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Abstract

Structural damage assessment through parametric

and nonparametric models

Marcello Morgantini

The main purpose of Structural Health Monitoring (SHM) is the assessment of structural

conditions in aerospace, mechanical and civil systems. In structural engineering, damage is

defined as any permanent change in the structural and geometric properties of a system caused

by an external action. Vibration-based damage assessment methods rely on the use of sensors

that record the structural dynamic response of a system that is determined by its structural and

geometric properties. External disturbances and environmental conditions in which the system

operates cause fluctuations of these properties and might hide the change in signature induced

by damage. To handle the uncertainties in the determination of the structure’s characteristics,

a statistical pattern recognition approach is presented in this thesis. Any statistical approach

relies on the statistics of some features that provide a compact representation of the structural

properties and that are sensitive to damage. Such features are called damage sensitive features

and are extracted from the dynamic response of the structure: their statistical distribution is

then analyzed to assess the occurrence of damage. This dissertation focuses on the analysis of

the statistical distribution of damage sensitive features which are extracted through parametric

and nonparametric algorithms. Cepstral coefficients are features defined in the field of acoustics

and, in this thesis, they have been adapted to SHM analyses in order to develop compact damage

sensitive features whose extraction requires a low computational effort. In this thesis, cepstral

coefficients have been mathematically transformed through a Principal Component Analysis in

order to generate damage sensitive features that are barely sensitive to measurement noise, en-

vironmental conditions and different excitation sources. In an attempt to develop an automated

strategy for structural damage assessment, the search for damage sensitive features has been

extended to the estimation of structural mode characteristics obtained through an output-only

version of the Inner Product Vector methodology, e.g. considering only the structural response

time histories. This new damage assessment procedure requires low computational effort and



is capable to identify both the presence of damage and its location. However, one of the critical

points of the proposed procedure consists in the manual evaluation of the spectral content of

the dynamic responses that requires the user’s intervention. To automatize this procedure, a

Bayesian clustering algorithm and a classifier have been successfully implemented and tested.

Finally, the robustness of Bayesian regression algorithms to overfitting led us to consider their

applicability to the field of system identification in order to provide a reliable estimate of the

structural modal parameters that can be used as damage sensitive features. In fact, one of the

main problems of system identification algorithms is that they rely on a regression algorithm

that tends to overfit data producing unreliable results. Results provided by the Bayesian regres-

sion based system identification algorithm are obtained and compared with the ones coming

from standard system identification algorithms.
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Chapter 1

1. Introduction

1.1. Background

As our infrastructure system rapidly ages and deteriorates, maintenance and rehabilitation op-

erations constitute an increasingly large economic effort. These activities cannot be performed

daily for both logistic and economic reasons. In fact, direct visual inspections may often result

in costly and ineffective operations: unforecasted events may suddenly compromise the service

conditions of a structure and urgent repair may be needed (the waiting time before the next

scheduled inspection may result into a high risk factor). In addition, the outcomes of the in-

spections might be dependent on the experience and ability of the inspector, often resulting in

biased results. Nowadays, thanks to incredible advances in sensor and computer technologies,

monitoring techniques based on data acquired from sensors embedded in a structure not only

offer the advantage of reducing operational costs, but also guarantee a continuous and effec-

tive assessment of the structural condition. Among those techniques, vibration-based monitor-

ing methods and technologies allow engineers to gather data in real time and to assess online

whether a structure is damaged or not. Based on these experimental data, the development of

a mathematical model, which represents the structure in its current conditions, is the key for a

successful damage assessment analysis.

Assessing the structural condition and, eventually, the presence of damage has always been

a challenge in the Structural Health Monitoring (SHM) community [1, 2]. In the last few

decades, researchers have focused their efforts on the development of mathematical models

that accurately represent dynamic systems. The conventional design of such systems allows

us to define simple mathematical models that, however, present some drawbacks compared to

those models relying on experimental data [3]. In fact, the correct estimation of coefficients rep-

resentative of the material properties and of the structure’s geometry can result in a challenging

task. Furthermore, the structural properties may vary when the system is subjected to different

external conditions, so that the system itself might present different dynamic responses when

operating in different environmental conditions. One of the most advanced techniques for the

development of mathematical models is the Finite Element Method (FEM) which finds appli-

cations in several fields of engineering. The FEM consists in the analysis of a system which is
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divided into small and simple parts, the so called ’finite elements’, which are then reassembled

together by imposing equilibrium and compatibility. This procedure is addressed by a partic-

ular space discretization of the volume of the structure: a mesh of the system is created so to

generate a solution based on a finite number of points. The FEM represents one of the most

effective methods for the design of a model whose mechanical and geometric parameters are

set ’a priori’ (with no knowledge of experimental data). However, in real applications, these

parameters can be quite different from the initial selection and so, recently, efforts have been

made in the development of FEM models whose parameters can be estimated ’a posteriori’,

from data collected in the field. Model updating is an interesting area of SHM aiming to gen-

erate a mathematical model (usually an FEM model) to represent the dynamic characteristics

of the real system [4, 5] based on real time data that are employed to update the parameters

of the model (usually initialized ’a priori’) so that its response accurately reproduces the mea-

sured one. The variation of the model’s mechanical and geometric parameters is a key factor

for the damage assessment: in fact, the occurrence of damage can be inferred by looking at

changes in some physical parameters (e.g. a change in stiffness). However, there are some

issues that need to be addressed in a successful model updating strategy. First, the complexity

of the structure of interest impacts on the performance of the method: while model updating

algorithms work well with simple structural models, they become cumbersome when dealing

with more sophisticated models. Second, model updating strategies become hard to implement

when dealing with model’s nonlinearities. For these reasons, in the last few years, research in

SHM has been moving towards damage assessment strategies oriented to the development of

models that purely rely on the statistical analysis of experimental data.

1.2. Parametric and nonparametric models

Models representative of dynamic systems can be designed based on the system’s structural

properties and geometry and expressed in different forms: mass, damping and stiffness matri-

ces, state-space representation, transfer functions, etc. In structural dynamics, the definition of

a system through the equations of motion is one of the most common approaches due to the

simplicity in designing the parameters representing structural properties and geometries. The

structural response is obtained as the result of a set of differential equations whose parameters

(such as mass, stiffness, etc.) are representative of the system. Another representation of a dy-

namic system could be through state space models, which consist in a set of input, output and
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state variables linked together through first-order differential (or difference) equations. Thanks

to their mathematical simplicity and to the fact that they lend themselves to digital implemen-

tation, state space models are largely used in control engineering. A different representation

of a dynamic system, or of one of its components, is through the transfer functions which can

be intended as a function that generates dependent outputs from independent inputs. In struc-

tural dynamics, models defined by some parameters representing the structural and geometric

properties (e.g. mass, stiffenss, damping, state-space models, etc.) are referred to as parametric

models. On the contrary, models that define input-output relationships with no assumptions

about any structural information and that cannot be represented by specific parameters (e.g.

transfer functions) are called nonparametric models.

The distinction between parametric and nonparametric models finds its own definition in

the field of statistics [6]. Parametric models are based on some assumptions which can greatly

simplify the learning process of the model, but can also limit the accuracy of the estimated

parameters and the reliability of the model itself. Following the definition provided in [7], "a

learning model that summarizes data with a set of parameters of fixed size (independent of the

number of training examples) is called a parametric model. No matter how much data you

throw at a parametric model, it won’t change its mind about how many parameters it needs".

Algorithms that are able to create a parametric model of the system are called parametric algo-

rithms. These algorithms rely on two steps: 1) to define the form of the model to be estimated,

i.e. the parameters or features characterizing the model, 2) to estimate these features represent-

ing the model from data. An example of parametric models is given by the AutoRegressive

(AR) linear models which are usually used to represent a system supposed to be linear. Hence,

the first step of the parametric algorithm consists in the definition of a linear model and of the

number of coefficients to consider. Consequently, the second step focuses on the use of an

algorithm to estimate these coefficients. The main problem is that the real system under con-

sideration might not be linear and so the basic assumption of a linear model might lead to poor

identification results. Parametric algorithms are used to develop parametric models that are

easy to understand and that lead to results which are easily interpretable. Furthermore, com-

pared to other models, parametric models usually require low learning computational effort and

do not need large training datasets.

On the contrary, nonparametric methods allow us to develop nonparametric models without

making strong assumptions about the mapping function generating the parameters or features
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of the model. The mapping function is learnt based on the training dataset. "Nonparametric

methods are good when you have a lot of data and no prior knowledge, and when you don’t

want to worry too much about choosing just the right features." [7].

Principal component analysis (PCA) represents an example of nonparametric algorithms:

it creates a linear mapping function that allows to extract the features characterizing the model

from data. Other examples of nonparametric machine learning algorithms are k-nearest neigh-

bours (KNN), Decision trees and Support Vector Machines (SVM) [8, 9]. Generally, the ad-

vantages of nonparametric algorithms are that: 1) they can approximate different functional

forms, 2) they do not need strong assumptions about the model. On the other hand, compared

with parametric methods, they require large training datasets and more computational effort.

1.3. Statistical pattern recognition

Parametric and nonparametric models can also be analyzed in a pattern recognition framework.

Pattern recognition focuses on the discovery of regularities in data so that we can use these reg-

ularities to classify the data into different categories [10]. The objective of pattern recognition

is that of providing a compact representation of these regularities in data referred to as pat-

terns so that these patterns can be classified into categories. Pattern recognition consists of two

phases: a training phase and a test phase. During the training phase, patterns are extracted from

training data in order to provide a model associating patterns with the respective category. Dur-

ing the test phase, new patterns are extracted from the test dataset so that they can be classified

into the category (class) they belong to [11].

In SHM, pattern recognition approaches can be used to: 1) assess the presence of damage;

2) detect the location of damage; 3) quantify the severity of damage [1, 12]. Some patterns can

be identified from the structural dynamic response so to be representative of either the healthy

or damaged conditions of the structure. The structural conditions (healthy and damaged) can

be associated to two categories in which data are classified. If typical patterns for each of these

two categories can be learnt in the training phase, the pattern recognition procedure is referred

to as supervised pattern recognition. Contrarily, if patterns defining only one of these two

categories can be used to generate the training model, the pattern recognition procedure is called

unsupervised pattern recognition. In SHM of typical civil engineering structures, buildings and

bridges, unsupervised pattern recognition is certainly the most appealing of the two approaches

for two reasons. First, experimental datasets associated with the structural dynamic response in
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damaged conditions are rarely available. Second, despite datasets that represent the structure

in damaged conditions can be generated by a properly designed mathematical model, such a

model is likely to be inaccurate and the number of damage scenarios (representing the classes or

categories) associated to any possible simulated damage occurring in the structure too large for

an effective analysis. For these reasons, this thesis focuses on the application of unsupervised

pattern recognition approaches for damage identification.

In a damage assessment strategy based on pattern recognition, patterns are represented by

the behaviour of some features which are sensitive to damage and which play a major role in

the damage assessment process. These features, extracted directly from the recorded dynamic

structural response, are generally referred to as damage sensitive features [13, 14]. Accord-

ing to a pattern recognition approach, the variation of the damage sensitive features define the

classes of membership identified as healthy or damaged state, with damage commonly inter-

preted as any change of the structure’s geometry and/or material property [1]. It is important to

note that structural properties may also be swayed by other external factors (e.g.wind, tempera-

ture, traffic...) [15–19]. Whereas external disturbances have a temporary effect on the structural

response, a damage induced variation in the system’s dynamics yields an irreversible effect on

the response. Therefore, it becomes crucial to borrow tools from statistics to deal with the fluc-

tuations of structural characteristics induced by external disturbances during structural damage

assessment operations [2, 12, 20, 21]. In order to account for these uncertainties, the damage

sensitive features are considered as random variables characterized by a statistical distribution.

In this framework, the concept of statistical pattern recognition can be formulated as follows:

based on the statistical distribution of the damage sensitive features, a training statistical model

of the damage sensitive features can be defined and newly collected test features can be inves-

tigated through an outlier analysis. The objective of the outlier analysis is to state whether the

features extracted from the test dataset are likely to be realizations of the training model or not.

1.4. Parametric models and system identification

The development of parametric models representing the structural conditions constitutes a sig-

nificant part of this thesis. The analysis of the spectral structural response can lead to the

estimation of modal parameters defining the model representative of the structural conditions.

The recently developed Bayesian algorithms allow us to cluster and extract the structural modal

information directly from the spectral response, opening the door to the possibility of designing
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an effective and automatized algorithm for the extraction of the parameters characterizing the

model. Bayesian techniques are particularly appealing in various fields of engineering for their

robustness to overfitting.

Parametric models representing dynamic systems can be extracted through system identifi-

cation algorithms. The goal of system identification is that of developing a parametric model

representative of the dynamic system by using data collected in an experiment. The advantage

of such an approach consists in the fact that system identification methods are able to overcome

the difficulties associated with the assignment of the correct values of the structural parame-

ters. In fact, it can be difficult ’a priori’ to correctly estimate the coefficients representative of

the material properties and of the geometry of the structural system, especially because such

properties may vary when subjected to different external conditions. On the contrary, system

identification methods can provide an ’a posteriori’ estimation of the parameters of the struc-

ture in its operational conditions; however, since they fundamentally rely on regression models

there is the inevitable problem that they can overfit the data introducing some external uncer-

tainties in the definition of the model. This problem is addressed in the analysis conducted in

the last chapter of this thesis.

1.5. Research motivation

The work presented in this dissertation aims to the development of output-only damage as-

sessment algorithms able to assess the presence and location of structural damage. The entire

thesis focuses on the analysis of raw signals collected from the dynamic response of a structure

subjected to unknown input excitation sources. Although measurements of the input are never

considered, some assumptions on the type of excitation, which are commonly used in SHM,

have been made to account for rich output signals. In the theoretical formulations presented,

the input has been assumed as either unit pulse or Gaussian white noise (stationary and er-

godic process) so to excite the whole spectral content of the system’s dynamic response. Based

solely on the measured structural response, damage sensitive features have been extracted to

assess the presence of damage. Emphasis has been given to those techniques that can be set

in an automatized strategy work plan so to provide fast damage assessment and to minimize

the user’s intervention. As mentioned, it is common practice, in SHM, to extract the modal

parameters of a structure from the dynamic structural response and consider their permanent

variations as indicative of the presence of damage. For real applications, the correct estimation
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of the structural modal parameters may present several obstacles: 1) difficulties in the extrac-

tion of the modal parameters due to the complexity of the system, 2) biased estimation of the

modal parameters due to unrealistic assumptions at the base of the parametric model used, 3)

high computational effort, 4) fluctuation of the modal parameters due to environmental condi-

tions. Hence, the use of structural modal parameters (natural frequencies, mode shapes etc.) as

damage sensitive features in an automated damage assessment procedure is limited by the dif-

ficulties in the estimation of the parameters themselves. For this reason, new damage sensitive

features, the cepstral coefficients, have been introduced and investigated in this thesis.

Cepstral coefficients are features used in many fields of acoustics, in particular in the field

of speech and speaker recognition. The intuition about the connection between acoustic waves

and mechanical vibrations is the reason behind their application in an SHM context. Cepstral

coefficients represent a meeting point between the two fields: features originally developed

for the analysis of acoustic signals can be adapted to the structural dynamics domain. Hence,

part of the originality and innovation of this work is given by the analytical representation of

the cepstral coefficients expressed as function of the structural parameters. Analytical and nu-

merical investigations about the cepstral coefficient proved that they can be interpreted as the

sum of two terms, one which does not vary over the monitoring location (it is the same at any

monitored location) and another term which is characterized by the local dynamic response.

For this intrinsic characteristic, it has been proposed to manipulate the extracted cepstral co-

efficients through a PCA transformation so to extract a nonparametric model representative of

the common term, whose statistical variation has been used as damage indicator. Furthermore,

the nonparametric model developed through PCA has also been used to reduce the variance of

the identified damage sensitive features due to: 1) external disturbances, 2) different excitation

sources, 3) environmental conditions.

In this thesis, still within a framework of an automated damage assessment process, the

theory behind the Inner Product Vector (IPV) has been extended to the output-only analysis.

Originally though for an input-output process, the IPV-based damage assessment algorithm has

been shown able to detect the presence and location of damage. The IPV allows to extract

information about a specific structural mode through the cross-correlation of the monitored

acceleration response time histories of the structure at the various locations. In its original

formulation, the IPV requires a manual inspection of the frequency content of the structural

dynamic response so to recognize and isolate the spectral energy contribution of a specific
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mode before and after the occurrence of damage. In this framework, the user plays a major role

in the analysis. In order to reduce the dependence of the damage assessment algorithm perfor-

mance from the user expertise, an automatized version of the IPV method has been developed,

proposing a Bayesian clustering algorithm and a classifier that are able to automatically ex-

tract the information of a specific structural mode before and after the occurrence of damage.

This methodology represents a remarkable improvement, especially for those cases in which

the occurrence of damage causes new structural modes to contribute to the dynamic response

of the system and the identification of a specific mode before and after damage may result in a

challenging task.

Investigations about output-only strategies to develop damage assessment algorithms led us

to expand our analysis to system identification methods used for the extraction of parametric

models. Most of the current system identification methods rely on regression algorithms that

provide regression models from which the modal parameters, commonly used as damage sen-

sitive features, can be extracted. However, the performance of the regression model heavily

impacts on the results of the system identification algorithm. One of the main problems of re-

gression models is that they can lead to overfitting of data. On the contrary, Bayesian regression

models have been proven to be extremely robust to overfitting and, for this reason, a Bayesian

regression-based system identification algorithm has been developed and presented in the last

chapter of this thesis.

1.6. Thesis organization

This thesis focuses on the development of parametric and nonparametric models of structures

in an output-only context. These models are representative of the structural healthy condition

and any change of such a condition is analyzed in a statistical pattern recognition framework.

In chapter 2, the features referred to as ’cepstral coefficients’ are extracted from the structural

dynamic response time histories. The mathematical manipulation of these features leads to

the development of some damage sensitive features whose distribution defines a nonparametric

model which is indicative of some structural conditions. The presence of damage is assessed in

a novelty detection approach based on the outlier analysis. The goal of chapter 3 is that of de-

veloping an output-only cross-correlation based algorithm which is able to extract the structural

modal parameters defining a parametric model. The analysis of the model allows to assess the

occurrence of structural damage and to identify the structural damaged area(s). In chapter 4, a



Chapter 1 9

clustering Bayesian model has been developed so to automatize the extraction of the parametric

model defined by the structural modal parameters in chapter 3. Finally, chapter 5 introduces

the Output-only Observer/Kalman filter Identification algorithm (O3KID). As mentioned, the

conventional implementation of such an algorithm relies on an OLS regression. In this chapter,

a Bayesian regression model is used instead: the comparison between the modal parameters

extracted by applying the two regression methods is presented.
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Chapter 2

2. Structural damage assessment through features in quefrency domain

2.1. Introduction

Among all the possible features (e.g. natural frequencies, mode shapes, stiffness coefficients,

AutoRegressive (AR) coefficients, etc.), those extracted from the structural response time his-

tory through digital signal processing are certainly the most appealing for their extraction com-

putational efficiency and for the low level of required user expertise. However, when using

such ’data based’ features, the intuitive physical relationship to the structural properties such as

natural frequencies and mode shapes is lost and damage assessment operation becomes more

challenging. One of such ’data based’ features are the power cepstrum coefficients, obtained

from the time history of the structural response simply by taking the Inverse Discrete Fourier

Transform (IDFT) of the logarithm of the squared magnitude of the Discrete Fourier Trans-

form (DFT) of the signal. The power cepstrum was introduced in 1963 at Bell’s Laboratory by

Bogert et al. in an attempt to coin a method able to identify the presence of an echo in a sound

signal [22]. Almost contemporary to the work of Bogert and coworkers and independently

from the Bell’s Laboratory group, in 1965 Oppenheim [23] proposed the complex cepstrum,

i.e. the IDFT of the logarithm of the DFT of the signal. An important field of application of

complex cepstrum analysis is fault diagnosis of gearbox systems. By noting that the DFT is a

particular case of the z-transform, in [23] Oppenheim and Schafer gave a representation of the

cepstrum in terms of the poles and zeros of the transfer function of multi-degrees of freedom

mechanical systems. Such representation was exploited by Randall and Gao in [24] to recover

poles and zeros of the Frequency Response Function of a beam from its response autospectra,

by curve-fitting the analytical expression of the complex cepstrum with the cepstrum given in

[23], extracted from the measured response itself. In [25], Gao and Randall proposed another

method to identify poles and zeros of the transfer function by exploiting again the analyti-

cal expression of the complex cepstrum given in [23], in combination with the Ibrahim Time

Domain method. Finally Tigli, in [26], extended the method proposed in [25] to the case of

multiple input sources. The use of cepstrum-based features in structural damage assessment

can be attributed to the work by Zhang et al. [27] in a study on the delamination of concrete

bridge decks: there, they used mel-frequency cepstral coefficients (MFCCs) to investigate the
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bridge deck acoustic response to ultrasonic pulses. In 2013, Balsamo et al. [13, 28] proposed

a structural health monitoring strategy based on a novelty detection analysis of the MFCC us-

ing the vibrational response of buildings and bridges. In this study, the power spectrum of

the acceleration response time histories was filtered though a triangular filter bank and the in-

verse discrete cosine transform (IDCT) was used to extract features consisting of uncorrelated

MFCCs. The statistical distribution of those features was then analyzed for damage assessment

purpose in a novelty detection approach. In 2019, Randall et al. [29] reaffirmed the potential of

cepstrum-based features in structural dynamics to extract structural modal models and remove

excitation components from the structural response time histories. In late 2019, Civera et al.

[30] investigated the Teager-Kaiser Energy Cepstral Coefficients (TECCs) as an alternative to

the MFCCs.

Once these cepstrum-based features become available, they can be statistically analyzed so

to recognize their pattern. One way to do so is to reduce the dimensionality of such features

emphasizing those that have, for example, the maximum variance. Among such techniques of

dimensionality reduction, PCA, introduced by Karl Pearson in 1910 and developed and named

by Harold Hotelling in the 1930s, is still at the core of modern statistical analysis algorithms

and widely used in vibration-based damage assessment methods. Over the past years, PCA has

found applications in structural vibrations for reduced-order modeling [31, 32], modal analysis

[33], parameter identification and model updating of nonlinear systems [34] and in eliminating

environmental effects in damage detection [35–37]. In addition, taking advantage of its ability

in reducing model dimensions, PCA has also been used for the extraction of low-dimensional

uncorrelated cepstrum-based features. An example is the work by Dackermann et al. [38]

who analyzed progressive structural damage scenarios by training an Artificial Neural Network

(ANN) through cepstral features. To reduce the dimensionality of those features and break their

correlation to each other, a PCA was conducted before training the ANN.

The objective of this chapter is to develop a vibration-based damage assessment technique

in the quefrency domain, domain in which cepstral coefficients are defined. For this purpose an

analytical representation of the cepstral coefficients as function of the structural properties is

first developed. This is the first attempt to link, analytically, modal properties of structural sys-

tems (e.g. natural frequencies, damping ratios and mode shapes) to cepstrum-based features.

Because of their nature, these coefficients depict a mathematical representation of the struc-

tural dynamic properties as well as of the excitation, including external disturbances. Principal
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Component Analysis can then be used as a valuable method, based on a linear mapping of the

cepstral coefficients, to extract the components more likely influenced by the structural proper-

ties than by the excitation source and environmental agents. These (uncorrelated) components

are those that contribute to the low-variance content of the datasets and, in this chapter, they

are considered as damage sensitive features. Here, the cepstral coefficient sequences to be pro-

jected through PCA in order to generate the low-variance features have been extracted using

two different datasets: 1) by considering signals recorded at multiple structural locations to

reduce the variance due to local zeros, 2) by considering signals recorded at the same structural

location to reduce the variance due to different excitation sources or external disturbances. In

order to resort to the aforementioned statistical pattern recognition based damage detection

approach, the Squared Mahalanobis Distance (SMD) [39–44] of such features rather than the

Euclidean distance and the cumulative distribution function of the damage sensitive features

have been considered. Hence, since the Euclidean distance is equal to the SMD for the par-

ticular case in which the covariance matrix of the sampled data is the identity matrix [10], the

SMD represents, in general, a more appropriate metric for the outlier analysis of multivariate

probability distributions. In [45] a comparison between these two metrics is presented in the

analysis of a cracked beam through damage assessment tests relying on a statistical pattern

recognition approach. The mismatch between the distributions of the damage sensitive fea-

tures is then statistically detected to assess the presence of a possible damage in the system.

In order to validate the method, results from both numerical and experimental tests have been

analyzed. The numerical test consists in the analysis of the response of an 8DOF shear type

model, whereas the experimental test is conducted on data available from the monitoring of the

Z24 Bridge (Switzerland), largely used in the literature [46–49].

2.2. The use of the Power Cepstrum in a data-based framework

As previously mentioned, cepstrum coefficients have been employed with good results in a

variety of fields, ranging from image and sound processing to damage assessment in rotary

machine. These coefficients can be analyzed in problems typical of structural health monitor-

ing where the information on the structural conditions of a system could be extracted by its

response output. Of all the methods to solve the damage detection problem within a data-based

framework, outlier analysis is one of the most robust and efficient. In this chapter, for a proper

treatment of outliers, the Squared Mahalanobis Distance (SMD) is used as the metric apt to
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distinguish between damaged and undamaged instances of the damage sensitive feature.

It is worth to reiterate that, in statistical pattern recognition, the SMD is used to measure the

distance of the damage sensitive features extracted from the response of the system in unknown

conditions from those extracted from the response of the system in known conditions: the larger

the value of the SMD, the larger the departure of the new damage sensitive features from the

population of realizations of damage sensitive features representative of undamaged conditions,

and hence larger the probability that the new damage sensitive features are representative of a

damage state of the structure.

2.2.1. Analytical expression of the Power Cepstrum from structural acceleration

Let us consider the equations of motion of an N degrees of freedom (DOF) linear time-invariant

system:

M ÿyy(t)+C ẏyy(t)+K yyy(t) = uuu(t) (2.1)

where M , C and K represent the mass, damping and stiffness matrices, respectively, each of

order N ⇥N. The vector yyy(t) 2 RN⇥1 represents the nodal displacement vector, ẏyy(t) 2 RN⇥1

the nodal velocity vector, and ÿyy(t) 2 RN⇥1 the nodal acceleration vector. Finally, uuu(t) 2 RN⇥1

is the input vector, containing the values of the external excitation at time t.

At first, in order to simplify the algebra, let us assume that all degrees of freedom of the

structure are excited by the same input time history (this assumption will be removed later).

Equation (2.1) can then be rewritten as

M ÿyy(t)+C ẏyy(t)+K yyy(t) = BBB2u(t) (2.2)

where BBB2 2 RN⇥1 is a vector of ones while u(t) represents the time-history of the input excita-

tion. Assuming zero initial conditions, the Laplace transform of Equation (2.2) yields:

(M s2 +C s+K )Y(s) = BBB2U(s) (2.3)

where Y(s) represents the vector of the Laplace transform of nodal displacement responses

and U(s) represents the Laplace transform of the input time history applied at each degree of

freedom.
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Let us now denote by FFF the mode shape matrix resulting from the solution of the generalized

undamped eigenvalue problem

(K �liM )fff i = 0, (2.4)

where li represents the ith eigenvalue and fff i (the ith column of the mode shape matrix �)

its associated eigenvector. By making use of the well known mass-orthogonality and stiffness-

orthogonality properties of the eigenvector matrix �, here onwards assumed to be mass normal-

ized, and assuming that the system is classically damped, so that �T C� represents a diagonal

matrix, the expression for the vector of Laplace transform of the displacement time histories is

obtained as

Y(s) =�[Is2 +⌅s+⇤]�1
�

T
B2U(s), (2.5)

where:

1. I is the identity matrix of order N;

2. ⌅ is a diagonal matrix of order N: ⌅ = diag{2xiwi}, for i = 1, ...,N, where xi and wi

are the damping ratio and natural frequency associated with the ith mode, respectively;

3. ⇤ is a diagonal matrix of order N: ⇤= diag{w2
i } for i = 1, ...,N.

The matrix Hd(s) =�[Is2 +⌅s+⇤]�1
�

T , also known as the receptance matrix, represents

the matrix of the transfer functions from the inputs, represented by the vector B2U(s) to the

displacement outputs in Y(s). It is possible to express the (i, j)th term of the receptance matrix

as follows:

Hd(s)i, j =
N

Â
l=1

fi,lf j,l

ml(s�ll)(s�l ⇤
l )

(2.6)

where the complex eigenvalue ll and its complex conjugate l ⇤
l are given by:

ll,l ⇤
l =�wlxl ± jwl

q
1�x 2

l (2.7)

while the lth modal mass, ml , is equal to 1, by virtue of the normalization property assumed

for the eigenvector matrix. By recalling the properties of the Laplace transform, it is possible

to get the expression for the (i, j)th element of the transfer function from the jth input to the ith
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acceleration output, i.e. the (i, j)th element of the inertance matrix:

Ha(s)i, j =
N

Â
l=1

fi,lf j,ls2

(s�ll)(s�l ⇤
l )

. (2.8)

Since, in SHM, it is customary to deal with digital signals, it is convenient to operate in the

z-domain. To do so, it is possible to manipulate Equation (2.8) to obtain the (i, j)th element of

the inertance matrix in the z-domain:

Ha(z)i, j =
N

Â
l=1

fi,lf j,l(1� z�1)(1�Pa,lz�1)

(1� ellT z�1)(1� el ⇤
l T z�1)

(2.9)

where:

1. T denotes the sampling time;

2. Pa,l =
e�xlwlT cos(wd,lT�xl)p

1�x 2
l

3. wd,l = wl

q
1�x 2

l .

Equation (2.9) may be written in terms of products as follows:

Ha(z)i, j =

(1� z�1)
2N�1

’
l=1

(1�Z(i j)
l z�1)

N
’

l=1
(1� ellT z�1)(1� el ⇤

l T z�1)

(2.10)

where Z(i j)
l (l = 1, ...,2N �1) are the roots of the following equation:

N

Â
l=1

fi,lf j,l(1�Pa,lz�1)
N

’
k=1
k 6=l

(1� elkT z�1)(1� el ⇤
k T z�1) = 0. (2.11)

Since the assumption is made that all degrees of freedom are excited by the same input time

history, the z-transform of the acceleration time history at the ith DOF yields

A(z)i =
N

Â
j=1

Ha(z)i, jU(z). (2.12)
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which can be rewritten in terms of products using Equation (2.10) and (2.11)

A(z)i =

(1� z�1)
2N�1

’
l=1

(1�Z(i)
l z�1)

N
’

l=1
(1� ellT z�1)(1� el ⇤

l T z�1)

U(z), (2.13)

where Z(i)
l (l = 1, ...,2N �1) are the roots of the following equation:

N

Â
j=1

N

Â
l=1

fi,lf j,l(1�Pa,lz�1)
N

’
k=1
k 6=l

(1� elkT z�1)(1� el ⇤
k T z�1) = 0. (2.14)

It is interesting to point out that the dependance of the z-transform of the acceleration from the

location where the acceleration is recorded is confined only in the zeros Z(i)
l while the other pa-

rameters (ll and l ⇤
l ) depend on the overall structural properties (e.g. frequencies and damping

ratio). At this point, the process of extracting the cepstral coefficients requires the evaluation

of the logarithm of the power spectrum of the sampled response time history. This represents

a crucial step in the determination of the cepstral coefficients but can be circumvented by ex-

ploiting the properties of the complex logarithm. By definition, the complex logarithm is the

inverse of the complex exponential function [50]. Hence, given a complex variable xc, whose

polar form is given by Xeiy , where X denotes the magnitude of xc while y its phase, the com-

plex logarithm of xc is given by:

ln(xc) = ln(X)+ iy (2.15)

Then, the real part of the complex logarithm of xc is the natural logarithm ln of its magnitude

X . According to that, we can write:

ln(|A(z)i|2) = 2R{ln(A(z)i)} (2.16)

where R{.} represents the real part of the quantity in brackets. Thus, the logarithm of the

power spectrum can be easily extracted by the complex logarithm of A(z)i. Equation (2.13)

provides the z-transform of the acceleration time history at the ith degree of freedom in terms

of products, so we can use the complex logarithm to isolate each single contribution. In this

case the complex logarithm of the z-transform of the acceleration time history recorded at the
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ith degree of freedom is given by:

ln[A(z)i] = ln[U(z)]+ ln(1� z�1)+
2N�1

Â
l=1

ln(1�Z(i)
l z�1)+

�
N

Â
l=1

ln(1� ellT z�1)�
N

Â
l=1

ln(1� el ⇤
l T z�1). (2.17)

Let’s now focus on the last four terms of Equation (2.17): they are all summations of logarith-

mic functions ln(1�az�1). It is then appropriate to make use of the McLaurin complex series

expansion for the logarithmic function ln(1�az�1):

ln(1�az�1) =�
•

Â
n=1

an

n
z�n. (2.18)

The complex series in Equation (2.18) converges for all complex numbers az�1 having magni-

tude less than or equal to one. If we evaluate the z-transform on the unit circle, and denote the

magnitude of the complex number a as |a| and its phase as y , the condition of convergence

for the series in Equation (2.18) can be expressed as

|az�1|= ||a|eiye
�i2pk

N |= |a| 1. (2.19)

Systems typically considered in civil and mechanical engineering applications are stable, i.e.

the poles of their discrete transfer function are all contained within the unit circle, so that

their magnitude is indeed less than one. In particular, the magnitude of all poles of the pulse

transfer function in Equation (2.13) is equal to e�xlwlT (l = 1, ...,N), which is a positive quantity

less than one, since the values of xl ,wl (l = 1, ...,N) are always positive for typical civil and

mechanical structures. Therefore, the condition represented by Equation (2.19) applies and the

series expansion in Equation (2.18) can be employed to expand the functions ln(1� ellT z�1)

and ln(1� el ⇤
l T z�1). On the contrary, looking at the term ln(1�Z(i)

l z�1) it might happen that

the magnitude of some of the zeros Z(i)
l could be greater than one implying that, for such zeros,

said series will not converge. In such a case, the transfer function in Equation (2.13) is said to

represent a non-minimum phase system. However, any transfer function can be made minimum

phase by ’reflecting’ all zeros Z(i)
l , for which |Z(i)

l |> 1, inside the unit circle, i.e. by replacing

the non minimum phase zero Z(i)
l with Z(i)�1

l . It is important to note that this replacement will

not alter the magnitude of the power spectrum, which is the only part of the spectrum we are
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concerned with in the computation of the logarithm of the power cepstrum. Consequently, we

can assume that the magnitude of all zeros Z(i)
l is less than one, so that the McLaurin series in

Equation (2.18) will converge also for the 2N �1 terms ln(1�Z(i)
l z�1).

By combining the last four terms of Equation (2.17) and recalling Equation (2.7) and Equa-

tion (2.18), the following result is obtained:

ln(1� z�1)+
2N�1

Â
l=1

ln(1�Z(i)
l z�1)�

N

Â
l=1

ln(1� ellT z�1)�
N

Â
l=1

ln(1� el ⇤
l T z�1) =

=
•

Â
q=1

1
q

"
N

Â
l=1

2e�xlwlT qcos(wd,lT q)�1�
2N�1

Â
l=1

Z(i)q
l

#
z�q =

= Z

(
1
q

"
N

Â
l=1

2e�xlwlT qcos(wd,lT q)�1�
2N�1

Â
l=1

Z(i)q
l

#)
, 8q > 0

(2.20)

where the symbol Z {.} indicates the z-transform of the term within brackets. It can then be

concluded that the last four terms of Equation (2.17) represent the z-transform of the real and

causal sequence in brackets in Equation (2.20). It is noteworthy that all the quantities here are

only functions of the dynamic characteristics of the systems, including the zeros Z(i)
l , while the

effects of the input force are confined in the term ln[U(z)]. This will not be true when we will

consider different forces acting at various degrees of freedom; in this case the zeros Z(i)
l will

also account for zeros and pole of the input forces. In order to evaluate the real part of Equation

(2.20), one can thus take recourse to some properties of the z-transform of real (the zeros Z(i)
l

are real or complex conjugates) and causal (q > 0) signals. The real part of the z-transform of

a causal real-valued function h[q] is then equal to half of the z-transform of the function itself:

R{Z {h[q]}}= 1
2
{Z {h[q]}}. (2.21)

The real part of the last four terms of Equation (2.17) is then expressed using Equations (2.20)

and (2.21) as:

R

⇢
Z

⇢
1
q


N
Â

l=1
2e�xlwlT qcos(wd,lT q)�1�

2N�1
Â

l=1
Z(i)q

l

���
=

= 1
2Z

⇢
1
q


N
Â

l=1
2e�xlwlT qcos(wd,lT q)�1�

2N�1
Â

l=1
Z(i)q

l

��
. (2.22)
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and, consequently, the real part of the complex logarithm of A(z)i can be rewritten as:

R {ln[A(z)]}= 1
2
Z

(
1
q

"
N

Â
l=1

2e�xlwlT qcos(wd,lT q)�1�
2N�1

Â
l=1

Z(i)q
l

#)
+R {ln[U(z)]} .

