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Abstract

Extracting cosmological information from small scales in weak gravitational

lensing data

José Manuel Zorrilla Matilla

This work is concerned with how to extract information encoded in small scales of non-Gaussian

fields, with the purpose of learning about cosmology using weak gravitational lensing. We do so

by comparing different methods on simulated data sets. The topic is relevant, for upcoming

galaxy surveys will map the late evolution of the matter density field, which is non-Gaussian, with

an unprecedented level of detail, and any improvement on the analysis techniques will increase

the experiments’ scientific return.

First, we investigate some non-Gaussian observables used in the weak lensing community. We

analyze to what extent they are sensitive to the background expansion of the universe, and to what

extent to the evolution of the structures responsible for the lensing. We then focus our attention on

one such statistic, lensing peaks, and assess the performance of a simple halo-based model that

has been proposed to forecast their abundance. We find some shortcomings of that semi-analytic

approach, and proceed to review some minimal requirements for numerical simulations used to

forecast non-Gaussian statistics, to reduce their computational cost while fulfilling the accuracy

and precision required by future experiments.

Second, we propose a novel measurement, that of the temperature dipole induced on the

cosmic microwave background induced by the rotation of ionized gas around galaxies, as an

additional observation to help constrain the distribution of baryonic matter on the smallest scales

probed by WL experiments. The uncertainty in this distribution is a major theoretical systematic

for future surveys.

Third, we show how deep neural networks can be used to map pixel-level data into the

cosmological parameters of interest, by-passing the previous compression step of measuring

pre-designed statistics. We provide the first (simulation-based) credible contours based on neural

networks applied to weak lensing data, and discuss how to interpret these models.
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panel). The percentage difference in the total number of halos per unit solid angle
to I = 1 between a model and the fiducial cosmology, as a function of the halo
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3.1 Comparison of mean peak counts as a function of their height between N-body
simulations (blue) and CAMELUS (red). Counts are normalized to 1 deg2 of sky
and height is expressed in absolute value and as a signal-to-noise ratio (S/N).
The upper panels show the results from smoothed convergence maps without shape
noise; the lower panels add shape noise. Three different cosmologies are displayed
with increasing parameter Σ8 from left to right (0.556, 0.734 and 1.244). In black,
we show the fractional difference between the two models (Δ [%] ≡ (#CAMELUS −
##−1>3H)/##1>3H), and the area between the histograms is shaded. Adding noise
reduces the discrepancies between the models but the effect depends on cosmology.
While the discrepancies are almost erased for cosmologies with small Σ8, for the
rest N-body data yield lower counts near the maximum of the distribution and
higher counts in the tails. The differences grow with Σ8. . . . . . . . . . . . . . . 58

3.2 Global comparison of peak counts. For each cosmology, the area between the
N-body and CAMELUS histograms as a percentage of the area enclosed by the N-
body histogram (Eq. 3.17) is plotted against Σ8. Differences from noiseless maps
(crosses) are significantly reduced by adding noise (dots), so that the difference
stays below 20% in all cases. The reduction is more important for cosmologies
with small Σ8, for which noise dominates. . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Covariance comparison between N-body (upper panel) and CAMELUS (lower panel)
for the fiducial cosmology. Each normalized covariance matrix has diagonal ele-

ments equal to the peak count variance divided by its mean, f
2
88

Ḡ88
, and off-diagonal

elements equal to the correlation coefficients, d8 9 ≡
f8 9
f8f9

. We find higher absolute
values for all elements in the matrices, with positive and negative peaks positively
correlated and positive peaks anti-correlated with negative ones. Peak counts from
CAMELUS are mildly anti-correlated. Selected matrix elements whose value for all
cosmologies is displayed in Fig. 3.4 are indicated with a number. . . . . . . . . . . 61

3.4 The cosmology dependence of covariances. Each subplot shows the value of se-
lected normalized covariance matrix elements for all 162 cosmologies. The se-
lected elements are indicated in Fig. 3.3, and correspond to a diagonal element (left
panel) and off-diagonal elements showing anti-correlation in N-body data (center
panel) and correlation (right panel). N-body data exhibit higher absolute values for
all elements and stronger cosmology dependence. . . . . . . . . . . . . . . . . . . 62
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3.5 Comparison of 2f (95.4%) credible contours from N-body (blue) and CAMELUS

(red) data, using a Gaussian likelihood with constant covariance, !26. Solid lines
show the contours computed using all the peak counts. We find looser constrains,
with a thicker, ≈ 30% larger credibility region. Dashed lines show the results
including only high significance peaks (S/N > 3). While constraints based on
CAMELUS data do not change, the predictive power from N-body data is severely
reduced, with a ≈ 200% increase in the area of the credibility region. Dotted
lines show the degeneracies Σ8 = f8

(
Ω<
0.3

)U
that minimize scatter in !26. We find

a steeper contour, U = 0.67 vs. U = 0.58 for CAMELUS. Grey dots show the
simulated cosmologies (a green star the fiducial cosmology), and grey areas the
regions excluded from contour measurements. . . . . . . . . . . . . . . . . . . . . 63

3.6 Effect on the credibility regions of using a cosmology-dependent covariance. In
the left panels we show the change caused by introducing a variable covariance in
the j2 term of a Gaussian likelihood (!BE6, shaded areas) compared with a constant
covariance (!26, lines). On the right we display the change from using a variable
covariance matrix in the determinant term as well (!E6, shaded areas) compared
with !BE6 (lines). The upper panels show the result using only high-significance
(S/N > 3) peaks, while the lower panels show results with all peaks included.
Introducing a variable covariance in the j2 has a larger impact than using it in the
determinant term. Also, the effects are larger when using only high significance
peaks (see Table 3.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7 Impact of differences in peak counts and covariance matrices on credible contours.
Solid lines are 2f contours from N-body (blue) and CAMELUS (red) data. Ma-
genta lines are contours computed mixing peak counts from one model with the
covariance matrices from the other. The dashed contours combine N-body covari-
ance matrices with CAMELUS peak counts, and the dotted contours combine con-
versely N-body peak counts with CAMELUS covariances. The upper panels show
the results using only S/N > 3 peaks while the lower panels display the contours
obtained including all peaks. On the left we show contours computed using a con-
stant covariance, !26 and on the right those introducing a variable covariance in the
j2 term, !BE6. In general, contours computed with the same covariance matrices
are closer than those calculated with the same peak counts. The effect is more no-
ticeable for the cases which include only high-significance peaks, since for these
the N-body and CAMELUS contours exhibit a greater difference. . . . . . . . . . . 67
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3.8 Peak and halo count variance comparison between N-body (blue) and CAMELUS

(red). Upper panel: ratio of the cumulative peak count standard deviation from
its value expected for a Poisson distribution, as a function of peak height. For
pure Poisson shot noise, this ratio is unity (horizontal black dashed line). We find
significantly higher sample variance than the results from CAMELUS, and what
would be expected for a Poisson distribution. As the peak height increases and the
peak counts decrease, shot noise starts to dominate. Lower panel: variance of the
cumulative halo number as a function of minimum halo mass. Sample variance is
estimated from different sub-volumes, and scaled to a common reference volume
of (250 ℎ−1Mpc)3. Shot noise is estimated from a Poisson distribution with mean
value adopted from a theoretical halo mass function [172]. N-body cumulative halo
counts exhibit a sample variance higher than expected from a Poisson distribution.
Shot noise becomes more important at higher masses, as the halos become scarcer.
CAMELUS is dominated by shot noise. . . . . . . . . . . . . . . . . . . . . . . . . 69

3.9 Influence on the credibility region of the lowest significant peaks included in the
(!26) likelihood calculation. Upper panel: for N-body simulations, including
peaks with 2.0 < S/N < 3.0 significantly improves the model’s predictive power.
Lower panel: for CAMELUS, little or no improvement in predictive power is found
when lower-significance peaks are included. . . . . . . . . . . . . . . . . . . . . . 71

3.10 Effect on CAMELUS credible contours of finite sampling of the cosmological pa-
rameter space. 2f contours obtained from a fine grid of 7,803 models (black) and
interpolated from our suite of 162 cosmologies (red). The interpolated contour is
smaller in the low- and high-Ω< tails. Thus we excluded from our analyses the
greyed-out regions, corresponding to Ω< < 0.160 and Ω< > 0.600. . . . . . . . . . 72

3.11 Effect of cosmological parameter sampling on the N-body credible contours. We
draw 1, 000 bootstrap samples from our suite of cosmologies; i.e., we draw samples
of 162 elements with substitution, each having on average 102-103 different cos-
mologies. Upper panel: !26 2f contours from the full suite (black) and the 1,000
sub-samples (blue). Darker areas indicate higher contour concentration. Lower
panel: area histogram for the bootstrap samples. Displayed for reference are the
area for the full suite (black dashed line), 90% of this value (grey dashed line) and
80% (grey dotted line). 81% of the contours fall within 10% of the original area
and 99% within 20%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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4.1 Comparison of convergence power spectra measured in our simulations with 10243

DM particles, to those obtained in semi-analytic calculations using the flat-sky ap-
proximation and halofit. Upper panel: Convergence power spectra. Thick,
black lines correspond to simulations, while thin, blue lines correspond to the
halofit calculations. Different dashes indicate different redshift bins for the
lensed galaxies. Full lines correspond to results in the presence of shape noise (see
section § 4.2.1 for a description of the shape noise level considered), and partly
transparent lines to the results in the absence of noise. Lower panel: percentage
difference between simulations and halofit, for each redshift bin. As in the
upper panel, full lines correspond to the noisy, and partly transparent lines to the
idealized noiseless case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Effect of lens plane thickness on convergence power spectra. Each column shows,
for a different redshift bin, the percentage difference in the mean auto power spec-
trum measured over 10,048 convergence maps for a given thickness of the lens
planes, relative to the fiducial value of 80 ℎ−1 Mpc. The top row corresponds to
noiseless data, and the bottom row to data in the presence of shape noise (in all
cases, maps were smoothed at 1 arcmin resolution). Thick lines represent mea-
surements over simulated maps, while thin lines represent theoretical predictions
following [201]. For comparison, a standard error is shown in shaded gray, corre-
sponding to 3 standard deviations of the measurements in the fiducial case, scaled
to a 2 × 104 deg2 survey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Same as Figure 4.2 for the one-point ^ probability density function (PDF). Thick
lines correspond to measurements over simulated data, thin lines to predictions for
Gaussian random fields with the same power spectrum as the simulated maps. . . . 91

4.4 Same as Figure 4.2 for the lensing peak distribution. Thick lines correspond to
measurements over simulated data, thin lines to predictions for Gaussian random
fields with the same power spectrum as the simulated maps. . . . . . . . . . . . . . 92

4.5 Same as Figure 4.2 for the three Minkowski functionals (MFs). Each pair of rows
shows a different MF. The top row of each pair corresponds to noiseless data, and
the bottom row to data in the presence of shape noise (in all cases, maps were
smoothed at 1 arcmin resolution). Thick lines correspond to measurements over
simulated data, thin lines to predictions for Gaussian random fields with the same
power spectrum as the simulated maps. . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 Covariance matrix measured over 10048 convergence maps generated from our
5123 particle simulation with 80 ℎ−1 Mpc lens planes. The axis labels indicate the
redshift bins used. For example, the slice [(1.0, 1.5),(2.5,2.5)] shows the correlation
between the cross power spectrum of redshift bins IB = 1.0, IB = 1.5 and the auto
power spectrum of the redshift bin IB = 2.5. . . . . . . . . . . . . . . . . . . . . . 95
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4.7 Effect of mass resolution (number of particles in the simulation volume) on the
convergence power spectrum. Each column shows, for a different redshift bin,
the percentage difference in the mean auto power spectrum measured over 10,048
convergence maps for a given mass resolution of the underlying N-body simula-
tion, relative to the fiducial value of 1.1 × 1010 M� (corresponding to 10243 DM
particles in the simulation box). The top row corresponds to noiseless data, and
the bottom row to data in the presence of shape noise (in all cases, maps were
smoothed at 1 arcmin resolution). Thick lines represent measurements over simu-
lated maps, while thin lines represent theoretical predictions following Eq. (4.5).
For comparison, a standard error is shown in shaded gray, corresponding to 3 stan-
dard deviations of the measurements in the fiducial case, scaled to a 2 × 104 deg2

survey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.8 Same as Figure 4.7 for the one-point ^ probability density function (PDF). Thick
lines represent measurements over simulated maps, while thin lines represent the
expectation for GRFs with the same power spectrum as the ^ maps. . . . . . . . . 100

4.9 Same as Figure 4.2 for the lensing peak distribution. Thick lines represent mea-
surements over simulated maps, while thin lines represent the expectation for GRFs
with the same power spectrum as the ^ maps. . . . . . . . . . . . . . . . . . . . . 100

4.10 Same as Figure 4.2 for the three Minkowski functionals (MFs). Each pair of rows
shows a different MF. The top row of each pair corresponds to noiseless data, and
the bottom row to data in the presence of shape noise (in all cases, maps were
smoothed at 1 arcmin resolution). Thick lines correspond to measurements over
simulated data, thin lines to predictions for Gaussian random fields with the same
power spectrum as the simulated maps. . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 Density profiles for the ionized gas for fully ionized galactic atmospheres (“hot",
in red) and multi-phase atmospheres (“multi-phase", in blue) as a function of dis-
tance to the center in virial radii units for galaxies of three different stellar masses.
The gas metallicity is /6 = 0.3 Z� and the DM density profile of the host halo
is shown in black for reference. The halos’ virial masses are {1.2 × 1011, 3.4 ×
1011, 3.3 × 1012}"�, their virial radii {69, 98, 215} kpc, and their concentrations
{17.3, 15.0, 11.0}, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Radial profiles of the tangential gas velocity for a fast rotator (in red, rotating at the
halo’s circular velocity) and a slow rotator (in blue, rotating at a velocity consistent
with simulations [235]) for galaxies of three different stellar masses. . . . . . . . . 112
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5.3 Upper panel: 2D map of the expected fractional temperature change induced in
the CMB by the rotation of a "∗ = 1010 "� galaxy hosted by a 3.4× 1011 "� DM
halo with a virial radius of 98.1 kpc and a concentration parameter of �E = 15.0
at a redshift of I = 0.03, assuming the multi-phase slow model. The galaxy’s
inclination is 1 rad and the signal has been convolved with a 5 arcmin FWHM beam
(represented by the small dotted circles at the center), while the halo virial radius
has an apparent size of 5.2 arcmin. Lower panel: cut along the X-axis of the
dipole-like signal in the upper panel, for galaxies of three different stellar masses.
The predictions in the hot+fast model (fully ionized atmosphere rotating at the
halo’s circular velocity) are shown in red, and the multi-phase, slow model are
shown in blue. The signal was calculated for a metallicity of /6 = 0.3 Z�, and
shown in absolute value. The profile of the convolving beam is displayed in black. 113

5.4 The distribution of galaxies in redshift and stellar mass, in the two prototype sur-
veys considered to assess the feasibility of detecting the kSZ signal induced by
the rotation of galactic halos. The top panel corresponds to the primary sample in
MaNGA, and the lower panel to SAMI. . . . . . . . . . . . . . . . . . . . . . . . 117

5.5 Comparison between the power spectrum of CMB temperature anisotropies, in-
cluding instrumental noise which dominates at ℓ & few×103, and that for the ex-
pected rkSZ signal for three galaxies of different stellar mass (the same galaxies
used in Figs. 5.1-5.3). The scale on the left y-axis refers to the CMB+noise and the
scale on the right to the kSZ power spectra. Note that the rkSZ power is several
orders of magnitude lower than that from the combination of CMB + instrumental
noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.6 Number of galaxies needed for a 3f detection of the rkSZ signal using an aperture
filter, as a function of filter size. Each CMB experiment configuration is displayed
in a different color. The galaxy (I, "★) distribution is assumed to be that of the
primary sample of MaNGA. Solid lines correspond to predictions based on the
hot+fast model, while dashed lines are based on the multi-phase, slow model. For
reference, vertical lines represent the CMB experiment beam size, in units of the
average 'vir for the galaxies in the survey. . . . . . . . . . . . . . . . . . . . . . . 121

5.7 Planck SMICA-noSZ CMB data stacked on the positions of MaNGA galaxies
(with equal weight) after aligning with the galaxies’ spin angles, and scaling to
their 'vir. The left panel shows the results for all 2,664 galaxies in our sample,
the central panel for the 1,953 spiral galaxies, and the right panel for the 1,235
field spiral galaxies. For each galaxy, located at the origin (0,0), we stacked spin-
aligned 8 × 8 'vir patches. The circles correspond to 'vir and the vertical lines
mark the expected galaxy spin direction (pointing towards the -y axis, the right
half is approaching the observer, and the left side receding). Any rotation-induced
temperature dipole should show a left-right cold-hot temperature asymmetry (see
Fig. 5.3). In each text box, the measured dipole on a 1.0 'vir aperture, and its
signal-to-noise ratio based on the theoretical noise calculation described in 5.3.1. . 127
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5.8 Probability distribution function (PDF) of the temperature dipole of the SMICA-noSZ
map stacked on the positions of 1,253 field spirals after randomizing their spin an-
gles. The PDF is inferred from 104 measurements using 1.0 'vir aperture filters
that have been randomly placed and rotated. Superimposed, a Gaussian PDF with
the same mean and standard deviation as the 104 measurements, shows good agree-
ment with the data. Dotted vertical lines correspond to 1f, 2f, and 3f thresholds.
The solid vertical line is the measured dipole on the stack with the galaxies’ spins
aligned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.9 Single-frequency Planck CMB maps from its high-frequency instrument (HFI),
stacked with equal weights on the positions of the 1,235 field spirals after aligning
their spin angles. Note the difference in units for the two highest-frequency maps:
MJy/sr instead of K. As with Fig. 5.7, the circle represents the average virial radius
and the vertical line the spin direction. The text boxes show the measured dipole,
as well as its percentile and S/N ratio. The percentile and significance have been
derived from noise-only stacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.10 The figure illustrates the impact of a factor-of-two reduction in the total baryon
mass in the halo relative to the cosmic mean value. The corresponding reduction
in the density of the hot, ionized gas component is shown as a function of radius,
in units of the virial radius. Results are shown for the same three halos as in the
previous figures, labelled by the stellar mass of their central galaxies. In the hot
model, where all the baryons are ionized, the gas density scale linearly with the
baryon fraction, independent of mass and radius (shown in red). The hot coronae
of the multi-phase gaseous halos (shown in blue) are less affected, except in the
outer regions where the rkSZ signal contributes little to the SNR. The effect on the
multi-phase model decreases with smaller halo mass. . . . . . . . . . . . . . . . . 131

6.1 Location of the 96 cosmological models in our dataset on the {Ω<, f8} plane. The
fiducial model, {Ω< = 0.260, f8 = 0.800}, is marked by a red star, and grey
lines delimitate the quadrants defined by the fiducial parameters. The quadrants
labeled I and II are discussed in § 6.4.3. The dashed curves show isolines for

Σ8 ≡ f8

(
Ω<
0.3

)0.6
for reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2 Schematic representation of the convolutional neural network (CNN) used in this
study. The network consists of a series of convolutional and (average) pooling
layers. Layers increase their “logical" dimension (depth), while reducing their
“spatial" dimensions (width and height). Once the spatial dimension has been
reduced to unity (flattening), a series of fully connected layers further reduces the
number of nodes to two, the required number of outputs. The activation function
for the neurons is a leaky rectified linear unit. For clarity, only a few layers are
displayed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
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6.3 Comparison of the average convergence power spectrum for the fiducial ^ maps
with predictions from linear and non-linear theory. The theoretical curves were
computed using NICAEA [278], with the revised Halofit parameters from [195]for
the non-linear power spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4 Comparison of peak counts derived from maps generated via our ray-tracing N-
body simulations, to those derived from Gaussian random fields (GRFs) with the
same power spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.5 Predictions for {Ω<, f8, Σ8} from un-smoothed (≈ 0.2 arcmin/pixel) convergence
maps, compared to their true values. Each point represents a map in the test data
set. Predictions from the CNN are displayed in red, from the power spectrum in
blue and from peak counts in green. Vertical dashed lines indicate the true values
for the fiducial cosmology, and diagonal dashed lines the unbiased %A4382C8>= =
)ADCℎ relationship. The dashed rectangles in the middle and right panels mark
a small set of realizations of models near the fiducial cosmology; these contain
anomalous structures leading to large biases (see text for discussion). . . . . . . . 153

6.6 68% and 95% credible contours for un-smoothed (≈ 0.2 arcmin/pixel) ^ maps,
derived from the power spectrum (blue), lensing peak counts (green) and neural
network predictions (red). The true values for the parameters, {Ω< = 0.260, f8 =
0.800} are indicated by black dotted lines. The upper and right panels show the
distribution marginalized over the other parameter. . . . . . . . . . . . . . . . . . 156

6.7 Same as Fig. 6.6, except using the Gaussian random fields, rather than the ray-
tracing simulations. The network was trained with the un-weighted loss function
(eq. 6.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.8 Same as Fig. 6.5, except using the Gaussian random fields, rather than the ray-
tracing simulations. The network was trained with the un-weighted loss function
(eq. 6.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.9 Same as Fig. 6.6, except smoothing the maps from the ray-tracing simulations with
a Gaussian kernel of 1 arcmin of width. The network was trained with the un-
weighted loss function (eq. 6.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.10 Predictions from the CNN for {Ω<, f8, Σ8} from unsmoothed (≈ 0.2 arcmin/pixel)
convergence maps, compared to their true values. Each point represents a map
in the test data set. Predictions using the unweighted loss function (eq. 6.2) are
displayed in grey, and those using a weighted loss function (eq. 6.3), to account for
the heterogeneous sampling of the parameter space, in red. Vertical dashed lines
indicate the true values for the fiducial cosmology, and diagonal dashed lines the
unbiased %A4382C8>= = )ADCℎ relationship. . . . . . . . . . . . . . . . . . . . . . 163
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6.11 68% and 95% credible contours for un-smoothed (≈ 0.2 arcmin/pixel) ^ maps,
derived from two neural networks with the same architecture: in red the result
from training with the weighed loss function (eq. 6.3) and in grey the result from
training with the un-weighted loss function (eq. 6.2). True values are indicated by
black, dotted lines. The upper and right panels show the marginal distribution for
Ω< and f8, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.1 Credible contours derived for Ω< and f8. Each panel shows the comparison be-
tween the constraints derived from the DNN (in red) from an alternative statistic
(in blue), and the combination of the DNN and the statistic (in black). Solid lines
enclose 68% of the likelihood, and dot-dashed lines 95%. Upper row, from left
to right: comparison between the DNN and a combination of statistics, the power
spectrum (PS), and lensing peak counts (PC). Lower row, from left to right: com-
parison between the DNN and the three Minkowski functionals, V0, V1, and V2.
The grey dots indicate the points in parameter space for which simulations were
available. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.2 Pearson’s correlation coefficient (averaged over the 101 cosmologies) between the
DNN predictions forΩ< (solid lines) and f8 (dotted lines), and the measured statis-
tics. For the power spectrum (PS, blue), the bins correspond to different multipoles
(ℓ; see upper scale), and for the other statistics, values of ^ (lower scale). . . . . . . 174

7.3 Examples of saliency maps for the output neuron of the DNN that encodes the
parameter Ω<. The left-most column (‘’Input”) shows a small region (100×100
pixels, or 0.68× 0.68 deg2) of a 3.5× 3.5 deg2 ^ map from the fiducial cosmology.
The second column (‘’Trained model”) shows the region of the saliency maps that
corresponds to the region of the input map on the left. The third column (‘’Last
layer randomized”) shows the same saliency map as the second column, computed
on the fully trained model after randomizing the weights of the last (output) layer.
The right-most column (“All layers randomized”) shows the same saliency map as
columns 2-3, computed on a model where all the weights are randomized. Each
row corresponds to a different saliency method. The scales for each image are
omitted for clarity, since they do not influence the conclusions. . . . . . . . . . . . 179

7.4 Upper panels: sum of the square of the pixel values in saliency maps as a function
of ^ in the corresponding input maps. Each line is the test maps’ average for one of
the 101 cosmologies. Lower panels: same as upper panels, divided by the number
of pixels in each ^ bin, giving the mean saliency2 per pixel as a function of ^. Left
panels correspond to saliency maps computed using the Gradient method, and right
panels to saliency maps computed using the Input×gradient method. Each line is

colored based on the value of (8 = f8
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A.1 Credible contours for {Ω<, f8, Σ8} from lensing peak counts on noisy ^ maps.
Filled contours correspond to a Gaussian likelihood, and solid lines to contours
corresponding to KDE estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

B.1 68% and 95% credible contours for un-smoothed (≈ 0.2 arcmin/pixel) ^ maps,
derived from two neural networks with the same architecture: the original one
trained on all 96 cosmologies (red) and another one for which the model {Ω< =
0.261, f8 = 0.802} was excluded (grey). The assumed true value ({Ω< = 0.261, f8 =
0.802}) is indicated by black dotted lines. The upper and right panels show the
marginal distribution for Ω< and f8, respectively. . . . . . . . . . . . . . . . . . . 217

C.1 Mean suppression in the measured rkSZ signal due to decentering relative to the
halo position and to misalignment relative to the galaxy’s projected spin angle.
Color indicates whether the rkSZ signal corresponds to that of a hot, fast or cold,
slow rotator. The intensity of the color indicates a different CMB experiment con-
figuration (Planck for strong color, CMB-S4 for the faintest color and ACT for
the intermediate intensity). Finally, the type of line used indicates the mass of the
galaxy. Upper panels: Effect of a Gaussian error in the position of the filter, rel-
ative to the halo’s center, as a function of the error’s FWHM in units of the virial
radius. On the left, effect for an aperture filter measuring the signal’s dipole. On
the right, effect for the measured correlation of a matched filter and the signal at
the estimated (erroneous) halo center. Lower panels: Effect of a Gaussian error in
the orientation of the filter axis relative to the galaxy’s projected spin vector, as a
function of the error’s FWHM in degrees. As in the upper panels, on the left the
effect for the aperture filter is displayed and on the right, for the matched filter. . . 220
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Chapter 1: Introduction

1.1 Weak lensing cosmology

The main unsolved puzzles in cosmology are the nature of dark matter (DM), dark energy (DE),

and whether the universe experienced an early inflationary phase. Dark energy is responsible for

the accelerated expansion of the universe [1, 2] and constitutes 70% of its energy budget, yet it is

the least understood of its components.

Weak gravitational lensing (WL) is the slight deflection of photons emitted at cosmological

distances by the inhomogeneous matter distribution along the line of sight. Its main effects are a

(de)magnification of the apparent brightness and a small distortion (shear) of the apparent shape of

distant galaxies and the anisotropies of the cosmic microwave background (CMB). By statistically

measuring these signals, the evolution of the matter density field, both DM and ordinary (baryonic)

matter, can be mapped, yielding constraints on the background cosmological model. DE affects the

evolution of that field, suppressing the growth of inhomogeneities in the universe and altering how

distances between objects grow with time. As a result, the NSF-NASA-DOE joint Dark Energy

Task Force identified WL as one of the key probes of DE, and also the one with the highest pro-

jected statistical figure of merit [3]. While lensing measurements are dominated by observational

effects unrelated to WL, both galaxy and CMB lensing have recently been measured, and WL has

become a mature technique.

In this chapter we review the basics of weak lensing, some recent experimental results and a

description of upcoming surveys, make the case for the need to access (and use) non-Gaussian

information to fully realize the potential of these future experiments, and show how deep learning

methods borrowed from other disciplines are finding their way in the analysis of WL data sets. We

conclude by outlining the overall structure of this Thesis.
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1.1.1 Weak lensing fundamentals

In the limit of small deflections and lensed objects (sources) whose apparent size is small

compared to the angular scales on which the deflection angle changes (conditions met for galaxy

lensing by large scale structure, also known as cosmic shear), the effect of WL corresponds to a

mapping of the sources’ light distribution onto an image plane. To leading order, this mapping is

described by the Jacobian [4, 5]:

�8 9 ()) =
mV8 ())
m\ 9

= X8 9 + Ψ8 9 (1.1)

where a given point ) in the image plane corresponds to a true direction V in the source plane,

and X8 9 is the identity matrix. In the weak lensing regime, the distortion matrix Ψ8 9 , which defines

lensing, is small and can be parametrized in the following way:

Ψ8 9 =


^ ()) + W1 ()) W2 ())

W2 ()) ^ ()) − W1 ())

 (1.2)

The trace-less part of the distortion matrix W8 9 represents a shear of the source light distribution,

and the convergence, ^, a (de)magnification of the source.

If the luminosity of a population of objects is known, their magnification can be used as a direct

estimation of the convergence (see [6] for an application example to survey data). While still chal-

lenging, measuring galaxy shapes is easier than knowing their luminosity with high accuracy. In

the absence of intrinsic alignments between galaxies, their orientation is random, and correlations

in their orientation indicate the presence of lensing. Using the moments of the source brightness

distribution, �>1B ()) to measure their ellipticity:

n1 ≡
@11 − @22
@11 + @22

, n2 ≡
2@12

@11 + @22
(1.3)
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with

@8 9 ≡
∫

3) \8\ 9 �>1B ()) (1.4)

it can be shown (see [7] for the full derivation) that the measured ellipticity over an ensemble of

galaxies is an estimator for the reduced shear, g, which in the WL limit is approximately equal to

the shear.

n8 =
W8

1 − ^
1

1 − W2
1+W

2
2

(1−^)2

≈ W8

1 − ^ ≡ g (1.5)

WL surveys are therefore capable of generating shear maps W8 ()) by measuring the elliptici-

ties of many galaxies. In practice, going from pixel intensities in galaxy images to a shear map

requires taking into account a plethora of effects, from the instrument’s point spread function, to

de-blending of source galaxy images, to the effect of intrinsic alignments between galaxies. For a

review covering some of these aspects see [8].

The distortion matrix is the Hessian of the lensing potential (projected gravitational potential)

Ψ8 9 =
m2k

m\8\ 9
(1.6)

and the shear and convergence can be expressed in terms of the second derivatives of the lensing

potential

^ =
1
2

(
m2k1

m2\1
+ m

2k2

m2\2

)
, W1 =

1
2

(
m2k1

m2\1
− m

2k2

m2\2

)
, W2 =

m2k1
m\1m\2

(1.7)

Since both ^ and W8 are connected to the lensing potential, it is possible to reconstruct ^ ()) from

the W8 ()) estimated by measuring galaxy shapes. In the flat sky approximation, the connection is

straightforward in Fourier space, where the differential relations turn into algebraic ones, yielding
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the Kaiser-Squires (KS) inversion [9]:

˜̂ (ℓ) =
(
ℓ2

1 − ℓ
2
2
)
W̃1 (ℓ) + 2ℓ1ℓ2W̃2 (ℓ)

ℓ2 (1.8)

where G̃ represents the Fourier transform of G, and ℓ is the wave vector (large ℓ corresponding to

small angles on the sky). For surveys covering a large fraction of the sky, and complicated masks,

more sophisticated algorithms are used [10, 11, 12, 13].

The convergence, ^ ()) carries the same information as the shear field, and has a more direct

link with physical models, since it can be defined as a weighted projected mass density:

^ ()) =
∫

3j, (j) X (j, j)) (1.9)

where j is the comoving distance to the mass inhomogeities that source the lensing potential, X,

and , is a weight function that takes in to account the distribution along the line of sight of the

galaxies whose images are being lensed, =B (jB),

, (j) =
3Ω<�2

0
0 (j) j

∫
3jB=B (jB)

jB − j
jB

(1.10)

In this equation, Ω< is the present-day matter density in units of the critical density, �0 the

Hubble constant and 0 the scale parameter.

Convergence maps, ^ ()) have imprinted cosmological information from the evolution of the

dimensionless matter over-density field, X, and the geometrical factors from the various distances

involved. This Thesis deals with the use of ^ ()) to infer the values of the cosmological parameters

that determine the evolution of the universe, with a focus on non-Gaussian statistics measured at

small angular scales. The methods discussed can also be applied to other cosmological probes.

1.1.2 Experimental results

From the first detection of shear induced by large scale structure [14, 15, 16, 17], surveys have

been increasing in their sky coverage and depth, tightening the cosmological constraints derived
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solely from WL measurements, and providing additional data for multi-probe analyses [18]. The

analysis of the measurements has improved in parallel, especially in the area of systematics control.

For a summary of experimental results up to 2014, see [5].

The state of the art in terms of sky coverage is the 1321 deg2 area utilized by the Dark En-

ergy Survery Year 1 results (DES [19]), and in terms of survey depth, a galaxy surface density

of ∼ 17 arcmin−2 was reached in the smaller 137 deg2 area used in the Subaru Hyper Suprime-

Cam first year data (HSC [20]). Both benchmarks will soon be surpassed by upcoming releases

from the same experiments, and future experiments at different stages of development. The Vera

Rubin Observatory (VRO) Legacy Survey of Space and Time (LSST) imaging survey will cover

18000 deg2 with an effective survey depth of ∼ 40 arcmin−2 for its ‘’gold” sample [21]. From

space, the Euclid mission will reach an effective number density of galaxies of 30 − 40 arcmin−2

over ∼ 20000 deg2 [22]. Both experiments will benefit from each other (e.g. using high-resolution

space-based data to improve de-blending of LSST images [23]), and the synergies would also ap-

ply to the Wide Field InfrarRed Survey Telescope (WFIRST [24]), which if approved, will reach

an effective galaxy density of ≈ 50 arcmin−2 over 2200 deg2.

The results from DES and HSC are consistent with each other and with previous WL ex-

periments, such as the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS [25]) and

the Kilo-Degree Survey (KiDS [26]), as shown by recent joint analyses [27], and may be in ten-

sion with measurements from Planck (albeit the tension still has a low statistical significance, see

Fig. 1.1), making future measurements with higher constraining power even more relevant.

1.2 Cosmological inference based on WL measurements

The basic objective of cosmological inference is to estimate the posterior probability distribu-

tion of the parameters, p, that define a candidate model,M, to explain how the universe evolves,

given some observations condensed in a data vector, d.

% (p|d,M) (1.11)
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Figure 1.1: Comparison of parameter constraints from a series of WL analyses of galaxy surveys
and Planck. (Figure from [20]).

Bayes theorem relates the probability distribution of the parameters given the observations, or

posterior (% (p|d,M)), to the more directly estimated probability distribution of the observations

given the parameters, or likelihood (% (d|p,M)):

% (p|d,M) = % (d|p,M) % (p|M)
% (d|M) . (1.12)

The prior can be given by previous experiments. In the absence of such, an uninformative prior

can be used instead, since in most cases the likelihood will dominate over the prior. In this Thesis,

we restrict ourselves to comparing different data vectors to fully utilize WL observations. We can

then ignore prior knowledge on the parameters, % (p|M), and the evidence for the data, % (d|M)

(we are not comparing models), and focus on the likelihood. The likelihood can be computed

with a forward model that includes both the physical relationship between the parameters and the

desired data vector, and the uncertainties of the measurement. For example, in many cases of

interests –including those treated in the following chapters– the likelihood is a Gaussian on the

data vector of dimension #3:

% (d|p,M) = 1√
(2c)#3 |� |

exp
(
−1

2
(d − 〈d (p)〉)) �−1 (d − 〈d (p)〉)

)
(1.13)
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The data vector, d can be either a statistic measured on simulated WL maps, or as we will see

in Chapter 6, the output of a neural network whose parameters have been fit using simulated WL

maps. In both cases, the physics of the forward model, and any observational and instrumental

effects, are encoded in the simulated maps. The measurement of statistics (features) or use of

a neural network provide a compressed representation of the data which, hopefully, preserves as

much information as possible. The expected value of the data vector, 〈d (p)〉, the covariance matrix

of the data vector, �, and the likelihood, are all estimated from ensembles of simulations.

1.2.1 WL statistics

The most commonly-used data vector to describe WL observations is the two point correlation

function, which for the convergence field is defined as a spatial average over angular positions

b^8^ 9 (\) = 〈^8 ()1) ^ 9 ()2)〉 (1.14)

with \ = |)1 − )2 |, and 8, 9 two galaxy redshift bins. In the absence of a complex window function

for the survey, the correlation function’s Fourier transform, or power spectrum, is often a more

convenient representation of the data

〈 ˜̂8 (ℓ1) ˜̂∗9 (ℓ2)〉 ≡
(
2c2

)
X� (ℓ1 − ℓ2) %^8^ 9 (ℓ) (1.15)

with ℓ = |ℓ1 − ℓ2 | and X� the Dirac’s delta function. Gaussian random fields are statistically

fully determined by their power spectrum. Since the inhomogeneities in the early universe were

Gaussian, and the early growth of structure, being linear, preserves their Gaussianity, it is natural

to use the power spectrum (or two point correlation function) to characterize the convergence field.

Later stages of non-linear growth of structure induce non-Gaussianities in the ^ field, and two-

point statistics are no longer sufficient. Non-linear evolution is important at scales in which the

variance of the dimensionless matter overdensities is large compared to unity. This condition sets

a characteristic length scale, that grows with time, below which the growth of structures cannot be
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described by linear theory, and non-Gaussianities are important. In the local universe, this scale is

of order ∼ 10 Mpc (f8 ∼ 1), the size of galaxy clusters, which corresponds to an angular scale of

order ∼ 10 arcmin at a redshift of I = 1.0, or a multipole of ℓ ∼ 1000. Future galaxy surveys with a

high effective number density of galaxies will allow the reconstruction of mass maps with angular

resolutions of order ∼ 1 arcmin.

Higher-order correlation functions provide complementary information, but they are degraded

by non-Gaussian errors [28, 29, 30], which can be difficult to measure (for example, the covari-

ance for the three-point correlation function is sourced by the six-point correlation function). Al-

ternatively, morphological descriptors can extract non-Gaussian information, and it is possible to

estimate them (and their errors) reliably from simulations. These descriptors, some discussed in

this thesis, include lensing peaks, minima, and Minkowski functionals.

Lensing peaks are local maxima of the convergence field, and the typical statistic associated

with them is their abundance as a function of their height [31, 32], although their profile, and

abundance as a function of their profile, have also been considered [33, 34]. Local minima can be

used in a similar way as local maxima. They are especially interesting because they probe cosmic

voids which are sensitive to DE, alternative gravitational models, and the masses of neutrinos [35,

36, 37]. Besides, they may be less sensitive than lensing peaks to systematic effects induced by

baryonic physics (e.g. galaxy feedback) [38, 39]. Three Minkowski functionals (MFs) can be

defined over excursion sets on a two-dimensional field. They correspond to the area, boundary

length and boundary genus of the set of points whose value exceeds a given threshold. As for

peaks, theoretical studies have shown that complementary information to that from second-order

statistics can be accessed through the use of MFs [40, 41, 42]. MFs are expected to play a valuable

role in future surveys [43] and in the exploration of new physics [44].

Non-Gaussian statistics have started to be used successfully to improve constraints derived

from recent WL experiments. The CFHTLens survey, with an effective galaxy number density

of ≈ 11 arcmin−2 at a median redshift of 0.7, was the first WL experiment that offered a large

field of view (149 deg2), and has been analyzed extensively with non-Gaussian statistics. The
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three-point correlation function improved by ≈ 10% parameter constraints derived from the two-

point correlation function alone [45]. Lensing peaks have been measured in at least three different

studies. First, an analysis of peak abundance and tangential shear profile around peaks, restricted

to stripe 82 data (≈ 124 deg2) could discriminate between profiles of DM halos [46]—rejecting,

for instance, the singular isothermal sphere model. Two peak abundance studies demonstrated how

constraints on Ω< and f8 can be improved by a factor of ≈ 2, relative to what can be achieved with

the two-point correlation function or the power spectrum [47, 48]. Cosmological constraints from

Minkowski functionals can be degraged by a factor of a few by observational biases [49], and be

biased themselves [50]. Higher-order moments of the convergence offer an un-biased alternative

to the Minkowski functionals [50].

There are fewer examples yet of the application of non-Gaussian statistics in the most recent

experiments. The KIDS survey offered a larger footprint compared to CFHTLens, and lensing peak

analyses of data covering 450 deg2 yielded improvements of ≈ 20% over the parameter constraints

derived from the two-point correlation function [51, 52]. Lensing peaks were also measured in the

science verification data from the DES survey (129 deg2), and showed in isolation similar con-

straining power as two-point statistics [53]. The DES first-year data release (1321 deg2), has been

used to measure the probability distribution function of the projected matter density field [54].

