.824 0.817 0.811 1.406 4.093 32.695
70 0.789 0.839 0.706 0.820 0.809 0.802 0.795 2.595 1.798 80.342
80 0.774 0.844 0.725 0.825 0.816 0.789 0.770 4.484 5.096 163.257
90 0.807 0.838 0.756 0.832 0.828 0.818 0.807 7.628 8.734 354.598
100 0.790 0.821 0.750 0.817 0.812 0.801 0.791 5.235 6.391 646.136

Table 4.5: Comparison on the performance and computation time of affine policy and our piecewise
affine policy for the intersection of 2 budget of uncertainty sets (4.26).

m Avg Max Min 5% 10% 25% 50% Tp−aff(s) TAlg1(s) Taff(s)
10 0.869 0.932 0.824 0.920 0.910 0.884 0.871 0.002 0.043 0.015
20 0.852 0.924 0.795 0.909 0.893 0.870 0.852 0.021 0.058 0.309
30 0.864 0.898 0.820 0.888 0.880 0.872 0.865 0.100 0.343 1.024
40 0.856 0.896 0.802 0.883 0.882 0.874 0.861 0.290 0.464 4.010
50 0.857 0.891 0.794 0.891 0.886 0.876 0.861 0.706 3.546 12.535
60 0.880 0.900 0.860 0.894 0.892 0.885 0.881 1.471 18.474 33.693
70 0.873 0.896 0.809 0.894 0.890 0.882 0.878 2.800 13.125 82.961
80 0.858 0.889 0.825 0.886 0.881 0.872 0.858 4.809 21.780 167.753
90 0.859 0.890 0.818 0.885 0.881 0.877 0.866 8.004 144.808 344.924
100 0.885 0.902 0.865 0.900 0.896 0.893 0.888 5.821 459.436 632.483

Table 4.6: Comparison on the performance and computation time of affine policy and our piecewise
affine policy for the intersection of 5 budget of uncertainty sets (4.26).
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m Avg Max Min 5% 10% 25% 50% Tp−aff(s) Taff(s)
10 1.015 1.067 0.983 1.053 1.045 1.025 1.006 0.001 0.046
20 1.107 1.159 1.100 1.147 1.142 1.127 1.106 0.003 0.840
30 1.148 1.214 1.092 1.189 1.179 1.163 1.155 0.004 3.933
40 1.173 1.220 1.105 1.206 1.198 1.188 1.175 0.009 18.097
50 1.191 1.227 1.154 1.216 1.213 1.201 1.189 0.016 62.668
60 1.209 1.259 1.193 1.238 1.225 1.215 1.210 0.021 145.552
70 1.225 1.254 1.190 1.247 1.239 1.228 1.224 0.019 237.448
80 1.237 1.275 1.213 1.264 1.260 1.245 1.235 0.044 573.342
90 1.248 1.284 1.223 1.268 1.260 1.254 1.249 0.050 1168.928
100 1.257 1.274 1.240 1.271 1.268 1.261 1.257 0.053 1817.940

Table 4.7: Comparison on the performance and computation time of affine policy and our piecewise
affine policy for the generalized budget of uncertainty set (4.27).
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Chapter 5: Extended affine and Threshold policies

5.1 Introduction

Recall the two-stage adjustable robust problem (1.1)1

zAR (U ) = min
x

cT x +max
h∈U

min
y(h)

dT y(h)

Ax + By(h) ≥ h, ∀h ∈ U

x ∈ Rn
+

y(h) ∈ Rn
+, ∀h ∈ U .

In the previous chapter, we give a tractable framework to design a class of piecewise affine policies

for the two-stage adjustable problem (1.1) that improves significantly over affine policy for many

important uncertainty sets such as hypersphere and q-norm-balls. In this chapter, we significantly

improve over the previous results and explore new approaches for designing near optimal tractable

policies. In particular, we introduce extended affine policies and threshold polices. An extended

affine policy is an affine policy in a lifted space, i.e., instead of restricting the second stage decision

to be an affine function of the uncertain parameter h ∈ U , we first decomposeU into several sets

and run an affine policy in the new sets. More specifically, we present a framework where we de-

compose an uncertainty setU into a Minkowski sum of budget of uncertainty setsU1,U2, . . . ,UL

and define our extended affine policy as the sum of affine policies over Uj for j = 1, . . . ,L. We

give an explicit construction of this decomposition for important class of uncertainty sets that can

be computed efficiently. We show that our extended affine policy gives O( log n log m
log log n )-approximation

for the important class of permutation invariant sets that includes hypersphere and q-norm balls.

1Following the previous chapter, we assume that the first-stage decision x belongs to the non-negative orthant, i.e.,
x ∈ X = Rn

+ and we refer to to zAR (c, d,A,B,U ) as zAR (U ) for the sake of simplicity.
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This approximation bound improves significantly over the previous results in the literature, for

instance the best know bound in the litterature is O
(
m

1
4
)

for hypersphere and O
(
m

q−1
q2

)
[41] for

q-norm balls. To the best of our knowledge, the approximation bounds in this chapter are the first

logarithmic approximation bounds for (1.1) under conic uncertainty sets.

In the second part of this chapter, our goal is to characterize the structure of near-optimal solu-

tions for (1.1). In particular, we present threshold policies. These are particular class of piecewise

affine policies where the second-stage decision is restricted to be of the form:

y(h) =
m∑

i=1

(hi − θi)+vi + q.

Here, θ ∈ Rm
+ is the threshold parameter, q ∈ Rn

+ and for all i ∈ [m] vi ∈ Rn
+. Threshold policies are

widely used in practice in many settings and applications (see for instance [42]). They are highly

interpretable and easy to implement in practice. However computing optimal threshold policies

is often a hard problem. Based on insights from the construction of our extended affine policy,

we show that the structure of a near-optimal solution for (1.1), is given by a threshold policy. In

particular, we show by construction the existence of threshold policies that gives O(log n + log m)

approximation for (1.1) for hypersphere and q-norm ball uncertainty sets and give O(log n log m)-

approximation for the general class of permutation invariant sets.

Following the previous chapter, we assume that the uncertainty set U satisfies the following

assumption: U ⊆ [0,1]m is convex, full-dimensional with ei ∈ U for all i = 1, . . . ,m, and down-

monotone, i.e., h ∈ U and 0 ≤ h′ ≤ h implies that h′ ∈ U . We would like to emphasize that

the above assumption can be made without loss of generality since we can appropriately scale

the uncertainty set, and consider a down-monotone completion, without affecting the two-stage

problem (1.1).

The rest of this chapter is organized as follows. In Section 5.2, we present extended affine

policies and show their performance for (1.1). In Section 5.3, we present our construction for

threshold policies and analyze their performance for two-stage adjustable problem (1.1) under the
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class of permutation invariant sets.

5.2 Extended affine policies

The construction of our extended affine policy relies on our results in Chapter 3 on the perfor-

mance of affine policies for budget of uncertainty sets. In fact, in Chapter 3 , we show that affine

policy gives O( log n
log log )-approximation to (1.1) under budget of uncertainty sets which matches the

hardness of approximation for (1.1) and therefore affine policy gives an optimal approximation to

(1.1). The idea in this section is to decompose the uncertainty set U into a a Minkowski sum of

small number of budget of uncertainty setsUj such that eachUj is included inU andU is within

a constant factor fromU1 ⊕U2 . . .⊕UL. Our extended affine policy is defined as the sum of affine

policies over the budgeted setsUj . More formally, let us define a γ-budgeted decomposition ofU

as follows.

Definition 5.2.1. Let U be an uncertainty set and γ ≥ 1. We say that (U1,U2, . . . , . . .UL) is a

γ-budgeted decomposition ofU if and only if:

• For all j ∈ [L],Uj is a budget of uncertainty set.

• For all j ∈ [L],Uj ⊆ U .

• U ⊆ γ · U1 ⊕ U2 . . . ⊕ UL.

Recall that the definition of a budget of uncertainty setV is given by

V =


h ∈ [0,1]m ����

m∑
i=1

wihi ≤ Γ



and a Minkoswki sum of sets is defined as

U1 ⊕ U2 . . . ⊕ UL =




L∑
j=1

h j
���� h j ∈ Uj , ∀ j ∈ [L]



.
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Extended Affine policy. Let U be an uncertainty set and (U1,U2, . . . , . . .UL) a γ-budgeted

decomposition of U as defined in 5.2.1. Let (x j , y
j
Aff(.)) be the optimal affine policy for (1.1)

underUj for j ∈ [L]. Our extended affin policy is given by

x = γ
L∑

j=1

x j

y(h) = γ
L∑

j=1

y
j
Aff(h j )

(5.1)

where h = γ
∑L

j=1 h j for some h j ∈ Uj , j ∈ [L].

It is clear that the extended affine policy defined in (5.1) is feasible for (1.1). Moreover, it can

be computed efficiently by solving the affine policies over the setsUj , j ∈ [L]. Note that an affine

policy overUj can be computed by solving a single compact LP (see Chapter 1). In the following

theorem, we show that our extended policy gives O
(
γL log n
log log n

)
-approximation to (1.1).

Theorem 5.2.2. Let U be an uncertainty set and (U1,U2, . . . , . . .UL) a γ-budgeted decompo-

sition of U as defined in 5.2.1. The extended affine policy defined in (5.1) gives O
(
γL log n
log log n

)
-

approximation to (1.1), i.e.,

1
γ

zAR(U ) ≤
L∑

j=1

zAff(Uj ) ≤ O
(

L log n
log log n

)
· zAR(U ),

where zAff(Uj ) is the cost of the optimal affine policy overUj .

Proof. Let h ∈ U . Then, there exists h j ∈ Uj for j ∈ [L], such that h = γ
∑L

j=1 h j . For j ∈ [L],

consider (x∗j , y
∗
j (.)) an optimal solution for zAR(Uj ). Therefore,

γ

L∑
j=1

(
Ax∗j + By j (h j )

)
≥ γ

L∑
j=1

h j = h.
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Hence, (γ
∑L

j=1 x
∗
j , γ

∑L
j=1 y

∗
j (.)) is a feasible solution for zAR(U ) and therefore

zAR(U ) ≤ γ
L∑

j=1

zAR(Uj ).

Moreover, we know that zAR(Uj ) ≤ zAff(Uj ) which implies the first inequality. On the other hand,

we know from the main result in Chapter 3 (Theorem 3.2.1) that affine policy gives O( log n
log log n )-

approximation for (1.1) under budget of uncertainty sets. Therefore,

zAff(Uj ) ≤ O
(

log n
log log n

)
· zAR(Uj ).

Moreover, sinceUj ⊆ U , then zAR(Uj ) ≤ zAR(U ). By taking the sum over j, we get the second

inequality. �

In this chapter, we focus on the class of permutation invariant sets. This is a class that includes

many important sets used in the literature of robust optimization.

Definition 5.2.3 (Permutation invariant sets). U is said to be permutation invariant if h ∈ U

implies that for any permutation σ of {1, ...,m}, hσ ∈ U where for all i ∈ [m] hσi = hσ(i).

This class of uncertainty sets contains in particular q-norm balls. Note that the best known

bound for approximating (1.1) under q-norm balls is O(m
q−1
q2 ) [41] and the best known bound for

approximating (1.1) under q-norm balls using affine policies is O(m
1
q ) [36].

We present an explicit construction of an extended affine policy that gives O( log n log m
log log n ) ap-

proximation for (1.1) for permutation invariant sets. This improves scientifically over the previous

known bound and almost matches the hardness of the problem. It is sufficient to show the exis-

tence of a γ-budgeted decomposition where γ is a constant and the number of budgeted sets in

the decomposition is O(log m) and then apply Theorem 5.2.2. In particular, let U be an uncer-

tainty set that is permutation invariant. For all j ∈ {0, . . . , dlog me}, define the following budget of

uncertainty sets
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Ûj =


h ∈

[
0,

1
2 j

] m ����

m∑
i=1

hi ≤
k j

2 j



, (5.2)

where

k j = max



k ∈ [m]
����

1
2 j

k∑
i=1

ei ∈ U


. (5.3)

Intuitively, k j can be seen as how many components inU can be equal to 1
2 j .

Claim 5.2.4. For all 0 ≤ j ≤ dlog me, we have Ûj ⊂ U .

Proof. Let 0 ≤ j ≤ dlog me. It suffices to show that all extreme points of Ûj are in U . Let us

rewrite the set Ûj as follows

Ûj =
1
2 jVj

where

Vj =


h ∈ [0,1]m ����

m∑
i=1

hi ≤ k j



.

Since k j is an integer,Vj is a k-ones set and all its extreme points are in {0,1}m. Therefore, all the

pareto extreme points of Ûj are of the form sσj =
1
2 j

∑k j

i=1 eσ(i) where σ ∈ Sm and Sm is the set of

permutations of [m]. Note that by definition of k j , there exists a permutation σ0 ∈ Sm such that

sσ0
j ∈ U . Since U is permutation invariant, this implies that sσj ∈ U for all σ ∈ Sm. Hence U

contains all pareto extreme points of Ûj and therefore by down-monotonicity Ûj ⊂ U . �

Claim 5.2.5. We haveU ⊆ 2 · Û0 ⊕ Û2 . . . ⊕ Ûdlog me .
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Proof. Let h ∈ U and L = dlog me. We have

h =
m∑

i=1

hiei

=

m∑
i=1

*.
,

L−1∑
j=0

1
(

1
2 j ≤ hi <

1
2 j−1

)
+ 1

(
hi <

1
2L−1

)
+/
-

hiei

=

L∑
j=0

ĥ j ,

where for 0 ≤ j ≤ L − 1,

ĥ j =

m∑
i=1

1
(

1
2 j ≤ hi <

1
2 j−1

)
hiei

and

ĥL =

m∑
i=1

1
(
hi <

1
2L−1

)
hiei .

We have for 0 ≤ j ≤ L − 1,

ĥ j ≥
1
2 j ·

m∑
i=1

1
(

1
2 j ≤ hi <

1
2 j−1

)
ei .