(2.23)

By considering Equations (2.16) and (2.23), the expression of the logarithm of the power spec-

trum of the acceleration response time history becomes:

ln
�
|A(z)i|2

 
= 2R{ln[A(z)i]}=

= Z

(
1
q

"
N

Â
l=1

2e�xlwlT qcos(wd,lT q)�1�
2N�1

Â
l=1

Z(i)q
l

#)
+2R {ln[U(z)]} .

(2.24)

By taking the inverse z-transform of Equation (2.24), the expression for the coefficients of the

power cepstrum extracted from the acceleration response measured at the ith degree of freedom

of an MDOF system excited at all DOF by an input u(t) is finally obtained as

ci[q]

8
>>>><

>>>>:

0 for q < 0

û[q] for q = 0

1
q


N
Â

l=1
2e�xlwlT qcos(wd,lT q)�1�

2N�1
Â

l=1
Z(i)q

l

�
+ û[q] for q > 0

(2.25)

where, recalling Equation (2.16), û[q] is the inverse z-transform of the logarithm of the power

spectrum of the sampled input u[n]. In view of Equation (2.25), it is interesting to compare

these formulations with those presented in the work by Gao and Randall [25]. In Equation (10)

in [25], they presented an analytical formulation for the coefficients of the complex spectrum

for the case of an impulse excitation. The analytical representation of the coefficients of the

power cepstrum in Equation (2.25) is referred to the case of a general external excitation and

is consistent with the representation of the coefficients of the complex cepstrum presented in

[25] when considering the general input as an impulse. By comparing the equations, it can be

observed that: 1) both the sequences of coefficients represent a casual signal, 2) the term at

(q = 0) depends only on the natural logarithm of the power spectrum of the sampled input u[n]

and 3) the coefficients for q > 0 decay to zero depending only on the structural properties if the

system is excited by an impulsive source.
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Equation (2.25) shows a very important result: for q > 0 it is evident that the cepstral coef-

ficients of the acceleration response time history of a classically damped MDOF system can be

obtained as a linear combination of the discrete poles and zeros of the pulse transfer function

separated from the input contribution. Basically, in those coefficients, it will be possible to sep-

arate the contribution from the structural properties which will remain constant if the structure

does not change, from the contribution related to the input excitation, which will vary depend-

ing on the type of excitation. Therefore, the qth cepstral coefficient (q > 0) for the acceleration

at the ith degree of freedom can be expressed as the sum of 3 contributions:

ci,q = ci[q] =
1
q

"
N

Â
l=1

2e�xlwlT qcos(wd,lT q)�1

#
+

1
q

"
�

2N�1

Â
l=1

Z(i)q
l

#
+ û[q] (2.26)

ci,q = qq + gi,q +bq (2.27)

where: 8
>>>>><

>>>>>:

qq =
1
q


N
Â

l=1
2e�xlwlT qcos(wd,lT q)�1

�

gi,q =�1
q

2N�1
Â

l=1
Z(i)q

l

bq = û[q].

(2.28)

Equations (2.27) and (2.28) lead to some important observations. First, it is clear that the

component qq depends only on the structural properties (frequencies and damping ratios) of

the overall structure and so it is independent from the monitored position. This means that

this component will be present in any qth cepstral coefficient extracted from the various time

histories recorded at different locations. It is also clearly shown that the component gi,q, being

linked to the roots of Equation (2.14) is the only term that depends on the ith monitored location

(through the components of the mode shapes) as well as on the overall structural dynamic

properties. The term bq depends only on the excitation source and, by the assumption of equal

excitation at every degree of freedom, does not change with respect to the ith degree of freedom.

It is noteworthy that the assumption of a MDOF system subjected to exactly the same input

excitation at each degree of freedom is restrictive and unrealistic, but allows to easily validate

Equation (2.13). Actually, such equation can be shown to be valid also for different excitations

at different DOF as long as the z-transform of the input at each degree of freedom is the same:

this is the case of different Gaussian white noise input excitations at the various degrees of

freedom but all having the same variance. The sequence of cepstral coefficients provided in
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Equation (2.27) is an analytical representation of the output in the quefrency domain which is,

by definition, the inverse Fourier transform of the logarithm of the squared magnitude of the

Fourier transform of the acceleration signals.

2.2.2. Numerical validation: SDOF system perturbed by a unit pulse

To verify the validity of the approximation of the logarithm with a McLaurin series, let’s con-

sider the case of a single degree of freedom system subjected to a unit pulse excitation and

compare the analytical expressions of the cepstral coefficients in Equation (2.28) with the nu-

merical values obtained from the power cepstrum of the unit pulse response. The advantage

of using that kind of excitation is that, in this case, it is possible to easily obtain a close-form

solution for the coefficients in Equation (2.28). The root provided by Equation (2.14) for a

SDOF system is given by:

Z(1)
1 = Pa,1 =

e�x1w1T cos(wd,1T �x1)q
1�x 2

1

(2.29)

so that we can rewrite Equation (2.28) as:

8
>>>>><

>>>>>:

qq =
1
q


1
Â

l=1
2e�xlwlT qcos(wd,lT q)�1

�
= 1

q

h
2e�x1w1T qcos(wd,1T q)�1

i

g1,q =�1
q

1
Â

l=1
Z(1)q

l =�1
qZ(1)q

1 =�1
q(Pa,1)q

bq = 0

(2.30)

Figure 2.1 shows the first 60 values of the cepstral coefficients (q = 1, . . . ,60) for an SDOF

system, characterized by mass, stiffness and damping respectively of 1kg, 500N/m and 1%.

The analytical solution in quefrency domain is represented by circles while the one generated

numerically by applying the definition of power cepstrum to the unit pulse response is marked

by crosses. It is evident that the analytical solution accurately approximates the numerical

solution. In addition, in Figure 2.1, the contribution of the term g to the cepstral coefficients

is also plotted with the intent to show its contribution to the various coefficients. The behavior

of g is particularly interesting since, contrarily to q , it is a local parameter. It is clearly shown

that g decays exponentially to zero and its contribution is predominant in the very first values

of the cepstral coefficients which are then, intuitively, sensitive to the location of a potential

structural damage. However, it is noteworthy to underline that a structural damage affects g
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as well as q (e.g. changes in frequencies, damping ratios and mode shapes) and so all the

cepstral coefficient sequences are sensitive to the damage, no matter which degree of freedom

is monitored.

Fig. 2.1. Cepstral coefficients: analytical vs numerical solution for a unit pulse response. The analyti-
cal representation of the Gamma (g1,q) component is provided.

2.2.3. Generic input excitation

For the case of different excitation sources at the various DOF, Equation (2.12) turns into:

A(z)i =
N

Â
j=1

Ha(z)i, jUj(z) (2.31)

where Uj(z) is the z-transform of the input excitation u j(t) applied at the jth degree of freedom.

As before such transform can then be rewritten in terms of products as

A(z)i =

(1� z�1)
M
’

l=1
(1�Z0(i)

l z�1)

N
’

l=1
(1� ellT z�1)(1� el ⇤

l T z�1)

, (2.32)

where M is the number of roots of the following equation:

N

Â
j=1

Uj(z)
N

Â
l=1

fi,lf j,l(1�Pa,lz�1)
N

’
k=1
k 6=l

(1� elkT z�1)(1� el ⇤
k T z�1) = 0. (2.33)

It is important to note that now, in Equation (2.33), the zeros Z0(i)
l l = 1, . . . ,M account for

the contributions of zeros and poles of the different input excitations while, previously, these

zeros were functions only of the structural properties. This will still allow us to decompose
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the cepstral coefficients into a part qq that is function only of the structural properties and

a part gi,q that depends on both structural properties and input excitations. Proceeding with

the calculations along the same line of the previous analysis, the analytical expression of the

cepstral coefficients can be found to be:

ci,q = ci[q] =
1
q

"
N

Â
l=1

2e�xlwlT qcos(wd,lT q)�1�
M

Â
l=1

Z
0(i)q
l

#
f or q > 0 (2.34)

Just like in the previous section, our interest is focused on the cepstral coefficients for q > 0 at

every degree of freedom i = 1, . . . ,N. Thus, we are able to write:

ci,q = qq + gi,q (2.35)

where, for the first Q coefficients (q = 1,2, . . . ,Q):

8
>><

>>:

qq =
1
q


N
Â

l=1
2e�xlwlT qcos(wd,lT q)�1

�

gi,q =�1
q

M
Â

l=1
Z0(i)q

l

(2.36)

As anticipated, each of the Q elements of the vector ccci = [ci,1, . . . ,ci,Q]T depends on two terms:

qq fully determined by the structural properties and gi,q that depends on the structural properties,

the degree of freedom of interest and the input excitation provided to the system. Given a set

of observations of the acceleration response time histories of a certain system in an identical

state (either healthy or damaged), the variance between the data is given by gi,q. The projection

of such data onto a space minimizing the variance introduced by gi,q reduces the effects on the

response due to the generic input source, but is not able to reduce the variance potentially due

to the drop in stiffness of the structural elements affecting both qq and gi,q. Thus, as long as the

excitation sources have similar statistics before and after a structural damage occurs, cepstral

coefficients (and their projections) lend themselves to be used in damage assessment strategies.

In the next section, the benefits and the advantages of a linear projection of the cepstral

coefficient sequences, based on the formulations in Equations (2.35) and (2.36), through the

Principal Component Analysis are illustrated: a preliminary analysis on the projections will

lead to the ultimate damage assessment algorithm presented in section 2.6.
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2.3. Principal Component Analysis for minor components extraction

In a data analysis framework, Principal Component Analysis is widely used for several appli-

cation such as dimensionality reduction, lossy data compression, feature extraction and data

visualization [10]. Principal Component Analysis is a statistical procedure that uses a linear

orthogonal transformation to convert a set of observations of possibly correlated variables into

a set of values of linearly uncorrelated variables (principal components). This transformation is

a linear mapping of the starting observations onto a new space in which the first principal com-

ponent has the largest variance. All the succeeding components are set to have the maximum

variance allowed under the constraint that they are orthogonal to the precedent components.

2.3.1. Maximum variance formulation

Let’s assume that we have a dataset of Nob observations of the system’s dynamic response (e.g.

time histories of the accelerations) at a certain ith degree of freedom, given N the number of

monitored DOFs (i = 1, . . . ,N). For each observation, it will be possible to extract a column

vector ccci 2 RQ⇥1 containing the sequence of the first Q cepstral coefficients defined in the Q-

dimensinal Euclidean space. By considering the cepstral coefficient sequences at this specific

ith location, it is possible to indicate with ccc( j)
i 2RQ⇥1 the jth observation of ccci for j = 1, . . . ,Nob.

The goal is to project the dataset of Nob observed ccc( j)
i vectors onto a lower dimensional space

with dimensionality Q0 < Q, by maximizing the variance of the projected data. For sake of

simplicity, let’s now assume Q0 = 1 and consider a vector vvv1 2 RQ⇥1 set to be a unit vector

so that vvvT
1 vvv1 = 1 (T stands for the transpose ot the vector). Every vector ccc( j)

i can be linearly

mapped onto a new space via multiplication by the vector vvv1. The product vvvT
1 ccc( j)

i is a scalar

value representing the projection of the vector ccc( j)
i along the direction vvv1. The mean value of

such projection can be expressed as vvvT
1 c̄cci, where c̄cci is given by:

c̄cci =
1

Nob

Nob

Â
j=1

ccc( j)
i (2.37)

and represents the vector of mean values of the Q cepstral coefficients. The variance S of the

projected data is provided by:

S =
1

Nob

Nob

Â
j=1

(vvvT
1 ccc( j)

i � vvvT
1 c̄cci)

2 = vvvT
1 Svvv1 (2.38)
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where S is the covariance matrix of the observations:

S=
1

Nob

Nob

Â
j=1

(ccc( j)
i � c̄cci)(ccc

( j)
i � c̄cci)

T (2.39)

As previously mentioned, the final objective is to select the vector vvv1 so to maximize the vari-

ance of the observations in the projected space, meaning that vvv1 should be picked so to maxi-

mize vvvT
1 Svvv1. At the same time, the constraint vvvT

1 vvv1 = 1 should be taken into account. This leads

to the definition of a new functional by introducing a Lagrange multiplier l̄1 that multiplies the

constrain equation, and so the new functional to be maximized will become:

F(vvv1, l̄1) = vvvT
1 Svvv1 + l̄1(1� vvvT

1 vvv1). (2.40)

By setting the derivative of F(vvv1, l̄1) with respect to vvv1 equal to zero, the following relation is

provided:

Svvv1 = l̄1vvv1. (2.41)

Equation (2.41) implies that the vector vvv1 must be an eigenvector of S and l̄1 its corresponding

eigenvalue. By left-multiplying both side of Equation (2.41) by vvvT
1 and recalling that vvvT

1 vvv1 = 1,

the maximum value of the S variance is given by S1:

S1 = vvvT
1 Svvv1 = l̄1 (2.42)

indicating that the variance S is maximized when we set vvv1 to be the eigenvector associated

with the largest eigenvalue l̄1. This eigenvector is defined as the first principal component.

Until now we discussed the special case of Q0 = 1. If more principal components are needed

(1  Q0  Q), after the extraction of the first principal component, it is possible to choose each

new direction for the remaining principal components by maximizing the projected variance

⌃ along this new direction but with the constrain that this direction be orthogonal to all the

components previously computed. For the generic ith principal component, the variance S will

be given as:

Si = vvvT
i Svvvi = l̄i (2.43)
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with vvvi ? vvv1 ? vvv2 ?, . . . ,? vvvi�1. By considering the most general case Q0 = Q, the optimal lin-

ear projection for which the variance S is maximized is defined by the matrix Vp = [vvv1, . . . ,vvvQ]

containing the eigenvectors of the covariance matrix S corresponding to the Q largest eigen-

values l̄1, . . . , l̄Q. Furthermore, since we know that l̄1 � l̄2 � . . .� l̄Q, from Equations (2.38)

and (2.42) it is obvious that S1 � S2 � . . . � SQ. The latter equation provides interesting in-

formation about the projected space which will prove to be key factors in the proposed damage

assessment strategy. In fact, since the variance of the last principal component SQ is the lowest,

Q can be set so that all the elements projected along such direction have the dispersion around

the mean and form a cluster on the projected space. This observation leads to the so-called Mi-

nor Component Analysis which, contrary to the classical PCA, searches for those components

with lower variance.

2.3.2. A Minor Component Analysis for variance reduction

Given a structure, let’s consider a training dataset associated with the structure in its undamaged

conditions and a test dataset associated with the structure in unknown conditions (potentially

damaged). The training dataset consists of Ntr
ob observations of the acceleration response time

histories at the ith structural DOFs (i = 1, . . . ,N) from which the training cepstral coefficient

sequences c
( j)
tr,i are extracted ( j = 1, . . . ,Ntr

ob). Analogously, the test dataset consists of Nte
ob

observations of acceleration response time histories at the ith DOF from which the test cepstral

coefficient sequences c( j0)
te,i are extracted ( j0 = 1, . . . ,Nte

ob).

Let’s now focus on the training dataset. It is possible to assemble all the Q cepstral coef-

ficients extracted from each of the Ntr
ob acceleration response time histories recorded at the N

structural locations into a matrix C
tr 2 RNtr⇥Q where Ntr = N ·Ntr

ob so that

C
tr = [c

(1)
tr,1, . . . ,c

(Ntr
ob)

tr,1 ,c
(1)
tr,2, . . . ,c

(Ntr
ob)

tr,2 , . . . ,c
(1)
tr,N , . . . ,c

(Ntr
ob)

tr,N ]T (2.44)

where the term T denotes the transpose of the matrix consisting of column elements vectors

c
( j)
tr,i 2 RQ⇥1. Let’s also define the matrix C̄ 2 RNtr⇥Q containing the means of the columns of

C
tr:

C̄= [c̄cc, . . . , c̄cc]T (2.45)
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where

c̄cc =
1

Ntr

N

Â
i=1

Ntr
ob

Â
j=1

ccc( j)
tr,i. (2.46)

Obviously, as the rows of C̄ are equal to each other, so the rank of C̄ is equal to 1. If we

subtract the matrix C̄ from the matrix C
tr (an operation that transforms the original cepstral

coefficient values to zero mean values), this new matrix can be projected onto a new maximum

variance based space through a Principal Component Analysis as:

[Ctr � C̄]Vpro =C
tr
pro (2.47)

where Vpro 2 RQ⇥Q is the rotational matrix projecting the matrix [Ctr � C̄] 2 RNtr⇥Q onto a

new space in which C
tr
pro 2 RNtr⇥Q is defined. The columns of the projecting matrix VVV pro are

the eigenvectors of the covariance matrix S
tr which, according to Equation (2.39), is given by:

S
tr =

1
Ntr

N

Â
i=1

Nob

Â
j=1

(ccc( j)
tr,i � c̄cc)(ccc( j)

tr,i � c̄cc)T . (2.48)

Equation (2.47) can be rewritten as the difference of the projections of the matrices C and C̄:

C
tr
pro =C

tr
Vpro � C̄Vpro. (2.49)

All the rows of C̄ are identical each others, consequently the projection C̄Vpro maps the mean

vector of the Ntr different observations to the same point on the projected space. Multiplying

the matrix C
tr by the first column vector of Vpro generates a distribution of projected data

points with the maximum variance, multiplying the matrix C
tr by the second column vector

of Vpro the variance of the new projected data is reduced. It is understood that, by multiply-

ing the matrix C
tr by the remaining column vectors of the matrix Vpro ordered from 3 to Q

the variance of the projected data will decrease. The Qth column vector of Vpro is referred

to as minor component; the variance of the training cepstral coefficient sequences projected

onto this component is the lowest provided by PCA and the projected points, following the

N distributions (one for each monitored DOF), overlap making the distributions collapse into

one single clustered distribution. Having the cepstral coefficients projected onto a lower di-

mensional space where they are closely clustered will facilitate the assessment of structural
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damage. In fact, changes in the structural properties will cause a variation in the distribution

of the cepstral coefficients vectors in the projected space, variation that is more easily caught if

the data are clustered together. This section presents a first approach to the minor component

analysis that will rely on the space provided by the Q�1th and the Qth column vectors of the

matrix Vpro.

2.3.3. Linear projection for data clustering

Until now, we have presented a procedure to extract the observations of the cepstral coefficient

sequences from the measurements of the structural response and to project them on a space

with low values of the variance. Now we want to compare the distributions of these projected

training (structure in healthy conditions) and test (structure in potentially damaged conditions)

datasets. The minor component analysis allows to define a space in which the distribution of

the projected data of the matrix C
tr (training dataset) can be represented by a unique clustered

probability distribution. The damage assessment strategy based on statistical pattern recogni-

tion requires two steps: 1) the training phase and 2) the test phase. In the training phase, a

model representative of the structure in its baseline conditions (assumed undamaged) is ob-

tained based on the statistics of the projection of the training cepstral coefficient sequences

onto the minor components. In the test phase, a test dataset representative of the structure in

unknown conditions (potentially damaged) is used for the extraction of the test cepstral coeffi-

cient sequences which are projected onto the minor components (defined in the training phase).

The training and test distributions in the minor components are compared and the presence of

damage is assessed. During the training phase the following tasks have been accomplished:

1. gathering observations of the cepstral coefficients vectors at every ith monitoring loca-

tion (i = 1, . . . ,N);

2. computing the matrices Ctr, C̄ and Vpro which describe the transformation provided by

PCA;

3. projecting the cepstral coefficients vectors onto the new space so to obtain C
tr
pro.

Once the matrices C̄ and Vpro are obtained, it is possible to test whether the system is damaged

or not by projecting new cepstral coefficient vectors extracted in the test phase onto the space

defined by C̄ and Vpro.

Let’s now consider the test dataset and the matrix C
te 2RNte⇥Q containing the Nte

ob observations

of cepstral coefficient sequences c
( j0)
te,i ( j0 = 1, . . . ,Nte

ob) at each monitored ith location (Nte =
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N ·Nte
ob). Analogously to Equation (2.47), Cte can be written as:

C
te = [c

(1)
te,1, . . . ,c

(Nte
ob)

tr,1 ,c
(1)
te,2, . . . ,c

(Nte
ob)

te,2 , . . . ,c
(1)
te,N , . . . ,c

(Nte
ob)

te,N ]T . (2.50)

The projection of the matrix C
te onto the new space provided by the PCA is performed, ac-

cording to Equation (2.47). However, the number of training observations Ntr
ob may be different

from the number of test observations Nte
ob and, consequently the matrix [Cte � C̄] cannot be

computed. By recalling that each of the row vectors of the matrix C̄ is equal to the vector

c̄cc transposed, it is possible to define a matrix C̄
te whose row vectors are equal to the vector

c̄cc transposed and whose dimensions match the ones of Cte, i.e. C̄
te 2 RNte⇥Q. This proce-

dure allows to obtain the projection of the test cepstral coefficient sequences onto the space

represented by the principal components, defined in the training phase, as:

[Cte � C̄
te]Vpro =C

te
pro. (2.51)

Before focusing on the minor components, let’s consider the elements in the matrix [Cte �

C̄
te]. By recalling Equation (2.35), each element of the jth observed cepstral coefficient se-

quence extracted at the ith location can be represented by the sum of two terms: g( j)
i,q and qq

(q = 1, . . . ,Q). In order to distinguish these terms computed in the training phase from those

computed in the test phase, it is convenient to use the superscript ’tr’ and ’te’ so that g tr,( j)
i,q and

q tr,( j)
q will be referred to the training phase and g te,( j0)

i,q and q te,( j0)
q to the test phase. Anyway,

each of the q = 1, . . . ,Q terms q tr,( j0)
q depends only on the structural properties which are as-

sumed to be constant for the training dataset (q tr,( j)
q = q tr

q for j = 1, . . . ,Ntr
ob) and for the test

dataset (q te,( j0)
q = q te

q for j0 = 1, . . . ,Nte
ob).

Considering the training dataset, the qth cepstral coefficient of the jth observation of the

cepstral coefficient sequence at the ith monitored DOF can be represented as ctr,( j)
i,q = g tr,( j)

i,q +

q tr
q . Analogously, considering the test dataset, the qth cepstral coefficient of the j0th observation

of the cepstral coefficient sequence at the ith monitored DOF is given by cte,( j0)
i,q = g te,( j0)

i,q +q te
q .

By using this new formulation to represent the cepstral coefficient sequences, the matrix C
tr in
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Equation (2.44) can be rewritten as:

C
tr =

2

6666666666666664

g tr,(1)
1,1 +q tr

1 . . . g tr,(1)
1,Q +q tr

Q
... . . . ...

g tr(Ntr
ob)

1,1 +q tr
1 . . . g tr,(Ntr

ob)
1,Q +q tr

Q
...

...
...

g tr,(1)
N,1 +q tr

1 . . . g tr,(1)
N,Q +q tr

Q
... . . . ...

g tr,(Ntr
ob)

N,1 +q tr
1 . . . g(tr,N

tr
ob)

N,Q +q tr
Q

3

7777777777777775

(2.52)

and, by recalling Equation (2.45):

C̄=

2

66666666666666666666664

1
Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,1 +q tr
1 . . . 1

Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,Q +q tr
Q

... . . . ...

1
Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,1 +q tr
1 . . . 1

Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,Q +q tr
Q

...
...

...

1
Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,1 +q tr
1 . . . 1

Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,Q +q tr
Q

... . . . ...

1
Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,1 +q tr
1 . . . 1

Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,Q +q tr
Q

3

77777777777777777777775

. (2.53)

By substituting the relations obtained in Equations (2.52) and (2.53) into Equation (2.47), the
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projected matrix C
tr
pro can be written as:

C
tr
pro =

2

66666666666666666666664

g tr,(1)
1,1 � 1

Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,1 . . . g tr,(1)
1,Q � 1

Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,Q

... . . . ...

g tr(Ntr
ob)

1,1 � 1
Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,1 . . . g tr,(Ntr
ob)

1,Q � 1
Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,Q

...
...

...

g tr,(1)
N,1 � 1

Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,1 . . . g tr,(1)
N,Q � 1

Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,Q

... . . . ...

g tr,(Ntr
ob)

N,1 � 1
Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,1 . . . g(tr,N
tr
ob)

N,Q � 1
Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,Q

3

77777777777777777777775

Vpro. (2.54)

Equation (2.54) shows a very important result that will be fundamental for the damage as-

sessment procedure. In fact, the Q components qq, which depend purely on the structural prop-

erties, disappear and, as a consequence of the PCA, the last two columns of the matrix C
tr
pro

represent the projection of the training cepstral coefficient sequences onto the Q�1th and Qth

principal components (minor components). The projection of the training data onto the minor

components aims to dramatically reduce the variance between cepstral coefficient sequences

extracted at different structural locations from dynamic response generated by different exci-

tation sources. In this way, as long as the system persists in its undamaged conditions, the

projection of newly observed cepstral coefficient sequences onto the minor components can be

represented by a unique clustered probability distribution.

The projection of the test data (Nte
ob observations of the test cepstral coefficient sequences)

onto the principal components represented by the matrix C
te
pro, such a matrix C

te
pro can be

written as:
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C
te
pro = [Cte � C̄

te]Vpro

=

2

6666666666666664

q te
1 �q tr

1 . . . q te
Q �q tr

Q
... . . . ...

q te
1 �q tr

1 . . . q te
Q �q tr

Q
...

...
...

q te
1 �q tr

1 . . . q te
Q �q tr

Q
... . . . ...

q te
1 �q tr

1 . . . q te
Q �q tr

Q

3

7777777777777775

Vpro

+

2

66666666666666666666664

g te,(1)
1,1 � 1

Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,1 . . . g te,(1)
1,Q � 1

Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,Q

... . . . ...

g te(Nte
ob)

1,1 � 1
Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,1 . . . g te,(Nte
ob)

1,Q � 1
Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,Q

...
...

...

g te,(1)
N,1 � 1

Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,1 . . . g te,(1)
N,Q � 1

Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,Q

... . . . ...

g te,(Nte
ob)

N,1 � 1
Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,1 . . . g(te,N
te
ob)

N,Q � 1
Ntr

Ntr
ob

Â
j=1

N
Â

i=1
g tr,( j)

i,Q

3

77777777777777777777775

Vpro.

(2.55)

By looking at Equation (2.55) some considerations about the projected matrix C
te
pro can be

pointed out. Such a matrix can be represented by the sum of two terms. If the structural system

(in the unknown state) is working in its standard (undamaged) conditions, then the first term

disappears (q te
q = q tr

q for q = 1, . . . ,Q) and the second term provides a projected matrix analo-

gous to the one in Equation (2.54): the projection of the cepstral coefficient sequences is still

clustered in the minor components. On the contrary, if damage occurs in the structure (q te
q 6= q tr

q

for q = 1, . . . ,Q), both the terms in Equation 2.55 cause a variation of the distribution of the

projected cepstral coefficient sequences in the minor components (last two column vectors of

the matrix C
te
pro). Whereas the first term in Equation (2.55) has an heavy impact on C

te
pro, the

second term provides a projection similar to the one obtained in Equation (2.54) since the dis-

tribution of the zeros in gi,q changes only slightly because of the damage. By recalling that the
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column vectors of the projection matrix Vpro are the eigenvectors of the covariance matrix S
tr,

the multiplication of the training cepstral coefficient sequences by its last two columns (projec-

tion onto the minor components) is a linear transformation that makes all the N distributions of

g(tr)i,q collapse into one. When damage occurs in the system, the column vectors of the matrix

Vpro do not represent the eigenvectors for the covariance matrix of the test cepstral coefficient

sequences and they can be interpreted as simple linear projection vectors. Hence, because of

the second term in Equation (2.55), the projection of the cepstral coefficient sequences onto the

minor components is not guaranteed anymore to follow a single clustered probability distribu-

tion. Depending on the entity of damage, the first term in Equation (2.55) causes a common

shift of the projected cepstral coefficient sequences in the minor components. Consequently,

the second term in Equation (2.55) makes the N distributions diverge from each other.

The effects of damage on the minor components (last two components of Cte
pro) are investi-

gated in the numerical simulations presented in the following sections.

2.4. Numerical analysis of 2 minor components

The proposed damage assessment methodology relies on the analysis of the projection of the

training and test cepstral coefficient sequences onto the minor components. When no damage

occurs in the system, the distribution of the projected test cepstral coefficient sequences onto

the minor components is assumed to be Gaussian as well as the the distribution of the projected

training cepstral coefficient sequences. In this section, the Gaussianity of the distributions is

verified through the Kolmogorov-Smirnov test (ks-test). In addition, since the occurrence of

damage is linked to a variation in the clustered distribution, the Squares Mahalanobis Distance,

accounting for the variances in multivariate analysis, is considered a valid tool to detect the

presence of the damage in the data.

2.4.1. 8-DOF lumped mass model

The system analyzed in this section is a lumped mass model of an eight-story shear-type build-

ing, shown in figure 2.2, that is instrumented at every level, e.g. floor or degree of freedom

(DOF), with an accelerometer (full set of sensors). In its baseline condition (undamaged), the

model is characterized by horizontal springs of stiffness ki = 25000 N/m and by eight mass

elements mi = 1 kg (i = 1, . . . ,8). The system is modelled as having modal damping with a

damping factor of x = 1% for each of the 8 vibration modes. The excitation is provided by
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external forces applied at various locations via zero-order-hold (ZOH) for 100 sec duration

with a time sampling of 0.01 seconds. Such forces are zero-mean Gaussian white noise signals

(standard normal distribution) whose magnitudes are scaled, at each floor, by a random factor

given by a uniform probability distribution in the range 0-100 N. The training dataset consists

of Ntr
ob = 500 observations of the acceleration response time histories (100 sec duration with

a time sampling of 0.01 seconds) recorded at the N = 8 DOFs so that Ntr = 500 · 8 = 4000

records in total are available.

Fig. 2.2. 8-DOFs shear type system

The cepstral coefficient sequences are extracted from each of the 4000 records: the first

cepstral coefficient of the sequence (q = 0) is discarded since it’s related only to the input

excitation and only the following Q = 50 cepstral coefficients are considered. Even though

the number of cepstral coefficients to be considered is arbitrary, the user still has to make sure

that only coefficients providing redundant information during this dimensionality reduction are

eliminated.

Structural damage assessment based on two minor components

The space represented by the minor components is defined during the training phase relying on

the 4000 records of cepstral coefficient sequences related to the system in undamaged configu-

ration. Out of 50 components, the components 49 and 50 have been arbitrarily selected as the

minor components. The reason behind this choice is simply given by the fact that those are the

ones having the lowest variance among all. Furthermore, considering two components instead

one yields a better visualization and interpretation of the projected data. The training phase

ends with a 2-D representation of the projected training cepstral coefficient sequences forming
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a unique cluster in the minor components.

Several structural damage scenarios for the 8-DOF system are analyzed and commented. Those

damage scenarios are meant to represent the system under increasing levels of damage. Damage

has been simulated through a drop of stiffness of the spring elements connecting two adjacent

degrees of freedom. Each damage scenario is associated with a different test phase. During

the test phase, new cepstral coefficients are generated and projected in order to compare the

projected test data with the projected training data.

The first test is performed in order to confirm that, if no damage occurs in the structure, the

distributions of the projected training and test cepstral coefficient sequences onto the minor

components match each other. The test dataset consists in Nte
ob = 500 observations of the 8 ac-

celeration response time histories from which the cepstral coefficient sequences are extracted

when the structure is in its baseline condition (undamaged). As expected, Figure 2.3 (a) shows

that the distribution of the cepstral coefficient sequences computed in the training phase and

projected onto the minor components (blue crosses) forms one single cluster. Since no damage

occurs in the structure, also the distribution of the projected cepstral coefficient sequences for

the test dataset (red circles) forms a unique cluster overlapping the one defined in the training

phase.

(a) (b)

Fig. 2.3. Undamaged System Test: Undamaged Training and Undamaged Test Distributions (a), Minor
components 49 and 50 cumulative distributions for Training and Test (b)

Figure 2.3 (b) shows the cumulative distribution function (CDF) for the training and test

datasets by using the variable ’x’ on the horizontal axis to represent the domains of both com-

ponent 49 and component 50 in Figure 2.3 (a). Those plots suggest the Gaussianity of the
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distributions (confirmed by a ks-test at 5% of significant level) and lead to the conclusion that

no damage occurs in the structure (the training and test distributions match each other).

A new damage scenario is presented. A local damage has been simulated through a 10%

drop of stiffness of the spring element connecting the DOFs 2 and 3. A set of Nte
ob = 500 obser-

vations of the cepstral coefficient sequences is generated in the test phase and projected onto

the minor components. The distributions of the training and test projected cepstral coefficient

sequences are shown in Figure 2.4. Contrarily to the previous case, the training and test distri-

butions are not overlapping and the test CDFs in the CDF plot diverge from the training CDFs.

Consequently, the presence of the damage can be assessed through the Squared Mahalanobis

Distance in a novelty detection approach.

(a) (b)

Fig. 2.4. Undamaged vs Damaged - 10% stiffness drop

A new test dataset of Nte
ob = 500 observations of the cepstral coefficient sequences has been

generated after introducing a 20% drop of the stiffness of the spring element connecting DOFs 2

and 3. The training and test cepstral coefficient sequences projected onto the minor components

are shown in Figure 2.5.
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(a) (b)

Fig. 2.5. Undamaged vs Damaged - 20% stiffness drop

Figure 2.5 confirms that, as the damage increases, the test projected cepstral coefficient

sequences distribution diverge further from the training clustered distribution. Furthermore, as

consequence of the damage, the N = 8 test distributions coming from the 8 different locations

do not collapse into one; as expected, the test distribution is not guaranteed to be represented

by a single clustered distribution. This behaviour is emphasized in the last damage scenario in

which the drop in stiffness (between degrees of freedom 2 and 3) is set to be at 25% to simulate

a considerable local damage. A test dataset of Nte
ob = 500 cepsral coefficients sequences is

generate at every DOF. Figure 2.6 shows the two clusters, each generated by the projection of

the cepstral coefficient sequences extracted at the N = 8 DOFs. The cluster generated by the

projection of the cepstral coefficient sequences of the training dataset (undamaged) is shown

to be Gaussian and can be statistically represented by mean and standard deviation. On the

contrary, the distribution arising from the projection of the test cepstral coefficient sequences

(damaged) is not Gaussian (ks-test). Figure 2.6 represents a remarkable example of the effects

of damage on the projection of the cepstral coefficient sequences onto the minor components.

Hence, Equation (2.55) can be analyzed to show how the theoretical formulation matches the

numerical results in Figure 2.6. The first term in Equation (2.55) implies that the presence

of structural damage causes each of the N = 8 test distributions to diverge from the training

distribution by the same quantity. The second term in Equation (2.55) causes the N = 8 test

distributions to diverge from each others. Figure 2.6 confirms that the common shift of the

8 test distributions from the 8 training distributions can be used as a valid indication of the
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presence of damage in a novelty detection approach based on the SMD.

Fig. 2.6. Projected data distributions belonging to sensors S

Finally, the Squared Mahalanobis Distance between the training and test distributions over

the 50th principal component (minor component) is computed. For each box in Figure 2.7,

the central red line represents the median of the SMD, the blue edges of the box represent the

25th and 75th percentiles and the black whiskers represent the range covering the 99% of the

observations of the test dataset. A set of Nte
ob = 500 observations of the cepstral coefficient

sequences has been generated as three test datasets for the structure in undamaged condition

and the SMD has been computed exhibiting similar values. A total of Nte
ob = 500 observations

of the cepstral coefficient sequences have been generated as test datasets simulating damage

through a reduction of the stiffness between DOFs 2 and 3 varying from 5% to 25%. The SMD

is computed and presented in Figure 2.7. As the simulated damage increases, the median value

of the Squared Mahalanobis Distance increases too.
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Fig. 2.7. Squared Mahalanobis Distance vs Damage

The information about the statistics of the distributions over different damage scenarios for

the 49th and 50th principal components are reported in Table 2.1. As long as the test dataset is

generated from the dynamic response for the system in undamaged state, the ks-test identifies

the distributions of the projected cepstral coefficient sequences as Gaussians. As discussed,

this is not guaranteed for test datasets generated from the system in damaged conditions. In

fact, as the drop in stiffness between DOFs 2 and 3 reaches the 15%, the distributions for both

component 49 and component 50 are no longer Gaussians. Furthermore, the distributions of

the projection of the test cesptral coefficients sequences extracted for the system in undamaged

conditions are theoretically zero-mean. The presence of the damage not only makes their means

vary, but also causes a slight increment in their standard deviations. In the last column of Table

2.1, it can be observed how the median of the SMD for the 50th principal component (minor

component) dramatically increases because of damage.
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State kstest49 mean49 std49 kstest50 mean50 std50 Mahal
Training Gaussian 0 0.01137 Gaussian 0 0.01099 0.45799
Undamaged Gaussian 0.00047 0.01312 Gaussian -0.00006 0.01311 0.65049
Undamaged Gaussian 0.00013 0.01274 Gaussian 0.00032 0.01308 0.65736
Undamaged Gaussian -0.00003 0.01257 Gaussian 0.00095 0.01272 0.60125
5% Damage Gaussian -0.01063 0.01361 Gaussian 0.03212 0.01351 8.30698
10% Damage Gaussian -0.02798 0.01491 Gaussian 0.05985 0.01455 28.75355
15% Damage No Gaussian -0.05562 0.01882 No Gaussian 0.0822 0.01704 53.47868
20% Damage No Gaussian -0.09113 0.024 No Gaussian 0.09839 0.01965 75.721
25% Damage No Gaussian -0.13174 0.02972 No Gaussian 0.10893 0.02239 93.7746

Table 2.1. Statistics over different damage scenarios.