This statistic, which encodes the same information as the first Minkowski functional, yielded cos-

mological constraints that were compatible with those obtained from the analysis of galaxy and

shear WL two-point functions. Finally, lensing peaks have been used to identify galaxy clusters

on HSC data [55, 56], but not as a cosmological probe by themselves. Deep surveys such as HSC

can be used to reconstruct high-resolution ^ maps which would benefit greatly from the use of

non-Gaussian statistics.

1.3 Deep learning applied to weak lensing cosmology

The interest about, use of, and research on neural networks (NNs), has exploded in the past few

years. While models inspired in biological neurons were developed as early as in the 1940’s [57],
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and arranged in networks to perform classification tasks in the 1950’s [58], it was not until after

2012 that the field exploded. That year, AlexNet, a convolutional neural network (CNN), won

the ImageNet Large Scale Visual Recognition Challenge [59]. Since then, neural networks with

diverse architectures have shown super-human performance in a wide range of problems, from

image classification to playing Go [60] and poker [61].

There are many extensive reviews of deep learning, a fast-evolving field [62, 63, 64, 65]. Here,

we review some basics of deep learning models that are relevant for Chapters 6 and 7, and summa-

rize how these models have been applied to the field of weak lensing cosmology.

1.3.1 Deep learning basics

Neural networks

Deep learning models are composed of multiple processing layers of connected nodes, or neu-

rons, and can learn complex representations of data. Each neuron transforms its input, or pre-

activation 0, by a non-linear activation function, ℎ:

I = ℎ (0) (1.16)

Typical activation functions include sigmoid-like functions that mimic the behavior of a system

which exhibits a threshold sensitivity to inputs and output saturation, such as ℎ (0) = 1/(1 + exp (−0)),

ℎ (0) = tanh 0, ℎ (0) = arctan 0, ℎ (0) = erf (0) or ℎ (0) = � (0) (step function). Nowadays, the

‘’Rectified Linear Unit” (ReLU), ℎ (0) = max{0, 0} is commonly used.

Neurons are arranged in layers. They transform linear (or affine) combinations of the acti-

vations from the preceding layer and feed their outputs to the subsequent layer. For example,

the output of a two-layer network (one hidden layer, 1, followed by the output layer, 2) can be

computed as

H: (x,w, b) = ℎ
(
"∑
9

F2
9 :ℎ

(
#∑
8

F1
8 9G8 + 11

9

)
+ 12

:

)
(1.17)
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where an input vector x of dimension # is fed to " hidden neurons arranged in layer 1, defined by

the weights F1
8 9

and biases 11
9
. Layer 1 neurons transform their output with the activation function

ℎ and feed it to neurons in layer 2 (the output layer), which in turn transform linear combinations

of the outputs of layer 1 neurons defined by weights F2
9 :

and biases 12
:

according to the activation

function ℎ. In this simple structure, neurons in a given layer are connected to all the neurons in the

preceding and subsequent layers (fully connected layers) but not to nodes within their own layer.

The activation function does not need to be the same for all neurons in the network.

Neural networks can then be viewed as parametric, non-linear functions, whose calculation

is equivalent to the forward processing of information (feed-forward network), from the input to

the output layer, through a deterministic, directed acyclic graph. It is common to represent neural

networks by these graphs, and use their graph representation to implement calculations (see, for

example, the TensorFlow computing framework [66]).

The mapping of the input onto the output is defined by the weights and biases w and b. These

parameters can be determined from examples of input data for which the correct output is known

(supervised learning). A network with a single hidden layer, such as the one described by Eq. 1.17

can approximate any continuous function on a compact subset of R# [67]. Unfortunately, the

required number of neurons to do so, " , can become exponentially large [68]. Multi-layer net-

works can be trained with available learning algorithms and offer the same ability to approximate

functions with a bounded number of neurons [69]. Thus, all neural networks used in practice are

multi-layered. When the number of layers exceeds a few, networks are referred to as deep neural

networks (DNNs).

While the precise shape of the activation functions used does not limit the ability of a network

to represent functions, the functions must be non-linear. Otherwise, a linear combinations of linear

functions is itself a linear function, and the network reduces to a linear classifier.
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Network training

Given a set of input examples with known outputs (training data set), the parameters that char-

acterize the network can be determined by minimizing a loss function defined over the training

data set. A common loss function is the average of the quadratic distance between the network’s

output and the true (known) mappings for the examples in the training data set (mean square error

loss, or MSE). If we combine the weights and biases of the network in a single parameter vector,

p, this loss can be expressed as

! (p; {x8}, {t8}) =
1
#

#∑
8

‖y (x8, p) − t8‖2 (1.18)

Cast in this form, network training is an optimization problem. When the activation functions

are differentiable, gradient-descent (GD) algorithms can be used. The gradient of the loss function

w.r.t. the network’s parameters is used to update the parameters in each optimization step, B:

pB+1 = pB − [∇p! (pB) (1.19)

where [ is the “learning rate”, and can be adjusted during the optimization process. The gra-

dient can be evaluated using the whole training data set, or just a sub-set of it (stochastic gradient

descent, or SGD).

For a feed-forward neural network, the gradient of the loss function can be efficiently com-

puted using the error backpropagation algorithm [70]. SGD can help avoid local minima of the

non-convex loss function. An activation function that accelerates the learning process is the ReLU,

a piece-wise linear function which prunes the negative part to zero leaving the positive part un-

touched [71]. A slight modification, with a small, non-zero slope in the negative domain (Leaky

ReLU [72]) prevents neurons from getting stuck with zero gradients.
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Learning symmetries: convolutional neural networks

In many cases, the desired output of a NN must be invariant to transformations of the input

data. For instance, cosmological parameters inferred from convergence maps should be invariant to

arbitrary rotations on the sphere (or translations and plane rotations in the flat sky approximation).

In general, there are four ways to achieve the NN invariance w.r.t. transformations of the input

data:

• Train on features that are invariant to the transformation. For example, the ^ power spectrum

of a map is invariant to the symmetries of the map, so a network trained on power spectra

will exhibit the same invariance. Any information lost in the feature extraction step will not

be learned by the network.

• Provide a sufficient number of examples in training to allow the network to learn the under-

lying symmetries in the data. This can be achieved, for example, by augmenting the training

data set, transforming each example according to a symmetry before feeding it to the net-

work. For example, the same ^ map can be used many times during training after applying a

random rotation to enforce the rotation invariance of the NN.

• Modify the loss function with a term that penalizes changes in the NN output when the input

changes following a given transformation. This technique, known as “tangent propagation”

works for continuous transformations [73].

• Modify the structure of the NN so that it is invariant to specific transformations in the input.

This usually results in additional conditions to be satisfied by the NN’s parameters, which

reduce the model’s complexity.

The last approach is followed by a class of NNs which has been very successful classifying

natural images: convolutional neural networks (CNNs [74]). CNNs modify the basic structure

of fully connected networks in three ways. First, each neuron is not connected to all the nodes

of the previous layer, but just to a small sub-sample of neighboring neurons. This local support
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takes advantage of the strong spatial correlations between nearby pixels typical of natural images.

Second, the learned weights are shared among all the neurons within a given layer. Weight sharing

on a local support is equivalent to a convolution with a filter defined by the learned weights of

the layer, hence the name of convolutional networks. The structure is invariant to translations. If

a feature is useful for classification, it will probably be useful irrespective of its precise location

in the image. An additional advantage is that it reduces the model complexity by shrinking the

number of learned parameters. Finally, convolutional layers are mixed with sub-sampling steps.

Sub-sampling allows the CNN to learn features on multiple scales without increasing the size of

the convolutions used, as well as abstract high-level relationships from low-level features. The

reduction in the dimensions of the feature maps as layers approach the output further lowers the

model complexity, making training easier and providing some regularization.

The models used in Chapters 6 and 7 of this Thesis correspond to this class of networks. Since

we apply them to simulated data in the flat sky approximation, we do not need to modify struc-

tures that are common in the field of image analysis. It is possible to modify these structures to

account for a spherical geometry in the data. Such schemes can be useful to analyze surveys cov-

ering a large fraction of the sky. They often are invariant to rotations [75, 76], unlike standard

convolutional layers. In Chapter 6, we augmented the training data to enforce rotation invari-

ance of the CNN output to rotations on the plane. An alternative path would be to use Group

Equivariant CNNs, which generalize the definition of convolution to take into account additional

symmetries [77].

Challenges to the adoption of deep learning models to WL cosmology

Two of the main barriers to the adoption of DNNs in the analysis of WL data result from their

complexity: the risk of over-fitting and the interpretation of their output.

As the number of learned parameters in DNNs increases –some models are defined by millions

of parameters– so do over-fitting concerns. Over-fitting in this context means that errors measured

in the training data set underestimate errors on data not used during training. That is, the model
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Figure 1.2: Comparison of bias-variance trade-off for traditional machine learning algorithms on
the left, and the different regime for DNNs on the right (Figure from [78]).

does not generalize well to new data. Over-fitting is related to the known bias-variance trade-off in

machine learning: as a models’ complexity increases, it fits better the training data set at the cost

of worsening its ability to generalize.

An example that illustrates this phenomenon is the interpolation of a set of points {G8, H8} using

polynomial functions. Any training data set can be fitted with zero error using a high-enough

degree for the polynomial. To achieve that, the polynomial’s coefficients typically adopt large

values, resulting in high-amplitude oscillations in the domain of G not constrained by the training

data set. Therefore, new data points will be fit poorly. There is a sweet spot in terms of complexity:

large enough to express the overall structure of the data but small enough to avoid unjustified large

oscillations (see left panel of Figure 1.2).

DNNs seem to violate this trade-off, as they achieve essentially zero training error without

sacrificing their ability to generalize (see right panel of Figure 1.2). Numerical experiments suggest

that the extremely large number of parameters that define DNNs allow them to interpolate training

data sets while keeping the norm of p bounded [78], so long as the DNNs are fit using GD or

SGD. The small norm of the parameters prevent the large oscillations in the output responsible for

poor fitting of data not present in the training data set. The large number of parameters effectively

regularizes DNNs.

The second barrier to the adoption of DNNs is that, as the number of layers increases, non-

linear models become hard to interpret. Understanding what features in the data drive the output

of DNNs would increase the trust in DNNs, especially since they are capable of learning random
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labels [79]. Furthermore, for applications in cosmology, mapping the models’ outputs to features

would allow to understand the impact of specific physical structures on the lensing signal, assess

the robustness of models’ predictions, and engineer alternative, less computationally expensive,

methods (e.g. summary statistics).

For a detailed review on explainable artificial intelligence (AI) see [80]. In general, the methods

developed fall into one of the following categories:

• Use of surrogate models. These methods evaluate DNNs around an input of interest, and

approximate it with another model (e.g. linear classifier) for which the interpretation is

straightforward. Examples of this approximations include the technique known as Local

Interpretable Model-agnostic Explanations (LIME [81]).

• Local input perturbations. By analyzing the changes in the output when specific features of

the input are perturbed (e.g. masked), it is possible to assess the relevance of these features

on the model [82, 83].

• Feature visualization. Inspecting which inputs maximize the activation of specific neurons

of layers within a model can help assess its relevance [84].

• Sensitivity methods try to explain how the output of a DNN changes as the input features are

perturbed. They are generally based on the gradients of a network’s output w.r.t its input [85].

• Propagation-based methods use the internal structure of a model to distribute its output

in input space. Examples of these methods include Layer-wise Relevance Propagation

(LRP [86]), Deconvolution [87], and Guided Backpropagation [88].

Some of these methods have been shown to yield interpretations that are insensitive to either the

input vector or the model’s parameters, raising questions regarding their validity [89]. It is critical

to test these methods for the combination of data and model of interest before using them to evalu-

ate which input features are more relevant for the DNN output. Chapter 7 shows an application of

these methods to interpret a DNN trained on simulated WL data.
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1.3.2 Applications of deep learning to WL

The transition of cosmology from a data-deprived to a data-rich discipline has resulted in the

increasingly important role played by data analysis techniques. This is not only true for deep

learning algorithms, but for machine learning in general [90, 91]. Within the restricted field of WL

cosmology, deep learning has already been used in almost every step of the chain that links the

acquisition of images in galaxy surveys to the inferred cosmological models that best fit the data.

CNNs have been trained to learn the point spread function (PSF) of the instruments used to

map the shapes of galaxies [92]. The measured shaped of galaxies is the convolution of their true

apparent shape and the PSF. Galaxy shapes need to be parametrized from a set of pixel intensities.

This task has also been performed using CNNs [93], improving computation times by four orders

of magnitude. The physical magnitude of interest, the lensing shear, has been estimated without

bias from neural networks [94], by training them on combinations of the galaxies’ light intensity

moments [95], or the raw images themselves [96].

Another area where DNNs have been used extensively is the estimation of the redshift of galax-

ies given only color filter imaging [97, 98, 99, 100, 101, 102, 103, 104, 105], with the aim of

minimizing one of the main sources of systematic errors in photometric galaxy surveys.

Galaxy shapes and photometric redshifts can be combined to build mass maps, a step that

can be performed with convolutional networks [106]. Generative Adversarial Neural Networks

(GANs [107]), a model that combines two neural networks (one as a classifier and the other as a

generator), trained until they reach a Nash equilibrium in which the classifier cannot tell whether

an input has been created by the generator, can be used to de-noise those reconstructed mass

maps [108, 109], or as computationally cheap, fast emulators of synthetic maps. GAN-based

emulators offer high-quality additional realizations from cosmologies present in the training data

sets [110, 111], and have also the ability to generalize to new cosmologies [112].

Lastly, DNNs can be used to discriminate between cosmological models from measured/simulated

mass maps (cosmological inference). CNNs have been shown to break the Ω< − f8 degeneracy

in WL maps [113], provide parameter constraints competitive with those obtained from alternative
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methods in noiseless data [114, 34], noisy data [115, 116], and survey data [117]. They have also

been proven useful to discriminate modified gravity cosmologies [118, 119].

1.4 Structure of dissertation

This thesis examines different aspects of the challenges to extract and use small-scale informa-

tion from near-future weak lensing data sets. The remaining chapters are organized as follows:

Chapter 2 disentangles the relative contribution of the expansion history of the universe (geom-

etry) and the growth of cosmic structures (growth) to the sensitivity of non-Gaussian statistics to

cosmology. The first alters the relative distances between sources, lenses, and observers. The sec-

ond affects the evolution of the lensing potentials. Both impact the overall deflection of photons

propagating through the inhomogeneous universe. This exercise is accomplished by ray-tracing

“mixed” past light cones, composed of lensing planes at distances that correspond to a different

cosmology to the one used to evolve the lensing potentials. The method is tested with the power

spectrum, for which the split can be computed analytically. When applied to non-Gaussian statis-

tics –the equilateral bispectrum, lensing peaks, and Minkowski functionals– it shows how both

effects tend to cancel each other. This cancellation affects distinct statistics and cosmological pa-

rameters differently. The equilateral bispectrum is the worst affected observable, and the sensitivity

of non-Gaussian statistics to the equation of state of DE (F) is reduced twice as much as that to the

density of the universe (Ω<). This chapter has been published as [120].

In Chapter 3, we assess the performance of a semi-analytic, halo-based model for the counts of

lensing peaks: CAMELUS. In principle, such a model is an attractive alternative to computationally

expensive simulations of non-linear growth of structure, especially since the sensitivity of lensing

peaks to some cosmological parameters (Ω<) is dominated by growth (see Chapter 2). When

compared with measurements over ray-traced simulations, CAMELUS fails to account for corre-

lations in the halo positions, resulting in somewhat under-estimated covariance matrices that are

less sensitive to cosmological parameters. Mean peak counts from both methods show disagree-

ments as well, notably in the negative tail and low significance regime. While the addition of shape
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noise mitigates these disparities, further improvements are needed to use safely this semi-analytic

method for inference. This chapter has been published as [121].

Relying on numerical simulations for the prediction of non-Gaussian statistics and their co-

variances, highlights the importance of reducing their computational cost. Chapter 4 uses a se-

ries of numerical experiments to define some minimum requirements of these simulations for a

LSST-like survey in terms of sky coverage and tomographic galaxy density. A mass resolution of

7.2× 1011ℎ−1"� can be used to forecast measurements of the PDF, lensing peaks, and Minkowski

functionals. This is an order-of-magnitude lower than resolutions typically used for theoretical

studies. Another hyper-parameter that significantly impacts the cost of simulations based on the

multi-lens-plane algorithm, is the thickness of the lensing planes used to build past light cones.

While reducing it allows to recycle simulations into many pseudo-independent light cones, the loss

of power induced by the lensing plane’s window function propagates into non-Gaussian observ-

ables. In practice, this sets a minimum lensing plane thickness of ≈ 60ℎ−1Mpc for the considered

survey specification. This chapter has been published as [122].

Chapter 5 evaluates the detection feasibility of the kinematic Sunyaev-Zeldovich effect induced

by the rotation of gaseous galactic halos. The ability to model the impact of baryonic processes on

the distribution of matter at small scales (≈ 1 Mpc) limits the amount of additional cosmological

information that can be gained from non-Gaussian statistics. We study the potential of combining

future high-resolution CMB data with galaxy spin measurements from integral field spectroscopic

surveys to statistically detect the CMB temperature dipole induced by the rotation of ionized galac-

tic halos. In the near future, this novel probe can be used in combination with other observations to

constrain models of the gas distribution around galaxies, improving cosmological inference from

weak lensing, and informing models of galaxy evolution. This chapter has been published as [123].

Weak lensing summary statistics compress the information present in the original data (shear

catalog or ^ map). In general, this compression is not lossless. An alternative path is to train a

model to learn the non-linear mapping between the original data and the cosmological parameters

of interests. In Chapter 6 we apply deep learning for the fist time to pixel-level simulated weak

19



lensing data, and show that a trained network can extract more cosmological information than

lensing peaks, a competitive non-Gaussian statistic. Deep learning can be used to estimate the

information content of future data sets, as a benchmark for more traditional inference methods, or

as an independent estimator. This chapter has been published as [114].

Chapter 7 tries to interpret the outputs from deep neural networks applied to weak lensing data.

While DNNs seem to access information in excess of what can be reached with non-Gaussian

statistics, it is important to understand which features in the data drive the networks’ output. This

will prevent inference based on spurious elements, assess the robustness of the inference to sys-

tematic effects, and inspire the design of more efficient non-Gaussian statistics.

Finally, Chapter 8 summarizes the key results presented in this Thesis and outlines possible

directions for future work.
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Chapter 2: Geometry and growth contributions to cosmic shear observables

2.1 Introduction

A cosmological model with a nearly scale-invariant primordial fluctuation spectrum, cold dark

matter (CDM) and dark energy (DE) matches well a wide range of observations, from the Uni-

verse’s expansion measured by standard candles [1, 2] and standard rulers [124], to its primordial

chemical composition [125, 126], structure formation and the properties of the Cosmic Microwave

Background (CMB) [127]. While non-baryonic DM and DE make up most of the present-day

energy density of the Universe [128], the nature of either dark component remains unclear.

Cosmic shear is the weak gravitational lensing of background sources by large scale struc-

ture [4, 5]. It probes the matter density field through the gravitational potential fluctuations, and is

also sensitive to the expansion history of the Universe through the distances between the observer,

lensed source and lensing structures. While lensing is usually characterized by a measurement of

the shear through the shapes of background galaxies, convergence (magnification) statistics can be

inferred from these measurements, and are considered here for ease of computation. The polyspec-

tra of the convergence field are equal to the E-modes of the shear field.

Ongoing and upcoming surveys, such as the Dark Energy Survey (DES 1), the Large Synoptic

Survey Telescope (LSST 2), the Euclid mission 3 and the Wide Field Infrared Survey Telescope

(WFIRST 4), include weak lensing in their scientific program as part of their effort to test the

concordance model with unprecedented precision and shed light on the nature of DM and DE. To

realize this potential, we need observables that extract all the cosmological information from the

data, as well as models capable of predicting them with high accuracy.

1http://www.darkenergysurvey.org
2http://www.lsst.org
3http://sci.esa.int/Euclid/
4wfirst.gsfc.nasa.gov
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Second-order statistics do not fully capture non-Gaussianities in the lensing signal from non-

linear gravitational collapse on small scales. Numerous alternative observables have been pro-

posed to extract this extra information, from higher-order correlation functions [129, 130] and

moments [131] to topological features like local maxima (peaks) [132] and Minkowski function-

als [133].

In this work, our goal is to clarify the sensitivity of such observables to the expansion his-

tory of the Universe (“geometry”) and to the evolution of primordial inhomogeneities into cosmic

structures (“growth”). The analogous question has been addressed for the convergence (^) power

spectrum [134]. The geometry vs. growth decomposition of the power spectrum has improved our

understanding of constraints on DE from weak lensing [135], provided an alternative cosmological

probe independent of the growth of structures [136, 137], has been used to strongly constrain devi-

ations from general relativity [138] and has allowed a consistency test of the standard cosmological

model [139].

Our work extends previous studies to observables beyond the power spectrum. In particular, we

analyze the equilateral bispectrum and two simple but promising topological observables: lensing

peaks and Minkowski functionals. We restrict our analysis to two parameters that can influence

lensing observables significantly through both geometry and growth: the total matter density (Ω<)

and the DE equation of state as parametrized with a constant ratio of its pressure to its energy

density (F). Future work should include a full cosmological parameter set. We disentangle the two

contributions by measuring observables over a collection of mock ^ maps built from ray-tracing

N-body simulations.

The paper is organized as follows. In § 2.2, we describe the suite of simulations we used and

our method to separate the effects of geometry and growth on the observables. In § 2.3, we show

the sensitivity of each observable to both Ω< and F, discussing the separate contributions from

geometry and growth, and in § 2.4 we show how they impact parameter inference. We then discuss

our results in § 2.5 and summarize our conclusions in § 2.6.
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Ω< F Ω< F

0.20 -1.0 0.26 -0.5
0.23 -1.0 0.26 -0.8
0.29 -1.0 0.26 -1.2
0.32 -1.0 0.26 -1.5

Table 2.1: Parameters of the eight models explored around the fiducial model (Ω< = 0.26, F =

−1.0). All models are spatially flat with ΩΛ = 1 − Ω< and consider a constant equation of state
parameter F for DE.

2.2 Disentangling geometry from growth in simulations

We measured lensing observables on mock ^ maps generated for 9 flat ΛCDM cosmologies.

We considered only DE models with a constant ratio of pressure to energy density (F). Apart

from F, we also varied Ω<, with a fiducial model corresponding to {Ω<, F} = {0.26,−1.0} and

the remaining 8 cosmologies each differing from it in just one parameter (see Table 2.1). For all

models, we fixed the amplitude of perturbations at f8=0.8, the Hubble constant to ℎ = 0.72, the

spectral index to =B=0.96 and the effective number of relativistic degrees of freedom to #eff = 3.04.

2.2.1 Simulating weak lensing maps

A set of mock convergence maps was generated by raytracing through the outputs of dark

matter-only N-body simulations, following the multiple lens plane algorithm implemented in LENSTOOLS.

We used full ray-tracing to avoid any potential bias in the convergence descriptors under study.

While it has been shown that the Born approximation is accurate for the galaxy lensing power

spectrum [140] and bispectrum [141], it can introduce significant biases for higher-order mo-

ments [142] and its effects on topological descriptors are yet unclear. We give a brief outline

of our simulation pipeline here, and refer readers for a detailed description in [143].

The observer’s past light cone is discretized in a set of lens planes separated by a constant

comoving distance of 80 ℎ−1Mpc. For each cosmology, we evolved the matter density field in a

single box of side 240 ℎ−1Mpc, which can cover a field of view of 3.5 × 3.5 deg2 up to a redshift

I ≈ 3. The N-body simulations were run using GADGET2 [144] with the same initial conditions.
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Each box contains 5123 particles, yielding a mass resolution of ≈ 1010"�. All simulation volumes

were randomly shifted and rotated to generate 1024 different ^ maps for each cosmology. This is

justified by previous work [145], which has shown that a single N-body simulation can be recycled

to generate as many as ≈ 104 statistically independent realizations of the projected 2D convergence

field.

Bundles of 1024 × 1024 uniformly distributed rays were traced back to the lensed galaxies’

redshift and the convergence was reconstructed from the accumulated deflection of the rays by the

discrete lens planes. For simplicity, we assumed all source galaxies are uniformly distributed at a

single redshifts, chosen to be either IB = 1 or IB = 2.

We included the effect of galaxy shape noise assuming it is uncorrelated with the lensing signal

and its probability distribution function (PDF) is a Gaussian with zero mean. The variance of the

shape noise depends on the r.m.s. intrinsic ellipticity noise (fn ), the source galaxy surface density

(=60;) and the pixel size (\?), as [147]

f2
? =

f2
n

2=60;\?
. (2.1)

For this work we considered an intrinsic ellipticity noise of fn = 0.4 and a galaxy density

of =60; = 25 arcmin−1, similar to the expectation for LSST but conservative compared to the

galaxy densities expected in deeper surveys, such as Euclid and WFIRST. We generated a single

set of 1024 noise-only maps and added them to the noiseless ^ maps ray-traced from the N-body

simulations. We smoothed the noiseless ^ and shape noise maps with the same 2D Gaussian kernel,

, (\) = 1
2c\2

(

exp

[
− \

2

2\2
(

]
, (2.2)

with \ the angular distance to each pixel, and a characteristic width \( = 1 arcmin. In this analysis

we did not combine different smoothing scales. The smoothing suppresses power on small scales

corresponding to spherical multipoles on the sky ℓ ' 12000, which corresponds to the scale at
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Figure 2.1: Comparison between the power spectra measured for selected models, as labeled, over
noiseless, un-smoothed ^ maps (thick lines) and analytic predictions using a fitting formula [146]
for the matter power spectrum (thin lines). Percent differences between measured and predicted
power spectra are depicted in the lower panel. Shaded areas represent ±1 standard deviations
around the average, scaled to a 1000 deg2 survey, and in the lower panel only the standard devia-
tion for the fiducial model is plotted for reference.
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which we are still not limited by the finite resolution of our simulations (see Fig. 2.1). We do not

show results beyond ; = 10000, and the topological features, measured on the smoothed maps, do

not contain information from smaller scales.

2.2.2 Isolating the effect of geometry vs. growth

Galaxy shape distortions by gravitational lensing result from the convolution of the lens prop-

erties and the distances between source galaxies, lenses and the observer. Both effects depend on

cosmology; the former through the evolution of mass inhomogeneities, and the latter through the

expansion history of the Universe. To account for these effects separately in our simulations, we

evolved the matter density field according to a cosmological model, but during the ray-tracing, we

allowed distances to correspond to a different cosmology.

In our implementation of the multi-plane algorithm, lens planes are located at the same co-

moving distances from the observer for all models and we disentangled growth and geometry by

modifying the lens planes’ properties.

The lensing potential for a lens at a comoving distance of j8, given a set of cosmological

parameters p, is determined by its mass surface density,

Σ8 (G, H; p) =
3�2

0Δ

222
j8

0(j8, p)
XΩ< (G, H; I(j8, p); p), (2.3)

where (G, H) are angular positions on the lens plane, Δ is the plane’s thickness (80 ℎ−1Mpc), j

the comoving distance, 0 the scale factor and XΩ< the product of the density contrast and the

matter density parameter. The sensitivity of an observable to cosmology refers to the change in

that observable for a set of parameters p relative to the same observable for a fiducial model p0.

The effect of geometry can be estimated by evolving the perturbations according to p0 and

evaluating them at redshift I(j8, p), keeping the geometrical prefactor j/0 equal to the value that

corresponds to the cosmological model p. Conversely, the effect of the growth of structures can be

captured by keeping the geometrical prefactor equal to its value in the fiducial model and evaluating
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the density perturbations at I(j8, p0) after evolving them according to p.

Σ
�4><4CAH

8
(G, H; p; p0) =

3�2
0Δ

222
j8

0(j8, p)
XΩ< (G, H; I(j8, p); p0) (2.4)

Σ�A>FCℎ8 (G, H; p; p0) =
3�2

0Δ

222
j8

0(j8, p0)
XΩ< (G, H; I(j8, p0); p) (2.5)

This approach does not require running separate N-body simulations to generate growth-only

and geometry-only convergence maps, but it involves saving additional GADGET2 snapshots, since

fixed comoving distances correspond to different scale factors for different cosmologies. For each

model p, additional snapshots at redshifts I(j8, p0) are needed. For the fiducial cosmology, we

saved additional snapshots at redshifts I: (j8, pk) for each pk model considered.

2.3 Sensitivity to Ω< and w

The percentage deviation of an observable relative to its value in the fiducial model measures its

sensitivity to changes in cosmology. For galaxy lensing, we are interested in observables measured

over ^ maps that include shape noise. We focus on the behavior of four observables: the power

spectrum, which has already been studied analytically and will serve as a test of our simulation-

based approach, the equilateral bispectrum, which should be zero for a Gaussian random field,

and two topological features that have been used to probe non-Gaussianities: lensing peaks and

Minkowski functionals. We measured the sensitivities from the full ray-traced N-body simulations,

as well as from simulations that only capture the changes due to either the expansion history or to

the structure growth in a given cosmology.
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2.3.1 Power spectrum

The convergence power spectrum is the Fourier transform of the 2-point correlation function

of ^(G, H) and is one of the most popular weak lensing observables. For a flat cosmology, with

lensed sources at a fixed redshift, and using the Limber and flat-sky approximations, the power

spectrum can be expressed as a line-of-sight integral of the matter power spectrum, weighted by a

geometrical kernel [148]

%: (;) =
9
4

(
�0
2

)4
Ω2
<

∫ jB

0

3j

02(j)

(
1 − j

jB

)2
%X

(
;

j
; j

)
(2.6)

Where j is the comoving distance and jB the comoving distance to the lensed galaxies. Ge-

ometry affects the power spectrum through j and the scale factor 0. Growth enters the above

expression through the matter power spectrum, %X (including non-linear effects), and the Ω2
< out-

side of the integral. For our analytic calculations, we used the NICAEA implementation of the

convergence power spectrum with the prescription from [146] for the matter power spectrum.

We determined the percentage deviation of the power spectrum relative to the fiducial cosmol-

ogy over 1024 noiseless, un-smoothed ^ maps for each non-fiducial cosmology, and compared the

results with analytic predictions. These results, shown in the upper panels of Fig. 2.2, match the

analytic predictions within the statistical uncertainties, and are also in good agreement with the

findings of [134]. The sensitivity is only weakly dependent on the multipole.

The sensitivity to Ω< is dominated by growth, with a ≈ 25% change that is what would be

expected from the ≈ 12% change in Ω< (Ω2
< outside the integral in Eq. 2.6). Geometry acts in the

opposite direction, reducing the overall sensitivity by ≈ 20%. The sensitivity to F is dominated

by geometry. While we expected its sensitivity to be smaller than that to Ω< due to the integrating

effect, the partial cancellation between growth and geometry is even more severe. It reduces the

sensitivity further (≈ 50%) to a level of ≈ 5% for a 20% change in the parameter. The smaller

sensitivity should propagate into tighter constrains on Ω< than on F from weak lensing data.
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Figure 2.2: (color online)Sensitivity of the power spectrum to Ω< and F for noiseless (upper pan-
els) and noisy (lower panels) convergence. Estimates including only geometry effects are shown
in red, those including only growth effects in blue, and those including both effects in black. In the
upper panels, analytic predictions are displayed with thin lines, for comparison. Source galaxies
are at IB = 1.0 in all cases. Shaded areas represent a ±1 standard deviation around the measured
averages scaled to a survey sky coverage of 1000 deg2 and only selected models are displayed for
clarity.
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The origin of the partial cancellation is explained in detail in [134], but we reproduce the

argument here for convenience. Making F more negative, from the fiducial F = −1.0 to -1.2, yields

a higher DE density in the past. The comoving distance to the source galaxies’ redshift becomes

larger, and so does the cumulative effect of small deflections experienced by light rays. As a result,

the effect due to geometry is an increase of the lensing signal. Since we fix the amplitude of the

perturbations at the present time (f8) in our simulations, a higher DE density in the past means

there are fewer structures to deflect the light rays in the past, and the growth contribution to the

lensing signal is smaller compared to a model with constant dark matter density.

Galaxy shape noise introduces a scale-dependence to the relative sensitivity, as clearly seen in

the lower panels of Fig. 2.2. At small scales, white noise dominates the power spectrum and sup-

presses its sensitivity to cosmological parameters. Galaxy shape noise then limits the information

that can be extracted from the convergence power spectrum at small scales.

2.3.2 Equilateral bispectrum

The natural extension to the two-point correlation function is the three-point correlation func-

tion, or its Fourier transform, the bispectrum. A non-zero bispectrum is a clear non-Gaussian signal

and has been detected in shear data [149, 45]. The analog of Eq. 2.6 links the convergence bispec-

trum to the bispectrum of the underlying matter density field through a Limber integration [148]

B: ( l1, l2, l3) =
27
8

(
�0
2

)6
Ω3
<

∫ jB

0

3j

(j0(j))3

(
1 − j

jB

)3
X� ( l1 + l2 + l3)BX

(
l1
j
,
l2
j
,
l3
j

; j
)

(2.7)

Where X� is a Dirac delta. When the lengths of the triangle defined by the three points on which

the correlation function are measured are the same, the result is the equilateral bispectrum (B;;;).

In an exercise analogous to the one done for the power spectrum, we measured B;;; for our mock

noiseless convergence maps and show their relative sensitivity to the cosmological parameters in

Fig. 2.3.
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Figure 2.3: (color online)Sensitivity of the equilateral bispectrum of the noiseless convergence
field to Ω< and F. Both panels show the percentage deviation in each model from the fiducial
bispectrum. For clarity, only two models are depicted per panel, with the source galaxies at IB = 1.
As in Fig. 2.2, black lines show the net sensitivity, red lines the sensitivity due only to differences in
geometry and blue lines the sensitivity due only to differences in growth. Shaded areas represent
±1 standard deviation around the measured averages, scaled to a 1000 deg2 survey.
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While noisier, the parameter-sensitivity has a behavior very similar to the case of the power

spectrum, in terms of its weak dependence on the angular scale ℓ, order of magnitude, and split be-

tween geometry and growth. The most noticeable difference is that the cancellation between both

effects is almost perfect for F, resulting in a statistic that is almost insensitive to that parameter.

The results for the lensed galaxies at IB = 2 are similar, and show the same cancellation for F. The

addition of shape noise results in an even noisier measurement (see § 2.4) with error bars 3-4 times

larger than the ones displayed in Fig. 2.3 for the noiseless case. There is no average sensitivity

suppression at small scales, because the shape noise is Gaussian.

2.3.3 Lensing peaks

Peaks, defined as local maxima on smoothed ^ maps, probe high-density regions, where non-

Gaussianities of the convergence should be enhanced. Also, they are computationally inexpensive

to measure, making them an attractive observable to combine with others for cosmological infer-

ence. Indeed, their distribution as a function of their height, or peak function, has been forecast

to improve constraints obtained using only second-order statistics by a factor of 2 − 3 [32, 31].

Similar improvements have now been found in recent lensing survey data [47, 48, 53].

We extracted peak catalogues from our mock convergence maps and computed the percentage

deviation of the peak height function relative to the fiducial model. The results for the noisy case

are shown in Fig. 2.4. We again observe some similarities between the sensitivity of the peak

height functions and that of the power spectrum. The Ω<-sensitivity is dominated by growth,

while geometry dominates the sensitivity to F. There is also a partial cancellation between the two

effects, and the cancellation is stronger for F, yielding a reduced net sensitivity compared to Ω<,

by a factor of ≈ 2.

For high peaks, the sign of the parameter-sensitivity is the same as for the power spectrum, but

the sign reverses for low peaks, whose abundance is anti-correlated with those of high peaks. High

peaks are ≈ 2 − 3 times more sensitive than low peaks, but there are fewer of them to help discern

between models (see § 2.5). Shape noise modifies the peak function, by introducing new peaks,
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Figure 2.4: (color online)Sensitivity of peak counts to Ω< and F on noisy convergence maps. Both
panels show the percentage difference between the peak counts in a given cosmology and in the
fiducial model. Peak height is expressed in units of ^ and in units of f=>8B4, S/N . For clarity, only
two models are depicted per panel, with source galaxies at IB = 1. The color scheme is the same as
in Figs. 2.2 and 2.3. Shaded areas represent ±1 standard deviation around the measured averages,
scaled to a 1000 deg2 survey.
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eliminating some, and spreading the height of those that survive from the noiseless maps. As a

result, it reduces the sensitivity by a factor of ≈ 2, especially for the noise-dominated low peaks,

and moves the turn-over point, where the parameter-sensitivity changes sign, from S/N ≈ 1 for

noiseless ^ to S/N ≈ 2.5 (S/N is the height of the peaks expressed in units of f=>8B4).

For noisy ^ and lensed galaxies at IB = 2, the turn-over point moves to even higher ^, from

S/N ≈ 2.5 to ≈ 3, and the relative sensitivity of low peaks increases by a factor of ≈ 2, while the

sensitivity of high peaks remains the same.

2.3.4 Minkowski functionals

Minkowski functionals (MFs) on 2D fields are topological measures on iso-contours [150].

They capture statistical information of all orders and have been shown to constrain cosmology,

improving errors computed exclusively from the power spectrum, in theoretical studies [41] and

also when applied to observations [49, 50].

The three MFs on a 2D map measure the area (+0), boundary length (+1) and the Euler charac-

teristic (+2) of the set of points where the value of the function exceeds a pre-specified threshold

(^th):

+0(^th) =
1
�

∫
Σ(^th)

30, (2.8)

+1(^th) =
1

4�

∫
mΣ(^th)

3;, (2.9)

+2(^th) =
1

2c�

∫
mΣ(^th)

^3;, (2.10)

where � is the total area of the map, Σ(^th) is the set of points on the convergence map for which

^ ≥ ^th, and mΣ(^th) denotes a line integral along the curve where ^ = ^th. We refer the reader

to [41] for a detailed description of our measurement procedure, and reproduce in Fig. 2.5 the

percentage difference between the MFs for a given cosmology and the fiducial model, as a function

of the threshold.

The sensitivity of all three functionals at high threshold levels is similar to that of peak counts.
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Figure 2.5: (color online)Percentage difference of the three MFs measured on noisy ^ maps, com-
pared to the value in the fiducial model, when changing Ω< and F. Left/center/right panels show
the results for +0/+1/+2, for noisy ^ and source galaxies at IB = 1. The color scheme, labeled in the
legends, is the same as in Figs. 2.2-2.4. Shaded areas represent ±1 standard deviation around the
measured averages, scaled to a 1000 deg2 survey.
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This is expected, since at high ^th values, the set of points ^ ≥ ^th increasingly coincides with the

set of lensing peaks. At lower thresholds, the sensitivity of the MF is weaker, but different for each

functional, suggesting that combining them should yield tighter parameter constraints.

2.4 Impact on parameter inference

Parameter constraints are not just determined by the sensitivity of observables, but also by

their (co)variances. To assess the impact of geometry and growth on inference, we estimated the

confidence levels on the parameters (Ω<, F) in two ways. First, we quantified how different each

model is from the fiducial, using the Δj2,

Δj2 =
∑
8, 9

(
`8 − ` 5 838

)
�−1
8 9

(
` 9 − ` 5 839

)
, (2.11)

where `8 is the average of an observable over the set of convergence maps for a cosmology (for

instance, the binned power spectrum), ` 5 83
8

the average for the fiducial cosmology and �−1
8 9

the

precision matrix. For each observable we used 20 bins, either spaced logarithmically in ℓ or linearly

in ^. We did not try to optimize the number of bins or their thresholds, since our purpose was to

understand the effect of geometry and growth on the parameter uncertainties, not obtain accurate

or optimal estimates for a specific survey.

We computed the precision matrix in the fiducial model, to be consistent with our calculated

Fisher matrices (see below), and we corrected for its bias following [151]. The bias correction

is very small, ≈ 2%, because the number of realizations used to estimate the covariance matrix

(#A = 1024) is large compared to the dimensionality of the data vector (#1 = 20). We scaled the

results by the same factor as the error bars in the figures, so that their magnitude corresponds to

what would be expected for a 1000 deg2 survey, even though in the non-Gaussian regime errors

may scale logarithmically rather than as the square root of the field of view [152].