By down-monotonicity ofU , we get

1
2 j ·

m∑
i=1

1
(

1
2 j ≤ hi <

1
2 j−1

)
ei ∈ U

and therefore
m∑

i=1

1
(

1
2 j ≤ hi <

1
2 j−1

)
≤ k j .

Hence,
m∑

i=1

1
(

1
2 j ≤ hi <

1
2 j−1

)
hi ≤

k j

2 j−1 ,
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which implies that ĥ j ∈ 2 · Ûj for all 0 ≤ j ≤ L − 1. Moreover,

ĥL ≤

m∑
i=1

1
(
hi <

1
2L−1

)
1

2L−1 ei ≤

m∑
i=1

1
(
hi <

1
2L−1

)
2
m
ei ≤

2
m
e ∈ 2ÛL .

Therefore, ĥL ∈ 2ÛL and

h ∈ 2 · Û0 ⊕ Û2 . . . ⊕ ÛL .

�

From Claim 5.2.4 and Claim 5.2.5, we conclude that (Û0,Û2 . . . ,Ûdlog me ) is a 2-budgeted

decomposition of U and therefore by applying the result in Theorem 5.2.2, we get O( log n log m
log log n )-

approximation to (1.1). In particular, we have the following theorem.

Theorem 5.2.6. Let U be an uncertainty set that is permutation invariant. Then, our extended

affine policy (5.1) with the budgeted decomposition defined in (5.2) gives O( log n log m
log log n )-approximation

for the adjustable problem (1.1).

5.3 Threshold policies

In this section, we introduce threshold policies and study their properties and performance

for the two-stage adjustable problem (1.1). Let U be an uncertainty set. Threshold policies are

piecewise affine policies of the form:

y(h) = P(h − θ)+ + q ∀h ∈ U ,

where θ ∈ Rm
+ , P ∈ Rn×m

+ and q ∈ Rn
+. Note that (h − θ)+ is a vector in Rm of i-th coordinate

(hi − θi)+. Threshold policies are a generalization of affine policies, where the recourse decision

is a threshold function. In particular, for each component, the policy is affine in the i-th coordinate

hi of the uncertain parameter if hi exceeds a threshold θi and static otherwise. In our problem

(1.1), threshold policies with a threshold parameter θ consists of covering the threshold using a
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static solution and the residual demand (h − θ)+ using an affine solution. However, it is hard

in general to compute optimal threshold policies due to the non linearity in (h − θ)+. Here, our

goal is not to compute optimal threshold policies, but to analyze the structure of a near-optimal

policy for (1.1) and show that it could be captured by a threshold policy. In particular, we show

the existence of threshold policies that give a logarithmic approximation bound to the two-stage

adjustable problem (1.1) and almost matches the hardness of (1.1) under the important class of

permutation invariant sets. We present an explicit construction of threshold policies based on our

insights from the previous section on extended affine policies. However, the construction needs to

guess the value or an approximate value of OPT.

Consider the two-stage adjustable robust optimization problem with covering constraints (1.1).

When we restrict the second-stage decision to be a threshold policy, the problem becomes,

zT(U ) = min
x

cT x +max
h∈U

min
y(h)

dT y(h)

Ax + By(h) ≥ h, ∀h ∈ U

y(h) =
m∑

i=1

(hi − θi)+pi + q, ∀h ∈ U

x ∈ Rn
+, θ ∈ Rm

+ , q ∈ Rn
+, pi ∈ Rn

+, ∀i ∈ [m].

(5.4)

Again, we focus on the class of permutation invariant sets. In the section, we show that thresh-

old policies provide strong performance bounds that are logarithmic in the dimension of the prob-

lem for the class of permutation invariant sets. The performance of the threshold policy depends

on a factor τ(U) that characterizes the geometry of the set U . This factor ranges between 1 and

O(log m). We present the exact definition of τ(U) later on. The main result in this section is

presented in the following theorem.

Theorem 5.3.1. Consider the two-stage adjustable problem (1.1) whereU is permutation invari-

ant set. Then,

zT(U ) = O
(
τ(U ) log n + log m

)
zAR(U )
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where τ(U ) = O(log m) is a factor that depends on the geometry of the setU .

For q-norm balls, we show that τ(U ) ≤ 2, therefore we have the following corollary.

Corollary 5.3.2. Consider the two-stage adjustable problem (1.1) under q-norm ball uncertainty

set, i.e.,U = {h ∈ Rm
+ |

∑m
i=1 hq

i ≤ 1} where q ≥ 1. Then,

zT(U ) = O
(
log n + log m

)
zAR(U ).

Theorem 5.3.1 implies that threshold policies are at most within O(log m log n) from the opti-

mal solution to (1.1) in the general case of permutation invariant sets. We prove Theorem 5.3.1 by

constructing explicitly the threshold policy giving a guess on the value of OPT.

5.3.1 Construction of the threshold policy

In a first part, we present the global structure of our threshold policy and show its feasibility.

We then specify how to explicitly construct the threshold parameter θ given an uncertainty set U

and show that our choice lead to a near-optimal threshold policy. Let θ ∈ Rm
+ and for all i ∈ [m],

define vi as the optimal static decision to cover requirement ei, i.e.,

vi ∈ argminy≥0

{
dT y

���� By ≥ ei

}
. (5.5)

Our policy is composed of a piecewise linear part and a static part.

Piecewise Linear Part.

yPL(h) =
m∑

i=1

(hi − θi)+vi, ∀h ∈ U . (5.6)

Static Part.

(xSta, ySta) ∈ argminx,y≥0



cT x + dT y

���� Ax + By ≥
m∑

i=1

θiei



. (5.7)
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Threshold Policy. Our threshold policy is given by,

x = xSta

y(h) = yPL(h) + ySta, ∀h ∈ U .

(5.8)

Lemma 5.3.3. The threshold policy given in (5.8) is feasible for problem (1.1).

Proof. Let h be inU . For all i ∈ [m] we have,

(Ax + By(h))i = (AxSta + BySta)i + (ByPL(h))i

≥ θi + (hi − θi)+

≥ hi .

Therefore, our policy is feasible. �

Construction of threshold θ.

The threshold policy in (5.8) is feasible for any value of θ. Here, we present the construction

of the parameter θ for which the threshold policy gives O
(
τ(U ) log n + log m

)
-approximation

to (1.1) and therefore show Theorem 5.3.1. Consider an uncertainty set U that is permutation

invariant. Recall the coefficient k j defined in (5.3), for all j ∈ {0, . . . , dlog me},

k j = max



k ∈ [m]
����

1
2 j

k∑
i=1

ei ∈ U


.

Intuitively, k j can be seen as how many components inU can be equal to 1
2 j . Define

jmax = min{ j ≥ 0 | k j = m}.

Intuitively, jmax is the smallest j such that the hypercube
[
0, 1

2 j

] m
⊂ U . By assumption, ei ∈ U

for all i ∈ [m], hence by convexity and down-monotonicity,
[
0, 1

m

] m
⊂ U and therefore jmax is
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well defined and jmax ≤ dlog me.

Lemma 5.3.4. Let k j be as defined in (5.3). Then, the sequence
(

2 j

k j

)
0≤ j< jmax

is decreasing.

Proof. The lemma is equivalent to show that k j+1 ≥ 2k j for all j such that j + 1 < jmax. By

definition of k j , we have,
k j∑
`=1

1
2 j e` ∈ U .

BecauseU is permutation invariant and down-monotone, we get

min(2k j ,m)∑
`=k j+1

1
2 j e` ∈ U .

Therefore by convexity ofU , we have

1
2

k j∑
`=1

1
2 j e` +

1
2

min(2k j ,m)∑
`=k j+1

1
2 j e` =

min(2k j ,m)∑
`=1

1
2 j+1 e` ∈ U .

This implies by definition of k j+1 that

k j+1 ≥ min(2k j ,m).

If m < 2k j , then k j+1 ≥ m, which contradicts the fact that j + 1 < jmax. Hence, m ≥ 2k j and

therefore k j+1 ≥ 2k j .

�

From now on, we set (
α, β

)
= (8,8 log n).

We consider an optimal solution x∗, y∗(h) where h ∈ U , for the adjustable problem (1.1). Let OPT

be the optimal cost for (1.1) and OPT1,OPT2 respectively the first stage cost and the second-stage
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cost associated with x∗, y∗(h), i.e.,

OPT1 = cT x∗

OPT2 = max
h∈U

dT y∗(h)

OPT = OPT1 + OPT2 = zAR(U ).

For all i ∈ [m] define,

Ji = max
{

0 ≤ j ≤ jmax
���� dT vi ≤

2 j

k j
β · OPT

}

where vi is defined in (5.5) and the convention max ∅ = −∞. Now set for all i ∈ [m],

θi =




1 Ji = −∞

1
2Ji 0 ≤ Ji ≤ jmax

(5.9)

5.3.2 Cost analysis

Let us analyze the cost of the threshold policy in (5.8) where the threshold parameter θ is given

by (5.9). We first analyze the cost of the piecewise linear part (5.6) and then the cost of the static

part (5.7). But first, let us introduce the following notations and definitions.

We denote z(h), the cost of covering the requirement h in the second-stage, i.e.,

z(h) = min
y≥0

{
dT y

���� By ≥ h
}
. (5.10)

Our cost analysis depends on a constant τ(U) that characterizes the geometry of the uncertainty

setU which is defined as follows.
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Definition 5.3.5. The geometric factor τ(U ) is defined as,

τ(U ) = max
h∈U

jmax∑
j=0

u j (h)
k j

(5.11)

where for 0 ≤ j ≤ jmax − 1,

u j (h) =
m∑

i=1

1
(

1
2 j ≤ hi <

1
2 j−1

)

and

u jmax (h) =
m∑

i=1

1
(
hi <

1
2 jmax−1

)
.

Note that, by definition, k j is the maximum number of 1
2 j that we can fit inU . Hence, u j (h) ≤

k j and therefore τ(U ) ≤ jmax + 1 ≤ dlog me + 1. In particular, we have the following lemma.

Lemma 5.3.6. For any uncertainty setU that is permutation invariant, we have τ(U ) = O(log m).

Example. For q-norm balls, i.e.,U = {h ∈ Rm
+ |

∑m
i=1 hq

i ≤ 1} where q ≥ 1, we have τ(U ) ≤ 2.

In fact, for q-norm balls we have, for all j, k j = 2 jq. Therefore, for any h ∈ U ,

jmax∑
j=0

u j (h)
(2 j )q =

m∑
i=1

jmax−1∑
j=0

1
(

1
2 j ≤ hi <

1
2 j−1

)
1

2 jq + 1
(
hi <

1
2 jmax−1

)
1
m
≤

m∑
i=1

hq
i +

m∑
i=1

1
m
≤ 2.

Cost of the piecewise linear part. The cost of the piecewise linear part depends on the geometric

factor τ(U ). In particular, we have the following lemma.

Lemma 5.3.7. The cost of the piecewise linear part (5.6) is bounded by 2τ(U ) · β · OPT.
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Proof.

dT yPL(h) =
m∑

i=1

(hi − θi)+dT vi

=
∑

i∈[m],Ji≥0

(hi − θi)+dT vi

≤
∑

i∈[m],Ji≥0

(
hi −

1
2Ji

)+
·

2Ji

kJi
· βOPT

=
∑

i∈[m],Ji≥0

jmax∑
j=0

(
1
(

1
2 j ≤ hi <

1
2 j−1

)
+ 1

(
hi <

1
2 jmax−1

)) (
hi −

1
2Ji

)+
·

2Ji

kJi
· βOPT

where the first equality holds because if Ji = −∞, then θi = 1 and therefore (hi − θi)+ = 0. The

first inequality follows from the definition of Ji. We have for 0 ≤ j ≤ jmax − 1,

1
(

1
2 j ≤ hi <

1
2 j−1

) (
hi −

1
2Ji

)+
·

2Ji

kJi
≤ 1

(
1
2 j ≤ hi <

1
2 j−1

)
1

2 j−1 1( j ≤ Ji)
2Ji

kJi

≤ 1
(

1
2 j ≤ hi <

1
2 j−1

)
1

2 j−1

2 j

k j

= 1
(

1
2 j ≤ hi <

1
2 j−1

)
2
k j

where the second inequality follows from Lemma 5.3.4. Moreover, for j = jmax,

1
(
hi <

1
2 jmax−1

) (
hi −

1
2Ji

)+
·

2Ji

kJi
≤ 1

(
hi <

1
2 jmax−1

)
1

2 jmax−1 1( jmax ≤ Ji)
2Ji

kJi

≤ 1
(
hi <

1
2 jmax−1

)
1

2 jmax−1

2 jmax

k jmax

= 1
(
hi <

1
2 jmax−1

)
2

k jmax

.

Therefore,

dT yPL(h) ≤
∑

i∈[m]

jmax∑
j=0

(
1
(

1
2 j ≤ hi <

1
2 j−1

)
2
k j
+ 1

(
hi <

1
2 jmax−1

)
2

k jmax

)
· βOPT ≤ 2τ(U ) · βOPT,

where the last inequality follows exactly from the definition of τ(U ).
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Cost of static part.

Lemma 5.3.8. The cost of the static part (5.7) is bounded by O(α log m) · OPT.

Before showing Lemma 5.3.8, let us introduce the following definitions and useful lemmas that

we would need for the proof. For 0 ≤ j ≤ jmax, define

Ij =

{
i ∈ [m]

���� θi =
1
2 j

}
,

J1 j =

{
i ∈ [m]

���� (Ax∗)i ≥
1
4
·

1
2 j

}
,

J2 j = Ij \ J1 j .

and for 0 ≤ j ≤ jmax, define the following budget of uncertainty sets

Ûj =


h ∈

[
0,

1
2 j

] m ����

m∑
i=1

hi ≤
k j

2 j



. (5.12)

We know from Claim 5.2.4 that for all 0 ≤ j ≤ jmax, we have Ûj ⊂ U .

Our proof relies on the structural result, Lemma 3.3 in El Housni and Goyal [54] which we

have shown in Chapter 2 of this thesis. We restate the lemma here in our context for completeness.