2.4.2. Effect of measurement noise

A recurrent problem, when dealing with real data, is represented by the presence of external

disturbances. Hence, in reality, accelerometers are constantly subjected to electrical noise,

environmental disturbances etc.. For this reason, in this section, the robustness of the proposed

damage sensitive features to external noise is tested.

According to the standard assumptions in literature, disturbances have been modeled as

zero-mean Gaussian white noise. Although external disturbances are never white, this mod-

elization represents a good compromise between the mathematical tractability and the repre-

sentation of reality. In the following simulations, the RMS (root mean square) of the Gaussian

white noise has been set equal to a certain percentage of the RMS of the output. Such percent-

age has been chosen to be the same for both the training and test datasets.

The system is represented by the 8 DOF shear-type model in section 2.4.1. The training

dataset consists of Ntr
ob = 500 observations of the acceleration response time histories which

have been generated from the model in its baseline conditions, according to section 2.4.1.

Analogously, Nte
ob = 500 observations of the acceleration response time histories have been

simulated for three different damage scenarios: 1) no damage 2) damage simulated by lowering

the stiffness of the spring element connecting DOFs 2 and 3 by 5% 3) damage simulated by

lowering the stiffness of the spring element connecting DOFs 2 and 3 by 15%. Based on these

four datasets (1 training and 3 test), two levels of measurement noise have been analyzed.

A 5% RMS measurement noise has been applied to the acceleration response time histories

from which the cepstral coefficient sequences are extracted. The projection of the cepstral

coefficient sequences on the 49th and 50th principal components of the training dataset is shown

in Figure 2.8 for the damage scenario 1), in Figure 2.9 for the damage scenario 2), in Figure
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2.10 for the damage scenario 3).

(a) (b)

Fig. 2.8. Undamaged System Test - 5% Noise

(a) (b)

Fig. 2.9. Undamaged vs Damaged - 5% stiffness drop - 5% Noise

(a) (b)

Fig. 2.10. Undamaged vs Damaged - 15% stiffness drop - 5% Noise

For sake of completeness, multiple damage scenarios (Nte
ob = 500 observations for each of

them) have been tested and the statistics of the projected cepstral coefficient sequences distri-

butions on the 49th and 50th principal components of the training dataset have been reported
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in Table 2.2. The first column in Table 2.2 describes the state (conditions) of the structure in

presence of a 5% RMS measurement noise. For each damage scenario, damage has been simu-

lated by a drop of the stiffness of the spring element connecting DOFs 2 and 3 according to the

description in the first column of Table 2.2. Results are similar to the ones provided in Table

2.1.

State kstest49 mean49 std49 kstest50 mean50 std50 Mahal
Training Gaussian 0 0.01135 Gaussian 0 0.01106 0.45767
Undamaged Gaussian -0.00064 0.01299 Gaussian 0.00039 0.01284 0.62332
Undamaged Gaussian -0.00064 0.01273 Gaussian 0.0006 0.01298 0.6785
Undamaged Gaussian -0.00092 0.01289 Gaussian 0.00095 0.01295 0.63943
5% Damage Gaussian -0.02032 0.01351 Gaussian -0.00885 0.01367 1.0052
10% Damage Gaussian -0.05375 0.01536 No Gaussian -0.02909 0.01704 7.28188
15% Damage Gaussian -0.09608 0.0193 No Gaussian -0.05473 0.02393 27.83511
20% Damage No Gaussian -0.1454 0.02513 No Gaussian -0.08317 0.03254 65.91477
25% Damage No Gaussian -0.18804 0.03136 No Gaussian -0.10928 0.03892 111.74751

Table 2.2. Statistics over different damage scenarios - 5% Noise

A 15% RMS measurement noise has been applied to the acceleration response time histories

from which the cepstral coefficient sequences are extracted. The projection of the cepstral

coefficient sequences on the 49th and 50th principal components of the training dataset is shown

in Figure 2.11 for the damage scenario 1), in Figure 2.12 for the damage scenario 2), in Figure

2.13 for the damage scenario 3).

(a) (b)

Fig. 2.11. Undamaged System Test - 15% Noise
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(a) (b)

Fig. 2.12. Undamaged vs Damaged - 5% stiffness drop - 15% Noise

(a) (b)

Fig. 2.13. Undamaged vs Damaged - 15% stiffness drop - 15% Noise

Once again, multiple damage scenarios (Nte
ob = 500 observations for each of them) for a

measurement noise of 15% have been tested and the statistics of the distributions of the pro-

jected cepstral coefficient sequences onto the 49th and 50th principal components of the training

dataset have been reported in Table 2.3.

State kstest49 mean49 std49 kstest50 mean50 std50 Mahal
Training Gaussian 0 0.01136 Gaussian 0 0.01118 0.43108
Undamaged Gaussian 0.0006 0.01263 Gaussian 0.00019 0.0119 0.49641
Undamaged Gaussian 0.00105 0.01271 Gaussian 0.00044 0.01215 0.53669
Undamaged Gaussian 0.00096 0.01251 Gaussian 0.00054 0.01231 0.53854
5% Damage Gaussian 0.00508 0.01284 Gaussian 0.0223 0.01467 4.04444
10% Damage Gaussian 0.00634 0.01379 No Gaussian 0.06281 0.02082 34.59648
15% Damage Gaussian 0.00533 0.01653 No Gaussian 0.11596 0.03059 119.56165
20% Damage No Gaussian 0.00396 0.02215 No Gaussian 0.17749 0.04216 273.96921
25% Damage No Gaussian 0.00286 0.02806 No Gaussian 0.23698 0.05143 478.19296

Table 2.3. Statistics over different damage scenarios - 15% Noise

At this point, it is worthy to make some remarkable observations. Let’s focus on the struc-
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tural state marked as ’Training’ in Table 2.2 and Table 2.3. It is clear how the statistical prop-

erties described in the two tables are really similar to each other as well as the Squared Ma-

halanobis Distance indicated in the last column of the tables. This phenomenum can be easily

explained. The increment in the RMS of the output noise randomly affects the cepstral coef-

ficient sequence at each degree of freedom of the system. However, the principal components

49 and 50 (minor components) are set by the PCA to be those components with the lowest

variance and so the least affected by the external disturbances. For that reason, the effect due

to the increment of the level of measurement noise is more evident in the principal components

rather than in the minor components.

2.4.3. Comparison with traditional methods

The Squared Mahalanobis Distance plays a major role in the field of novelty detection. The

applicability of the SMD for a novelty detection approach relies on the hypothesis that the

training dataset can be represented by a multivariate Gaussian Distribution [51]. This is a

reasonable assumption since, in general, the dynamic response of civil infrastructures is theo-

retically assumed to be generated by excitation sources characterized by similar statistics over

time, i.e. Gaussian white noise. Nonetheless, it may happen that during their working hours,

some structures are subjected to excitation sources whose statistics may largely vary over time.

In such circumstances, the training data can be represented by a mixture model (mixture of two

or more distributions) and the concept of Squared Mahalanobis Distance should be revisited.

Let’s consider, for instance, that the observations of cepstral coefficient sequences extracted at

a certain DOF do not follow a Gaussian distribution, but their distribution can be approximated

by fitting a Gaussian Mixture Model [52]. In this case, the Squared Mahalanobis Distance of

the points in the test distribution from each of the training mixture components (mixture distri-

butions) needs to be computed and the lowest value is considered (lowest Squared Malanobis

Distance) and monitored over time. When it overtakes a given threshold, the presence of struc-

tural damage is assessed. Anyway, the entire procedure is not simple; the Gaussian Mixture

Model requires the knowledge of the number of clusters of the training data to fit provided by

mean of some algorithm (i.e. EM) [53]. In the previous sections we presented an algorithm

relying on the projection of training data through PCA to extract the minor components. This

methodology allows to extract some clustered variables (i.e. the minor components) from the

training data set. By projecting the training data onto the minor components, the variance be-
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tween the accelerometers monitoring different locations of the structure subjected to any type

of input is dramatically reduced so that the projected data distribution can be represented by a

single Gaussian distribution. Then, this approach allows to avoid dealing with mixture models.

The theoretical foundation hitherto discussed is followed in practice.

An example of the advantage given by the projection of the damage sensitive features (cep-

stral coefficient sequences) onto the minor components in a novelty detection based structural

damage assessment is presented in this section. For this purpose, a novelty detection analysis

based on the AutoRegressive coefficients (AR) is performed on the 8-DOF shear type system

described in section 2.4.1. The AutoRegressive coefficients (AR) have been largely adopted as

damage sensitive features in the analysis of linear systems [18, 39, 54, 55]. The methodology

commonly used for their extraction is presented in Appendix 8.1.

By considering the 8-DOF shear type system in section 2.4.1 in its baseline (undamaged)

conditions, it is possible to generate a dataset of Ntr
ob = 500 observations of the acceleration

response time histories. The excitation force setup has been designed so that the training dataset

cannot be represented by a multivariate Gaussian distribution. The 80% of the Ntr
ob observations

of acceleration response time histories has been generated when the system is subjected to

Gaussian white noise excitations whose standard deviation is 100 N at the top 4 floors and 10

N at the bottom 4 floors. Contrarily, the remaining 20% of the Ntr
ob observations of acceleration

response time histories has been generated when the system is subjected to Gaussian white

noise excitations whose standard deviation is 10 N at the top 4 floors and 100 N at the bottom

4 floors. The AR coefficients are extracted from the acceleration response time histories. The

number of AR coefficients to take into account (model order) has been calculated according

to the Akaike Information Criterion (AIC) [56]. Figure 2.14 (a) shows the distribution of the

AR coefficients extracted from the training dataset at DOF 1 of the shear-type system. As

expected, most of the AR coefficients are extremely sensitive to the variation of the excitation

source. In fact, the 20% of the training data contributes to form outliers clustered away from

the suggested values (median). Three test datasets consisting of Nte
ob = 500 observations of

acceleration response time histories are generated for the structure in undamaged conditions.

In the first dataset, the dynamic response is obtained by considering the same excitation setup

used for the training dataset. The second and third test datasets are obtained by simulating the

structural response of the system subjected to Gaussian white noise excitations whose standard

deviation is 10 N at the top 4 floors and 100 N at the bottom 4 floors (consistently to the 20% of
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the Ntr
ob observations of the training dataset). Figure 2.14 (b) shows the distribution of the SMD

of the test data from the training data for each of the three test scenarios for the AR coefficients

obtained at DOF 1. Despite no damage occurs in the structure, by comparing the median of the

SMD for the first test dataset with those for the second and third test datasets, the presence of a

damage is suggested. Thus, since the assumption at the core of the SMD is violated, it cannot

be used as a valid damage sensitive feature.

(a) Autoregressive coefficients

(b) Mahalanobis distance over different states

Fig. 2.14. Features at DOF 1.

By considering the training dataset and the third test dataset just described, the distributions

of the projection of the training and test cepstral coefficient sequences (computed at each DOF)

onto the 49th and 50th principal components (minor components) are shown in Figure 2.15. The

training and test distributions are consistent to each other confirming that no damage occurs in

the structure. One of the advantages of the minor component analysis is here clear. It allows

to overtake the obstacles due to different excitation and provides features not sensitive to the

input configuration, but only to the damage.
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Fig. 2.15. Undamaged states under different excitation sources.

2.5. Principal Components of the Minor Components

The effectiveness of the minor components as damage sensitive features for a novelty detection

based structural damage assessment method has been proven in the previous sections. However,

all the numerical simulations hitherto presented rely on a small number of minor components

arbitrarily selected; out of 50 components, only the last two are taken into account. Some fur-

ther considerations in opposition to that choice can be made. First, some components might

be more sensitive to the damage than others and an arbitrary selection could not be proper.

Second, the total number of components provided by the PCA is equal to the length of the cep-

stral coefficient sequence Q. Then, by increasing Q the total number of components increases

as well as the number of those that can be considered minor components. Potentially, we may

have a significant amount of minor components that can be more or less sensitive to the damage

and an arbitrary and random selection of two of them could be a contestable policy. For such

a reason, in this section, the novelty detection analysis is conducted so that we can have a low

dimensional representation of the distributions of the minor components even when they are

more than 2.

A visual representation of more than 3 minor components

The statistical pattern recognition based damage assessment method relies on a training phase

and a test phase leading to a novelty detection analysis of the minor components. The issue

regarding the definition of the minor components arises during the training phase. Hence, the

PCA provides the principal components as well as the minor components (those principal com-

ponents contributing to the lowest variance of the datasets). Are we really able to distinguish

the formers from the latters? The answer to that question can be found by looking at the PCA
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as a dimensionality reduction method. In fact, the dimensionality reduction is carried out by

considering a cut-off threshold based on the contribution of the single components to the total

variance of the data. In this framework, according to the standard assumptions in literature,

those components contributing to less than the 1% of the variance can be claimed to be minor

components.

In the test phase, new observations are projected onto the space defined by the minor compo-

nents. As long as more than 3 minor components are selected, a visual representation cannot

be provided unless further mathematical manipulations. Furthermore, the mismatch between

the training and test distributions projected onto the minor components can be emphasized in

a new space. Hence, a new PCA can be helpful to develop a low dimensional representation

of those multivariate distributions. Whereas the PCA performed in the training phase aims to

find a low variance space and cluster the training data distributions, the new PCA is intended

to define the space maximizing the variance between the projections of the training and test

cepstral coefficient sequences datasets. The former PCA is oriented to the features extraction,

the latter to the dimensionality reduction.

Structural damage assessment relying on several minor components

The analysis of the minor components is reported for the 8-DOFs shear type system described

in section 2.4.1. The cepstral coefficient sequences used for the training and test phases are

exactly the same used in the training dataset and in the first two damage scenarios reported in

section 2.4.1. Let’s recall that in the first damage scenario the unknown state of the system is

undamaged, whereas in the second the system is damaged and the damage has been simulated

through a drop in stiffness of the 10% of the spring element connecting the degrees of freedom

2 and 3. As the training dataset (cepstral coefficient sequences) is the same for both the tests,

also the minor components given by the PCA are the same.

As mentioned in the last section, in the training phase we need to define the minor compo-

nents by mean of a threshold that is set to 1% of their contribution to the total variance. Such

contribution is displayed in Figure 2.16 and let us observe that the components 9 to 50 can

be interpreted as minor components. Therefore we will consider the distribution of the minor

components in a 42-dimensional space.
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Fig. 2.16. Variance contribution for each component.

In the test phase, cepstral coefficient sequences for the structure in unknown conditions are

projected on the 42-dimensional space and the second PCA, considering the training and test

projected data points, is performed. The selection of the number of principal components to

consider defines the dimensionality of the low dimensional representation of the distributions.

In this section, a 2-dimensional representation will be provided.

The first test dataset (structure in undamaged conditions) is analyzed to remark that the

distributions of the projected training and test cepstral coefficient sequences match each other.

Figure 2.17 (a) shows the 2-D representation of the training and test distributions in the space

defined by the principal components of the second PCA. The training and the test data are

marked in blue and red respectively. It is clear that the distributions overlap. The second test

dataset (structure in damaged conditions) is performed to show the mismatch between the train-

ing and test distributions due to damage. Figure 2.17 (b) shows the distributions of the principal

components for an undamaged state (blue) and for the damaged state (red). For sake of clarity it

is worth to point out that, despite the training minor components are the same, their projection

shown in Figure 2.17 (b) is on a space which is not the same as the one in Figure 2.17 (a), as

the projecting matrices of the second PCA also depend on the projected test data.
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(a) (b)

Fig. 2.17. Principal Components, Undamaged vs Undamaged (a) and Undamaged vs Damaged, 10%
stiffness drop (b).

Compared with the damage assessment based on two minor components only, this approach

offers the advantage of a compact low dimensional representation of more damage sensitive

features avoiding to the user the arbitrary selection of the minor components.

The next section presents the proposed pattern recognition based damage assessment algo-

rithm in a newly formulation so to extend the analysis to damage sensitive features which can

be represented by either the cepstral coefficients extracted from the acceleration response time

histories or the projection of the cepstral coefficient sequences onto the minor components.

2.6. A data-based damage detection algorithm using Cepstral Coefficients

In the field of statistical pattern recognition, the common approach used in damage detection

analyses is to define a model of the damage sensitive features which is representative of a

healthy state of the system and compare new instances of the damage sensitive features ex-

tracted from new data obtained from the system in an unknown state against those originally

computed. The final goal is to be able to state whether those new instances are novel, and so

diverging from the realizations of the healthy state, or not. Following the terminology used

in the current literature, determining the statistical distribution (pattern) of the damage sensi-

tive features from the data obtained from the system in its original state is called the "training

phase" and the corresponding statistical distribution the "training model". Once the training

phase is complete and the training model determined, then, when new data from the structure

in unknown state becomes available, the damage sensitive features are extracted from the new

recorded data and compared with the training model. This step of the analysis is called the
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"testing phase" and ends with a binary decision: the newly extracted damage sensitive fea-

tures fit the statistical distribution of the training model and so the structure is still considered

healthy or they represent an outlier of the training model, implying that damage might have

occurred. The assumption at the base of this analysis is that the extracted damage sensitive

features are multivariate normally distributed variables: given Nob observations of independent

identically distributed (i.i.d.) variables, their distribution approaches a normal distribution as

Nob approaches infinite. While the AR coefficients introduced in the last section are commonly

assumed to follow a normal distribution and perfectly satisfy this requirement, the same is not

exactly true for the cepstral coefficients. However, two considerations about the cepstral coeffi-

cients can be made: 1) the distribution of the zeros Z(i) in Equation (2.25) is biased since there

is not a linear dependence between such zeros and the structural properties, 2) there is a strong

correlation between the cepstral coefficients and so they cannot be claimed to be independent

variables. Anyway, through a mathematical manipulation, e.g. performing a Principal Compo-

nent Analysis, the projection of the cepstral coefficients leads to the extraction of independent

and identically distributed damage sensitive features.

In the case that the distribution of the damage sensitive features follows a multiple mixture

model, we proposed to project the training distribution onto a space where those mixtures are

clustered together. This has been done by using a Principal Component Analysis (PCA) and

looking at the lower order components, an approach that has been shown to be particularly

effective when dealing with cepstral coefficients.

In this chapter, following a multivariate outlier detection approach, the Squared Maha-

lanobis Distance was proposed as the damage index. The analytical formulation of the SMD is

here provided. Given a multivariate normal distribution of the damage sensitive features from

the training phase, whose mean is µµµ 2 Rd⇥1 and covariance matrix ⌃ 2 Rd⇥d , the Squared

Mahalanobis Distance of a new feature vector xxx 2 Rd⇥1 from such distribution is defined as

follows:

D2(xxx) = (xxx�µµµ)T
⌃

�1(xxx�µµµ). (2.56)

It is noteworthy that, as long as the distribution of the training features can be represented by

a normal distribution, such distribution implicitly contains all the variability due to external

factors and disturbances.

In an outlier analysis, the Squared Mahalanobis Distance of an instance from the training dis-

tribution is a scalar that has to be compared with a threshold to establish whether such instance
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belongs to the system in a healthy state or not. The definition of the threshold completely

depends on the training distribution.

In machine learning, a common approach to determine this threshold is to use the cross val-

idation method, splitting the training data into k-folds and using one fold at a time to compute

the Squared Mahalanobis Distance from the remaining training population and then by adding

the mean of those k-values and their standard deviation multiplied by a safety coefficient. Al-

ternatively, it has been proven that the distribution of the Squared Mahalanobis Distance of

d-variate independent and identically distributed variables asymptotically converges to a c2-

distribution with degree of freedom d. Furthermore, Ververidis and Kotropoulos [57] proved

that the distribution of the Squared Mahalanobis Distance of a d-variate point not involved in

the estimation of the sample mean and covariance follows a scaled F-distribution with degrees

of freedom d and nob �d, where nob is the number of observations used to generate the sample

distribution.

Using this framework to address a damage assessment problem, the proposed damage as-

sessment algorithm, schematically represented in Figure 2.18, will consist of two phases: the

training phase and the test phase. During the training phase, Ntr
ob observations of the structural

response acceleration time histories are recorded at N locations (again here the assumption is

that all the degrees of freedom are instrumented, but it is not a necessary condition). At each

location i = 1,2, . . . ,N, the jth acceleration time history ( j = 1,2 . . .Ntr
ob) will be analyzed and

the first nc cepstral coefficients (except for the first one q = 0) will be taken into account. A

newly defined vector ccc( j)
tr 2Rd⇥1 can be arbitrarily set to contain the damage sensitive features

considered (i.e. cepstral coefficients or their projections). For instance, it can contain either

all the observations of cepstral coefficients computed at any location so that d = nc ·N (global

analysis) or all the observations computed at a certain position i = 1,2, . . . ,N, yielding d = nc

(local analysis). The sample mean vector over Ntr
ob training realizations of the damage sensitive

features ccc( j)
tr 2 Rd⇥1 for j = 1, . . . ,Ntr

ob is given by:

µµµ tr =
1

Ntr
ob

Ntr
ob

Â
j=1

ccc( j)
tr (2.57)

and the covariance matrix is evaluated as:

⌃tr =
1

(Ntr
ob �1)

Ntr
ob

Â
j=1

(ccc( j)
tr �µµµ tr)(ccc

( j)
tr �µµµ tr)

T . (2.58)
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They define the statistical distribution representing the healthy state of the structure. Once the

trained model is finally available, a number of Nte
ob new instances ccc( j0)

te 2Rd⇥1 for j0 = 1, . . . ,Nte
ob

of the damage sensitive features of the system in unknown conditions are collected in the test

phase. The Squared Mahalanobis Distance of ccc( j0)
te from the training distribution is evaluated:

D2(ccc( j0)
te ) = (ccc( j0)

te �µµµ tr)
T [⌃tr]

�1(ccc( j0)
te �µµµ tr). (2.59)

so that we obtain Nte
ob different scalar values for D2(ccc( j0)

te ) ( j0 = 1, . . . ,Nte
ob) at each DOF and

consider their median value as a local damage index D2. The estimated damage index is com-

pared against the threshold value of the scaled F-distribution in order to assess the presence

of the damage. As long as the damage sensitive features extracted in the test phase (unknown

state) belong to the same distribution type of those extracted in the training phase (healthy

state), the Squared Mahalanobis Distance of ccc( j0)
te follows a scaled F-distribution:

Ntr
ob(N

tr
ob �d)

((Ntr
ob)

2 �1)d
D2(ccc( j0)

te )⇠ Fd,Ntr
ob�d. (2.60)

In this chapter, the value of the threshold G is set to the 0.99-quantile of the training scaled

Fd,Ntr
ob�d distribution. As long as the median of the Squared Mahalanobis Distance, scaled by

the factor Ntr
ob(N

tr
ob �d)/((Ntr

ob)
2 �1)d, is lower than the threshold G, the system is proclaimed

undamaged.
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Fig. 2.18. Damage Assessment Algorithm.

2.7. Structural damage detection

Three case studies are presented to examine the performance of the damage assessment al-

gorithm based on different damage sensitive features. In the first two cases, the acceleration

response time histories are numerically simulated from an 8DOF shear-type system, while in

the third case, the time histories of the structural response recorded through accelerometers

strategically positioned on a real structure are considered.

2.7.1. 8-DOF shear-type - Case I

The structural system analyzed in this case is a lumped mass model of an 8-DOF shear-type

system. As shown in Figure 2.19 the mass and spring elements are numbered in ascending order

from the ground constraint to the top. The system in its baseline condition is characterized by
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horizontal springs of stiffness ki = 25000 N/m (i = 1, . . . ,8), and each mass is equal to mi = 1

kg (i = 1, . . . ,8). The frame is supposed to have modal damping with a damping factor of

x = 1% for each of the 8 vibration modes.

Sixteen different structural conditions are considered in the analysis (Table 2.4). In addition

to the first state, that corresponds to the baseline condition of the system, there are 8 additional

states that correspond to slight changes of the stiffness at various floors: these cases simulate

fluctuations of the structural properties due to environmental conditions (e.g. temperature,

humidity, etc.). For the remaining 7 cases, a drop in stiffness of certain spring elements will

simulate different damage scenarios.

For each scenario, the excitation is provided by external forces applied at every DOF via

zero-order-hold (ZOH) for 100 sec duration with a sampling period of 0.01 seconds. Such

forces are represented via zero-mean Gaussian white noise signals (standard normal distribu-

tion) whose magnitudes are scaled at each floor, by a factor of 100. The output dataset is rep-

resented by the time-histories of the structural acceleration recorded at every level (full set of

sensors) corrupted by a 10% RMS Gaussian white noise to simulate the effect of measurement

disturbances.

Fig. 2.19. 8-DOF shear type system

Scenario Condition Anomalies

1 Undamaged Baseline
2 Undamaged ki = 0.98k0

i for i = 5, . . . ,8
3 Undamaged ki = 0.99k0

i for i = 5, . . . ,8
4 Undamaged ki = 1.01k0

i for i = 5, . . . ,8
5 Undamaged ki = 1.02k0

i for i = 5, . . . ,8
6 Undamaged ki = 0.98k0

i for i = 1, . . . ,4
7 Undamaged ki = 0.99k0

i for i = 1, . . . ,4
8 Undamaged ki = 1.01k0

i for i = 1, . . . ,4
9 Undamaged ki = 1.02k0

i for i = 1, . . . ,4
10 Damaged ki = 0.9k0

i for i = 1
11 Damaged ki = 0.9k0

i for i = 3
12 Damaged ki = 0.9k0

i for i = 5
13 Damaged ki = 0.9k0

i for i = 7
14 Damaged ki = 0.85k0

i for i = 7
15 Damaged ki = 0.9k0

i for i = 3,7
16 Damaged ki = 0.9k0

i for i = 2,8

Table 2.4. Damage scenarios.

First, let’s address the performance of cepstral coefficients in assessing whether the system

has suffered structural damage or not. Later, we will look at their ability to identify the location
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of damage. When dealing with cepstral coefficients as damage sensitive features, let us recall

that their analytical representation showed that they converge to zero relatively fast and hence

it is reasonable to assume that the local information about the structural properties is concen-

trated in the first few elements of the cepstral coefficient sequence. For that reason, the first nc

elements of the cepstral coefficient sequences computed at each of the N = 8 DOF are retained.

Since our goal is to assess whether or not there is damage, all the retained cepstral coefficients

can be gathered in a damage sensitive feature vector ccc( j)
tr 2 Rnc·N⇥1 for j = 1, . . . ,Ntr

ob that ac-

counts for all the available sensors and that is used to develop the training model (distribution).

In order to introduce additional uncertainty factors, the values of the stiffness elements for

each damage scenario are perturbed by a random value between �1% and +1%. The training

dataset consists in 100 realizations of the 9 undamaged scenarios reported in Table 2.4, so that

Ntr
ob = 900. To test the effectiveness of the cepstral coefficients as damage sensitive features,

the same damage assessment strategy is applied using AutoRegressive coefficients as damage

sensitive features and the results are compared. The number of AR coefficients to be considered

in the analysis is determined using the Akaike Information Criterion on the first realization of

the undamaged scenario in baseline condition, resulting in an order p = 18. Consequently, an

equal number of cepstral coefficients was adopted (nc = 18): later, this value will be varied to

show its effect on the damage detection process.

Looking at the computational efficiency, in the training phase the time required to obtain

the Ntr
ob = 900 realizations of the damage sensitive features is 7.99 sec for the cepstral coeffi-

cients and 32.23 sec for the AR coefficients (Mac Pro, 2.8 GHz Intel Core i5). In determining

the threshold limit from the training model, both the damage sensitive features have identical

scaling factor (0.0058) and threshold value (1.33) for a confidence level of 99%.

The damage detection test is performed to predict the health conditions of the system. Once

the training model and the corresponding scaling factor and threshold have been found, the test

phase begins. Here for each of the scenarios of Table 2.4, 5 sets of 100 realizations of the

acceleration responses have been considered so that the total number of instances is 8000. The

median value of the Squared Mahalanobis Distance is used as damage index and compared

against the threshold. The results are shown in Figure 2.20. By looking at Figure 2.20, it

is clear that the cepstral coefficients are quite successful in identifying healthy and damaged

conditions. Their accuracy matches very well with that of the AR coefficients but at a much

reduced computational effort. In fact, considering the results in Figure 2.20, the following
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considerations can be made: 1) the results from the AR model are obtained using an opti-

mal AR model where the number of coefficients (nc = 18) has been chosen according to the

Akaike Information Criterion, while the equal number of cepstral coefficients (nc = 18) is not

necessarily the optimal model order, as shown in Figure 2.22 (a), and 2) the order of the AR

model to consider affects the value of the AR coefficients and so, for different model orders,

new regression models need to be evaluated while, on the contrary, cepstral coefficients can

be computed only once, independently from nc. Furthermore, when dealing with experimental

data that may contain, even slightly, nonlinear effects (outside the purpose of this chapter), the

cepstral coefficients will be proven to be much more stable than the AR coefficients in damage

assessment.

(a)

(b)

Fig. 2.20. Damage Index over 16 scenarios. Cepstral coefficients (a) and AR coefficients (b) as damage
sensitive features.

Figure 2.21 (b) shows the same results in terms of confusion matrices. Here, each matrix

shows the performance of the classification algorithm considering the Squared Mahalanobis

Distance of the test realizations individually, assigning a ’0’ if the system is classified as un-

damaged or a ’1’ if damaged. The elements along the diagonal of the confusion matrix represent
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the instances when the damage sensitive features correctly classify the condition of the system.

The confusion matrix for the cepstral coefficients in Figure 2.21 (b) points out that, for 0.7% of

the 8000 instances, the algorithm leads to classify the undamaged system as damaged (Type I

error) and only for the 0.4%, misclassifies the damaged system (Type II error). An interesting

result is shown in the first and last confusion matrices obtained by changing the number of

cepstral coefficients considered in the analysis as for nc = 7 in Figure 2.21 (a) and nc = 28 in

Figure 2.21 (c). The number of Type I and Type II errors are quite similar (Type I: from 0.4%

to 0.9%, Type II: from 0.5% to 0.7%) and so the accuracy (from 98.6% to 98.9%) for the three

values of nc considered (nc = 7,18,28).

(a) (b) (c)

Fig. 2.21. Confusion Matrix for different damage sensitive features. a) Cepstral Coefficients nc = 7,
b) Cepstral Coefficients nc = 18 , c) Cepstral Coefficients nc = 28.

An investigation about the performance of the proposed damage assessment algorithm by

varying the number of components nc considered shows that using a number of cepstral co-

efficients beyond a certain range leads to a decrease in accuracy. This can be seen in Figure

2.22 (a) where the accuracy of the proposed algorithm is plotted as function of the number of

cepstral coefficients nc. When considering few coefficients, the number of damage sensitive

features does not contain enough information about the structural system leading to inaccurate

estimations. When dealing with large numbers of cepstral coefficients, the part of the coeffi-

cients linked to the structural characteristics tends to zero (see Figure 2.1 for a SDOF), while the

remaining part linked to the external noise and excitation sources becomes predominant lead-

ing to a decrease of accuracy in the damage assessment. Figure 2.22 (b) shows the confusion

matrix for the case nc = 50 where the Type II error increases to 1.9%.
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(a) (b)

Fig. 2.22. Accuracy over nc a), confusion matrix for Cepstral Coefficients nc = 50 b).

Finally, one last consideration about this case study can be made. Until now, the damage

sensitive feature was represented by a unique vector containing the first nc cepstral coefficients

(or the first p AR coefficients) extracted from the acceleration response time histories at every

DOF. An alternative approach is to consider each monitoring location separately so to obtain

multiple local damage indexes. As pointed out in section 2.2.2, the first values of the cepstral

coefficient sequences are the ones embedding most of the local information of the structural

response. For such a reason, once the cepstral coefficients (or the AR coefficients) are locally

extracted, only the first 3 elements of the sequences are considered (nc = p = 3). Both the

threshold G and the scaling factor are common for all the distributions given by the damage

sensitive features computed at different DOF. For this example the threshold G is calculated to

be equal to 3.81 and the scale factor is 0.322. For sake of brevity, the local damage indexes are

reported in Figure 2.23 only for the damage scenarios 10 (a) and 16 (b). The bar plots contain

the damage indexes extracted through both cepstral coefficients and AR coefficients.

(a) (b)

Fig. 2.23. Comparison between local damage index using cepstral coefficients and AR coefficients as
damage sensitive features for Scenario 10 (a) and Scenario 16 (b)

In both the reported scenarios (a) and (b), a strong correlation between the damage indexes

provided by the two damage sensitive features is clearly visible. Only the damage indexes com-
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puted at DOF 1 overtake the threshold when the damage is simulated between DOF 1 and the

base (Figure 2.23 (a)) while, when the damage is between DOFs 1-2 and 7-8, only the damage

indexes relative to those DOFs go beyond the threshold. Hence, the cepstral coefficients, when

applied to each single DOF separately, appear capable of detecting not only the occurrence of

damage, but also its location.

2.7.2. 8-DOF shear-type - Case II

Here, the attention is focused on those cases where the cepstral coefficients (as well as the

AR coefficients) cannot be assumed normally distributed but can be, for instance, a mixture of

many distributions. This could be the case in which the excitation is not the same or when it has

different variance at various DOFs. A simple case where this can be easily shown is represented

by the same structural system from Case I where the excitation force is applied either at the

bottom mass (1st) or at the top mass (8th DOF). The training dataset consists of Ntr
ob = 100

realizations of the structural acceleration, each consisting in 8 time-histories, for each of 9

undamaged representations of the undamaged system. In each realization, the acceleration

time-histories are simulated by exciting the system with just one force applied at DOF 1 or

DOF 8 for the entire duration, with a probability of the force to act at DOF 1 or DOF 8 equal

to 70% and 30% respectively. The distribution of the first two cepstral coefficients is shown

in Figure 2.24. This variability can be explained by recalling the analytical expression of the

cepstral coefficients: while the qq component was the same at every location, the components

gi,q varied from sensor to sensor, depending on the locations of both the sensor and the actuator.

(a) (b)

Fig. 2.24. Distribution of the first and second cepstral coefficients (a) and AR coefficients (b) for the
scenario 1 at DOF 1.

It can be easily stated that, looking at the distribution of these cepstral coefficients, they do

not follow a normal distribution, a requirement needed for the direct application of the damage

detection algorithm. Actually these data points, being representative of the cepstral coeffi-



Chapter 2 61

cients from the training datasets, can be considered sampled from a mixture of distributions. In

practice, it is common to approximate those training distributions and, in the testing phase, to

perform an outlier analysis on the new test data using such approximate distributions. Several

algorithms are available in literature to estimate these training distributions (e.g. Expectation

Maximization (EM) algorithm, Variational Inference, Gibbs sampling, etc.) [58–61]. In Figure

2.25 an EM algorithm has been used to evaluate the training mixture model. However, one

word of caution in using such algorithm is that, since an EM algorithm requires to specify in

advance the number of mixtures to be estimated, this could be a difficult task: not in this case

(clearly 2 mixtures in the training data) but in many real applications it could be difficult to as-

sess this number. In evaluating the number of mixtures in a distribution, a principal component

representation of the cepstral coefficients from the training dataset is quite helpful (Figure 2.25

(b)) as well as the Akaike Information Criterion statistics.

(a) (b)

Fig. 2.25. Gaussian mixture models for the training distribution. Distribution of the first and second
cepstral coefficients (a) and first and second principal components of the cepstral coefficients (b) for the
scenario 1 at DOF 1. Maximum likelihood (+) and covariances (dashed lines for 2s and 3s ) of the two
Gaussian mixtures.

According to the proposed strategy for the case of multiple mixture models (section 2.6),

we conducted a PCA on the training dataset in order to select as minor components all those

components contributing to less than 0.5% of the total variance of the entire dataset. It is

noteworthy that, for noisy signals, some of those components could tend to overfit the signals,

including noise, and so it would be better to impose also a lower threshold to remove such

components.