36



D
ep

en
de

nc
e

on
Ω
<

D
ep

en
de

nc
e

on
F

0.
20

0
0.

23
0

0.
29

0
0.

32
0

-0
.5

00
-0

.8
00

-1
.2

00
-1

.5
00

I
=

1
I
=

2
I
=

1
I
=

2
I
=

1
I
=

2
I
=

1
I
=

2
I
=

1
I
=

2
I
=

1
I
=

2
I
=

1
I
=

2
I
=

1
I
=

2
Po

w
er

sp
ec

tr
um

To
ta

l
54

1
15

50
14

8
42

1
17

4
44

4
71

8
17

70
71

28
8

18
45

22
18

10
9

10
9

G
eo

m
et

ry
-o

nl
y

92
67

0
18

14
2

14
10

1
48

37
5

52
5

24
42

92
37

9
10

2
27

1
53

2
15

69
G

ro
w

th
-o

nl
y

83
9

30
33

24
2

86
1

30
5

11
10

13
71

50
83

52
8

30
50

45
25

2
23

13
2

96
55

7
E

qu
ila

te
ra

lb
is

pe
ct

ru
m

To
ta

l
14

38
3

13
8

8
25

41
4

5
2

3
3

4
3

5
G

eo
m

et
ry

-o
nl

y
5

9
2

5
2

4
2

10
14

47
4

12
7

8
19

40
G

ro
w

th
-o

nl
y

18
56

6
16

12
20

40
11

3
39

18
1

4
13

3
8

9
28

Pe
ak

co
un

ts
To

ta
l

77
2

11
20

19
0

26
6

19
9

23
2

76
8

82
5

21
1

39
9

39
48

38
26

16
4

93
G

eo
m

et
ry

-o
nl

y
99

33
6

26
76

23
70

65
22

3
77

6
19

34
12

7
25

3
11

0
17

8
60

3
83

7
G

ro
w

th
-o

nl
y

12
13

24
31

31
7

58
8

36
1

54
2

14
45

20
71

32
1

93
1

40
11

4
20

83
11

7
37

3
M

in
ko

w
sk

if
un

ct
io

na
l+

0
To

ta
l

91
5

11
53

23
1

27
2

21
2

26
5

85
9

97
6

41
3

82
8

64
90

52
56

26
8

19
4

G
eo

m
et

ry
-o

nl
y

11
1

45
5

28
10

7
30

81
86

28
1

93
1

23
05

15
0

28
2

12
6

22
9

71
1

10
71

G
ro

w
th

-o
nl

y
14

64
26

84
38

6
65

0
40

4
65

1
16

63
26

34
38

5
11

89
38

12
1

26
75

11
6

33
7

M
in

ko
w

sk
if

un
ct

io
na

l+
1

To
ta

l
98

4
15

06
24

5
33

9
22

9
35

3
90

1
12

29
32

1
51

6
52

53
41

33
20

5
11

2
G

eo
m

et
ry

-o
nl

y
11

8
42

2
27

11
7

29
73

88
27

1
99

6
25

95
16

1
28

5
13

0
21

4
69

6
10

75
G

ro
w

th
-o

nl
y

15
64

33
13

40
0

79
9

42
3

75
3

16
91

30
43

63
5

20
68

61
19

9
34

11
9

15
8

54
3

M
in

ko
w

sk
if

un
ct

io
na

l+
2

To
ta

l
10

16
18

62
25

5
43

8
25

3
44

6
99

7
16

47
31

3
48

6
56

51
39

34
20

3
10

9
G

eo
m

et
ry

-o
nl

y
12

8
60

2
30

14
1

31
10

1
95

37
5

10
30

32
06

17
3

39
2

14
5

29
2

76
4

14
12

G
ro

w
th

-o
nl

y
16

13
40

68
42

0
10

00
46

0
99

7
19

10
40

31
73

6
28

32
68

28
0

39
15

7
16

4
71

2

Ta
bl

e
2.

2:
Δ
j

2
fo

r
di

ffe
re

nt
co

sm
ol

og
ic

al
m

od
el

s
co

m
pu

te
d

fo
r

th
e

po
w

er
sp

ec
tr

um
an

d
th

re
e

no
n-

G
au

ss
ia

n
ob

se
rv

ab
le

s
(e

qu
ila

te
ra

l
bi

sp
ec

tr
um

,p
ea

k
co

un
ts

an
d

M
in

ko
w

sk
if

un
ct

io
na

ls
)o

ve
r

no
is

y
^

m
ap

s
w

ith
so

ur
ce

ga
la

xi
es

at
ei

th
er
I
=

1
or
I
=

2.

37



The Δj2 values are listed in Table 2.2, and are overall consistent with the conclusions from the

sensitivity plots in § 2.3. The significance at which models with different F’s can be distinguished

is lower than for Ω<, due to projection effects and the worse cancellation between geometry and

growth. Geometry has stronger constraining power in F and growth does in Ω<, and in general the

net significance is closer to that of growth than that of geometry. The observable with the lowest

Δj2 is the equilateral bispectrum, especially for F, for which the cancellation between geometry

and growth is particularly severe.

Even though it can strictly be used only for Gaussian-distributed data, we computed the Fisher

matrix [153] for all the observables in this study, with the expectation that it provides a second-

order approximation to the true parameter likelihood near its maximum:

�UV = 1
2Tr

[
�−1�,U�

−1�,V + �−1"UV

]
, "UV = `,U`

)
,V + `,V`),U . (2.12)

Here �UV is one element of the Fisher matrix, Tr stands for the trace of the matrix within brackets,

the covariance is evaluated at the fiducial model and a comma denotes them partial derivative

-,U ≡ m
mU
- . The marginalized error on a parameter is given by

√(
�−1)

UU
, and is reported in

Table 2.3. We have found the finite-difference derivatives of the covariance to be sensitive to the

numeric scheme used to estimate them, especially for the bispectrum. In the case of the power

spectrum and peak counts, it has been shown that this does not significantly change the parameter

constraints [154, 121]. For these reasons, we have not included the cosmology-dependence of

the covariance in our Fisher matrix calculations. The derivatives of the average observables were

estimated using 5-point finite differences with Lagrangian polynomials.

We show the 68% confidence level contours in Fig. 2.6. The figures show that marginalized

errors on F are larger than those forΩ< by a factor of ≈ 15, and that geometry has less constraining

power than growth. The confidence regions decrease when the sources are farther away, although

the marginalized errors do not always do. This is due to changes in the degeneracies (i.e. the axes

and tilt angles of the error ellipses). For example, the 68% contour from Minkowski functionals
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ΔΩ< ΔF \

×103 ×103 [deg] �$"

I = 1 I = 2 I = 1 I = 2 I = 1 I = 2 I = 1 I = 2
Power spectrum

Total 14.2 4.9 269.2 127.1 -2.9 -2.0 1034 3609
Geometry-only 40.7 34.4 106.6 138.3 20.3 13.9 802 1714
Growth-only 15.2 11.6 298.8 181.5 2.9 3.6 1211 3776

Equilateral bispectrum
Total 22.3 17.0 347.2 258.4 -0.6 1.2 131 241
Geometry-only 49.4 38.2 161.1 152.9 5.9 10.2 132 239
Growth-only 34.7 34.6 396.7 326.5 4.3 5.7 142 272

Peak counts
Total 8.9 7.3 135.9 135.9 -3.5 -2.8 2247 2538
Geometry-only 32.9 32.9 98.3 128.5 17.9 14.2 1087 1447
Growth-only 9.4 9.8 219.2 158.3 2.4 3.5 1844 3287

Minkowski functional +0
Total 7.6 5.1 99.8 66.4 -4.0 -3.6 3259 5387
Geometry-only 29.4 36.5 89.3 146.6 17.6 13.9 1311 1425
Growth-only 4.8 4.5 115.2 79.3 2.1 3.0 3780 7018

Minkowski functional +1
Total 6.1 3.2 91.0 63.9 -3.3 -1.8 3697 6355
Geometry-only 38.0 36.6 111.6 152.5 18.4 13.4 1042 1384
Growth-only 5.1 5.6 104.1 84.1 2.5 3.6 4277 7229

Minkowski functional +2
Total 6.5 3.1 101.2 69.9 -3.3 -1.8 3436 6579
Geometry-only 36.7 40.4 106.5 159.0 18.7 14.2 1130 1489
Growth-only 5.5 6.8 109.8 99.2 2.6 3.8 4181 6962

Table 2.3: Marginalized errors on Ω< and F, orientation of the Fisher ellipse (measured as the
angle between its major axis and the F axis), and figure-of-merit (FOM; defined as c/�, with �
the area of the error ellipse). The errors correspond to a 68% confidence level, scaled to a 1000
deg2 survey. All calculations were done on noisy ^ maps with source galaxies at either I = 1 or
I = 2.
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Figure 2.6: (color online)68% Fisher error ellipses in the (Ω<, F) plane inferred from the power
spectrum (%;), equilateral bispectrum (�;;;), lensing peaks and Minkowski functionals (MFs). Up-
per/lower panels show the contours for source galaxies at IB = 1/IB = 2. Each observable
was characterized by a data vector of length 20, and the ellipses were computed neglecting the
cosmology-dependence of the covariance matrix. All contours are scaled to a 1000 deg2 survey.

for geometry-only becomes more elongated and its tilt is increased towards the F axis, yielding a

larger marginalized error on F for IB = 2 than for IB = 1.

For all observables, errors on Ω< and F are positively correlated, when either geometry or

growth is considered in isolation. For example, the geometry effect of a higher matter density is

smaller comoving distances, which can also be achieved with a less negative value for F. The

effect on growth of a lower DE density in the past would be a smaller suppression of gravitational

collapse and a stronger gravitational field for the collapsing perturbations. The correspondingly

stronger lensing signal is similar to what would be achieved with higher matter density. For the net

effect, the change of the dominant effect for Ω< and F reverses the degeneracy direction, yielding

anti-correlated errors on the parameters.
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2.5 Discussion

The agreement between the sensitivity toΩ< and F of the power spectra measured on the mock

^ maps and the analytic prediction, as well as the relative contribution of geometry and growth,

validates our approach based on modified simulations.

The cancellation between geometry and growth, which further suppresses the sensitivity of

WL to cosmological parameters, highlights why it is important to combine different redshift bins

(tomography) to constrain DE with better precision (e.g. [155]). The suppression of the power

spectrum sensitivity at small scales by galaxy shape noise highlights the importance of including

other observables when analyzing weak lensing data, even if non-Gaussianities were small.

The sensitivity of the equilateral bispectrum follows a similar pattern to that of the power

spectrum, but their measurement is considerably noisier, which translates into a less significant

Δj2 for a given model. The addition of shape noise does not affect the mean sensitivity on small

scales more than large scales, which is reasonable given the Gaussian noise model used (it does

contribute to the statistical error).

We measured also the folded bispectrum, and the results are in line with those from the equi-

lateral shape. We expect the same for all other configurations of the bispectrum, for the percentage

change of the power spectrum and bispectrum does not depend on the multipole, and the cancella-

tion between geometry and growth is a feature present at map level (see below).

The sensitivity of lensing peaks also has qualitative similarities to that of the power spectrum,

but it is highly dependent on the height of the peaks. In order to assess how much of their sensitivity

is a direct result of differences in the power spectrum, we computed it from Gaussian random fields

(GRFs) built with the same power spectra as the ^ maps generated through ray-tracing. The result

of this exercise is shown in Fig. 2.7. We have found that the sensitivity of low peaks is reduced by

a factor of ≈ 2, and the sensitivity of the high peaks increases (although there are fewer high peaks

in the GRFs). Overall, the Ω<-sensitivity of the counts cannot be fully explained by the power

spectrum.
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Figure 2.7: (color online)Sensitivity of lensing peak counts to Ω<, derived from a set of Gaussian
random fields with the same power spectra as that measured on noisy convergence maps from
large-scale structure. Shaded areas represent 1 standard deviation errors in a 1000 deg2 survey.
Compare with the left panel of Fig.2.4.
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To better understand the origin of the dependence of the peak counts’ sensitivity to peak height,

we look at the 3D dark matter halo counts. It is natural to compare these quantities, since high

peaks have long been known to be strongly correlated with individual high-mass DM halos hosting

galaxy clusters [156, 157, 158]. The average number of halos of a given mass to a fixed redshift

per solid angle can be expressed as an integral of the product of the volume element (geometry)

and the halo mass function (growth).

3=

3;="3Ω
(") =

∫ IB

0
3I

3+

3I3Ω
(I) 3=

3;="
(I, ") (2.13)

We have computed the contribution from each effect as a function of halo mass, and displayed the

results in Fig. 2.8. The sensitivity for halo masses above ≈ 1012ℎ−1"� tracks that of high peaks,

but this is not the case for low peaks / lower mass halos. This is in agreement with previous studies

that showed a link between high peaks and single high-mass halos, while finding that lower peaks

are associated instead with constellations of 4-8 low-mass halos at a range of redshifts [159]; a

similar peak-halo correlation has been seen in recent CFHTLens data [160]. High peaks then seem

to measure, like halos, measure a combination of growth and the volume element.

The sensitivity of the low peak counts does not track that of halo counts; but these peaks are

important for cosmology. When normalized by the standard deviation for the fiducial model, the

difference in peak counts from the fiducial model has a maximum in the low significance region

(see Fig. 2.9). Low peaks have also been found to contribute to cosmological parameter constraints

more than high peaks, which is in agreement with previous studies [159, 121], including an analysis

of peak counts in the the CFHTLenS data [47].

The sensitivity of the Minkowski functionals, as well as its decomposition into geometry and

growth effects, qualitatively traces that of lensing peaks, especially at high ^ levels.

Finally, the fact that we observe a partial cancellation between geometry and growth, espe-

cially when changing F, in all the statistics and topological descriptors analyzed, suggests that

this property is present already at the map level. In order to investigate whether this is the case,
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Figure 2.8: (color online)Sensitivity of DM halo abundance to Ω< (left panel) and F (right panel).
The percentage difference in the total number of halos per unit solid angle to I = 1 between a model
and the fiducial cosmology, as a function of the halo mass. The net effect (black) is decomposed
into its geometry (red) and growth (blue) components.

we have examined the difference-maps between each model and the fiducial, including either the

geometry or growth effect alone. These maps are shown in Fig. 2.10 for the model with F = −1.2.

The modified angular positions of structures in the maps built including each effect, due to differ-

ent ray deflections, prevent us fromhttps://www.overleaf.com/project/5eb376fe552dce0001998108

directly demonstrating a cancellation of the lensing signal by adding these maps together. Never-

theless, the geometric and growth-induced distortions in the two panels of Fig. 2.10 clearly show

the same structures at roughly the same locations, but with the sign of their Δ^ values reversed.

We conclude that the geometry vs growth cancellation indeed is a property at the map level and we

therefore expect it to affect any observable, including those not analyzed here.

2.6 Conclusions

We have validated the use of N-body simulations and ray-tracing to separately study the effect

of geometry and growth on weak lensing observables. This allows us to extend past analyses to
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Figure 2.9: (color online)Difference in number of peaks from the fiducial cosmology, normalized
by the standard deviation in the fiducial model, for a 1000 deg2 survey.
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Figure 2.10: (color online)Difference Δ^ between a single realization of the noisy ^ field gener-
ated including only geometry (top panel) or growth effects (bottom panel) for F = −1.2, and the
corresponding realization in the fiducial model (F = −1.0).
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non-Gaussian statistics and topological features that do not admit a simple analytic treatment.

Our analysis confirms that the sensitivity of non-Gaussian observables to cosmology shares

some characteristics with that of the power spectrum. They suffer a partial cancellation between

geometry and growth on top of the loss of sensitivity due to integrating (projection) effects. This

cancellation is more severe for F, reducing even further the sensitivity of WL to that parameter

compared to Ω<.

Galaxy shape noise dominates the power spectrum at high multipoles, reinforcing the case

to use alternative observables to analyze weak lensing data on small scales. The bispectrum has

higher statistical noise, but shape noise does not suppress its average sensitivity at high multipoles

as it does for the power spectrum. The lensing peaks’ sensitivity is highly dependent on the peak

height, with high peaks tracking the behavior of dark matter halo counts, but low peaks having an

important influence on parameter constraints. The sensitivity of Minkowski functionals is similar

to that of peak counts, which is not surprising at high ^ levels. The similarities between statistics,

such as the cancellation of geometry and growth effects, arises from the fact that this property is

present at map level.

The partial cancellation, together with projection effects, yields weak constrains for F, and

underscores the need to combine information from different redshifts to tighten constrains on DE.

Marginalized errors on Ω< and F are similar to those calculated from growth-only effects. This

suggests that combining WL data with probes that strongly constrain the expansion history through

geometry, such as BAO measurements, may be especially beneficial to tighten constraints.
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Chapter 3: Do dark matter halos explain lensing peaks?

3.1 Introduction

Weak gravitational lensing (WL) of background sources by large-scale structure (LSS) is a

promising technique to study dark matter (DM) and dark energy (DE) [3] as a consequence of its

sensitivity to both structure growth and the expansion history of the universe. Ongoing and future

surveys such as the Dark Energy Survey (DES1), the Euclid Mission2, the Wide Field Infrared

Survey Telescope (WFIRST3) and the Large Synoptic Survey Telescope (LSST4) will deliver WL

datasets with unprecedented precision, sky coverage and depth. For a comprehensive treatment of

weak lensing in a cosmological context, we refer the reader to the following reviews [4, 161, 5].

On small scales, WL probes the matter density field in the non-linear regime, independent of

the matter’s nature or dynamic state. Thus, in order to optimally extract cosmological information

from the upcoming WL surveys, we need observables that go beyond quadratic statistics such as the

two-point correlation function or its Fourier transform, the power spectrum. Various strategies have

been proposed to capture non-Gaussian information, from the use of higher-order moments and

correlation functions such as the bispectrum [129, 130, 162, 163], to the adoption of topological

features from WL maps such as Minkowski functionals [41, 50] or peak counts [132].

Lensing peaks, defined as local maxima of the convergence or shear field, are particularly

simple to extract from mass-aperture maps, and have been shown to constrain cosmology both

theoretically [31, 32, 164] and, recently, in observations [47, 48, 165]. Peaks are usually classified

based on their absolute height or significance level, defined as their signal-to-noise ratio (S/N),

the noise being caused by our imperfect knowledge of the intrinsic shapes of the background

1http://www.darkenergysurvey.org
2http://sci.esa.int/euclid/
3http://wfirst.gsfc.nasa.gov
4http://www.lsst.org
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galaxies.

Peak counts are also special because their physical origin and sensitivity to cosmology can, in

principle, be understood and related to specific structures of the cosmic web. While our under-

standing is not yet complete, it is clear that halos are important contributors to peak counts. Shear

peaks were initially considered for cluster selection, and the connection of high–significance peaks

(S/N > 4 − 5) to single massive halos has been established in the literature [156, 157, 158].

Lower–significance peaks are typically associated with constellations of lower-mass halos [159,

160] and contribute significantly to the cosmological information in convergence maps [32, 159].

Predicting analytically the abundance of peaks is difficult, as it depends on projections of non-

linear structures. N-body simulations can predict peak counts at a high computational cost that

will only increase with the high volumes required by upcoming WL surveys. The need to predict

not only the peak number density but also its covariance would further raise the total cost. The

halo-peak connection has inspired some models that would circumvent the need for full N-body

simulations by using either analytical models based on Gaussian random fields [166, 167, 168] or

stochastic fast simulations based on the halo model [169, 170]. This could prove extremely useful

by reducing the computational requirements for N-body simulations by 2-3 orders of magnitude.

The main goal of this work is to assess the validity of halo-based models for cosmological

parameter inference. In particular, we compare results from full N-body simulations with those

of a recent publicly available algorithm, CAMELUS [170]. In previous work [170], this model

was found to predict accurately peak counts from N-body simulations for a specific cosmology.

Here, we expand the comparison of peak counts to a wide range of different cosmologies, and

also examine their predicted covariance matrices, showing how differences affect the resulting

parameter credibility regions. We also review the importance of the cosmology-dependence of the

covariance matrix in the context of precision parameter inference [154].

The rest of the paper is organized as follows. In Sec. 3.2 we describe the methods used to pre-

dict peak counts using N-body simulations and CAMELUS, and infer constraints for cosmological

parameters. In Sec. 3.3 we show how both models compare in terms of peak counts, covariance
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Parameter Symbol Value
Matter density Ω< 0.260
Dark energy density ΩDE 1.0 −Ω<
Amplitude of fluctuations at 8 ℎ−1Mpc f8 0.800
Hubble constant ℎ 0.72
Dark energy eq. of state F -1.0
Scalar spectral index =B 0.96
Effective number of relativistic d.o.f. =eff 3.04

Table 3.1: Cosmological parameters for the fiducial model. All other cosmologies share these
parameters except Ω< and f8.

matrices, and credible contours. We then discuss our main findings (Sec. 3.4), identifying potential

origins for the differences between the two models and how CAMELUS could be modified to match

N-body predictions more accurately. Our main conclusions are summarized in Sec. 3.5.

3.2 Predicting peak counts

We generated convergence maps for a suite of 162 flat ΛCDM cosmologies covering the

{Ω<, f8} plane using both N-body simulations and CAMELUS. Table 3.1 presents the cosmo-

logical parameters for our fiducial cosmology, which are consistent with the 9-year Wilkinson

Microwave Anisotropy Probe (WMAP) results [171] for ease of comparison with past simulation

efforts.

We sampled the parameter space with a modified latin hypercube algorithm implemented in the

publicly available lensing package LENSTOOLS [143], and based on a coordinate transformation

that converts a randomly sampled rectangle into an ellipse:

(A, q) → (G = 0A= cos q, H = 1A= sin q) (3.1)

with (A, q) ∈ [0, 1] × [0, 2c]. We adjusted the semi-axes 0 and 1 so that the region explored

covered all areas with a significant likelihood according to past WL peak counts studies [31]. We

centered the ellipse on our fiducial cosmology (Ω< = 0.260, f8 = 0.800), and rotated it so that
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its semi-major axis became parallel to the direction of maximum degeneracy between the two

parameters. The exponent = controls the sampling concentration, with = > 1/2 yielding samples

whose density grows towards the center of the ellipse. We used = = 3/2.

Based on the likelihood estimated from a first batch of 100 cosmologies, we added manually

62 cosmologies in sparsely sampled regions, such as the contours’ tails. Doing so reduced the

sampling error in the likelihoods, as discussed in Sec. 3.4.

3.2.1 N-body simulations

Our simulation pipeline is described in detail in [143]. For each cosmology, we evolved a single

(240 ℎ−1Mpc)3 volume with GADGET2 [144], large enough to cover the intended 3.5 × 3.5 deg2

field of view to a distance beyond the lensed sources’ redshifts. Every simulated box contains 5123

DM particles, which yields a mass resolution of "? ≈ 1010M�. All lensed source galaxies were

placed at a redshift of Is = 1, and 80 ℎ−1Mpc thick lens planes were stacked between the galaxies

and the observer. Each lens plane is the result of slicing a snapshot along a coordinate axis, and

applying to it a random shift and rotation, allowing us to generate 500 independent realizations

from a single N-body run. Lens planes were converted to potential planes and a multi-plane ray-

tracing algorithm was used to generate 1, 024×1, 024 pixels convergence maps with a pixel size of

≈ 0.2 arcmin. We used a higher resolution for the potential planes, 4, 096 × 4, 096 pixels, to avoid

a loss of power on small scales [159]. We deployed and managed the simulations and their output

using LENSTOOLS [143].

Since the unperturbed galaxy shape is unknown, we accounted for an intrinsic ellipticity noise

following [147] and added a 2-D Gaussian random noise with zero mean and standard deviation

f?8G =

√
f2
n

2=6�?8G
(3.2)

with intrinsic ellipticity fn = 0.4 as in [170], a galaxy density of =6 = 25 arcmin−1 and pixel

area defined by the field-of-view and map resolution. We smoothed the noiseless and noise-only
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maps applying a Gaussian filter with a characteristic width of \� = 1 arcmin –see Eq. 3.3– before

combining them, and extracted their local maxima, recording them in the form of peak catalogues.

, (\) = 1
c\2

�

exp(− \
2

\2
�

) (3.3)

3.2.2 Camelus

CAMELUS is a halo-based model that generates fast stochastic simulations of convergence

maps. Instead of evolving the matter density field from high redshift dynamically, it assumes

that halos are the primary contributors to the lensing signal and discretizes the space between

the lensed galaxies and the observer in redshift bins, populating them with halos whose masses

are sampled from an analytical function [172]. Each halo follows a Navarro-Frenk-White (NFW)

density profile [173] and is placed randomly within its redshift bin. We refer the reader to [170]

for an in-depth description of the model.

We ran CAMELUS for each of the same set of 162 cosmologies as with the N-body simulations,

generating 500 independent realizations in each case. The resulting smoothed, noiseless conver-

gence maps were combined with shape noise that is statistically the same as the one used with

the N-body maps, and their peaks extracted with the same routines. The values we used for the

relevant tunable parameters in CAMELUS are given in Table 3.2.

3.2.3 Parameter inference

Bayes’ theorem relates the probability distribution for a set of cosmological parameters, given

an observation, to the likelihood of the observed data given values for those parameters

?(\ |x>1B, ") = ?(x>1B |\, ")?(\, ")
?(x>1B, ")

(3.4)
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Parameter Symbol Value
Field of view 5 >E 210.0 × 210.0 arcmin2

Pixel size - 0.205 arcmin
Smoothing scale \� 1.0 arcmin
Minimum halo mass "<8= 1011 ℎ−1M�
Maximum halo mass "<0G 1017 ℎ−1M�
Maximum halo redshift I<0G 1.0
No. of redshift bins =I 10
Halo profile inner slope U 1.0
Halo concentration (norm.) 20 11.0
Halo concentration (slope) V 0.13
Galaxies redshift I60; 1.0
Galaxy density =6 25.0 arcmin−2

Ellipticity noise fn 0.4

Table 3.2: The main tunable parameters of CAMELUS and their values used in this study. Dark
matter halos are assumed to have a Navarro-Frenk-White (NFW) density profile, defined by its
inner slope (U), and its concentration parameter, the ratio between the virial and scale radii, deter-

mined itself by 20 and V: 2NFW ≡ 20
1+I

(
"
"★

) V
, where I is the halo’s redshift, " its mass and "★ its

pivot mass (see [170] for a detailed description of the halo density profile characterization).

where ? is the probability, \ represents the set of parameters that determine the model " and x>1B

is a data vector that depends on observations. Throughout this study we assume ΛCDM is a correct

description of the universe, hence the evidence (denominator) acts just as a normalizing factor and

we can drop the implicit dependence on the model. We use a non-zero prior within the parameter

region that we explore, and zero outside:

?(\ |x>1B) ∝ ?(x>1B |\) ≡ L(\) (3.5)

Our observable is the peak function defined as the peak counts binned by their height or signifi-

cance level (S/N , height in units of the r.m.s. ellipticity noise).

If we assume that our observable follows a multivariate Gaussian distribution, its log-likelihood,

up to an additive constant, has the form:

!E6 = ln
[
(23)3 det� (\)

]
+ Δx) (\)�̂−1(\)Δx(\) (3.6)
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where Δx is the difference between the mean peak function in each cosmology from its value in

the fiducial (Ω< = 0.260, f8 = 0.800) cosmology, and �̂−1 is the precision matrix (the inverse of

the covariance matrix), estimated from the data. We follow the same notation as [154] , and call it

!E6, ! indicating it is a "log-likelihood", E that it includes a "varying" (i.e. cosmology-dependent)

covariance matrix, and 6 that the assumed model is "Gaussian".

Means and covariance matrices are computed from the # = 500 realizations available in each

cosmology:

Δx(\) = x̄(\) − x̄(\ 5 83) (3.7)

� (\) = 1
#−1

#∑
8=1
(x8 (\) − x̄(\)) (x8 (\) − x̄(\))) (3.8)

In many cases, evaluating the covariance matrix at each point of the parameter space becomes

computationally too expensive, and a constant covariance is used instead. As in [154], we assess

the effect of this simplification by evaluating two approximations to the full Gaussian likelihood.

The first is to use a "semi-varying" covariance matrix; i.e., we let the covariance matrix change

with cosmology within the j2 term but not the determinant term in Eq. 3.6. Following the notation

in [154] we call it !BE6. The second is to compute the likelihood with a "constant" covariance

matrix, evaluated at the fiducial model, in all terms. We call this !26:

!BE6 = Δx) (\)�̂−1(\)Δx(\) (3.9)

!26 = Δx) (\)�̂−1(\ 5 83)Δx(\) (3.10)

Note that the precision matrices in Eqs. 3.6, 3.9 and 3.10 have a "hat" on top, while the covariance

matrix in Eq. 3.8 does not. That is because the inverse of a covariance matrix estimated from data

is not an unbiased estimator for the precision matrix. There are two ways to correct for the bias.
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The most common [151] is to re-scale the inverse of the estimated covariance matrix:

�̂−1 =
# − 3 − 2
# − 1

�−1 (3.11)

where N is the number of realizations per cosmology (500 in our case) and 3 the dimension of the

observable (number of bins in the peak function).

An alternative approach is to use a non-Gaussian likelihood, as described in [174]. In this case

we can also use a constant or varying covariance matrix in each of the log-likelihood terms and,

following the same notation, drop the 6 subscript since the model is not a Gaussian anymore. The

functional form for these models is as follows:

!E = ln
[

det� (\)
22
?

]
+ #

[
1 + Δx) (\)�−1 (\)Δx(\)

#−1

]
(3.12)

!BE = #

[
1 + Δx) (\)�−1 (\)Δx(\)

#−1

]
(3.13)

!2 = #

[
1 + Δx) (\)�−1 (\ 5 83)Δx(\)

#−1

]
(3.14)

(3.15)

with a normalizing factor

2̄? =
Γ

(
#
2
)

[c(# − 1)]3/2 Γ
(
#−3

2

) (3.16)

where Γ is the usual Gamma function and # > 3.

In the limit # � 3 both methods are equivalent. We used peak functions with a relatively

small number of bins (see below) compared with the number of realizations per model and there

were no discernible differences between the credible contours generated using the two approaches.

For inference, we decided to use few bins in the peak function so that covariance bias is not

an issue. We set an edge at S/N = 3.0, the threshold below which peak counts are dominated

by noise. This allowed us to separate clearly analyses done with only high-significance peaks (as

in [154]) from analyses also including low-significance and even negative peaks. The upper and
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Observable S/N bins
n(100)

pk 100 equally-sized bins in [-2.0, ..., 6.0]

n(10)
pk [−∞,−1.0, 0.0, 1.0, 2.0, 3.0,

3.5, 4.0, 4.5, 5.0, +∞]
Model n̄(10)

pk
N-body [23.8, 292.5, 1125.7, 1457.3, 735.4,

130.5, 59.8, 27.8, 13.3, 17.7]
CAMELUS [15.3, 255.6, 1145.8, 1535.1, 721.7,

113.3, 48.1, 21.2, 10.4, 15.7

Table 3.3: Description of the thresholds used in this study to bin the convergence peak counts by
their signal-to-noise (S/N ) ratio, as well as the mean peak counts from data obtained from both
the N-body and the CAMELUS models in the fiducial cosmology, in the bins used for inference.

lower S/N edges were chosen to avoid the rejection of models due to the presence of empty bins

with their corresponding singular covariance matrices. We also ensured that there are at least 10

peaks from the fiducial cosmology in the bin with the lowest number and defined the 10-bin peak

function described in Table 3.3, x>1B ≡ n(10)
pk , as the observable for this study. We did not optimize

the bins’ edges to maximize the predictive power of the models.

Table 3.3 also displays n(100)
pk , a peak function with 100 equally spaced bins that was used to

highlight differences in peak counts from the two models.

We are forced to interpolate for all the (Ω<, f8) combinations not found in our collection of

simulated cosmologies in order to compute smooth credible contours. Our interpolation grid covers

the region Ω< ∈ [0.160, 0.600] and f8 ∈ [0.150, 1.250] with a resolution of 0.001 on each axis.

Within that region we know that our sample reproduces 2f (95.4%) contours from CAMELUS

within 20% –see Sec. 3.4–, and we verified that a finer grid did not change the results.

Interpolating peak counts is straightforward, and can be done when using a constant covariance

to calculate the likelihood, but becomes problematic when an estimation for the covariance matrix

is also needed. We interpolated the log-likelihood instead, and used a linear model because its

results are easy to interpret, it does not require any tunable parameter like smoothing, and it does

not introduce any spurious high-likelihood values from fitting high-order polynomials. We verified
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that our results do not change when using a different interpolator, such as radial basis functions;

this agrees with the findings in previous studies such as [165].

3.3 Results

Our main results are the comparison between the two models regarding peak counts, covari-

ance matrices and credible contours, together with the impact of using a cosmology-dependent

covariance for inference.

Fig. 3.1 shows mean peak counts as a function of their height, with and without galaxy shape

noise, for three representative cosmologies that are characterized by the degeneracy parameter

defined as in [165], Σ8 ≡ f8

(
Ω<
0.3

)0.6
. In each cosmology, we calculated the average of the peak

function, n̄(100)
pk , over 500 smoothed maps generated with the two models. We did this before and

after adding noise as described in 3.2.1. Noiseless maps from N-body simulations exhibit up to

50% fewer peaks around the maximum of the distribution at S/N ∼ 0, with higher counts in

the tails. Nevertheless, the two models agree well for peaks with S/N > 1, which constrain

cosmology the most (see below). The addition of noise dilutes the differences for low-significance

counts, especially for cosmologies with small Σ8, and has the opposite effect for high-significance

peaks, with N-body noisy maps yielding more counts for S/N > 3, especially for cosmologies

with high Σ8.

As a global measure of how different the peak histograms from the two models are, we inte-

grated the area between them, divided the result by the surface under the N-body histograms –see

Eq. 3.17–, and plotted it as a function of Σ8 in Fig. 3.2.

Δ (%) ≡

#18=B∑
8=1
|#?40:B8CAMELUS

− #?40:B8
#−1>3H |

#18=B∑
8=1

#?40:B8
#−1>3H

(3.17)

Counts from noiseless convergence maps generated with the halo-based model are in better
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Figure 3.1: Comparison of mean peak counts as a function of their height between N-body
simulations (blue) and CAMELUS (red). Counts are normalized to 1 deg2 of sky and height
is expressed in absolute value and as a signal-to-noise ratio (S/N). The upper panels show
the results from smoothed convergence maps without shape noise; the lower panels add shape
noise. Three different cosmologies are displayed with increasing parameter Σ8 from left to right
(0.556, 0.734 and 1.244). In black, we show the fractional difference between the two models
(Δ [%] ≡ (#CAMELUS −##−1>3H)/##1>3H), and the area between the histograms is shaded. Adding
noise reduces the discrepancies between the models but the effect depends on cosmology. While
the discrepancies are almost erased for cosmologies with small Σ8, for the rest N-body data yield
lower counts near the maximum of the distribution and higher counts in the tails. The differences
grow with Σ8.
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Figure 3.2: Global comparison of peak counts. For each cosmology, the area between the N-body
and CAMELUS histograms as a percentage of the area enclosed by the N-body histogram (Eq. 3.17)
is plotted against Σ8. Differences from noiseless maps (crosses) are significantly reduced by adding
noise (dots), so that the difference stays below 20% in all cases. The reduction is more important
for cosmologies with small Σ8, for which noise dominates.

agreement with those from N-body simulations as Σ8 increases, pointing to a higher non-halo

contribution to peaks for small Σ8 cosmologies. Adding noise reduces the global differences to

less than 20% in all cases. As expected, the reduction is stronger for cosmologies with small Σ8

where peak counts are dominated by noise. Thus, the agreement between models worsens as Σ8

increases.

Calculating the likelihood of a cosmological model needs an estimate of the covariance matrix,

as seen in Sec. 3.2.3. We analyzed the covariances for n(10)
pk , the data vector used to draw the

credible contours. Fig. 3.3 shows this comparison for the fiducial cosmology. Specifically, we

display the correlation matrices after substituting their diagonal terms with the variances divided

by the mean peak counts. These normalized matrices allow for a comparison of the variance and

correlations for each bin, irrespective of its mean peak count.

N-body data yield higher absolute values in all matrix elements. Positive and negative peaks

have higher correlations among themselves, while being anti-correlated against one another. CAMELUS
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data, on the other hand, gives weakly anti-correlated peak counts with a smaller variance. The

weak anti-correlation in the CAMELUS data can be attributed to the condition that the total mass

in all halos is fixed: lens planes including an unusually large number of massive halos will have

room for fewer low-mass halos, and vice-versa. Also, as we discuss in Sec. 3.4, the covariance

underestimation can be the consequence of halos being randomly placed in the field of view.

To analyze the cosmology dependence of the covariance, we plotted the value of selected nor-

malized matrix elements as a function of Σ8 for all cosmologies in Fig. 3.4. For N-body data,

all variances and correlations increase until Σ8 ≈ 0.6 and then plateau. This dependence may

affect the likelihood calculations. Matrices computed with CAMELUS show a very weak cosmol-

ogy dependence and all their elements are smaller –in absolute value– than those from N-body

simulations, which would result in lower error estimations.

After comparing peak counts and their covariances, we combined these to estimate the !26

likelihood for each model. We show the 2f (95.4%) credible contours in Fig. 3.5 by numerically

integrating the interpolated likelihoods, and compared the results in Table 3.4. We find thicker

contours, with a 30% larger overall area, which can be attributed to the larger covariances (see

below).

We also report any shifts in the credibility region’s centroid position in Table 3.4. The centroid

is defined as the point whose position is the arithmetic mean of that of all points within the region:

\24=CA>83 =

∫
�'
3\3Θ\

�A40�'
≈

∑
�' \

8∑
�' 1

(3.18)

where \ refers to the axis for which the centroid coordinate is computed and Θ to all other di-

mensions in parameter space. We did not use the maximum likelihood to estimate shifts because

it corresponds to the fiducial cosmology by construction. We found a significant shift exclusively

between N-body contours computed using all the peaks and those computed using only high-

significance peaks. The contours from N-body simulations are more tilted in {Ω<, f8}. To quan-

tify the difference in tilt, we fitted the exponent (U) of the degeneracy relation, Σ8 ≡ f8

(
Ω<
0.3

)U
to
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Figure 3.3: Covariance comparison between N-body (upper panel) and CAMELUS (lower panel)
for the fiducial cosmology. Each normalized covariance matrix has diagonal elements equal to the

peak count variance divided by its mean, f2
88

Ḡ88
, and off-diagonal elements equal to the correlation

coefficients, d8 9 ≡
f8 9
f8f9

. We find higher absolute values for all elements in the matrices, with
positive and negative peaks positively correlated and positive peaks anti-correlated with negative
ones. Peak counts from CAMELUS are mildly anti-correlated. Selected matrix elements whose
value for all cosmologies is displayed in Fig. 3.4 are indicated with a number.
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Figure 3.4: The cosmology dependence of covariances. Each subplot shows the value of selected
normalized covariance matrix elements for all 162 cosmologies. The selected elements are indi-
cated in Fig. 3.3, and correspond to a diagonal element (left panel) and off-diagonal elements
showing anti-correlation in N-body data (center panel) and correlation (right panel). N-body data
exhibit higher absolute values for all elements and stronger cosmology dependence.

minimize the scatter in !26. We restricted the data to Σ8 ∈ [0.6, 0.9], since estimating the scatter

for extreme values of Σ8 where we have few data points is problematic. We find an exponent of

U = 0.67 vs. U = 0.58 for CAMELUS.

It is common to restrict analyses to the highly significant peaks, since their counts are not

dominated by shape noise. We emphasize that the shape noise can be measured accurately from the

data themselves, and so there is no reason a priori to discard the ’noisy’ peaks with a lower S/N .

Nevertheless, we investigated the impact of this restriction. We find that it does not change the

contours obtained with CAMELUS, but has a drastic impact on those from N-body simulations, as

can be seen in Fig. 3.5. Previous works [31, 32] found that low-significance peaks carry important

cosmological information in WL maps from N-body simulations. Table 3.4 shows that the contours

double in size when only peaks with S/N > 3 are considered. While both models yield similar

constraints, they derive their predictive power from different S/N peaks.