Lemma 5.3.9 (Lemma 3.3 in [54]). Consider B ∈ Rm×n
+ , d ∈ Rn

+ and J ⊆ [m]. Let z(h) be the

cost of covering h as defined in (5.10). Suppose there exists γ > 0 and 0 ≤ k ≤ m such that the

following two conditions are satisfied:

1. for all i ∈ J ,

z(ei) >
γ

k
·
β

2
,

2. for allW ⊆ J ,

|W| ≤ k implies z(W ) ≤ γ.
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Then,

z(J ) ≤ γ ·
α

2
.

Note that in [54], the above lemma has been shown for α = β =
8 log n

log log n , the lemma is also

correct for
(
α, β

)
= (8,8 log n) and the proof is along the same lines as in [54]. Now, we are ready

to show Lemma 5.3.8.

Proof of Lemma 5.3.8. Fix j such that 0 ≤ j ≤ jmax. We have for all i ∈ J1 j , 4Ax∗ ≥ 1
2 j ei and

we know that 4cT x∗ = 4OPT1. Therefore we can cover the components of J1 j using the static

solution 4x∗ and pay a cost 4OPT1. We apply Lemma 5.3.9 with J2 j and γ = 2 j · 4OPT. In fact,

because J2 j ⊆ Ij , we have for all i ∈ J2 j , θi =
1
2 j , which implies

z (ei) = dT vi >
2 j+1

k j+1
β · OPT =

γ · β

2k j+1

i.e., the first condition of Lemma 5.3.9 is satisfied with k = k j+1.

Moreover, let W ⊆ J2 j such that |W| ≤ k j+1. Denote by 1(W ) the sum
∑

i∈W ei and

h = 1
2 j 1(W ). Therefore, h ∈ 2Ûj+1. Consequently, we get h ∈ 2U from Claim 5.2.4. Hence, by

feasibility of the optimal solution, we get

2Ax∗ + 2By∗(h/2) ≥ h.

Furthermore, for all i ∈ W , we have i < J1 j and therefore 4(Ax∗)i <
1
2 j which implies

4(By∗(h/2))i ≥ 2hi −
1
2 j = hi .

i.e.,

4By∗(h/2) ≥ h

This means that 4y∗(h/2) is a feasible solution for the covering problem (5.10) with requirement
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h, therefore,

z
(

1
2 j 1(W )

)
= z(h) ≤ 4dT y∗(h/2) ≤ 4OPT2 ≤ 4OPT =

1
2 j γ.

Therefore,

z (1(W )) ≤ γ.

i.e., condition 2 of Lemma 5.3.9 is also satisfied. Therefore from Lemma 5.3.9, we have

z
(

1
2 j 1(J2 j )

)
≤
γ

2 j

α

2
= 2α · OPT.

Denote y j an optimal solution corresponding to z
(

1
2 j 1(J2 j )

)
, i.e., dT y j = z

(
1
2 j 1(J2 j )

)
. Hence,

we have (4x∗, y j ) is a feasible solution for the static problem to cover
∑

i∈Ij

1
2 j ei. Therefore,

jmax∑
j=0

(
4Ax∗ + By j

)
≥

jmax∑
j=0

∑
i∈Ij

1
2 j ei =

m∑
i=1

θiei

Moreover,

jmax∑
j=0

(4cT x∗ + dT y j ) ≤ ( jmax + 1)(4OPT1 + 2α · OPT) = O(log m · α) · OPT,

Hence, the cost of the static problem (5.7) is bounded by O(α log m) · OPT

�

The proof of Theorem 5.3.1 follows directly from combining Lemma 5.3.8 and Lemma 5.3.7.
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Chapter 6: Piecewise static policies

6.1 Introduction

In this chapter, we consider two-stage adjustable robust linear optimization problems under

packing uncertain constraints and study the performance of piecewise static policies. These are a

generalization of static policies where we divide the uncertainty set into several pieces and specify

a static solution for each piece. We show that in general there is no piecewise static policy with

a polynomial number of pieces that has a significantly better performance than an optimal static

policy. This is quite surprising as piecewise static policies are significantly more general than static

policies. More specifically, recall two-stage adjustable robust problem with packing constraints

(1.7)

zAR(U ) = max cT x + min
B∈U

max
y(B)

dT y(B)

Ax + By(B) ≤ h

x ∈ Rn
+, y(B) ∈ Rn

+.

As mentioned before, following Bertsimas et al. [43], we can assume without loss of generality

that U is down-monotone (A set S ⊆ Rn
+ is down-monotone if s ∈ S, t ∈ Rn

+ and t ≤ s

implies t ∈ S). The above formulation models many interesting applications including revenue

management and resource allocation problems with uncertain demand. For instance, in a resource

allocation application, the right hand side h can model the fixed resource capacities and the un-

certain coefficients in B model the uncertain requirements of resources for demand. The goal is to

find an optimal allocation of resources that maximizes the worst case profit (see Wiesemann [44]).

In general, it is intractable to compute an adjustable robust solution for (1.7). In fact, Awasthi et
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al. [48] show that the two-stage adjustable robust problem (1.7) is Ω(log n)-hard to approximate if

the uncertainty set of constraint coefficients belongs to the non-negative orthant. In other words,

there is no polynomial time algorithm that approximates the optimal adjustable solution within a

factor better than log n. Therefore, the goal is to construct approximate policies with good per-

formance. A static solution approach, where we give a single solution feasible for all scenarios,

has been widely studied in the literature. Recall the static robust optimization problem (1.8) to

approximate (1.7) is given by

zRob(U ) = max cT x + dT y

Ax + By ≤ h ∀B ∈ U

x ∈ Rn
+, y ∈ Rn

+.

As we mention earlier, an optimal static solution can be computed efficiently for large class of

problems (see Bertsimas et al. [15], Ben-Tal et al. [16]). Ben-Tal and Nemirovski [9] show that

a static solution is optimal for (1.7) if the uncertainty set is constraint-wise where each constraint

is selected independently from a compact convex set Ui (i.e. U is a Cartesian product of Ui,

i = 1, . . . ,m). Bertsimas et al.[43] generalize the result of [9] and show that a static solution is near

optimal for several interesting families ofU . In particular, they give a tight characterization on the

performance of the static solution related to the measure of non-convexity of a transformation of

the uncertainty setU . While a static solution provides a good approximation in many cases, it can

be as bad as a factor m away from the optimal adjustable solution in general.

In this chapter, we consider the piecewise static solution approach for (1.7). A piecewise static

policy (also referred to as finite K-adaptability) is a generalization of the static policy where the

uncertainty set is divided into several pieces and we specify a static policy for each piece [39][31].

In particular, we consider a piecewise policy with p pieces (or subsets): U1, . . . ,Up ofU such that

U = ∪
1≤i≤p

Ui,
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where each Ui is convex, compact and down-monotone uncertainty subset. Note that Ui are not

necessarily disjoint. We can formulate the two-stage piecewise robust linear optimization problem

as in 1.9, i.e.,

zPR(U1, . . . ,Up) = max cT x + min(dT y1, d
T y2, . . . , d

T yp)

Ax + Bi yi ≤ h ∀i ∈ [p] , ∀Bi ∈ Ui

x ∈ Rn
+, yi ∈ Rn

+ ∀i ∈ [p].

We show that the performance of the optimal piecewise static policy for given pieces is related

to the maximum of the measures of non-convexity of transformations of the pieces Ui; thereby

extending the bound in [43] for piecewise static policies. Note that if the pieces Ui are given

explicitly, we can efficiently compute an optimal piecewise static policy provide we can solve

linear optimization over each Ui efficiently. However, one of the main challenges in designing a

good piecewise static policy, is to construct good pieces of the uncertainty set. In fact, Bertsimas

and Caramanis [39] show that it is NP-hard to construct the optimal pieces for piecewise policies

with only two pieces for two-stage robust linear programs in general.

Our main contribution in this chapter is to show that even if we ignore the computational

complexity of computing optimal pieces, surprisingly the performance of piecewise static policies

with a polynomial number of pieces is not significantly better than a static policy in general. In

particular, we show that there is no piecewise static policy with polynomial number of pieces

that gives an approximation bound better than O(m1−ε ) for any ε > 0 for general uncertainty sets

U ⊆ Rm×n
+ where the approximation bound for the static policy is m. We prove this by constructing

a family of instances of U for any ε > 0, such that the performance of the static policy is m and

the performance of any piecewise policy with polynomial number of pieces is Ω(m1−ε ). Our proof

is based on a combinatorial argument and structural results about piecewise static policies.

The rest of the chapter is organized as follows. We present the preliminaries in Section 6.2. In

Section 6.3, we present the structural results for piecewise static policies. Finally, we present the

lower bound on the performance of piecewise static policies in Section 6.4.
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6.2 Preliminaries: Static policies

In this section, we present some preliminaries and definitions for our results. As we mention

earlier, Bertsimas et al. [43] give a tight characterization on the performance of a static solution

as compared to the optimal adjustable solution for problem (1.7). They relate this performance

to the measure of non-convexity of a transformation of the uncertainty set. We first introduce the

following definitions.

Definition 6.2.1. (Transformation T (U, ·)). For any h > 0 and convex compact full-dimensional

down-monotone setU ⊆ Rm×n
+ , we define the following transformation:

T (U ,h) = {BTµ �� hTµ = 1,B ∈ U ,µ ≥ 0}.

Definition 6.2.2. (Measure of non-convexity). For any down-monotone compact set S ⊆ Rn
+, the

measure of non-convexity κ(S) is defined as follows:

κ(S) = min{α �� conv(S) ⊆ α · S}.

Definition 6.2.3. For any convex compact full-dimensional down-monotone setU , let,

ρ(U ) = max
h>0

κ(T (U ,h)).

For anyU ⊂ Rm×n
+ , Bertsimas et al.[43] give the following characterization of conv(T (U, ·)).

Lemma 6.2.4 (Bertsimas et al. [43]). For any h > 0,

conv(T (U ,h)) = conv *
,

⋃
1≤i≤m

{
1
hi
BT ei

�����
B ∈ U

}
+
-
.

Consider the following one-stage adjustable robust problem,ΠI
AR(U ,h), corresponding to (1.7).
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zI
AR(U ,h) = min

B∈U
max
y≥0
{dT y �� By ≤ h}. (6.1)

The one-stage problem is related to the separation problem for the two-stage adjustable robust

optimization problem (1.7). Similarly, we can consider the following one-stage robust problem,

ΠI
Rob(U ,h), corresponding to (1.8).

zI
Rob(U ,h) = max

y≥0
{dT y �� By ≤ h ∀B ∈ U}. (6.2)

Bertsimas et al. [43] give the following reformulations of (6.1) and (6.2).

Lemma 6.2.5 (Bertsimas et al. [43]). ΠI
AR(U ,h) (6.1) can be reformulated as

zI
AR(U ,h) = min {λ �� λb ≥ d, b ∈ T (U ,h)}.

Lemma 6.2.6 (Bertsimas et al. [43]). ΠI
Rob(U ,h) can be formulated as

zI
Rob(U ,h) = min{λ �� λb ≥ d, b ∈ conv(T (U ,h)}.

Furthermore, they show that

zRob(U ) ≤ zAR(U ) ≤ ρ(U ) · zRob(U ),

where ρ(U ) is the tight bound that characterizes the performance of the static policy. Note that

ρ(U ) can be as bad as m in general. The worst case instance for ρ(U ) is the diagonal uncertainty

set

U =



diag(x)
�����

m∑
i=1

xi ≤ 1, x ≥ 0


. (6.3)

For this example of uncertainty set we have, zAR(U ) = m · zRob(U ). We refer the reader to

Bertsimas et al. [43] for more details.
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6.3 Structural results on piecewise static policy

In this section, we introduce the piecewise static policies for the two-stage adjustable robust

optimization problem (1.7) and study the structural properties and performance of these policies.

We first introduce the following definition.

Definition 6.3.1. (Convex cover) Let U1,U2, . . . ,Up subsets of U such that Ui is convex, com-

pact and down-monotone set. We say that U1,U2, . . . ,Up is a convex cover of U if U =

U1 ∪U2 . . . ∪Up.

Note that different pieces are not necessarily disjoint. We only require that the union of pieces

coversU .

6.3.1 Performance of piecewise static policy

LetU = U1 ∪U2 . . . ∪Up be a convex cover ofU . We relate the performance of the optimal

piecewise static solution to the maximum of the measures of non-convexity of the transforma-

tions T (Ui, ·). Consider the following reformulation of the two-stage piecewise static robust linear

optimization problem (1.9).

zPR(U1, . . . ,Up) = max cT x + z

Ax + Bi yi ≤ h ∀i ∈ [p] , ∀Bi ∈ Ui

z ≤ dT yi ∀i ∈ [p]

x ∈ Rn
+, yi ∈ Rn

+ ∀i ∈ [p], z ∈ R.

(6.4)

We can compute the solution of this problem efficiently if the number of pieces is small and linear

optimization is efficient over each piece.

Let (x∗, (y∗1, y
∗
2, . . . , y

∗
p)) be an optimal solution of (6.4). Then (x∗, y(B)), where y(B) = y∗i if

B ∈ Ui, is a feasible solution for the adjustable problem (1.7). Therefore,

zPR(U1, . . . ,Up) ≤ zAR(U ). (6.5)
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To compute an upper bound for zAR(U ) in terms of zPR(U1, . . . ,Up), consider the following one

stage piecewise static problem ΠI
PR((U1, . . . ,Up),h):

zI
PR((U1, ..,Up),h) = max

yi≥0
{z �� Bi yi ≤ h ∀Bi ∈ Ui, z ≤ dT yi, ∀i ∈ [p]} (6.6)

Lemma 6.3.2. For the one stage piecewise static problem ΠI
PR((U1, . . . ,Up),h),

zI
PR((U1, . . . ,Up),h) = min

1≤i≤p
zI

Rob(Ui,h).

Lemma 6.3.2 follows directly from (6.6). The following theorem relates the performance of a

piecewise static solution to the measures of non-convexity of T (Ui,h).

Theorem 6.3.3. For any convex cover ofU such thatU = U1 ∪U2 . . . ∪Up,we have,

zAR(U ) ≤ max(ρ(U1), . . . , ρ(Up)) · zPR(U1, . . . ,Up).