Looking at the specific example of the 8DOF system with forces at either the DOF 1 or

the DOF 8, the training dataset consists of 900 realizations (9 undamaged cases, each with 100

realizations). Each realization contains 8 time histories of the structural acceleration recorded

at various DOFs. Consequently, for each realization, 8 sequences of 50 cepstral coefficients

(nc = 50) are extracted: the value of nc has been set large in order to get, more likely, a
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large number of minor components. Hence, a total of 7200 cepstral coefficient sequences are

available and each of them will represent a point in the 50-dimensional space. It’s important to

remark that the 7200 sequences are projected onto the same space, common for each sequence,

no matter its monitoring location. Figure 2.26 (a) shows the contribution to the total variance

by the single components. Keeping the threshold of 0.5% of the total variance, the components

15 to 50 can be considered minor components.

(a) (b)

Fig. 2.26. Variance contribution for each component (a). Projection of the cepstral coefficients on the
first two principal components, Scenario 16 (b).

When a new dataset (8 new time histories of the structural acceleration) obtained from

the system in unknown conditions becomes available (testing phase), 8 new sequences of 50

cepstral coefficients will be extracted and projected onto the space identified by the previously

defined minor components. Again, the process of whitening scales the distributions along their

components. At this point, since some minor components may not be sensitive to damage, a

new PCA, based this time on both the training and the new testing features, can be performed

in order to maximize the variance and so the evidence of the damage. Figure 2.26 (b) shows

the projections of the cepstral coefficients on the new principal components for scenario 16

on Table 2.4: it is clearly shown that the feature corresponding to the training data form a

unique cluster (crosses), whereas those corresponding to the testing data (circles) is a mixture

of distributions. Consequently, the projection of the cepstral coefficients on the 2 principal

components can be defined as the new damage sensitive feature and the previously defined

damage assessment criterion, based on the Squared Mahalanobis Distance, can be applied.

Thus, for this specific case, ccc( j)
tr 2 R2⇥1 in Equation (2.57) where j = 1,2, . . . ,N · Ntr

ob and

ccc( j0)
te 2 R2⇥1 where j0 = 1,2, . . . ,N ·Nte

ob.

Similarly to Case I, in Case II the test phase comprises of 5 sets of 100 realizations each, for

each of the 16 scenarios and the relative damage index is reported in Figure 2.27. According to
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the scaled F-distribution, the threshold for this case is 4.62 and the damage index is scaled by a

factor equal to 0.49.

Fig. 2.27. Damage Index over 16 scenarios, damage sensitive features extracted from the minor
components.

The results shown in Figure 2.27 are consistent with those obtained for Case I demonstrating

the ability of the proposed algorithm to detect structural damage, even in the case of an arbitrary

force distribution. Hence, it can be concluded that the PCA and whitening play a crucial role

in the extraction of the damage sensitive features, in line with the assumptions of the damage

detection algorithm.

2.7.3. The Z24 Benchmark - Case III

The third study case is considered in order to evaluate the performance of the proposed damage

detection algorithm when dealing with real measurement data.

The Z24 bridge is a very well known case study, used by many researchers in their work.

Part of the roadway link connecting the towns of Koppigen and Utzeenstorf, in the canton of

Bern, Switzerland, the bridge was a post-tensioned concrete box girder bridge, with a main

span of 30 m and two 14 m side spans. After 36 years of activity, the bridge was demolished in

1998 to be replaced with a new, larger bridge. The unique feature of this bridge is that, before

its demolition, it was decided to monitor the dynamic behaviour of this bridge for a period

of 10 months (from November 10, 1997 to September 10, 1998) together with environmental

parameters such as local temperature, rain, wind speed, humidity, traffic, etc. In addition,

towards the end of the monitoring period, some progressive damage was induced in the bridge

structure (e.g. progressing lowering of the pier, spalling of concrete, etc.) and the response

of the damaged structure recorded. Table 2.5 shows a chronological overview of the different

structural conditions.
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Before and after each damage occurrence, not having the traffic excitation anymore, the

bridge was subjected to a series of forced and ambient vibration tests. Two vertical shakers

were placed on the bridge deck so to excite the structure through a fairly flat spectrum between

3 and 30 Hz. A network of 16 accelerometers recorded structural accelerations at strategic

locations on the bridge structure: for every hour, a total number of 65,536 samples (with a

sampling time of 0.01 s) were recorded by each accelerometer, using an antialiasing filter with

30-Hz cutoff frequency.

Fig. 2.28. Z24 Bridge, sensors setup.

Date (1998) Scenario
10-17 July Undamaged Condition
4 August Undamaged Condition
9 August Installation of pier settlement sys
10 August Lowering of pier, 20 mm
12 August Lowering of pier, 40 mm
17 August Lowering of pier, 80 mm
18 August Lowering of pier, 95 mm
19 August Lifting of pier, tilt of foundation
20 August New reference condition
25 August Spalling of concrete at soffit, 12m2

26 August Spalling of concrete at soffit, 24m2

27 August Landslide of 1 m at abutment
31 August Failure of concrete hinge
2 September Failure of 2 anchor heads
3 September Failure of 4 anchor heads

Table 2.5. Chronological overview of applied scenarios;
only the states in bold have been considered in this study.

This dataset is one of the most comprehensive datasets available to study the impact of en-

vironmental conditions as well as progressive damage on a real bridge structure and provides

a valid benchmark for testing theories and algorithms. Several studies [46–49] have been car-

ried out using the data from the Z-24 bridge, mainly focused on the identification of the modal

properties of the bridge. Among the recent ones, in 2017 Langone et al. [62] extracted natu-

ral frequencies, damping ratios and mode shapes using an update Finite Element model of the

bridge: for example, using the measurement data recorded from August 20th to August 25th,

they were able to identify six natural frequencies and damping ratios for the mode shapes as

reported in Table 2.6.
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Mode Number Type Frequency [Hz] Damping ratio [%]
1 Bending 3.86 0.8
2 Torsional 4.90 1.4
3 Torsional 9.76 1.4
4 Torsional 10.30 1.3
5 Bending 12.42 2.8
6 Bending 13.22 3.4

Table 2.6. Estimated modal parameters estimated.

A complete analysis in the frequency domain requires an enormous computational effort

and, above all, a certain level of experience by the analyst. In fact, the accuracy of the results

is strongly dependent on the values of the parameters selected in the analysis. Let us consider,

for example, one of the data-driven, output-only Stochastic Subspace Identification (SSI) algo-

rithms available in literature. Here, the user selected parameters are: 1) the number of block

rows and 2) the total number of columns used in the Hankel matrix, 3) the subpartition of the

Hankel matrix in past and future output, and 4) the order of the state space matrices to be

used for the estimation of the natural frequencies, damping ratios and mode-shapes. Chang-

ing these parameters will provide substantial variation in the results that will require extensive

calculations to be able to extrapolate some meaningful results. As an example, using only the

acceleration time histories recorded at sensor 05, 07, 10 and 12, the natural frequencies ob-

tained from one set of records from the Z-24 bridge by varying the 4 parameters previously

mentioned are identified and presented in Figure 2.29 following the methodology presented in

the work by Tronci [63].

Fig. 2.29. Z24 Bridge, eigenfrequencies for different SSI parameters.



Chapter 2 66

From this diagram, an estimation of the first few natural frequencies (below 15 Hz) leads to

the values listed in Table 2.7

SSI Identified Frequencies [Hz]
mean 3.8782 4.8294 9.8574 13.1333

std 0.0663 0.0334 0.1499 0.4524

Table 2.7. First 4 natural frequencies identified.

which obviously do not match the values estimated in Table 2.6 [62]. Not only the numerical

values do not match but also the number of identified frequencies (4 vs 6). This variability

of the results reduces the reliability of the entire damage assessment analysis when using the

natural frequencies.

Using the identified cepstral coefficients as initial features, the proposed damage assessment

strategy is conducted using the recorded data from the first two scenarios in Table 2.5 as training

datasets (July 10th through 17th and August 4th through 9th) while the data corresponding to the

other scenarios (Table 2.5) are used as test data. Only the data recorded by accelerometers 05,

07, 10, 12 have been considered in the analysis since the other records either are not available

or present some abnormalities. The hourly records are framed into two time histories of equal

length (30 min each) so to increase the number of realizations. Consequently, the training

dataset consists of 48 time histories per sensor per day for a total number of 672 observations

per sensor. The two datasets used in the training phase were acquired while the bridge was

subjected to different excitation sources (traffic for the July 10th-17th period and shakers during

the August 4th-9th period) when the environmental conditions (e.g. temperature, humidity,

wind) were quite similar.

The identified frequencies over the entire set of observations (training and test) are shown

in Figure 2.30 following the procedure in Tronci [63]. Using a lengthy operation that involved

first the use of an SSI algorithm over a range of parameters and then a clustering analysis, four

natural frequencies have been detected, even though for some observations, the algorithm has

not been able to pinpoint reliable values for some of them. The vertical dashed lines separate

the observations belonging to the different damage scenarios. The frequencies from observation

1 to 672 are representative of the structural system in an undamaged state, while the following

observations (from 673 to 1008) were collected when the system was subjected to the cumu-

lative damage as indicated in Table 2.5. The occurrence of damage introduces a slight drop in



Chapter 2 67

some of the natural frequencies, as indicated in Figure 2.30. Figure 2.31 shows a comparison

between the variation of the second natural frequency of the bridge and the variation of the 6th

cepstral coefficient from accelerometer 12.

Fig. 2.30. Eigenfrequencies obtained through SSI.

Each of the observations in Figure 2.30 is related to a set of 4 acceleration time histories

(4 sensors) 30 min long. From those acceleration time histories, the power cepstrum can be

locally extracted at each monitored location providing the 4 cepstral coefficient sequences. As

the cepstral coefficient sequences converge to zero relatively fast (at least for unit pulse and

white noise excitations), only the first 50 values of the sequence are considered for the analy-

sis. Subsequently, the first value for each sequence has been discarded, according to the theory.

Finally, 4 sequences of nc = 49 cepstral coefficients are extracted for each of the observations

belonging to the training (observations 1 to 672) and test (observations 673 to 1008) datasets.

A comparison of the second natural frequency shown in Figure 2.30 against one of the cepstral

coefficients extracted from accelerometer 12 (the 6th) is provided in Figure 2.31. It is worthy

remarking that only some of the cepstral coefficients are sensitive to the structural damage,

depending on what part of the quefrency domain is more affected by specific variations of the

structural properties. Among the natural frequencies, the second natural frequency seems to be

more sensitive to the structural damage, even though it doesn’t vary over the 4 damaged sce-

narios considered. It is worth to remember that the system identification algorithm providing

the natural frequencies, SSI, adopts a time-varying kalman filter, so the identified modal pa-

rameters (in this case natural frequencies) are generated from filtered data. Contrarily, cepstral

coefficients are generated from rough data and their trend appears more noisy (Figure 2.31).
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By the way, the projection of the training data onto the minor components aims to get rid of the

variance due to different factors (excitation sources, temperature, humidity...).

(a) (b)

Fig. 2.31. Sensitivity to the damage. Second eigenfrequency identified (a), 6th cepstral coefficient for
accelerometer #12 (b).

In this analysis, it is important to account for all the cepstral coefficients because they have

different sensitivity to damage. Figure 2.32 (a) shows the variation of the 11th cepstral coef-

ficient for accelerometer 12: it is evident that the 11th coefficient shows a quite different sen-

sitivity to damage than the 6th coefficient. In addition, it is recommended to consider cepstral

coefficients from different accelerometers because they could also show a different sensitivity

to the damage: for example Figure 2.32 (b) shows the same cepstral coefficient as in Figure

2.31 (b) (the 6th coefficient) obtained from a different accelerometer (sensor 7). It is clear that

the sensitivity to the damage is quite different and this depends on the sensor location relative to

the damaged area. For this reason the records from all available sensors should be considered.
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(a)

(b)

Fig. 2.32. Sensitivity to the damage. 11th cepstral coefficient for accelerometer #12 (a), 6th cepstral
coefficient for accelerometer #7 (b).

In order to validate the proposed damage assessment strategy using the cepstral coefficients,

two approaches are presented here. In the first approach (a "global" approach), the extraction of

a "global" damage index consists of the projection along the principal directions of the cepstral

coefficient sequences from all the observations for all the sensors, with the goal of providing

information only on whether or not damage has occurred. Similarly to Case II, the idea behind

this approach is to reduce the variance of the coefficients due to the local term g so to provide a

clustered training distribution (small variance) in the minor components. The second approach

(a "local" approach) considers the projection of the cepstral coefficient sequences for each

sensor individually so to obtain a "local" damage index, providing local information not only

on the presence of the damage, but also on the location. Basically, the Ntr
ob cepstral sequences

will be projected onto a different space depending on the sensor they belong to.

In the first approach, the dataset corresponding to the system in undamaged conditions

consists of 672 observations (Ntr
ob = 672) of the structural acceleration recorded at the 4 sensor

locations (sensors 05, 07, 10 and 12). From each time history, 50 cepstral coefficients were
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extracted and, as previously explained, the first one was discarded (nc = 49). In order to test the

system in undamaged conditions, 75% of the 672 observations were used in the training phase

while the remaining 25% was used in the testing phase. Keeping only the minor components

that contribute to less than 0.5% of the overall variance and performing the second PCA on the

overall dataset, the proposed damage assessment algorithm is able to recognize that both the

training dataset as well as the testing dataset are representative of the structure in the undamaged

conditions. This is clearly shown in Figure 2.33 (a) where the two distributions of the projected

features (the training and testing one) basically overlap. To test the system in a damaged state,

the training, as well as the test datasets have to be redefined. The training dataset consists

now of all the 672 observations while the testing dataset contains the observations collected

during the period August 28th-Sepstember 4th. Looking at Figure 2.33 (b) it is evident that now

the projected feature distributions do not overlap, clearly highlighting the presence of damage.

However, some of the test observations fall under the percentile of two standard deviation of the

Gaussian Mixture Model (GMM) fitting the training distribution (dashed lines in Figure 2.33 to

indicate 2s and 3s ) and this will imply that the damage index, computed as the median of the

Squared Mahalanobis Distance, has a low probability to lead to false positive classifications.

(a) (b)

Fig. 2.33. Training and Test distributions. Undamaged scenarios (a), cumulatively damaged scenarios
(b).

It is also interesting to look at each damage scenario case individually. Five different struc-

tural conditions (1 undamaged and 4 damaged) have been defined, as shown in Table 2.8.
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Test Damage Scenario Training Dataset Test Dataset
Undamaged 10-17 July, 4-9 August (90%) 10-17 July, 4-9 August (10%)
Damaged 10-17 July, 4-9 August 28-31 August
Damaged 10-17 July, 4-9 August 31 August-2 September
Damaged 10-17 July, 4-9 August 2-3 September
Damaged 10-17 July, 4-9 August 3-4 September

Table 2.8. Training and test datasets.

The undamaged state serves as a reference to highlight the differences with the damaged

states. For the undamaged case, three different sets of training and testing datasets have been

created. In each one, following a cross-validation logic, 90% of the initial 672 observations

have been randomly selected as representative of the training datasets while the remaining 10%

constituted the testing dataset. For the damaged configurations of the system, the training and

the testing datasets were created by considering the time histories recorded during the time

periods reported in Table 2.8. Also in this case, considering the 2 principal components as

damage sensitive features, the damage index has been defined as the median of the Squared

Mahalanobis Distance of the test distribution from the training distribution. The results are

presented in box plots in Figure 2.34.

Fig. 2.34. Squared Mahalanobis Distance over the damage scenarios.

Of the three scenarios marked ’undamaged’, the first is consistent with the representation

provided by the components in Figure 2.33 (a) while the other two prove that the Squared Ma-

halanobis Distance of the projected test observations is an unbiased indicator. The distributions

(and the median) of the Squared Mahalanobis Distance have similar values as long as the sys-
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tem remains in the undamaged state. The occurrence of damage induces substantial changes in

the distributions and their values.

In the second (local) approach, attention is now placed on the use of the cepstral coefficient

sequences to provide local damage sensitive features. The training and testing datasets are the

same as the ones from Table 2.8 but now the cepstral coefficients extracted at each sensor are

treated individually. Thus, the damage sensitive features, defined by the projections on the first

two principal components, are obtained at each sensor location: this should help not only in

assessing the presence of damage but also in pinpointing its location. Figure 2.35 shows the

distribution of the two principal components obtained processing the data only from sensor 12,

testing the system in its undamaged state (Figure 2.35 (a)) or in the four damaged states (Figure

2.35(b)). Again, the minor components have been selected according to the variance threshold

of 0.5% of the overall variance.

(a) (b)

Fig. 2.35. Sensor 12: Training and Test distributions. Undamaged scenarios (a), damaged scenarios
(b).

As expected, the training and testing distributions cluster together when the testing dataset

belongs to the system in its undamaged state while clearly diverge when the structure is dam-

aged. Using the extracted damage sensitive features in the proposed damage assessment strat-

egy allow us to estimate the damage index based on the Squared Mahalanobis Distance with a

threshold now estimated equal to 4.63. Figure 2.36 shows the values of the proposed damage

index at the four sensor locations for the 4 damage scenarios. From these results, it appears that

accelerometers 10 and 12 seem to be the most sensitive to the presence of structural damage,

even though some observations are missing for accelerometer 10 in the first damage scenario.
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Fig. 2.36. Local Damage Index over 4 damage scenarios. Each monitoring sensor is represented by a
different colour in the bar plot.

It is noteworthy that the data used in the entire analysis are referred to records from July

1998 to September 1998 so that the environmental conditions can be considered constant over

the time period and no special filtering of data is needed (e.g. the temperature variation can be

considered stationary over time). If the data recordings extend over multiple seasons, special

techniques, e.g. cointegration [63, 64], and/or special features, e.g. frequency ratios [65],

can be used to remove environmental effects. However, it is important to point out that, in

the proposed methodology, the damage assessment relies on the use of the minor components

which are the least affected by the environmental effects. This represents a great advantage

since this technique could handle data recorded in different environmental conditions just in

one analysis.

2.8. Cepstral Coefficients: the LANL Benchmark

The proposed damage assessment methodology has been investigated on data collected from

the dynamic response of a 3-DOF shear-type system. Datasets have been provided by the

Engineering Institute (EI) at Los Alamos National Laboratory (LANL) [66–68]. In its baseline

condition, the system consists of four aluminum columns (17.7⇥2.5⇥0.6 cm) connected at the

top and bottom to aluminum plates (30.5⇥30.5⇥2.5 cm) [69], forming a structure consisting

of 3 floors and a sliding base. The excitation is provided by an electromagnetic shaker that acts

at the center line of the base floor of the structure. Both the structure and the shaker are fixed

on a base plate (76.2⇥30.5⇥2.5 cm). Four accelerometers with a nominal sensitivity of 1000

mV/g are attached at the center of the side of each floor at the opposite side from shaker to

measure the response of each plate. The random excitation applied at the sliding base is band
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limited in the range of 20-150 Hz to avoid rigid body modes of the structure.

Fig. 2.37. LANL benchmark: 4 DOFs shear-type system.

2.8.1. Training and test datasets

The acceleration response time histories collected at each floor are signals of 8192 time steps

with a sampling time of 0.0031 sec leading to records 25.3952 sec long. Multiple damage

scenarios have been tested and, for each of them, 9 observations of acceleration response time

histories have been collected. In order to generate richer a dataset consisting of a large number

of observations, a framing procedure, according to [13] has been performed: the 8192 time

steps long time histories have been framed into 142 time histories, partially overlapping, which

are 1000 time steps long. This procedure led to a total of 142 ·9 = 1278 observations (frames)

at each monitored structural location. For each structural DOF (floors 1 to 3), a training dataset

that consists of Ntr
ob = 1278 observations (frames) from which the cepstral coefficient sequences

are extracted. In a statistical pattern recognition framework, the distribution of the first nc

cepstral coefficients of the cepstral coefficient sequences is considered to develop a training

model. According to the formulation of the damage assessment methodology presented in 2.6,

Ntr
ob = 1278 observations of the vector ccc( j)

tr 2 Rd⇥1 ( j = 1, . . . ,Ntr
ob) containing the first d = nc

cepstral coefficients in the sequences are defined.

Three damage scenarios, reported in Table 2.9, are analyzed to investigate the effectiveness

of the damage assessment methodology, based on the statistical distribution of the cesptral

coefficients sequences, for local structural damage identification. For each damage scenarios,
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a test dataset of Nte
ob = 1278 observations of framed acceleration response time histories are

obtained by following the same procedure as the one used to generated the training dataset.

Thus, Nte
ob = 1278 observations of the vector ccc( j0)

te 2 Rd⇥1 ( j0 = 1, . . . ,Nte
ob) containing the first

d = nc cepstral coefficients in the sequences are obtained.

Label Damaged State Condition
1 25% column stiffness reduction between base and 1st floor
2 25% column stiffness reduction between 1st and 2nd floors
3 25% column stiffness reduction between 2nd and 3rd floors

Table 2.9. Test damage scenarios.

The median of the SMD of the test distribution of the Nte
ob = 1278 vectors ccc( j0)

te from the

training distributions of the Ntr
ob = 1278 vectors ccc( j)

tr is used as a damage index indicator so to

suggest the presence of a local damage. Recalling that the very first cepstral coefficients of

the cepstral coefficient sequences are those more sensitive to the local zeros of the structural

response, i.e. to the structural local behaviour (section 2.2.2), different values of nc are ana-

lyzed (nc = 1, . . . ,4). Figure 2.38 shows the local damage index (at each floor), for the three

presented damage scenarios: it can be observed that, given a damage scenario and considering

nc cepstral coefficients, the value of the damage index is significantly larger when considering

data collected at a position which is adjacent to the damage location. In section 2.7.1, it has

been shown that, by considering very few coefficients (nc = 1,2), the accuracy of the dam-

age detection algorithm is unacceptable. Hence, by focusing on the second damage scenario

(column stiffness reduction between 1st and 2nd floors), for nc = 1,2 the damage index asso-

ciated with the 3rd floor (DOF) is similar to those computed at the 1st and 2nd floors (DOFs).

Contrarily, for nc = 3,4, the damage index is always able to detect the local damage.
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Fig. 2.38. Damage index at every DOF over nc for each damage scenario. Damage scenarios from 1
to 3 in Table 2.9 are ordered from the bottom to the top.

A visual representation of the distribution of the first nc = 3 elements in the vectors ccc( j)
tr

and ccc( j0)
te is provided by Figure 2.39. The first damage scenario (column stiffness reduction

between base and 1st floor) has been considered. The terms along the axes, ci,q, indicate the

qth element of the cepstral coefficient sequence vectors (either ccc( j)
tr or ccc( j0)

te ) extracted at the ith

DOF. The training (blue circles) and test (red circles) distributions are significantly separated

for the datasets collected at DOF1, location that is the closest to the local damage.
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Fig. 2.39. Cepstral coefficient distributions.
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2.8.2. Cepstral coefficients for nonlinear structural damage assessment

The structural damage assessment methodology based on the statistics on the cepstral coeffi-

cients distribution has been investigated by analyzing new test datasets consisting of acceler-

ation response time histories generated by the LANL shear-type system subjected to nonlin-

earities. A vertical column is positioned at the center of the third floor of the structure and

a bumper is installed on the second floor at a certain distance from the column. When the

structure is subjected to the shaker excitation, the contact between the dumper and the column

affects the structural dynamic response, simulating some nonlinearities of the system. Different

damage scenarios are reported in Table 2.10: the gap between the column and the bumper is

indicative of the entity of the nonlinearity introduced in the structure.

Two experiments have been conducted by training two different models relying on the ac-

celeration response time histories collected by the sensors placed at the 3 floors and at the

sliding base (4 monitored locations). For the first experiment, the training dataset consists of

Ntr
ob = 1278 observations of the cepstral coefficients extracted from the acceleration response

time histories of the system in its baseline condition (linear). For each of the state conditions

labeled as 3,4 and 5 in Table 2.10, a test datasets of Nte
ob = 1278 observations of cepstral coef-

ficient sequences has been collected. Let’s focus on the training dataset. By selecting nc = 7

cepstral coefficients, each observation of the cepstral coefficient sequences leads to a training

vector ccc( j)
tr 2Rd⇥1 ( j = 1, . . . ,Ntr

ob). The vectors ccc( j)
tr are obtained gathering the nc = 7 first cep-

stral coefficients extracted at each of the 3 floors (DOF) and at the sliding base so that d = nc ·4.

Analogously, for each test dataset, Nte
ob = 1278 test vectors ccc( j0)

te 2 Rd⇥1 ( j0 = 1, . . . ,Nte
ob) are

generated for the considered damage scenarios. By following the same procedure, the training

and test vectors are computed by considering the first nc AR coefficients to provide a compar-

ison between cepstral coefficients and AR coefficients. Figure 2.41 shows the damage index

computed as the median of the SMD of the distribution of the test datasets, associated with the

presented damage scenarios, from the training distribution. Figure 2.41 (a) shows the damage

indexes over the damage scenarios by considering the cepstral coefficients as damage sensitive

features. For each damage scenario, the presence of structural damage is confirmed. Analo-

gously, in Figure 2.41 (b) the damage index based on the AR coefficients allows to easily detect

the damaged condition of the structure. Anyway, as mentioned in section 2.4.3, AR coefficients

are damage sensitive features particularly performant for linear systems. These coefficients are

generated by performing a linear regression of the dataset, so their estimation for nonlinear
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models is biased. Figure 2.41 (b) shows that the damage indexes obtained by considering AR

coefficients as damage sensitive features are strongly affected by that bias leading to numeri-

cally unstable values.

Fig. 2.40. LANL Bumper between floors 2 and 3.

Label State condition
1 Baseline condition
2 Gap=0.20 mm
3 Gap=0.13 mm
4 Gap=0.10 mm
5 Gap=0.05 mm

Table 2.10. Damage scenarios.

(a)

(b)

Fig. 2.41. Damage Index for nonlinear damage scenarios. Cepstral coefficients (a) and AR coefficients
(b) as damage sensitive features.

The second experiment relies on a procedure analogous to the one used to obtain the results

in Figure 2.41. In this experiment, the training dataset consists of Ntr
ob = 1278 observations of

the acceleration response time histories from which cepstral coefficient sequences are extracted
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when the structure is in the state condition labeled as 2 in Table 2.10. Thus, the model is trained

on a nonlinear dynamic response of the structure. In this case, the AR coefficients extracted

from both the training and test datasets are biased. Also in this case, as shown in Figure 2.42, the

distribution of the cepstral coefficients leads to stable values of the damage index. Contrarily,

the damage index obtained by considering the AR coefficients as damage sensitive features

presents reasonable values for the damage scenarios 3 and 4 in Table 2.10 and dramatically

increases for damage scenario 5.

(a)

(b)

Fig. 2.42. Damage Index for nonlinear damage scenarios. Cepstral coefficients (a) and AR coefficients
(b) as damage sensitive features.

The two experiments presented in this section lead to the conclusion that, compared with

the AR coefficients, the cepstral coefficients are damage sensitive features which lead to more

stable values of the damage index when the analyzed structure is subjected to nonlinear effects.
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2.9. Conclusions

In this chapter the reliability of the power ceptrum of structural accelerations of mechanical sys-

tems for damaged sensitive features extraction was investigated. The analytical expression for

the cepstral coefficients and their projection on a new space were obtained and used in a dam-

age detection strategy. Three case studies were presented: 1) an 8DOF system excited through

Gaussian white noise excitations having the same RMS at each DOF, 2) an 8DOF system ex-

cited by just one input force applied at either the 1st DOF or the 8th DOF, 3) the Z24 bridge in

Switzerland. The excitation source which has been set for the test described in the first study

case was meant to generate cepstal coefficients that follow an approximately Gaussian distribu-

tion. Different damage scenarios have been tested. An outlier analysis has been performed by

considering the cepstral coefficients as damage sensitive feature and has successfully detected

the presence of the damage. A correlation between the damage index defined by the Squared

Mahalanobis Distance and the damage location has been shown. In the second case study the

distribution of the cepstral coefficients was far from Gaussian and the Squared Mahalanobis

Distance as metric indicative of the damage was not directly applicable. To circumvent this

problem, a principal component analysis, aiming to obtain the minor components, was the key

to extract damage sensitive features, less sensitive to external disturbances and random effects

affecting the dynamic response, and mainly depend on a variation in the structural properties. It

has been shown how those minor components are able to make different distributions collapse

into one single clustered distribution leading to a possible analysis through the SMD indicating

an alternative to the conventional methods based on mixture models. In the last case study the

performance of the damage assessment method has been investigated on data from an actual

structure subjected to a variety of external disturbances caused by the environment and excited

by various excitations for part of the monitoring period. The outlier analysis of the projection

of the cepstral coefficients successfully detected the presence of the damage. Furthermore, it

is noteworthy to remark that the proposed approach drastically reduces the computational time

required by a complete analysis in frequency domain. The data compression performed by

cepstral coefficients may be a valuable option not only for storage and computing requirement,

but also for their convenient mathematical representation.
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Chapter 3

3. The Inner Product Vector as an output-only cross-correlation-based feature to struc-

tural damage assessment

Among the damage sensitive features, the Inner Product Vector (IPV) has shown great promise

for applications in a damage assessment strategy. In the original formulation of the IPV (Wang

et al. [70]), a carefully designed input excitation, used to excite a specific structural mode, was

applied to the structure and the dynamic response at different locations directly used to compute

their cross-correlation. The main advantage of using these features is that no computation of

the modal parameters is required: they only rely on a data analysis. This approach has been

successfully used in numerous publications [71–75]. The shortcoming of this approach is that it

requires two tests on the structure: the first test is used to determine the optimal frequency range

to design the input excitation that is going to be used in the second test. This is a condition that

can be satisfied in a laboratory environment, but not in a typical field application where only

the results from one test are available and the excitation cannot be controlled. It is for these

reasons that the methodology proposed in this chapter is addressing the calculations of the IPV

in an output-only framework.

In this chapter, the theoretical formulation of the IPV using the time histories of the struc-

tural response has been derived for both the cases of unit impulse and white noise excitations.

The identified IPVs are obtained through the cross-correlation of the properly filtered structural

response at various locations and used in a damage index vector for damage assessment and lo-

calization. Different reference points in the calculation of the cross-correlation of the response

have been considered for validation.

Numerical simulations on a 8-DOF shear-type and on a 100-DOF 2-D structural models

have shown the effectiveness of the proposed damage assessment methodology, accounting

also for the effects due to additional disturbances (measurement noise, environmental condi-

tions, unidentified modes etc.). The effectiveness of the proposed methodology has been also

validated by considering experimental results from a 3-DOF shear-type laboratory system.
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3.1. Inner Product Vector

Let’s consider a generic dynamic system discretized in N lumped mass elements whose accel-

eration response time histories are monitored. The cross-correlation between the acceleration

time histories recorded at 2 different locations is investigated in order to obtain valuable dam-

age sensitive features. For that purpose, the N acceleration time histories (one for each DOF)

are gathered in an array {ẍ(t)} = {ẍ1(t), ẍ2(t), ..., ẍN(t)}T . The cross-correlation between the

accelerations can be evaluated pairwise for a generic time lag T . As it will be proved in the

next sections, computing the cross-correlation for T = 0 (which represents the Inner Product

Vector) and making some reasonable assumptions lead to the extraction of reliable damage

sensitive features from the acceleration time histories.

3.1.1. Single input case

A generic dynamic N-DOF system can be represented through the equations of motion for a

linear time-invariant model as follows:

[M]{ẍ(t)}+[C]{ẋ(t)}+[K]{x(t)}= { f (t)} (3.1)

where [M], [C], [K] 2 RN⇥N are respectively the mass matrix, the damping matrix and the stiff-

ness matrix. The term { f (t)} 2 RN⇥1 represents the vector of the forcing functions applied on

the lumped masses. The arrays {ẍ(t)}, {ẋ(t)}, {x(t)} 2RN⇥1 are respectively the acceleration,

the velocity and the displacement vectors. As a result of the linear modal analysis, {x(t)} can

be written as a linear combination of mode shape vectors {Fr} 2 RN⇥1 for r = 1,2, . . . ,N,

gathered in the modal matrix [F]=[{F1},{F2}, ...,{FN}], multiplied by some scalar function

of time qr(t) (r = 1,2, . . . ,N):

{x(t)}= [F]{q(t)}=
N

Â
r=1

{Fr}qr(t). (3.2)

Using the orthogonality property of the mode shapes, the equations of motions can then be de-

coupled by substituting Equation (3.2) into Equation (3.1) and pre-multiplying all the members

by [F]T . The dynamic system can then be represented as a set of N scalar equations in the
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modal coordinates qr(t).

q̈r(t)+2xrwnrq̇r(t)+w2
nrqr(t) =

1
mr

{Fr}T{ f (t)}. (3.3)

The coefficients xr,wnr and mr in Equation (3.3) are respectively the damping ratio, the un-

damped natural frequency and the modal mass for the rth mode shape. Assuming zero initial

conditions, the solution for qr(t), is provided by the Duhamel Integral:

qr(t) =
Z t

�•
{Fr}T{ f (t)}gr(t � t)dt (3.4)

where gr(t) is the unit pulse response function related to the rth mode. Then, substituting

Equation (3.4) into Equation (3.2) leads to:

{x(t)}=
N

Â
r=1

{Fr}
Z t

�•
{Fr}T{ f (t)}gr(t � t)dt. (3.5)

To simplify the derivation of the Inner Product Vector, let us first consider the case of a single

input force applied at kth location. In this case, the displacement at ith position induced by an

arbitrary force at the kth position can be computed as:

x(t)i,k =
N

Â
r=1

Fi,rFk,r

Z t

�•
fk(t)gr(t � t)dt. (3.6)

Note that Fi,r denotes the ith component of the rth mode shape. Recalling the formula of the

unit-pulse response for the displacement:

gr(t) =

8
<

:
0 t < 0
e�xrwnrt

mrwdr
sin(wdrt) t � 0

(3.7)

where wdr is the damped natural frequency of the rth mode, the unit-pulse response for velocity

and acceleration can be obtained by simply taking the first and second derivative of gr(t) with

respect to time of Equation (3.7), obtaining respectively:

ġr(t) =
e�xrwnrt

mrwdr
[�xrwnrsin(wdrt)+wdrcos(wdrt)] t > 0 (3.8)
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and

g̈r(t) =
e�xrwnrt

mrwdr
[x 2

r w2
nrsin(wdrt)�2xrwnrwdrcos(wdrt)�w2

drsin(wdrt)] t > 0. (3.9)

By considering Equation (3.6) and applying the Leibniz formula, the velocity at the ith location

induced by a force at the kth location can be obtained as:

ẋ(t)i,k =
N

Â
r=1

Fi,rFk,r

Z t

�•
fk(t)ġr(t � t)dt + fk(t)gr(0)

�

=
N

Â
r=1

Fi,rFk,r

Z t

�•
fk(t)ġr(t � t)dt. (3.10)

while the acceleration at the ith location induced by a force at the kth location can be expressed

as:

ẍ(t)i,k =
N

Â
r=1

Fi,rFk,r

Z t

�•
fk(t)g̈r(t � t)dt + fk(t)ġr(0+)

�

=
N

Â
r=1

Fi,rFk,r

Z t

�•
fk(t)g̈r(t � t)dt + fk(t)

mr

�
. (3.11)

The term ġr(0+) is due to the fact that the unit-pulse response for displacement gr is not deriv-

able in 0. The ratio fk(t)
mr

inside of Equation (3.11) can be rewritten as:

fk(t)
mr

= 2
Z t

�•

fk(t)
mr

d (t � t)dt =
Z t

�•
fk(t)


2

mr
d (t � t)

�
dt (3.12)

so that Equation (3.11) becomes:

ẍ(t)i,k =
N

Â
r=1

Fi,rFk,r

Z t

�•
fk(t)g̈r(t � t)dt +

Z t

�•
fk(t)


2

mr
d (t � t)

�
dt
�

=
N

Â
r=1

Fi,rFk,r

Z t

�•
fk(t)g̈0r(t � t)dt (3.13)

where g̈0r(t � t) =
h
g̈r(t � t)+ 2

mr
d (t � t)

i
. So far no assumption has been made about the

nature of the excitation fk(t).
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3.1.2. Unit pulse and white noise input

Referring to Equation (3.13), the cross-correlation between two acceleration time-histories (one

recorded at the ith position and one at the jth position) induced by an external excitation applied

at the kth location can be computed as the expected value E of the product of such signals

delayed by a time lag T as follows:

Ri, j,k(T ) = E[ẍ(t +T )i,kẍ(t) j,k] (3.14)

such that, using Equation (3.13):

Ri, j,k(T ) =
N

Â
r=1

N

Â
s=1

Fi,rFk,rF j,sFk,s

Z t

�•

Z t+T

�•
E[ fk(s) fk(t)]g̈0r(t �s +T )g̈0s(t � t)dtds (3.15)

The terms in Equation (3.15) are related to the deterministic parameters of the system as well

as to the force fk. If we assume that the force fk(t) represents a unit pulse excitation, defined

by the Dirac Delta d (t), then this leads to:

E[ fk(s) fk(t)] = d (s � t) (3.16)

Analogously, if fk(t) is a white noise excitation, the term E[ fk(s) fk(t)] in Equation (3.15)

becomes:

E[ fk(s) fk(t)] = akd (s � t) (3.17)

where ak is a positive coefficient depending on the statistics of the force acting at location k.