Finally, we assessed the impact of using a variable covariance matrix when computing the

likelihood in the same way as was done in [154]. Estimating the covariance at each point of the

parameter space is computationally expensive, but as we have shown, the covariance can change

significantly. Fig. 3.6 shows the effect on both 1f (68.3%) and 2f (95.4%) contours; the values for

62



�>" Δ �A40 ΔΩ< Δf8
# − 1>3H 0;; ?40:B 26 - - -
# − 1>3H S/N > 3.0 9 +198% +0.05 -0.09
CAMELUS all peaks 36 -28% +0.02 -0.00
CAMELUS S/N > 3.0 33 -21% +0.03 -0.02

Table 3.4: Comparison of !26 2f (95.4%) credible contours. The figure-of-merit, �>" , is the
inverse of the area of the credibility regions. Also displayed are the percentage changes in the
area of the credibility region and its centroid (arithmetic mean) shift. We find looser constraints
(≈ 30%) for N-body data, whose predictive power is greatly diminished when low significance
peaks are excluded from the analysis.

Figure 3.5: Comparison of 2f (95.4%) credible contours from N-body (blue) and CAMELUS (red)
data, using a Gaussian likelihood with constant covariance, !26. Solid lines show the contours
computed using all the peak counts. We find looser constrains, with a thicker, ≈ 30% larger
credibility region. Dashed lines show the results including only high significance peaks (S/N >

3). While constraints based on CAMELUS data do not change, the predictive power from N-body
data is severely reduced, with a ≈ 200% increase in the area of the credibility region. Dotted lines
show the degeneracies Σ8 = f8

(
Ω<
0.3

)U
that minimize scatter in !26. We find a steeper contour,

U = 0.67 vs. U = 0.58 for CAMELUS. Grey dots show the simulated cosmologies (a green star the
fiducial cosmology), and grey areas the regions excluded from contour measurements.

63



S/N > 3 Peaks
Likelihood FoM Δ �A40 ΔΩ< Δf8
1f !26 25 - - -
1f !BE6 29 -14% +0.01 +0.02
1f !E6 36 -19% -0.03 +0.01
2f !26 9 - - -
2f !BE6 13 -32% -0.01 +0.09
2f !E6 15 -13% -0.01 -0.01
All peaks
Likelihood FoM Δ �A40 ΔΩ< Δf8
1f !26 69 - - -
1f !BE6 81 -14% -0.00 +0.01
1f !E6 81 -0% +0.00 -0.01
2f !26 26 - - -
2f !BE6 32 -19% -0.02 +0.05
2f !E6 32 +1% +0.00 -0.01

Table 3.5: Effect of using a cosmology-dependent covariance matrix. 1f (68.3%) and 2f (95.4%)
credible contours are computed using the three likelihoods described in § 3.2.3 (!26, !BE6 and
!E6). The analysis is done twice, using only high significance peaks (S/N > 3) and all the peaks.
We report the figure of merit (FoM); defined as the inverse of the area of the credibility region),
changes in the credibility regions and shifts in their centroid. Introducing a cosmology-dependent
covariance into the j2 term of the Gaussian likelihood has a bigger impact than introducing it in
the determinant term. Also, the effect is bigger when only high peaks are included.

the changes are listed in Table 3.5. The effects are always more important if only high-significance

peaks are included. Introducing a variable covariance in the j2 term of a Gaussian likelihood –

i.e., using !BE6 instead of !26– tightens constraints by 14 − 19% (14 − 32% for high S/N peaks

only). Incorporating it also to the determinant term –i.e., going from !BE6 to !E6– has a more

limited impact of 0 − 1% (13 − 19% for high S/N peaks-only). It would be advisable then to

use a cosmology-dependent covariance for a precise determination of parameter constraints, with

the exception of those cases in which most of the parameter space has been rejected by previous

experiments and only a small region needs to be explored.
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Figure 3.6: Effect on the credibility regions of using a cosmology-dependent covariance. In the
left panels we show the change caused by introducing a variable covariance in the j2 term of a
Gaussian likelihood (!BE6, shaded areas) compared with a constant covariance (!26, lines). On the
right we display the change from using a variable covariance matrix in the determinant term as
well (!E6, shaded areas) compared with !BE6 (lines). The upper panels show the result using only
high-significance (S/N > 3) peaks, while the lower panels show results with all peaks included.
Introducing a variable covariance in the j2 has a larger impact than using it in the determinant
term. Also, the effects are larger when using only high significance peaks (see Table 3.5).
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3.4 Discussion

Given the restricted scope of this paper –to assess the accuracy of the halo-based model CAMELUS

for cosmological inference using WL peaks– our main findings are the differences between its

credible contours and those from N-body simulations.

We identified small discrepancies in peak counts and significantly larger covariances from N-

body data, with a stronger dependence on cosmology. To disentangle the effect of both elements

on parameter inference, we computed "hybrid" likelihoods mixing peak counts from one model

with covariance matrices from the other. Fig. 3.7 shows the resulting 2f credibility regions. Sub-

stituting the covariance for that from CAMELUS data shrinks the N-body contours to a thickness

equivalent to that of CAMELUS. The effect on the credibility region from CAMELUS of using peak

counts from N-body simulations is comparatively less important, suggesting that more accurate

estimation of covariances have the highest potential for improvement. The upper panels of Fig. 3.7

were plotted using only high significance peaks and show even more clearly how differences in the

covariance matrices drive the size and shape of the credible contours.

To understand the origin of the discrepancy in peak-count variance, we compared halo counts

from both models, since there is an established connection between halos and convergence peaks [160].

To identify halos in our N-body simulation we used the Amiga Halo Finder (AHF) [175]. Since

we evolved a single 240 ℎ−1Mpc box per cosmology, we subdivided it into sub-volumes to com-

pute the variance. We split our simulation volume in 33, 43 and 53 equally sized sub-boxes and

scaled the counts to a common reference volume. We ran CAMELUS to generate halo catalogues

corresponding to similar volumes as those of the sub-boxes used for the N-body calculation, and

scaled the counts in the same way. The results are shown in Fig. 3.8 and are in good agreement

with analogous findings for cluster counts [176]. Cumulative halo counts from N-body simula-

tions have a higher sample (cosmic) variance than what would be expected if it were due solely

to shot noise that follows a Poisson distribution. We use [172] for the mean counts in the shot

noise calculation. This is the same halo mass function used in CAMELUS, and we verified that it
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Figure 3.7: Impact of differences in peak counts and covariance matrices on credible contours.
Solid lines are 2f contours from N-body (blue) and CAMELUS (red) data. Magenta lines are
contours computed mixing peak counts from one model with the covariance matrices from the
other. The dashed contours combine N-body covariance matrices with CAMELUS peak counts,
and the dotted contours combine conversely N-body peak counts with CAMELUS covariances.
The upper panels show the results using only S/N > 3 peaks while the lower panels display the
contours obtained including all peaks. On the left we show contours computed using a constant
covariance, !26 and on the right those introducing a variable covariance in the j2 term, !BE6. In
general, contours computed with the same covariance matrices are closer than those calculated
with the same peak counts. The effect is more noticeable for the cases which include only high-
significance peaks, since for these the N-body and CAMELUS contours exhibit a greater difference.
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was in good agreement with the halos extracted from our N-body simulation. The excess sample

variance is caused by LSS clustering halos which increases the correlation of their positions. As

halos become more massive and rarer, shot noise becomes more important and the excess sample

variance diminishes.

CAMELUS places halos randomly, and its halo sample variance is dominated by shot noise

except for the low-mass tail of the halo distribution. Halos are sampled from an analytical mass

function until the total mass in a volume reaches its expected mean value. This condition that

the total mass in halos is fixed links high– and low-mass halo numbers, transferring variance to

the low-mass halo range. Nevertheless, this effect does not translate into larger covariances, since

low-mass halos do not contribute to peak counts. We compared peak counts from CAMELUS using

different minimum halo masses (1010, 1011 and 1012 M�) and found virtually no difference.

Convergence peaks resulting from the projected mass density field, exhibit a similar pattern.

The upper panel of Fig. 3.8 shows the variance in the cumulative peak counts as a function of

their height. Peak counts from N-body data also have a higher sample variance compared to a

Poisson distribution and, as the peak S/N increases, shot noise becomes more important. For

CAMELUS data, sample variance is smaller and is dominated by shot noise. The counts come from

500 3.5 × 3.5 deg2 convergence maps for the fiducial cosmology.

The parallel between halo and peak-count sample variance suggests that modifying the CAMELUS

algorithm to account for halo clustering could enhance its accuracy by yielding larger covariance

matrices that would propagate into looser parameter constraints.

We also found that including low-significance peaks in the analysis improves the predictive

power for N-body simulations, while it does little for CAMELUS. Fig. 3.9 and Table 3.6 show

the effect of adding bins of decreasing significance peaks to the contours’ computation. For N-

body simulations, the impact is particularly important when peaks in the range S/N ∈ [2, 3] are

incorporated, with 2f contours reduced by 25 − 48%. Those moderately low-significance peaks

have been associated with constellations of small halos [159, 160]. These alignments are missing

in the halo catalogs generated with CAMELUS, which constrains cosmology essentially through

68



Figure 3.8: Peak and halo count variance comparison between N-body (blue) and CAMELUS (red).
Upper panel: ratio of the cumulative peak count standard deviation from its value expected for
a Poisson distribution, as a function of peak height. For pure Poisson shot noise, this ratio is
unity (horizontal black dashed line). We find significantly higher sample variance than the results
from CAMELUS, and what would be expected for a Poisson distribution. As the peak height
increases and the peak counts decrease, shot noise starts to dominate. Lower panel: variance of the
cumulative halo number as a function of minimum halo mass. Sample variance is estimated from
different sub-volumes, and scaled to a common reference volume of (250 ℎ−1Mpc)3. Shot noise
is estimated from a Poisson distribution with mean value adopted from a theoretical halo mass
function [172]. N-body cumulative halo counts exhibit a sample variance higher than expected
from a Poisson distribution. Shot noise becomes more important at higher masses, as the halos
become scarcer. CAMELUS is dominated by shot noise.
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# − 1>3H !26 !BE6 !E6
FoM Δ (%) FoM Δ (%) FoM Δ (%)

S/N > 4.0 9 - 11 - 13 -
S/N > 3.5 8 -0 12 -2 14 -4
S/N > 3.0 9 -4 13 -11 15 -9
S/N > 2.0 17 -48 19 -32 20 -25
S/N > 1.0 22 -22 27 -31 27 -27
S/N > 0.0 24 -10 31 -11 30 -10
S/N > −1.0 25 -3 31 -1 31 -1
S/N > − inf 26 -6 32 -3 32 -4
CAMELUS !26 !BE6 !E6

FoM Δ (%) FoM Δ (%) FoM Δ (%)
S/N > 4.0 26 - 27 - 27 -
S/N > 3.5 30 -12 30 -10 30 -10
S/N > 3.0 33 -10 33 -9 34 -9
S/N > 2.0 35 -4 36 -8 36 -8
S/N > 1.0 36 -3 37 -2 37 -2
S/N > 0.0 36 -1 37 -1 37 -1
S/N > −1.0 36 +0 37 -0 38 -0
S/N > − inf 36 -0 38 -0 38 -1

Table 3.6: Impact on the models’ predictive power of the lowest significance peak bin included in
analysis. Figure of merit (FoM) and change in 2f contour area (Δ%) for constant, semi-varying
and variable covariance likelihoods.

high peaks which are caused by high-mass halos.

Our likelihood calculations rely on a precise estimation of the precision matrix, �−1, and the

determination of the credible contours on the interpolation of the likelihood beyond the discrete

set of cosmologies for which we run simulations.

For each cosmology, we estimated the covariance matrices using 500 converge field realizations

recycled from a single N-body calculation by slicing, shifting and rotating the simulated box.

Previous work showed [145] that a single N-body run is sufficient to generate ≈ 104 convergence

maps whose peak counts are statistically independent, and two boxes would be enough to measure

feature means with an accuracy of 50% of the statistical error. Therefore, we decided to use a

single box, which allowed us to maximize the number of cosmologies to sample given our available

computing resources.

70



Figure 3.9: Influence on the credibility region of the lowest significant peaks included in the (!26)
likelihood calculation. Upper panel: for N-body simulations, including peaks with 2.0 < S/N <

3.0 significantly improves the model’s predictive power. Lower panel: for CAMELUS, little or no
improvement in predictive power is found when lower-significance peaks are included.
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Figure 3.10: Effect on CAMELUS credible contours of finite sampling of the cosmological param-
eter space. 2f contours obtained from a fine grid of 7,803 models (black) and interpolated from
our suite of 162 cosmologies (red). The interpolated contour is smaller in the low- and high-Ω<
tails. Thus we excluded from our analyses the greyed-out regions, corresponding to Ω< < 0.160
and Ω< > 0.600.
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Figure 3.11: Effect of cosmological parameter sampling on the N-body credible contours. We draw
1, 000 bootstrap samples from our suite of cosmologies; i.e., we draw samples of 162 elements
with substitution, each having on average 102-103 different cosmologies. Upper panel: !26 2f
contours from the full suite (black) and the 1,000 sub-samples (blue). Darker areas indicate higher
contour concentration. Lower panel: area histogram for the bootstrap samples. Displayed for
reference are the area for the full suite (black dashed line), 90% of this value (grey dashed line)
and 80% (grey dotted line). 81% of the contours fall within 10% of the original area and 99%
within 20%.
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While the inverse of a covariance matrix estimated from data is not unbiased, since the number

of realizations we use (500) is much larger than the dimension of our data vectors (10), the bias

is negligible (≈ 2%). We verified that the results with Gaussian likelihoods after de-biasing the

covariances following [151] were the same as those from using the non-Gaussian form of the

likelihood found in [174].

Interpolation can also introduce errors in the contours. We verified this effect on the CAMELUS

contours by running an additional fine grid of 7,803 cosmologies –described in Fig. 1 of ref. [154]–

, and plotting the contours obtained from these and our original models in Fig. 3.10. The regions

corresponding to low- and high-Ω< values are under-sampled, and as a result the contours in those

regions are underestimated. Therefore, we limited our contour analyses to the interval Ω< ∈

[0.160, 0.600], where the true and the estimated contours agree within 20%.

Since we could not reproduce this analysis for our N-body simulations due to the computational

cost, we generated contours from bootstrap samples of our full simulation set. That is, we sampled

from the 162 cosmologies, with substitution, and drew the resulting contours in Fig. 3.11. Each

sample had an average of 102-103 unique cosmologies in them. As with the analysis of the effect

of sampling on the CAMELUS contour, we found that dropping models almost always results in a

smaller area, and as a result we may be underestimating the errors on the parameters. We expect

that underestimation to be moderate, for 81% of the samples yield areas that lie within 10% of the

area computed with the full sample and 99% of the samples fall within 20%. The highest risk is

missing part of the tail of the credibility region, which occurs in some of the random bootstrap

samplings.

We do not address the question of whether a Gaussian likelihood is an appropriate model for

our data, since the focus of this study is to compare the results from the two models. We will treat it

in future work. For CAMELUS data, the Gaussian approximation yields credible contours in good

agreement with those computed using the actual distribution of peak counts, as can be seen in the

left panel of Fig. 8 in [154].

Other underlying simplifications common to both the N-body and halo-based simulations used
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in this work are the non-inclusion of baryonic effects, the Born and flat sky approximations, and

the omission of any survey effects such as masking, instrument systematics, etc. Baryons have

been shown to increase the amplitude of the WL power spectrum on small scales and to introduce

a small bias in high S/N peaks [177]. The precision requirements and large sky coverage from

future surveys will require the inclusion of these baryonic effects [178], as well as revisiting some

of the approximations used in our models [5].

In future work, new modified ray-tracing simulations using manipulated snapshots from N-

body simulations may clarify the specific sources of discrepancy between N-body and halo-based

models. Possible reasons can be enumerated as follows:

(i) Non-halo contributions, e.g. filaments, walls,

(ii) Halo clustering,

(iii) Non NFW halo profiles, e.g. merging halos, triaxiality, and

(iv) Halo concentration; e.g., broad distribution instead of a deterministic function.

Modifications to a model such as CAMELUS to address points (ii)-(iv) could in principle be

addressed within the halo model framework and would make it even more useful as a fast lensing

emulator by improving its accuracy.

3.5 Conclusions

In this work we compared the outcomes from the fast halo-based algorithm CAMELUS with

those of N-body simulations for a suite of cosmologies spanning a wide range of values in the

{Ω<, f8} plane.

We found larger (by ≈ 30% in area), more significantly tilted (by ≈ 13% in angle) credible con-

tours from N-body data. Importantly, the two models draw their predictive power from a different

types of peaks. While CAMELUS constrains cosmology through high–S/N peaks associated with

massive halos, the N-body data are highly sensitive to lower-S/N peaks.
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The larger thickness and overall area of the N-body credible contours are mostly driven by

the covariances, with peak counts showing a higher variance than expected from pure shot noise.

This suggest that modifying the placement of halos in CAMELUS to account for the correlations in

their locations is a promising way to improve its covariance estimation and accuracy as a WL peak

count emulator.

Using a cosmology-dependent covariance matrix for likelihood estimation improves constraints

by 14 − 20%, and thus will be needed in order to achieve high-precision parameter estimations.

Finally, we have found that optimal sampling of a high-dimensional parameter space with ex-

pensive N-body simulations to define credibility regions with high precision is a topic that requires

further investigation, and a fast simulator like CAMELUS could prove itself particularly valuable

by providing a first estimation of the likelihood.
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Chapter 4: Optimizing simulation parameters for weak lensing analyses

involving non-Gaussian observables

4.1 Introduction

Weak gravitational lensing (WL) enables the mapping of the distribution of dark matter (DM)

in the universe on large scales and as a result is a powerful probe to infer cosmological parameters

such as f8 and Ωm (see comprehensive reviews by, e.g. [4], [179] and [5]). In practice, the

lensing signal can be extracted from statistical measurements of the shapes of background galaxies,

distorted by deflections in the path of light rays as they traverse the vicinity of matter over- and

under-densities.

Upcoming surveys such as DESI [180], LSST [21], Euclid [22], WFIRST-AFTA [24] and

SKA [181], will provide WL data of unprecedented quality and quantity and will require corre-

spondingly accurate and precise models to extract information from these datasets. WL observ-

ables delve into the non-linear regime, which can be forward-modeled by ray-tracing photons

through high-resolution simulated dark matter (DM) density fields [182, 183, 184, 185, 186].

Simulating the large volumes encompassed by future surveys is computationally expensive, es-

pecially when a high-dimensional parameter space needs to be explored. Different ideas to reduce

the cost of forward modeling WL observables have been put forward and tested. These include

using approximate codes to simulate the evolution of the matter density field – for example ICE-

COLA [187], L-PICOLA [188] or FastPM [189]–, analytic or semi-analytic models – for example

CAMELUS [170] and machine learning approaches – for example generative adversarial networks

(GANs; e.g. [190, 110, 111]). While analytic models can predict two-point statistics with suf-

ficient accuracy [191], higher-order statistics which capture non-Gaussian information from the

non-linear regime require a numerical approach [192, 42, 142].
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In this paper we study, within the framework of raytracing N-body simulations, the sensitivity

of the power spectrum (PS) and several non-Gaussian statistics commonly used in WL studies: the

one-point probability density function (PDF), lensing peak counts, and the full set of Minkowski

functionals (MFs) to the two hyper-parameters with the highest impact on the computational cost

of the simulations: (i) the thickness of the lens planes used to construct the past light cones in

raytracing and (ii) the mass resolution of the N-body simulations used to model the underlying

matter density field. Previous studies have already tackled some of these or related aspects. For

instance, [183] verified the effect on the measured PS of the mass resolution of the underlying DM

simulation, the grid size and interpolation method used when raytracing and also studied the con-

tribution of super-sample modes to the PS variance. [192] looked at the effect of the resolution of

the 2D lens planes on the measured convergence power spectrum, and evaluated the non-Gaussian

contribution to its covariance matrix. [184] investigated the effect of mass resolution and comov-

ing distance between lens planes on the convergence power spectrum, skewness and kurtosis. This

work revisits the sensitivity of the measured convergence power spectrum to the mass resolution

and distance between lens planes, and extends the analysis of numerical convergence analyses to

non-Gaussian statistics within the framework of a tomographic WL analysis of a LSST-like survey.

The manuscript is organized as follows. In § 4.2 we describe our simulation pipeline (§ 4.2.1),

how we quantify the impact of the hyper-parameters (§ 4.2.2), and the statistics used to assess that

impact (§ 4.2.4). In § 4.3 we report and discuss the results of the analysis. Finally, we summarize

our conclusions in § 4.4.

4.2 Methods

4.2.1 Simulating convergence maps

Our analysis is based on lensing statistics measured on convergence maps obtained from ray-

tracing dark matter only N-body simulations. Since weak lensing probes large-scale structures in

the non-linear regime, direct simulations offer a way to characterize the WL signal.

The N-body simulations are run using the publicly available Tree-PM code Gadget2 [144],
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which evolves Gaussian initial conditions generated with NGenIC [193]. The initial conditions

are defined by power spectra computed with CAMB [194]. The positions of the particles at dif-

ferent redshifts are used to build past light-cones. The trajectory of a bundle of rays is followed

along past light-cones according to the multi-plane algorithm to generate synthetic convergence

maps. We refer the reader to [143] for a detailed step-by-step description of our pipeline and its

implementation in LensTools, and to [183] for a review of the theoretical basis of the algorithms

used.

All the simulations have the same comoving volume of (240ℎ−1 Mpc)3, phases for the initial

conditions, and underlying cosmology. The cosmological parameters are consistent with [127]:

(�0, Ωm, ΩΛ, Ωb, F0, f8, =s) = (67.7 km s−1Mpc−1, 0.309, 0.691, 0.0486, -1.0, 0.816, 0.967). As

an illustration, we compare the convergence power spectrum measured in our highest-resolution

simulation (10243 DM-only particles, or a particle mass of 1.1×1010 M�), with flat-sky approxima-

tion predictions (see Eq. (4.3)) computed using the halofit model [146, 195], as implemented

in the Core Cosmology Library (CCL; [196]). In data smoothed at 1 arcmin resolution with the

presence of the shape noise levels considered here, the agreement between theory and simulations

stays within 20% for ℓ < 12, 000. In noiseless data, a loss of power in the simulations is notice-

able, especially for sources at low redshift. The worst case corresponds to the bin with sources at

I = 0.5, which shows a 50% loss in power at ℓ ≈ 7, 500. In all cases we measure excess power

at large angular scales relative to the theoretical expectation (up to ≈ 20% for the noiseless case

and ≈ 13% in the presence of shape noise). The reason of this excess is the sample variance in

the matter power spectrum, as low multipoles probe scales that are comparable with the size of

our simulated volume. Since the purpose of this study is the calibration of hyper-parameters, we

are interested in relative changes and the sample variance at large scales should not impact our

conclusions. Furthermore, we are mostly interested in relative changes on small scales, where the

use of non-Gaussian observables is relevant. To perform inference from data, this sample vari-

ance would need to be tackled, for instance, by simulating a larger volume (or many independent

N-body realizations of our simulation volume).
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Figure 4.1: Comparison of convergence power spectra measured in our simulations with 10243

DM particles, to those obtained in semi-analytic calculations using the flat-sky approximation and
halofit. Upper panel: Convergence power spectra. Thick, black lines correspond to simula-
tions, while thin, blue lines correspond to the halofit calculations. Different dashes indicate
different redshift bins for the lensed galaxies. Full lines correspond to results in the presence of
shape noise (see section § 4.2.1 for a description of the shape noise level considered), and partly
transparent lines to the results in the absence of noise. Lower panel: percentage difference be-
tween simulations and halofit, for each redshift bin. As in the upper panel, full lines correspond
to the noisy, and partly transparent lines to the idealized noiseless case.
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For each configuration, a single volume is simulated and reused through random shifts and

rotations to generate as many as O
(
104) pseudo-independent past light-cones [145]. Since each

convergence map covers only 3.5 × 3.5 deg2 on the sky at this redshift, the flat-sky approximation

holds. To account for their intrinsic ellipticity, Gaussian random shape noise is added indepen-

dently at each of the 1024 × 1024 pixels in each convergence map. The standard deviation of this

noise,

fpix =

√
f2
Y

2=g�pix
, (4.1)

depends on the variance of the galaxies’ intrinsic ellipticity (assumed to be fn = 0.35), the solid

area covered by a pixel (�pix = 0.04 arcmin2), and the effective galaxy number density.

We consider an LSST-like survey with a footprint of 20, 000 deg2 and galaxy density distribu-

tion =(I) ∝ I2 exp [−2I] [21]. Because a small number of redshift bins suffices to extract most

of the tomographic information encoded in weak lensing data sets [155], we use five tomographic

bins. In each bin, we assume all lensed galaxies are at a fixed redshift of [0.5, 1.0, 1.5, 2.0, 2.5].

The galaxy densities we consider in each redshift bin are [8.83, 13.25, 11.15, 7.36, 4.26] arcmin−2.

A final smoothing is applied to both noiseless and noisy maps with a Gaussian kernel of

1 arcmin standard deviation. While only results from maps with shape noise are relevant for the

analysis of future survey data, we show also results for smoothed, noiseless convergence maps,

since the effect of different simulation choices are often more discernible in those.

4.2.2 Assessing the impact of hyper-parameters

The accuracy of the forward model as a function of different values of the hyper-parameters

is assessed by comparing the statistics of observables measured over 10,048 convergence maps

simulated for each configuration. As explained in § 4.2.1, for each set of hyper-parameters, all

10,048 maps are generated from a single, recycled, N-body simulation.

We chose a "fiducial" configuration as a reference. The difference between an observable’s

mean for all cases and the fiducial model is compared with a standard error. As standard error, we

consider 3 standard deviations measured on the fiducial model’s maps, scaled to a survey sky area
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of 2 × 104 deg2 (commensurate with LSST’s). This scaled standard deviation represents a lower

bound on the uncertainty expected in future surveys, as it includes only the statistical error from

intrinsic ellipticities. For a review of all sources of error in WL surveys, see for instance [49].

Ultimately, the most relevant metric is how much the lens plane thickness affects the infer-

ence of cosmological parameters. A definite answer to this question requires the calculation of

the credible contours for the parameters of interest. Within the scope of our single-cosmology nu-

merical experiments, we instead look at the reduced j2, which combines differences in the mean

observables with their covariance matrix.

In general, a given observable is a vector s with components corresponding to bins of spherical

harmonic index ℓ for the power spectrum, or ^ thresholds for the other statistics, such as the

one-point PDF, lensing peaks or Minkowski functionals. We compute the j2 statistic for each

configuration, considering the mean of the fiducial model as ground truth:

j2 =
(
s − s 5 83

)) Ĉ−1 (
s − s 5 83

)
, (4.2)

where Ĉ−1 is an unbiased estimator of the precision matrix. We compute (and report) results based

both on the precision matrix estimated at the fiducial model, and the precision matrix estimated at

each specific configuration. We used the prescription from [151] to de-bias the estimator of the

precision matrix. For each observable, we report the j2 per degree of freedom. Furthermore, to

account for the effect of a change in configuration on the covariance matrix, we report two values

of the reduced j2, one based on the covariance matrix for the reference configuration and another

based on the configuration-specific covariance. We consider two configurations as statistically

equivalent when their j2 per degree of freedom, in the presence of noise, is less than or equal to

unity.
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4.2.3 Hyper-parameter configurations

We analyzed different configurations for two hyper-parameters: the thickness of the lensing

planes used in the ray-tracing algorithm, and the mass resolution (number of particles) of the N-

body simulations. For each configuration, we ray-traced 10,048 convergence maps, each of these

maps with an area of 12.25 deg2.

The positions of the DM particles were saved at redshifts that allowed the construction of light-

cones with lens planes at comoving distances of 20 ℎ−1, 40 ℎ−1, 60 ℎ−1 80 ℎ−1, and 120 ℎ−1 Mpc.

Thinner lens planes can potentially capture more accurately the evolution of the matter density field

with redshift. However the number of planes needed to cover a redshift range increases as the plane

thickness decreases, and so do the computational and storage requirements for the simulations. In

particular, the two tasks that account for the largest increase in computation time are the calculation

of the gravitational potential at the planes (solving a 2D Poisson equation in Fourier space) and

the computation of the Jacobian matrix that determines the light ray’s deflections at each point on

the planes [143]. The fiducial case corresponds to a lens plane thickness of 80 ℎ−1 Mpc, a value

that has been typically used in prior work [159, 42, 121], provides 9 independent lens planes per

simulation snapshot (increasing the number of pseudo-independent ^ maps that can be generated

from a single N-body simulation), and is not large enough to show discreteness effects with lensed

galaxies at I = 2 [183].

The minimum angular scale at which cosmological information can be extracted is limited by

the depth of the survey, which determines the number density of galaxies whose shape can be mea-

sured, and the accuracy of the forward models used to predict the signal. Baryonic physics [197]

and intrinsic alignments [198] restrict the accuracy of current models at small scales. Matching

the mass resolution of the underlying N-body simulations to the scales at which the analysis of the

data is reliable saves computational resources.

In our fiducial N-body simulations we used 10243 particles, and we ran additional simu-

lations with 1283, 2563 and 5123 particles, which yield mass resolutions per DM particle of

5.7 × 1012 ℎ−1M�, 7.2 × 1011 ℎ−1M�, 9.0 × 1010 ℎ−1M� and 1.1 × 1010 ℎ−1M�. We note that due
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Task RAM CPU Time Change CPU [%]
Plane thickness
20 ℎ−1Mpc

lens planes 96 GB

82.7 +1450%
40 ℎ−1Mpc 21.3 +300%
60 ℎ−1Mpc 9.3 +75%
80h−1 Mpc 5.3
120 ℎ−1Mpc 2.7 -50%
20 ℎ−1Mpc

Ray tracing 384 GB

1621.3 +407%
40 ℎ−1Mpc 640 +100%
60 ℎ−1Mpc 426.7 +33%
80h−1 Mpc 320
120 ℎ−1Mpc 213.3 -33%
# of particles

1283

N-body

576 GB 736 -99%
2563 576 GB 1408 -98%
5123 576 GB 6144 -94%
10243 9216 GB 103833

Table 4.1: Memory and computational time requirements for main simulation tasks for different
hyper-parameter values. Each CPU time unit is a core hour (representing wall clock time if com-
puted in series). Changes in CPU time are relative to the fiducial run (in bold).

to memory limitations, we increased the number of CPUs allocated to our higher-resolution simu-

lation, resulting in a worse scaling than the one that can be achieved in an optimized setup [193].

Tables 4.1 and 4.2 summarize the computational cost of the main steps involved in our simula-

tion pipeline, and the disk space required for storing the different data products (in practice, not all

need to be saved). Performance benchmarks are based on runs using Intel Knights Landing nodes

from TACC’s Stampede2 supercomputer at the NSF XSEDE facility.

4.2.4 Observables

We analyze the effect of changes in the hyper-parameters used to generate the synthetic data

on the convergence power spectrum and a series of non-Gaussian observables: the one-point prob-

ability density function (PDF), lensing peak counts, and the full set of Minkowski functionals

(MFs).

The power spectrum is the Fourier transform of the two-point correlation function, encodes all
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Snapshot size # of snapshots Total memory Plane size # of planes Total memory
Plane thickness
20 ℎ−1Mpc

28.8 GB

226 792 GB

65 M

8064 524.2 GB
40 ℎ−1Mpc 114 400 GB 2016 131 GB
60 ℎ−1Mpc 77 270 GB 900 58.5 GB
80h−1 Mpc 58 204 GB 504 32.8 GB
120 ℎ−1Mpc 40 141 GB 228 14.8 GB
# of particles

1283 55 M

58

3.2 GB

65 M 504 32.8 GB2563 448 M 26 GB
5123 3.5 GB 204 GB
10243 28.8 GB 1670.4 GB

Table 4.2: Individual plane and snapshot size and the respective total storage requirements for both
intermediate data products. In bold, values for the fiducial configuration.

the information available in a Gaussian random field, and can be accurately predicted from theory

on large angular scales. Therefore, it is commonly used in WL analyses [199, 200]. We measured

it in 20 logarithmic bins between ℓ<8= = 200 and ℓ<0G = 12, 000, extending slightly above the

smoothing scale of 1 arcmin which corresponds to ℓ ≈ 10, 800. The relatively featureless power

spectra can be properly characterized with 20 bins, without yielding a very large data vector when

combining the 5 auto-spectra with the 15 cross-spectra for all 5 redshift bins. Since the synthetic

maps cover a small field of view, we can use the flat-sky approximation to model the expected

power spectrum from measuring the ellipticities of lensed sources at a fixed radial comoving dis-

tance, jB:

%^ (ℓ) =
(

3�2
0

222 Ω<

)2 ∫ jB

0

3j

02 (j)

(
1 − j

jB

)2
%X

(
: =

ℓ

j
; j

)
. (4.3)

Here %X is the (non-linear) matter power spectrum, which depends on the wavenumber : and

evolves with redshift, and �0, Ω< and 2 are the Hubble constant, matter density parameter and

speed of light, respectively. Shape noise contributes white noise with total power of %n = f2
n /=6.

Smoothing with a Gaussian kernel of width fB multiplies the convergence power spectrum by the

beam function 1ℓ = exp
[
−ℓ (ℓ + 1) f2

B

]
.
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The effect that the finite thickness of the lens planes has on the measured convergence power

spectrum can be modelled as convolving the matter density power spectrum with a window func-

tion. Following [201], it suffices to substitute %X in Eq. (4.3) by

%′X (:; j) = Δj
c

∫ :max
‖

0
3: ‖%X (:) sinc2

(
: ‖Δj

2

)
, (4.4)

where : =
√
:2
‖ + :

2
⊥, :⊥ = ℓ/j, sinc(G) = sin G/G, and Δj is the thickness of the lens planes used

to build past light-cones in our simulations.

Changes in the mass resolution of the N-body simulations will also affect the measured ^ power

spectrum. On one hand, the matter power will be suppressed on scales below the simulation reso-

lution. On the other hand, an additional shot-noise component will result from the discreteness of

the simulated matter density field. Both effects can be accounted for as in [184], by smoothing the

matter power spectrum with a Gaussian kernel of with f# and adding a Poisson noise contribution

corresponding to the finite number density =? of simulated particles,

%′′X (:; j) = %X (:; j) exp
(
−f2

# :
2
)
+ 1
=?
. (4.5)

Most scales in our simulated maps probe non-linear structures, and as a result, there is non-

Gaussian information not captured by the convergence power spectrum. To assess the impact of the

different simulation parameters on the non-Gaussian information content of convergence maps, we

analyze the effect on the one-point probability density function, the distribution of lensing peaks,

and the Minkowski functionals.

The convergence PDF has been shown to help break the power spectrum degeneracy in the

Ω< − f8 plane, improving cosmological constraints from the power spectrum alone (e.g. [202,

203]). It has also been used in order to assess the ability of weak lensing measurements to infer

the neutrino masses [204]. We use the binned PDF measured on our (smoothed) simulated maps

within the range [−3f^, 5f^], where f^ is the standard deviation of the maps corresponding to

the highest mass resolution (10243 particles), and the fiducial, 80 ℎ−1 Mpc, lens planes. For each
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redshift bin in the noiseless case, we use f^ = [0.007, 0.014, 0.019, 0.023, 0.027], and for the maps

that include shape noise f^ = [0.034, 0.031, 0.035, 0.043, 0.055]. We compare the measurements

over simulations with the analytic expectation for Gaussian random fields (GRFs) with variance

f2
0 =

∫ ∞

0

ℓ3ℓ

2c
%^ (ℓ) . (4.6)

Lensing peaks are local maxima of the convergence field; their distribution as a function of their

height, ^, was proposed to constrain cosmological parameters [32, 31], and has been used exten-

sively and successfully ever since [47, 48, 53, 52]. We measured peak histograms in 50 linear

bins covering the range ^ ∈ [−0.5, 5.0] in units of the r.m.s. shape noise in each redshift bin.

For the maps smoothed on 1 arcmin scales, the r.m.s. of the shape noise for the redshift bins

[0.5, 1.0, 1.5, 2.0, 2.5] is fn = [0.033, 0.027, 0.030, 0.036, 0.048]. As we did for the PDF, we

compare measurements with the predictions for GRFs with the same convergence power spectrum

as the simulated ^ maps. The analytic expressions for the number of peaks in GRFs was derived

in [205]. We reproduce here the relevant equations for convenience. The number of lensing peaks

in a GRF for a given height a = ^/f0 is given by:

=peaks (a) =
1

(2c)3/2 \2
exp

(
−a

2

2

)
� (W, Wa) , (4.7)

where \ =
√

2f1/f2 and W = f2
1 /(f0f2) depend on the moments of the convergence power

spectrum

f2
?

∫ ∞

0

ℓ3ℓ

2c
ℓ2?%^ (ℓ) (4.8)

87



and

� (W, G) =
(
G2 − W2

) 1 −
1
2

erfc
©«

G√
2
(
1 − W2) ª®®¬

 +
G

(
1 − W2

) exp
(
− G2

2(1−W2)
)

√
2c

(
1 − W2) +

exp
(
− G2

3−2W2

)
√

3 − 2W2

1 −
1
2

erfc
©«

G√
2
(
1 − W2) (

3 − 2W2) ª®®¬
 . (4.9)

Finally, the three Minkowski functionals that can be defined in a two-dimensional random field,

{+0, +1, +2}, measure the area, length, and genus of the subset of points in the random field whose

value exceeds a given threshold [150, 206]. While +0 conveys the same information as the PDF,

we include it in our measurements for completeness. They have been extensively used to measure

or extract non-Gaussian information from cosmological datasets, including weak lensing [40, 42,

49, 207, 44].

We measured the three MFs in 28 linear bins covering the range ^ ∈ [−2, 5] in units of the

r.m.s. shape noise for each redshift bin, and compared it with analytical predictions for GRFs. The

MFs of two-dimensional GRFs are determined by the moments of their power spectrum, and their

expression as a function of a can be found in [208]:

+0 (a) =
1
2

erfc
(
a
√

2

)
(4.10)

+1 (a) =
1

8
√

2
f1
f0

exp
(
−a

2

2

)
(4.11)

+2 (a) =
1

(2c)3/2

(
f1√
2f0

)2
a exp

(
−a

2

2

)
. (4.12)

While a perturbative expansion has been found for MFs for non-Gaussian random fields [40],

they have been shown to converge too slowly at the relevant ∼arcmin smoothing scales [42], so we
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do not investigate them here.

4.3 Results and discussion

We discuss the effect on lensing statistics of the comoving distance between lens planes (plane

thickness) in § 4.3.1 and mass resolution in § 4.3.2.

4.3.1 Lens plane thickness

We show the mean percentage difference in the power spectrum for noiseless and noisy conver-

gence maps for different lens plane thicknesses (or comoving distance between lens planes) relative

to the fiducial case of 80 ℎ−1 Mpc in Figure 4.2. For each plane thickness, the power spectrum is

measured and averaged over 10,048 convergence maps. For clarity, we do not display the results

for the 10 cross-spectra between redshift bins, but the conclusions are not altered. The gray band

in each panel represents a standard error corresponding to 3 times the standard deviation measured

over the fiducial maps, scaled to a 2 × 104 deg2 LSST-like survey. This does not incorporate the

effect of off-diagonal terms in the covariance matrix, which are fully utilized (including auto and

cross spectra) in the j2 statistic described in § 4.2.2 to assess the significance of the differences

between each configuration and the fiducial case.

The effect of the finite width of lens planes, measured on the simulations, matches well the

expectation from the model described in [201], in which the matter power spectrum is convolved

with the window function corresponding to a spherical lens shell. Since the differences between

the fiducial and the 60 ℎ−1 Mpc case are in general sub-percent level, they fall in the linear range

of the y-scale and appear to be larger than those for other cases, but they are not. As the lens

planes cut structures, there is an appreciable loss of power for thin planes throughout the multipole

range considered in this study. The presence of shape noise renders those differences statistically

insignificant for the range of thicknesses 60 ℎ−1 − 120 ℎ−1 Mpc (see Table 4.3).