Furthermore, the bound is tight.

Proof. Denote λ̂`, b̂` ∈ conv(T (U`,h)) the solutions of the one stage piecewise static problem

ΠI
PR((U1, . . . ,Up),h) under the formulations of Lemma 6.3.2 and Lemma 6.2.6, where ` ∈ [p].

We have zI
PR((U1, . . . ,Up),h) = λ̂` and λ̂` b̂` ≥ d, i.e.

κ` λ̂` ·
b̂`
κ`
≥ d

where κ` = κ(T (U`,h)). Since,

b̂`
κ`
∈ T (U`,h) ⊆ T (U ,h),

then (κ` λ̂`) is a feasible solution forΠI
AR(U ,h) under the formulation of Lemma 6.2.5, i.e. κ` λ̂` ≥

zI
AR(U ,h).
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Moreover, we know that max(ρ(U1), . . . , ρ(Up)) ≥ κ` . Then,

max(ρ(U1), . . . , ρ(Up)) · zI
PR((U1, . . . ,Up),h) ≥ zI

AR(U ,h).

Therefore,

zAR(U ,h) = cT x∗ + zI
AR(U ,h − Ax∗)

≤ cT x∗ +max(ρ(U1), . . . , ρ(Up)) · zI
PR((U1, . . . ,Up),h − Ax∗)

≤ max(ρ(U1), . . . , ρ(Up)) · (cT x∗ + zI
PR((U1, . . . ,Up),h − Ax∗))

≤ max(ρ(U1), . . . , ρ(Up)) · zPR(U1, . . . ,Up).

The last inequality follows from the definition (6.6) of the one stage piecewise static problem. The

tightness of the bound follows from the tightness of the bound for static policies [43]. �

6.3.2 Examples of piecewise static policies

We present several examples to illustrate the performance bound for piecewise static policies.

In particular, we consider the diagonal uncertainty set defined in (6.3) for which the performance

of static policies is the worst possible as compared to the optimal fully adjustable solution. We first

show that without loss of generality, we can consider pieces of the following form for any convex

cover ofU (6.3).

V (τ1, τ2, . . . , τm) =



diag(x)
�����

m∑
j=1

x j ≤ 1, 0 ≤ x j ≤ τj ∀ j ∈ [m]


. (6.7)

In particular, we have the following structural lemma.

Lemma 6.3.4 (Structure of Piecewise static policies). LetU = U1 ∪U2 . . . ∪Up a convex cover

of the diagonal uncertainty set (6.3). For all i ∈ [p] we define,Vi = V (τi1, τi2, . . . , τim), where for
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all i ∈ [p] and j ∈ [m],

τi j = max
diag(x)∈Ui

eT
j x.

Then, ∀i ∈ [p],Ui ⊆ Vi ⊆ U and κ(T (Vi,h)) ≤ κ(T (Ui,h)).

Proof. Let i ∈ [p]. We have ∀ diag(x) ∈ Ui, x j ≤ τi j for j = 1, . . . ,m. Then, Ui ⊆ Vi ⊆ U .

Now, we will show that for all i ∈ [p], conv(T (Ui,h)) = conv(T (Vi,h)). First, since Ui ⊆ Vi,

clearly, conv(T (Ui,h)) ⊆ conv(T (Vi,h)). Consider any b ∈ T (Vi,h). Then,

b = diag(x)Tµ,

where
∑m

k=1 µk hk = 1 and diag(x) ∈ Vi. Therefore,

b =
m∑

k=1

µk hk ·
xk

hk
ek

For all k ∈ [m], we have xk ≤ τik and we know that Ui is down-monotone. Therefore, xk ek ∈

Ui and xk
hk
ek ∈ T (Ui,h). Hence b ∈ conv(T (Ui,h)) and conv(T (Vi,h)) ⊆ conv(T (Ui,h)).

Therefore,

conv(T (Vi,h)) = conv(T (Ui,h)) ⊆ κ(T (Ui,h)) · T (Ui,h)

⊆ κ(T (Ui,h)) · T (Vi,h),

which implies κ(T (Vi,h)) ≤ κ(T (Ui,h)). �

In the following lemma, we show that we can compute the measure of non-convexity of

T (V (τ1, τ2, . . . , τm),h) whereV (τ1, τ2, . . . , τm) is defined in (6.7).

Lemma 6.3.5. Let,

U = V (τ1, τ2, . . . , τm)

where V (τ1, τ2, . . . , τm) is defined in (6.7) such that ∀i ∈ [m], 0 ≤ τi ≤ 1 and
∑m

i=1 τi ≥ 1. Then
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for all h > 0,

κ(T (U ,h)) =
m∑

i=1

τi .

The proof of Lemma 6.3.5 is presented in Appendix D.1. We now present two examples of con-

vex covers of the diagonal uncertainty setU (6.3) and give the performance of the corresponding

piecewise static policy for each example.

Example 1. For all j = 1, . . . ,m let,

Uj =



diag(x)
�����

m∑
i=1

xi ≤ 1, 0 ≤ x j ≤
1
m



.

Note that ∪
1≤ j≤m

Uj is a convex cover ofU with m number of pieces. From Lemma 6.3.5, we have

the following.

Propostion 6.3.6. For the cover defined in Example 1, the performance of piecewise static policy

is

ρ = m − 1 +
1
m
.

Example 2. Let Sm be the set of permutations in {1,2, . . . ,m} and let τ = (1, 1
2 ,

1
3 , . . . ,

1
m ).

For all σ ∈ Sm let,

Uσ =



diag(x)
�����

0 ≤ xi ≤ τσ(i) ∀i ∈ [m] ,
m∑

i=1

xi ≤ 1


,

Note that ∪
σ∈Sm

Uσ is a convex cover ofU with m! number of pieces. From Lemma 6.3.5, we have

the following.

Propostion 6.3.7. For the cover defined in Example 2, the performance of piecewise static policy

is

ρ =

m∑
i=1

1
i
= O(log(m)).

We would like to note that for the cover in Example 1, the number of pieces is polynomial
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and the performance bound for the piecewise static policy is Ω(m) which is the same order as the

approximation bound for static policies. For Example 2, the performance bound for the piecewise

static policy is O(log m) which is significantly better. However the number of pieces is expo-

nential. Since it is difficult to compute a piecewise static policy with exponentially many pieces, it

motivates us to consider the problem of finding piecewise static policies with a polynomial number

of pieces that have a significantly better performance than the static policy.

6.4 Lower bound for polynomial pieces

In this section, we show that, surprisingly there is no piecewise static policy with polynomial

number of pieces that gives an approximation bound significantly better than the static policies in

general. In particular, we consider the diagonal uncertainty set (6.3). Bertsimas et al. [43] present

family of instances where zAR(U ) = m · zRob(U ) for the uncertainty set (6.3). We show that

for any fixed ε > 0, there is no piecewise static policy with polynomial number of pieces with

approximation bound as O(m1−ε ). Our proof is based on a combinatorial argument that exploits

the structural result for piecewise policies for (6.3) derived in the previous section. We have the

following theorem.

Theorem 6.4.1 (Main result). For any given 0 < ε < 1 and k ∈ N, there are instances of uncer-

tainty setU ⊂ Rm×n
+ with sufficiently large m such that for any convex cover (U1,U2, . . . ,Up) of

U with p ≤ (max(m,n))k pieces,

max(ρ(U1), . . . , ρ(Up)) > m1−ε .

Proof. Consider the diagonal uncertainty setU ⊂ Rm×m
+ defined in (6.3) for m sufficiently large.

Consider (U1,U2, . . . ,Up) a convex cover of U such that p ≤ mk . We can assume without loss

of generality p = mk . Suppose for the sake of contradiction,

max(ρ(U1), . . . , ρ(Up)) ≤ m1−ε . (6.8)
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From Lemma 6.3.4, it is sufficient to considerUi of the following form for all i ∈ [p]:

Ui =



diag(x)
�����

m∑
i=1

xi ≤ 1, 0 ≤ x j ≤ τi j ∀ j ∈ [m]



From Lemma 6.3.5, for all i ∈ [p], ∀h > 0,

κ(T (Ui,h)) =
m∑

j=1

τi j ≤ m1−ε

where the last inequality follows from the assumption (6.8). Let

β =

⌊
1
ε

⌋
.

We define the following discrete set

W =



diag
(

a1

γ
, . . . ,

am

γ

) �����

m∑
i=1

ai = γ, ai ∈ {0,1},∀i ∈ [m]


,

where γ = βk + k + 1. Note thatW is a discrete subset ofU with cardinality

|W| =

(
m
γ

)
=

(
m

βk + k + 1

)
= Θ

(
m βk+k+1

)
.

We have

W ⊆ U = ∪
1≤i≤p

Ui .

Hence there exists 1 ≤ ` ≤ mk such that U` contains at least |W|mk elements ofW . In particular,

there exists Ŵ ⊆ W such that Ŵ ⊆ U` and

|Ŵ | ≥
|W|

mk = Θ(m βk+1). (6.9)
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Then ∀ j ∈ [m] and ∀a ∈ Ŵ ,

a j

βk + k + 1
≤ τ̀ j .

Therefore, ∀ j ∈ [m],
max
a∈Ŵ

eT
j a

βk + k + 1
≤ τ̀ j ,

which implies

m∑
j=1

max
a∈Ŵ

eT
j a ≤ (βk + k + 1)

m∑
j=1

τ̀ j

≤ (βk + k + 1)m1−ε

< (βk + k + 1)m
β
β+1 ,

where the last inequality follows from 1
β+1 < ε . Denote t = (βk + k + 1)m

β
β+1 and

S = { j ∈ [m] �� ∃a ∈ Ŵ , a j = 1}.

Then, |S| ≤ btc. We have,

Ŵ ⊆



diag
(

a1

γ
, . . . ,

am

γ

) �����

∑
i∈S

ai = γ, ai ∈ {0,1},∀i ∈ [m]


.

Therefore,

|Ŵ | ≤

(
|S|

γ

)
= Θ

(
|S|

γ) .

154



We have,

|S|
γ = |S| βk+k+1

≤ btc βk+k+1

≤ t βk+k+1

=

(
(βk + k + 1)m

β
β+1

) (βk+k+1)

= (βk + k + 1)(βk+k+1) · m βk+ β
β+1

Then,

|Ŵ | ≤ Θ

(
m βk+ β

β+1

)
.

On the other hand, |Ŵ | ≥ Θ
(
m βk+1

)
(6.9) which is a contradiction for m sufficiently large. �

The above theorem implies that if we restrict to piecewise policies with a polynomial number

of pieces, we can not get significantly better policies than static in general. This is quite surprising

since piecewise static policies are more general than a single static solution.
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Conclusion

This thesis focuses on some fundamental questions in the theory and foundations of robust

optimization. At a high level, the thesis addresses two challenges. The first one is to bridge the

gap between the empirical and theoretical performance of simple policies in robust optimization

such as affine policies. The second one is to design new polices that are tractable, scalable and

significantly improve over affine and static policies.

In fact, while the worst-case performance of affine policies can be arbitrarily bad, the empirical

performance is observed to be near-optimal on both synthetic and real data. We present a fine-

grained analysis of affine policies that addresses this stark contrast between theory and practice

in two different ways. First, we introduce in Chapter 2 a probabilistic approach to analyze the

performance of affine policies on randomly generated instances of two-stage robust optimization.

We show that with high probability affine policies give a good approximation for a wide range of

instances drawn from a large class of distributions; thereby, providing a theoretical justification

of the observed empirical performance. It is an interesting question to extend this probabilistic

analysis to other classes of dynamic robust optimization problems.

Second, we study the performance of affine policies for an important class of uncertainty sets

widely used in practice, namely budget of uncertainty. In particular, we show in Chapter 3 that

affine policies give the optimal approximation for two-stage adjustable problem with covering

constraints under budget of uncertainty sets which confirms the power of these policies and ex-

plains the good empirical performance under this widely used class of uncertainty sets. We also

provide strong theoretical bounds on the performance for the class of intersection of budgeted

sets and improve significantly over the state of art performance bounds. Furthermore, our analysis

shows the existence of a near-optimal affine solution satisfying a nice structural property where the

scenarios are partitioned into inexpensive and expensive based on a threshold and the affine so-

lution covers only the inexpensive components using a linear solution and remaining components

using a static solution. This structure is closely related to threshold policies that are widely used

in many applications, and allows us to design an alternate algorithm for computing near-optimal
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faster affine solutions. This structural property might be of independent interest for other applica-

tions and could provide insights to design more general policies that work well in settings where

affine policies could be highly sub-optimal.

In Chapters 4 and 5, we design new polices that improve significantly over affine and static

policies. In fact, while affine policies provide an optimal approximation for budgeted uncertainty

sets, their performance could be bad for general uncertainty sets, most notably for sets generated

by conic constraints like ellipsoids. We present piecewise policies where we divide the uncertainty

set into several pieces and specify an affine or a static solution for each piece. A significant chal-

lenge in designing a practical piecewise policy is to construct good pieces of the uncertainty set.

In Chapter 6, we show that in the worst-case, there is no piecewise static policy with a polynomial

number of pieces that has a significantly better performance than a static policy for a class of two-

stage packing problems. This is quite surprising as piecewise static policies are significantly more

general than static policies but still do not give a provably better solution. This motivates us to con-

sider piecewise policies with possibly exponentially many pieces but where the pieces are not given

explicitly. In particular, in Chapter 4, we introduce a new framework where the uncertainty set is

implicitly partitioned into an exponential number of pieces using a threshold point. The threshold

depends only on the geometry of the uncertainty set and can be computed by solving a compact

linear program. This results in a tractable piecewise affine policy that performs significantly better

than affine policies for many important uncertainty sets, such as ellipsoids and norm-balls, both

theoretically and numerically. However, the theoretical bounds are still significantly higher than

the hardness lower bounds. In Chapter 5, we significantly improve over the previous bounds by

optimizing the threshold point based on both the geometry of the uncertainty set and the instance.