Equation (3.16) provides the same result of Equation (3.17) given ak = 1. Therefore an analysis

about the cross-correlation between signals under white noise excitation will be automatically

valid for the unit pulse excitation. Equation (3.15) and Equation (3.17) combined yield:

Ri, j,k(T ) =
N

Â
r=1

N

Â
s=1

akFi,rFk,rF j,sFk,s

Z t

�•
g̈0r(t � t +T )g̈0s(t � t)dt. (3.18)

Then, substituting l = t � t into Equation (3.18), the cross-correlation becomes:

Ri, j,k(T ) =
N

Â
r=1

N

Â
s=1

akFi,rFk,rF j,sFk,s

Z •

0
g̈0r(l +T )g̈0s(l )dl . (3.19)
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Assuming that we are able to separate the contribution of a certain mode r0 from those of the

other modes for both ẍ(t +T )i,k and ẍ(t) j,k, we can first calculate g̈r0(l ) from Equation (3.9)

and combine it with Equation (3.19) to obtain the expression for Ri, j,k,r0(0):

Ri, j,k,r0(0) = akFi,r0F j,r0F2
k,r0

Z •

0
g̈02r0 (l )dl . (3.20)

Ri, j,k,r0(0) represents the cross-correlation, at time lag T = 0, of the r0th components of the

structural accelerations recorded at the ith and jth locations, induced by an external excitation

at the kth location. Ri, j,k,r0(0) can be computed for different positions i = 1,2, . . . ,N and j =

1,2, . . . ,N, considering the N acceleration time histories due to the same force at position k

exciting the r0th mode. Considering the location j as the reference point, then, the elements

R1, j,k,r0(0),R2, j,k,r0(0)...RN, j,k,r0(0) can be gathered into a cross-correlation vector {R j,k,r0(0)}2

RN⇥1 defined as Inner Product Vector (IPV). In order to simplify the notation in Equation

(3.20), all the positive terms can be gathered into a positive coefficient yk,r0:

yk,r0 = akF2
k,r0

Z •

0
g̈02r0 (l )dl � 0. (3.21)

This can be zero only when the kth component of the r0th mode, fk,r0 , is zero (e.g. the r0th mode

has a node at the kth location). Hence, the cross-correlation vector at time lag T = 0 is thus

obtained:

{R j,k,r0(0)}= F j,r0yk,r0{Fr0}. (3.22)

The dependance of the IPV on k vanishes via L-2 normalization. In fact, the normalized IPV

{R̂ jr0(0)} can be obtained:

{R̂ j,r0(0)} =
{R j,k,r0(0)}

||{R j,k,r0(0)}||2
=

F j,r0yk,r0{Fr0}

|F j,r0yk,r0 |
q

F2
1,r0 +F2

2,r0 + ..+F2
N,r0

=
sign(F j,r0)q

F2
1,r0 +F2

2,r0 + ..+F2
N,r0

{Fr0} (3.23)

indicating that the IPV associated with a given mode (in this case r0) and with a given reference

point (e.g. j) is proportional to the given mode with a sign corresponding to the component

of the given mode at the reference point. It is noteworthy to remark that, by normalizing the
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vector {R j,k,r0(0)}, it is automatically assumed F j,r0 6= 0 and Fk,r0 6= 0 meaning that none of

the jth and kth components at the corresponding locations is a node for the r0 mode. The vector

{F̄r0}= {Fr0}/
q

F2
1,r0 +F2

2,r0 + ..+F2
N,r0 represents the normalized r0th mode, so that:

q
F̄2

1,r0 + F̄2
2,r0 + ..+ F̄2

N,r0 = 1 (3.24)

and, considering that sign(F j,r0) = sign(F̄ j,r0), we obtain:

{R̂ j,r0(0)}= sign(F̄ j,r0){F̄r0}. (3.25)

Equation (3.25) shows that there is a direct connection between the cross-correlation vector

{R̂ j,r0(0)} and the normalized mode shape r0. In order to assess the evolution of the r0 mode

shape of the system passing from an undamaged condition to an unknown (potentially dam-

aged) condition, a damage index vector can be defined as the difference between the IPVs

corresponding to the different situations:

{D j,r0}= {R̂d
j,r0(0)}�{R̂u

j,r0(0)}= sign(F̄d
j,r0)

0

BBBBBB@

F̄d
1,r0

F̄d
2,r0
...

F̄d
N,r0

1

CCCCCCA
� sign(F̄u

j,r0)

0

BBBBBB@

F̄u
1,r0

F̄u
2,r0
...

F̄u
N,r0

1

CCCCCCA
(3.26)

where {D j,r0} indicates the damage index vector for the mode r0 with a reference location at

point j. If we can assume now that the reference point j is not a node for the mode r0 and

that the occurring damage does not change the sign of the element j of the mode r0, so that

sign(F̄d
j,r0) = sign(F̄u

j,r0), then:

{D j,r0}= sign(F̄u
j,r0)

0

BBBBBB@

0

BBBBBB@

F̄d
1,r0

F̄d
2,r0
...

F̄d
N,r0

1

CCCCCCA
�

0

BBBBBB@

F̄u
1,r0

F̄u
2,r0
...

F̄u
N,r0

1

CCCCCCA

1

CCCCCCA
. (3.27)

Equation (3.27) implies that the reference location j, arbitrarily chosen, defines only the sign

of the vector {D j,r0}. Thus, the selection of a reference location j related to an element F̄u
j,r0

of the vector {F̄u
r0} yields a damage index vector defined as {D j,r0}. Contrarily, by choosing
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a reference location j0 6= j related to an element F̄u
j0,r0 of the vector {F̄u

r0} that has an opposite

sign to F̄u
j,r0 , the damage index vector is given by {�D j,r0}.

As specified in [76–80] it is known that the local damage occurring between two lumped

mass elements causes a discontinuity in the difference between the damaged and undamaged

eigenvectors. The relation between the damage index vector {D j,r0} and the normalized r0th

mode shown in Equation (3.27), let us conclude that the elements of the former can be consid-

ered as local damage sensitive features and help us locate the damaged area(s).

It is important to point out that the formulation provided by Equation (3.26) is consis-

tent with the one proposed by Wang et al. [70]. However, in addition to the fact that in this

study, contrarily to [70], only output information is considered, the original approach in [70]

accounted only for the contributions of the first vibrational mode in the calculation of the IPVs.

Instead, the additional assumptions made in this study open the door to the analysis of IPVs

from different structural modes and this represents one of the novelties of the proposed ap-

proach. This freedom will allow to consider low frequency modes other than the first mode,

whose extraction might be difficult because of external (e.g. measurement noise, thermal ef-

fects, etc.) and internal (e.g. rigid body modes, aliasing, etc.) disturbances.

3.1.3. Multiple input case

The general solution for the displacement vector computed through the Duhamel Integral,

Equation (3.5) is at the core of the approach to multiple input analysis treated in this section.

The analogous relation for accelerations is given by Equation (3.28).

{ẍ(t)}=
N

Â
r=1

{Fr}
Z t

�•
{Fr}T{ f (t)}g̈0r(t � t)dt (3.28)

where now { f (t)} indicates a force vector containing the N time histories of the external

excitation (some of them could be zeros). Let’s now focus on a system excited at all the DOFs

such that the Equation (3.28) above can be rewritten as:

{ẍ(t)}=
N

Â
r=1

N

Â
k=1

Fk,r{Fr}
Z t

�•
fk(t)g̈0r(t � t)dt. (3.29)
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Thus, the acceleration at the ith location can be expressed as:

ẍi(t) =
N

Â
r=1

N

Â
k=1

Fk,rFi,r

Z t

�•
fk(t)g̈0r(t � t)dt. (3.30)

By taking into account the contribution of the r0 mode to the acceleration at the ith location:

ẍi,r0(t) =
N

Â
k=1

Fk,r0Fi,r0

Z t

�•
fk(t)g̈0r0(t � t)dt (3.31)

and considering the same contribution for the acceleration at the jth location, the cross-correlation

between these two contributions can be expressed as

Ri, j,r0(T ) = E[ẍi,r0(t +T )ẍ j,r0(t)]

=
N

Â
k=1

N

Â
k0=1

Fi,r0F j,r0Fk,r0Fk0,r0

Z t

�•

Z t+T

�•
E[ fk(s) fk0(t)]g̈0r0(t �s +T )g̈0r0(t � t)dsdt.

(3.32)

If the input force is represented by white noise excitation, then, when k = k0, E[ fk(s) fk(t)]
represents the autocorrelation function of the excitation and can be expressed by Equation

(3.17). On the other hand, when k 6= k0, the cross-correlation is null if the excitations at the

kth and k0th locations are uncorrelated with each other. Those observations lead to a further

simplification of Equation (3.32):

Ri, j,r0(T ) =
N

Â
k=1

Fi,r0F j,r0Fk,r0Fk,r0

Z t

�•

Z t+T

�•
E[ fk(s) fk(t)]g̈0r0(t �s +T )g̈0r0(t � t)dsdt. (3.33)

Setting the time lag T = 0 and solving for the integral lead us to an expression analogous to

Equation (3.20) with a linear superposition for the N excitations acting simultaneously:

Ri, j,r0(0) =
N

Â
k=1

akFi,r0F j,r0F2
k,r0

Z •

0
g̈02r0 (l )dl . (3.34)

The cross-correlation in Equation (3.34) can be decomposed as the sum of N cross-correlation

elements from Equation (3.20) having the common multiplier Fi,r0F j,r0 .

Ri, j,r0(0) = Fi,r0F j,r0
N

Â
k=1

✓
akF2

k,r0

Z •

0
g̈02r0 (l )dl

◆
= Fi,r0F j,r0y 0

r0 (3.35)
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where y 0
r0 = ÂN

k=1

⇣
akF2

k,r0
R •

0 g̈02r0 (l )dl
⌘

indicates a sum of either zero or positive terms. It

can then be concluded that the vector {Ri, j,r0(0)}, containing the cross-correlations of the r0

contributions of all the acceleration time histories with that at the reference jth location, can be

rewritten as:

{R j,r0(0)}= F j,r0y 0
r0{Fr0}. (3.36)

The relation obtained is analogous to the one provided by Equation (3.22). Thus, we can pro-

ceed to the normalization of the cross correlation vector {R j,r0(0)} yielding {R̂ j,r0(0)} (Equa-

tion (3.25)) and finally provide the damage index vector {D j,r0} defined in Equation (3.27).

3.2. Damage detection through a local damage index vector

Until now, the definition of a valid damage index vector has been the object of many studies

conducted by researchers like Wang et al. [71], Trendafilova and Manoach [72], Kim and

Stubbs [73]. In this chapter, the damage index vector is defined according to Wang et al. [71]

even though, as previously mentioned, Wang’s experiment relies on specific hypothesis about

the input which has been strategically designed. According to Equation (3.26), the damage

index vector can be written as:

{D j,r0}= {R̂d
j,r0(0)}�{R̂u

j,r0(0)} (3.37)

where {D j,r0} 2 RN⇥1 for a full sensors setup, when the acceleration response time history is

monitored at every DOF of the system. A more general formulation of Equation (3.37) can be

expressed as:

{DIPV, j,r0}= {R̂d
IPV, j,r0(0)}�{R̂u

IPV, j,r0(0)} (3.38)

where the vectors {DIPV, j,r0}, {R̂d
IPV, j,r0(0)} and {R̂u

IPV, j,r0(0)} are subsets of the vectors {D j,r0},

{R̂d
j,r0(0)} and {R̂u

j,r0(0)} respectively and have dimension Q  N, given a sensors setup that

monitors the structure at only Q locations. An additional consideration about the dimensionality

Q of the vectors in Equation (3.38) has to be pointed out. Despite the fact that it can be

represented by a properly discretized model, any real (continuous) dynamic system has an

infinite number of degrees of freedom. For such a reason, the restriction Q  N doesn’t affect
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in practice the number of sensors we can use to obtain the damage index vector.

A graphical representation of the damage index vector {DIPV, j,r0} is provided by plotting

its elements over their respective monitored locations (or DOFs). For sake of clarity, let’s

consider the particular case of an 8-DOF system whose acceleration response time histories

have been collected in both a damaged and an undamaged state at every DOF so to compute the

corresponding damage index vector. In this example, the damaged state represents the condition

of the system with a reduction of stiffness at a given location. Because of the localized damage,

a local abrupt change in the damage index vector is expected.

Depending on the structural boundary conditions (structural constrains) and material prop-

erties, the damage index vector can present different types of jump discontinuity and so a

local damage index vector {LIPV, j,r0} can be defined based on the type of jump discontinu-

ity presented in the plot of the damage index vector. Three possible cases are here reported,

considering the way that the structural damage affects the mechanical characteristics of the

structure:

1. If all the DOFs but the closest to the damage location are more sensitive to the structural

constrains than to the occurrence of damage, the damage index is approximatively null

at those locations away from the damaged one. Figure 3.1 (a) shows a possible con-

figuration plot of the damage index vector for the case in which, by considering a local

damage between DOFs 3 and 4, only the 4th element of {DIPV, j,r0} shows an appreciable

variation (in this specific case, it is arbitrarily set equal to 1 to provide a clear graphical

representation). The plot of the damage index vector is similar to one representing an

impulse change. For such a specific case, the local damage index {LIPV, j,r0} is defined

as the damage index vector itself so that {LIPV, j,r0}= {DIPV, j,r0}.

2. It might happen that, for specific boundary conditions and material properties, the pres-

ence of a local damage may induce a step change as jump discontinuity in the trend of

the plotted elements of the damage index vector. An example is shown in Figure 3.1

(b) where the two trends are represented by arbitrarily setting the elements of the vector

to zeros and ones. Again, the damage has been introduced between the DOFs 3 and

4. In this case, the local damage index vector {LIPV, j,r0} is provided by the first order

difference of the damage index vector, {D0
IPV, j,r0}. The elements of {D0

IPV, j,r0} related

to the position halfway between two adjacent monitored positions i and i+1 are given
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by:

D0
IPV,(i+0.5), j,r0 = DIPV,(i+1), j,r0 �DIPV,(i), j,r0 (3.39)

where the index (i+ 0.5) of the element D0
IPV,(i+0.5), j,r0 indicates the location halfway

between the ith and i+1th elements of the vector {DIPV, j,r0} indicated by DIPV,(i), j,r0 and

DIPV,(i+1), j,r0 . In this particular case i = 1,2, . . . ,Q�1 so that {D0
IPV, j,r0} 2 RQ�1⇥1. In

this case, the local damage index vector is defined as {LIPV, j,r0}= {D0
IPV, j,r0}.

3. Finally, for some boundary conditions and material properties, it is possible that all

the elements of the damage index vector are sensitive to the local damage, and their

plot looks like a weak impulse. This is the case depicted by Figure 3.1 (c) in which a

damage between the DOFs 4 and 5 is represented. For this particular case to locate the

damaged area, the local damage index vector {LIPV, j,r0} can be defined as the second

order difference of the damage index vector, {D00
IPV, j,r0}. The elements of the vector

{D00
IPV, j,r0} are computed as follows:

D00
IPV,(i+1), j,r0 = DIPV,(i+2), j,r0 �2DIPV,(i+1), j,r0 +DIPV,(i), j,r0 (3.40)

for i = 0,1, . . . ,Q�1, setting, for convenience, DIPV,(0), j,r0 = DIPV,(Q+1), j,r0 = 0 so that

{D00
IPV, j,r0} 2 RQ⇥1.
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Fig. 3.1. Impulse change (a), step change (b), weak change (c)

In summary, Figure 3.1 represents the three abrupt changes in the damage index vector, each

of which is related to particular structural cases. For each of them it is possible to derive a local

damage index vector {LIPV, j,r0} linked to the change of the damage index vector: this operation

is usually performed manually, but classification algorithms that rely on cross-correlation or

classifiers can be designed in order to automate such process.

The final goal of this damage assessment algorithm is to detect abrupt changes in the el-

ements of the local damage index vector {LIPV, j,r0} to assess the presence of locations of po-

tential damage. In order to quantify the entity of these abrupt changes, the introduction of a

threshold value for the elements of the local damage index vector is necessary, as shown in the

next section.

3.2.1. Damage threshold for the local damage index vector

The most suitable approach for the definition of a threshold for local damage index vector is the

one proposed by Wang et al. [6, 20] based on the statistics (mean and the standard deviation) of

the elements of such a vector. The upper and lower threshold boundaries, tu and tl , are defined
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as:

tu = µD +bcsD (3.41)

tl = µD �bcsD (3.42)

where µD and sD are respectively the mean and the standard deviation of the local damage

index vector {LIPV, j,r0}. The term bc is a constant value set to define a confidence interval and

is commonly assumed to be 1  bc  1.8. For instance, in case of normal distribution of the

values of the elements of the local damage index vector, the choice of bc = 1.2, bc = 1.5 and

bc = 1.8 leads to a confidence interval respectively of 76.99%, 86.64% and 92.81%. When the

threshold is overcome by some values of the elements of the local damage index vector, the

structure is claimed to be damaged and the location of the local damage is detected. A brief

example is reported in Figure 3.2.
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Fig. 3.2. Damage index vector {DIPV, j,r0} classified as step change (a) and local damage index vector
{LIPV, j,r0} (b).

Let’s focus, for instance, on an 8-DOF system whose damaged state is characterized by a

localized damage between the DOFs 6 and 7. By looking at Figure 3.2 (a) the damage index

vector {DIPV, j,r0} for j = 1 and r0 = 1 can be easily classified in the step change class (Figure

3.1 (b)) while the corresponding local damage index vector {LIPV, j,r0}, is plotted in Figure 3.2

(b). Also in Figure 3.2 (b), the thresholds are shown for bc = 1.0, bc = 1.2 and bc = 1.5. It

is evident that the plot of the local damage index vector indicates that damage has occurred

between the DOFs 6 and 7.
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3.3. The IPV in an output-only framework

The effectiveness of the IPV algorithm has been exhaustively proven by Wang et al. In their

study [70] they analyzed a lumped element mock up excited by a low-pass (LP) filtered input:

this input was designed so to excite exclusively the first natural frequency of the undamaged

system. Obviously, this step requires a preliminary laboratory test in order to identify the

natural frequencies of the system. After recording the acceleration response time histories for

the system in undamaged conditions, local damage was introduced in the structure and, using a

band-passed input with the same cut-off frequencies as the one used in the undamaged structure,

the acceleration response of the frame in damaged conditions was recorded. By applying the

IPV theory based on the cross-correlation of the signals for the undamaged and damaged states,

the algorithm accurately identified the location of the damage (IPV in Figure 3.3).

As mentioned, the condition of a properly designed band-pass (BP) filtered signal to induce

a specific system excitation is a valid option for laboratory tests only: it implies that the struc-

ture be subjected to two tests, one to determine the frequency range of interest and the other

to collect data to be used in the identification of the IPV. In the methodology presented in this

chapter, only one test is required. In fact, instead of filtering the input excitation, it is proposed

that the filtering procedure be performed on the acceleration response time histories from the

only test. Such a filtering procedure is allowed as long as all the theoretical assumptions at

the base of the proposed methodology (e.g. richness and independence of the input forces) are

respected. Hence, the approach presented in this chapter will then be referred to as output-only

IPV (Figure 3.4): it allows us select the response contribution of the r0thstructural mode to be

isolated and examine it directly from the spectrum of the response output. After the selected

component of the acceleration response has been isolated, the IPV method can be applied to

obtain the local damage index vector.

Fig. 3.3. IPV (Wang et al.)
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Fig. 3.4. Output-only IPV (Filtered Output)

The proposed methodology has some advantages with respect to the original IPV-based

approach [70] and to the conventional parametric system identification based approaches (e.g.

Output-Only Observer Kalman filter [81], Stochastic Subspace Identification [82], etc.) for

damage assessment purposes. This method extends the boundaries of the original IPV approach

by allowing an output-only analysis using information from higher modes than the first one.

The possibility of using multiple reference points allows us to indirectly extract information

about the analyzed structural mode shape by looking at the characteristics of the identified

IPVs. Another main advantage of the proposed method is its easiness in handling large datasets

from dense sensor networks: traditional identification methods rely on regression models and

might suffer from the curse of dimensionality when dealing with large covariance matrices.

Instead, the calculations associated with the cross-correlation vectors for the IPVs are much

more efficient in terms of computational efforts. However, there are also some drawbacks in

the proposed methodology: the main one is the undesired contribution of other structural modes

that can be difficult to be filtered out from the one considered and may induce undesired noise

effects.

3.4. Analysis of the results

To evaluate the performance of the proposed output-only IPV method in assessing and locating

structural damage, numerical simulations as well as experimental data have been considered.

3.5. Numerical simulation: 8-DOF shear-type

The model of the structure is an 8-DOF shear-type model matching the one employed by [75]

and is shown in Figure 3.5 (a). In its baseline undamaged conditions, the system is characterized

by springs of stiffness ki = 25000 N/m and masses mi = 1 kg for i = 1,2, . . . ,8. The frame is

characterized by modal damping with a damping factor of xi = 1% for each of the 8 vibration

modes. The force excitation is applied horizontally on the 8-DOF model via zero-order-hold

(ZOH) with a time sampling of 0.01 seconds: it is a zero-mean Gaussian signal with standard
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deviation s = 1 N and is applied at the top of the model (Figure 3.5 (a)). The input/output time

histories are 100 seconds long leading to 10,000 time steps for each signal. In order to simulate

a local damage, the 8-DOF system has been weakened by decreasing the stiffness of the spring

between the 4th and 5th floors by 20%.

Once the acceleration response time histories have been simulated, a spectral analysis can

be carried out in order to select a suitable mode to be investigated. In this first example, in order

to show the effectiveness of the proposed approach, let us assume that there is no measurement

noise in the response signals (it will be included at a later stage).
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Fig. 3.5. 8-DOF shear type system (a). Spectral analysis for the 1st floor: Power Spectral Density (b).

In this case, all the modes appear to be well excited and separated, thus we can select one

of them and filter out the contributions of the other modes. It is noteworthy to point out that

generally, for civil engineering applications, e.g. buildings, it is common practice to explore

lower frequencies rather than the higher ones because they have better resolution and they are

more easily excited. Therefore, the proposed algorithm is applied to data obtained by consider-

ing only the contribution of the first mode. Based on the spectral analysis, the lower and upper

cut-off frequencies of the band pass filter have been set to 4.3 Hz and 5 Hz respectively (see

Figure 3.5 (b)).

In the proposed methodology, the computation of the IPVs (Equation (3.25)) and, conse-

quently, of the damage index {D j,r0} (Equation (3.27)) requires the selection of an arbitrary jth

reference point. The components of the damage index vector {DIPV, j,1} for any choice of the

reference point j = 1,2, . . . ,8 are reported in Figure 3.6.
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Fig. 3.6. Damage index vector for j = 1,2, ...8 as defined in Equation (3.27), r0 = 1.

Looking at Figure 3.6, it can be concluded that, no matter what jth reference position is

selected, the damage index vector always shows a jump discontinuity between the lumped

elements bounding the damaged spring. Such kind of discontinuity let the damage index vector

{DIPV, j,1} be classified into the step change class (Figure 3.1 (b)). Thus, the elements of the

local damage index vector {LIPV, j,r0} can be obtained using Equation (3.39). The local damage

index vector for j = 1 is plotted over the monitored DOFs in Figure 3.7 (b) with the threshold

set for three different values of bc (1.0, 1.2 and 1.5). Clearly, from the analysis of the results,

it appears that the proposed algorithm is successful in detecting the damage between the 4th

and 5th floors for any of the three values of bc. Figure 3.7 (a) shows an analogous result for a

damage simulated by 10% drop in stiffness between the DOFs 4 and 5.
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Fig. 3.7. Local damage index vector, 10% Damage (a), 20% Damage (b), r0 = 1.
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These numerical simulations based on an output-only approach can be compared with those

obtained following the approach by Wang et al. [70] which rely on input-output information.

By considering this noise free experiment, a band pass filter applied to the acceleration response

time histories leads to the same results obtained by filtering the excitation source. It is worthy

to recall that, in this specific case, the frequency contribution provided by modes other than the

first one (r0 6= 1) have been considered negligible in the filtered frequency band. Of course, this

condition implies that the natural frequencies related to those neglected modes should be far

enough from the one of the analyzed mode or, at least, the contribution of those modes to the

total response should not be significant in the vicinity of such a frequency.

As the spectral analysis suggests, also the mode related to the second peak appearing in

Figure 3.5 (b) (r0 = 2) can be isolated and used in the estimation of the IPVs taking advantage

of the flexibility of the proposed methodology. For this purpose, the lower and upper cut-off

frequencies of the Finite Impulse Response (FIR) filter have been set equal to 13 Hz and 14.5

Hz respectively. Again, the damage index vector {DIPV, j,2} is computed for any reference point

j = 1,2, ...8 and such vectors are presented in Figure 3.8. A jump discontinuity, similar to the

one already shown in Figure 3.6, appears between the DOFs 4 and 5, revealing the presence of

damage. However, an interesting observation can be made by looking at the plots in Figure 3.8:

it appears that the damage index vectors computed for j = 1, . . . ,5 are ’mirror’ images of those

obtained for j = 6, . . . ,8. The reason why two different types of damage index vectors appear

is due to the fact that, recalling Equation (3.27), the sign of the damage index vector depends

on the sign of the component of the mode in question at the jth reference location (sign(F̄u
j,r0)).

Thus, moving from the reference point j = 5 to the reference point j = 6, the damage index

changes its sign because there is a sign change between the 5th and 6th components of the

second mode. Since this is a peculiarity of the mode analyzed (in this case the second), it can

be concluded that the damage index vectors also provide information about the selected mode

shape.
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Fig. 3.8. Damage index vector for j = 1,2, ...8 ad defined in Equation (3.27). r0 = 2

Analogously to the previous analysis (r0 = 1), also in this case the damage index vector

{DIPV, j,2} is claimed to belong to the class defined as a step change and the local damage index

vector {LIPV,1,2} (for j = 1) is shown in Figure 3.9 for a drop in stiffness of the 10% (a) and

for a drop in stiffness of the 20% (b).
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Fig. 3.9. Local damage index vector, 10% Damage (a), 20% Damage (b), r0 = 2.

To show the effect of the sign of the component of the selected mode at the reference

location on the damage index vector, the sign of the first two mode shapes sign(F̄u
j,r0) (r0 = 1

and r0 = 2) for reference locations j = 1,2, . . . ,8 is shown in Figure 3.10 together with the

corresponding mode shapes. The bars, providing an estimate of sign(F̄u
j,1) given by changes

in the sign of the damage index vector {DIPV, j,1}, have been arbitrarily set equal to +0.5 when

sign(F̄u
j,1) is positive and equal to -0.5 when it is negative. According to Figure 3.6, for r0 = 1
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the damage index vector {DIPV, j,1} never changes its sign over different reference locations

since the components of the first mode have all the same sign (Figure 3.10 (a)). On the contrary,

looking at Figure 3.8, the damage index vector {DIPV, j,2} obtained for r0 = 2 changes its sign

moving from the reference location j = 5 to j = 6, in agreement with the second mode shape

(for both damaged and undamaged conditions).
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Fig. 3.10. First mode shape estimation (a), Second mode shape estimation (b)

A remarkable peculiarity of the IPV is that, even if the acceleration response time histo-

ries provided by some sensors are missing, still the IPV theory can be applied based on the

available data. For example, let’s now assume that the dataset of the monitored 8-DOF sys-

tem lacks information from sensor 4 and sensor 7. The local damage index vectors {LIPV, j,1}

and {LIPV, j,2} are computed and, for sake of brevity, only those with reference point j = 1 are

reported in Figure 3.11.
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Fig. 3.11. Local damage index vectors: r0 = 1 (a), r0 = 2 (b), missing sensors at DOFs 4 and 7

It is clear that both local damage index vectors (either {LIPV,1,1} or {LIPV,1,2}) are able to

detect the occurrence of the damage between accelerometers 3 and 5, even if some sensors are
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not available. However, this lack of information reduces the accuracy of the damage localiza-

tion.

It is important to mention that, even in the case of multiple damage locations, the proposed

methodology is successful in locating the damaged areas. Figure 3.12 shows the damage index

vector {DIPV,1,1} and the corresponding local damage index vector {LIPV,1,1} for a double

damage occurrence between the DOFs 3 and 4 and the DOFs 6 and 7.
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Fig. 3.12. Double local damage: damage index vector (a), local damage index vector (for step change)
(b)

Finally it should be remarked that, as long as the single mode’s contribution to the accel-

eration responses can be isolated, the normalization in Equation (3.23) removes any effect of

the input. Consequently, any change in the position and/or magnitude of the input from the

undamaged to the damaged configuration doesn’t affect the final solution. This is one of the

advantages of the proposed methodology because tests are generally performed under different

excitation configurations and so removing the requirement of identical testing conditions from

the undamaged and damaged tests free engineers from unnecessary constrains.

3.5.1. Fully excited system: effects of measurement noise

To look at the impact of external disturbances on the accuracy of the results, let’s consider the

same 8-DOF shear-type system subjected to an external excitation at every DOF. Each input

force is represented by a zero-mean Gaussian white noise signal, with standard deviation of

1 N, and it is uncorrelated with the others. The disturbance representing measurement noise

has been modelled as an additional zero-mean white noise signal, having a root mean square

(RMS) equal to a certain percentage of the RMS of the output, and added to the output signals.

Because of the stochastic nature of the external white noise excitation, a statistical approach
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based on Monte Carlo simulations has been used to highlight the effect of noise disturbances

on the damage index vector.
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Fig. 3.13. Excitation setup (a), Waterfall plot (b).

The baseline configuration of the structure and the excitation setup are shown in Figure

3.13 (a), whereas the waterfall plot of the magnitude of the spectrum of the acceleration time

histories, at each DOF, is presented in Figure 3.13 (b). Also in this case, the first mode (r0 = 1)

seems to be the perfect candidate for the structural damage assessment through the proposed

methodology. Through Monte Carlo simulations, 50 realizations of the cross-correlation vec-

tors {R̂d
IPV, j,1(0)} and {R̂u

IPV, j,1(0)} have been generated in order to obtain the damage index

vector {DIPV, j,1}. Damage has been simulated by introducing a 20% stiffness reduction be-

tween the DOFs 4 and 5. Local damage index vectors {LIPV, j,1} for a noise with RMS of 1%,

5%, 10% and 20% are reported in Figure 3.14. These plots show that, as long as the assump-

tions behind of the theory of the IPV are fully respected, the damage index shows a remarkable

robustness to white noise disturbances and remains a good indicator of damaged areas.
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Fig. 3.14. Local damage index vector for varying RMS of noise: 1% (a), 5% (b), 10% (c), 20% (d).

3.5.2. Partially excited system: effects of measurement noise

Let’s now consider the 8-DOF shear-type system excited by just one Gaussian white noise input

force applied at the DOF 1. Before proceeding with the calculation of the damage index, let’s

run a preliminary spectral analysis of the response of the system. In vibration based methods,

the basic requirement for a successful spectral analysis is that the recorded structural response

be rich of modal information so to clearly highlight the contributions of the single modes.

For the system under investigation, Figure 3.15 shows the spectral magnitude of the structural

response recorded at the 8 DOFs, plotted in a "waterfall plot", for the case of the input force

applied at the DOF 1 (Figure 3.15 (a)) and for the case of the force applied at the DOF 8 (Figure

3.15 (b)) before applying measurement noise with RMS of 10%.
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Fig. 3.15. Spectral Magnitude over DOFs. Excitation at DOF 1 (a) and DOF 8 (b).

By comparing those two figures, it is apparent the difference in the contributions of the first

mode to the spectrum at various DOFs. For example, the magnitude of the power spectrum of

the response in correspondence of the first mode increases from a value of 0.055 g (Figure 3.15

(a)) to 0.541 g (Figure 3.15 (b)). It is reasonable to think that, in the case described in Figure

3.15 (a), the contribution from the first mode can be easily covered by other disturbances as

effects of the filtering technique or the excitation of other modes. Thus, for the case of the

input force applied at the DOF 1, extracting the information from the first mode may lead to

some numerical difficulties. On the other hand, one can observe that there is an important

energy contribution of the second mode at 13.77 Hz in both cases.

In order to assess the difficulties arising from modes with low energy contributions, let

us consider the case of the input force applied at the DOF 1 (Figure 3.5 (a)). The damage

scenario is simulated by decreasing the stiffness between the DOFs 6 and 7 by 20% of its

original (undamaged) value. Such a damage scenario corresponds to a jump discontinuity of

the damage index between those two DOFs. Here the proposed approach has been applied

twice, first considering the contribution of the first mode (r0 = 1) and then the contribution of

the second mode (r0 = 2) so to evaluate and compare the impact of measurement noise with

RMS 10% on both of them. Considering the contribution of the first mode, Figure 3.16 (a) and

(b) show the resulting damage index vector using as reference points DOFs 3 ( j = 3) and 4

( j = 4).
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Fig. 3.16. Damage index vector for r0 = 1: reference point j = 3 (a), reference point j = 4 (b).

It is clear from these plots that the jump discontinuity does not appear only between the

expected DOFs (6 and 7), but also between DOFs 5 and 6 and between 3 and 4, so the two

sets of results (for j = 3 (a) and j = 4 (b)) are not consistent with each other, even though the

two IPVs are highly correlated. Such an inaccuracy of the results is due to the fact that the first

mode, in the case of the input force applied on the DOF 1, is weakly excited and is strongly

affected by noise. Instead, when the proposed approach is applied on the information obtained

from the second mode (r0 = 2, Figure 3.17 (a) and (b)), not only the plots are consistent, but

also the predicted jump discontinuity between DOFs 6 and 7 is clearly defined showing great

resistance to measurement noise.
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Fig. 3.17. Damage index vector for r0 = 2: reference point j = 3 (a), reference point j = 4 (b).

3.6. Numerical simulation: 100-DOF model

This section extends the investigation about the applicability of the proposed IPV-based damage

index vector to a more complex system, (e.g. a plate) represented by a two-dimensional frame

(Figure 3.18 (a)). The structure is a 2-D square grid of 10⇥ 10 lumped masses of 1 kg each

connected by spring elements placed horizontally, vertically and diagonally, each one having

stiffness of 1000 N/m, 900 N/m and 800 N/m respectively. The modal damping has been set to
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x = 1% for all vibration modes. The structure is doubly-fixed at the top and at the bottom and

a set of excitation forces acts perpendicular to the plane of structure. Using the assumption of

zero-order-hold (ZOH) with a time sampling of 0.01 seconds, these forces are represented by

zero-mean Gaussian signals (uncorrelated to each other) with standard deviation of s = 1 N

and a length of 100 seconds.
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Fig. 3.18. 100 DOF mock up (a), Spectrum (b)

Figure 3.18 (b) shows the spectral magnitude of the response of the system at DOF 50, i.e.

5th row from the bottom, 10th column from left of the model shown in Figure 3.18 (a). The

spectral analysis suggests that the first mode contribution is the most suitable to be analyzed

through the proposed IPV-based approach since it appears well isolated by the other structural

modes (0.72 Hz).

The damage is simulated through a drop in stiffness of 25% for two of the diagonal springs,

as shown in Figure 3.19 (a). After checking that the damage index vector for each jth reference

point of the 100-DOFs is consistent with the others, Figure 3.19 (b) shows the value of the

computed damage index vector for a randomly picked reference point j = 92, i.e. 10th row

from the bottom, 2nd column from left, far from the damage location. It is clear that the damage

location can be identified by just looking at the plot of the damage index vector {DIPV,92,1}. The

threshold for the damage has been set accordingly to the mean and the standard deviation of

the elements of the damage index vector so that, for a value of the standard deviation multiplier

bc = 1.8, the ’Upper Bound’ is set at 0.0334 and the ’Lower Bound’ at -0.0356. The latter is

reported in the colorbar of Figure 3.19 (b).
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Fig. 3.19. Simulated damage spot (a), damage index vector, 2-D representation (b)

Increasing the level of measurement noise in the response output signals to 5% RMS and

10% RMS does not prevent the proposed IPV-based approach to find the damage location, as

seen in Figure 3.20. In this case, the corresponding ’Upper Bound’ and ’Lower Bound’ are

respectively 0.0347 and -0.0375, for the case in Figure 3.20 (a), and 0.0362 and -0.0387, for

the case in Figure 3.20 (b).
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Fig. 3.20. Damage index vector, 2-D representation: 5% RMS (a), 10% RMS (b)

These numerical tests confirm the effectiveness of the proposed IPV-based methodology for

damage identification and localization even in the case of more complicated structural models.