The effect on the PDF is shown in Figure 4.3, where the PDF change measured from maps built

using different lens plane thicknesses is plotted (thick lines) together with predictions for Gaussian
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Figure 4.2: Effect of lens plane thickness on convergence power spectra. Each column shows, for
a different redshift bin, the percentage difference in the mean auto power spectrum measured over
10,048 convergence maps for a given thickness of the lens planes, relative to the fiducial value
of 80 ℎ−1 Mpc. The top row corresponds to noiseless data, and the bottom row to data in the
presence of shape noise (in all cases, maps were smoothed at 1 arcmin resolution). Thick lines
represent measurements over simulated maps, while thin lines represent theoretical predictions
following [201]. For comparison, a standard error is shown in shaded gray, corresponding to 3
standard deviations of the measurements in the fiducial case, scaled to a 2 × 104 deg2 survey.
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Figure 4.3: Same as Figure 4.2 for the one-point ^ probability density function (PDF). Thick lines
correspond to measurements over simulated data, thin lines to predictions for Gaussian random
fields with the same power spectrum as the simulated maps.

random fields (thin lines). The GRFs have the same power spectrum as the simulated ^ maps. The

overall impact on the GRFs is straightforward: the loss in power translates into a smaller variance

for the random field (see Eq. (4.2.4)). As a result we would expect, for planes thinner than the

fiducial, a suppression in the tails of the PDF compensated by an enhancement near the peak of

the PDF (and the opposite for a the case with thicker lens planes). Qualitatively, the measurements

in the presence of shape noise follow that trend, which is to be expected since the shape noise

model considered is Gaussian. In the limit of noiseless data, while there is still some qualitative

agreement, the quantitative differences with the GRF model are evident.

From a practical perspective, lens planes whose thickness lays in the range of 60 − 120 ℎ−1

Mpc yield convergence maps with statistically indistinguishable PDFs, even in the absence of

shape noise (see Table 4.3.1).

The sensitivity of the distribution of lensing peak counts to the width of the lens planes used

during raytracing is shown in Figure 4.4. For noiseless data, lens planes thinner than 60 ℎ−1 Mpc
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Figure 4.4: Same as Figure 4.2 for the lensing peak distribution. Thick lines correspond to mea-
surements over simulated data, thin lines to predictions for Gaussian random fields with the same
power spectrum as the simulated maps.

overproduce low-significance peaks while underproducing higher-significance ones. Table 4.3

shows how the results from using lens planes within the range 60 − 120 ℎ−1 Mpc are statisti-

cally indistinguishable. The addition of shape noise reduces the differences further, to the point

where using thinner planes, at 40 ℎ−1 Mpc, could be safe. As seen from the power spectrum, there

is not a strong case to move from the fiducial thickness of 80 ℎ−1 Mpc.

As for the PDF, the changes in the lensing peak counts in ^ maps are qualitatively similar to

those in GRFs with the same power spectrum, but there are quantitative differences. The effect

is also similar to the one seen for the PDF, and can be understood intuitively: thicker lens planes

provide more power on larger scales that modulates the heights of local maxima, increasing the

variance of their distribution (and conversely for thinner planes).

Past studies have found that the use of the Born approximation, in which the convergence is di-

rectly estimated weighting the projected matter density, can induce a significant bias to predictions

of non-Gaussian observables such as the skewness and kurtosis [142]. Since in the limit of very
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thick planes, the multi-plane ray-tracing algorithm is similar to the Born approximation (except for

the lack of redshift evolution in the matter density field within each plane), any attempt to predict

peak histograms beyond the range of thickness explored in this study, would need to be validated.

The effect of lens plane thickness on the MFs is different for each functional (see Figure 4.5).

As expected, shape noise "gaussianizes" the convergence field and as a result measured differences

follow qualitatively the predictions for GRFs. This is not the case in the limit of noiseless data.

The ^ field is less sensitive to changes in the plane thickness than what would be expected for

GRFs, especially +1. For +2, the region of ^ ≈ 0, where the functional changes sign, yields noisy

measurements.

In terms of j2 (Table 4.3), the MFs are more demanding than other non-Gaussian observables.

While in the presence of shape noise, lens planes in the range of 60− 120 ℎ−1 Mpc yield measure-

ments that are statistically equivalent, that is not the case anymore in the limit of noiseless data for

+1 and +2.

As explained in § 4.2.2, the reduced j2 allows us to assess the impact on inference, of the dif-

ferences in the measured statistics from synthetic maps generated with different hyper-parameters.

Changes in the covariance matrix are taken into consideration when computing j2. We use either

the covariance matrix from maps in the reference configuration, or an alternative covariance from

maps recomputed after changing the thickness of the lens planes. In both cases, we use the full

covariance to compute j2, including, for instance, the 10 cross power spectra not shown in Fig-

ure 4.2. As an illustration, we display the full covariance matrix for the power spectrum measured

on noisy maps in Figure 4.6.

The effect of lens planes in the covariance is small (for example, less than 20% for the dom-

inant, diagonal elements for the power spectrum). As a result, the conclusions are the same re-

gardless of which covariance is used. Also, [191] have analyzed the impact of non-Gaussian

contributions to the lensing power spectrum covariance on parameter inference. They find that

mean changes in the covariance matrix of ≈ 20% translate to ≤ 5% changes in the parameter

uncertainties.
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Figure 4.5: Same as Figure 4.2 for the three Minkowski functionals (MFs). Each pair of rows
shows a different MF. The top row of each pair corresponds to noiseless data, and the bottom row
to data in the presence of shape noise (in all cases, maps were smoothed at 1 arcmin resolution).
Thick lines correspond to measurements over simulated data, thin lines to predictions for Gaussian
random fields with the same power spectrum as the simulated maps.
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Figure 4.6: Covariance matrix measured over 10048 convergence maps generated from our 5123

particle simulation with 80 ℎ−1 Mpc lens planes. The axis labels indicate the redshift bins used. For
example, the slice [(1.0, 1.5),(2.5,2.5)] shows the correlation between the cross power spectrum of
redshift bins IB = 1.0, IB = 1.5 and the auto power spectrum of the redshift bin IB = 2.5.
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Table 4.3 collects the results for the observables under study. With the shape noise levels

considered, lens planes whose thickness is in the range of 60 − 120 ℎ−1 Mpc yield statistically

indistinguishable measurements for all the statistics we have studied, and are therefore safe to use.

For a scheme, like ours, that recycles N-body snapshots to build different past light-cones, there is

a trade-off between a loss in power induced by the lens plane’s window function, and the number

of lens planes that can be built from a single N-body simulation. The fiducial choice of 80 ℎ−1 Mpc

seems reasonable, since it allows to generate as many as a few×104 pseudo-independent conver-

gence maps from a single simulation [145]. In the limit of noiseless data this is not the case

anymore for the power spectrum and MFs. For the power spectrum, the effect of the lens plane

thickness can be incorporated analytically.

These results do not take into consideration the uncertainty in the measured covariance matri-

ces: if they are overestimated, our results could change. Nevertheless, the required errors must

be substantial: the true covariance would need to be overestimated by more than 150% (its true

elements be smaller than 0.4× the elements of the matrix measured on our simulations) for the

Minkowski functionals (the most sensitive statistic to this hyper-parameter) measured on maps

generated with 80 ℎ−1 Mpc lensing planes to be statistically distinguishable from those measured

on maps generated with 120 ℎ−1 Mpc lensing planes.

4.3.2 Mass resolution

Figure 4.7 displays the mean percentage difference in the power spectrum for noiseless and

noisy maps for different mass resolutions, compared to the highest-resolution case. The number

of particles in the four configurations we tested are 1283, 2563, 5123 and 10243. As done in

Figure 4.2 with the sensitivity to the lens plane thickness, a standard error corresponding to 3

standard deviations for the fiducial case is shaded for reference in Figure 4.7.

The main difference between the power spectra is an increase in power on small scales, with

a relative loss of power on intermediate scales, as the mass resolution decreases. Qualitatively,

this behavior matches what is expected from the matter power spectrum: a loss of power at inter-
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Noiseless Noisy
Thickness Model-dependent Fiducial Model-dependent Fiducial

Power spectrum reduced j2

20 ℎ−1Mpc 152.98 (188.31) 98.78 (120.01) 8.23 (11.72) 5.59 (7.95)
40 ℎ−1Mpc 17.33 (16.72) 15.73 (14.74) 0.83 (1.17) 0.74 (1.04)
60 ℎ−1Mpc 6.96 (4.43) 6.91 (4.34) 0.17 (0.23) 0.17 (0.24)
120 ℎ−1Mpc 9.64 (5.25) 8.84 (5.09) 0.16 (0.21) 0.16 (0.22)

PDF reduced j2

20 ℎ−1Mpc 30.67 (40.27) 18.02 (23.69) 10.25 (13.31) 7.50 (9.78)
40 ℎ−1Mpc 3.09 (3.96) 2.51 (3.20) 1.33 (1.66) 1.23 (1.53)
60 ℎ−1Mpc 0.65 (0.72) 0.62 (0.69) 0.41 (0.46) 0.41 (0.44)
120 ℎ−1Mpc 0.48 (0.52) 0.51 (0.54) 0.38 (0.39) 0.39 (0.39)

Peak histogram reduced j2

20 ℎ−1Mpc 14.50 (17.12) 11.33 (13.52) 5.74 (6.34) 4.78 (5.40)
40 ℎ−1Mpc 2.08 (2.41) 1.87 (2.17) 0.97 (1.02) 0.89 (0.95)
60 ℎ−1Mpc 0.61 (0.62) 0.61 (0.60) 0.37 (0.33) 0.36 (0.32)
120 ℎ−1Mpc 0.56 (0.53) 0.56 (0.52) 0.36 (0.37) 0.36 (0.37)

+0 reduced j2

20 ℎ−1Mpc 58.55 (82.06) 32.13 (44.96) 18.16 (25.01) 13.17 (18.27)
40 ℎ−1Mpc 5.38 (7.39) 4.37 (6.01) 2.16 (2.79) 1.95 (2.54)
60 ℎ−1Mpc 0.99 (1.19) 0.97 (1.16) 0.54 (0.58) 0.54 (0.57)
120 ℎ−1Mpc 0.70 (0.81) 0.81 (0.94) 0.39 (0.41) 0.40 (0.41)

+1 reduced j2

20 ℎ−1Mpc 56.34 (78.72) 41.79 (58.42) 19.70 (26.83) 13.89 (19.10)
40 ℎ−1Mpc 6.61 (9.04) 5.78 (7.93) 2.25 (2.93) 2.05 (2.68)
60 ℎ−1Mpc 1.20 (1.47) 1.16 (1.42) 0.60 (0.56) 0.62 (0.57)
120 ℎ−1Mpc 1.87 (2.40) 2.78 (3.66) 0.41 (0.38) 0.41 (0.37)

+2 reduced j2

20 ℎ−1Mpc 46.94 (64.68) 33.04 (45.63) 18.26 (24.98) 13.32 (18.30)
40 ℎ−1Mpc 5.26 (7.00) 4.53 (6.05) 2.13 (2.79) 1.96 (2.57)
60 ℎ−1Mpc 1.11 (1.25) 1.11 (1.23) 0.61 (0.45) 0.62 (0.44)
120 ℎ−1Mpc 1.43 (1.61) 1.67 (1.94) 0.40 (0.32) 0.40 (0.31)

Table 4.3: Goodness of fit for different lens plane thickness configurations, based on the reduced
j2 (i.e. j2 per degree of freedom). Configurations that yield good fits (j2 ≤ 1), implying that
they are indistinguishable from the fiducial case, are highlighted in bold. Power spectrum: values
for a range of ℓ ∈ [200, 12000] and in parenthesis ℓ ∈ [200, 3532]. PDF: values for a range
of ^ ∈ [−3.0, 5.0] in units of the shape noise r.m.s., and in parenthesis ^ ∈ [−3.0, 3.1]. Peak
counts: values for a range of ^ ∈ [−0.5, 5.0] in units of the shape noise r.m.s., and in parenthesis
^ ∈ [−0.5, 4.0]. MFs: values for a range of ^ ∈ [−2.0, 5.0] in units of the shape noise r.m.s., and
in parenthesis ^ ∈ [−2.0, 3.0].
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Figure 4.7: Effect of mass resolution (number of particles in the simulation volume) on the conver-
gence power spectrum. Each column shows, for a different redshift bin, the percentage difference
in the mean auto power spectrum measured over 10,048 convergence maps for a given mass res-
olution of the underlying N-body simulation, relative to the fiducial value of 1.1 × 1010 M� (cor-
responding to 10243 DM particles in the simulation box). The top row corresponds to noiseless
data, and the bottom row to data in the presence of shape noise (in all cases, maps were smoothed
at 1 arcmin resolution). Thick lines represent measurements over simulated maps, while thin lines
represent theoretical predictions following Eq. (4.5). For comparison, a standard error is shown
in shaded gray, corresponding to 3 standard deviations of the measurements in the fiducial case,
scaled to a 2 × 104 deg2 survey.
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mediate scales as the mass resolution decreases (captured by the first term in Eq. (4.5)) followed

by a sharp increase at small scales due to shot noise. Similar effects have been described in past

studies [183, 184]. We cannot fit all the data with the simple model in Eq. (4.5), though. For

example, a smoothing scale of f# = 5% of the average inter-particle separation gives results that

are qualitatively in line with the relative power change when going from 2563 to 10243 particles,

but not for the other resolutions tested. An effect not taken into consideration in that simple model

is that of the softening length on the relaxation time of the simulations. All of our simulations kept

that length constant, and the softening for the lower resolution runs may have been insufficient.

Another effect that can induce a loss in power is the reduction in the linear growth factor due to

the discreteness of the initial conditions, as described in [186]. The presence of shape noise, which

dominates at small scales, mitigates both effects, rendering the measured statistic more forgiving

to the resolution of the underlying N-body simulation.

The effect of mass resolution on the one-point probability density function is not as straightfor-

ward as for the lens plane thickness. The GRF model does not work particularly well for noiseless

data, as can be seen in Figure 4.8. Except for the lowest-resolution simulation, shape noise still

keeps any differences within the standard error of the simulations themselves. In the absence of

noise, 5123 and 10243 particles seem to yield equivalent results.

Lensing peaks are a more robust statistic to the mass resolution (see Figure 4.9), and the config-

urations with 2563 and 5123 particles are statistically indistinguishable from the 10243 fiducial for

both noisy and noiseless data. The model with the lowest mass resolution yields histograms whose

differences from the fiducial case clearly exceed the statistical uncertainty. The difference is more

important for low-significance peaks, which can be induced by the Poisson shot noise present in

the underlying N-body simulation. Shape noise reduces the differences at the low significance tail,

where peaks are noise-dominated. The GRF model for peak counts seems to work better than for

the PDF.

The effect of mass resolution on the measured MFs is diplayed in Figure 4.10. As with the PDF,

a GRF model does not fit as well the impact of changes in mass resolution as it did for changes
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Figure 4.8: Same as Figure 4.7 for the one-point ^ probability density function (PDF). Thick lines
represent measurements over simulated maps, while thin lines represent the expectation for GRFs
with the same power spectrum as the ^ maps.

Figure 4.9: Same as Figure 4.2 for the lensing peak distribution. Thick lines represent measure-
ments over simulated maps, while thin lines represent the expectation for GRFs with the same
power spectrum as the ^ maps.
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in lens plane thickness. This may be partly due to the relatively larger change in power, as well

as the ℓ-dependence of that change. In general, measurements performed on simulations are less

sensitive than what would be expected from GRFs, and their changes remain within errors for most

cases.

Table 4.4 collects the statistical significance of changes in the mass resolution of the N-body

simulations used to build synthetic ^ maps on the observables under study. Most of the consider-

ations discussed in § 4.3.1 about differences in the covariance matrices for the observables apply

here as well. For example, the differences for the power spectrum covariance are modest with

differences in the dominant, diagonal terms, of less than 3% between the covariances for the 2563

and 10243 particle simulations. For analyses in the presence of shape noise levels commensurate

with the ones considered in this study, 2563 particles suffice. If the multipole range is limited to

≈ 3500, even lower resolutions can be used for the power spectrum (or alternatively the same 2563

resolution can be used for negligible levels of shape noise). The non-Gaussian statistics that are

the most sensitive to resolution effects are the MFs.

As with the results for the thickness of the lensing planes, the figures in Table 4.4 do not

incorporate the possible effect of errors in the covariance matrices used in the calculation of j2. In

this case, the Minkowski functionals are also the most sensitive statistic. For their measurements

on the 2563 particles’ simulation to be statistically different than the measurements on the 10243

particles’ maps, the true covariance would need to be overestimated by more than 117%.

4.4 Conclusions

We performed a series of numerical experiments to test the influence of the lens plane thickness

and the mass resolution of ray-traced N-body simulations on commonly used WL statistics: the

convergence power spectrum, the one-point probability density function, lensing peak counts, and

Minkowski functionals. While our simulations cannot be used directly to analyze survey data, they

can serve to guide design choices in studies of non-Gaussian statistics on small scales. They set

some minimal requirements to avoid significant biases in predictions obtained from the application
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Figure 4.10: Same as Figure 4.2 for the three Minkowski functionals (MFs). Each pair of rows
shows a different MF. The top row of each pair corresponds to noiseless data, and the bottom row
to data in the presence of shape noise (in all cases, maps were smoothed at 1 arcmin resolution).
Thick lines correspond to measurements over simulated data, thin lines to predictions for Gaussian
random fields with the same power spectrum as the simulated maps.
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Noiseless Noisy
Particle mass Model-dependent Fiducial Model-dependent Fiducial

(number or particles)
Power spectrum reduced j2

5.7 × 1012 ℎ−1 "� (1283) 11494.43 (25.03) 44822.28 (25.69) 42.44 (0.85) 44.26 (0.85)
7.2 × 1011 ℎ−1 "� (2563) 48.97 (0.63) 50.48 (0.62) 0.17 (0.10) 0.17 (0.10)
9.0 × 1010 ℎ−1 "� (5123) 1.68 (0.05) 1.66 (0.04) 0.03 (0.01) 0.03 (0.01)

PDF reduced j2

5.7 × 1012 ℎ−1 "� (1283) 67.96 (89.38) 289.44 (382.24) 0.72 (0.85) 0.71 (0.83)
7.2 × 1011 ℎ−1 "� (2563) 1.33 (1.66) 0.16 (0.16) 0.16 (0.16) 0.16 (0.16)
9.0 × 1010 ℎ−1 "� (5123) 0.10 (0.06) 0.10 (0.06) 0.05 (0.03) 0.05 (0.04)

Peak histogram reduced j2

5.7 × 1012 ℎ−1 "� (1283) 404.38 (488.55) 426.60 (513.32) 1.44 (1.68) 1.44 (1.68)
7.2 × 1011 ℎ−1 "� (2563) 0.74 (0.84) 0.76 (0.86) 0.24 (0.24) 0.24 (0.24)
9.0 × 1010 ℎ−1 "� (5123) 0.29 (0.31) 0.28 (0.30) 0.07 (0.07) 0.08 (0.07)

+0 reduced j2

5.7 × 1012 ℎ−1 "� (1283) 53.02 (70.59) 89.27 (119.06) 1.47 (1.71) 1.47 (1.70)
7.2 × 1011 ℎ−1 "� (2563) 0.68 (0.76) 0.69 (0.77) 0.16 (0.19) 0.16 (0.20)
9.0 × 1010 ℎ−1 "� (5123) 0.07 (0.05) 0.07 (0.05) 0.02 (0.02) 0.02 (0.02)

+1 reduced j2

5.7 × 1012 ℎ−1 "� (1283) 1273.03 (1691.45) 2103.48 (2796.06) 8.83 (11.26) 8.81 (11.29)
7.2 × 1011 ℎ−1 "� (2563) 15.19 (20.21) 16.15 (21.47) 0.46 (0.58) 0.46 (0.58)
9.0 × 1010 ℎ−1 "� (5123) 0.70 (0.89) 0.69 (0.88) 0.07 (0.08) 0.07 (0.08)

+2 reduced j2

5.7 × 1012 ℎ−1 "� (1283) 5884.23 (7837.70) 13038.65 (17416.22) 4.37 (5.46) 4.40 (5.51)
7.2 × 1011 ℎ−1 "� (2563) 126.88 (168.00) 137.14 (182.01) 0.29 (0.34) 0.29 (0.35)
9.0 × 1010 ℎ−1 "� (5123) 0.84 (1.08) 0.83 (1.07) 0.04 (0.04) 0.04 (0.04)

Table 4.4: Goodness of fit as in Table 4.3, but for different mass resolution configurations. Con-
figurations with j2 ≤ 1, implying that they are indistinguishable from the fiducial case, are high-
lighted in bold. Power spectrum: values for a range of ℓ ∈ [200, 12000] and in parenthesis
ℓ ∈ [200, 3532]. PDF: values for a range of ^ ∈ [−3.0, 5.0] in units of the shape noise r.m.s., and
in parenthesis ^ ∈ [−3.0, 3.1]. Peak counts: values for a range of ^ ∈ [−0.5, 5.0] in units of the
shape noise r.m.s., and in parenthesis ^ ∈ [−0.5, 4.0]. MFs: values for a range of ^ ∈ [−2.0, 5.0]
in units of the shape noise r.m.s., and in parenthesis ^ ∈ [−2.0, 3.0].
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of the multiple lens plane algorithm.

We have found that in the multi-plane ray-tracing algorithm, lens planes in the range 60 −

120 ℎ−1 Mpc are safe to use in analysis of WL data with galaxy densities commensurate with

those in LSST-like surveys. Thinner planes will result in a loss of power across a wide range of

multipoles, that can in principle be accounted for analytically for the power spectrum but not for

non-Gaussian statistics. On the thick-plane end, there are no biases induced in the observables,

and the computational time for raytracing past light cones can be reduced (e.g. by ≈ 33% when

120 ℎ−1 Mpc planes are used instead of 80 ℎ−1 Mpc). However, such a choice implies a larger

number of N-body simulations to generate the same number of pseudo-independent realizations of

the ^ field, increasing the overall computation budget.

In order to analyze WL data sets at angular resolutions of 1 arcmin with LSST levels of shape

noise, simulations with mass resolutions of 7.2 × 1011 "� per DM particle are sufficient (corre-

sponding to 2563 particles in a 240 ℎ−1 Mpc simulation box), even if non-Gaussian statistics are

included in the analysis. Moving, for instance from 5123 to 2563 particles could bring computa-

tional time savings of ≈ 77%.
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Chapter 5: Probing gaseous galactic halos through the rotational kSZ effect

5.1 Introduction

A deeper understanding of galaxy formation and evolution requires comparing the expected

properties of the circumgalactic medium (CGM) with observations. These properties, predicted by

simulations, include the CGM’s density, composition, ionization state, and kinematics, as well as

the evolution of these quantities through cosmic time. For reviews of the CGM and its connection

to galaxy evolution, see, e.g. [209, 210].

Cosmic microwave background (CMB) photons interact with the free electrons in the CGM

plasma, and can therefore probe the CGM’s properties. The kinematic Sunyaev-Zeldovich effect

(kSZ) is the gain/loss of momentum of these photons as they scatter coherently off electrons with

a bulk motion relative to the CMB [211]. The kSZ effect can be used to either learn about the free

electron distribution given some kinematic information, or to infer the CGM’s peculiar velocity

given its free electron density. We refer the reader to [212] for a detailed review of this effect.

The use of mean pairwise statistics enabled the early detection of the kSZ effect induced by the

proper motions of galaxy clusters [213], and the same method has recently been applied success-

fully to galaxies [214, 215]. The kSZ signal due to clusters’ proper motions has also been detected

in stacked data [216, 217] and through high-resolution imaging of individual systems [218]. It has

also been detected in cross-correlation analyses of projected fields [219, 220].

Rotating gaseous halos should imprint an additional, dipole-like temperature pattern in the

CMB at their location. This signal, which we will refer to as rotational kSZ effect (rkSZ, as

in [221]), appears on small angular scales (. 10 arcmin, corresponding to the halo virial radii

'vir), and has been studied in the context of galaxy clusters both analytically [222, 223] and with
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simulations [224]. Recently, a tentative detection has been claimed [221], stacking Planck data 1

on the location of rotating clusters identified in the Sloan Digital Sky Survey (SDSS, 2).

In the near future, high-resolution CMB experiments will allow an extension of these studies

to probe the rotation of the gaseous halos of individual galaxies. While the signal-to-noise for

individual galaxies will remain too low, spin orientations can be estimated for large numbers of

nearby galaxies in forthcoming spectroscopic surveys. Motivated by this prospect, in this paper,

we assess the feasibility of detecting the rkSZ effect via stacking CMB data on many galaxies. At

present, asymmetries in the CMB temperature aligned with the rotation axis of nearby galaxies

have been measured [225, 226, 227, 228], but the origin of these asymmetries is not yet fully

understood (see § 5.6).

Our manuscript is organized as follows. We start with a description of our models for the rkSZ

signal from gaseous galactic halos (§ 5.2). We next describe how to stack CMB data and extract

the rkSZ signal statistically (§ 5.3), and forecast the number of galaxies needed for a 3f detection

for a variety of experimental settings (§ 5.4). We then proceed to apply these techniques to existing

public CMB and galaxy survey data (§ 5.5). In particular, we derive an upper limit on the mean

CMB temperature asymmetry in Planck data, associated with galaxy spins in the spectroscopic

MaNGA survey (Mapping Nearby Galaxies at APO, 3). Finally, we discuss different caveats and

extensions of our analysis and results (§ 5.6) and summarize our main conclusions (§ 5.7).

All calculations assume a flat ΛCDM cosmology with Ω< = 0.316, Ω1 = 0.048, ℎ = 0.675 and

Tcmb = 2.725 K.

5.2 Modeling the rotational kSZ (rkSZ) signal from galaxies

5.2.1 The rkSZ imprint on the CMB

Free electrons moving relative to the Hubble flow induce temperature anisotropies on the CMB

through scattering. This kinetic effect is frequency-independent and cannot be isolated from the

1Planck collaboration:https://www.cosmos.esa.int/web/planck
2Sloan Digital Sky Survey:https://www.sdss.org/
3Mapping Nearby Galaxies at APO:https://www.sdss.org/surveys/manga/
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primordial CMB in the same way as the thermal SZ effect. The kSZ-induced temperature fluctua-

tions depend on the line-of-sight (los) integral of the density as well as the peculiar velocity of the

electrons. Since the CGM is optically thin to photons from the CMB, we can express the relative

change in temperature from free electrons in a galactic halo using the single-scattering limit,

Δ)

)
(®=) = f)

2

∫
;>B

3; =4®E · ®=

=
f)

2

∫
;>B

3; =4 (A) E (') cos q sin 8
(5.1)

where ®= is the unit vector that defines the point on the sky where the CMB temperature is

measured, f) is the Thomson cross section, 2 is the speed of light, =4 is the electron density, and

®E is the velocity of the electrons in the CMB rest frame. The last equality applies to a spherically

symmetric distribution of free electron (A is the distance to the halo’s center), moving along circular

orbits of radius ' with velocity E ('). The azimuth angle is q and the galaxy’s inclination angle

8 (0 deg for a face-on galaxy, 90 deg for edge-on). Fig. 5.3 shows an example of the dipole-like

temperature anisotropy induced by a rotating halo on the CMB.

For simplicity, we do not include the kSZ effect induced by the galaxy’s mean peculiar velocity

in our models, but we discuss its effect on measurements in § 5.6.1 (along with the effect of

uncertainties on model parameters, such as the inclination angle and stellar mass of each galaxy).

5.2.2 Galactic atmospheres: electron density

The first ingredient needed to estimate the rkSZ signal is the electron density, which, for sim-

plicity, we assume to be spherically symmetric, =4 (A).

A simple reference model, which has been used in the study of rotating galaxy clusters, is

one with fully ionized hot gas in hydrostatic equilibrium within the gravitational potential of the

galaxy’s host dark matter (DM) halo [222, 223, 224, 221]. While this model cannot describe

galaxy-sized halos, for which a significant fraction of the gas is in a cold and neutral phase, it

is still useful as an upper limit to the electron number density. We will refer to such a galactic
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atmosphere as “hot".

A more realistic electron density distribution is given by the multi-phase atmospheric model

developed in [229]. We reproduce here its main equations for convenience, and refer the reader

to [229] for more detailed explanations. The difference in the distribution of ionized gas in this

model and the hot upper limit is shown in Fig. 5.1 for three galaxies of different mass.

The starting point for the multi-phase model is the galaxy’s stellar mass, which we assume to be

independent of redshift, that is "★(I) ≈ "★(0). This approximation is justified because we only

work with galaxies in the local universe. For a given "★(0), we find the virial mass of the galaxy’s

host halo, "E (0), using the fit in [230] (see Eqs. A3-A4 in their appendix). We then scale "E (0)

to the halo mass "E (I) at earlier redshift using the relationship, based on #-body simulations,

in [231]:

"E (I) = "E (0) exp
(
−8.2I
�0
E

)
. (5.2)

This assumes an NFW profile [173] for the host DM halos. The mass-dependent NFW halo

concentration parameter at zero redshift, �0
E , is derived from the fit to simulations in [232]:

�0
E = 9

(
"E (0)

1.5 × 1013/ℎ"�

)−0.13
. (5.3)

We define the halo’s virial radius and mass following the equations in [233]. For simplicity, we

further assume that the total baryonic mass inside a halo corresponds to its cosmic mass fraction,

51 = Ω1/Ω<. We relax this assumption, and discuss how lower baryon fractions affect our results,

in § 5.6.1.

The hot atmosphere, used as an upper bound, is fully determined by the DM halo mass and its

baryon fraction (see Eqs. 9-11 in [229]). Defining b ≡ A/AB as the dimensionless radial coordinate

normalized by the halo’s scale radius AB ≡ 'vir/�0
E , the free electron density profile for the hot

atmosphere, =ℎ4 (b), is given by:
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=ℎ4 (b) =
d0

`4<?

(
b + 3

4

)
(b + 1)2

, (5.4)

d0 =
51"E

4cA3
B6(�E)

, (5.5)

6(G) ≡ 9 ln
(
1 + 4

3
G

)
− 8 ln (1 + G) − 4G

1 + G . (5.6)

We use a mean atomic weight per electron `4 = 1.18 (appropriate for ionized gas with mean

cosmological abundance ratios) and <? is the proton mass.

In galaxy-sized halos, a significant fraction of the baryons cool and condense into a neutral

phase, a part of which form stars. The cooling time of the gas depends on its density, temperature,

and cooling rate, Λ. For a halo whose time since its formation is C 5 , the electron density above

which hot gas has had time to cool is:

=24 =
3`4:1)

2`8C 5Λ(), /6)
, (5.7)

where :1 is the Boltzmann constant, ) is the temperature corresponding to the halo’s maximum

circular velocity, and /6 the metallicity of the gas. The halo’s formation time is the lookback time

to the redshift at which it has accreted half its mass. We adopt the cooling function parametrized

in Appendix A of [229] for a metallicity of /6 = 0.3 Z�.

The density in the outer regions of massive halos is below =24, gas hasn’t had time to cool, and

the free electron density is given by Eq. 5.4. In the inner regions, the density exceeds =24 and most

gas cools into a neutral phase. The transition between the two regimes takes place at the cooling

radius. In the inner regions, there will still be some residual hot gas. We will refer to the ionized

component of galactic atmospheres as “coronae". Assuming the hot corona reaches hydrostatic

equilibrium adiabatically and its density at the cooling radius matches the cooling density, its free
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Figure 5.1: Density profiles for the ionized gas for fully ionized galactic atmospheres (“hot", in
red) and multi-phase atmospheres (“multi-phase", in blue) as a function of distance to the center in
virial radii units for galaxies of three different stellar masses. The gas metallicity is /6 = 0.3 Z�
and the DM density profile of the host halo is shown in black for reference. The halos’ virial
masses are {1.2 × 1011, 3.4 × 1011, 3.3 × 1012}"�, their virial radii {69, 98, 215} kpc, and their
concentrations {17.3, 15.0, 11.0}, respectively.

electron density is given by:

=ℎ24 (b) = =24
[
]1 + 3.7

b
ln (1 + b) − 3.7

b2
ln (1 + b2)

]3/2
, (5.8)

where b2 is the dimensionless cooling radius. We will refer to this, more realistic, galactic atmo-

sphere model as “multi-phase".

5.2.3 Galactic atmosphere: kinematics

The second ingredient needed is the velocity field of the free electrons. As for the free electron

density, we consider two models: an upper bound and a more realistic rotational velocity. In both

cases, we assume the velocity field has cylindrical symmetry.

The upper bound model presumes baryons rotate at the host halo’s circular velocity, which
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can be expressed as a function of the cylindrical radial coordinate normalized by the halo’s scale

radius, r:

E2 (r) =

√
4c�A2

B

[
ln (1 + r) − r(1 + r)−1

]
r

. (5.9)

The angular momentum of galaxies and their halos is typically expressed in terms of the ratio

between the system’s angular velocity and the one corresponding to full rotational support, or spin

parameter, _. While for DM halos _ is generally small (_ ≈ 0.05, see [234]), for gas it can reach

order unity when it collapses towards the halo’s center as it cools and is observed in disk galaxies.

We refer to a model with _ = 1, whose circular velocity is given by Eq. 5.9 as “fast", or a “fast

rotator".

We also consider a more realistic model with _ < 1, and define its velocity field as a fraction

of the circular velocity: E(r) = 5 (r, "E)E2 (r). This fraction depends on the halo’s mass and the

distance to its center. We use measurements of the tangential velocity of hot gas in hydrodynamical

simulations (see Fig. 3 in [235]) to determine 5 . For low-mass halos (. 1013 "�), this velocity

drops from ≈ 75% of the virial velocity (defined as the circular velocity at the virial radius) in the

inner regions to ≈ 10% at the virial radius. For high-mass halos (& 1013 "�), the ratio of velocities

remains roughly constant at ≈ 10%. Instead of the virial velocity, we use the circular velocity as a

normalization, to avoid _ > 1 in the halos’ innermost regions. We use as a fitting formula:

5 = min
{
< log

'

'vir
+ 0.1, 1

}
, (5.10)

< = −6.0 × 10−6 (log"E)2 + 3.2 × 10−1 log"E − 4.4. (5.11)

The resulting velocity profile, which we will refer to as “slow", is shown in Fig 5.2, for three

different halo masses, together with the alternative, "fast" profiles. As the figure shows, the "slow"

profiles are much less sensitive to the halo’s mass. The velocities derived from the slow model are

in agreement with those predicted for Milky Way and M31 analogs (see [236]).
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Figure 5.2: Radial profiles of the tangential gas velocity for a fast rotator (in red, rotating at the
halo’s circular velocity) and a slow rotator (in blue, rotating at a velocity consistent with simula-
tions [235]) for galaxies of three different stellar masses.

5.3 Characterizing the observed rkSZ signal

Detecting the dipole-like kSZ signal induced by the rotation of galactic halos is challenging,

compared to that from galaxy clusters. The signal is diminished by the smaller projected elec-

tron number density (due to smaller halos), the lower ionization fraction (due to some of the gas

cooling and recombining), and smaller angular size on the sky (the beam width for a given CMB

experiment will smooth the signal). Stacking the signal from many galaxies is then a necessity.

Different spatial filters can be used to extract the signal from the noise in the stacked data.

In this study, we consider two filters: an aperture filter that measures the temperature asymmetry

between its right and left halves, and a matched filter designed based on the profile of the expected

signal. We next discuss these filters, as well as the expected noise levels and resulting signal-to-

noise ratios in both cases.
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Figure 5.3: Upper panel: 2D map of the expected fractional temperature change induced in the
CMB by the rotation of a "∗ = 1010 "� galaxy hosted by a 3.4 × 1011 "� DM halo with a virial
radius of 98.1 kpc and a concentration parameter of �E = 15.0 at a redshift of I = 0.03, assuming
the multi-phase slow model. The galaxy’s inclination is 1 rad and the signal has been convolved
with a 5 arcmin FWHM beam (represented by the small dotted circles at the center), while the halo
virial radius has an apparent size of 5.2 arcmin. Lower panel: cut along the X-axis of the dipole-
like signal in the upper panel, for galaxies of three different stellar masses. The predictions in the
hot+fast model (fully ionized atmosphere rotating at the halo’s circular velocity) are shown in red,
and the multi-phase, slow model are shown in blue. The signal was calculated for a metallicity
of /6 = 0.3 Z�, and shown in absolute value. The profile of the convolving beam is displayed in
black.

113



5.3.1 Aperture filter

An aperture filter that measures the temperature difference between its two halves can be used

to measure a rkSZ signal, as long as it is centered on the galaxies’ and its halves aligned with the

galaxies’ projected spin vector. A simple statistic is the mean temperature on the right minus the

left half of the filter (or dipole):

B ≡ Δ)' − Δ) ! . (5.12)

In the absence of a rkSZ effect, we expect this statistic to average to zero. It is a robust statistic,

in the sense that it is sensitive to any CMB temperature asymmetry relative to the galaxies’ pro-

jected spin vectors, regardless of the specific shape of the asymmetry. It is also insensitive to any

symmetric (on average) signal induced by the halos, such as the thermal SZ effect (tSZ) or the kSZ

effect due to the galaxies’ peculiar velocities.

Even in the absence of any kSZ effect, a dipole may arise due to random anisotropies in the

CMB within the aperture filter. While the mean dipole due to the CMB’s random fluctuations is

zero (〈B〉cmb = 0), its variance is not, and should be accounted for as noise. The variance is sourced

by both CMB temperature anisotropies and by instrumental noise. Combining both contributions

in a single angular power spectrum �ℓ = �cmb
ℓ
+ �noise

ℓ
, the variance of B can be computed as

(see [237] and Appendix D):
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The aperture filter is defined by its window function, (G, H) in a coordinate system in which the

galaxies’ spin is aligned with the H-axis. The covariance between the mean temperatures measured

over the two halves of the window function by an instrument whose beam profile in Fourier space,

or beam function, is 1ℓ, can be estimated by

〈
Δ)

'
Δ)

!
〉
=

∫
d2ℓ

(2c)2
12
ℓ�ℓ,̃

∗
! (ℓ),̃' (ℓ), (5.14)
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where ,̃∗ is the Fourier transform of, (G, H). The variance in each of the two halves follows from

the analogous expressions, but with |,̃! |2 or |,̃' |2 in the integrand. The window function for the

aperture filter is semi-analytic in Fourier space (see Eq.D.3).

5.3.2 Matched filter

The aperture filter described in § 5.3.1 is robust, but not optimal, since not all the information

encoded in the shape of the signal is used. The optimal approach would be to use a matched filter

(see, for example, [238]). For each galaxy, the optimal filter is essentially the expected rkSZ signal

pattern, with the different angular scales weighted by the expected noise (CMB anisotropies and

instrumental noise). In Fourier space,

M̃F(ℓ) = 1∫
d2ℓ

���Δ̃) :(/ (ℓ)���2
�ℓ

Δ̃)
∗
:(/ (ℓ)
�ℓ

. (5.15)

For each galaxy, this filter can be applied to the corresponding CMB data, and the result stacked

for all galaxies in the survey. The expected signal will make itself apparent as a high peak at the

center of the stack. In the absence of any signal, the filtered data will yield pure noise. The height

of the central peak relative to the standard deviation in the absence of signal can be used as an

estimate for the signal-to-noise ratio (SNR) of the detection via this approach.

Note that additionally, a matched filter is optimal only if the model used for its design corre-

sponds to the true signal in the data. Also, contrary to the aperture filter, the matched filter is not

insensitive to potential isotropic signals induced by galactic halos, such as the tSZ effect or kSZ

effect induced by peculiar velocities (see § 5.6.1).

5.4 Measurement signal-to-noise and required number of galaxies

In order to coherently stack CMB data for each galaxy, without nulling their rkSZ signal,

we need to align the CMB data with each galaxy’s projected spin angle. These angles can be

measured, for instance, from spatially-resolved spectroscopic data. Integral field spectroscopy
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enables the efficient acquisition of such data for thousands of galaxies. Examples of recent and

ongoing surveys include MaNGA 4 and SAMI 5.

To assess the viability of measuring the stacked rkSZ signal, we estimated the number of galax-

ies needed for a 3f detection.

We considered galaxy surveys with the same redshift and stellar-mass distributions as MaNGA

(specifically its "primary" sample, see § 5.5.1) and SAMI. We divided each survey’s range of

redshift and stellar mass in a 40 × 40 grid, resulting in 235 non-empty bins for MaNGA and 358

for SAMI, shown in Figure 5.4. The expected signal, B8, and noise, f8, contributed by each bin is

estimated from the mean redshift 〈I8〉 and stellar mass, 〈"★8〉 of galaxies in each bin, for simplicity.