We use insights from our previous analysis of affine policies and design a class of extended affine

policies that can be compute by using linear decision rules in a lifted space. We show that that

they improve significantly over previous policies for some important class of uncertainty sets. We

also analyze the structure of optimal solution and show that they are closely related to threshold

policies.
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While this thesis has focused on two-stage robust optimization problems, it is an interesting

and open question to analyze theoretically the performance of all these policies, i.e., static, affine,

piecewise affine, extended affine and threshold policies or design new policies for multi-stage

robust optimization problems.
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Appendix A: Two-stage robust optimization

Lemma A.0.2. The affine problem (1.2) can be formulated as the following LP

zAff(U ) = min cT x + z

z − dT q ≥ rT v

RT v ≥ PT d

Ax + Bq ≥ VT r

RTV ≥ Im − BP

q ≥ UT r

UTR + P ≥ 0

x ∈ X, v ∈ RL
+, U ∈ RL×n

+ , V ∈ RL×m
+

P ∈ Rn×m, q ∈ Rn, z ∈ R.

(A.1)

Proof. The affine problem (1.2) has the following epigraph formulation

zAff(U ) = min cT x + z

z ≥ dT (Ph + q) , ∀h ∈ U

Ax + B (Ph + q) ≥ h, ∀h ∈ U

Ph + q ≥ 0, ∀h ∈ U

x ∈ X, P ∈ Rn×m, q ∈ Rn, z ∈ R.

We use standard duality techniques to derive formulation (A.1). The first constraint is equivalent
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to

z − dT q ≥ max
Rh≤r
h≥0

dTPh.

By taking the dual of the maximization problem, the constraint is equivalent to

z − dT q ≥ min
RT v≥PT d

v≥0

rT v.

We can then drop the min and introduce v as a variable, hence we obtain the following linear

constraints

z − dT q ≥ rT v

RT v ≥ PT d

v ∈ RL
+.

We use the same technique for the second sets of constraints, i.e.,

Ax + Bq ≥ max
Rh≤r
h≥0

h(Im − BP).

By taking the dual of the maximization problem for each row and dropping the min we get the

following compact formulation of these constraints

Ax + Bq ≥ VT r

RTV ≥ Im − BP

V ∈ RL×m
+ .

Similarly, the last constraint

q ≥ max
Rh≤r
h≥0

− Ph,
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is equivalent to

q ≥ UT r

UTR + P ≥ 0

U ∈ RL×n
+ .

Putting all together, we get the formulation (A.1).

�
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Appendix B: Beyond worst-case: a probabilistic analysis of affine policies

B.1 Proofs of preliminaries

Proof of Lemma 2.2.4 We have

zAR(B) = min
x∈X

cT x +max
h∈U

min
By ≥ h−Ax

y≥0

dT y

= min
x∈X

cT x +max
h∈U

max
BTw≤d
w≥0

(h − Ax)Tw (B.1)

= min
x∈X

cT x + max
w∈W

−(Ax)Tw + max
Rh≤r
h≥0

hTw

= min
x∈X

cT x + max
w∈W

−(Ax)Tw + min
RTλ≥w
λ≥0

rTλ

= zd−AR(B).

where the second equality holds by taking the dual of the inner minimization problem, the third

equality follows from switching the two max, and the fourth one by taking the dual of the second

maximization problem.

Proof of Lemma 2.2.6 We restate the same proof in [18] in our setting. First, since the adjustable

problem is a relaxation of the affine problem then zd−AR(B) ≤ zd−Aff(B).

Now let us prove the other inequality. Consider W = {w ∈ Rm
+ | B

Tw ≤ d} which is a

simplex. Note that 0 is always an extreme point of the simplexW and denote w1,w2, . . . ,wm the
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remaining m points. In particular, we have for any w ∈ W

w =
m∑

j=1

α jw
j = Qα

where
∑m

j=1 α j ≤ 1 and Q =
[
w1 |w2 | . . . |wm

]
. Note that Q is invertible since w1,w2, . . . ,wm are

linearly independent. Hence, α = Q−1w. Denote x∗,λ∗(w),w ∈ W , an optimal solution of the

adjustable problem (2.2). We define the following affine solution x = x∗ and for w ∈ W ,

λ(w) = PQ−1w

where

P =
[
λ∗(w1) |λ∗(w2) | . . . |λ∗(wm)

]
.

In particular, we have

λ(w) =
m∑

j=1

α jλ
∗(w j ).

Let us first check the feasbility of the solution. We have,

RTλ(w) =
m∑

j=1

α jR
Tλ∗(w j ) ≥

m∑
j=1

α jw
j = w
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where the inequality follows from the feasibility of the adjustable solution. Therefore,

zd−Aff(B) ≤ cT x + max
w∈W

(−Ax)Tw + rTλ(w)

= cT x∗ +max
α

(−Ax∗)Tw +
m∑

j=1

α j r
Tλ∗(w j )

= cT x∗ +max
α

m∑
j=1

α j
(
(−Ax∗)Tw j + rTλ∗(w j )

)
≤ cT x∗ + max

w∈W

(
(−Ax∗)Tw + rTλ∗(w)

)
max
α

m∑
j=1

α j ≤ zd−AR(B)

where the last inequality holds because
∑m

j=1 α j ≤ 1. We conclude that zd−Aff(B) = zd−AR(B).

Proof of Lemma 2.2.7 First the inequality zd−AR(B) ≤ zd−Aff(B) is straightforward since the

adjustable problem(1.1) is a relaxation of the affine problem (1.2). On the other hand, sinceW ⊆

κ · S then,

zd−Aff(B) ≤ κ · zd−Aff(B,S)

where we denote zd−Aff(B,S) the dualized affine problem overS (it’s the same problem as zd−Aff(B)

where we only replaceW by S). Since S is a simplex, from Lemma 2.2.6, we have zd−Aff(B,S) =

zd−AR(B,S). Moreover, zd−AR(B,S) ≤ zd−AR(B) because S ⊆ W . We conclude that

zd−AR(B) ≤ zd−Aff(B) ≤ κ · zd−AR(B).

Furthermore, since zd−AR(B) = zAR(B) from Lemma 2.2.4 and zd−Aff(B) = zAff(B) from Lemma

2.2.5, then

zAR(B) ≤ zAff(B) ≤ κ · zAR(B).
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B.2 Hoeffding’s inequality

Hoeffding’s inequality[49]. Let Z1, . . . , Zn be independent bounded random variables with

Zi ∈ [a,b] for all i ∈ [n] and denote Z = 1
n
∑n

i=1 Zi. Therefore,

P(Z − E(Z ) ≤ −τ) ≤ exp
(
−2nτ2

(b − a)2

)
.

B.3 MIP formulation for the empirical section

MIP formulation for the separation adjustable problem. The separation problem (2.18) can be

formulated as the following MIP

max
m∑

i=1

s∑
j=−∆W

s∑
k=−∆U

1
2 j+k · γi j k − (Ax̂)Tw

w =
m∑

i=1

s∑
j=−∆W

βi j

2 j · ei

h =
m∑

i=1

s∑
k=−∆U

αik

2k · ei

γi j k ≤ βi j ∀i ∈ [m], j ∈ [−∆U , s], k ∈ [−∆W , s]

γi j k ≤ αik ∀i ∈ [m], j ∈ [−∆U , s], k ∈ [−∆W , s]

γi j k + 1 ≥ αik + βi j ∀i ∈ [m], j ∈ [−∆U , s], k ∈ [−∆W , s]

αik , βik , γi j k ∈ {0,1} ∀i ∈ [m], j ∈ [−∆U , s], k ∈ [−∆W , s]

Rh ≤ r

BTw ≤ d

(B.2)

where s = dlog2

(
m
ε

)
e, ∆W is an upper bound on any component of w ∈ W , ∆U is an upper bound

on any component of h ∈ U and ε is the accuracy of the problem.

Proof. The separation problem (2.18) is equivalent to solving the following problem for given x̂
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max
h∈U
w∈W

hTw − (Ax̂)Tw

The constraints of the above problem are linear and the second term in the objective function is

linear as well. So we will focus only on the first term hTw which is a bilinear function and write it

in terms of linear constraints and binary variables. Let us write h =
∑m

i=1 hiei. For all i ∈ [m] we

digitize the component hi as follows

hi =

s∑
k=−∆U

αik

2k

where s = dlog2

(
m
ε

)
e, ∆U is an upper bound on any hi and αik are binary variables. This digiti-

zation gives an approximation to hi within ε
m which translates to an accuracy of ε in the objective

function. We have

h =
m∑

i=1

s∑
k=−∆U

αik

2k · ei .

Similarly, we have

w =
m∑

i=1

s∑
j=−∆W

βi j

2 j · ei

where ∆W is an upper bound on any component of w ∈ W . Therefore, the first term in the

objective function becomes
m∑

i=1

s∑
j=−∆W

s∑
k=−∆U

1
2 j+k · αik βi j .

The final step is to linearize the term αik βi j . We set, αik βi j = γi j k where again γi j k is a binary

variable. Since all the variables here are binary we can express γi j k using only linear constraints

as follows

γi j k ≤ βi j

γi j k ≤ αik

γi j k + 1 ≥ αik + βi j
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which leads to formulation (B.2).
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Appendix C: Affine policies for budget of uncertainty sets

C.1 Proof of Claims in Section 3.2.3

Proof of Claim 3.2.6.

z(W ) = min
y≥0



dT y

���� By ≥
∑
i∈W

ei




= min
y≥0



dT y

����

n∑
j=1

Bi j y j ≥ 1, ∀i ∈ W



= min
y≥0



dT y

����

n∑
j=1

wi Bi j

maxk∈W (wk Bk j )
· max

k∈W
(wk Bk j ) · y j ≥ wi, ∀i ∈ W




= min
y≥0



dT y

����

n∑
j=1

B̂i j · max
k∈W

(wk Bk j ) · y j ≥ wi, ∀i ∈ W



= min
y≥0




n∑
j=1

d j

maxk∈W (wk Bk j )
· y j

����

n∑
j=1

B̂i j y j ≥ wi, ∀i ∈ W



= min
y≥0



ηγ

n∑
j=1

d̂ j y j
����

n∑
j=1

B̂i j y j ≥ wi, ∀i ∈ W



= ηγ · ẑ(W ).

Proof of Claim 3.2.7. Consider j ∈ [n], by the feasibility of the solution z∗ we have,

∑
i∈J

B̂i j · z∗i ≤ d̂ j ,
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and consequently ∑
i∈J

B̂i j
2bz∗i c
η
≤

∑
i∈J

B̂i j
2z∗i
η
≤

2d̂ j

η
.

Hence,

P *.
,

∑
i∈J

B̂i j ·
2Zi

η
> d̂ j

+/
-
= P *.

,

∑
i∈J

B̂i j ·
2(bz∗i c + ξi)

η
> d̂ j

+/
-

≤ P *.
,

∑
i∈J

B̂i j
2ξi

η
> (1 −

2
η

)d̂ j
+/
-

= P *.
,

∑
i∈J

B̂i jξi > (
η

2
− 1)d̂ j

+/
-
.

Now, we apply the Chernoff inequality in Lemma C.2.1 with δ = η
2 − 2 and Ξ =

∑
i∈J B̂i jξi. Note

that δ = 2 · log n
log log n − 2 > 0 for sufficiently large n. Moreover, we have for all i ∈ J , j ∈ J ,

B̂i j ∈ [0,1] and

E *.
,

∑
i∈J

B̂i jξi
+/
-
=

∑
i∈J

B̂i j (z∗i − bz
∗
i c) ≤

∑
i∈J

B̂i j z∗i ≤ d̂ j .

Therefore the Chernoff bound gives,

P *.
,

∑
i∈J

B̂i jξi > (
η

2
− 1)d̂ j

+/
-
≤ *

,

e
η
2−1

( η2 − 2)
η
2−2

+
-

d̂ j

.

Recall η = 4 log n
log log n . Hence the RHS is equivalent to

*
,

e
η
2−1

( η2 − 2)
η
2−2

+
-

d̂ j

= O
*..
,

e
η d̂ j

2

( η2 )
d̂ jη

2

+//
-
= O

(
exp

(
d̂ j
η

2

(
1 − log(

η

2
)
)))

= O
(
exp

(
−d̂ j

η

2
log η

))
= O

(
exp

(
−2d̂ j

log n
log log n

log
(
4

log n
log log n

)))
= O

(
exp

(
−2d̂ j log n

))
= O

(
1

n2d̂ j

)
≤

c
n2 ,
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for some constant c. The last inequality holds because d̂ j ≥ 1. Hence,

P *.
,

∑
i∈J

B̂i j ·
2Zi

η
> d̂ j

+/
-
≤

c
n2 .

Therefore by a union bound we have,

P *.
,

∑
i∈J

B̂i j
2Zi

η
> d̂ j , ∃ j ∈ [n]+/

-
≤

n∑
i=1

P *.
,

∑
i∈J

B̂i j
2Zi

η
> d̂ j

+/
-
≤

c
n
.

Therefore,

P *.
,

∑
i∈J

B̂i j
2Zi

η
≤ d̂ j , ∀ j ∈ [n]+/

-
≥ 1 −

c
n
= 1 −O(

1
n

).

Proof of Claim 3.2.8. We have,

∑
i∈J

wi Zi = λ +
∑
i∈J

wiξi,

where

λ =
∑
i∈J

wi bz∗i c .

We apply the Chernoff inequality in Lemma C.2.2 with δ = 1
2 and Ξ = λ +

∑
i∈J wiξi. Note that

E(Ξ) =
∑
i∈J

wi z∗i > 1.

Hence,

P *.
,

∑
i∈J

wi Zi >
1
2

+/
-
= P

(
Ξ >

1
2

)
≥ P

(
Ξ >

E(Ξ)
2

)
≥ 1 − e−

E(Ξ)
8 ≥ 1 − e−

1
8 .
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C.2 Chernoff bounds

Lemma C.2.1 (Chernoff Bound 1). Let ξ1, ξ2, . . . , ξr be independent Bernoulli trials. Denote

Ξ =
∑r

i=1 αiξi where α1, . . . ,αr are reals in [0,1]. Let s > 0 such that E(Ξ) ≤ s. Then for any

δ > 0,

P(Ξ ≥ (1 + δ)s) ≤
(

eδ

(1 + δ)1+δ

) s

.