3.7. Experimental test: LANL 3-DOF shear-type

The proposed approach has also been tested on experimental test results obtained from a 3-DOF

shear-type system shown in Figure 3.21 (a). Test data have been provided by the Engineering
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Institute (EI) at Los Alamos National Laboratory (LANL) [66–68]. The system consists of four

aluminum columns (17.7⇥2.5⇥0.6 cm) connected at the top and bottom to aluminum plates

(30.5⇥30.5⇥2.5 cm) [69], forming a structure consisting of 3 floors and a sliding base. The

excitation is provided by an electromagnetic shaker that acts at the center line of the base floor

of the structure. Both the structure and the shaker are fixed on a base plate (76.2⇥ 30.5⇥ 2.5

cm). Four accelerometers with a nominal sensitivity of 1000 mV/g are attached at the center

of the side of each floor at the opposite side from shaker to measure the response of each plate.

The random excitation applied at the sliding base is band limited in the range of 20-150 Hz to

avoid rigid body modes of the structure. Even if the structure was initially supposed to behave

linearly, some non-linear effects due to the sliding rails have been noted [83].
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Fig. 3.21. LANL 3-DOF shear-type (a), channels 2-5 FFT Magnitude (b)

Figure 3.21 (b) shows the magnitude of the output response spectrum computed through

Fast Fourier Transform (FFT) for each floor in undamaged conditions. From previous studies

[68], the natural frequency of the first mode has been determined to be 30.7 Hz. However, the

information obtained through the FFT shows that such a natural frequency is not well excited

at the 2nd and 3rd floors by the selected input.

The LANL database supplies data about force and accelerations recorded for three different

structural conditions (different damage scenarios), other than the original (baseline or healthy)

condition. The three damage conditions have been imposed through stiffness reduction of

the columns connecting the floors. The damage scenarios considered in this dataset are the
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following:

• 50% stiffness reduction between floors 1-2

• 50% stiffness reduction between floors 2-3

• 50% stiffness reduction between floors 3-4

Since the sliding plate (floor 1) can move along the sliding rails when subjected to the shaker

action, such a motion will be considered as an additional DOF (DOF 1) so that the model can

be analyzed as a 4-DOF system.

3.7.1. 50% stiffness reduction between floors 1-2 and 2-3

As previously done, the first step is the spectral analysis of the output response in order to

evaluate the contribution of the various modes for both the damaged and undamaged configu-

rations. The magnitude of the spectral response of the system in the undamaged and damaged

configuration for damage case 1 is shown in Figure 3.22 (b) where the spectra of the structural

accelerations at each DOF are superimposed. It appears that, after the occurence of damage,

a huge drop of the stiffness between floors 1-2 induces the first natural frequency to shift of

almost 2 Hz. For such a reason, a band pass filter with cut-off frequencies at 29 and 33 Hz has

been adopted in undamaged conditions whereas in damaged configuration the cut-off frequen-

cies have been changed to 27 and 31 Hz.
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Fig. 3.22. Undamaged structure: Magnitude of the FRFs in a waterfall plot
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Fig. 3.23. Damaged structure: Magnitude of the FRF, waterfall plot

Figure 3.24 shows the plots of the calculated damage index vector as function of the DOFs

for different jth reference points ( j = 1, . . . ,4). As seen in the numerical example, when moving

from reference point j = 2 to j = 3, the values of the damage index change sign because of

the sign change between the two corresponding modal components in Equation (3.27). This

indicates that the mode considered in the damage assessment analysis is not the first mode: this

would have prevented the application of the original formulations of the IPV based approach

(Wang et al. [70]). However, this obstacle has been overcome with the proposed methodology.
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Fig. 3.24. Damage index vector over different reference points.

Usually the threshold for the damage localization relies on calculations of the mean and

standard deviation of the elements of the local damage index vector: however, monitoring

only 4 positions, the damage index vector contains 4 values only (i.e. Figure 3.24) and its first

derivative (representing the local damage index vector) only 3 (i.e. Figure 3.25). Hence, finding
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outliers among just 3 points can be difficult when using only mean and standard deviation.

However, in this case, having only 3 points does not seem to be a limiting factor: in fact, even

with just 3 points, the algorithm is capable to locate the damaged columns as shown in Figure

3.25 (a) for case 1 (damage between DOF 1 and DOF 2) and in Figure 3.25 (b) for case 2

(damage between DOF 2 and DOF 3).
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Fig. 3.25. Local damage index vector for case 1 (a) and for case 2 (b). Reference point j = 4.

3.7.2. 50% stiffness reduction between floors 3-4

In this case, even though the analysis of this damage scenario is conducted along the same line

as the previous ones, something different happens. As shown in Figure 3.26, where the damage

index vectors for j = 1,2,3,4 are plotted, an interesting behaviour is shown for the case of

reference point j = 3 with the corresponding damage index vector showing an inconsistent

pattern with respect to the other vectors.
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Fig. 3.26. Damage index vector over different reference points.

As discussed in [84], the imaginary part of the Frequency Response Function (FRF) pro-

vides information about the shape of a particular mode. In Figure 3.27, the imaginary part of
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the response spectra in the frequency range in which the signal is filtered is plotted over the

DOFs for the undamaged (a) and damaged (b) conditions. It can be noted that passing from the

former (undamaged) to the latter (damaged), the imaginary part for the FRF for DOF 3 changes

its sign (from negative -undamaged- to positive -damaged-) violating the theoretical assump-

tion allowing to pass from Equation (3.26) to Equation (3.27). As a consequence, the reference

point j = 3 does not constitute a reliable reference point. All the other DOFs ( j = 1,2,4) are

valid reference points, leading to the correct solution.

(a) (b)

Fig. 3.27. FRF, imaginary part. Undamaged configuration (a), damaged configuration (b).

Furthermore, looking at the magnitude of the spectrum of the filtered acceleration response

time histories in undamaged condition (Figure 3.28 (a)) the analyzed mode is excited at every

DOF. Contrarily, in Figure 3.28 (b) the spectral analysis of the system in damaged conditions

shows a really low energy content at DOF 3 leading to the conclusion that DOF 3 can be

assumed to be a node for the damaged system.
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Fig. 3.28. Waterfall plot. Undamaged configuration (a), damaged configuration (b).
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Using the damage index vectors in Figure 3.27, it is possible to compute the corresponding

local damage index vector {LIPV, j,1} and successfully locate the damaged area, Figure 3.29 (a).

It is interesting to observe that, for this particular study case, the presence of a rigid body

mode does not allow to use the mode related to the first natural frequency of the system in the

calculation of the IPVs. Since the first mode has a very low natural frequency, its contribu-

tion is mixed with that of the rigid body mode and a low pass filter (0-20 Hz) applied to the

input excitation helps removing such a contribution in the original acceleration response time

histories. This would impair the use of the original formulation of the IPV approach presented

by Wang et al. [70]; instead, it does not represent a problem for the current formulation be-

cause of its ability to handle higher modes. In addition, the next mode, the one with the lowest

natural frequency in the spectrum, presents a structural node at the third floor for the structure

in damaged condition (damage between DOFs 3 and 4) and so the arbitrary selection of the

reference point might lead to some numerical inaccuracies (Figure 3.26, Reference j = 3). It

is then recommended, when using the proposed methodology, to compute the damage index

vector for multiple reference points in order to verify their compatibility and correctly assess

the presence of local damage.

Finally, as a further validation of the effectiveness of the proposed method in assessing the

damage location, the case of a unit pulse excitation is analyzed. Considering the acceleration

response time histories for case 3 (damage between floors 3-4), the unit pulse response can be

obtained by considering the Markov parameters extracted through an input-output identifica-

tion algorithm, e.g. Observer Kalman Identification [83, 85]. By using the system’s Markov

parameters sequences as unit pulse responses into the proposed IPV-based methodology, it is

possible to obtain the corresponding local damage index vector. A comparison between the

local damage index vectors obtained using a Gaussian white noise excitation (a) and a unit

pulse response (b) is shown in Figure 3.29. The results are consistent and a successful damage

localization is achieved.
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Fig. 3.29. Local damage index vector for white noise (a) and unit pulse (b) excitation.

3.8. Conclusions

In this chapter, a new formulation of a IPV based approach to damage detection is proposed.

Differently from the original IPV formulation, this methodology relies on information extracted

only from the dynamic response of the structure, without knowledge of the input excitation, e.g.

in an output-only context. With respect to the original input-output formulation, there is no need

to design an input excitation that is properly tailored to the structural characteristics, reducing

the number of necessary tests. In addition, the proposed methodology allows for the analysis

of higher modal contributions, eliminating the constrain to account only for the first mode as

in the original formulation. The only requirement is the design of a band-pass filter needed to

extract the energy contribution of a specific mode in the structural response. The validity of

the proposed output-only IPV based theory has been proven for unit impulse and white noise

excitations. Numerical simulations on small and large system models as well as experimental

data analyses have confirmed the effectiveness of the methodology.

From an engineering point of view, the proposed methodology has many advantages with

respect to both the original input-output formulation and the conventional system identification

damage assessment strategies. Compared with the original IPV based formulation, the pro-

posed approach requires fewer tests since it does not need a preliminary test to properly design

a filter to extract the first mode contribution from the dynamic response. Furthermore, the anal-

ysis of structural modes other than the first one extends the applicability of the methodology

to more general laboratory test investigations where it is difficult to excite and correctly extract

low frequency modal contributions. Another major advantage of the proposed methodology

is its ability to handle datasets from large sensor networks: when using system identification

methods for structural damage assessment, large datasets might lead to huge computation ef-

forts that result in inaccurate estimations of the damage and its locations. Contrarily, the pro-
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posed approach can easily handle large dataset since the estimation of the cross correlations

between filtered responses of the system requires much less computation than the estimation of

the covariance matrices. Hence, because of its capabilities to handle large sensor networks, the

resolution of the damage assessment and localization increases.
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Chapter 4

4. A Bayesian clustering approach as support for the Inner Product Vector in structural

damage assessment

4.1. Introduction

The purpose of this chapter is the development of a damage assessment algorithm able to assess

the presence of a potential structural damage and to localize the damaged area(s). Following

a pattern recognition approach, the first step consists in the definition of a valuable damage

sensitive feature. Modal parameters (frequency, damping ratios, modes) are usually used as

damage sensitive features. Generally, damping ratios are difficult to estimate and their values

are not numerically accurate. On the other hand, natural frequencies can usually be estimated

with an acceptable level of resolution as well as structural modes. Many system identification

algorithms (like SSI, O3KID, etc.) available in literature are used for this purpose [81, 82, 86].

Anyway, most of the times these methods need to be supported by the so called stabilization

diagrams to extract correctly the modal parameters.

Both natural frequencies and modes provide information about the presence of a structural

damage. Hence, when a structure presents a structural damage, an analysis purely based on the

natural frequencies can provide information about the damage location [78], but the implemen-

tation of a mapping method based on laboratory tests and/or numerical simulations on a Finite

Element Method (FEM) model is required [87, 88]. With regards to structural modes, it is well

known that a local damage causes a local abrupt change in the structural modes [76, 77, 80].

The IPV [70–72, 75, 89] is a damage sensitive feature extracted by computing the cross-

correlation of signals representing dynamic response time histories. Under certain circum-

stances and specific pre-processing procedures, the IPV can be proven to be strictly correlated

to a specific structural mode [90].

A Bayesian clustering method is discussed in this chapter and implemented in order to

automatize and optimize the extraction of the damage sensitive feature (IPV). The goal is to

extract the IPV so that the information embedded in this feature are purely representative of a

specific structural mode and not affected by any effect due to changes in natural frequencies

and damping ratios and by any structural mode other than the one of interest.

This chapter presents the implementation of a strategy for the correct extraction of the IPV
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relying on Bayesian Variational-Inference (VI) [91] for clustering purpose and an Artificial

Neural Network (ANN) as classifier. The Bayesian method allows to collect the most likely

parameters which automatically set the frequency range to consider for the extraction of a po-

tentially valid damage sensitive feature vector (IPV). The number of parameters taken into

account is directly proportional to the number of potential damage sensitive features. These

parameters are extracted considering the training dataset first and the test dataset secondly. The

implementation of the classifier allows to obtain a pairwise coupling of similar potential dam-

age sensitive feature vectors (IPV) which are strictly correlated, even though some elements

different due to the local damage. Among those potential damage sensitive feature vectors,

the ones related to the lowest natural frequencies are considered. Based on those features, a

local damage index is computed to assess the presence of the damage and identify the damaged

area(s).

The validity of the method for the extraction of the IPV and the effectiveness of the pre-

sented damage assessment algorithm is proven through mathematical simulations first, and sec-

ondly by testing a real 3-DOF shear-typer structure, a laboratory model at Los Alamos National

Laboratory (LANL) [67–69, 79].

4.2. Problem statement

The proposed damage assessment algorithm relying on the IPV aims to assess the presence of a

damage and to localize the damaged area(s) by isolating and evaluating the energy contribution

of the structural modes to the dynamic response of a system. The application of Finite Impulse

Response (FIR) filters to the dynamic response time histories is the key to extract signals con-

taining exclusively the energy contribution of a specific mode, reducing as much as possible the

effects of any other mode on the dynamic response. Basically, the characteristics of those filters

depend on the modal parameters which are supposed to remain the same as long as the healthy

state of the structure persists. The occurrence of a local damage causes changes in the modal

parameters (frequencies, damping factors and modes) making the most likely parameters char-

acterizing the filters change. Because of the damage, not only the natural frequencies related to

existing modes change, but new modes of different nature (bending, torsion) may appear and

contribute to the dynamic response influencing the Frequency Response Function (FRF) of the

system. By comparing the dynamics of a structure in undamaged state with those of the same

structure in damaged state, we can assume that a specific mode just changes because of the
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damage.

The extraction of the IPV needs a pre-processing phase that is carried out by accomplish-

ing two tasks: 1) a strategy in order to set the FIR filters to isolate and evaluate the energy

contribution to the response due to different modes has to be found; 2) similar energy contribu-

tions to the dynamic response when the system is in undamaged and damaged state have to be

identified.

4.2.1. Structural damage assessment algorithm

The IPV is a damage sensitive feature that is extracted by operating on the dynamic response

time histories (i.e. displacements, velocities, accelerations). Despite its computation fully re-

lies on manipulations of signals defined in time domain, the filtering procedure (part of the

pre-processing phase) is carried out by considering exclusively the responses in the frequency

domain. The energy contribution of each structural mode to the dynamic signals is observ-

able in their power spectra. Each of the structural modes can be associated to a certain natural

frequency that occupies a specific position in the frequency domain explored by the power

spectrum. The FIR filters are set properly and effectively if they are able to filter a specific por-

tion of the frequency domain so to catch most of the energy contribution due to a specific mode

and reduce the effects of the other modes to the dynamic response. The damage assessment

algorithm here proposed can be summarized in five key points:

1. Cluster different areas of the frequency domain based on the power spectrum of the

training acceleration time histories;

2. Define a characteristic feature for each of these clustered areas of the frequency domain

representing a specific class;

3. Cluster different areas of the frequency domain based on the power spectrum of the test

acceleration time histories;

4. Extract the characteristic features according to 2. and classify the clusters in order to

couple training and testing clusters;

5. Apply the IPV based on FIR filters properly set according to the selected pairwise cou-

pled training and testing clusters.

Basically, the five steps we should go through in order to implement the damage assessment

algorithm require the application of: 1) a clustering algorithm; 2) a classifier; 3) the use of the

cross-correlation to identify the IPV. As mentioned, the clustering algorithms here presented



Chapter 4 121

are based on a Bayesian approach. Bayesian methods have been shown to be particularly ap-

pealing for clustering purpose, especially in those cases in which the exact number of clusters is

not specified a priori. Among the Bayesian clustering algorithms, two in particular are the most

commonly used: the Expectation-Maximization (EM) algorithm and the Variational Inference

(VI) algorithm. The EM algorithm is a technique aiming to identify statistical distributions by

setting the parameters defining them in order to maximize the natural logarithm of the likeli-

hood (the model). Differently, the VI algorithm is a Maximum A Posteriori (MAP) technique

based on a random initialization of the parameters of an auxiliary distribution that converges to

the posterior by updating the parameters over some iterations [92, 93]. The posterior distribu-

tion is so called to emphasize the fact that it represents an estimate of the parameters distribution

after some observations have been collected.

The classification task is performed through an Artificial Neural Network (ANN) which

is trained with the scope of detecting compatible clusters and create their pairwise coupling.

Thus, a specific cluster in undamaged configuration can be coupled to one new cluster defined

in unknown (potentially damaged) configuration. The correctness of the coupling is verified

by the Modal Assurance Criterion (MAC). By considering the parameters relative to a certain

couple of clusters, the FIR filters (one for each of the two structural conditions) can be designed,

and the IPV method applied.

In the next sections we present the Variational Inference algorithm implemented and its

applicability to the spectral content to the dynamic signals considered.

4.3. Variational Inference algorithm

Let’s assume we are able to collect n observations {x1,x2, . . . ,xn} of a random variable into a

vector XXX 2 R1⇥n which can be assumed to be sampled from a probability distribution defined

by m hidden parameters {w1,w2, . . . ,wm} in the vector www 2 R1⇥m. Generally, the objective

of Variational Inference algorithms is to estimate the posterior probability distribution p(www|XXX)

when the prior probability distribution p(www) is not a conjugate prior for the model function, i.e.

likelihood distribution p(XXX |www). In this framework, we present a problem set-up in which the

model and the prior can be written as follows:

XXX ⇠ p(XXX |www), www ⇠ p(www) (4.1)
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which indicates that the n observations xi are sampled from a probability distribution p(XXX |www)

and the m hidden parameters from the distribution p(www). The posterior probability distribution

function (pdf) can be computed through Bayes rule:

p(www|XXX) =
p(XXX |www)p(www)

p(XXX)
. (4.2)

If the prior pdf is not a conjugate prior for the likelihood, the numerator in Equation (4.2) can

be represented by a distribution that could be difficult to interpret. Consequently, being the

denominator obtained from the integration of the numerator over all wi

p(XXX) =
Z

p(XXX ,www)dwww =
Z

p(XXX |www)p(www)dwww. (4.3)

the denominator becomes intractable. Thus, the posterior distribution cannot be computed by

applying the Bayes rule, and an alternative way has to be found. The mathematic formulation

of the Bayes rule can be rewritten as function of the posterior distribution:

p(XXX ,www) = p(www|XXX)p(XXX) (4.4)

where the left hand side represents the joint probability distribution of XXX and www . By applying

the natural logarithm to both hand sides of Equation (4.4) leads to:

ln(p(XXX ,www)) = ln(p(www|XXX))+ ln(p(XXX)). (4.5)

which can be rewritten as:

ln(p(XXX)) = ln(p(XXX ,www))+ ln
✓

1
p(www|XXX)

◆
(4.6)

We can now introduce an auxiliary distribution q(www). By adding and subtracting ln(q(www)) on

the right hand side leads to:

ln(p(XXX)) = ln(p(XXX ,www))� ln(q(www))+ ln
✓

1
p(www|XXX)

◆
+ ln(q(www)) (4.7)
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which can be rewritten

ln(p(XXX)) = ln
✓

q(www)

p(www|XXX)

◆
+ ln

✓
p(XXX ,www)

q(www)

◆
. (4.8)

It is now clear how the distribution q(www) links p(XXX ,www) and p(www,XXX). We can multiply Equation

(4.8) by the distribution q(www) and integrate out www on its domain and obtain:

Z
q(www)ln(p(XXX))dwww =

Z
q(www)ln

✓
q(www)

p(www|XXX)

◆
dwww +

Z
q(www)ln

✓
p(XXX ,www)

q(www)

◆
dwww (4.9)

Since the distribution on the left hand side p(XXX) is independent from www , its logarithm can be

pulled out of the integral. Since q(www) is a probability distribution, its integral
R

q(www)dwww = 1

by definition and so we obtain:

ln(p(XXX)) =
Z

q(www)ln
✓

q(www)

p(www|X)

◆
dwww +

Z
q(www)ln

✓
p(XXX ,www)

q(www)

◆
dwww (4.10)

Let’s now analyze the three terms in Equation (4.10).

• The term ln(p(XXX)) is constant over the parameters in www .

• The term
R

q(www)ln
⇣

q(www)
p(www|XXX)

⌘
dwww is the so called Kullback-Leibler (KL) divergence,

always � 0. As the auxiliary distribution q(w) approaches the posterior distribution

p(www|XXX), their ratio tends to one and the KL divergence approaches zero. Thus, if we

want our auxiliary distribution to approximate the posterior distribution we need to

seek for the parameters in www that minimize the KL divergence. Since we don’t have

any information about either q(www) or p(www|XXX), the KL divergence is matematically

intractable.

• The term
R

q(www)ln
⇣

p(XXX ,www)
q(www)

⌘
dwww is referred to as the VI objective function. This

function depends on the joint distribution p(XXX ,www) which is easy to compute, and on

q(www) arbitrarily defined.

Since the left hand side term in Equation (4.10) is constant over www , the sum of the VI objective

function and of the KL divergence must be constant. Hence minimizing the KL divergence

means maximizing the VI objective function over the parameters in www .

The VI objective function L can be rewritten as:

L =
Z

q(www)ln
✓

p(XXX ,www)

q(www)

◆
dwww =

Z
q(www)ln(p(XXX ,www))dwww �

Z
q(www)ln(q(www))dwww. (4.11)
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Before proceeding, additional assumptions referred to as mean-field assumptions [92] have

to be considered. The ’mean-field’ assumptions were first introduced in Physics and, in this

framework, can be stated as:

• the m parameters in the vector www can be split in groups;

• a vector hhh = {h1, . . . ,hm}, whose parameters can be associated each with its corre-

sponding parameter wi, is introduced to define the family of the probability distribu-

tion q(wi|hi); this classification is done to allow different parameters of www to refer

to different types of distribution;

• the auxiliary distribution q(www) can be factorized as q(www) = ’m
i=1 q(wi|hi) so that the

distributions q(wi|hi) for i = 1, . . . ,m are statistically independent.

In order to simplify the calculations, let’s now implicitly assume q(wi) = q(wi|hi). These new

considerations lead to a new formulation of the VI objective function L :

L =
Z m

’
i=1

q(wi)ln(p(XXX ,w1, . . . ,wm))dw1 . . .dwm

�
Z m

’
i=1

q(wi)ln

 
m

’
i=1

q(wi)

!
dw1 . . .dwm (4.12)

The second term on the right hand side of Equation (4.12) can also be rewritten as:

Z m

’
i=1

(q(wi)) ln

 
m

’
i=1

q(wi)

!
dw1 . . .dwm

=
Z m

’
i=1

(q(wi))
m

Â
i=1

ln(q(wi))dw1 . . .dwm

=
Z m

’
i=1

q(wi)ln(q(w1))dw1 . . .dwm + . . .+
Z m

’
i=1

q(wi)ln(q(wm))dw1 . . .dwm

=
Z

q(w1)ln(q(w1))dw1 + . . .+
Z

q(wm)ln(q(wm))dwm

=
m

Â
i=1

Z
q(wi)ln(q(wi))dwi (4.13)

By substituting Equation (4.13) into Equation (4.12) leads to:

L =
Z m

’
i=1

q(wi)ln(p(XXX ,w1, . . . ,wm))dw1 . . .dwm �
m

Â
i=1

Z
q(wi)ln(q(wi))dwi (4.14)

Let’s try to analyze the dependance of L from a specific distribution q(wi). By considering
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the first term on the right hand side of Equation (4.14):

Z m

’
i=1

q(wi)ln(p(XXX ,w1, . . . ,wm))dw1 . . .dwm

=
Z

q(wi)

"Z m

’
l 6=i

(q(wl)) ln(p(XXX ,w1, . . . ,wm))dw1 . . .dwm

#
dwi (4.15)

By recalling the definition of the expectation operator E[T (x)] =
R

q(x)T (x)dx for an arbitrary

function T of a generic variable x, Equation (4.15) can be rewritten as:

Z m

’
i=1

q(wi)ln(p(XXX ,w1, . . . ,wm))dw1 . . .dwm

=
Z

q(wi)Eql 6=i [ln(p(XXX ,w1, . . . ,wm))]dwi. (4.16)

The second term on the right hand side of Equation (4.14) can be decomposed into:

�
m

Â
i=1

Z
q(wi)ln(q(wi))dwi =�

Z
q(wi)ln(q(wi))dwi �

m

Â
l 6=i

Z
q(wl)ln(q(wl))dwl (4.17)

so that by substituting Equation (4.16) and Equation (4.17) into Equation (4.14) a new formu-

lation for the objective function L is obtained:

L =
Z

q(wi)Eql 6=i [ln(p(XXX ,w1, . . . ,wm))]dwi �
Z

q(wi)ln(q(wi))dwi �
m

Â
l 6=i

Z
q(wl)ln(q(wl))dwl

=
Z

q(wi)ln(e
Eql 6=i [ln(p(XXX ,w1,...,wm))])dwi �

Z
q(wi)ln(q(wi))dwi �

m

Â
l 6=i

Z
q(wl)ln(q(wl))dwl

=
Z

q(wi)ln
eEql 6=i [ln(p(XXX ,w1,...,wm))]

q(wi)
dwi �

m

Â
l 6=i

Z
q(wl)ln(q(wl))dwl (4.18)

Since we want to maximize L over a specific parameter wi, we realize that the summation of

the integrals in Equation (4.18) does not depend on wi and so it can be considered constant:

L =
Z

q(wi)ln
eEql 6=i [ln(p(XXX ,w1,...,wm))]

q(wi)
dwi + const. (4.19)

At this point, let’s introduce a new quantity Z, defined as:

Z =
Z

eEql 6=i [ln(p(XXX ,w1,...,wm))]dwi (4.20)
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which is a constant term. By adding and subtracting ln(Z) on the right side of Equation (4.20),

the final formulation of L can be expressed as:

L =
Z

q(wi)ln
1
Z eEql 6=i [ln(p(XXX ,w1,...,wm))]

q(wi)
dwi + const. (4.21)

The term 1
Z eEql 6=i [ln(p(XXX ,w1,...,wm))] can be interpreted as a probability distribution function so

that the objective function L can be seen, following the definitions previously introduced, as a

negative KL divergence:

L =
Z

q(wi)ln
1
Z eEql 6=i [ln(p(XXX ,w1,...,wm))]

q(wi)
dwi =�KL(q(wi)||

1
Z

eEql 6=i [ln(p(XXX ,w1,...,wm))]). (4.22)

By recalling that KL � 0 then VI objective function L  0. Minimizing the positive KL

divergence means maximizing the objective function L . From Equation (4.22) we finally

know that we should set:

q(wi) =
1
Z

eEql 6=i [ln(p(XXX ,w1,...,wm))] (4.23)

Equation (4.23) points out a remarkable result setting a mathematical connection between the

auxiliary function q(wi) and the joint probability distribution p(XXX ,w1, . . . ,wm). Furthermore,

it is crucial to observe that by setting the auxiliary distributions q(wi) according to Equation

(4.23) we are minimizing the KL divergence without using the gradient descending method.

This observation is at the core of the VI method. This process is repeated for every parameter

wi so to obtain a set of m distributions q(wi). These distributions q(wi) are claimed to be

statistically independent (given the parameters characterizing them), respecting the mean field

assumptions. Anyway, there is an inference between the parameters of the prior distributions

which are updated in an iterative process to minimize the KL divergence on the right hand

side of Equation (4.22) leading to an approximation of the posterior distribution, i.e. q(www) =

’m
i=1 q(wi).

4.4. VI for data clustering

Let’s assume a random variable x that has a probability distribution that can be represented by

a mixture model with K components. Let’s now consider a set of observations of this random

variable x, xi (i = 1, . . . ,n) which can be stored in a vector XXX = {x1,x2, . . . ,xn} 2 R1⇥n. For
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each observation xi we associate a label ci (i = 1, . . . ,n) which indicates the mixture component

the observation xi is referred to. Given a number K 2N of mixture components, ci 2 (1, . . . ,K).

Consider now the case of a set of observations XXX = {x1,x2, . . . ,xn} where each xi 2 (1, . . . ,N)

can be assumed to be generated from a mixture of Binomial distributions. Given the mixture

component ci, the observation xi can be considered sampled by a Binomial distribution as:

xi|ci ⇠ Binomial(N,qci) (4.24)

where qci , qci 2 (q1, . . . ,qK), is a characteristic parameter of the distribution related to the ci

mixture component. Let’s recall that the model from which the set of xi is sampled is a mixture

of K Binomial distributions, each of them defined by one of the K parameters qci . The mixture

component label ci is sampled from a Discrete (Categorical) prior distribution as follows:

ci ⇠ Discrete(ppp) (4.25)

whose parameters are the elements of the vector ppp = {p1, . . . ,pK}. The elements of ppp are

probabilities whose sum is equal to 1.

According to the VI approach, the objective is to create a prior distribution for every pa-

rameter of the distributions in Equation (4.24) and Equation (4.25) and, through inference of

the parameters defining the prior distributions, to update them so that the posterior distribution

can be approximated. Therefore, we need to define some prior distributions for the vector ppp

and for each of the K qci , distributions that, for mathematical convenience, are set respectively

equal to a Dirichlet distribution and to Beta distributions. This choice is dictated by the fact

that the Dirichlet distribution is a conjugate prior for the Discrete (Categorical) distribution de-

fined by ppp while the Beta distribution is a conjugate prior for the Binomial distributions defined

by qci: Recalling that ci 2 (1, . . . ,K), qci = {qc1 , . . . ,qcn} and qci 2 (q1, . . . ,qK), only K prior

distributions, one for each q j ( j = 1, ...,K), have to be defined.

ppp ⇠ Dirichlet(aaa), q j ⇠ Beta(a j,b j). (4.26)

In order to simplify the notation, we can group all the parameters q j in a vector qqq = {q1, . . . ,qK}.

At the initial step, the parameters in the prior distributions (Equation (4.26)) are initialized

so that the elements of the vector aaa = {a1, . . . ,aK} are set to be constant: a j = a for any
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j = 1, . . . ,K; similarly all the K Beta distributions will have the initial parameters set equal to

two constants a and b (a j = a , b j = b for j = 1, . . . ,K). The initialization of the numerical val-

ues for the parameters of these priors is supported by empirical investigations: a proper choice

is to set a = 0.1, a = 0.5 and b = 0.5.

The analytical representation of likelihood and prior distributions is here briefly presented:

• p(XXX |qqq ,8ci = j) =
n

’
i=1

✓
N
xi

◆
q xi

j (1�q j)
(N�xi) (Binomial distribution)

• p(ci|ppp) =
K

’
j=1

p [ci= j]
j (Categorical distribution)

• p(ppp) = G(Ka)

KG(a)

K

’
j=1

pa�1
j (Dirichlet distribution)

• p(q j) =
G(a+b)
G(a)G(b)

q a�1
j (1�q j)

b�1 (Beta distribution)

The term [ci = j] is called indicator and is equal to 1 if ci = j, to 0 otherwise.

We now want to approximate the posterior distribution by taking advantage of the auxiliary

distribution defined in the previous section:

p(ppp,qqq ,ccc|XXX)⇠ q(ppp,qqq ,ccc) (4.27)

where ccc= {c1, . . . ,cn}. The mean-field assumptions allow us factorize the auxiliary distribution

as follows:

q(ppp,qqq ,ccc) = q(ppp)

"
K

’
j=1

q(q j)

#"
n

’
i=1

q(ci)

#
. (4.28)

By recalling Equation (4.23), we know that the auxiliary distribution converges to the posterior

distribution if each of the distributions in the right hand side of Equation (4.28) is iteratively

computed as:

q(wi) =
1
Z

eEql 6=i [ln(p(X ,w1,...,wm))] (4.29)

where wi represents the generic ith parameter. For this specific case, all the parameters can be

allocated in the vector www = {w1, . . . ,wK+n+1}= {ppp,q1, . . . ,qK,c1, . . . ,cn}. Applying the Bayes

rule leads to an expression of the joint probability distribution that can be written as:

p(XXX ,ppp,qqq ,ccc) = p(XXX |ppp,qqq ,ccc)p(ccc|ppp)p(ppp)p(qqq). (4.30)
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By taking the natural logarithm to Equation (4.30) and recalling that p(XXX ,ppp,qqq ,ccc)= p(x1, . . . ,xn,ppp,qqq ,ccc)

we can finally write the logarithm of the joint probability distribution in a factorized form:

ln(p(XXX ,ppp,qqq ,ccc)) = ln(p(XXX |ppp,qqq ,ccc))+ ln(p(ccc|ppp))+ ln(p(ppp))+ ln(p(qqq))

=
n

Â
i=1

ln(p(xi|qqq ,ci))+
n

Â
i=1

ln(p(ci|ppp))+ ln(p(ppp))+ ln(p(qqq)). (4.31)

This will be beneficial in computing the auxiliary distribution q(wi) according to Equation

(4.29) where the logarithm of the joint probability distribution appears in the exponent.

4.4.1. Auxiliary distribution factorization

Let’s substitute Equation (4.31) into Equation (4.29) and let’s now focus on obtaining the dis-

tributions q(ppp), q(q j) and q(ci).

1. q(ppp)

Referring to Equation (4.29), the auxiliary distribution q(ppp) is proportional to

q(ppp) µ eEqqq ,ccc[Ân
i=1 ln(p(xi|qqq ,ci))+Ân

i=1 ln(p(ci|ppp))+ln(p(ppp))+ln(p(qqq))] (4.32)

where the normalization constant Z can be neglected. The operator Eqqq ,ccc represents the

expectation over all the auxiliary distributions q defined by the parameters in qqq and ccc

but not in ppp . However, since the probability distribution q(ppp) has to be defined over

the parameters in ppp , only the terms function of ppp in Equation (4.32) are kept. Thus,

Equation (4.32) can be rewritten as follows:

q(ppp) µ eEqqq ,ccc[Ân
i=1 ln(p(ci|ppp))+ln(p(ppp))]

µ eÂn
i=1Eccc[ln(p(ci|ppp))]+ln(p(ppp)). (4.33)

In Equation (4.33) there are no terms function of qqq and so the expected value with

respect to qqq (Eqqq [·]) can be neglected. The term Eccc[·] represents the expectation over the

n distributions q(ci). By definition, the expectation over a single distribution q(ci) for a

discrete distribution can be analytically represented as

Eci [ln(p(ci|ppp))] =
K

Â
j=1

q(ci = j)ln(p(ci = j|ppp) =
K

Â
j=1

fi( j)ln(p j) (4.34)
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by setting, for simplicity, fi( j) = q(ci = j). With respect to the second term in the

exponent of Equation (4.33), substituting the expression for p(ppp) given by the Dirichlet

distribution and ignoring constant terms, leads to an expression of ln(p(ppp))µ ÂK
j=1(a�

1)ln(p j). Hence, the new expression for q(ppp) can be rewritten as:

q(ppp) µ eÂn
i=1 ÂK

j=1 fi( j)ln(p j)+ÂK
j=1(a�1)ln(p j)

µ eÂK
j=1[a�1+Ân

i=1 fi( j)]ln(p j)

µ
K

’
j=1

p[a+Ân
i=1 fi( j)]�1

j . (4.35)

Equation (4.35) points out that q(ppp) is a Dirichlet distribution with parameter a 0
j =

a +Ân
i=1 fi( j), i.e.:

ppp ⇠ Dirichlet({a 0
1, . . . ,a 0

K}).

This result was expected because, in the initial distribution selection, the prior p(ppp) has

been intentionally chosen so to be a conjugate prior for p(ci|ppp). Hence, their product,

or the sum of their logarithms, leads to a Dirichlet distribution.

2. q(q j)

Let’s now focus on the auxiliary distribution function of q j. Considering again Equa-

tion (4.29) and ignoring the parameters in the exponent different from q j, the auxiliary

distribution q(q j) becomes proportional to

q(q j) µ eEppp,ccc[Ân
i=1 ln(p(xi|qqq ,ci= j))+ln(p(q j))]

µ eEccc[Ân
i=1 ln(p(xi|qqq ,ci= j))]+ln(p(q j))

µ eÂn
i=1 fi( j)ln((N

xi
)q xi

j (1�q j)(N�xi))+ln(q a�1
j (1�q j)b�1)

µ eÂn
i=1 fi( j)[xiln(q j)+(N�xi)ln(1�q j)]+(a�1)ln(q j)+(b�1)ln(1�q j)

µ e(Â
n
i=1 fi( j)xi+(a�1))ln(q j)+(Ân

i=1 fi( j)(N�xi)+(b�1))ln(1�q j)

µ (q j)
((a+Ân

i=1 fi( j)xi)�1)(1�q j)
((b+Ân

i=1 fi( j)(N�xi))�1). (4.36)

It is noteworthy that in the first logarithm term in Equation (4.36), the term p(xi|qqq ,ci =

j) is equivalent to p(xi|q j). Equation (4.36) points out that the auxiliary distribution

q(q j) is a Beta distribution whose parameters are a0j = a+Ân
i=1 fi( j)xi and b0j = b+
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Ân
i=1 fi( j)(N � xi), i.e.:

q j ⇠ Beta
�
a0j,b

0
j
�
.