Assuming galaxies are randomly oriented, the probability density function of their inclination

angle 8 is ?(8) = sin 8, and the mean inclination is 〈8〉 = 1 rad, which is the value we adopted for all

bins. The SNR for the full survey is a weighted average of the signal and noise in each bin:

SNR =
√
#gal

∑#bin
8=1 F8 58B8√∑#bin
8=1 F

2
8
58f

2
8

≡
√
#galSNR1. (5.16)

Here #gal is the total number of galaxies in the survey, distributed among #bin bins, each with

a fraction of the total 58, and SNR1 is the equivalent single-galaxy SNR, which depends on the

average properties of the survey’s galaxies. After some algebra, it can be shown that the weights

that maximize the survey’s SNR are F8 = B8/f2
8

.

Future high-resolution CMB experiments will be able to resolve the halos of nearby galaxies.

For relatively large scales (ℓ < 103), primordial CMB fluctuations are the dominant source of

noise. At smaller scales, we also consider instrumental noise for the five different experimental

configurations listed in Table 5.1. Each experiment is characterized by its beam’s FWHM and its

instrumental noise, which is defined by a white, ℓ-independent power spectrum [239].

The first configuration in Table 5.1 corresponds to Planck (we use as a reference its 217 GHz

4Mapping Nearby Galaxies at APO:https://www.sdss.org/surveys/manga/
5Sydney-Australian-Astronomical-Observatory Multi-object Integral-Field Spectrograph: https:

//sami-survey.org/
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Figure 5.4: The distribution of galaxies in redshift and stellar mass, in the two prototype surveys
considered to assess the feasibility of detecting the kSZ signal induced by the rotation of galactic
halos. The top panel corresponds to the primary sample in MaNGA, and the lower panel to SAMI.
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FWHM Δ)noise
Experiment [arcmin] [` arcmin]
Planck 5.00 45.6
ACT 1.40 15.0
Simons 1.40 6.0
CMB-S4 1.40 1.0
CMB-HD 0.25 0.5

Table 5.1: Instrumental configurations considered for different existing and planned CMB experi-
ments, defined in each case by the beam’s FWHM and the rms noise level.

channel, whose frequency is close to the one at which the tSZ is null). The second is the 148 GHz

channel from ACT (the Atacama Cosmology Telescope 6), the third is the “Goal" target for the

145 GHz channel of the Simons observatory (Simons observatory 7), the fourth is a possible

high-frequency channel of a CMB stage 4 experiment (CMB-S4 8) and the fifth a potential high-

resolution future CMB experiment, (CMB-HD [240]).

For illustration, in Figure 5.5 we show a comparison of the power spectrum of the intrinsic

temperature anisotropies of the CMB (computed with CAMB [194]) and of the instrumental noise

for all five configurations.

Also shown in the figure, for reference, is the power spectrum of the rkSZ signal, |Δ):(/ (ℓ) |2,

for galaxies with three different stellar masses (defined simply as the 2D Fourier transform of the

signal in Eq. 5.1 and shown in Fig. 5.3). The labels on the H axis on the left correspond to the CMB

and the instrumental noise, and on the right to the kSZ signal. The large difference in magnitudes

is indicative of the large number of galaxies that will need to be stacked to required to separate the

signal from the noise.

We used the two filters described in § 5.3 to compute the signal and the noise contributed by

each galaxy bin. The measured signal results from applying the filters to the expected theoretical

kSZ signal from the two models detailed in § 5.2: a hot, fast-rotating and a multi-phase, slow-

rotating galactic atmosphere. The signal for the aperture filter is the magnitude of the measured

temperature dipole, given in Eq. 5.12, whereas for the matched filter, it is the height of the central

6Atacama Cosmology Telescope:https://act.princeton.edu/
7Simons Observatory:https://simonsobservatory.org/
8CMB-S4:https://cmb-s4.org/
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Figure 5.5: Comparison between the power spectrum of CMB temperature anisotropies, including
instrumental noise which dominates at ℓ & few×103, and that for the expected rkSZ signal for
three galaxies of different stellar mass (the same galaxies used in Figs. 5.1-5.3). The scale on the
left y-axis refers to the CMB+noise and the scale on the right to the kSZ power spectra. Note that
the rkSZ power is several orders of magnitude lower than that from the combination of CMB +
instrumental noise.
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peak of its convolution with the expected theoretical signal, as discussed in § 5.3.2.

The noise level for the aperture filter is computed directly from Eq. (5.13), using the numerical

�ℓ that includes both the primary CMB and the instrumental noise (shown in Fig. 5.5). For the

matched filter, in each redshift and stellar-mass bin 8, we created 100 independent realizations of

synthetic noise-only CMB maps. Each synthetic noise map is generated from a Gaussian random

field, defined again by the combined power spectrum of the CMB and the experiment’s instrumen-

tal noise. Each map is then convolved with the matched filter for the mean redshift 〈I8〉 and stellar

mass, 〈"★8〉 in that bin and yields a peak height in real space; the noise is computed as the standard

deviation of these 100 peak-height values. This exercise yields the signal-to-noise ratio per galaxy

SNR1 in Eq. (5.16), and the number of galaxies #gal required for a 3f detection follows by setting

the total SNR=3 in this equation.

Fig. 5.6 shows the number of galaxies required for a 3f detection using the aperture filter, as

a function of the filter’s size, for the set of CMB experiments under consideration. It assumes a

MaNGA-like survey (the results for a SAMI-like survey are qualitatively the same with slightly

higher number requirements). For a given experiment, the number of galaxies needed decreases

as the size of the aperture filter gets smaller, up to the point where the aperture can resolve the

galaxies’ halos. The resolution of CMB experiments is the main factor that determines their ability

to measure the rkSZ signal, over the level of instrumental noise.

A summary of the number of galaxies needed, for both surveys, is shown for each CMB ex-

periment configuration in Table 5.2. The reference aperture size is 0.1 'vir. As Fig. 5.6 shows,

the number of galaxies required decreases dramatically as the resolution of the CMB experiments

improves. The higher redshift of SAMI galaxies translates into a somewhat larger number of galax-

ies needed for a detection. The table also shows that matched filtering can reduce the number of

galaxies needed, compared with the aperture filter, by a factor of ≈ 2 for Planck, and by more than

an order of magnitude for a CMB Stage 4 experiment. However, this statistic is more sensitive

to modeling errors, filter misplacements, and isotropic signals on the scale of galactic halos (tSZ,

kSZ from peculiar velocities).
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Figure 5.6: Number of galaxies needed for a 3f detection of the rkSZ signal using an aperture
filter, as a function of filter size. Each CMB experiment configuration is displayed in a different
color. The galaxy (I, "★) distribution is assumed to be that of the primary sample of MaNGA.
Solid lines correspond to predictions based on the hot+fast model, while dashed lines are based
on the multi-phase, slow model. For reference, vertical lines represent the CMB experiment beam
size, in units of the average 'vir for the galaxies in the survey.
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MaNGA-like SAMI-like
Hot, fast rotating corona

Planck 6.9e4 | 2.2e4 5.9e4 | 2.7e4
ACT 4.4e2 | 3.5e2 1.6e3 | 1.0e3
Simons 2.8e2 | 6.7e1 1.1e3 | 2.2e2
CMB-S4 2.5e2 | 4.0e0 9.4e2 | 1.4e1
CMB-HD 6.0e0 | 1.0e0 1.2e1 | 2.0e0

multi-phase, slow rotating corona
Planck 5.3e6 | 1.6e6 7.5e6 | 3.5e6
ACT 4.9e4 | 3.1e4 2.3e5 | 1.4e5
Simons 3.1e4 | 6.1e3 1.4e5 | 2.9e4
CMB-S4 2.7e4 | 4.1e2 1.3e5 | 2.0e3
CMB-HD 1.6e3 | 7.8e1 7.1e3 | 4.0e2

Table 5.2: The number of galaxies required for a 3f detection of a rkSZ signal. For each combi-
nation of CMB experiment and galaxy survey type, the number on the left corresponds to the aper-
ture filter (measured at 0.1 'vir) and the one on the right to matched filtering. The combination of
Planck and a SAMI-like survey, using the aperture filter and adopting the multi-phase slow-rotator
model, yields a required number of galaxies exceeding those available within the stellar-mass and
redshift range of the galaxy survey. This detection is therefore impossible, and is marked in italics
(see § 5.6.3 for discussion).

While the numbers are large for all the cases, future CMB experiments will be able to rule out

most models and may be able to make a detection (see further discussion of the detection feasibility

in § 5.6.3 below).

5.5 Stacking Planck data at the positions of MaNGA galaxies

As a proof-of-concept, we stacked Planck data at the positions of galaxies from the MaNGA

survey. While the number of galaxies is insufficient to make a rkSZ detection, it can yield an upper

limit on the average CMB temperature dipole aligned with galaxies’ spin.

5.5.1 Galaxy data: MaNGA

MaNGA is an integral field survey with the goal to acquire spatially-resolved spectroscopy

from ≈ 10, 000 galaxies [241]. Galaxies were targeted to follow a (roughly) flat distribution with

respect to their stellar mass, along two different sequences [242]. The first, or “Primary" sample,

consists of low-redshift galaxies for which MaNGA’s IFU spectrographs cover ≈ 1.5 times their
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half-light radius, '4. The second, or “Secondary" sample, is comprised of higher-redshift galaxies,

for which MaNGA’s spatial coverage increases to ≈ 2.5 '4. A third sample, the “Color-enhanced

supplement", increases the survey’s galaxy count in areas of the Primary sample’s color-magnitude

diagram that are otherwise poorly sampled. Galaxies in the Primary sample contribute the most to

the overall SNR of the stacked kSZ signal, because its galaxies have larger apparent size on the

sky (for a given stellar mass), and therefore their kSZ signal is suppressed less by the CMB beam’s

smoothing.

Among other data products, MaNGA provides, for each observed galaxy, two-dimensional

maps of line-of-sight velocities separately for stars and gas. This kinematic information can be

used to estimate the galaxy’s spin angle projected on the sky, hence the usefulness of this survey

to try to detect any effect (on average) of the galaxies’ rotation.

After applying a series of quality cuts described in Appendix E to MaNGA’s DRPall catalog,

made publicly available as part of SDSS’s data release DR15, our stacking sample consists of 2,664

galaxies: 1,231 are part of the Primary sample, 982 are part of the Secondary sample, and 451 of

the Color-enhanced supplement.

We used additional value-added catalogs to access information about the galaxies in our stack-

ing sample that is not included in the DRPall catalog. The MaNGA Morphology Deep Learning

DR15 catalog supplies information on the galaxies’ morphology. The morphological classification

is performed using an automated model trained and tested on SDSS-DR7 images [243]. The 2,664

galaxies are split by type as follows: 282 are ellipticals, 424 are S0s, 1,953 are spirals, and 5 are

classified as irregulars.

Finally, the Galaxy Environment for MaNGA Value Added Catalog (GEMA-VAC, [244]) pro-

vides environmental information based on the sign of the eigenvalues of the tidal tensor at the

location of each galaxy [245]. In our stacking sample, 1,056 galaxies are in a cluster environment,

1,239 in filaments, 331 in sheets, and 38 in voids.
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5.5.2 CMB data: Planck

We used publicly available CMB maps from Planck [246], specifically the full mission, temper-

ature SMICA-noSZ map and full mission, single-frequency maps from Planck’s high frequency

instrument. The SMICA-noSZ map is a linear combination of multi-frequency CMB maps that

cancels any contribution with the spectrum of the tSZ effect, leaving the kSZ signal, which has

the same spectrum as the CMB, unaffected. It also cleans other foreground signals, based on their

contribution to the variance in the data.

On average, the tSZ signal from galaxy halos should be isotropic. While measurements with

the aperture filter described in § 5.3.1 are insensitive to isotropic signals, measurements based on

a matched filtering could be affected, as we discuss in § 5.6.1. It is therefore preferable to use data

that has already been cleaned from other halo-induced temperature anisotropies, such as the tSZ.

The SMICA-noSZ map has a HEALPix resolution #?8G = 2048 and a spatial angular resolution

of 5 arcmin FWHM. We combined the temperature data with the common temperature confidence

mask before performing any measurement, and verified that our results do not depend on the mask

used.

5.5.3 Stacking

CMB data needs to be aligned with the galaxies’ projected spin angle. Otherwise, any possible

rkSZ signal would be cancelled. We also scaled the Planck data with the angular diameter of each

galaxy’s halo, to add the signal profiles coherently.

Since we are interested in capturing the rotation of ionized gaseous halos, we estimated the

spin angle using the emission line with the shortest wavelength (highest photon energy) for which

MaNGA provides kinematic information: O II. For both of the two lines that form the doublet

(3,727 Å and 3,729 Å, corresponding to temperatures of 3.8×104 K), we computed the momentum
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of their line-of-sight velocity map relative to the galaxy’s position in the catalog:

L =
∑
8

�8v8 × r8 (5.17)

For each spaxel, 8, the line-of-sight velocity, v8, and the flux, �8, are weighted with their inverse

variance before entering the cross-product with the spaxel’s position vector, r8. The projected spin

angle for each line is the angle between L and the North direction. The spin angle for the galaxy

is the average of the spin angle for each of the doublet’s lines.

We confirmed that our results do not depend on the specific line used to estimate the spin angle.

We reached the same results using Ne III, and angles estimated from all emission lines measured

by MaNGA are highly correlated with each other. This is not surprising, since MaNGA probes the

inner regions of halos (up to ≈ 1.5 '4 or ≈ 2.5 '4), where gas kinematics tend to be coherent. One

of the criteria used to select the galaxies used for this analysis was precisely that the spin angle

did not depend strongly on the tracer used to compute it; we rejected galaxies for which the spin

angle estimated from O II differed significantly from the one estimated from HU (see Appendix E).

A visual inspection showed that most of these rejected galaxies have complex kinematics or are

face-on systems that would not contribute to the rkSZ signal.

MaNGA measures the gas kinematics only in the inner regions of galaxies, on average up to

≈ 2% of the galaxies’ virial radius (≈ 5 − 6% in the most highly resolved cases). By compari-

son, the rkSZ signal peaks further out, in the inner halo, at 0.1 − 0.2 'vir (depending on the CMB

experiment’s beam size). This corresponds to an extrapolation by a factor of several in spatial

scale; a key assumption in our analysis is therefore that the galaxies’ gaseous halos at this radius

co-rotates with their inner region where the spin is measured. In a hierarchical formation scenario,

this is not necessarily the case, for outer halos may have built up from contributions with different

angular momenta [247]. Nevertheless, recent measurements on simulations show a strong correla-

tion in the angular momentum of hot gas across most of the virial radius [248]. A non-detection

can then be due to the lack of correlation between the rotations of the inner and outer regions of

gaseous halos. However, in order to significantly suppress the rkSZ signal, the r.m.s. variation in
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the estimated spin angle would have to be large (see § 5.6.2 and Appendix C).

We scaled the CMB data with the angular diameter of each galaxy’s host DM halo. This angle

is fully determined by the galaxies’ redshifts and their stellar masses, both found in MaNGA’s

DRPall catalog. Stellar masses, which are inferred from the galaxies’ Sersic photometry (hence

their ℎ−2 cosmological dependency), were converted to DM halo masses and virial radii (see § 5.2).

Matched filtering requires a template for the expected signal. We built two templates for each

galaxy, based on the hot fast-rotator and multi-phase slow-rotator models described in § 5.2. A pa-

rameter that needs to be derived from the data to generate the templates is the galaxies’ inclination

angle, 8. To do so, we modeled galaxies as oblate spheroids, for which [249]

cos 8 =

√
1
0
− @2

1 − @2 . (5.18)

We used the Sersic axial ratio, 1/0, from the DRPall catalog, and assumed that galaxies have

aspect ratios of @ = 0.15 when seen edge-on. Furthermore, we assigned an inclination of 90◦

to all galaxies whose edge-on probability reported in the morphology catalog exceeds 99%. This

estimation is meaningless for elliptical galaxies.

Another reason why elliptical galaxies are problematic for our stacking analysis is that they

have, in general, small spin parameters. For these reasons, in addition to the stack analysis of the

2,664 galaxies selected from MaNGA’s DRPall catalog, we also performed an analysis restricted

to the 1,953 spiral galaxies in the sample. Furthermore, the environment can affect the properties

of galactic gaseous halos. The kinematics of the outer halos of spiral galaxies in clusters may be

perturbed by close encounters with other cluster members and interactions with the intra-cluster

medium. Thus, we performed a third analysis restricted to spiral galaxies which do not reside in a

cluster environment (field spirals, 1,235 galaxies).

The results of stacking Planck’s CMB data on the positions of these three galaxy samples are

displayed in Fig. 5.7, for the case in which all galaxies are equally weighted. The results of the

analyses do not change when optimal weights based on the expected signal are used. Visually, the
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Figure 5.7: Planck SMICA-noSZ CMB data stacked on the positions of MaNGA galaxies (with
equal weight) after aligning with the galaxies’ spin angles, and scaling to their 'vir. The left panel
shows the results for all 2,664 galaxies in our sample, the central panel for the 1,953 spiral galaxies,
and the right panel for the 1,235 field spiral galaxies. For each galaxy, located at the origin (0,0),
we stacked spin-aligned 8 × 8 'vir patches. The circles correspond to 'vir and the vertical lines
mark the expected galaxy spin direction (pointing towards the -y axis, the right half is approaching
the observer, and the left side receding). Any rotation-induced temperature dipole should show a
left-right cold-hot temperature asymmetry (see Fig. 5.3). In each text box, the measured dipole on
a 1.0 'vir aperture, and its signal-to-noise ratio based on the theoretical noise calculation described
in 5.3.1.

stack corresponding to field spirals (right panel) shows a temperature asymmetry with the correct

sign if it were induced by the rotation of the galaxies (the spin angle points towards the negative Y

axis). Its amplitude —1.02 `K measured on a filter with an aperture of 1.0 'vir— is large compared

with the expected signal —a mere 2.7× 10−2 `K if the hot, fast rotator is a good model—, but still

only 2.14× larger than the expected noise for that aperture. The other two samples (middle and left

panels) appear consistent with noise.

An alternative way to measure the significance of any dipole measured on stacked data is to

draw a large number of measurements on noise-only data, after randomizing the positions and

orientations of the filter. We show the result for 104 such measurements in Fig. 5.8. The noise-

only map on which the measurements were done is the result of stacking the CMB data on the

positions of the galaxies assuming a random orientation of their spins. The measurements follow

a Gaussian distribution, and the measured dipole of 1.02 `K corresponds to a 94.65 percentile, or

a significance of 1.63f. This is lower than the 2.14f significance derived from the theoretical

calculation of the noise for that aperture. While not significant enough to be a detection, the

measured dipole is suggestive enough to raise the question of whether it is real, and if so, what
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Figure 5.8: Probability distribution function (PDF) of the temperature dipole of the SMICA-noSZ
map stacked on the positions of 1,253 field spirals after randomizing their spin angles. The PDF
is inferred from 104 measurements using 1.0 'vir aperture filters that have been randomly placed
and rotated. Superimposed, a Gaussian PDF with the same mean and standard deviation as the 104

measurements, shows good agreement with the data. Dotted vertical lines correspond to 1f, 2f,
and 3f thresholds. The solid vertical line is the measured dipole on the stack with the galaxies’
spins aligned.

could cause such an unexpectedly large signal. To answer that question, we performed the same

analysis on Planck’s single frequency maps (see Fig. 5.9).

In the 100, 143, and 217 GHz data, the stacks look similar to the one from the SMICA-noSZ

map. The significance of the measured dipoles, estimated from 104 measurements on noise-only

stacks (stacks with randomized galaxy spins), is lower than that of the SMICA-noSZ dipole, at

1.42f, 1.80f, and 0.96f, respectively. Higher frequency maps, at 353, 545, and 857 GHz, look

different, with a clear signal coming from within the galaxies’ virial radius, and a small dipole

with of opposite sign to the one measured on the SMICA-noSZ map. The lack of a consistent

dipole across frequencies, and the low significance of the measurements indicate that there is no

real temperature dipole in our data above the noise level. These results are robust to the choice of

CMB mask, size of the CMB patches and their weighting for stacking. Finally, matched filtering,
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Figure 5.9: Single-frequency Planck CMB maps from its high-frequency instrument (HFI),
stacked with equal weights on the positions of the 1,235 field spirals after aligning their spin
angles. Note the difference in units for the two highest-frequency maps: MJy/sr instead of K. As
with Fig. 5.7, the circle represents the average virial radius and the vertical line the spin direction.
The text boxes show the measured dipole, as well as its percentile and S/N ratio. The percentile
and significance have been derived from noise-only stacks.

using the two models for galactic atmospheres described as part of this work, does not uncover a

signal either.

5.6 Discussion

5.6.1 Model and observational uncertainties

The estimates shown in Table 5.2 do not include model uncertainties. The models used to de-

scribe the gaseous component of galactic halos are a simplification. For instance, the density pro-

files are spherically symmetric and the pressure profiles do not account for any rotational support.

For a feasibility study, and given the current uncertainties about the properties of galactic atmo-

spheres, we deem the level of detail of the kSZ models sufficient, and leave for future work the use

of more sophisticated models, such as the self-consistent rotating profiles developed in [250], or

models taken directly from hydrodynamical simulations.
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Two model parameters that could modify significantly the strength of the kSZ signal are the to-

tal mass of baryons in the halo, parametrized by the halo baryon fraction, and the galaxy’s peculiar

velocity. An effect on halo scales that we have not included in our models is the tSZ.

Our models assume that the halo baryon abundance matches the cosmic average, "1 = 51"ℎ ≡

(Ω1/Ω<)"ℎ. In practice, only a small fraction of these baryons are observed in galaxies, which

is known as the missing baryon problem. These baryons could reside in the IGM, and the galactic

halos could, as a result, be baryon-poor relative to the cosmic abundance. A lower baryon fraction

would reduce the electron density in the halo, and therefore its rkSZ signal.

For the limiting case in which all the gas is ionized, the electron density scales linearly with the

baryon fraction through the multiplicative factor of d0 in Eq. (5.4). A baryon fraction of half the

cosmic abundance would reduce electron densities and the kSZ signal by a factor of two and the

number of galaxies needed for a detection would increase by a factor of four. For the more realistic,

multi-phase model, the impact of the overall baryon fraction in the halo is more complex. The

cooling density in Eq. (5.7) is independent of the total baryonic mass of the halo (as long as DM

dominates the gravitational potential and determines the temperature of the hot gas in hydrostatic

equilibrium). The cooling radius depends on the baryon fraction, since it is partly determined by

the initial distribution of hot gas, and it affects the density profile of the hot corona through b2

in Eq. (5.8). As a result, the residual hot corona in the multi-phase model is less sensitive to the

baryon fraction than the gas in the hot model. Physically, in the multi-phase model, the reduction

in the baryons is primarily absorbed by the cold gas, except in the outer regions, where the small

densities contribute little to the SNR of the rkSZ signal.

Fig. 5.10 shows the effect of a reduced baryon fraction on the free electron density. A reduction

in the baryon fraction by a factor of two reduces the electron density in the inner parts of multi-

phase halos only by . 10%. Consequently, the number of galaxies needed for a detection may not

be as sensitive to the baryon fraction in galactic halos may naively be expected.

When estimating the number of galaxies needed for a detection, we also did not take into con-

sideration the galaxies’ peculiar velocities. Their line-of-sight velocity, relative to the Hubble flow,
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Figure 5.10: The figure illustrates the impact of a factor-of-two reduction in the total baryon mass
in the halo relative to the cosmic mean value. The corresponding reduction in the density of the
hot, ionized gas component is shown as a function of radius, in units of the virial radius. Results
are shown for the same three halos as in the previous figures, labelled by the stellar mass of their
central galaxies. In the hot model, where all the baryons are ionized, the gas density scale linearly
with the baryon fraction, independent of mass and radius (shown in red). The hot coronae of the
multi-phase gaseous halos (shown in blue) are less affected, except in the outer regions where
the rkSZ signal contributes little to the SNR. The effect on the multi-phase model decreases with
smaller halo mass.
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can be significant [251] and the induced kSZ effect dominant, compared to the rkSZ. Nevertheless,

since the induced temperature shift is symmetric with respect to the galaxies’ spin axes, the aper-

ture filter is blind to this shift. In the absence of centering errors, matched filters are also insensitive

to a symmetric signal. The reason is that the matched filter has odd parity relative to the spin axis,

and therefore a convolution with a signal that has even parity relative to the same direction leaves

it unchanged (including the height of the central peak). In the presence of centering errors (or

anisotropies of the kSZ signal induced by the peculiar motions), this conclusion no longer holds.

Fortunately, when stacking a large ensemble of galaxies with random peculiar velocities, the effect

should still average out.

The tSZ signal from galactic halos is symmetric relative to their spin axes, like the kSZ from

peculiar motions, but contrary to the peculiar-motion-induced kSZ, its sign is not random. Subse-

quently, in the presence of filter centering errors, its effect on matched filtering will not average

out, and measurements will be affected. The aperture filter is still insensitive to this effect. When

applying matched filtering to CMB data for stacking, either the tSZ signal should be modelled and

incorporated in the analysis, or the CMB data should be cleaned from the tSZ signal. This is the

reason we used the SMICA-noSZ map in § 5.5.

The significance of any future detection should be assessed by considering these factors, to-

gether with any observational uncertainties in the parameters that inform the models, such as spin

angles, stellar masses, scatter in the stellar mass to halo mass relation, etc. Such an analysis is

beyond the scope of the present study but will be warranted if/when a detection is claimed.

5.6.2 Measurement uncertainties

Misplacing the filters used to measure the rkSZ effect relative to the signal is a source of errors,

independently of the model used to interpret the measurements. A filter misplacement can be a

decentering relative to the galaxy, a misalignment of the filter’s axis with the galaxy’s projected

spin vector, or a combination of the two. The average effect of these misplacements (assuming they

are random) can be characterized as a suppression of the measured kSZ signal. If the probability
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distribution of these positioning and alignment errors, n , is given by ?(n), the expectated value of

the dipole measurement is

〈B〉n =
∫ ∞

−∞
dn ?(n)B(n), (5.19)

where B(n) is the signal computed from Eq. 5.12 in the presence of an uncorrected error n . In order

to assess the sensitivity of the aperture dipole statistic to these errors, we assume that position

offsets and misalignment angles are both normally distributed, fully specified by their full-width-

at-half-maximum (FWHM), and zero mean (i.e. no systematic spatial offsets or misalignments).

The sensitivity of the filters to decentering errors depends significantly on the resolution of

the CMB experiment, as detailed in Appendix C. Positioning errors with FWHM=0.2 'vir (∼

1 arcmin), hardly suppress the signal for experiments that barely resolve galactic halos (such as

Planck), and can yield a reduction of up to ∼ 10% for ACT. The aperture filter can be more sensi-

tive than a matched filter, for high-resolution experiments, with a signal suppression of up to 40%

for such a decentering on a CMB-S4 experiment.

The robustness of the aperture and matched filters to misalignments with respect to the true

galaxies’ atmospheres’ spin angle does not depend strongly on the experimental configuration.

Large errors in the spin angle with FWHM=90 deg result in a signal suppression of less than 25%.

5.6.3 Detection feasibility

The number of galaxies required for a 3f detection shown in Table 5.2 raises the question of

how feasible is the measurement of a large number of galactic spins, and whether the rkSZ signal

could be masked by other effects.

Table 5.3 shows the same information as Table 5.2, with number of galaxies converted to an

equivalent survey sky coverage. To do so, we use the double Schechter local galaxy stellar mass

function [252]:

= = q1Γ

(
U1 + 1,

"1
"★

,
"2
"★

)
+ q2Γ

(
U2 + 1,

"1
"★

,
"2
"★

)
, (5.20)
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MaNGA-like SAMI-like
Hot, fast-rotating corona

Planck 497 | 154 369 | 168
ACT 3 | 3 10 | 6
Simons 2 |<1 7 | 1
CMB-S4 2 |<1 6 |<1
CMB-HD <1 |<1 <1 |<1

multi-phase, slow-rotating corona
Planck 38,239 | 11,759 X | 21,717
ACT 352 | 222 1,449 | 869
Simons 219 | 44 896 | 184
CMB-S4 194 | 3 789 | 12
CMB-HD 11 | 1 45 | 3

Table 5.3: Minimum footprint size of surveys required for a 3f detection of a rkSZ signal, in deg2.
This corresponds to the required number of galaxies, shown in Table 5.2, and converted to sky
coverage using the stellar mass function described in § 5.6.3. An "X" indicates that the required
sky area exceeds the full sky. The number on the left corresponds to the requirement using an
aperture filter (measured at 0.1 'vir) and the one on the right to the use of matched filtering.

where Γ is the incomplete gamma function,

Γ(G, 0, 1) =
∫ 1

0

dC exp(−C)CG−1. (5.21)

and the fitted values for the parameters are: q1 = 4.26 × 10−3Mpc−3, U1 = −0.46, q2 = 0.58 ×

10−3Mpc−3, U2 = −1.58 and "★ = 1010.648"�.

For each of the survey bins shown in Figure 5.4, we multiply this galaxy number density by the

corresponding comoving survey volume, taking into consideration the full sky solid angle (4c sr).

The resulting number of available galaxies is 5.76 × 106 for a MaNGA-like survey and 6.58 × 106

for a SAMI-like survey. To have an idea of the depth required, the faintest galaxy in the MaNGA

Primary sample has a magnitude of �=18.68. Upcoming CMB experiments should be capable of

detecting the rkSZ signal with complete surveys of low-redshift galaxies covering a few thousands

of deg2.

In the absence of spectra, the orientation of the projected spin parameter could, in principle,

still be estimated from photometry. From MaNGA data, the position angle of the single-component
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Sersic fit in the A-band is highly correlated with the projected spin angle we estimated using the

O II emission line. We find that the standard deviation of the difference between the photometric

position angle and the O II derived angle is just 9.0◦. However, the morphological direction from

photometry alone leaves the sense of the rotation, which is crucial for attempts to measure the

rkSZ signal, undetermined. On the other hand, the spectroscopic requirement to discern the sense

of the projected spin, given its orientation, will be much less demanding than the ones reached

in recent IFU surveys. Lower-resolution, faster surveys could be envisioned, maybe even narrow-

band imaging, to detect the Doppler asymmetry on the two sides of a galaxy whose orientation is

known.

Future H I surveys will provide additional information on gas kinematics for a large number of

nearby galaxies, extending beyond their stellar component. For example, the WALLABY survey

(Widefield ASKAP L-band Legacy All-sky Blind SurveY, 9) will cover ≈ 31, 000 deg2, up to a

redshift of I < 0.26, and could marginally resolve ≈ 540, 000 galaxies [253]. We expect that such

marginally resolved observations could be used in isolation or combined with photometric sur-

veys to break the spin-orientation uncertainty. Existing H I data has already been used to estimate

galactic spins, showing that they are aligned with cosmic filaments [254].

Even with a number of galaxies’ spin angle measurements sufficient to beat down the instru-

mental noise and the primary CMB anisotropies, alternative signals may mask that from the rkSZ

effect. Two possibilities are the Birkinshaw-Gull effect (BG) and thermal dust emission.

The BG effect [255, 256, 257, 258] induces a temperature dipole, of a magnitude comparable

to that of the rkSZ effect, with a decrease in CMB temperature following the galaxies’ transverse

proper motion (and a temperature increase opposite to the transverse proper motion). Regardless

of the presence of systematic alignments between the directions of galaxies’ spins and their proper

motions —induced, for instance, by filaments [259, 260, 261, 254]—, we don’t expect any sys-

tematic alignment in their sense. Thus, on spin-aligned stacks of large samples of galaxies, any

BG-induced temperature dipole should average to zero.

9Widefield ASKAP L-band Legacy All-sky Blind SurveY:https:https://www.atnf.csiro.au/
research/WALLABY/
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Another possible source of contamination is Doppler shifted thermal emission from dust co-

rotating with the galaxy. There is evidence for the presence of dust in galactic halos [262] and it

could co-rotate with the galaxies. Such a contaminant can be separated, in principle, using multi-

frequency CMB measurements. In the worst-case scenario, dust emission could be used on its own

as a tracer of galactic rotation in those regions within galactic halos where dust is kinematically

coupled to gas. In the Planck’s high frequency stacks (see lower panels of Fig. 5.9), we see what

appears to be an (unresolved) signal which would combine dust emission and tSZ effect from the

field spiral galaxies (see a similar detection at galaxy cluster level in [263]). There is no clear

indication of a Doppler-shifted dipole in these maps either.

The non-detection of a significant temperature dipole around field spirals using Planck data,

puts a 3f upper limit on the average temperature dipole around field spirals of 1.9 `K (measured

on a 1 'vir aperture). In contrast, several studies have measured CMB temperature anisotropies

aligned with the rotation axis of nearby spiral galaxies of a few tens of `K [225, 226, 227, 228].

This discrepancy may be due to the shape of the anisotropy (a highly concentrated temperature

anisotropy can be significantly suppressed when unresolved by the detector’s beam), or may indi-

cate that the nearby spirals with (large) measured temperature anisotropies are not representative

of the MaNGA sample used for our analysis. The magnitude of the CMB temperature asymmetry

measured around nearby galaxies is too large to be caused by the rkSZ, and we refer to [225, 226,

227, 228] for a brief enumeration of possible causes.

5.7 Conclusions

In this paper, we analyzed the feasibility of detecting the kSZ signal from the coherent rotation

of the gaseous halos of galaxies. Such a detection would provide novel insight into the angular

momentum distribution of gas, and more broadly, into galaxy formation. Our analysis is based

on two models for galactic atmospheres: a fully ionized gaseous halo rotating at the DM halo’s

circular velocity, which can be considered an upper bound, and a more realistic model consisting

of a multi-phase gaseous halo rotating at a fraction of the DM halo’s circular velocity. As a proof-
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of-concept, we stacked public Planck CMB data on the positions of ≈ 2, 000 MaNGA galaxies

after aligning these data with the galaxies’ locations and spins, and scaling them to their halos’

expected angular diameters. Our main findings can be summarized as follows:

• The number of galaxies required for a 3f detection with current CMB data is large, at best

2.2 × 104, beyond the largest set of galactic spin measurements currently available. The

primary limitation is angular resolution in the CMB data, which only marginally resolves

gaseous halos.

• Upcoming high-resolution, low-noise CMB experiments will significantly reduce the re-

quired number of galaxies. A galaxy survey measuring the spins of nearby galaxies covering

∼ 10 deg2 could be sufficient to rule out upper-bound models, and a few hundreds of deg2

should be sufficient to detect galaxies’ rkSZ effect.

• The use of matched filtering can reduce the number of galaxies needed up to an order of

magnitude for future CMB experiments. Such measurements can be sensitive to signal mod-

eling, particularly in the presence of non-random CMB temperature anisotropies at the scales

of galactic halos, such as those induced by their thermal SZ effect.

• A stacking analysis of Planck CMB data on the position of MaNGA galaxies rules out av-

erage non-random temperature dipoles aligned with the spin angles of field spirals down to

1.9 `K. This may be inconsistent with asymmetries of up to ≈ 100 `K measured in nearby

spiral galaxies (e.g. M31).

• If Doppler shifted, anomalous thermal dust emission is responsible for the measured asym-

metries in nearby spirals, as is claimed in a recent study [264], it could mask the rkSZ signal

induced by gaseous galactic halos. This contaminant could be removed before searching

for the kSZ signal. Alternatively, the emission from dust itself could be used to trace the

kinematics of hot gas.
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We conclude that the rotational kinematic Sunyaev-Zeldovich signal, imprinted on the cosmic

microwave background by spinning hot gas in galactic halos, is a promising and novel probe of

galaxy formation, and should be feasible to detect in future, high-resolution CMB surveys, com-

bined with estimates for the spin orientations of . 104 galaxies. A much larger number of galaxies

would allow studies of the dependence of the angular momentum of the gas on galaxy properties.
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Chapter 6: Non-Gaussian information from weak lensing data via deep

learning

6.1 Introduction

The analysis of multiple probes, including the Cosmic Microwave Background (CMB) and

large scale structure (LSS), have yielded very precise estimates for the parameters that define the

standard cosmological model, Λ-CDM [127, 124]. Early fluctuations in the CMB evolved through

gravitational instability and formed the structures we observe in the late universe. The evolution

of the matter distribution in the universe encodes rich cosmological information that can be mined

to test the standard model and constrain the possible values for its defining parameters.

Over 80% of the matter in the universe is non-baryonic Dark Matter (DM), detectable through

its gravitational effects. It contributes to gravitational lensing, distorting the shapes of background

galaxies to an extent that is usually too small to be directly observed. Weak gravitational lensing

(WL) can, nonetheless, be measured statistically through the correlation in the shapes of galax-

ies [161, 5]. The lensed galaxies’ redshifts allow the reconstruction of the matter density field’s

evolution [265], making WL one of the most promising cosmological probes. Lensing measure-

ments and their analysis in a cosmological context are an essential part of experiments such as

CFHTLenS 1, KiDS 2, the Dark Energy Survey (DES 3) or HSC 4, and will be included in even

wider (≈ 10× larger) surveys (Large Synoptic Survey Telescope, LSST 5, the Euclid mission 6 and

the Wide Field Infrared Survey Telescope, WFIRST 7).

1http://www.cfhtlens.org/
2http://kids.strw.leidenuniv.nl/index.php
3http://www.darkenergysurvey.org
4http://hsc.mtk.nao.ac.jp/ssp/
5http://www.lsst.org
6http://sci.esa.int/euclid/
7http://wfirst.gsfc.nasa.gov
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The large volume of upcoming datasets raises the question of how to extract all the cosmologi-

cal information encoded in them. Non-linear gravitational collapse distorts the Gaussian character

of the initial fluctuations. Thus, two-point statistics are insufficient to characterize weak lensing

data and additional descriptors have been considered to extract additional information [178]. An

alternative approach is to transform the data so that non-linearities become less important and it is

easier to recover the information encoded in the transformed field (e.g. with the power spectrum).

Logarithmic transformations have been proposed for the 3D matter density field [266] and the 2D

convergence [267], as well as other local, Gaussianization transformations [268].

Overall, non-Gaussian statistics such as lensing peaks and moments involving gradients of

the convergence field are promising, since they can improve parameter errors by a factor of 2-3

compared to using only second-order statistics [32, 41, 31, 49, 47, 50, 53, 52]. It is not clear where

the extra information lies, or if all of it is accessible [269]. It has been investigated and partially

understood only for lensing peaks, which derive some (but not all) information from underlying

collapsed DM halos [159, 121, 160]. This halo-peak connection has inspired the development of

approximate analytic models for peak counts [166, 170].

All these statistics compress the information in the original dataset, typically a map represent-

ing a noisy estimate of the projected matter density field, into a low-dimensional descriptor that can

be used to infer the parameters that determine how the data was generated. An alternative approach

is to use deep learning techniques, which have proven successful in a wide range of areas [62] to

infer cosmological parameters directly from the uncompressed raw data.

Artificial neural networks (NNs) are pattern recognition algorithms, in which a series of pro-

cessing nodes, capable of performing simple operations, are connected to each other in a network.

The nodes of a NN are typically arranged in layers, with nodes in one layer connected to those

in the next. Information is fed to the NN through the input layer, its outcome comes from the

output layer, and all intermediate steps are called “hidden" layers. The strength of the connections

is stored in a series of weights that can be adjusted to match a given output; this process is called

"learning". This quality allows the use of NNs for forecasting and inference. While we do not have
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a full understanding on what drives NNs predictive power [270], they have been successfully used

in Astronomy, from source detection and classification, to light curve analyses and even adaptive

optics control (see reviews on NNs in astronomy in [271, 272]).

Convolutional Neural Networks (CNNs) are particularly well suited to work on datasets with

spatial information, such as images, since the connection of their convolution layers’ nodes to

subsets of the data take advantage of the high correlation of nearby points imprinted by the locality

of physical processes. Recently they have been used to infer cosmological parameters from the

3D matter density field [273], and have been found to outperform constraints estimated from its

power spectrum. Weak lensing provides (in principle) an unbiased map of the projected matter

distribution. One of the aims of this study is to assess if neural networks over-perform relative

to the power spectrum when analyzing 2D WL data, as they do for the 3D matter field. Similar

techniques have also been used to generate data with the same statistical properties as the output

of physically-motivated simulations [111, 110].