The Chernoff bound in Lemma C.2.1 is a slight variant of the Raghavan-Spencer inequality

(Theorem 1 in [55]). The proof is along the same lines as in [55]. For completeness, we are

providing it below.

Proof. From Markov’s inequality we have for all t > 0,

P(Ξ ≥ (1 + δ)s) = P(etΞ ≥ et(1+δ)s) ≤
E(etΞ)
et(1+δ)s .

Denote pi the parameter of the Bernoulli ξi. By independence, we have

E(etΞ) =
r∏

i=1

E(etαi ξi ) =
r∏

i=1

(
pietαi + 1 − pi

)
≤

r∏
i=1

exp
(
pi (etαi − 1)

)
where the inequality holds because 1 + x ≤ ex for all x ∈ R. By taking t = ln(1 + δ) > 0, the right

hand side becomes

r∏
i=1

exp
(
pi ((1 + δ)αi − 1)

)
≤

r∏
i=1

exp
(
piδαi

)
= exp (δ · E(Ξ)) ≤ eδs,

where the first inequality holds because (1 + x)α ≤ 1 + αx for any x ≥ 0 and α ∈ [0,1] and the
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second one because s ≥ E(Ξ) =
∑r

i=1 αi pi. Hence, we have

E(etΞ) ≤ eδs .

On the other hand,

et(1+δ)s = (1 + δ)(1+δ)s .

Therefore,

P(Ξ ≥ (1 + δ)s) ≤
(

eδs

(1 + δ)(1+δ)s

)
=

(
eδ

(1 + δ)1+δ

) s

.

�

Lemma C.2.2 (Chernoff Bound 2). Let ξ1, ξ2, . . . , ξr be independent Bernoulli trials. Denote

Ξ = λ +

r∑
i=1

αiξi

where λ ∈ R+ and α1, . . . ,αr are reals in (0,1]. Denote µ = E(Ξ). Then for any 0 < δ < 1,

P(Ξ > (1 − δ)µ) > 1 − e
−δ2µ

2 .

This is a slight variant of the lower tail Chernoff bound [56]. The proof is along the same lines

as in [56]. For completeness, we are providing it below.

Proof. We show equivalently that

P(Ξ ≤ (1 − δ)µ) ≤ e
−δ2µ

2 .

From Markov’s inequality we have for all t < 0,

P(Ξ ≤ (1 − δ)µ) = P(etΞ ≥ et(1−δ)µ) ≤
E(etΞ)
et(1−δ)µ .
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Denote pi the parameter of the Bernoulli ξi. By independence, we have

E(etΞ) = etλ
r∏

i=1

E(etαi ξi ) = etλ
r∏

i=1

(
pietαi + 1 − pi

)
≤ etλ

r∏
i=1

exp
(
pi (etαi − 1)

)
,

where the inequality holds because 1 + x ≤ ex for all x ∈ R. We take t = ln(1 − δ) < 0. We have

t ≤ −δ, hence

etλ ≤ e−δλ .

Moreover,

r∏
i=1

exp
(
pi (etαi − 1)

)
=

r∏
i=1

exp
(
pi ((1 − δ)αi − 1)

)
≤

r∏
i=1

exp
(
−piδαi

)
,

where the inequality holds because (1− x)α ≤ 1− αx for any 0 < x < 1 and α ∈ [0,1]. Therefore,

E(etΞ) ≤ e−δλ
r∏

i=1

exp
(
−piδαi

)
= e−δµ.

On the other hand,

et(1−δ)µ = (1 − δ)(1−δ)µ.

Therefore,

P(Ξ ≤ (1 − δ)µ) ≤
(

e−δµ

(1 − δ)(1−δ)µ

)
=

(
e−δ

(1 − δ)1−δ

) µ
.

Finally, we have for any 0 < δ < 1,

ln(1 − δ) ≥ −δ +
δ2

2

which implies

(1 − δ) · ln(1 − δ) ≥ −δ +
δ2

2
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and consequently (
e−δ

(1 − δ)1−δ

) µ
≤ e

−δ2µ
2 .

�

C.3 Additional numerical experiments for general uncertainty sets

The formulation (3.19) provides an approximate affine policy for solving our two-stage ad-

justable problem under any uncertainty set even though the theoretical performance bound for the

approximate affine policy holds only for the case of single budget of uncertainty set. In this sec-

tion, we test numerically the approximate affine policy given by (3.19) for general uncertainty sets

both in terms of performance and running time. We consider the following uncertainty sets for our

extended numerical experiments.

U3 =


h ∈ [0,1]m

�����

m∑
i=1

h2
i ≤ 1




(C.1)

U4 =


h ∈ [0,1]m

�����

m∑
i=1

w`ihi ≤ 1,∀` = 1,2



(C.2)

U5 =


h ∈ [0,1]m

�����

m∑
i=1

w`ihi ≤ 1,∀` = 1, . . . ,5


, (C.3)

where U3 is the unit hypersphere uncertainty set, U4 and U5 are respectively intersection of two

and five budget of uncertainty sets. For U4 and U5, we choose w` to be normalized Gaussian

vectors, i.e., w`i = |Gi |/‖G‖2 where Gi are i.i.d. standard Gaussians. We use the same test

instances and the same notations as in Section 3.5. We present the results of these computational

experiments in Table C.1.

Results. We observe from Table C.1 that our algorithm is significantly faster than the optimal

affine policy up to 100 factor of magnitude even for general uncertainty sets. The average running
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m Taff(s) TAlg(s) zAlg/zAff
10 0.222 0.165 1.735
20 0.945 0.608 1.870
30 2.868 1.445 1.911
40. 6.653 2.533 1.952
50 15.00 4.113 1.970
60 32.34 6.148 1.987
70 69.83 9.639 2.004
80 254.1 21.59 2.010
90 500.7 30.13 2.025

100 907.6 41.09 2.030

(a) Uncertainty set (C.1)

m Taff(s) TAlg(s) zAlg/zAff
10 0.020 0.040 1.132
20 0.289 0.165 1.145
30 1.050 0.328 1.135
40 5.014 0.851 1.122
50 19.48 1.497 1.120
60 77.13 3.048 1.116
70 184.5 5.279 1.113
80 392.7 7.984 1.116
90 872.9 11.19 1.115

100 1199 11.83 1.109

(b) Uncertainty set (C.2)
m Taff(s) TAlg(s) zAlg/zAff
10 0.031 0.051 1.212
20 0.434 0.197 1.190
30 2.362 0.581 1.185
40 8.534 1.177 1.176
50 28.34 1.979 1.168
60 75.38 3.815 1.164
70 176.9 5.648 1.159
80 388.2 8.145 1.152
90 845.5 11.68 1.154

100 1133 11.48 1.147

(c) Uncertainty set (C.3)

Table C.1: Comparison on the performance and computation time of the optimal affine policy and
our approximate affine policy. For 20 instances, we compute zAlg(U )/zAff(U ) for the uncertainty
sets (C.1), (C.2) and (C.3). Here, TAlg(s) denotes the running time for our approximate affine
policy and Taff(s) denotes the running time for affine policy in seconds. These results are obtained
using Gurobi 7.0.2 on a 16-core server with 2.93GHz processor and 56GB RAM.

time of our algorithm is few seconds and scales very well with the dimension of the problem while

computing the optimal affine policy becomes challenging for large size instances. Furthermore, we

observe that the gap between our affine solution and the optimal one is within 20% for intersection

of budget of uncertainty setsU4 andU5 and does not increase with the dimension m. However, for

the hypersphere uncertainty set U3, we observe that the gap between our policy and the optimal

affine policy is larger as compared to other uncertainty sets and does increase in this case with the

dimension m. For instance, the gap is more than a factor 2 for m = 100.
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C.4 Proof of Lemma 3.6.1

First let us show that zAR = 0. We consider the following solution for the adjustable problem

xi =




1 if i ∈ J1

0 if i ∈ J2.

Consider a scenario h that is an extreme point ofU . In particular, we have hi ∈ {0,1}m for all i and∑m
i=1 hi = m/2. Consider J̃1(h) and J̃2(h) respectively subsets of J1 and J2 in which the demand

is realized. In particular,

J̃1(h) = {i ∈ J1 | hi = 1}

J̃2(h) = {i ∈ J2 | hi = 1}.

We have,

| J̃1(h) | + | J̃2(h) | = m/2.

Note that the first stage solution x covers the demand of the nodes in J̃1(h) because xi = 1 for all

i ∈ J1. On the other side, we cover demand in J̃2(h) by sending inventory from J1 \ J̃1(h) to J̃2(h)

in the second stage. This is possible because

|J1 \ J̃1(h) | = m/2 − | J̃1(h) | = | J̃2(h) |.

The cost of sending inventory from J1 \ J̃1(h) to J̃2(h) is 0 because all directed distances from J1

to J2 are zero. In particular, we consider a matching M from J1 \ J̃1(h) to J̃2(h). We define the

following second stage solution

yi j (h) =



1 if (i, j) ∈ M

0 otherwise.

We have x, y(h) is feasible for the adjustable problem and its corresponding cost is 0. Therefore,
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zAR(U ) = 0.

Now, let us show that zAff(U ) = m/2 − 1. Given the distances in the graph, flow can be sent

only from J1 to J2. In particular, we can rewrite the covering constraints of the problem as follows

∀ j ∈ J2 x j +
∑
i∈J1

yi j (h) ≥ h j (C.4)

∀i ∈ J1 xi −
∑
j∈J2

yi j (h) ≥ hi . (C.5)

Consider x and y(h) = Ph + q a feasible affine solution. The number of rows of P is the

number of edges in the graph. The number of columns of P is m which is the total number of

nodes. In particular,

∀i ∈ J1, ∀ j ∈ J2 yi j (h) =
m∑
`=1

P(i,j) ,̀ h` + qi j ,

where P(i,j) ,̀ denotes the component of P corresponding to edge (i, j) and node `. Nodes of

J1 should be covered in the first stage because flow can not be sent to J1 in the second stage.

Moreover, J1 is covered at a zero cost. In particular we have,

xi = 1 ∀i ∈ J1.

Let fix i ∈ J1. Consider h ∈ U such that hi = 1. From (C.5), we have,

xi ≥
∑
j∈J2

yi j (h) + 1.

Moreover, we know that xi ≤ 1 and yi j (h) ≥ 0 for all j ∈ J2. This implies that for all j ∈ J2,

yi j (h) = 0,
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which is equivalent to

P(i,j),i + qi j +

m∑
`=1,̀ ,i

P(i,j) ,̀ h` = 0

for any h ∈ U such that hi = 1. Therefore, for any i ∈ J1, for any j ∈ J2,

P(i,j),i + qi j = 0,

and

P(i,j) ,̀ = 0 ∀` , i. (C.6)

Now fix ` ∈ J1 and j ∈ J2. Consider the following scenario




h` = 0

hi = 1 ∀i ∈ J1 \ {`}

h j = 1

hk = 0 ∀k ∈ J2 \ { j}.

From (C.4), we have for all j ∈ J2,

x j +
∑
i∈J1

yi j (h) ≥ 1.

Since there is a unit demand at node i ∈ J1 for any i , `, we can not send inventory from i to any

node in J2. In particular, yi j (h) = 0 for any i , `. This implies from the last inequality that

x j + y` j (h) ≥ 1,

which is equivalent to

x j + P(`,j),j +
∑

k∈J1,k,`

P(`,j),k + q` j ≥ 1.
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Putting it together with (C.6), we get for any j ∈ J1 and for any ` ∈ J2, we have

x j + q` j ≥ 1.

Therefore, ∑
j∈J2

x j +
∑
j∈J2

q` j ≥ m/2.

Now consider (C.5) for h = 0. We have for ` ∈ J1,

x` −
∑
j∈J2

q` j ≥ 0.

Moreover since x` ≤ 1 , we conclude that,

∑
j∈J2

q` j ≤ 1.

Therefore, ∑
j∈J2

x j ≥ m/2 − 1.

Finally,

zAff ≥

m∑
j=1

c j x j =
∑
j∈J2

x j ≥ m/2 − 1.

Now we consider the following affine solution




xi = 1 ∀i = 1, . . . ,m − 1

xm = 0

∀h ∈ U ,∀i ∈ J1,




yi j (h) = 0 ∀ j ∈ J2 \ {m}

yim(h) = −hi + 1.

The above affine solution is feasible for the adjustable problem. In fact, The capacity constraints

are verified on x. The non-negativity constraints are verified on y(h). Demand is covered at each
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node by the first stage solution x except a node m. Demand at node m is covered in the second

stage because ∑
i∈J1

yim(h) =
∑
i∈J1

(1 − hi) = m/2 −
∑
i∈J1

hi ≥ hm,

where the inequality follows from the definition ofU . The cost of this affine solution is m/2 − 1.

Therefore,

zAff(U ) = m/2 − 1.

C.5 Proof of Lemma 3.7.1

The adjustable problem corresponding to the instance (3.26) is given by

zAR(U ) = min
x≥0

max
h∈U

min
y(h)≥0

eT y(h)

m∑
i=1

hi (e − ei)eT x + y(h) ≥ h, ∀h ∈ U .

We introduce the new variable α = eT x. The problem is equivalent to

zAR(U ) = min
α≥0

max
h∈U

min
y(h)≥0

eT y(h)

α

m∑
i=1

*.
,

m∑
j=1,j,i

h j
+/
-
ei + y(h) ≥ h, ∀h ∈ U .

Note that the first stage cost corresponding to α is zero and therefore we could choose the variable

α to be arbitrary large in the optimal solution.

First remark that zAR(U ) ≥ 1. In fact, by taking h = e1, the first feasibility constraint implies

y1(e1) ≥ 1 and therefore the cost of an adjustable solution is at least eT y(e1) ≥ 1. Hence,

zAR(U ) ≥ 1. Now let us construct a feasible solution of the adjustable problem with a cost equal

to 1. Consider an extreme point h of U . Therefore, hi ∈ {0,1} for all i ∈ [m]. If h = 0, the

solution y(0) = 0 is feasible and its corresponding cost is 0. Otherwise, if h has at least one

non-zero component, let say hi = 1. Then, we consider the following solution y(h) = ei which is
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feasible. In fact, the i-th constraint is verified because

α
*.
,

m∑
j=1,j,i

h j
+/
-
+ yi (h) ≥ yi (h) = 1 = hi .