Also in this case, the family of the distributions q(q j) could have been predicted just

realizing that, in the argument of Eppp,ccc[·] in the first line of Equation (4.36), a Binomial

distribution ’n
i=1 p(xi|qqq ,ci = j) is multiplied by a Beta distribution p(q j) (the multipli-

cation is represented by the sum of the logarithms) and the latter is a conjugate prior for

the former.

3. q(ci)

Lastly, let’s consider the auxiliary distribution q(ci) and prove that it is a Categorical

distribution. From Equation (4.29), q(ci) is directly proportional to

q(ci) µ eEppp,qqq [Ân
i=1 ln(p(xi|qqq ,ci))+ln(p(ci|ppp))+ln(p(ppp))+ln(p(qqq))]

µ eEppp,qqq [ln(p(xi|qqq ,ci))+ln(p(ci|ppp)))]. (4.37)

The logarithmic terms in the exponent, ln(p(xi|qqq ,ci)) and ln(p(ci|ppp)), can be written

respectively as

ln(p(xi|qqq ,ci))=
K

Â
j=1

ln(p(xi|qqq ,ci = j) [ci= j]) ln(p(ci|ppp))=
K

Â
j=1

ln(p(ci = j|ppp) [ci= j])

yielding:

µ eEqqq [(ÂK
j=1 ln(p(xi|qqq ,ci= j)) [ci= j])]+Eppp [ÂK

j=1 ln(p(ci= j|ppp)) [ci= j]]

µ eEqqq [(ln(p(xi|qqq ,ci=1)) [ci= j])]+Eppp [ln(p(ci=1|ppp)) [ci= j]] . . .eEqqq [(ln(p(xi|qqq ,ci=K)) [ci=K])]+Ep [ln(p(ci=K|ppp)) [ci=K]]

µ
K

’
j=1

h
eEqqq [(ln(p(xi|qqq ,ci= j)))]+Eppp [ln(p(ci= j|ppp))]

i [ci= j]

µ
K

’
j=1

h
eEqqq [(ln(p(xi|q j)))]+Eppp [ln(p(ci= j|ppp))]

i [ci= j]
(4.38)

which is the common form of a Categorical distribution. Equation (4.39) shows that the

auxiliary distribution q(ci) is proportional to the product of K distributions q(ci = j),

each of which expressed as:
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q(ci = j) µ eEq j

h
ln
⇣
(N

xi
)q xi

j (1�q j)(N�xi)
⌘i

+Eppp [ln(p j)]

µ exiEq j [ln(q j)]+(N�xi)Eq j [ln(1�q j)]+Eppp [ln(p j)]. (4.39)

In order to proceed with the calculations we need to estimate the three expectations in

Equation (4.39), by considering the results presented in [94].

• Eppp
⇥
ln(p j)

⇤

Since q(ppp) has been proven to be a Dirichlet distribution, it is possible to verify

that:

Eppp
⇥
ln(p j)

⇤
= y(a 0

j)�y

 
K

Â
j=1

a 0
j

!
(4.40)

where y(·) is the digamma function and a 0
j = a +Ân

i=1 fi( j) are the parameters

defining the Dirichlet distribution q(ppp) in Equation (4.35).

• Eq j

⇥
ln(q j)

⇤

Similarly, since q(q j) has been proven to be a Beta distribution, it is easy to verify

that:

Eq j

⇥
ln(q j)

⇤
= y(a0j)�y(a0j +b0j) (4.41)

where a0j = a+Ân
i=1 fi( j)xi and b0j = b+Ân

i=1 fi( j)(N � xi) are the parameters

defining the K Beta distributions q(q j) in Equation (4.36).

• Eq j

⇥
ln(1�q j)

⇤

By definition of the Expected Value, Eq j

⇥
ln(1�q j)

⇤
=
R 1

0 ln(1�q j)
q

a0j�1
j (1�q j)

b0j�1

b (a0j,b0j)
dq j.

By substituting q 0
j = 1�q j we obtain

R 1
0 ln(q 0

j)
(1�q 0

j)
a0j�1

(q 0
j)

b0j�1

b (a0j,b0j)
dq 0

j that can be rep-

resented as Eq 0
j

h
ln(q 0

j)
i
. Hence,

q(q 0
j) =

(1�q 0
j)

a0j�1(q 0
j)

b0j�1

b (a0j,b0j)

is a Beta distribution q 0
j ⇠ Beta(b0j,a

0
j). According to [94], Eq j

⇥
ln(1�q j)

⇤
is
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computed as:

Eq j

⇥
ln(1�q j)

⇤
= Eq 0

j

⇥
ln(q 0

j)
⇤
= y(b0j)�y(a0j +b0j). (4.42)

By plugging Equation (4.40), Equation (4.41), Equation (4.42) into Equation (4.39) we

obtain:

q(ci = j) µ exi[y(a0j)�y(a0j+b0j)]+(N�xi)[y(b0j)�y(a0j+b0j)]+y(a 0
j)�y(ÂK

j=1 a 0
j) (4.43)

and defining three terms as:

• t1 j = y(a0j)�y(a0j +b0j)

• t2 j = y(b0j)�y(a0j +b0j)

• t3 j = y(a 0
j)�y

⇣
ÂK

j=1 a 0
j

⌘

we can rewrite Equation (4.43) as:

q(ci = j) µ exit1 j+(N�xi)t2 j+t3 j . (4.44)

In order to evaluate the distribution q(ci = j), Equation (4.44) has to be factorized:

q(ci = j) = fi( j) =
exit1 j+(N�xi)t2 j+t3 j

ÂK
k=1 exit1k+(N�xi)t2k+t3k

(4.45)

so that ÂK
k=1 fi(k) = 1.

At this point we obtained the analytical expressions for the auxiliary distributions q(ppp),

q(q j) and q(ci) and so we are ready to proceed to the computation of the objective function L .

4.4.2. Objective function L

Although the auxiliary distribution approximating the posterior distribution has been estimated,

the analytical expression for the objective function L has not been developed yet. Recalling
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Equation (4.11) we can write:

L = E [ln(p(XXX ,qqq ,ppp,ccc))]�E [ln(q(qqq ,ppp,ccc))]

= E [ln(p(XXX |qqq ,ccc)p(ccc|ppp)p(ppp)p(qqq))]�E [ln(q(qqq)q(ppp)q(ccc))]

= E
"

n

Â
i=1

[ln(p(xi|qqq ,ci))+ ln(p(ci|ppp))]+ ln(p(ppp))+ ln(p(qqq))

#
+

� E [ln(q(ppp))]�E
"

ln

 
K

’
j=1

q(q j)

!#
�E

" 
n

’
i=1

ln(q(ci))

!#
. (4.46)

Let’s now focus on the first of the four terms on the right hand side of Equation (4.46) and

consider the expected values only for those parameters that appear in each term:

E
"

n

Â
i=1

[ln(p(xi|qqq ,ci))+ ln(p(ci|ppp))]+ ln(p(ppp))+ ln(p(qqq))

#

=
n

Â
i=1

✓
Eqqq [Eccc [ln(p(xi|qqq ,ci))]]+Eppp [Eccc [ln(p(ci|ppp))]]

◆
+Eppp [ln(p(ppp))]+Eqqq [p(qqq)]

(4.47)

Recalling the expectations computed in Equation (4.34) and Equation (4.36), Equation (4.47)

becomes:

n

Â
i=1

Eqqq

"
K

Â
j=1

fi( j) [ln(p(xi|qqq ,ci = j))]+
K

Â
j=1

fi( j)Eppp [ln(p(ci = j|ppp))]
#
+Eppp [ln(p(ppp))]+Eqqq [p(qqq)]

=
n

Â
i=1

Eqqq

"
K

Â
j=1

fi( j)
✓

ln
✓

N
xi

◆
+ xi [lnq j]+ (N � xi) [ln(1�q j)]+Eppp [ln(p j)]

◆#
+Eppp [ln(p(ppp))]

+Eqqq [p(qqq)] (4.48)

Taking the expected values over qqq and ppp into the summations and substituting the expressions

of the Dirichlet distribution for p(ppp) and Beta distributions for the K p(q j) into Equation (4.48)

leads to:

=
n

Â
i=1

K

Â
j=1

fi( j)


ln
✓

N
xi

◆
+ xiEq j [ln(q j)]+(N � xi)Eq j [ln(1�q j)]+Eppp [ln(p j)]

�

+ Eppp

"
ln

 
G(Ka)

KG(a)

K

’
j=1

pa�1
j

!#
+Eqqq

"
ln

 
G(a+b)
G(a)G(b)

K

’
j=1

q a�1
j (1�q j)

b�1

!#
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=
n

Â
i=1

K

Â
j=1

fi( j)


ln
✓

N
xi

◆
+ xiEq j [ln(q j)]+(N � xi)Eq j [ln(1�q j)]+Eppp [ln(p j)]

�

+(a �1)
K

Â
j=1

Eppp [ln(p j)]+(a�1)
K

Â
j=1

Eq j [ln(q j)]+(b�1)
K

Â
j=1

Eq j [ln(1�q j)]

+ln
✓

G(Ka)

KG(a)

◆
+ ln

✓
G(a+b)
G(a)G(b)

◆
.

(4.49)

By substituting Equation (4.40), Equation (4.41) and Equation (4.42) into Equation (4.49):

=
n

Â
i=1

K

Â
j=1

fi( j)

"
ln
✓

N
xi

◆
+ xi

⇥
y(a0j)�y(a0j +b0j)

⇤
+(N � xi)

⇥
y(b0j)�y(a0j +b0j)

⇤
+y(a 0

j)�y

 
K

Â
j=1

a 0
j

!#

+ (a �1)
K

Â
j=1

"
y(a 0

j)�y

 
K

Â
j=1

a 0
j

!#
+(a�1)

K

Â
j=1

⇥
y(a0j)�y(a0j +b0j)

⇤
+(b�1)

K

Â
j=1

⇥
y(b0j)�y(a0j +b0j)

⇤

+ ln
✓

G(Ka)

KG(a)

◆
+ ln

✓
G(a+b)
G(a)G(b)

◆
(4.50)

and, recalling the definition of the three terms t1 j, t2 j and t3 j, we can conclude that the analytical

expression for the first component of the objective function L , given in Equation (4.46), can

be reduced to:

E
"

n

Â
i=1

[ln(p(xi|qqq ,ci))+ ln(p(ci|ppp))]+ ln(p(ppp))+ ln(p(qqq))

#

=
n

Â
i=1

K

Â
j=1

fi( j)


ln
✓

N
xi

◆
+ xit1 j +(N � xi)t2 j + t3 j

�
+(a �1)

K

Â
j=1

t3 j +(a�1)
K

Â
j=1

t1 j +(b�1)
K

Â
j=1

t2 j

+ ln
✓

G(Ka)

KG(a j)

◆
+ ln

✓
G(a+b)
G(a)G(b)

◆
. (4.51)

Let’s now focus on the last three terms on the right hand side of Equation (4.46). Each term is,

by definition, the entropy of the corresponding distribution.

• The distribution q(ppp) has been shown to be a Dirichlet distribution and its entropy is

computed as:

�Eppp [ln(q(ppp))] =


ln
✓

’K
j=1 G(a 0

j)

G(ÂK
j=1 a 0

j)

◆
+
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j=1 a 0

j �K
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y
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ÂK
j=1 a 0

j

⌘
�ÂK
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j �1)y(a 0
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�
.

(4.52)

• The distributions q(q j) have been shown to be Beta distributions. The entropy of q(q j)
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is computed as:
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(4.53)

• Last, the distributions q(ci) have been shown to be a Discrete distribution whose entropy

is given by definition as:

�Eccc [ln(’n
i=1 q(ci))] =�Ân

i=1 ÂK
j=1 fi( j)ln(fi( j)). (4.54)

Finally, the objective function L can be then computed through the sum of the contributes
given by Equation (4.51), Equation (4.52), Equation (4.53) and Equation (4.54):
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(4.55)

This expression of the objective function L can now be used in an iterative process to assess

the convergence of the parameters defining the auxiliary function. According to the theoretical

foundation of the VI algorithm, this objective function is expected to monotonically converge

to a negative constant value.

4.4.3. VI Algorithm: pseudocode

Once the analytical expressions for the distributions q(ppp), q(q j) and q(ci) have been derived

and the inference between their parameters has been shown, it is possible to use these distribu-

tions in an iterative algorithm that updates the distributions’ parameters. The correct implemen-

tation and convergence of the algorithm is validated by the objective function L monotonically

increasing before converging to negative constant value.

To explain the algorithm let us assume a dataset XXX = {x1,x2 . . .xn} with xi 2 (1, . . . ,N).
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The first step is to choose the maximum number of clusters K (i.e. the number of Binomial

distributions in the mixture) we expect to find in the data. In practice the parameter K can be

chosen arbitrarily large, overestimating the number of mixture components in the real model:

unnecessary clusters will not be considered by the algorithm in the iterative process.

The implementation of the VI algorithm relies on three steps. Indicating with T the index

of iteration (T = 1, . . . ,NT ):

1. Inizialization at T = 0: select an initial set of parameters aaa = {a0
1 , . . . ,a0

K} and (a00j ,b
00
j )

for j = 1, . . . ,K. In this step the initial parameters for the distributions q(ppp) and q(q j)

are selected. Note that it would be possible also to initialize the parameters for q(ci),

but they will be update at the beginning of the next iteration.

2. At the generic Tth iteration:

• Update the parameters fi( j) according to Equation (4.45), for i = 1, . . . ,n and for

j = 1, . . . ,K using the parameters a 0
j, a0j, b0j from the previous iteration:

f T
i ( j) =

exitT
1 j+(N�xi)tT

2 j+tT
3 j

ÂK
j=1 exitT

1 j+(N�xi)tT
2 j+tT

3 j
(4.56)

where:

tT
1 j = y(a0(T�1)

j )�y(a0(T�1)
j +b0(T�1)

j )

tT
2 j = y(b0(T�1)

j )�y(a0(T�1)
j +b0(T�1)

j )

tT
3 j = y(a 0(T�1)

j )�y
⇣

ÂK
j=1 a 0(T�1)

j

⌘
.

• Use the new fi( j) to update the parameters of the distributions q(ppp) and q(q j) for

j = 1, . . . ,K:

a 0T
j = a +Ân

i=1 f T
i ( j)

a0Tj = a+Ân
i=1 f T

i ( j)xi

b0Tj = b+Ân
i=1 f T

i ( j)(N � xi).

• Compute the value of the objective function L T at the Tth iteration using Equation

(4.55) and compare it with the value corresponding to the previous iteration.

3. Check convergence of L T to a constant value. Once this convergence is achieved, that

value of L T corresponds to the final value of L .

As the objective function L converges to a constant value, the auxiliary distribution (q(ppp,qqq ,ccc))

given in Equation (4.28) approaches the posterior distribution p(ppp,qqq ,ccc|XXX) (Equation (4.27)).

It is noteworthy that VI algorithms are, by nature, computationally intensive. In fact, the
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practical implementation may become cumbersome when in the presence of an excessively

large numerical value in the observations (N large): this is because in the computation of the

objective function L , the term
�N

xi

�
in Equation (4.55) becomes intractable as N approaches

large values.

4.4.4. Clustering procedure for VI

Recalling that the terms fi( j) represent the probability that the observation xi belongs to the jth

mixture component, q(ci = j), as the convergence of the algorithm is assessed, they need to be

closely considered for clustering purposes since they drive the assignment of the n observations

to the most likely mixture component. The sets of observations in XXX belonging to the same

mixture component are claimed to be a cluster. Hence, each observation xi will be assigned

to the cluster associated with the largest fi( j) among all possible mixture components j =

1, . . . ,K.

A useful application of a VI-based clustering algorithm is in the analysis of complex re-

sponse power spectra obtained from vibration measurements (e.g. accelerations) recorded at

different locations in a structure. Let’s recall from structural dynamics that the power spectrum

of the acceleration response time histories reveals the energy distribution of the response in

the frequency domain. At every sensor, several observations of the structure in a given state

(healthy or damaged) can be collected to compose training or test datasets and a local aver-

age spectrum of the response can be computed at every location to provide a local spectral

representation of the energy contribution. Furthermore, the contribution to the spectral en-

ergy associated with a given structural mode may vary from record to record (from location

to location) and so, it might be appropriate to consider an average spectrum obtained by the

measurements from all sensors. By averaging the different spectra coming from the different

locations within a structure, local information are blended together and this might require ad-

ditional tools to identify the contribution of the different modes. It is in this framework that the

proposed VI-based clustering algorithm has to be considered for classification purpose: it will

help assigning the spectral contributions to the most likely mixture component (e.g. structural

mode).

In order to apply the proposed VI clustering procedure to the problem associated with the

spectral analysis, let’s recall that the dataset is represented by the vector XXX = {x1,x2, . . . ,xn}

with xi 2 (1, . . . ,N). In a spectral framework, given the sampling period dt of the signals, the
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frequency domain is discretized with frequency step D f = 1
dt so that the first N samples can be

written as fx = x ⇥D f for x = 1, . . . ,N. The integer values x can be considered as those values

that a generic observation xi can assume, (x = 1, . . . ,N), indicating the x th frequency sample,

which is associated to a specific value of the average power spectrum. Such a value of the

average power spectrum can be interpreted as the ’frequency of occurrence’ of the observations

xi = x in the dataset. The frequency of occurrence establishes the total number of observations

xi = x , approximated to the closest integer, appearing in the dataset XXX . For example, given

D f = 0.2 Hz and considering the fifth frequency step (x = 5), let’s assume that the value of the

average power spectrum in correspondence of f5 = 1 Hz is equal to 3.1 g2. Then, this means

that there are exactly 3 observations for xi = x = 5 appearing in the observation vector XXX , i.e.

XXX = {x1,x2, . . . ,xs = 5,xs+1 = 5,xs+2 = 5, . . . ,xn}.

At this point, it is important to highlight some numerical difficulties that arise when dealing

with real applications. One of the main stumbling blocks is linked to the length of the time his-

tory signals using the analysis. For example, dealing with time histories 100 sec long, sampled

at 0.01 sec, leads to vectors of 10000 elements. By using an optimized p-points Fast Fourier

Transform (FFT) to convert such signals into the frequency domain leads to a frequency spec-

trum defined by a vector of p = 4096 elements, hence, N = 4096. From a practical point of

view, the computation of the term
�4096

xi

�
in Equation (4.55) is numerically intractable and so

the objective function L cannot be numerically calculated for large values of N. There are

possible numerical implementations that allow us to overcome this limitation. One way is to

use downsampling techniques through a filter bank of triangular filters inspired to the Mel-scale

filter bank [13]. Each triangular filter spans over a frequency interval and has a magnitude equal

to 1 at the center frequency, decreasing linearly to 0 at the ends of the frequency interval. The

filter bank is created by overlapping the triangular filters so that each filter spans over half of

the frequency interval of each of the two adjacent filters. These filters ensure that the spec-

trum, after downsampling, conserves its total energy, providing a ’smoother’ spectrum at the

expenses of a loss of resolution. In this chapter, the frequency bandwidth for each filter has

been set equal to 6D f and the distance between peaks of two adjacent triangles to 3D f .

The procedure just presented is illustrated in Fig. 4.1. An 8-DOF shear-type system, with

frequencies ranging from 0 to 50 Hz, is excited by a Gaussian white noise excitation. The

time histories of the structural accelerations at every floor have been sampled at 0.01 sec for a

duration of 100 sec. In the spectral analysis a frequency range between 0 and 50 Hz has been
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considered. The downsampled average power spectrum is the result of the application of the

triangular filter bank to the average power spectrum.

(a)
(b)

Fig. 4.1. Fully excited shear type system (a). Extraction of the Downsampled Average Power Spectrum
(b).

At this point, the average downsampled spectrum is represented by a vector SSS 2R1⇥D with

D  N. Since the number of observations xi for i = 1, . . . ,n depends on the numerical values

of the downsampled spectrum, it may be convenient, to ensure a rich dataset XXX , to scale up the

numerical values of the downsampled spectrum. One way to do so is by dividing the values of

the spectrum by its smallest element:

SSSs =
SSS

min(SSS)
(4.57)

where SSSs = {S s
1 , . . . ,S

s
D} is a vector of D elements. The generic value S s

k represents the

number of observations in the dataset XXX that have values equal to fk
D f . Hence:

n =
D

Â
i=1

S s
i . (4.58)

Once the dataset XXX = {x1, . . . ,xn} is available, the VI clustering algorithm can be applied. The
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procedure to extract the Clustered Downsampled Average Power spectrum is shown in the flow

chart below.

Dataset

Acceleration response time histories

Frequency domain conversion

Power spectra

Averaging

Average Power spectrum

Downsampling

Downsampled Average Power spectrum

Clustering

Clustered Downsampled Average Power spectrum

4.4.5. Feature vectors and classification

To include the proposed VI clustering algorithm into a pattern recognition-based damage as-

sessment strategy, let’s first consider the case when multiple sets of response time histories
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corresponding to a given condition of the structure are available.

Once the dataset XXX has been obtained from the downsampled average spectrum, the VI

clustering algorithm can be applied for the identification of the individual clusters. As the ob-

jective function L converges, the clusters contained in the dataset XXX become progressively

better defined leading to a ’clustered’ downsampled average spectrum. For each of the identi-

fied K0 clusters (K0  K), it is then possible to obtain the mean µ 0
k and standard deviation s 0

k

(k = 1, . . . ,K0) for the values of the parameter x within the given cluster. Assuming a normal

distribution for such values, the range [µ 0
k �s 0

k µ 0
k +s 0

k], corresponding to a confidence level

of 68.27%, represents the range attributed to the specific cluster.

After the intervals have been identified, an upsampling of the clustered average spectrum is

performed so to map from the intervals [µ 0
k�s 0

k µ 0
k+s 0

k] in the x domain to the corresponding

intervals [µk �sk µk +sk] in the original frequency domain. In this way, the definition of the

frequency domain interval associated with each cluster is necessary to define the upper and

lower cut-off frequencies of the FIR filters that will be used to isolate the contribution of each

structural mode. It is worthy to remark that the entire process is performed automatically by

the VI clustering algorithm without any input by the user.
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Fig. 4.2. Example of clustered average spectrum.

Figure 4.2 shows an example of a clustered average spectrum (upsampled to the frequency

domain) as the result of the VI clustering algorithm applied to the downsampled average power

spectrum in Fig. 4.1. A total of K0 = 6 clusters have been identified in the frequency range [0

50] Hz.

In a pattern recognition framework, the idea is to use a certain set of time histories to gener-

ate a model representative of the structure in a baseline condition (usually the healthy condition)

and to adopt a novelty detection approach when new data from the structure in unknown condi-
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tions become available. The first stage to generate the baseline model is usually referred to as

’training phase’, while the novelty detection strategy goes under the name of ’test phase’. Us-

ing the data from the training dataset, the clustering algorithm leads to the identification of K0
tr

clusters. For the generic ktr cluster (ktr = 1, . . . ,K0
tr), the interval [µtr,ktr �str,ktr µtr,ktr +str,ktr ]

represents the frequency range in which the energy contribution associated with the ktr clus-

ter from the training dataset is condensed. Based on this interval, it is possible to define a

FIR filter that can be used, for any spectrum at every monitored location, to isolate the energy

contribution associated with a given vibrational mode.

As the occurrence of a local damage causes abrupt changes in a structure, these changes

have an impact, more or less evident, on the structural mode shapes and consequently on their

energy contribution to the dynamic response of the structure. However, in the presence of

damage, it is reasonable to assume that the mode shapes corresponding to the undamaged and

damaged conditions, and their energy contributions are somehow correlated with each other.

A high level of correlation indicates small changes in the structural modes, while low level of

correlation is indicative of large differences. In dealing now with two datasets, one used in the

training phase and one in the test phase, the difficult task is to properly match corresponding

modes so to test their correlation: a common tool to help with this operation is a classifier that

can be used to assess the degree of correlation between a pair of modes, one from the training

and one from the test. This classification can be based on a variety of characteristic quantities:

in this chapter, this classification is based on the energy content of the contributing modes. The

basic idea is to associate the spectral energy contribution of each mode in the undamaged state

with the energy contribution of the same mode in an unknown state.

To accomplish this, let’s assume that the dynamic response is monitored at NDOF locations

in the structure and that a number of Ntr
ob tests are conducted as a part of the training session.

For each of the Ntr
ob tests, a spectrum of the structural response can be obtained at any of the

NDOF locations, following the procedure presented earlier, and the contribution from the ktr

cluster, obtained from the interval [µtr,ktr �str,ktr µtr,ktr +str,ktr ], can be highlighted from each

of them. At this point, for each observation i = 1, . . . ,Ntr
ob, it is possible to define a feature

vector G (i)
tr,ktr

2 RNDOF⇥1, characterizing the specific ktr cluster for the ith observation, whose

components represent the amount of vibrational energy in the interval [µtr,ktr �str,ktr µtr,ktr +

str,ktr ] in the spectrum computed at any location.

Having a consistent number of samples of acceleration response time histories in the train-
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ing dataset (Ntr
ob) allows us to set up and train a classic Artificial Neural Network (ANN) clas-

sifier. The input dataset consists of the Ntr
ob ⇥K0

tr feature vectors G (i)
tr,ktr

(i = 1, . . . ,Ntr
ob and ktr =

1, . . . ,K0
tr), and the output of their associated classes defined by the ktr cluster (ktr = 1, . . . ,K0

tr).

For cross-validation purposes, the samples of the entire dataset are split into two subsets: 1)

training data (80%) and 2) validation data (20%).

Figure 4.13 shows the architecture of an ANN classifier for the 8-DOF system previously

analyzed. The number of neurons in the hidden layer has been arbitrarily set equal to 10 and

sigmoid functions have been selected as activation functions. For the output, 8 neurons, with

softmax functions as activation functions, have been considered.

Fig. 4.3. ANN architecture (10 hidden neurons) for an 8DOF system and K0 = 8 identified clusters in
the average spectrum.

Once the network is trained, it can be used to place the modal information coming from the

analysis of new test data into the clusters obtained from the training data. This will allow us to

check the degree of correlation between modes extracted from the test data and modes identified

through the training data. By considering a test dataset of Nte
ob observations of acceleration

response time histories, it is possible to identify K0
te clusters following the same procedure used

in the training phase. Let G ( j)
te,kte

2 RNDOF⇥1 indicate the feature vector characterizing the kte

cluster (kte = 1, . . . ,K0
te) for the jth observation ( j = 1, . . . ,Nte

ob) in the test dataset. Each of

these Nte
ob ⇥K0

te feature vectors G ( j)
te,kte

can now be used as input in the trained ANN classifier

so that it can be classified into one of the categories (clusters) defined in the training phase

of the ANN. The final goal is to associate each of the K0
te test clusters to one of the training

clusters K0
tr. For the generic kte cluster, Nte

ob feature vectors G ( j)
te,kte

are classified into one of

the K0
tr training clusters by choosing the ktr cluster that has been associated with the majority

of the Nte
ob feature vectors G ( j)

te,kte
tested. Finally, the mean of the Ntr

ob observed feature vectors

Ḡtr,ktr =
1

Ntr
ob

ÂNtr
ob

i=1 G (i)
tr,ktr

and the mean of the Nte
ob vectors Ḡte,kte =

1
Nte

ob
ÂNte

ob
j=1 G ( j)

te,kte
are computed.

The coupling is claimed to be valid if the MAC number for the feature vectors Ḡtr,ktr and Ḡte,kte

is larger than a threshold value set to 0.9.
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It is worthy pointing out that the order in which the elements are positioned into the vectors

G (i)
tr,ktr

2 RNDOF⇥1 doesn’t affect the performance of the classification process as long as the

ordering criteria follows the same logic for the vectors G ( j)
te,kte

2 RNDOF⇥1.

Up to this point, the entire analysis has been conducted on features extracted from repre-

sentations of the signals (acceleration response time histories) in the frequency domain. It is

now possible to extract the information about the frequency energy content of the structural

responses so to generate time domain signals which can be used in determining damage sensi-

tive features, referred to as Inner Product Vectors (IPVs), at the core of the proposed structural

damage assessment method.

4.4.6. IPV for a cross-correlation based damage detection

The use of Inner Product Vectors (IPVs) has been proven to be successful in assessing the pres-

ence and location of damage in a structure by just considering vibrational data. The theoretical

formulation of the IPV features has been presented in the work by Le Wang et al. [70, 89] and

by Morgantini and Betti [90]. Such features have been proven to be reliable damage sensitive

features when the system is subjected to unit pulses and Gaussian white noise excitations. The

focal point of the methodology is that it relies on the determination of the cross-correlation be-

tween acceleration response time histories, generated exclusively by a specific structural mode,

recorded at different structural locations. While Le Wang et al. obtained this contribution by

finely selecting a proper input excitation, Morgantini and Betti rely on the use of a proper filter

to separate the contribution of a specific mode from the general response: it is in this frame-

work that the proposed methodology helps selecting the proper contributions. In this chapter,

the main points of the IPV based damage assessment methodology are reported: for details the

reader is referred to the work by Morgantini and Betti [90].

The proposed VI-based methodology allows us to identify the portion of the frequency

domain that needs to be considered for extracting the contribution of single structural modes

from the original recorded acceleration time histories. To do so, Finite Impulse Response (FIR)

filters can be designed to act as band pass filters for the frequency interval associated with

each cluster, both for the training and test datasets: the upper and lower cut-off frequencies

of such filters are determined accordingly to the bounds of the identified intervals [µtr,ktr �

str,ktr µtr,ktr +str,ktr ] and [µte,kte �ste,kte µte,kte +ste,kte ]. It is noteworthy that the order of

these FIR filters has to be set sufficiently high to emphasize the spectral content at the center of
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these intervals and drastically reduce any other energy contribution, from outside this range, to

the original acceleration response time histories.

As a result of the proposed VI approach, each kte clusters is coupled to one of the K0
tr

clusters so that each interval [µte,kte �ste,kte µte,kte +ste,kte ] is coupled to one of the intervals

[µtr,ktr �str,ktr µtr,ktr +str,ktr ]. By applying FIR filters on these two coupled intervals, it is

possible to isolate the energy contribution of the r0 structural mode from the training and test

datasets and convert them into the time domain. At this point, these two newly generated time

histories can be used into the IPV methodology.

In this process, a critical point is represented by the selection of the mode r0 to be con-

sidered. It is known that, in dynamic analyses, structural modes related to lower frequencies

offer many advantages over higher frequency modes: they present a lower number of nodes,

they have a better resolution and are generally more easily excited [90]. For these reasons, it is

convenient to consider a structural mode r0 associated with the kte cluster, successfully coupled

the ktr cluster, with the lowest frequency interval. This restricts the entire analysis to just one

of the identified couples kte and ktr.

The IPV based damage assessment algorithm requires the definition of a reference point w

which can arbitrarily selected among the monitored NDOF structural locations (w2 1, . . . ,NDOF ).

In order to obtain the cross-correlation vectors for the training and test datasets, let’s first

consider the training dataset. For each of the Ntr
ob observations, a number of NDOF acceleration

response time histories generated by considering exclusively the r0 mode can be obtained by

using the filtering procedure described above. The cross-correlation for zero time lag between

each of these time histories and the one associated with the reference point w yields a total

of NDOF values which can be gathered into a cross-correlation vector {Rtr,(i)
w,r0 (0)} 2 RNDOF⇥1.

The vector {Rtr,(i)
w,r0 (0)} is the cross-correlation vector for the ith observation (i = 1, . . . ,Ntr

ob) of

the training dataset (tr) obtained by considering a reference point w and the structural mode r0.

Each of these {Rtr,(i)
w,r0 (0)} vectors can be normalized by its 2-norm to provide a normalized vec-

tor {R̂tr,(i)
w,r0 (0)} and it is then possible to represent the average of these Ntr

ob normalized vectors

as {R̂tr
w,r0(0)}=

1
Ntr

ob
ÂNtr

ob
i=1{R̂tr,(i)

w,r0 (0)}.

According to the theory in [morgan], the vector {R̂tr
w,r0(0)} can be expressed as:

{R̂tr
w,r0(0)}= sign(F̄tr

w,r0){F̄tr
r0} (4.59)

where F̄tr
r0 represents the r0 normalized mode shape and sign(F̄tr

w,r0) is the sign of the normalized
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mode r0 at the w location for the structural conditions corresponding to the training dataset.

Following the same procedure for the test dataset allows us to determine a normalized vector

{R̂te
w,r0(0)}:

{R̂te
w,r0(0)}= sign(F̄te

w,r0){F̄te
r0} (4.60)

where F̄te
r0 and sign(F̄te

w,r0) are the corresponding quantities as in Equation (4.59) for the

structural conditions represented in the test dataset.

In order to assess the evolution of the r0 mode shape of the system passing from an un-

damaged condition ({F̄tr
r0}) to an unknown (potentially damaged) condition ({F̄te

r0}), a damage

index vector {Dw,r0} can be defined as [morgan]:

{Dw,r0}= {R̂te
w,r0(0)}�{R̂tr

w,r0(0)}= sign(F̄te
w,r0)

0

BBBBBB@

F̄te
1,r0

F̄te
2,r0
...

F̄te
NDOF ,r0

1

CCCCCCA
� sign(F̄tr

wr0)

0

BBBBBB@

F̄tr
1,r0

F̄tr
2,r0
...

F̄tr
NDOF ,r0

1

CCCCCCA

(4.61)

where {Dw,r0} 2 RNDOF⇥1 indicates the damage index for the mode r0 with a reference location

at point w and {R̂te
w,r0(0)} and {R̂tr

w,r0(0)} are the inner product vectors respectively for poten-

tially damaged (test) and undamaged (training) state.

A local abrupt change of the nomalized modes due to the local damage [76–80] will have

a remarkable effect on the damage index vector {Dw,r0}. On the bases of the numerical values

of the elements of the damage index vector, it is possible to define a local damage index vector

and, based on its statistics (mean and standard deviation), to set an upper and lower bound

for the values of the elements inside of the local damage index [71–73]. The presence of

elements in the local damage index vector which are above the upper threshold or below the

lower threshold will confirm the occurrence and location of a local damage. The definition of

the local damage index vector and of the thresholds adopted in this chapter is reported in [90].

For details the reader is referred to the work by Morgantini and Betti [90].
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4.5. Numerical example

In this section, two numerical simulations (8 and 100 DOF systems) and an experimental test

(4 DOF system) are performed in order to validate the proposed damage assessment strategy.

One of the goals of the first numerical simulation is that of providing the numerical ex-

pression of the objective function L over the iterations of the VI clustering algorithm: the

multiplication of the average spectrum by the filter bank is performed until the spectrum, or

at least its first natural frequencies, is represented by less than 60 points. Hence N = 60 is an

acceptable value aiming to compute the term
�N

xi

�
in Equation (4.55). The restriction of contain-

ing at least the first natural frequencies in the first N  60 points is imposed due to the fact that,

in a civil engineering framework, the lower frequencies are generally the ones with the best

resolution in the spectrum and the ones whose investigation through IPV damage assessment

algorithm leads to the best performance in terms of damage location identification. [90].

In the second numerical simulation (100-DOFs), the convergence of the VI clustering al-

gorithm will be assessed by computation of the clusters at every iteration. Thus, N is not

constrained to assume values larger than 60 so to avoid an excessive (for this particular case)

downsampling of the average spectrum. If the assignment of the n observations xi to their clus-

ters doesn’t change over 10 consecutive iterations, the VI algorithm is claimed to converge and

the clusters are extracted. Anyway, also in this case the triangular filter bank is used once to

take benefit of its ’smoothing’ effect on the average spectrum which leads average spectrum to

be more likely represented by a mixture of Binomial distributions.

Finally, the experimental test confirms the validity of the presented damage assessment

strategy based on an empirical datasets.

4.5.1. 8-DOF shear-type model

The numerical simulation is performed on an 8-DOF shear-type model. The structural parame-

ters have been set to simulate the structure in undamaged conditions. In its baseline conditions,

the system is characterized by springs of stiffness ki = 25000 N/m, and each mass is equal to

mi = 1 kg for i = 1,2, . . . ,8. The frame is supposed to be affected by modal damping with a

damping factor of xi = 1% for each of the 8 vibration modes. The excitation source is applied

horizontally on the 8-DOF model via zero-order-hold (ZOH) with a sampling period of 0.01

seconds. The force is a zero-mean Gaussian signals with standard deviation s = 1 N applied

to the top level of the mock up. The input/output time history is 30 seconds long. The val-
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ues of the stiffness elements ki are subject to a variation sampled from a uniform distribution

in the range ±2% to account for environmental conditions influencing the dynamic structural

response. In its damaged state, the damage has been simulated through a 20% drop of the

stiffness of the spring element connecting the 6th and 7th DOF (counting from the bottom). All

the other structural parameters, the external conditions and the nature of the excitation source

remains the same as in the baseline condition. The training dataset (undamaged conditions)

consists in Ntr
ob = 100 instances each counting NDOF = 8 acceleration response time histories.