A similar study has recently applied convolutional neural networks to weak lensing data for

inference [113]. Our study shares the same motivation and reaches similar conclusions, but has

some differences. While [113] focused on the ability of deep learning techniques to differentiate

between models along a known {Ω<, f8} degeneracy, Σ8 ≡ f8 (Ω</2)0.6 [274], we focus on the

parameters’ constraints that can be inferred by extracting information through neural networks. To

do so we trained our networks on a set of 96 cosmological models covering a large region of the

parameter space (see Fig. 6.1 for the distribution of those models). Furthermore, we used different

simulation techniques, the architecture of our network is different and we compared the neural

network to a different set of observables (power spectrum and lensing peaks, instead of skewness

and kurtosis). Finally, we restricted our analysis to noiseless data, leaving the analysis of the effect

of shape noise for a follow-up study.

The paper is organized as follows, in § 6.2 we describe how we generated the data used to train

and test the CNN, the architecture and training of the network, and the summary statistics used

as benchmarks. In § 6.3 we compare the performance of the CNN to that of alternative summary

141



statistics, in terms of its predictive accuracy and the cosmological constraints that can be inferred.

In § 6.4 we discuss the implications of our results and we summarize our conclusions in § 6.5.

6.2 Data

The goal of this paper is to assess the performance of CNNs predicting cosmological parame-

ters from WL data. We do so comparing the network’s predictions with those that can be inferred

from statistics measured on the maps, as well as the credible regions that can be inferred around

the predicted parameters. In this section, we describe how the WL data used was generated, the

design and training of the CNN, and describe the summary statistics measured on the WL data: the

power spectrum and lensing peaks.

6.2.1 Mock convergence maps

Our initial data set consists of mock convergence (^) maps generated assuming 96 different

values for the matter density Ω< and the scale of the initial perturbations normalized at the late

Universe, f8 (see Fig. 6.1). We adjusted the Dark Energy density to enforce flatness, ΩDE =

1.0 − Ω<, and kept the rest of the parameters constant: baryon density (Ω1 = 0.046), Hubble

constant (ℎ = 0.72), scalar spectral index (=B = 0.96), effective number of relativistic degrees of

freedom (=eff = 3.04) and neutrino masses (<a = 0.0).

We singled out the cosmology with {Ω< = 0.260, f8 = 0.800} as a fiducial to compute the

covariance of the observables used to assess the performance of the CNN (see § 6.2.3). The density

of the model sampling increases towards the fiducial and shows some correlation with the direction

of the Σ8 degeneracy, Σ8 = f8

(
Ω<
0.3

)0.6
, as can be seen in Fig. 6.1. We refer the reader to [121],

where this suite of simulations was also used, and our pipeline LENSTOOLS [143] for a detailed

description of our sampling algorithm and simulation processing. We provide a summary here for

convenience.

We evolved the matter density field using the #-body code GADGET2 [144]. For each cos-

mology we simulated a single volume from initial conditions computed with CAMB [194]. The
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Figure 6.1: Location of the 96 cosmological models in our dataset on the {Ω<, f8} plane. The
fiducial model, {Ω< = 0.260, f8 = 0.800}, is marked by a red star, and grey lines delimitate the
quadrants defined by the fiducial parameters. The quadrants labeled I and II are discussed in

§ 6.4.3. The dashed curves show isolines for Σ8 ≡ f8

(
Ω<
0.3

)0.6
for reference.
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simulation boxes are cubes with a side-length of 240 ℎ−1Mpc, large enough to cover the maps’

field of view of 3.5 × 3.5 deg2 to a redshift of I ≈ 3.0. Each box is populated with 5123 Dark

Matter (DM) particles, yielding a mass resolution of ≈ 1010"�.

We ray-traced the outputs of our simulations following the multiple lens plane algorithm [182].

It has been shown that while the Born approximation is sufficient for an accurate estimation of

the power spectrum even in the largest planned future WL surveys, full ray-tracing is necessary

to avoid biased estimations for the counts of lensing peaks and higher order statistics [142]. The

value of ^ for each of our maps’ pixels is derived from the deflection experienced by a light ray as it

crosses a series of lens planes stacked to form its past light-cone. For this study, we considered all

the lensed galaxies located at a single fixed redshift of I = 1.0. Each resulting map has 1024×1024

pixels, and was sliced in 16 smaller patches of 256 × 256 pixels each to speed up the neural

network’s training (§ 6.2.2).

Each lens plane was generated from the snapshot corresponding to its redshift by cutting a

80ℎ−1Mpc slab along one of its axes, estimating the matter density on a 4096 × 4096 grid, and

solving the Poisson equation in 2D for the gravitational potential. By cutting different slabs, com-

bining different planes at each redshifts, and randomly translating and rotating them, we ultimately

generated 512 independent ^ maps from a single simulation box for each cosmology. Through this

recycling process, it is possible to generate up to ≈ 104 independent realizations of the convergence

field from a single N-body simulation [143]. The resulting un-smoothed, noiseless convergence

maps, is analogous to a 2D version of the dataset used in [273].

6.2.2 Neural network training and architecture

Neural networks consist of interconnected nodes (or neurons), arranged in layers. Each neuron

transforms a linear combination of its inputs through an “activation" function, 5 (Wx), where W

is a matrix of weights and x a vector of inputs (in our case, the latter contains the values of the

convergence in the pixelized 2D lensing map). The inputs can come from other neurons in the

network, or from external data. The activation function is usually non-linear (e.g. a sigmoid
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function). The weights used to linearly combine the inputs can be adjusted to minimize a loss

function, in a process that is called “training" or “learning". Some of the layers in the neural

network used for this study convolve their input data with a kernel whose values are fitted during

training. The resulting “convolutional neural network" takes advantage of the correlations between

neighboring pixels and has been shown to yield good results when analyzing natural images.

Each “labeled example" the network is exposed to is a 1024 × 1024 map coupled with the

{Ω<, f8} “label" that corresponds to the cosmology used to generate that map. From each such

example, we created 16 “labeled examples" by slicing the map into smaller, 256 × 256 maps. And

these are the maps used as input for the neural net. This operation reduced the number of nodes

in the CNN and, consequently, its training time. We do not expect the performance of the network

to be adversely affected, because of the limited constraining power of the modes that are small

enough to be captured by the full maps but not their slices, i.e. spherical harmonic indices in the

range ℓ ∈ [100, 400] (see, e.g. ref [275], for a demonstration that most of the information is on

smaller scales). The prediction for each 1024 × 1024 map is the mean of the predictions for the 16,

256 × 256 maps that were sliced from the original, bigger map. Our whole dataset amounts to 96

different cosmological models, each having 512, 1024 × 1024 independent maps. We trained the

neural networks using 70% of our data, and set aside the remaining 30% to test their performance.

The architecture of the CNN was inspired by that used in [273]. We sketch the architecture in

Fig. 6.2 and summarize its elements in Table 6.1. The network is a combination of convolutions

(transformed by a non-linear “activation" function) and pooling layers that reduce the spatial di-

mensions of the output, followed by fully connected layers in charge of the high-level logic. For

the convolutional layers, we chose a 3 × 3 kernel for speed. Each convolution layer applies more

than 1 filter to its input in sub-layers. The weights (filter values) are the same for all the neurons

within a sub-layer. This parameter-sharing reduces the number of weights to fit during training and

is a reasonable choice given the data’s translational and rotational symmetries.

The first layer convolves any input map with 4 different filters and applies the activation func-

tion to the resulting 4 feature maps. Each filter is defined by 10 parameters (9 determine the
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Figure 6.2: Schematic representation of the convolutional neural network (CNN) used in this study.
The network consists of a series of convolutional and (average) pooling layers. Layers increase
their “logical" dimension (depth), while reducing their “spatial" dimensions (width and height).
Once the spatial dimension has been reduced to unity (flattening), a series of fully connected layers
further reduces the number of nodes to two, the required number of outputs. The activation function
for the neurons is a leaky rectified linear unit. For clarity, only a few layers are displayed.

convolution kernel plus an overall additive bias). In total, 40 weights need to be adjusted during

training for the first layer. The second layer downsamples the feature maps from the first layer

substituting 2 × 2 consecutive pixels by their mean (“average pooling"). The third and fourth lay-

ers are convolutional layers, and each applies 12 different kernels to all incoming feature maps,

including all depth levels from the previous layer. While the convolution is a linear operation, the

application of the activation function breaks the linearity. The number of tunable weights grows

with each layer as new kernels are added. Another average pooling layer (layer 5) is followed by

two sets of convolution + average pooling (layers 6-9).

At each layer, we can consider the neurons arranged along 3 dimensions, 2 that follow the

spatial dimensions of the feature maps fed into the layer (width and height) and another that grows

with the number of filters used to process the layer’s input (depth). As information flows through

the network, the spatial dimensions of the feature maps shrink and the depth of nodes processing

those maps grows. The convolutional layers 6 and 8 do not apply an activation function to their

output. Another average pooling (layer 10), followed by a flattening layer (layer 11) reduce the

spatial dimensionality to unity, with a depth of 2304.

A series of fully connected layers (layers 12, 14 and 16) are followed by dropout layers (layers
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Layer Type Sub-layers Output dimension Weights
1 Convolution + LeakyReLU 4 4 × 254 × 254 40
2 Average pooling 1 4 × 127 × 127 0
3 Convolution + LeakyReLU 12 12 × 125 × 125 444
4 Convolution + LeakyReLU 12 12 × 125 × 125 1308
5 Average pooling 1 12 × 61 × 61 0
6 Convolution 32 32 × 59 × 59 3488
7 Average pooling 1 32 × 29 × 29 0
8 Convolution 64 64 × 27 × 27 18496
9 Average pooling 1 64 × 13 × 13 0

10 Average pooling 1 64 × 6 × 6 0
11 Flattening 1 2304 0
12 Fully connected + LeakyReLU 1 1024 2360320
13 Dropout 1 1024 0
14 Fully connected + LeakyReLU 1 256 262400
15 Dropout 1 256 0
16 Fully connected + LeakyReLU 1 10 2570
17 Dropout 1 10 0
18 Fully connected 1 2 22

Total 2649088

Table 6.1: Summary of the neural network’s architecture. Convolutional layers increase the depth
of the network by applying different filters (sub-layers) to the same input. The number of neurons
in a layer is determined by the dimension of its output. The number of weights for a convolutional
layer is given by �>DC (�8= × 9 + 1), where �>DC is the number of feature maps that the layer outputs
and �8= the number of feature maps the layer is fed with. A fully connected layer is defined by
(#8= + 1) × #>DC weights, where #8= is the number of nodes in the previous layer and #>DC the
number of nodes in the fully connected layer.

13, 15 and 17) that shrink the depth of the output. The final fully connected layer (layer 18)

outputs the estimated values for Ω< and f8, which are compared with their true value through the

loss function to adjust the weights in the network through back-propagation.

The total number of parameters to be fitted during training is ≈ 2.6 · 106, a large number but

very small compared with the total number of pixels in the training data set (≈ 3.6 × 1010).

The adopted activation function is the “leaky rectified linear unit" (LeakyReLU), with a leak

parameter of 0.03, within the range suggested in [72]:

5 (G) =

G if G ≥ 0

0.03 G if G < 0
(6.1)
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This functions helps mitigate the “dying" ReLU problem, in which a neuron gets stuck in a region

of zero gradient [71]. To prevent overfitting, we enforced regularization applying “dropout" at

the fully connected layers: the output of any neuron was ignored with a 50% chance [276]. This

process took part only during training, and the output from the nodes that were not dropped-out

was doubled to compensate for the ignored neurons.

We used two loss functions to minimize during the training of our neural networks. The first

one is the sum of the absolute error on Ω< and f8, computed over batches of 32 maps each, in

which the data is split for each pass of the training examples:

∑
map∈batch

���fpred
8 − ftrue

8 | + |Ω
pred
< −Ωtrue

<

��� . (6.2)

This is a popular choice, and converges faster than the sum of the squares of errors because its

gradient does not necessarily cancel near zero. Due to the heterogeneous sampling in parameter

space of our simulated models, the network is exposed to fewer examples from cosmologies in

sparsely sampled regions. This can induce a bias in the predictions. To assess the impact of the

non-uniform sampling on parameter constraints, we also used a weighted loss function:

∑
map∈batch

,2>B<>

(���fpred
8 − ftrue

8 | + |Ω
pred
< −Ωtrue

<

���) , (6.3)

where ,2>B<> is a weight inversely proportional to the sampling density at the location of

a cosmological model in parameter space. Errors in predictions for maps from cosmologies in

sparsely sampled regions are more severely penalized than those for maps from densely sampled

regions. We show in § 6.4.3 that such a weighted loss function reduces the bias in the predictions,

at the cost of a longer network training, but has only a limited impact on the parameter constraints

inferred from the predictions.

The algorithm used to minimize the loss function was an Adam optimizer [277] with a learning

rate of 10−4 and first and second moment exponential decay rates of 0.9 and 0.999, respectively.

We trained each network until the loss function converged, which took in most cases 5 epochs
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(an epoch is a pass of all the training examples in the data set). The training maps were split in

batches and randomly reshuffled after each epoch. The networks’ weights were recomputed after

each batch, minimizing the total loss over the 32 tiles. Each batch took 40 − 50 s on a NVIDIA

K20 GPU with 5GB of on-board memory, at the NSF XSEDE facility 8. To further reinforce

the rotation-invariance of the dataset, all maps were rotated 90 deg with a 50% probability before

feeding them to the network.

6.2.3 Alternative descriptors

In order to assess the performance of the CNN, we compared the accuracy of its predictions

with that achieved through analysis of summary statistics. We used two observables, the power

spectrum and lensing peak counts. Both compress the information available in a given WL map in

a data vector of dimension small compared with the number of pixels in the original map.

The power spectrum is defined as the Fourier transform of the two-point correlation function

of ^ [5].

〈^(ℓ)^∗(ℓ′)〉 = (2c)2 X� (ℓ − ℓ′) % (ℓ) (6.4)

In the above expression X� is the Dirac delta function and ℓ is the 2D angular wave vec-

tor. We measured the power spectrum on all 512 mock ^ maps for each of the 96 cosmologi-

cal models. We evaluated the power spectra on 20 bins, logarithmically spaced in the interval

ℓ ∈ [1 × 102, 7.5 × 104]. The minimum angular scale (maximum wavenumber ℓ) is set to prevent

any loss of information at the pixel level. The finite resolution of our simulations results in devi-

ations from theory at wavenumbers ℓ > 5 × 103 with a significant loss of power for ℓ ≈ 104, as

Fig. 6.3 shows for the fiducial cosmology.

The power spectrum is a widely used observable in cosmology, mainly because it fully charac-

terizes Gaussian random fields and is a well-developed analytic tool. While the initial conditions

for the matter perturbations are Gaussian (or nearly so), non-linear evolution introduces significant

8http://www.xsede.org
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Figure 6.3: Comparison of the average convergence power spectrum for the fiducial ^ maps
with predictions from linear and non-linear theory. The theoretical curves were computed using
NICAEA [278], with the revised Halofit parameters from [195]for the non-linear power spec-
trum.
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Figure 6.4: Comparison of peak counts derived from maps generated via our ray-tracing N-body
simulations, to those derived from Gaussian random fields (GRFs) with the same power spectrum.

non-Gaussianities in the matter density field at late times.

Lensing peaks are local maxima in the ^ field. In the absence of ellipticity noise, they probe

high density regions, where non-linear effects become relevant. We chose the peaks’ count as

a function of their ^ value as a second observable because they are sensitive to information not

captured by the power spectrum. As an illustration, we compare in Fig. 6.4 the average peak

counts measured on the 512 mock maps generated for the fiducial cosmology to those measured

over Gaussian Random Fields (GRFs) that share their power spectra with the ^ maps. That is, for

each convergence map, we measured its power spectrum, built a GRF from it and measured the

number of peaks in this new field. The distribution is clearly different, the peak histogram from

convergence maps exhibiting a high ^ tail resulting from the non-linear growth of structures.
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Peak counts yield tighter constraints than the power spectrum [32, 31, 47, 53, 41, 49, 50, 52]

and constitute a good benchmark for other methods which aim at extracting additional cosmolog-

ical information. We counted the peaks in 20 bins, linearly spaced. We set the upper and lower

limits of the bins to [^<8= = −2.0, ^<0G = 12.0], in units of the mean ^ r.m.s. for the fiducial maps,

to fully cover the range of peaks present in the data; this corresponds to ^<8= ≈ −0.03, ^<0G ≈ 0.19

and a bin width of Δ^ ≈ 0.01.

6.3 Results

We assessed the CNN’s performance in terms of the precision of their predictions for the cos-

mological parameters, and the constraints for those parameters for a given observation. The left

and center panels of Fig. 6.5 display the predictions for Ω< and f8 as a function of their “ground

truth", that is, the values that correspond to the cosmologies used to generate the data. The right

panel shows the same comparison for the derived Σ8 ≡ f8 (Ω</0.3)0.6 along the degeneracy be-

tween both parameters. Each point corresponds to one of the ≈ 150 test maps available for each

of the 96 cosmologies. For the neural network, the predicted {Ω<, f8} for a given map are the

average values for the network’s output when fed the 16 tiles in which the map was sliced. For the

power spectrum and peak counts, the predictions are the values that minimize j2 for that map. We

estimated j2 for each of the 96 sampled cosmologies as:

j2
8 9 =

(
d8 − d̄ 9

)
�̂−1
5 83

(
d8 − d̄ 9

)
(6.5)

where d8 is the data vector measured on map 8 (binned power spectrum or peak counts), d̄ 9 is the

mean of the same descriptor for the model 9 and �̂−1
5 83

is the precision matrix for the data vector

evaluated at the fiducial model. We used all 512 available maps per model to evaluate both the

mean descriptor and the precision matrix, as in any realistic scenario in which a survey provides

a mass map all the simulated data would be used for inference. We corrected for the bias in the
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Figure 6.5: Predictions for {Ω<, f8, Σ8} from un-smoothed (≈ 0.2 arcmin/pixel) convergence
maps, compared to their true values. Each point represents a map in the test data set. Predic-
tions from the CNN are displayed in red, from the power spectrum in blue and from peak counts
in green. Vertical dashed lines indicate the true values for the fiducial cosmology, and diagonal
dashed lines the unbiased %A4382C8>= = )ADCℎ relationship. The dashed rectangles in the middle
and right panels mark a small set of realizations of models near the fiducial cosmology; these
contain anomalous structures leading to large biases (see text for discussion).

precision matrix following [151]:

�̂−1
5 83
=
# − 3 − 2
# − 1

�−1
5 83 (6.6)

# is the number of realizations used to estimate the covariance (512) and 3 is the dimension of the

data vector (20, the number of bins).

The 96 j2
8 9

values were used to interpolate j2 (Ω<, f8) and find its minimum. We used a

Clough-Tocher interpolator that builds a continuously differentiable piecewise cubic surface over

a non-uniform grid [279, 280] . The minimum was found using the downhill simplex algorithm

[281]. We verified that the results for the power spectrum and lensing peaks do not change when

these observables are measured in a different number of bins (as long as they’re more than ≈ 10)

or a different interpolator is used to find the minimum of j2 (Ω<, f8).

For all cosmologies, the neural network is significantly more precise than both the power spec-

trum and lensing peaks: the scatter in its predictions for a given model is smaller. On average,

the standard deviation of the CNN’s predictions is a factor of 4-7 lower than that of the statistical
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CNN Power spectrum Peak counts
Noiseless, unsmoothed

Ω< 5.1 (2.4) 21.7 (21.2) 35.6 (13.2)
f8 10.1 (7.9) 52.7 (84.1) 62.5 (63.8)
Σ8 7.2 (4.7) 32.3 (73.2) 36.0 (59.2)

Table 6.2: Standard deviation
(
×103) of the predictions for the parameters {Ω<, f8, Σ8}, averaged

for all the cosmological models. In parenthesis, values for the fiducial model.

descriptors, and up to ≈ 16× smaller for the fiducial (see Table 6.2). In terms of accuracy (i.e. how

close the predictions are to the ground truth), the network shows some bias that may degrade the

constraints that can be inferred from the network’s predictions.

We note the presence of a small set of maps from models close to the fiducial for which both the

power spectrum and lensing peaks tend to over-predict f8 and Σ8 as a result (the outliers on both

panels correspond to the same maps). These maps form a clearly detached clump on the right-most

panel of Fig. 6.5, where a dashed rectangle highlights their location. They represent ≈ 4% of the

maps for ≈ 28 cosmologies not far from the fiducial model. We found through visual inspection

that this over-prediction seems to be due to an anomalous number of structures projected in the

field of view. Interestingly, the CNN seems to be immune to such chance projections and classifies

these maps correctly. This suggests that the neural network extracts different information from the

maps than the power spectrum or lensing peaks. Alternatively, these fluctuations may be the result

from cosmic variance, and the neural network may be under-weighting those effects.

For a few cosmologies, parameter predictions from the CNN converged at different values from

those of neighboring models. This is noticeable on the left-most panel of Fig. 6.5 where a few red

points show a relative over-prediction in Ω< in the range Ω< ∈ (0.2, 0.4). These outliers corre-

spond to points in sparsely sampled areas near the boundaries of the explored parameter space.

This highlights the importance of a well-sampled parameter space for the neural network to gener-

alize accurately. In § B we analyze the effect of sampling on the predictions and credible contours

inferred from the neural network. As these outliers lie far from the fiducial cosmology, they do

not alter the parameter constraints presented in this study. Furthermore, they are identifiable in the
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training data, and as such could be removed if needed. We did not remove any model from our

data set even when it was evident from the training data that they could be outliers.

The relevant metric to compare the performance of the neural network relative to summary

statistics is the probability distribution for the cosmological parameters given our data. This poste-

rior distribution is related to the easier-to-compute probability of measuring a specific data vector

given the cosmological parameters, or likelihood, by Bayes’ theorem:

? (p|d,M) = ? (d|p,M) ? (p,M)
? (d,M) , (6.7)

where p is the set of cosmological parameters, d a data vector andM the underlying model, in our

case DM-only simulations of ΛCDM cosmologies. For the CNN, we define our data vector as the

predicted values for the cosmological parameters, (Ω<, f8), and for the alternative statistics, the

measured binned power spectra and peak histograms described in § 6.2.3.

The term that multiplies the likelihood, or prior ? (p,M), and that on the denominator, or

evidence, are the same when using the neural network or the statistical descriptors. The reason

is we are using the same convergence maps from the same sampling of the parameter space. We

can drop them as a normalization factor, as well as the explicit dependence on the underlying

model used to generate the ^ maps, and compare directly the likelihoods derived from the different

methods. For the likelihoods, we assumed a Gaussian distribution:

? (d|p) ∝ exp
[
−1

2
(
d − d̄(p)

))
�̂−1
5 83

(
d − d̄(p)

) ]
, (6.8)

with a precision matrix �̂−1
5 83

evaluated at the fiducial cosmology and as an expected value for

the data, d̄(p), the mean value measured from the simulations for the cosmology defined by p.

Since we use the same covariance matrix for all cosmologies, we do not need to include the nor-

malization pre-factor. For the power spectrum, we expect the Gaussian likelihood to be accurate.

Our simulated maps cover a small field of view of 3.5 × 3.5 deg2 on which the power spectrum

can be measured only for relatively high ℓ > 100. At those scales, many modes contribute to each
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Figure 6.6: 68% and 95% credible contours for un-smoothed (≈ 0.2 arcmin/pixel) ^ maps, derived
from the power spectrum (blue), lensing peak counts (green) and neural network predictions (red).
The true values for the parameters, {Ω< = 0.260, f8 = 0.800} are indicated by black dotted lines.
The upper and right panels show the distribution marginalized over the other parameter.

measurement of the power spectrum, and the central limit theorem shows that its probability dis-

tribution function should converge to a Gaussian [282]. For the lensing peaks and predictions from

the neural network, we verified that the approximation remains valid (see § A). The alternative

approach of estimating the probability density using a kernel density estimator (KDE) depends on

the width of the kernel chosen, and the estimates for a large dimensional data vector such as our

power spectra are noisy due to the relative limited amount of independent ^ maps realizations.

To compute the likelihood, we used as data (observation) the average observable for the fiducial

cosmology. For the power spectrum and lensing peaks, all 512 maps were used to estimate the

means for each cosmology, and the covariance matrix for the fiducial. For the neural network, only
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CNN Power spectrum Peak counts
Area68 1 5.9 1.9
Area95 1 6.1 1.9

Table 6.3: Area of the 68% and 95% {Ω<, f8} credible contours, relative to those obtained from
the output of the neural network for un-smoothed, noiseless ^ maps.

the test maps were used (≈ 150 per cosmology). We display the 68% and 95% credible contours for

the likelihoods computed for the power spectrum, lensing peaks and neural network in the central

panel of Fig. 6.6, and the marginalized distributions for Ω< and f8 in the upper and right panels,

respectively. At each point in parameter space, the expected data vector is interpolated linearly

from the mean data vectors for the simulated cosmologies. Due to the choice of measurement (the

predicted mean for the fiducial) all likelihoods peak at the true values for the fiducial cosmology.

This is true also for the neural network. The smaller scatter in the CNN predictions translates into

tighter parameter constraints, by a factor of ≈ 2 compared with lensing peaks and ≈ 6 compared

with the power spectrum (see Table 6.3). The neural network seems capable of extracting more

information from noiseless convergence maps than alternative methods such as the power spectrum

or lensing peaks.

6.4 Discussion

6.4.1 Non-Gaussian information extracted by the neural network

The significantly tighter constraints obtained by the CNN, shown in Fig. 6.6, are encouraging

and an indication that weak lensing maps encode more information than what is usually used for

inference. Neural networks are capable of extracting some of it, at least more than the power

spectrum and even more than some non-Gaussian statistics such as lensing peaks. Given the large

number of parameters that need to be fitted during training, there is the risk that the gain in precision

comes from a form of overfitting, in the general sense of making predictions based on irrelevant

information [79].

For instance, a Gaussian random field, GRF, is fully determined by its power spectrum. As a
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result, no other statistic or method used to extract information from it should out-perform the power

spectrum. To test whether the neural network satisfies this limit, we built a collection of GRFs and

used it as a new dataset to train and test the CNN’s architecture. We generated the GRFs by Fourier

transforming random fields with a Gaussian distribution defined by the power spectra measured

over the ^ maps ray-traced from the outputs of cosmological N-body simulations. The new suite,

which has a one-to-one correspondence with the original data, has no information encoded beyond

the power spectrum.

The 68% and 95% credible contours from the power spectrum, lensing peaks and the newly

trained CNN, as well as the marginalized distributions for Ω< and f8 are displayed in Fig. 6.7,

which is analogous to Fig. 6.6 but for GRFs instead of ^ maps from N-body simulations.

As before, the likelihoods peak on the true parameter values for the fiducial and the contours

appear centered around {Ω< = 0.260, f8 = 0.800}. The likelihood for the power spectrum is the

same as the one computed for the convergence maps. The likelihoods for lensing peaks and the

neural network are different, and their contours larger than those derived from the power spectrum.

In particular, the contours from lensing peaks are 1.7 (1.4)× larger for the 68 (95)% contours,

and those from the neural network 2.6 (2.0)× larger. This result is consistent with the absence of

information beyond the power spectrum in the Gaussian Random Fields, and demonstrates that the

small scatter in the parameters’ predictions from the neural network trained on convergence maps

is not the result of a tendency to overfitting by its architecture or other spurious effects.

Comparing the {Ω<, f8} predictions with the ground truth for the test GRFs, as done in § 6.3

for the ^ test maps, we see that there is both an increase in the scatter and the bias of the neural

network’s predictions (see Fig. 6.8). Both effects drive the deterioration in the parameter con-

straints that can be inferred from those predictions. Furthermore, the neural network seems almost

insensitive to Ω<, as the predictions for all the test GRFs scatter around the median Ω< for the 96

cosmologies. The CNN cannot easily distinguish between models with differentΩ< and defaults to

the value that minimizes the loss function. The use of an unweighted loss function in this analysis

may also have some influence, but the same behavior is not seen on f8. The power spectrum and
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Figure 6.7: Same as Fig. 6.6, except using the Gaussian random fields, rather than the ray-tracing
simulations. The network was trained with the un-weighted loss function (eq. 6.2).
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Figure 6.8: Same as Fig. 6.5, except using the Gaussian random fields, rather than the ray-tracing
simulations. The network was trained with the un-weighted loss function (eq. 6.2).

lensing peaks are both sensitive to that parameter, indicating that they extract different information

than the neural network.

6.4.2 Effect of the smoothing scale on the results

The angular resolution of the mock convergence maps used for our analysis is ≈ 0.2 arcmin per

pixel. This high resolution is interesting from an academic perspective, but at present it is of little

practical interest. Accurate shear estimates require measuring the shape of many galaxies to esti-

mate their correlations. For instance, the upcoming LSST survey will reach an effective number of

galaxies of ≈ 26 arcmin−2, after considering losses due to blending and masking [283]. This means

that ≈ 1 arcmin is characteristic of the resolution achievable by future surveys. Furthermore, at

small scales (ℓ > 104), baryonic physics alter the matter distribution and can bias WL observables

relative to estimates from DM-only simulations [284, 285].

To assess whether the neural network still outperforms alternative observables on ≈ 1 arcmin

resolution data, we trained a new network with the same architecture on the ^ maps after smoothing

them with a Gaussian kernel. The resulting constraints, for a smoothing scale of 1 arcmin, are

displayed in Fig. 6.9.

The parameters’ constrains degrade for all three methods. In principle, we would expect the
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Figure 6.9: Same as Fig. 6.6, except smoothing the maps from the ray-tracing simulations with a
Gaussian kernel of 1 arcmin of width. The network was trained with the un-weighted loss function
(eq. 6.2).
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Smoothing Power spectrum Peak counts
[arcmin] 68 % 95% 68% 95%

- 5.9 6.1 1.9 1.9
0.2 7.0 5.9 1.8 1.6
0.3 7.7 7.9 2.3 2.7
0.4 6.5 6.4 1.9 2.2
0.5 7.1 6.5 2.5 2.5
0.6 6.5 5.7 2.5 2.4
0.7 6.4 5.2 2.8 2.4
0.8 4.7 4.1 2.5 2.3
0.9 5.2 4.4 3.0 2.8
1.0 5.6 4.8 3.6 3.3

Table 6.4: Area of the 68% and 95% {Ω<, f8} credible contours, relative to those obtained
from the output of the neural network, for different smoothing scales of ^ maps. The first row
corresponds to the un-smoothed data.

non-Gaussian statistics’ performance to degrade relative to the power spectrum as small scale fea-

tures are smoothed away from the ^ maps. Up to 1 arcmin smoothing, the neural network keeps

well its relative advantage to the power spectrum, yielding credible regions 5.6 (4.8)× smaller at

the 68% (95%) level. Lensing peaks are more adversely affected than the CNN by smoothing,

yielding contours that are only 1.6 (1.5)× smaller than the power spectrum. This would indicate

that any additional information extracted by the neural network is not confined to very small angu-

lar scales.

The first attempt at training the neural network on smoothed data failed. To guarantee the

convergence in the training process, we gradually smoothed the ^ maps in a similar way as [113]

added noise to theirs. We fed the network with maps of growing smoothing scale, starting with a

kernel of 0.2 arcmin of bandwidth. Once the network reached convergence at a smoothing scale,

the kernel’s bandwidth was increased by 0.05 arcmin and the network re-trained. In all cases the

neural network kept its advantage (see Table 6.4). The ratio between the areas of the credible

regions derived from the power spectrum and the neural network remained roughly constant, while

the same ratio for the lensing peaks and neural network increased as the capability of peaks to

extract information degraded faster with larger smoothing scales.
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Figure 6.10: Predictions from the CNN for {Ω<, f8, Σ8} from unsmoothed (≈ 0.2 arcmin/pixel)
convergence maps, compared to their true values. Each point represents a map in the test data set.
Predictions using the unweighted loss function (eq. 6.2) are displayed in grey, and those using a
weighted loss function (eq. 6.3), to account for the heterogeneous sampling of the parameter space,
in red. Vertical dashed lines indicate the true values for the fiducial cosmology, and diagonal
dashed lines the unbiased %A4382C8>= = )ADCℎ relationship.

6.4.3 Bias in the CNN predictions

The parameter predictions from the neural network exhibit some bias (see Fig. 6.5). The bias

is more severe when an unweighted loss function is used, as can be seen in Fig. 6.10. This can be

due to the loss function being dominated by errors in the densely sampled regions of the parameter

space.

Weighting the loss function according to the sampling density helps mitigate the bias. The

effect is larger for the high-Ω< region than for the high-f8 models. This can be due to the difference

in sampling between both regions. The high-Ω< region, corresponding to quadrant II in Fig. 6.1

has more models further from the fiducial and with large spacing between them than the high-f8

region (quadrant I).

The weights in the loss function were computed using a kernel density estimator (KDE) to

estimate the sampling density in parameter space. The KDE bandwidth used was 1.0, a value that

yielded a smooth estimate.

Biases in predictions from neural networks have been found in other works (e.g. [273]), so we

cannot guarantee that the heterogeneous sampling of our data is the only source of the bias. Future
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Figure 6.11: 68% and 95% credible contours for un-smoothed (≈ 0.2 arcmin/pixel) ^ maps, de-
rived from two neural networks with the same architecture: in red the result from training with
the weighed loss function (eq. 6.3) and in grey the result from training with the un-weighted loss
function (eq. 6.2). True values are indicated by black, dotted lines. The upper and right panels
show the marginal distribution for Ω< and f8, respectively.

work using a different dataset, uniformly sampled, will address this issue.

The parameter constraints for an observation near the fiducial model are not affected by the use

of an unweighted loss function, as Fig. 6.11 illustrates. This is because the scatter of the predictions

in densely populated areas does not increase significantly when the bias in the sparsely sampled

areas is reduced with a modified loss function. We did not re-train our networks with a weighted

loss function due to the additional computational cost, since the constraints from the network’s

predictions are essentially unchanged.
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6.5 Conclusions

We trained a convolutional neural network on simulated, noiseless, weak lensing convergence

maps. We demonstrated that neural networks can outperform methods based on traditional ob-

servables such as the power spectrum, or even statistics previously shown to extract non-Gaussian

information, such as lensing peaks. On data smoothed at 1 arcmin scales, within reach of up-

coming surveys, the neural network outperformed the power spectrum by a factor of ≈ 5 and the

lensing peaks by a factor of ≈ 4 (using the area of the confidence contour in the {Ω<, f8} plane as

a figure-of-merit).

We performed null tests to verify that the improvement in the parameter constraints reflect the

network’s ability to extract additional information present in the WL data, and is not a numerical

artifact (for instance, some form of overfitting). This sets a lower limit to the cosmological infor-

mation encoded in noiseless lensing maps, whether this is also the case in more realistic, noisy data

sets, remains an open question. The network’s constraints are limited by both the precision and

bias of its predictions. Whether further improvements are reachable through a different network

architecture, or a richer training data set, remains an open question and calls for further investiga-

tion.

Our results are consistent with previous findings in [273] for the 3D matter power spectrum

and in [113] for the ability of neural networks to distinguish WL data generated from different

cosmologies. Some of the questions that future work will address are:

• Effect of noise on predictive power. The presence of realistic levels of noise (e.g. shape

noise) can pose challenges to neural network training [113]. It remains to be shown if the

≈ 5× improvement in parameter constraints compared with the power spectrum is achievable

with noisy data.

• Propagation of systematics on constraints from neural networks. Before neural networks can

be used to infer parameters from weak lensing data, we need to understand the effect of the

systematics present in the data on the resulting parameter constraints.
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• Scaling with survey area. Since neural networks’ training time steeply increases with the

map size, it is important to assess how the constraining power from their predictions scale

with map size, and how the scaling compares with that for alternative methods such as the

power spectrum.

• Network analysis. While the interpretation of feature maps from deep networks (see [113])

is not straightforward, it may provide valuable insights to design new summary statistics

capable of extracting cosmological information from lensing observations.

• Improvements in the network’s training and architecture. An extended exploration of training

parameters (density of models in parameter space, number of independent examples per

model, loss function, etc.) and architecture’s features (convolutional kernel size, number of

layers, etc.) will elucidate the effect of these choices in the resulting constraints.
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Chapter 7: Interpreting deep learning models for weak lensing

7.1 Introduction

The perturbed trajectories of photons propagating through an inhomogeneous universe result in

(de)magnified and distorted images of background galaxies. The effect is in general very small, but

can be detected through measurements over a large ensemble of galaxies. This weak gravitational

lensing (WL) can be used to reconstruct the matter density field between us, observers, and the

lensed background galaxies [4, 5]. The statistical properties of this field, and its evolution, can be

used to test the standard Λ + cold dark matter (ΛCDM) cosmological model. WL measurements

are particularly sensitive to two of the defining parameters of ΛCDM: the mean matter density of

the universe, Ω<, and the amplitude of the initial perturbations that acted as seeds for the growth

of structure, which can be measured in the local universe as f8. Recent estimates for those param-

eters using WL measurements hint at a possible tension with values inferred from observations of

the cosmic microwave background [286, 287, 20, 288], strengthening the case for more precise

measurements.

Upcoming galaxy surveys, such as the Vera Rubin Observatory (VRO) Legacy Survey of Space

and Time (LSST [21]), the Euclid space mission [22], and the Wide Field Infrared Survey Tele-

scope (WFIRST [24]), will provide those measurements in the near future. It is crucial to extract

and use optimally all the cosmological information encoded in the measurements obtained by these

experiments. Some of the data products will be mass maps of unprecedented angular resolution,

with the projected matter density (convergence, or ^) up to a certain redshift.

The standard method to estimate cosmological parameters from such maps, within a Bayesian

framework, is to compress the information content of all the pixels into a single data vector, or

summary statistic, for which a likelihood can be computed or sampled using simulations. These
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summary statistics can be physically motivated (e.g. the use of the power spectrum, supported

by the independent evolution of different Fourier modes in the linear regime of the growth of

structure), or aim to describe the map morphology (e.g. the total length of isocontours, or sec-

ond Minkowski functional of a 2D field). The choice of any particular statistic will, however,

generically entail a loss of information.

An alternative approach is to bypass the design of summary statistics, and use a data-driven

algorithm to map directly the pixels in a map onto the parameters of interest. Recent attempts

of doing so with deep neural networks (DNNs) have shown that these algorithms can provide

competitive parameter constraints. This has been demonstrated not only for simulated data [114,

115, 34], but also for WL survey data [117]. While DNNs are capable of learning complex non-

linear relationships between data and the parameters that control the generative models behind the

data, they are notoriously difficult to interpret. This is due the large number of fitted parameters

(weights and biases) involved, and the depth of the many layers that comprise them in a DNN.

Previous studies have attempted to understand DNN models trained on WL data. The feature

maps output by a model’s intermediate layers have been found difficult to interpret [113], and the

same applies to intermediate convolution filters [118]. The analysis of the convolution filters on

the first DNN layer has proven more fruitful, with at least one example [93] of filters that could

be interpreted and used to design a new powerful summary statistic (the distribution of the radial

profiles of local maxima, or peaks, in the maps). The limitation of these methods is that they

do not take into account the impact of the identified filters on the model’s output, which can be

complicated by non-linear interactions with other components of the DNN, and as a result cannot

connect features in the input data space to the output of the networks.

The aim of the present study is to interpret a high-performing DNN trained on WL data [34]

using state-of-the-art attribution methods from the field of image classification. These so-called

saliency methods have been developed to understand the output of DNNs by providing an attribu-

tion or importance metric for each individual pixel of a given input datum. This is a fast-evolving

field, and many such methods have been proposed [289, 88, 86, 290, 291, 83, 292, 82]. For an
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in-depth review of the sub-field of explainable DNN models, we refer the reader to [80].

This paper is organized as follows. First, we describe the DNN we study and the data used to

train it, in § 7.2. In § 7.3, we then assess the performance of the model relative to a combination of

summary statistics typically used to analyze WL data to confirm that the model processes informa-

tion not accessible to these statistics. In § 7.4 we evaluate a series of attribution methods for DNNs

proposed in the literature, and select the more appropriate ones for our combination of model and

data. We use the selected methods to study features in input space with the largest impact on the

DNN’s output. Finally, we discuss our results and summarize our conclusions in § 7.5.

7.2 Model and data

The DNN model analyzed in this study is the one developed in [34]. It is an architecture that

combines 2D convolutional layers (18) and average pooling layers (6) to map inputs consisting

of simulated WL converge (^) maps into two parameters of interests. Each convolutional layer

is followed by batch normalization, except for the last one. All activation functions are rectified

linear units (ReLUs), and the network was trained using stochastic gradient descent and a mean

absolute error loss function. We will often refer to this specific DNN, including its architecture

and learned parameters, as simply ‘’model”.