The other feasibility constraints are also verified because the first term in these constraints is non-

zero and we could take α as large as needed. In particular, by just taking α = 1, we have for any

k , i,

α
*.
,

m∑
j=1,j,k

h j
+/
-
+ yk (h) ≥ α *.

,

m∑
j=1,j,k

h j
+/
-
≥ αhi = 1 ≥ hk .

The corresponding cost is eT y(h) = eT ei = 1. Hence, zAR(U ) = 1. Now let us compute the

optimal affine solution. Consider an affine solution

y(h) = Ph + q.

We have for any h ∈ U ,

zAff(U ) ≥ eT (Ph + q).

Consider h = e. Then the above inequality implies,

zAff(U ) ≥
m∑

i=1

m∑
j=1

Pi j +

m∑
i=1

qi . (C.7)

Moreover, we know that y(h) ≥ 0 for any h ∈ U . In particular, for all i ∈ [m],

yi (e − ei) ≥ 0.

Hence, for all i ∈ [m],
m∑

j=1,j,i

Pi j + qi ≥ 0. (C.8)
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Combining (C.7) and (C.8), we get

zAff(U ) ≥
m∑

i=1

Pii . (C.9)

On the other hand, we have for h = 0,

zAff(U ) ≥ eT y(0) =
m∑

i=1

qi . (C.10)

We know by feasibility of y(h) that for all i ∈ [m],

α
*.
,

m∑
j=1,j,i

h j
+/
-
+ yi (h) ≥ hi .

In particular, for all i ∈ [m], by taking h = ei, the i-th constraint gives

yi (ei) = Pii + qi ≥ 1. (C.11)

Therefore, from (C.9), (C.10) and (C.11), we conclude

zAff(U ) ≥
m∑

i=1

(Pii + qi)/2 ≥
m
2
.

Finally, consider the following affine solution for any h ∈ U ,

yi (h) =



hi ∀i = 1, . . . , m
2

1 − hi−m
2

∀i = m
2 + 1, . . . ,m

where we assume m is even for the sake of simplicity. The above solution is feasible. In fact, for

i = 1, . . . , m
2 , we have

α
*.
,

m∑
j=1,j,i

h j
+/
-
+ yi (h) ≥ yi (h) = hi

For i = m
2 + 1, . . . ,m, if hi−m

2
= 0, then yi (h) = 1 and therefore the i-th constraint is verified.
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If hi−m
2
, 0, therefore

(∑m
j=1,j,i h j

)
, 0 and by taking α sufficiently large, the i-th constraint is

verified as well. Finally the cost of the proposed affine solution is

eT y(h) = m/2.

We conclude that

zAff(U ) = m/2.
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Appendix D: Piecewise static policies

D.1 Proof of Lemma 6.3.5

First, note that for h > 0,

T (U ,h) =
{(

y1

h1
,
y2

h2
, . . . ,

ym

hm

) �����
(y1, y2, . . . , ym) ∈ T (U , e)

}
.

Then we can easily prove that κ(T (U ,h)) = κ(T (U , e)). In fact, let x ∈ conv(T (U ,h)). Then,∑m
i=1 xihiei ∈ conv(T (U , e)). Therefore,

1
κ(T (U , e))

· *
,

m∑
i=1

xihiei+
-
∈ T (U , e).

Then,
1

κT ((U , e))
· x ∈ T (U ,h),

which implies,

conv(T (U ,h)) ⊆ κ(T (U , e)) · T (U ,h),

and finally κ(T (U ,h)) ≤ κ(T (U , e)). Similarly, we also have κ(T (U ,h)) ≥ κ(T (U , e)). Now,

it’s sufficient to show that κ(T (U , e)) =
∑m

i=1 τi . Let first show that

conv(T (U , e)) =



(x1, x2, . . . , xm) ∈ [0,1]m
�����

m∑
i=1

xi

τi
≤ 1



. (D.1)

Let x ∈ conv(T (U , e)). From Lemma 6.2.4, we have x =
∑m

i=1 λiaiei, where
∑m

i=1 λi = 1,

λi ∈ [0,1] and 0 ≤ ai ≤ τi, ∀i ∈ [m]. We have,
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m∑
i=1

xi

τi
=

m∑
i=1

λi ·
ai

τi
≤

m∑
i=1

λi = 1.

Conversely, let x ∈ Rm
+ such that,

m∑
i=1

xi

τi
≤ 1.

We have

x =
m∑

j=1

λ j a j e j ,

where for all j ∈ [m],

λ j =

x j

τj∑m
i=1

xi
τi

and a j = τj

m∑
i=1

xi

τi
.

We have
∑m

j=1 λ j = 1 and a j ≤ τj ∀ j ∈ [m]. Then, x ∈ conv(T (U , e)).

Now, we would like to find a lower bound for κ(T (U , e)). Let α ≥ 1 such that

conv(T (U , e)) ⊆ α · T (U , e). From (D.1), we have

*
,

τ2
1∑m

i=1 τi
,

τ2
2∑m

i=1 τi
, . . . ,

τ2
m∑m

i=1 τi
+
-
∈ conv(T (U , e))

Then, there exists diag(x) ∈ U and µ ∈ Rm
+ ,

∑m
i=1 µi = 1, such that

*
,

τ2
1∑m

i=1 τi
,

τ2
2∑m

i=1 τi
, . . . ,

τ2
m∑m

i=1 τi
+
-
= α · diag(x)Tµ,

i.e. ∀1 ≤ i ≤ m,
τ2

i∑m
j=1 τj

= αµi xi

From Cauchy-Shwartz inequality we have,

m∑
i=1

τ2
i

µi
≥ *

,

m∑
i=1

τi+
-

2

,
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Then,

α *
,

m∑
i=1

τi+
-

*
,

m∑
i=1

xi+
-
≥ *

,

m∑
i=1

τi+
-

2

,

i.e.

α *
,

m∑
i=1

xi+
-
≥ *

,

m∑
i=1

τi+
-
,

therefore,

α ≥

m∑
i=1

τi,

where the last inequality follows from
∑m

i=1 xi ≤ 1. To finish our proof we show that,

conv(T (U , e)) ⊆ *
,

m∑
i=1

τi+
-
· T (U , e).

Let x ∈ conv(T (U , e)), we have from (D.1),

m∑
i=1

xi

τi
≤ 1.

For all 1 ≤ j ≤ m, let define,

µ j =

x j

τj∑m
i=1

xi
τi

and b j = τj

∑m
i=1

xi
τi∑m

i=1 τi
.

Then

x = *
,

m∑
i=1

τi+
-
· diag(b)Tµ

We have ∀ j ∈ [m],

b j ≤
τj∑m

i=1 τi
≤ τj

where the second inequality holds because
∑m

i=1 τi ≥ 1. Furthermore,

m∑
j=1

b j =

m∑
i=1

xi

τi
≤ 1.
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Therefore, diag(b) ∈ U . Since
∑n

j=1 µ j = 1, diag(b)Tµ ∈ T (U , e). We conclude that

x ∈ *
,

m∑
i=1

τi+
-
· T (U , e).
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Appendix E: Piecewise affine policies

E.1 Proof of Theorem 4.2.3

Proof. Let ( x̂, ŷ(ĥ), ĥ ∈ Û ) be an optimal solution for zAR(Û ). For each h ∈ U , let ỹ(h) = ŷ(ĥ)

where ĥ ∈ Û dominates h. Therefore, for any h ∈ U ,

Ax̂ + Bỹ(h) = Ax̂ + Bŷ(ĥ) ≥ ĥ ≥ h,

i.e., ( x̂, ỹ(h),h ∈ U ) is a feasible solution for zAR(U ). Therefore,

zAR(U ) ≤ cT x̂ +max
h∈U

dT ỹ(h) ≤ cT x̂ +max
ĥ∈Û

dT ŷ(ĥ) = zAR(Û ).

Conversely, let (x∗, y∗(h),h ∈ U ) be an optimal solution of zAR(U ). Then, for any ĥ ∈ Û , since

ĥ
β ∈ U , we have,

Ax∗ + By∗ *
,

ĥ

β
+
-
≥

ĥ

β
,

Therefore, (βx∗, βy∗
(
ĥ
β

)
, ĥ ∈ U ) is feasible for ΠAR(Û ). Therefore,

zAR(Û ) ≤ cT βx∗ +max
ĥ∈Û

dT βy∗ *
,

ĥ

β
+
-
≤ β ·

(
cT x∗ +max

h∈U
dT y∗(h)

)
= β · zAR(U ).

�

E.2 Proof of Lemma 4.2.4

Proof. a) Suppose there exists β and v ∈ U such that Û = β ·conv (e1, . . . , em, v) dominatesU .

Consider h ∈ U . Since Û dominatesU , there exists α1,α2, . . . ,αm+1 ≥ 0 with α1+. . .+αm+1 = 1
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such that

hi ≤ β (αi + αm+1vi) , ∀i = 1, . . . ,m. (E.1)

Let

I (h) =
{
i ∈ [m]

���� hi − βvi ≥ 0
}
.

Then,

m∑
i=1

(
hi − βvi

)+
=

∑
i∈I (h)

hi − β
∑

i∈I (h)

vi

≤
∑

i∈I (h)

β (αi + αm+1vi) − β
∑

i∈I (h)

vi

= β
∑

i∈I (h)

αi + (αm+1 − 1) β
∑

i∈I (h)

vi

≤ β,

where the first inequality follows from (E.1) and the last inequality holds because αm+1 − 1 ≤ 0,

vi ≥ 0 , β ≥ 0 and
∑

i∈I (h) αi ≤ 1. We conclude that

1
β

m∑
i=1

(
hi − βvi

)+
≤ 1.

b) Now, suppose there exists β and v ∈ U such that Û = β · conv (e1, . . . , em, v) dominates

U . For any h ∈ U , let

ĥ =
m∑

i=1

(
hi − βvi

)+ ei + βv.

Then for all i = 1, . . . ,m,

ĥi =
(
hi − βvi

)+
+ βvi

≥
(
hi − βvi

)
+ βvi ≥ hi .
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Therefore, ĥ dominates h. Moreover,

ĥ = 2β *
,

m∑
i=1

(
hi − βvi

)+
2β

ei +
1
2
v+

-
∈ 2β · conv (0, e1, . . . , em, v) ,

because
1
β

m∑
i=1

(
hi − βvi

)+
≤ 1.

Therefore, 2β · conv (0, e1, . . . , em, v) dominatesU and consequently

2β · conv (e1, . . . , em, v) dominatesU as well. �

E.3 Proof of Lemma 4.3.2

Proof. Suppose k ∈ [m]. Let us consider

h ∈ argmax
h∈U

k∑
i=1

hi .

Without loss of generality, we can suppose that hi = 0 for i = k + 1, . . . ,m. Denote, Sk the set of

permutations of {1,2, . . . , k}. We define hσ ∈ Rm
+ such that hσi = hσ(i) for i = 1, . . . , k and hσi = 0

otherwise. SinceU is a permutation invariant set, we have hσ ∈ U for any σ ∈ Sk . The convexity

ofU implies that
1
k!

∑
σ∈Sk

hσ ∈ U .

We have, ∑
σ∈Sk

hσi =



(k − 1)! ·
∑k

j=1 h j if i = 1, . . . , k

0 otherwise,

and
∑k

j=1 h j = k · γ(k) by definition. Therefore,

1
k!

∑
σ∈Sk

hσ = γ(k) ·
k∑

i=1

ei ∈ U .

�
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E.4 Proof of Lemma 4.3.3

Proof. Consider, h̃ ∈ U an optimal solution for the maximization problem in (4.9) for fixed β. We

will construct h∗ ∈ U another optimal solution of (4.9) that verifies the properties in the lemma.

First, denote I = {i | h̃i > βγ} and |I | = k. Since, U is permutation invariant, we can suppose

without loss of generality that I = {1,2, . . . , k}. We define,

h∗i =



γ(k) if i = 1, . . . , k

0 otherwise.

From Lemma 4.3.2, we have h∗ ∈ U . Moreover,

m∑
i=1

(h̃i − βγ)+ =
k∑

i=1

h̃i − βγk ≤ k · γ(k) − βγk

=

k∑
i=1

(γ(k) − βγ) =
k∑

i=1

(h∗i − βγ)

≤

k∑
i=1

(h∗i − βγ)+ =
m∑

i=1

(h∗i − βγ)+

where the first inequality follows from the definition of the coefficients γ(.). Therefore, h∗ and h̃

have the same objective value in (4.9) and consequently h∗ is also optimal for the maximization

problem (4.9). Moreover, from the first inequality, we have γ(k)− βγ > 0, i.e., ��{i | h∗i > βγ}�� = k .

Therefore, h∗ verifies the properties of the lemma. �

E.5 Proof of Proposition 4.3.9

Proof. To prove that Û dominatesU , it is sufficient to take h in the boundaries ofU , i.e.,

a
m∑

i=1

hi

m∑
j=1

h j + (1 − a)
m∑

i=1

h2
i = 1, (E.2)
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and find α1,α2, . . . ,αm+1 nonnegative reals with
∑m+1

i=1 αi = 1 such that for all i ∈ [m],

hi ≤ β
(
αi + γαm+1

)
.

By taking all hi equal in (E.2), we get

γ =
1√(

am2 + (1 − a)m
) .