The data set used for training and evaluation of the model is a suite of simulated ^ maps

generated by ray-tracing simulations of the growth of non-linear structure. This data set has been

used in past studies of deep learning applied to weak lensing [114, 93, 34], and we refer the

reader to these references for a detailed explanation of how the different maps are generated. The

full suite consists in synthetic convergence maps for 101 different cosmologies, each defined by a

distinct pair of parameters {Ω<, f8}, corresponding to the mean matter density of the universe (in

units of its critical density) and the amplitude of the initial perturbations normalized in the local

universe. For each cosmology, 512 independent 3.5 × 3.5 deg2 maps were generated.

In this first academic study, we focus on the interpretation of a model trained on noiseless maps.

Each map has a size of 512 × 512 pixels, with a linear angular size of 0.41 arcmin per pixel, and
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was smoothed in real space using a Gaussian filter with f = 1 arcmin.

The data was split into a training and a test set, encompassing 70% and 30% of the maps,

respectively. The network was trained so that its output predicts {Ω<, f8}, divided by the standard

deviation of those parameters in the data set.

7.3 Network performance relative to alternative statistics

Past studies have shown that neural networks offer a discriminating power between cosmolog-

ical models competitive with alternative statistics, such as the power spectrum [114, 115, 117],

lensing peaks [114, 34], skewness or kurtosis [113] and a combination of the power spectrum,

lensing peaks and Minkowski functionals (MFs [118]).

We begin by comparing the performance of the DNN model to a combination of the power

spectrum, lensing peaks and Minkowski functionals, to assess if the DNN exploits information not

accessible through traditional summary statistics of weak lensing fields.

The power spectrum is the Fourier transform of the two-point correlation function. It fully

characterizes Gaussian random fields, such as the matter density field after recombination, and is a

commonly-used statistic in cosmology. However, as gravitational collapse induces non-Gaussianities

in the matter density field, additional statistics are needed to extract all the information encoded in

lensing data sets.

Counts of local maxima as a function of their height, or lensing peaks, is a statistic that is simple

to measure and has been shown to improve constraints derived from using the power spectrum

alone by up to a factor of ≈ two [32, 31]. Lensing peaks have also been successfully used to

analyze survey data and to improve parameter constraints [47, 48, 53, 52].

Three different Minkowski functionals can be defined for two-dimensional fields [150, 206] by

performing measurements over excursion sets defined by the points whose value exceeds a given

threshold. The first one, V0, measures the area of the excursion set, the second V1, the total length

of its boundary, and the third, V2, its genus. They have also been shown to improve constraints

derived from the power spectrum by a factor of up to ≈ 2 − 3 [40, 50, 207, 44].

170



We combined the power spectrum, lensing peaks and the three Minkowski functionals into a

single data vector, and estimated the constraints on the parameters {Ω<, f8} assuming the Gaussian

likelihood:

% (s|)) ∝ exp
{
−1

2
[s − s̄ ())] Ĉ−1

[
s − s̄ ()))

]}
, (7.1)

where s is the measured data vector, s̄ ()) the expected value of the data vector in a cosmology

defined by the parameter set ) , and Ĉ−1 the estimated precision matrix, which we evaluate at the

single (fiducial) cosmology defined by Ω< = 0.260 and f8 = 0.800 (there is no need to consider

the pre-factor with the covariance determinant).

Each statistic was measured in 20 bins. For the power spectrum, we considered uniformly

spaced bins in logarithmic space, with spherical harmonic index between ℓ ∈ [100, 15000], and

for the lensing peaks and Minkowski functionals, uniformly spaced bins in linear space, between

^ ∈ [−0.0235, 0.0704], which corresponds to [−2, 5] in units of the measured r.m.s. of the ^ field

for the fiducial cosmology. The expected data vector at a point in parameter space not present in the

simulation suite is computed using an emulator. The emulator is a 2D Clough-Tocher interpolator

(as implemented in the Python SciPy library [293]), fitted on the mean values of the data vector

measured on the test data set.

The data vector covariance was estimated from a new suite of simulations in the fiducial cos-

mology, consisting of 30,000 independent ^ maps ray-traced through the outputs of 100 new, inde-

pendent N-body realizations of the underlying matter density field. We verified that this number of

maps suffices via cross-validation —the credible contours for Ω< and f8 computed from a 3-fold

subdivision of the data are indistinguishable from each other, indicating numerical convergence.

The bias in the estimation of the inverse covariance is accounted for by applying the correction

factor #−3−2
#−1 (where # is the number of measurements and 3 is the dimension of the data vec-

tor [151]).

We treated the cosmological parameters (Ω<, f8) output by the DNN as just another summary

statistic that can be added to the data vector, increasing its size from 100 to 102. This allowed us a
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Change in credible contour area [%]
Credibility PS PC V0 V1 V2 All

68% -93 -88 -80 -68 -38 -20
95% -93 -88 -80 -69 -38 -20

Table 7.1: Percentage change in the area of credible contours derived from different statistics when
they are combined with the output from the DNN (see Fig. 7.1 for a graphical representation of
those contours). The statistic used for the right-most column (labelled ‘’All”) is a combination of
all the statistics in the other columns: power spectrum (PS), lensing peaks (PC), and Minkowski
functionals (V0, V1, V2). The change in area is defined as ΔArea = 100

(
�A40w/DNN
�A40w/o DNN

− 1
)
.

uniform treatment of the DNN output and the other summary statistics within the framework of a

Gaussian likelihood (for a test of Gaussianity of a DNN output, see [114]). Neither the means nor

the covariance estimates used any of the ^ maps present in the network’s training data set.

In Fig. 7.1, we show the credible contours for Ω< and f8 that can be derived using summary

statistics, the DNN, or a combination of both. The constraints are displayed separately for each

individual statistic, and a combination of the power spectrum, lensing peaks, and Minkowski func-

tionals. The percentage change in the area of the credible contours achieved when the output of

the DNN is incorporated, defined as ΔArea = 100
(
�A40w/DNN
�A40w/o DNN

− 1
)
, is reported in Table 7.1.

The improvement relative to the power spectrum and lensing peaks is very significant, as has

been shown in past studies [114, 115, 34, 117]. The improvement relative to the Minkowski func-

tionals is more modest, in particular compared with V2, which is by far the most constraining when

measured on noiseless ^ maps (the neural network can nevertheless still improve the constraints

obtained from V2 by 38%). When combining all the statistics together, the addition of the DNN

predictions manages to reduce the area of the credible contours by 20%, implying that the DNN

can extract information in the maps that is not accessible to the alternative statistics.

Since the DNN does not improve constraints from the combination of the summary statistics

by a large factor, it is worth checking if the network is just learning the statistics. First, we looked

at the Pearson’s correlation coefficient between the DNN’s output and the measured statistics,

conditioned to the true value of the parameters {Ω<, f8}, that is, we computed the correlation for
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Figure 7.1: Credible contours derived for Ω< and f8. Each panel shows the comparison between
the constraints derived from the DNN (in red) from an alternative statistic (in blue), and the com-
bination of the DNN and the statistic (in black). Solid lines enclose 68% of the likelihood, and
dot-dashed lines 95%. Upper row, from left to right: comparison between the DNN and a combi-
nation of statistics, the power spectrum (PS), and lensing peak counts (PC). Lower row, from left
to right: comparison between the DNN and the three Minkowski functionals, V0, V1, and V2. The
grey dots indicate the points in parameter space for which simulations were available.
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Figure 7.2: Pearson’s correlation coefficient (averaged over the 101 cosmologies) between the
DNN predictions for Ω< (solid lines) and f8 (dotted lines), and the measured statistics. For the
power spectrum (PS, blue), the bins correspond to different multipoles (ℓ; see upper scale), and for
the other statistics, values of ^ (lower scale).

each cosmology in the test data set, and took the average of the values for the 101 cosmologies

(the cosmology dependence of the correlations is weak).

Fig. 7.2 shows the average correlation coefficients as a function of ℓ bin for the power spectrum

(PS) and ^ bin for the other statistics (computed from the test data set). None of the correlations is

particularly high (all of the coefficients are below 0.2 in absolute value). The correlations for Ω<

and f8 tend to have opposite sign, indicating that the DNN learned the degeneracy between the

two parameters. Besides, the qualitative change in the correlations as a function of binning follows

expectations. For instance, higher f8 is positively correlated with higher power spectrum, yielding

a larger f2
^ , with results in a lower central peak and fatter tails for the lensing peak distribution.

It is also straightforward to show that the network’s output cannot be reproduced by a linear
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combination of the summary statistics either. For each cosmology, we fit a linear combination of

the summary statistics to the DNN output using the test data set. As we did with the correlations

with the individual statistics, we averaged the coefficients for the 101 cosmologies (the cosmology

dependence of the correlations is also weak). The resulting average correlations are also small

compared to unity:


d

(
ΩDNN
< ,Ωlin

<

)
d

(
ΩDNN
< , flin

8

)
d

(
fDNN

8 ,Ωlin
<

)
d

(
fDNN

8 , flin
8

) =


0.34 −0.26

−0.25 0.45


Given that (i) the DNN seems to access additional information and (ii) its outputs do not corre-

late highly with the summary statistics, or with their best-fit linear combination, we proceeded to

look at the structure of the DNN to interpret its outputs.

7.4 Interpreting DNNs with saliency methods

DNNs can be interpreted as non-linear mappings from an input space of dimension 3 (for

this study, 512 × 512) to a space of dimension = (for this study, two, the number of parameters of

interest),M : R3 → R=. Saliency methods map the input space into a space of the same dimension,

S : R3 → R3 , so that the image of a given pixel, S (G8) is representative of the importance of that

pixel for a given output neuron,M (G8).

We analyzed several established methods that are well-defined for network architectures uti-

lizing rectified linear units (ReLUs [71]), and do not require re-training of the model under study.

These methods fall into two broad categories. The first category of saliency methods evaluate the

effect of small perturbations of the input on the output. These methods rely on the the gradient

of the DNN’s output w.r.t. its input, which can be computed efficiently through a method called

back-propagation—the iterative calculation of the gradient, layer-by-layer from the network’s out-

put to its input, avoiding redundant terms from the naive application of the chain rule [294, 70].

We selected two gradient-based methods whose interpretation for linear models is straightforward:
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• Gradient: computes the gradient of the output neurons w.r.t. the values of the input pixels,

S (G) = mM
mG

. This measures the sensitivity of the output to the input, and for a linear model

is equivalent to the regression coefficients.

• Input×gradient: computes the element-wise product of the input and the gradient of the

output w.r.t. the input pixels, S (G) = G� mM
mG

. For a linear model, it measures the contribution

of the pixel to the output.

Other gradient-based methods exist, such as Smoothgrad [292] or Integrated gradients [295],

but we did not study these methods due to their significantly higher computational cost. We in-

spected their effect on a small subset of input maps, and the results were qualitatively very similar

to those of the Gradient and Input×gradient methods.

The second category of saliency methods tries to distribute the network’s output among the

neurons of the second-to-last layer. The amount allocated to each neuron, interpreted as a relevance

measure, is propagated iteratively through the network, back to the input space. We selected the

following propagation-based methods:

• Guided backpropagation: masks out negative gradients and negative activations when

back-propagating the gradient of the output w.r.t. the input [88].

• Deconvnet: uses a deconvolution network [296],M−1, built on top of the DNN architecture.

To compute the saliency map corresponding to the input G, the feature maps { 5 8} for each

layer 8 in the model M, are fed as inputs to the deconvolution network’s layers. At each

stage of the propagation throughM−1, intermediate representations are unpooled, rectified,

and filtered, until pixel space is reached [87].

• Deep Taylor decomposition: distributes the relevance of neurons among its preceding layer

by approximating the layer’s function with a first order Taylor expansion [290].

• Layer-wise relevance propagation (LRP): distributes the relevance of neurons among its

preceding layer taking into consideration the weights that define the layer. We considered
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two different rules that are common in the literature. The first one, LRP-n uses as rule to

propagate the relevance: '8 =
∑
9

08F8 9
n+∑8 08F8 9

' 9 , where 08 is the activation of neuron 8, F8 9 the

weight connecting neuron 9 to neuron 8, the relevances ' are the layer’s output, and n absorbs

weak or contradictory contributions to the activations. For ReLU-based networks [85], n = 0

renders this method equivalent to Intput×gradient. We chose n = 10−3, for larger values

resulted in saliency maps indistinguishable from random noise. The second rule, LRP-UV,

propagates the relevance according to: '8 =
∑
9

(
U
(08F8 9)+∑
8 (08F8 9)+ − V

(08F8 9)−∑
8 (08F8 9)−

)
' 9 , where ()+

and ()− refer to positive and negative contributions. We used U = 1 and V = 1, a popular

choice that renders this method equivalent to the Excitation Backprop method [79]. We

also validated that our results do not change qualitatively when the parameters U and V are

modified slightly.

We applied the same method to all the layers in the DNN under study.

7.4.1 Method comparison and selection

The column labeled “Trained model” in Fig. 7.3 shows the result of applying the different

saliency methods to the same input map (shown in the left-most column labeled “Input”). As an

illustration, we show the effect on a small 0.68 × 0.68 deg2 path from a larger 3.5 × 3.5 deg2 ^

map from the fiducial cosmology, but other regions and maps show the same characteristics. Also,

for simplicity, all figures in this manuscript are built using the output of the DNN neuron that

encodes its predictions for Ω<, but we have found identical conclusions when using the neuron

corresponding to f8. To compute the saliency maps, we used the publicly available Python library

iNNvestigate [297].

Visual inspection shows that the saliency maps from different methods can be qualitatively very

different. Three of the propagation-based methods (Guided backpropagation, Deep Taylor decom-

position and LRP-UV) show a clear correlation with structures in the input map, assigning high

relevance to high ^ regions, such as those around lensing peaks. The two gradient-based methods

exhibit a more subtle correlation in which high-^ regions have relatively low relevance, and high-
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relevance peaks are instead associated with low-^ regions around local minima of the input maps.

The LRP-n map is very similar to the Input×gradient map. We attribute this to the small n used

(in the limit of n = 0 the two methods are equivalent for our network architecture). Finally, the

Deconvnet map exhibits some checkerboard artifacts, likely induced by the deconvolution scheme

used [298], and little correlation with the input ^ field.

Clearly, the different saliency methods provide very different answers to the basic question of

"which input pixels are more relevant" to the DNNs output. It is therefore important to find a cri-

terion to choose the method(s) most appropriate to interpret the model in the present context. Past

work has shown that some saliency methods lack robustness [299, 300], and could be inappropri-

ate for our combination of data and model. To assess the robustness of each method, we performed

a model parameter randomization test, following the tests performed in [89]. For each method,

we computed saliency maps not only on the trained DNN, but also on the models that result from

randomizing the networks’ parameters. We performed this randomization incrementally, starting

with only the output layer, all the way to the first convolutional layer. Methods that yield saliency

maps that are insensitive to these randomizations fail the test, as the structures in these saliency

maps cannot then stem from features the DNN has learned during training.

As an illustration, the third and fourth columns of Fig. 7.3 (labeled “Last layer randomized” and

“All layers randomized”) show the saliency maps computed on the model after randomizing the

weights of the output layer, and the weights of all the layers, respectively. Visually, the gradient-

based methods (and LRP-n) are very sensitive to the model’s parameters, while propagation-based

methods exhibit strong correlations between the saliency map computed on the trained and the

random model.

To quantify the similarity between the saliency map computed from the model and from the

model with all the layers randomized, we computed three measurements of association between

both maps: the Pearson’s r, Spearman rank-order correlation coefficient, and Kendall’s g, reported

in Table 7.4.1. For all three measurements, the null hypothesis is that there is no relationship

(or correlation) between the two maps. The only methods for which the null hypothesis cannot be
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Figure 7.3: Examples of saliency maps for the output neuron of the DNN that encodes the parame-
terΩ<. The left-most column (‘’Input”) shows a small region (100×100 pixels, or 0.68×0.68 deg2)
of a 3.5 × 3.5 deg2 ^ map from the fiducial cosmology. The second column (‘’Trained model”)
shows the region of the saliency maps that corresponds to the region of the input map on the left.
The third column (‘’Last layer randomized”) shows the same saliency map as the second column,
computed on the fully trained model after randomizing the weights of the last (output) layer. The
right-most column (“All layers randomized”) shows the same saliency map as columns 2-3, com-
puted on a model where all the weights are randomized. Each row corresponds to a different
saliency method. The scales for each image are omitted for clarity, since they do not influence the
conclusions.
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Correlation measurement
Pearson Spearman Kendall

Saliency method Coefficient p-value Coefficient p-value Coefficient p-value
Gradient -0.002 0.205 -0.001 0.527 -0.001 0.578
Input×gradient -0.003 0.119 -0.000 0.944 0.000 0.785
Guided backpropagation 0.152 0.000 -0.025 0.000 -0.018 0.000
Deconvnet -0.731 0.000 -0.675 0.000 -0.505 0.000
Deep Taylor decomposition 0.882 0.000 0.989 0.000 0.912 0.000
LRP-n -0.011 0.000 -0.004 0.031 -0.003 0.024
LRT-UV 0.463 0.000 0.173 0.000 0.115 0.000

Table 7.2: Correlation measurements between the saliency maps computed from the fitted DNN,
and the same architecture with all the parameters randomized (see columns labelled ‘’Trained
model” and ‘’All layers randomized” in Fig. 7.3). For all three tests (Pearson, Spearman, and
Kendall), the null hypotesis is that there is no relationship between both saliency maps. P-values
are two-sided.

rejected at high significance for all the three tests are the gradient-based methods. This is consistent

with a past analysis of Guided backprop and Deconvnet [301]. Thus, in the rest of this paper, we

will use the Gradient and the Input×gradient saliency maps to interpret the DNN.

7.4.2 Mapping attributions back to physical space

We used the Gradient and Input×gradient methods to analyze the distribution of the relevance

for the DNN output, as a function of ^. For each saliency map in our data set, we measured

sum of the square of the pixel values (to avoid cancellations by gradients or inputs of different

sign) for the pixels within a given range of ^ values in the input map. We selected 20 linear bins

with ^ ∈ [−0.029, 0.0587], or ^ ∈ [−2.5, 5.0] in units of the ^ r.m.s. for the fiducial cosmology

{Ω< = 0.260, f8 = 0.800}. This measurement gives an estimate of the distribution of relevance

in input space as a function of ^. We also measured the average relevance per pixel in each ^

bin. These two measurements, for each of the 101 cosmologies in the data set, are displayed in

Fig. 7.4. The color of each line corresponds to the value of (8 = f8

(
Ω<
0.3

)0.6
in each cosmology;

this is approximately the best-measured combination, orthogonal to the direction of the degeneracy

between the parameters Ω< and f8.
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Figure 7.4: Upper panels: sum of the square of the pixel values in saliency maps as a function
of ^ in the corresponding input maps. Each line is the test maps’ average for one of the 101
cosmologies. Lower panels: same as upper panels, divided by the number of pixels in each ^
bin, giving the mean saliency2 per pixel as a function of ^. Left panels correspond to saliency
maps computed using the Gradient method, and right panels to saliency maps computed using the

Input×gradient method. Each line is colored based on the value of (8 = f8

(
Ω<
0.3

)0.6
.

The most relevant pixels, according to both gradient-based saliency methods, are those with

extreme ^ values. Those at the negative tail of the ^ distribution are more relevant than those at

the positive tail (see panels in the lower row of Fig. 7.4). These pixels are rare, and the most

relevant ^ regions are shifted towards the center of the distribution (see panels in the upper row

of Fig. 7.4). Most of the relevance ends up being concentrated in regions with negative ^. These

regions account for 89% of the sum of the squared pixel values in the Gradient saliency maps, and

86% in the Input×gradient saliency maps. We note that the drop in relevance around ^ = 0 in the

results from the Input×gradient method is an artifact due to the zero input.
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7.5 Discussion and conclusions

In this study, we analyzed in detail a deep learning model that has been shown in previous work

to learn cosmological parameters from simulated noiseless WL maps smoothed at an angular scale

of 1 arcmin. Our aim was to understand which features in the simulated WL maps are used by

the model to derive its predictions. First, we compared its performance with a suite of statistics

commonly used in the WL community, individually and in combination, and evaluated the cor-

relations between the DNN output, those statistics, and their linear combination that best fits the

DNN output. Second, we borrowed a series of saliency methods from the field of image recogni-

tion and applied them to the DNN trained on simulated WL maps. We tested each method, and

selected those that passed a null test of robustness, showing that they are sensitive to the learned

weights of the DNN model, and are not directly derivable from the input maps. Finally, we used

these methods to identify which pixels in simulated WL maps does the DNN use preferentially to

discriminate between cosmological parameters. Our key findings are the following:

• We generated a new suite of 100 simulations to measure accurately the covariance of the

combination of five WL statistics (the power spectrum, lensing peaks, and three Minkowski

functionals). Found that for noiseless, single-redshift simulated maps at 1 arcmin resolution,

the third Minkowski functional, V2 is by far the most sensitive to cosmology.

• The DNN can extract information not accessible through a combination of the power spec-

trum, lensing peaks, and Minkowski functionals. The addition of the DNN to those statistics

reduces the credible region on the cosmological parameters of interest by 20%.

• The DNN predictions are not highly correlated with the alternative statistics considered, nor

can be reproduced using a linear combination of them.

• Saliency methods based on the back-propagation of the DNN output to input space were

found to fail a simple robustness test: they are not sensitive to the values of the parameters

that define the DNN. As a result, while (some) can provide attractive explanations in the

182



form of attribution maps that highlight structures present in the input data, they do not tell

which features are learned by the model.

• Gradient-based methods are sensitive to the parameters learned by the model, and as a result

they are safe to use to interpret which features the DNN learns from the data. Another

advantage of these methods is that their interpretation, for linear models, is straightforward:

they correspond to regression coefficients or measure the contribution of each pixel to the

output.

• Gradient-based methods show that the most relevant pixels for the DNN are those with ex-

treme values, at the tails of the ^ distribution. Negative ^ pixels are more relevant than

positive ^ pixels, and when the number of pixels is taken into account, most of the relevance

for the model output lies in regions with ^ < 0 (86-89%).

The last conclusion is potentially our most astrophysically relevant result. Our analysis is based

on simplified, single-redshift, noise-free simulated lensing maps, and neglect any systematic errors,

and must be followed up with work addressing these aspects. If indeed negative ^ regions provide

the bulk of the cosmological sensitivity, this would have implications for the analysis of large

future WL datasets. One encouraging aspect of this finding is that large voids, accounting for these

demagnified / underdense regions, have been shown to be less affected by baryonic physics, which

are hard to capture accurately in simulations of growth of structure [38, 39]. On the other hand,

these regions have been shown to be sensitive to neutrino physics and modified gravity theories

[35, 36, 37].
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Chapter 8: Conclusions and future work

Weak lensing as a cosmological probe is on the verge of a qualitative jump as Stage-IV exper-

iments come online. In order to realize its full potential, it is critical to extract all the information

encoded in the billions of galaxy shapes that will be measured. Doing so will require efficient

statistics that can extract non-Gaussian information encoded on small, ∼ 0A2<8= scales, and for-

ward models capable of predicting those statistics accurately for a wide range of cosmological

models. In this thesis work we set out to address a few of the many aspects of this problem that

need to be understood to facilitate this. As a conclusion, we summarize the key results presented

in the previous chapters, and discuss possible future extensions of this work.

8.1 Summary of results

In Chapter 2, we showed how the sensitivity of non-Gaussian observables to geometry and

growth have opposing signs, somewhat reducing their overall sensitivity to Ω< (for which growth

dominates) and F (for which geometry dominates). Despite that partial cancellation, both effects

help alleviate the degeneracy of WL measurements to these two parameters. The reduction in

sensitivity can reach a factor of ≈ 3 for F and just ≈ 1.5 for Ω<, and the bispectrum is more

affected than lensing peaks or Minkowski functionals.

In Chapter 3 we assessed the performance of a proposed fast emulator for lensing peak counts

based on the halo model (CAMELUS), and found that it derives most of its sensitivity to cosmology

from higher significance peaks than full simulations of ^ maps. It over-estimates counts on the

tails of the distribution, and under-estimates the covariance matrix by ≈ 30%, yielding optimistic

parameter constraints. We suggested changes to take into account the spatial correlation in the

position of halos for an upgraded version of the emulator.
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As the numerical simulations needed to accurately predict non-Gaussian observables are com-

putationally expensive, we reviewed in Chapter 4 what the minimal requirements would be for an

LSST-like survey and for a suite of commonly used WL statistics: the power spectrum, the one-

point probability density function, lensing peaks, and Minkowski functionals. We found that the

total computational cost can be reduced by an order of magnitude lowering the mass resolution

from a typical value of 9 × 1010ℎ−1 "� to 7 × 1011ℎ−1 "�. Trying to increase the number of

pseudo-independent WL maps recycled from each N-body simulation reducing the thickness of

the lensing planes used to build past light cones is not advisable, for below 60ℎ−1 Mpc the loss of

power due to the finite planes’ window function affects the accuracy of non-Gaussian statistics.

In Chapter 5 we propose to use the signal imprinted in the CMB by the rotation of galaxies’

ionized gaseous envelopes (rotational kinetic SZ effect) as an additional observation to constrain

the baryon distribution on scales . 1 Mpc. Stacked analyses of a few 100’s of deg2 with complete

information of galaxy spins, over CMB maps with ≈ 1.5 arcmin resolution, should be enough to

statistically detect this effect. Constraining the baryonic matter distribution on this scales is critical

to accurately model the WL signal at the ∼ 1 arcmin resolution reached by upcoming experiments.

In Chapter 6 we show for the first time that DNNs can be trained on simulated WL data to

extract information not accessible to some statistics currently used to analyze survey data (power

spectrum and lensing peaks). Under idealized conditions, DNNs can yield constraints up to ap-

proximately five times tighter than two-point statistics, providing a lower bound on the amount of

non-Gaussian information encoded in WL data sets.

Finally, in Chapter 7, we prove that DNNs are not only competitive just with individual non-

Gaussian statistics, but also with combinations of them. We demonstrate how back-propagation

based saliency methods are not appropriate to interpret the output of neural networks trained on

WL data. Gradient-based methods show how, at least for noiseless data and a high-performing

DNN, pixels with extreme ^ values are the most relevant to the network’s output. On aggregate,

regions with negative ^ are the most relevant. This is a potentially encouraging result, because

these regions trace cosmic voids, which are robust to systematic effects from baryonic physics,
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and sensitive to modified gravity models.

8.2 Future work

Looking forward, it is possible to build upon several of the lines of work presented in this

thesis. While DNNs have already been used in the context of survey data, in order to rely on

their results, we need a transparent understanding of how their output depends on the underlying

physical model of the data, and a better characterization of how their output is affected by the

presence of systematics in the data. Using likelihood-free methods on the output of DNNs could

serve as a fully non-parametric inference scheme from pixels to cosmological parameters. There is

still room for exploring which network architectures work best with WL data sets (based on their

symmetries, noise and masking properties, etc.).

The development of fast, accurate emulators for specific non-Gaussian statistics will facilitate

the analysis of the measurements from future surveys. Existing models such as CAMELUS can

be modified for this purpose. Ultimately, we need to address the theoretical limitations of current

models predicting the spatial distribution of matter on small scales, including baryons. The work

presented on the rotational kSZ effect can be extended, applying it to ongoing and upcoming CMB

experiments, and using hydrodynamical simulations, instead of analytic models, to interpret the

signal. Any future detection can be combined with measurements of the kinematic and thermal

SZ effects, as well as measurements of the X-ray and UV emission to characterize the detailed

distribution of baryons around galaxies.
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Appendix A: Gaussian likelihood approximation

One way to assess how valid the Gaussian approximation is for the likelihood of a given observ-

able is to estimate its probability density function (PDF) from our simulations without assuming

any specific functional form. A non-parametric method to do that estimation is the Kernel Density

Estimator (KDE). The main challenge to apply this approach to lensing peaks is how to achieve a

density estimator in a high dimensional space with a limited number of independent vectors (512

per model).

We performed an analysis with noisy data within the framework of a different study, that sup-

ports that a Gaussian likelihood is not a bad approximation for lensing peaks. The dataset corre-

sponds to the same cosmologies used for this study, and the convergence maps have been smoothed

with a characteristic scale of 1 arcmin, but they also have an ellipticity noise of fn = 0.4 present.

To reduce the dimensionality of the observable, we performed an Independent Component Analy-

sis (ICA) [302, 303]. This method provides the directions that maximize negative entropy, which

can be interpreted as the directions in which the data is less Gaussian. As a pre-processing step, we

whitened the data (i.e. we removed its mean and normalized its covariance), and then we projected

the whitened data into the 9 directions found following ICA. We then used a KDE to estimate the

PDF of the resulting data. While we found some non-Gaussianities, specially for peak counts cor-

responding to high significance, the effect on the likelihood (and corresponding credible contours)

is limited.

As an illustration, in Fig. A.1 we show the difference in credible contours obtained from a

Gaussian likelihood from those obtained using a KDE. We display only the contours derived us-

ing only peaks with a signal-to-noise greater than 3. These are the peaks for which the non-

Gaussianities are the most pronounced, and yet the contours obtained with both methods are com-

parable. Using a model to predict peak counts that does not rely on N-body simulations, [170] also
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Figure A.1: Credible contours for {Ω<, f8, Σ8} from lensing peak counts on noisy ^ maps. Filled
contours correspond to a Gaussian likelihood, and solid lines to contours corresponding to KDE
estimates.

found that a Gaussian likelihood is a good approximation (to ∼10%) for lensing peaks.

To analyze whether a Gaussian distribution is a good approximation for the {Ω<, f8} predic-

tions from the neural network we used a modification of the Kolmogorov-Smirnoff test that can be

applied to two-dimensional distributions [304]. For each model, we computed the mean and co-

variance from the predictions for the test maps. Then, we tested the predictions against a Gaussian

distribution defined by the estimated mean and covariance.

The null hypothesis, that there is no statistical difference between the distribution of our em-

pirical samples (neural network predictions) and a Gaussian, cannot be rejected with a confidence
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of 99% except for 2 models which are far from the fiducial, {Ω< = 0.450, f8 = 0.200} and

{Ω< = 0.452, f8 = 0.454}. We conclude that a Gaussian likelihood is a reasonable approximation

for the predictions from the neural network.
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Appendix B: Sensitivity of results to interpolation

To assess how sensitive our results were to the models sampled from the parameter space

{Ω<, f8}, we trained an additional network on the same un-smoothed ^ maps but removing the

model {Ω< = 0.261, f8 = 0.802} from the training data set. When fed the test maps for that

cosmology, the network that was not exposed to it during training yielded somewhat different pre-

dictions than the network which had seen maps from that model during training. The differences

in the mean prediction were very small, with a shift of −1.0% in Ω< and −0.1% in f8. The change

in scatter is more significant, the standard deviation in the predictions for Ω< increasing by 80.8%

and that for the f8 predictions by 12.2%. The larger degradation for Ω< may be related with the

fact that the network’s architecture seems to have greater difficulty in distinguishing between mod-

els that differ in that parameter, as was shown in § 6.4 for both GRFs and smoothed convergence

maps.

While this sensitivity to interpolation highlights how relevant a well-sampled training data set is

for proper generalization by the network’s architecture, we are mostly concerned about how inter-

polation errors propagate into the inferred parameters’ constraints. That effect is small, as Fig. B.1

shows. The credible contours inferred from the predictions by both networks barely change, and

the same applies to the marginal distributions inferred for both Ω< and f8. We show the contours

computed for the worst-case scenario, that is, when the model missing from the training data-set is

the “true" cosmology.

The small change in the parameter constraints’ from both networks indicate that our main

conclusions would not change with a different sampling of the parameter space. Besides, as the

priors on our cosmological parameters improve with new experiments, the parameter volume to

be explored will shrink and the number of models that need to be simulated to sample that space

properly will also decrease.
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Figure B.1: 68% and 95% credible contours for un-smoothed (≈ 0.2 arcmin/pixel) ^ maps, derived
from two neural networks with the same architecture: the original one trained on all 96 cosmolo-
gies (red) and another one for which the model {Ω< = 0.261, f8 = 0.802} was excluded (grey).
The assumed true value ({Ω< = 0.261, f8 = 0.802}) is indicated by black dotted lines. The upper
and right panels show the marginal distribution for Ω< and f8, respectively.
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Appendix C: Impact of filter misalignment and centering errors.

Even in the absence of noise, the true temperature dipole induced by the rkSZ effect can differ

from the one measured for any given galaxy. A centering error in the aperture filter described in

§ 5.3.1, and/or a misalignment between the filter’s axis and the galaxy’s projected spin vector, will

suppress the measured dipole. The same applies when convolving a matched filter with the CMB

data. While for a single galaxy the maximum response to the matched filter localizes the center of

the galaxy’s halo, when stacking the data for many noise-dominated galaxies, their center needs to

be chosen a priori.

To assess the sensitivity of these filters to these errors, we computed the mean response of the

filter according to Eq. 5.19, assuming that the centering offsets and misalignments both follow

zero-mean, normal distributions:

〈B〉\ =
2

√
2cf\

∫ ∞

0
d\ exp

[
− \2

2f2
\

]
B(\), (C.1)
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2 + H2

2f2
GH

]
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We show in Fig. C.1 the mean effect on the measured signal (dipole for the aperture filter and

maximum correlation for matched filter) of a filter decentering and misalignment for three galaxies

of different mass, the two different atmosphere models described in S 5.2, and three different CMB

experiment configurations.

The sensitivity of both filters to errors in the galaxies’ spin angle estimation is similar, and does

not depend strongly on the beam resolution of the CMB experiment (see lower panels of Fig. C.1).

Even with misalignment errors with FWHM=90 deg, the signal measured by the filters will be

suppressed by less than 30% relative to its true value, regardless of the galaxies’ mass, the CMB
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beam resolution and the galactic atmosphere model used to predict the signal.

The sensitivity to a filter decentering is strongly dependent on the resolution of the CMB ex-

periments, the matched filter being slightly more robust than the aperture filter, in particular for

high-resolution CMB experiments such as CMB-S4 (1 arcmin beam). Still, for the worse case

scenario, which corresponds to a high resolution experiment using an aperture filter and galaxy at-

mospheres that follow a hot fast rotator model, a decentering error with a FWHM=0.2 'vir (which

corresponds to ∼ 1 arcmin for a MaNGA-like survey, or the halo center falling outside of the

galaxy) suppresses the measured signal by less than 40%.
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Figure C.1: Mean suppression in the measured rkSZ signal due to decentering relative to the halo
position and to misalignment relative to the galaxy’s projected spin angle. Color indicates whether
the rkSZ signal corresponds to that of a hot, fast or cold, slow rotator. The intensity of the color
indicates a different CMB experiment configuration (Planck for strong color, CMB-S4 for the
faintest color and ACT for the intermediate intensity). Finally, the type of line used indicates the
mass of the galaxy. Upper panels: Effect of a Gaussian error in the position of the filter, relative to
the halo’s center, as a function of the error’s FWHM in units of the virial radius. On the left, effect
for an aperture filter measuring the signal’s dipole. On the right, effect for the measured correlation
of a matched filter and the signal at the estimated (erroneous) halo center. Lower panels: Effect
of a Gaussian error in the orientation of the filter axis relative to the galaxy’s projected spin vector,
as a function of the error’s FWHM in degrees. As in the upper panels, on the left the effect for the
aperture filter is displayed and on the right, for the matched filter.
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Appendix D: Variance of aperture filter dipole measurements

Following [237], we can estimate the variance of a dipole measured over an aperture. For any

given galaxy, the dipole measurement is B = Δ)' − Δ) ! , where Δ)' is the mean temperature

anisotropy measured within the right half of the aperture and Δ) ! the same within the left half of

the aperture. The CMB anisotropies have rotational symmetry, and the variance on the measured

signal induced by them is given by Eqs. 5.13 and 5.14.

The window function used in this study is a semi-circle centered on each galaxy of radius 0

in units of the its host halo’s virial radius projected on the sky. This choice of window function is

not circularly symmetric and it can be thought of the product of a top hat and a rectangular filter,

, (G, H) = ,1(G, H),2(G, H),

,1(G, H) =


1
c02 if G2 + H2 ≤ 02

0 otherwise
(D.1)

,2(G, H) =


1 if |H | ≤ 0 ∧ G ≤ 0 ∧ G ≥ 0

0 otherwise
(D.2)

for a right aperture. For a left aperture,,2 is displaced by 0 to the left of the G-axis. The resulting

half circle’s window form, as a function of ℓ ≡ (ℓG , ℓH) is ,̃ = ,̃1 ∗ ,̃2, or

,̃ (ℓ) = 8
0ℓ
�1 (0ℓ) ∗

sin
(
0ℓG
2

)
sin

(
0ℓH

)
ℓGℓH

exp
[
∓i
0ℓG

2

]
, (D.3)

here �1 is the Bessel function of first kind, ∗ represents a convolution, the negative sign on the

exponential corresponds to the right aperture and the positive sign to the left aperture. We assume
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a Gaussian beam function which depends on the CMB experiment’s beam’s full width at half

maximum (FWHM), 1ℓ = exp
[
−�,�"2

16 ln 2 ℓ(ℓ + 1)
]
. The power spectrum �ℓ includes that of the

CMB and any contributions of instrumental noise.
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Appendix E: Selecting galaxies from MaNGA for stacking.

We selected a set of galaxies for stacking by combining information from the MaNGA DRPALL

catalog with two value-added catalogs from SDSS DR15: the MaNGA Morphology Deep Learning

DR15 and the GEMA-VAC, see § 5.5 for a brief description of them. The starting point are the 4,690

records with information in DRPALL. Removing all records flagged with potential quality issues

reduces the initial number to 4,196 (see https://www.sdss.org/dr15/algorithms/

bitmasks/ for a description of the bitmask used in the drp3qual field).

We removed objects with more than one observation, that is, duplicates in the mangaid field.

There are 4,093 un-flagged objects with unique observations. Only objects in one of the three

science target samples were considered, bringing the total number to 3,939. We computed their

projected spin angle as described in § 5.5.3, and removed those galaxies for which such a calcula-

tion yielded numerical errors, keeping 3,931 galaxies.

A key assumption in the analysis of Planck data on MaNGA galaxies is that the spin of the

outer gaseous halo is aligned with that of the inner regions, which are the ones probed by MaNGA

IFU spectrographs. We deemed this assumption more likely if the inner kinematics probed by

different tracers are consistent with each other. To test for consistency, we also computed the spin

angle using the HU line (6,564 Å). We modeled the difference between this angle and the one from

the O II line by a random variable whose pdf is a combination of a (zero mean) Gaussian and a

uniform distributions, as is shown on Fig. E.1. The rationale for this choice is that, while most

galaxies show a high correlation between spins estimated with different emission lines, some show

little or no correlation. We calculated the best fit values for the Gaussian width and the uniform

distribution height, and used the former to discard galaxies for which the difference between the

spin angle estimated from O II and that from HU exceeds five standard deviations of the Gaussian

component. The standard deviation that maximizes the likelihood of our data is 1.8 deg (although
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Figure E.1: Histogram showing the difference between the spin angle computed using the �U line
and the angle derived from O II (average of both O II lines). A mixture model with a Gaussian and
a uniform component is a poor fit (indicated by the fat tails). To compensate for the badness of fit,
we apply a 5f cut to identify outliers.

the fit is not good, see Fig. E.1), which indicates a very tight correlation between the spin angle

measured using HU and O II. If that standard deviation is representative of the true uncertainty on

the spin angle, our measurements will not be severely affected by errors in the spin angle estimation

(see Appendix C). A visual inspection of some of the outliers showed that they were either galaxies

with a complex velocity field (i.e. no clear overall rotation pattern) or face-on systems that would

contribute little to a rkSZ measurement. Removing the outliers shrank our stacking sample to 2,901

galaxies.

Adding morphological information allowed us to reject galaxies with a high probability of

being interactive systems (P_MERG>0.95). This was motivated by the fact that the kinematics of

the outer regions of interacting systems can be perturbed to the point of having little correlation

with the inner kinematics probed by MaNGA. This further reduced the size of our stacking sample
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to a final number of 2,664 galaxies.
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