We choose for i ∈ [m],

αi =
1
2

*.
,
(1 − a)h2

i + ahi

m∑
j=1

h j
+/
-

and αm+1 =
1
2 . First, we have

∑m+1
i=1 αi = 1 and for all i ∈ [m],

β
(
αi + γαm+1

)
=
β

2
*.
,
(1 − a)h2

i + ahi

m∑
j=1

h j +
1√

am2 + (1 − a)m
+/
-

≥
β

2
*
,
(1 − a)h2

i +
1√

am2 + (1 − a)m
+ ahi+

-

≥
β

2
*.
,
2 *

,

(1 − a)√
am2 + (1 − a)m

+
-

1
2

hi + ahi
+/
-
= hi

where the first inequality holds because
∑m

j=1 h j ≥ 1 which is a direct consequence of hT
Σh = 1

and a ≤ 1. The second one follows from the inequality of arithmetic and geometric means (AM-

GM inequality). Finally, we can verify by case analysis on the values of a that

*.
,

a
2
+

(1 − a)
1
2(

am2 + (1 − a)m
) 1

4

+/
-

−1

= O
(
m

2
5

)
.

In fact, denote H (m) =
(

a
2 +

(1−a)
1
2

(am2+(1−a)m)
1
4

)−1

= O
(
a + 1

(am2+m)
1
4

)−1
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Case1: a = O( 1
m ). We have

(
am2 + m

) 1
4 = O(m

1
4 ). Then H (m) = O(m

1
4 ) = O(m

2
5 ).

Case2: a = Ω(m
−2
5 ). We have H (m) = O(a−1) = O(m

2
5 ).

Case3: a = O(m
−2
5 ) and a = Ω( 1

m ). We have
(
am2 + m

) 1
4 = O(m

2
5 ). Then,

a +
1(

am2 + m
) 1

4

= Ω(
1
m

) +Ω(m
−2
5 ) = Ω(m

−2
5 ).

Therefore, H (m) = O(m
2
5 ). �

E.6 Proof of Proposition 4.3.10

Proof. To prove that Û dominates U , it is sufficient to take h in the boundaries of U , i.e.,∑m
i=1 hi = k and find α1,α2, . . . ,αm+1 non-negative reals with

∑m+1
i=1 αi = 1 such that for all i ∈ [m],

hi ≤ β

(
αi +

k
m
αm+1

)
.

First case: If β = k, we choose αi =
hi
k for i ∈ [m] and αm+1 = 0. We have

∑m+1
i=1 αi = 1 and for

all i ∈ [m],

β

(
αi +

k
m
αm+1

)
= k

hi

k
≥ hi .

Second case: If β = m
k , we choose αi = 0 for i ∈ [m] and αm+1 = 1. We have

∑m+1
i=1 αi = 1 and for

all i ∈ [m],

β

(
αi +

k
m
αm+1

)
= 1 ≥ hi .

�

E.7 Proof of Lemma 4.3.11

Proof. Consider the following simplex

Û = conv
(
e1, . . . , em,

1
√

m
e

)
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It is clear that Û dominates U since 1√
m
e dominates all the extreme points ν j for j ∈ [N].

Moreover, by the convexity of U , we have 1
N

∑N
j=1 ν j =

(m−1
r−1 )
√

m(mr ) e =
r

m
√

m
e ∈ U . Denote β = m

r .

Hence, for all i ∈ [m]

ei = β

(
1
β
· ei + (1 −

1
β

) · 0
)

︸                      ︷︷                      ︸
∈U

and
1
√

m
e = β ·

r
m
√

m
e︸   ︷︷   ︸

∈U

.

Therefore, Û ⊆ β·U and from Theorem 4.2.3, we conclude that our policy gives a β-approximation

to the adjustable problem (1.1) where β = m
dm−

√
me
= O(1 + 1√

m
). �

E.8 Proof of Lemma 4.3.12

Proof. First, let us prove that zAR(U ) ≤ 1. It is sufficient to define an adjustable solution only for

the extreme points ofU because the constraints are linear. We define the following solution for all

i = 1, . . . ,m and for all j = 1, . . . ,N

x = 0, y(0) = 0, y(ei) = ei, y(ν j ) =
1
m
e.

We have By(0) = 0. For i ∈ [m]

By(ei) = ei +
1
√

m
(e − ei) ≥ ei

and for j ∈ [N]

By(ν j ) =
1
m
Be =

(
1
m
+

m − 1
m
√

m

)
e ≥

1
√

m
e ≥ ν j .

Therefore, the solution defined above is feasible. Moreover, the cost of our feasible solution is 1

because for all i ∈ [m] and j ∈ [N], we have

dT y(ei) = dT y(ν j ) = 1.
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Hence, zAR(U ) ≤ 1. Now, it is sufficient to prove that zAff(U ) = Ω(
√

m). First, x̃ = 1√
m
e and

y(h) = 0 for any h ∈ U is a feasible static solution (which is a special case of an affine solution).

In fact,

Ax̃ =
1
√

m
Ae =

(
1
√

m
+

m − 1
m

)
e ≥ e ≥ h ∀h ∈ U

where the last inequality holds becauseU ⊆ [0,1]m. Moreover, the cost of this static solution is

cT x̃ =

√
m

15
.

Hence,

zAff(U ) ≤
√

m
15

. (E.3)

Our instance is "a permuted instance", i.e. U is permutation invariant, A and B are symmetric and

c and d are proportional to e. Hence, from Lemma 8 and Lemma 7 in Bertsimas and Goyal [18],

for any optimal solution x∗Aff, y
∗
Aff(h) of the affine problem, we can construct another optimal affine

solution that is "symmetric" and have the same stage cost. In particular, there exists an optimal

solution for the affine problem of the following form x = αe, y(h) = Ph + q for h ∈ U where

P =

*..........
,

θ µ . . . µ

µ θ . . . µ

...
...

. . .
...

µ µ . . . θ

+//////////
-

(E.4)

q = λe, cT x = cT x∗Aff and maxh∈U dT y(h) = maxh∈U dT y∗Aff(h). We have x ≥ 0 and y(0) =

λe ≥ 0 hence

λ ≥ 0 and α ≥ 0. (E.5)

Claim: α ≥ 1
24
√

m
For a sake of contradiction, suppose that α > 1

24
√

m
. We know that

zAff(U ) ≥ cT x + dT y(0) =
α

15
m + λm. (E.6)
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Case 1: If λ ≥ 1
12
√

m
, then from (E.6) and α ≥ 0, we have zAff(U ) ≥

√
m

12 . Contradiction with

(E.3).

Case 2: If λ ≤ 1
12
√

m
. We have

y(e1) = (θ + λ)e1 + (µ + λ)(e − e1).

By feasibility of the solution, we have Ax + By(e1) ≥ e1, hence

θ + λ + α

(
m − 1
√

m
+ 1

)
+

1
√

m
(m − 1)(µ + λ) ≥ 1

Therefore θ + λ + α
(

m−1√
m
+ 1

)
≥ 1

2 or 1√
m

(m − 1)(µ + λ) ≥ 1
2 .

Case 2.1: Suppose 1√
m

(m − 1)(µ + λ) ≥ 1
2 . Therefore,

zAff(U ) ≥ dT y(e1) = θ + λ + (m − 1)(µ + λ) ≥
√

m
2
. (Contradiction with (E.3))

where the last inequality holds because θ + λ ≥ 0 as y(e1) ≥ 0.

Case 2.2: Now suppose we have the other inequality i.e. θ + λ + α
(

m−1√
m
+ 1

)
≥ 1

2 . Recall that we

have λ ≤ 1
12
√

m
and we know that α < 1

24
√

m
. Therefore,

θ ≥
1
2
−

1
12
√

m
−

1
24
√

m

(
m − 1
√

m
+ 1

)
=

11
24
−

3
24
√

m
+

1
24m

≥
11
24
−

3
24
=

1
3
.

We have,

y(ν1) =
1
√

m
(
(θ + (r − 1)µ)(e1 + . . . er ) + rµ(e − (e1 + . . . er ))

)
+ λe.
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In particular we have ,

zAff(U ) ≥ dT y(ν1) =
r
√

m
(θ + (m − 1)µ) + λm

≥
r
√

m

(
1
3
+ (m − 1)µ

)
. (E.7)

where the last inequality follows from λ ≥ 0 and θ ≥ 1
3 .

Case 2.2.1: If µ ≥ 0 then from (E.7)

zAff(U ) ≥
r

3
√

m
≥

m −
√

m
3
√

m
≥

√
m

6
for m ≥ 4 (Contradiction with (E.3))

Case 2.2.2: Now suppose that µ < 0, by non-negativity of y(ν1) we have

r
√

m
µ + λ ≥ 0

i.e.

µ ≥
−λ
√

m
r

and from (E.7)

zAff(U ) ≥
r
√

m

(
1
3
+ (m − 1)µ

)
≥

r
√

m

(
1
3
− λ
√

m
m − 1

r

)
≥

r
√

m

(
1
3
−

1
12

m − 1
r

)
≥

r
√

m

(
1
3
−

1
6

)
for m ≥ 4.

≥

√
m

12
(Contradiction with (E.3))

202



We conclude that α ≥ 1
24
√

m
and consequently

zAff(U ) ≥ cT x =
αm
15
≥

√
m

360
= Ω(

√
m).

Hence,

zAff(U ) = Ω(
√

m) · zAR(U ).

cT x = cT x∗Aff Moreover, for any optimal affine solution, the cost of the first-stage affine solution

x∗Aff is Ω(
√

m) away from the optimal adjustable problem (1.1), i.e. cT x∗Aff = cT x = Ω(
√

m) ·

zAR(U ). �

E.9 Proof of Theorem 4.5.1

Proof. Let us find the order of the left hand side ratio in inequality (4.25). We have,

(√
m

mε

)
·
(

m−mε
√

m−mε

)
(

m√
m

) =
(
√

m)! × (m − mε )! × (m −
√

m)! × (
√

m)!
(
√

m − mε )! × (mε )! × m! × (
√

m − mε )! × (m −
√

m)!

=

(
(
√

m)!
(
√

m − mε )!

)2

·
(m − mε )!
(mε )! × m!

.
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By Stirling’s approximation, we have

(√
m

)
! = Θ *.

,
m

1
4

( √
m

e

) √m
+/
-
.

(√
m − mε

)
! = Θ *.

,
(
√

m − mε )
1
2

( √
m − mε

e

) √m−mε

+/
-
.

(
m − mε )! = Θ *

,
(m − mε )

1
2

(
m − mε

e

)m−mε

+
-
.

(m)! = Θ
(
m

1
2

(m
e

)m)
.

(
mε )! = Θ *

,
m

1
2 ε

(
mε

e

)mε

+
-
.

All together,

(√
m

mε

)
·
(

m−mε
√

m−mε

)
(

m√
m

) = Θ
*..
,

(√
m

)2
√

m
· (m − mε )(m−mε )

m
1
2 ε ·

(√
m − mε

)2(√m−mε)
· mm · mεmε

+//
-
.

We have (
m − mε ) (m−mε )

= Θ

(
m(m−mε ) · e−mε+m2ε

m

)
,

and (√
m − mε

)2(√m−mε)
= Θ

((√
m
)2(√m−mε)

· e−2mε+2 m2ε
√
m

)
,

WLOG, we can suppose that ε < 1
4 , therefore

(√
m

mε

)
·
(

m−mε
√

m−mε

)
(

m√
m

) = Θ
*.
,

emε−2 m2ε
√
m
+m2ε

m

mεmε+ 1
2 ε

+/
-

= Θ

(
emε

mεmε+ 1
2 ε

)
.
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We have,

Θ

(
Q(m)emε

mεmε+ 1
2 ε

)
≥ 1,

but the later inequality contradicts

lim
m→∞

Q(m)emε

mεmε+ 1
2 ε
= 0.

�

E.10 Domination for non-permutation invariant sets

Propostion E.10.1. Suppose Algorithm 3 returns β and v for some uncertainty set U . Then the

set (4.28) is a dominating set forU .

Proof. Suppose Algorithm 3 returns β and v,then the inequality (4.5) is verified, namely,

1
β

m∑
i=1

(
hi − βvi

)+
≤ 1, ∀h ∈ U .

Recall the dominating point (4.4)

ĥ(h) = βv + (h − βv)+.

We have

ĥ(h) = β

*......
,

m∑
i=1

(hi − βvi)+

β
(ei + v) + *

,
1 −

m∑
i=1

(hi − βvi)+

β
+
-︸                      ︷︷                      ︸

≥0

v

+//////
-

∈ Û

where

Û = β · conv (v, e1 + v, . . . , em + v)

Hence Û is a dominating set.

�
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E.11 Domination for the generalized budget set

Propostion E.11.1. Let consider

Û = conv
(
e1, . . . , em,

1
m − 1 − 2θ

e

)
(E.8)

The set (E.8) dominates the uncertainty set (4.27).

Proof. Consider the uncertainty set (4.27) given by

U =


h ∈ [0,1]m

�����

m∑
i=1

hi ≤ 1 + θ(hi + h j ) ∀i , j



and

Û = conv
(
e1, . . . , em,

1
m − 1 − 2θ

e

)
.

Note that in our setting we choose θ > m−1
2 . Take any h ∈ U . Suppose WLOG that

h1 ≤ h2 ≤ . . . ≤ hm

Hence, by definition ofU

eTh ≤ 1 + θ(h1 + h2)

To prove that Û dominates U , it is sufficient to find α1,α2, . . . ,αm+1 non-negative reals with∑m+1
i=1 αi ≤ 1 such that for all i ∈ [m],

hi ≤ αi +
1

m − 1 − 2θ
αm+1.

We choose αm+1 = (m − 1 − 2θ) · h1+h2
2 , α1 = h1 and for i ≥ 2, αi = hi −

h1+h2
2 . We can verify that

α1 +
1

m − 1 − 2θ
αm+1 ≥ α1 = h1
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and for i ≥ 2,

αi +
1

m − 1 − 2θ
αm+1 = hi

Moreover, αm+1 ≥ 0, α1 ≥ 0 and for i ≥ 2, αi ≥ 0 since h1 + h2 = mini, j (hi + h j ). Finally,

m+1∑
i=1

αi =

m∑
i=1

hi − (m − 1) ·
h1 + h2

2
+ (m − 1 − 2θ) ·

h1 + h2

2

≤ 1 + θ(h1 + h2) − (m − 1) ·
h1 + h2

2
+ (m − 1 − 2θ) ·

h1 + h2

2
= 1.

Note that the construction of this dominating set is slightly different from the general approach in

Section 3 since we do not scale the unit vectors ei in Û .

�
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