The test dataset (damaged) consists in a set of Nte
ob = 50 instances.

4.5.2. Objective function validation

A representation of the shear-type model is provided in Fig. 4.4 (a). The dynamic behaviour

of the structure in its baseline condition is depicted by the power spectrum of the acceleration

response time histories. The energy content represented by the spectrum at DOF 1 is reported

in Fig. 4.4 (b) as well as in the spectrogram Fig. 4.4 (c).
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Fig. 4.4. Mock up (a). Spectral analysis for the 1st floor. Power Spectrum (b) and Spectrogram (c) in
baseline condition.

A total of 25 iterations for the VI algorithm are performed in order to let the objective

function L converge and cluster the downsampled power spectrum. According to the theory

[95], L is negative and increases monotonically (Fig. 4.5 (a)). The downsampled (scaled)

power spectrum is reported in Fig. 4.5 (b) as well as the clusters assigned to each of its samples.

Despite the number of clusters has been defined as K = 20, only K0
tr = 6 of them are assigned.

The values indicating the identified clusters fully depends on the random initialization of the

parameters for the probability distributions in the VI algorithm.
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Fig. 4.5. Objective function (a). Averaged and scaled power spectrum, observations assignment ci (b).

The downsampled spectrum is then upsampled, scaled and represented in the frequency

domain. Fig. 4.6 shows the normalized average spectrum SSSs
tr as defined in Equation (4.57).

The frequency domain is divided into 6 areas, each indicated by a different cluster. The clusters

ktr are reordered from 1 to 6 according to Fig. 4.6.
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Fig. 4.6. Train data: clustered energy content.

Once the intervals of interest [µtr,ktr � str,ktr µtr,ktr + str,ktr ] for any ktr = 1, . . . ,K0
tr are

obtained, the feature vectors Gtr,ktr for the classification task are computed for each of the

Ntr
ob = 100 observations in the training dataset. The ANN is trained based on the Nob⇥K0 = 600

feature vectors Gtr,ktr .

As a new dataset of acceleration response time histories is generated from the system in

damaged conditions (unknown a priori), the clustering procedure is performed. The objective

function L for this case is shown in Fig. 4.7 (a) and the downsampled (scaled) power spectrum

and the cluster assigned to each of its samples in Fig. 4.7 (b).
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Fig. 4.7. Objective function (a). Averaged and scaled power spectrum, observations assignment ci (b).

By upsampling and scaling the downsampled spectrum the normalized average spectrum

SSSs
te is computed and shown in Fig. 4.8. Again, the clusters kte are reordered from 1 to 6.
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Fig. 4.8. Test data: clustered energy content.

The feature vectors Gtr,ktr for classification purpose are computed for the Nte
ob = 50 obser-

vations. These vectors are used as inputs to the trained ANN and the results are gathered into

a confusion matrix shown in Fig. 4.9. Such matrix reports the association of the classes in

damaged condition (y-axis) with the classes defined in undamaged conditions (x-axis). The

non-null elements in the matrix are positioned along the diagonal providing a pairwise associ-

ation of the damaged and undamaged clusters.
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Fig. 4.9. Confusion Matrix.

As mentioned, structural modes related to lower frequencies offer many advantages over the

modes related to higher frequencies [90]. Generally they present the lower number of nodes,

they have a better resolution and are more easily excited. For these reasons, in this numerical

test we focus on the energy contribution of the modes associated to the first (r0 = 1) and second

(r0 = 2) clusters. For the couple ktr = 1 and kte = 1, the intervals [µtr,1�str,1 µtr,1+str,1] and

[µte,1 �ste,1 µte,1 +ste,1] correspond respectively to the [4.20 5.37] Hz and [4.10 5.37]

Hz. The FIR filters are designed according to these intervals and the vector {R̂tr
w,r0(0)} is com-

puted for any of the 100 samples in the training dataset. The average of these vectors is con-

sidered. Analogously the vector {R̂te
w,r0(0)} is computed for any of the Nte

ob = 50 samples in the

test dataset to obtain the average vector. The damage index vector {Dw,r0} is then calculated for

any reference point w and shown in Fig. 4.10 (a).
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Fig. 4.10. Damage index vector for different reference ponts w, r0 = 1 (a) and r0 = 2 (b).

According to Fig. 4.10, the damage indexes for different reference points w are consistent
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to each other proving that choosing different w doesn’t affect the result of the analysis. We

can arbitrarily consider one of the damage index vectors computed and obtain the local damage

index vector {D0
IPV,w,r0} (first derivative of {DIPV,w,r0}, jump discontinuity). The local damage

index vector showed in Fig. 4.11 (a) accounts for the reference point w = 1 and correctly

identifies the presence and location of the damage for any considered threshold value.

Let’s now focus on the modal energy content associated to the second cluster (r0 = 2). For

the couple ktr = 2 and kte = 2, the intervals [µtr,2�str,2 µtr,2+str,2] and [µte,2�ste,2 µte,2+

ste,2] correspond respectively to the intervals [13.09 14.65] Hz and [12.59 14.55] Hz. By

following a procedure analogous to the one used for the first couple of clusters, the damage

index vector {Dw,r0} is calculated for any reference point w and shown in Fig. 4.10 (b). The

local damage index vector for w = 1 is reported in Fig. 4.11 (b).
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Fig. 4.11. Local damage index, r0 = 1 (a) r0 = 2 (b).

4.5.3. High order systems

This section extends the investigation about the applicability of the IPV-based damage assess-

ment method to a more complex system, (e.g. a plate) represented by a two-dimensional frame

(Fig. 4.12 (a)). Taking recourse to the presented damage assessment algorithm is recognized

as ideal to effectively account for the extremely high order of the system. Central in the imple-

mentation of system identification algorithms (SSI, O3KID) is the definition of some parame-

ters depending on the system order. Since an ’a priori’ knowledge of the system order is never

provided, the estimation of these parameters may result in a challenging task. Nonetheless,

the implementation of large values for those parameters leads to a huge computational effort

and relatively high numerical uncertainties in the estimated modal parameters. The aim of this

analysis is that of showing the presented damage assessment algorithm as a valid alternative to

the conventional system identification algorithms in those cases in which the system order is

relatively large.
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4.5.4. 100-DOFs

In its baseline conditions, the 100-DOF structure is a 2-D square grid of 10⇥10 lumped masses

of 1 kg each connected by spring elements placed horizontally, vertically and diagonally, each

one having stiffness of 1000 N/m, 900 N/m and 800 N/m respectively. The modal damping

has been set to x = 1% for all vibration modes. The structure is doubly-fixed at the top and

at the bottom and set of excitation forces act perpendicular to the plane of structure on each

of the masses. Using the assumption of zero-order-hold (ZOH) with a time sampling of 0.01

seconds, these forces are zero-mean Gaussian signals (uncorrelated to each other) with standard

deviation g = 10 N providing input/output time histories 100 second long. The acceleration

perpendicular to the plane of the structure is recorded at each of the 100 DOFs reproducing a

dense sensor network setup applied to the system. Also in this case, the values of the stiffness

elements ki are subject to a variation sampled from a uniform distribution in the range ±2%.

In its ’damaged’ state the structure presents a variation in two of the stiffness elements.

Hence, the local damage is simulated through a drop in stiffness of 25% for two of the diagonal

springs as shown in Figure 4.12 (b).

(a) (b)

Fig. 4.12. 100-DOF system: undamaged (a), damaged (b).

4.5.5. Converging clusters validation

As mentioned, the extraction of the modal parameters of high order structures may result in

an extremely challenging task. Hence, the conventional system identification algorithms like

O3KID rely on recurrent regression models whose order has to be set much higher than the

system order. Likewise, other system identification algorithms (SSI) rely on the projections of
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large matrices whose dimensions are difficult to estimate, but are theoretically required to be

way larger than the system order. Basically, these considerations let problems like the compu-

tational effort and the uncertainties about the setting parameters come to mind. Hence, because

of the uncertainty about the system order, it is usual practise to use the so called ’stabilization

diagrams’. Fig. 4.13 represents a stabilization diagram for the baseline 100-DOF system com-

puted through O3KID. In a state-space representation the order of the 100-DOF system is equal

to 200. For such a reason, the order of the regression model (linear least squares) has been set

to 300. By using the Eigensystem Realization Algorithm (ERA), which is part of the O3KID

algorithms, the modal parameters of the system are extracted assuming different system orders.

The considered system orders are reported on the vertical axis of the stabilization diagram,

whereas the identified natural frequencies of the system are on horizontal axis. For each each

of the considered system orders along the vertical axis, the modal parameters are computed. If

by increasing the system order some of the modal parameters are repeated a star appears in the

diagram. Its position depends on the system order and the identified natural frequency. The

stabilization diagram shows also these cases in which modal parameters are partially repeated

over the system order:

• if only natural frequency and damping factors are repeated a ’d’ appears in the diagram;

• if only natural frequency and modes are repeated, a ’v’ appears in the diagram;

• if only natural frequency is repeated, an ’f’ appears in the diagram;

Obviously, a tolerance range has been set for each of the modal parameters: 1% for the nat-

ural frequencies, 10% for the damping ratios, 5% for the Modal Assurance Criterion (MAC

numbers).
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Fig. 4.13. Stabilization diagram, baseline configuration (undamaged), O3KID.
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By looking at the stabilization diagram, we need to consider high orders of the system to

let the natural frequencies appear, and sometimes, for some system orders, they are not even

displayed. In this section we show that the damage assessment algorithm presented represents

a valid alternative to the conventional system identification methods for structural damage as-

sessment purpose.

A total of Nob = 50 observations are collected for the system in its baseline state. The aver-

age spectrum is computed and the triangular filter bank applied once to the average spectrum.

The clustering algorithm is applied in the range [0 3] Hz. The resulting clustered average spec-

trum is shown in Fig. 4.14. A total of K0
tr = 7 clusters are identified. The ANN classifier is

trained on the 50 generated features Gtr,ktr 2 R100⇥1 for ktr = 1, . . . ,7 (350 in total).
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Fig. 4.14. Clustered average spectrum, baseline condition.

After the ANN is trained, the clustering procedure is performed on the 50 test observations

(structure in ’damaged’ state). The clustered average spectrum is shown in Fig. 4.15. 10

clusters are identified.
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Fig. 4.15. Clustered average spectrum, damaged condition.

The ANN classifier is tested on the 50 observed features Gte,kte 2 R100⇥1 for each kte =

1, . . . ,10. For each test class kte the 50 observations are classified into one of the K0
tr = 7 train

class. The pairwise clusters coupling is imposed based on the largest number of observations

which, for a specific test class are associated to a train classes. Fig. 4.16 (a) shows a 3-D

graph: 50 test observations for each test class are classified into a train class. The observations

belonging to test classes kte = 1,2 are all classified into the ktr = 1 train class, but their MAC

number is below the threshold 0.9 (Table 4.1). The observations belonging to test classes kte = 3

are all classified into the ktr = 2 train class. By setting this coupling, we can proceed with the

algorithm to develop the damage index shown in Fig. 4.16 (b). The reference point for the

computation of the IPV is arbitrarily set to w = 92. Anyway, results are consistent to each

otherfor any choice of the reference point. Based on the statistics, the upper and lower bounds

for the damage index vector are respectively 0.0334 and �0.0356.
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Fig. 4.16. Test data classification (a). 2-D damage index, Train class: 2, Test Class: 3 (b).

Test - Train class 1 - 1 2 - 1 3 - 2 4 - 3 5 - 4 6 - 5 7 - 6 8 - 7 9 - 7 10 - 7
MAC number 0.644 0.661 0.998 0.997 0.993 0.991 0.988 0.954 0.954 0.901

Table 4.1. MAC number for pairwise coupled clusters.

By looking at Fig. 4.16 (a), we can also notice that the observations belonging to test classes

kte = 4 are all classified into the ktr = 3 train class. By considering that coupling, the damage

assessment algorithm is applied. The IPV has been computer for two different reference points

arbitrarily picked. The choice of the reference point w = 92 yields a damage index (Fig. 4.17

(a)) that is the mirrored image of the one provided by setting w = 36 (b). The upper and lower

bounds are respectively 0.4390 and -0.2312 for w = 92 and 0.3599 and -0.4870 for w = 36.
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Fig. 4.17. 2-D damage index: Train class: 3, Test Class: 4. Reference point: w = 92 (a), w = 36 (b).

4.6. Experimental test: LANL 3-DOF shear-type

The proposed automatized damage assessment algorithm has also been tested by considering

the dynamic response of a 3-DOF shear-type system shown in Fig. 4.18. Data have been

provided by the Engineering Institute (EI) at Los Alamos National Laboratory (LANL) [66].

The system consists of four aluminum columns (17.7⇥2.5⇥0.6 cm) connected at the top and

bottom to aluminum plates (30.5⇥ 30.5⇥ 2.5 cm) [69], forming a structure consisting of 3

floors and a sliding base. An electromagnetic shaker that acts at the center line of the base floor

of the structure provides the excitation to the dynamic system. The structure and the shaker are

fixed on a base plate (76.2⇥30.5⇥2.5 cm). Four accelerometers with a nominal sensitivity of

1000 mV/g are positioned at the center of the side of each floor at the opposite side from shaker

to measure the response of each plate. The random excitation is band limited in the range of 20-

150 Hz to avoid rigid body modes of the structure. Even if the structure was initially supposed

to behave linearly, a certain non-linear tendency due to the sliding rails has been noted [83].
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Fig. 4.18. LANL structure.

The LANL database supplies data about force and accelerations recorded while the structure

is in different conditions. When the standard 3-DOF model previously described is considered,

the structure is claimed to be in "baseline condition". Three damage conditions have been in-

vestigated in such a test setup, with damage imposed through stiffness reduction of the columns

connecting the floors. The damage scenarios considered in this dataset are the following:

• 50% stiffness reduction between floors 1-2

• 50% stiffness reduction between floors 2-3

• 50% stiffness reduction between floors 3-4

These damage scenarios have been already analyzed through a damage assessment algorithm in

[90]. It has been shown that the third damage scenario presents an unreliable damage index for

the reference point w = 3 that, once the damage occurs becomes a node for the first structural

mode. In this chapter, every step of the damage assessment algorithm is reported exclusively

for that specific case.

For each state of the structure (damaged or not) a total of Nob = 9 realizations of the dynamic

response time histories are considered. The acceleration response time histories consist in 8192

time steps sampled at 0.0031 sec. Since the excitation source has been filtered in the interval

[0 20] Hz and the frequency content on the right side of 20 may be affected by the filter, we

will consider the spectral content in the frequency range [24 77] Hz. The clustering procedure

for the system led to the clustered average spectrum reported in Fig. 4.19. A total of K0
tr = 5

clusters are identified. The ANN classifier is trained on the 9 generated features Gtr,ktr 2 R4⇥1

for ktr = 1, . . . ,5 (45 in total). It is noteworthy to specify that, in this particular case, the number
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of observations in the training dataset may be poor, anyway results provided by the ANN are

validated by the MAC numbers.
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Fig. 4.19. Clustered average spectrum, undamaged condition.

Once the ANN is trained, the clustering procedure is performed on the 9 test observations

(structure in ’damaged’ state). The clustered average spectrum is shown in Fig. 4.20. K0
te = 6

clusters are identified.
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Fig. 4.20. Clustered average spectrum, damaged condition.

The ANN classifier is tested on the 9 observed features Gte,kte 2R4⇥1 for each kte = 1, . . . ,6.

For each test class kte, the 9 observations are classified into one of the K0
tr = 5 train class. The

pairwise clusters coupling is imposed based on the largest number of observations which, for

a specific test class are associated to a train classes. Fig. 4.21 shows the 3-D bar graph: 9 test

observations for each test class are classified into a train class. The observations belonging to

test classes kte = 1 are all classified into the ktr = 1 train class and the MAC number is reported

in Table 4.2. By setting this coupling, we can proceed with the algorithm to develop the damage

index vector shown in Fig. 4.22.
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Test - Train class 1 - 1 2 - 2 3 - 3 4 - 4 5 - 5 6 - 5
MAC number 0.989 0.934 0.938 0.907 0.973 0.848

Table 4.2. MAC number for pairwise coupled clusters.

As mentioned, the damage index vector for the reference point w = 3 is consistent with the

other three (w = 1,2,4) due to the fact that w = 3 is a node for the damaged structure. For the

other reference points, results are consistent to each other.
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Fig. 4.22. Damage index vectors for different reference points w = 1,2,3,4.

Finally, the local damage index is computed for the reference point w = 4 and shown in Fig.

4.23. The value of the local damage index at 3.5 is above the upper thresholds confirming the

presence of a local damage between DOFs 3 and 4.
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Fig. 4.23. Local damage index vector for reference point w = 4.

4.7. Conclusions

This chapter presents a damage assessment method based on two key features. The first is

the implementation of a Bayesian clustering method (VI) that aims to identify the portions of

the frequency domain containing the energy contribution of a specific structural mode to the

spectral dynamic response. The second key feature is represented by a classification algorithm.

The objective is to label the energy contributions given by similar structural modes under the

same class, so that the pattern recognition analysis can be performed for a properly selected

class. The fist and the second steps are combined together in order to opportunely extract the

damage sensitive features. In a statistical pattern recognition framework, the damage index is

developed by comparing the cross-correlation vector (IPV) in undamaged state with the one

in unknown state. The damage index provides a reliable indication about the location of the

damage. Of course, one more time it is worth to recall that the whole algorithm relies on

restrictive assumptions.

Numerical simulation and experimental tests pointed out the effectiveness of the method,

which lends itself especially well to the analysis of shear-type systems, but also to generic

structures [90].
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Chapter 5

5. A Bayesian approach to the Output-only observer/Kalman filter identification

5.1. Introduction

In this chapter, a Bayesian regression algorithm is presented and integrated into the Output-only

Observer/Kalman filter IDentification (O3KID), an output-only system identification algorithm,

so to provide a more accurate representation of the system in the presence of measurement

noise. This leads to a more accurate estimation of the system’s natural frequencies and mode

shapes and of the model’s order in the case when signals of the response are affected by noise

substantially improving the performance of damage assessment algorithms based on modal

characteristics.

State space deterministic models consist of two sets of equations: the state equation, that

describes the evolution over time of state of the system, and the output equation, in which the

desired output is related to the state of the system. In order to account for the uncertainties due

to process and measurement noise, instead of using a deterministic state space model of the

system, a state observer is used. The state observer is a system that estimates the internal state

of a state space system that can rely on either an input-output or output-only dataset.

In the first section of this chapter, the state space formulation of a state observer is reviewed.

Previous studies proved that the estimation of the state observer matrices provided by the Ordi-

nary Least Squares (OLS) solution allows us to obtain an estimation of the Markov parameters

of a Kalman filter [83]. Hence, the Gauss-Markov theorem states that OLS algorithm is the

Best Linear Unbiased Estimator (BLUE) and, considering that the Kalman filter is the (only)

linear system that minimizes the expected value of the residuals squared, the residuals of the

OLS solution are the Kalman output residuals. Such a statement is valid in the case in which the

dataset contains extremely long time histories of the dynamic response (theoretically infinite

time steps) [83]. The presence of external disturbances can lead OLS algorithms to overfit data,

especially when the order of the system, and consequently of its state space representation, is

large [96]. An alternative to the OLS algorithm is presented by the partial least squares (PLS)

[97] but its use also requires extremely large dataset.

A Bayesian regression method can be used to reduce overfitting of the noisy structural

response [98, 99], and is used in this chapter to provide an approximation of the Markov pa-
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rameters of a Kalman filter. Although the application of Bayesian regression methods leads

to remarkable benefits in terms of overfitting, it is important to point out that the solution of

the Bayesian regression algorithm provides an approximation of the Markov parameters of a

Kalman filter. This is because the minimization criteria of a Bayesian regression algorithm re-

lies on the minimization of a Kullback-Leibler divergence, rather than the squared error of the

residuals, and so the retrieved Markov parameters do not fit the definition of the Kalman filter.

5.2. State space representation of an input-output system

State space models are one of the most popular mathematical representations of dynamic sys-

tems. A discrete-time linear-time-invariant state space model can be expressed as:

xxx(k+1) =Axxx(k)+Buuu(k) (5.1)

yyy(k) =Cxxx(k)+Duuu(k) (5.2)

where k is the time step, xxx 2 Rn⇥1 is the state vector, uuu 2 Rm⇥1 is the input vector, yyy 2 Rq⇥1 is

the output vector, A is the system matrix, B is the input matrix, D 2 Rq⇥m is the direct input

matrix and C 2 Rq⇥n is the output matrix. Equations (5.1) and (5.2) are the state equation

and the observation equation respectively. The deterministic model needs to be modified so to

account for process and measurement noise, so Equations (5.1) and (5.2) are modified as:

xxx(k+1) =Axxx(k)+Buuu(k)+www0
p(k) (5.3)

yyy(k) =Cxxx(k)+Duuu(k)+www0
m(k) (5.4)

where the vectors www0
p 2 Rn⇥1 and www0

m 2 Rq⇥1 represent the process and measurement noise.

The vectors www0
p(k) and www0

m(k) are commonly assumed to be zero mean, white and uncorrelated

with uuu(k) and yyy(k). An additional assumption is that the covariance matrices R0 and Q
0 of the

vectors www0
p(k) and www0

m(k) respectively are time invariant, i.e.constant over time.

5.3. Output-Only Observer/Kalman filter identification

The development of the so called Output-Only Observer/Kalman filter identification (O3KID)

system identification algorithm is exhaustively discussed in [81]. Let’s now consider a dataset



Chapter 5 167

of l time steps of acceleration response time histories:

{yyy(k)}= {yyy(1),yyy(2), . . . ,yyy(l)}. (5.5)

measured from the system subjected to an unknown excitation source, the objective is to iden-

tify a state space model representing the dynamic of the system. When the input excitation uuu(k)

is unknown, Equations (5.3) and (5.4) can be rewritten as:

xxx(k+1) = Axxx(k)+wwwp(k) (5.6)

yyy(k) = Cxxx(k)+wwwm(k) (5.7)

where wwwp 2 Rn⇥1 and wwwm 2 Rq⇥1 are zero-mean white stationary processes including not only

the original process and measurement noise, but also the effect of the unknown input on the state

equation, Buuu(k) in Equation (5.1), and on the measurement equation, Duuu(k) in Equation (5.2).

It is worthy to notice that the presence of the input in both the terms wwwp and wwwm makes them be

correlated. Let’s denote the auto-covariance matrices of wwwp and wwwm as R and Q respectively.

Let’s now consider the steady-state Kalman filter for the system in Equations (5.6) and (5.7):

x̂xx(k+1) = Ax̂xx(k)+K(yyy(k)� ŷyy(k)) (5.8)

ŷyy(k) = Cx̂xx(k) (5.9)

where x̂xx 2 Rn⇥1 and ŷyy 2 Rq⇥1 are respectively the observer state and the output and the matrix

K is the observer gain. By substituting Equation (5.9) into Equation (5.8), Equation (5.10) is

obtained. Furthermore, given eee(k) = yyy(k)� ŷyy(k) and recalling Equation (5.9) it is possible to

write:

x̂xx(k+1) = Āx̂xx(k)+Kyyy(k) (5.10)

yyy(k) = Cx̂xx(k)+ eee(k) (5.11)

where Ā = A�KC. It it worthy to note that the observer in Equation (5.10) is a one step-

ahead predictor and that the matrices in the system are linear time-invariant matrices. Equation

(5.10) can be then expanded providing an expression which can be interpreted as a recursive
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model. By propagating Equation (5.10) p steps backward, it is possible to obtain:

x̂xx(k+1) = Ā
px̂xx(k� p)+Tvvv(k) (5.12)

(5.13)

where the vector vvv(k) and the matrix T are given by:

vvv(k) =

2

6666664

yyy(k�1)

yyy(k�2)
...

yyy(k� p)

3

7777775
(5.14)

and

T=
h
K ĀK . . . Ā

p�2
K Ā

p�1
K

i
. (5.15)

Since Equation (5.10) is valid for a steady-state Kalman filter, according to the theory [83],

A
p ⇠ 0 for p >> n. Thus, the observer state vector x̂xx can be obtained as:

x̂xx =Tvvv(k). (5.16)

Equation (5.16) can be plugged into Equation (5.11) to provide:

yyy(k) =�vvv(k)+ eee(k) (5.17)

where

�=
h
CK CĀK . . . CĀ

p�2
K CĀ

p�1
K

i
. (5.18)

Equation (5.17) can be written for k = p, p+1, . . . , l providing:

YYY =�VVV (k)+E(k) (5.19)
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where:

Y =


yyy(p) yyy(p+1) . . . yyy(l)

�
(5.20)

V =


vvv(p) vvv(p+1) . . . vvv(l)

�
(5.21)

E=


eee(p) eee(p+1) . . . eee(l)

�
(5.22)

Equation is known to be the core equation of O3KID. The matrices Y and V are known by

measurement, � and E are not. Since l� p > qp the solution can be obtained via least squares.

The matrix �̃⇠� is given by:

F̃FF =YV
T �

VV
T��1 (5.23)

Analogously, the estimation of the corresponding residuals Ẽ⇠ E can be computed as:

Ẽ=Y� �̃V. (5.24)

By post-multipling Equation (5.24) by V
T :

ẼV
T =YV

T � �̃VV
T (5.25)

so that substituting �̃ from Equation (5.23):

ẼV
T =YV

T �YV
T �

VV
T��1

VV
T . (5.26)

Thus we can conclude that ẼVT = 0 and so that:

l

Â
k=p

ẽee(k)yyyT (k� j) = 0 j = 1,2, . . . , p (5.27)

where ẽee(k) is the kth column vector of the matrix Ẽ. Since by assumption the process is

stationary and ergodic, the solution provided by least squares leads to an approximation of

the Markov parameters and output residuals of the Kalman filter related to the system matrices
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A, C and noise statistics which generated the output sequence {yyy(k)}. Hence:

Ẽ ⇠ E (5.28)

�̃ ⇠ � (5.29)

This result is extremely important as it points out that the solution of the autoregressive

model in Equation (5.19) given by Equation (5.23) provides an estimate of the Markov pa-

rameters CK,CĀK, . . . ,CĀ
p�1

K of the observer. The matrix � can be manipulated so to

provide the system Markov parameters CK,CAK, . . . ,CA
p�1

K. At this point, the Eigensys-

tem Realization Algorithm (ERA) can be used so to identify the matrices A, C and K.

5.4. State space system estimation through a Bayesian strategy

In statistics, the Gauss-Markov theorem states that considering a linear regression model in

which the errors are uncorrelated and have equal variances and expectation zero, the ordinary

least squares provides the best linear unbiased estimator (BLUE) of the coefficients. As men-

tioned in the previous section, the value of p is required to be p >> n in order to make the

Kalman filter stable (Āp ⇠ 0).

Equation (5.23) shows that the matrix FFF can be approximated by the matrix F̃FF provided by

OLS regression. One of the most challenging tasks in the definition of an autoregressive model

is the choice of the number of coefficients to consider. Among all the possible approaches

to this problem, the Akaike Information Criterion (AIC method) is one of the most used in

literature [56]. Its objective is to select a number of autoregressive coefficients so that the re-

gression model provides a good mathematical representation of the system, avoiding problems

of overfitting. As previously pointed out, the validity of Equation (5.10) relies on the fact that

the Kalman filter is assumed to be steady-state and so large values of p are needed. For very

large values of p, the overfitting problem represents the real threat to the system identification

approach.

Bayesian methods have been proved to be extremely robust to overfitting [98, 99]. Among

those methods, Variational Inference (VI) is presented in this chapter as a valid alternative to

the conventional OLS regression model. The implementation of this method is discussed in the

next section.
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5.5. Recurrent Variational Inference model

Variational inference recurrent regression models rely on the use of a Bayesian approach to

create linear regression models which have been shown to be significantly robust to overfitting.

In this chapter, the procedure used to develop the Bayesian autoregressive model is conducted

similarly to the one in section 4.4.1. For each ithmonitored DOF, a linear regression model of

the acceleration can be defined as function of the acceleration response time histories collected

at every DOF. According to the notation used in the previous section, it is possible to set the kth

element of the acceleration response time history at the ith DOF as the kth output observation

y(i)k for the linear regression model so that y(i)k = yi(k). The observation y(i)k is generated by the

linear regression model using the kth observed input vector xxxk containing the elements of all

acceleration time histories at k�1, . . . ,k� p steps so that xxxk = [yyyT (k�1), . . . ,yyyT (k� p)]T for

xxxk 2 Rd⇥1 (d = N · p).

It is noteworthy that, for each monitored DOF, the Bayesian linear regression model is

equivalent to one row vector of the matrix � containing the AR coefficients generated by Least

Squares (LS) solution of Equation (5.23). The Bayesian approximation of the matrix � can be

obtained by properly arranging the features characterizing the Bayesian regression models for

all the DOFs.

The complete dataset, for each ith monitored DOF, is of the form {y(i)k ,xxxk}l
k=p and can be

split into output features Y = {y(i)p , . . . ,y(i)l } and input features X= {xxxp, . . . ,xxxl} so that the ith

regression model is estimated based on the total of l � p+1 features (xxxT
k ,y

(i)
k ). At this point, it

is important to define the probabilistic model for the acceleration at the time step k monitored

at the ith DOF. Let’s assume that the scalar quantity y(i)k is sampled from a Normal distribution

whose mean is generated by the product of the vector xxxT
k by the vector www 2 Rd⇥1 and whose

variance is l�1. It is worthy to observe that the elements of the vector www are weights of the

components of the vector xxxk and can be interpreted as the coefficients of an AR model for y(i)k .

Let’s assume that the vector www is sampled from a multivariate zero mean Normal distribution

whose covariance matrix is given by Diag(1/a1, . . . ,1/ad). The term Diag(·) represents a

diagonal square matrix whose elements along the diagonal are those inside of the parenthesis.

In order to define the probability distributions to sample the parameters a j and l , two Gamma

distributions have been defined as conjugate priors for the Normal distributions. The parameters

a j ( j = 1, . . . ,d), defining the covariance matrix of the multivariate Normal distribution from

which www is extracted, are sampled from a Gamma distribution whose parameters are a0 and
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b0. The parameter l , defining the Normal distribution from which y(i)k is extracted, is sampled

from a Gamma distribution whose parameters are e0 and f0. The probability density functions

of the model and prior distributions are represented as:

y(i)k ⇠ Normal(xxxT
k www,l�1), www ⇠ Normal(000,Diag(1/a1, . . . ,1/ad)),

a j ⇠ Gamma(a0,b0), l ⇠ Gamma(e0, f0).

Let’s represent the joint probability distribution as p(Y,X,www,l ,aaa). By using the chain rule,

the natural logarithm (ln) of the joint probability distribution can be written as:

ln(p(Y,X,www,l ,aaa)) = ln(p(Y|X,www,l ,aaa))+ ln(p(www|aaa))+ ln(p(aaa))+ ln(p(l )). (5.30)

Following a procedure similar to the one in section 4.3, the objective function L can be ex-

pressed as:

L (Y,X,www,l ,aaa) =
Z

q(www,l ,a1, . . . ,ad)ln
✓

p(Y,www,l ,a1, . . . ,ad |X)

q(www,l ,a1, . . . ,ad)

◆
dwwwdlda1 . . .dad .

(5.31)

Let’s now focus on the probability distributions inside of the integral of Equation (5.31). By

considering the mean-field assumption in section 4.3, the auxiliary distribution can be factor-

ized as q(www,l ,a1, . . . ,ad)⇡ q(l )q(www)’d
j=1 q(a j). The factored terms are analyzed in the next

section. For sake of simplicity, since the procedure has to be considered for each ith DOF, it

is convenient to remove the superscript (i) so that y(i)k becomes yk, with the understanding that

the procedure is applied for the ith DOF (i = 1, . . . ,N).

5.5.1. Auxiliary distribution factorization

Recalling section 4.4.1, the probability distributions q(a j), q(l ), q(www) factorizing the auxiliary

probability distribution can be estimated by plugging the joint distribution in Equation (5.30)

into Equation (4.23). Let’s now analyze each of them singularly.

• q(a j)



Chapter 5 173

Referring to Equation (4.23), the auxiliary distribution q(a j) is proportional to

q(a j) µ exp(Eq(l ,www,a j0 6= j)
[ln(p(Y|X,www,l ,aaa))+ ln(p(www|aaa))+ ln(p(aaa))+ ln(p(l ))])

(5.32)

q(a j) µ exp(Eq(l ,www,a j0 6= j)
[ln(p(www|aaa))+ ln(p(a j))]) (5.33)

where Eq(l ,www,a j0 6= j)
[·] represents the expectation operator over all the auxiliary distribu-

tions q(·) defined by the parameters www, l and a 0
j 6= a j. The terms ln(p(Y|X,www,l ,aaa))

and ln(p(l )) in Equation (5.32) are independent from a j so they are not considered in

Equation (5.33). The model p(www|aaa) and the prior distribution p(a j) in Equation (5.33)

can be expressed as:

p(www|aaa) = (2p)�
d
2 det(Diag(1/aaa))�

1
2 e�wwwT Diag(aaa)

2 www (5.34)

p(a j) =
ba0

0
G(a0)

aa0�1
j e�b0a j (5.35)

where det(·) is the determinant operator, the terms Diag(aaa) and Diag(1/aaa) represent

two diagonal matrices whose elements along the diagonal are respectively a1, . . . ,ad and

1/a1, . . . ,1/ad . By plugging Equations (5.34) and (5.35) into Equation (5.33) q(a j) can

be written as:

q(a j) µ det(Diag(1/aaa))�
1
2 e

� 1
2Eq(www,a j0 6= j)

[wwwT Diag(aaa)www] ba0
0

G(a0)
aa0�1

j e�b0a j . (5.36)

By considering only the terms depending on a j:

q(a j) µ a
1
2
j e

� 1
2Eq(www,a j0 6= j)

[w2
j a j]aa0�1

j e�b0a j (5.37)

where

Eq(www,a j0 6= j)
[w2

ja j] = Eq(www)[w
2
j ]a j. (5.38)

So, finally, we have:

q(a j) µ aa0�1/2
j e�a j(b0+

1
2Eq(www)[w2

j ]). (5.39)

Equation (5.39) shows that the distributions q(a j) are Gamma(a0,b0j) distribution, whose
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parameters are a0 = a0 +1/2 and b0j = b0 +1/2Eq(www)[w2
j ].

• q(l )

Let’s now focus on the auxiliary distribution q(l ). By substituting the joint distribution

in Equation 5.30 inside of Equation (4.23) yields:

q(l ) µ exp(Eq(aaa,www)[ln(p(Y|X,www,l ,aaa))+ ln(p(l ))]) (5.40)

where the term Eq(aaa,www)[·] represents the expectation operator over the parameters aaa and

www. Since, given the parameters www and l and the data in X, the term p(Y|X,www,l ,aaa)

becomes independent of aaa , it can be factorized as:

p(Y|X,www,l ,aaa) = p(Y|X,www,l ) =
l

’
k=p

p(yk|xxxk,www,l ). (5.41)

Recalling the initial assumptions on the probability distributions, the distributions p(yk|xxxk,www,l )

are Normal probability distributions:

p(yk|xxxk,www,l ) =
r

l
2p

e�
l
2 (yk�xxxT

k www)2
(5.42)

and p(l ) is a Gamma probabiliy distribution:

p(l ) =
f e0
0

G(e0)
l e0�1e� f0l . (5.43)

Equations (5.42), (5.43) and (5.41) can be plugged into Equation (5.40) yielding:

q(l ) µ exp

0

@Eq(aaa,www)

2

4ln

 r
l
2p

!l�p+1

� l
2

l

Â
k=p

(yk � xxxT
k www)2 + ln

✓
f e0
0

G(e0)
l e0�1e� f0l

◆3

5

1

A

q(l ) µ

 r
l
2p

!l�p+1

e�
l
2 Âl

k=p Eq(www)[(yk�xxxT
k www)2] f e0

0
G(e0)

l e0�1e� f0l

q(l ) µ l (e0+
l�p+1

2 )�1e�l ( f0+
1
2 Âl

k=p Eq(www)[(yk�xxxT
k www)2]) (5.44)

The distribution q(l ) is a Gamma distribution, Gamma(e0, f 0), whose parameters are

e0 = e0 +
l�p+1

2 and f 0 = f0 +
1
2 Âl

k=pEq(www)[(yk � xxxT
k www)2].

• q(www)

Let’s now focus on the auxiliary distribution q(www). The joint distribution in Equation
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5.30 can be plugged into Equation (4.23) leading to:

q(www) µ exp(Eq(aaa,l )[ln(p(Y|X,www,l ,aaa))+ ln(p(www|aaa))]) (5.45)

where the term Eq(aaa,l )[·] represents the expectation operator over the parameters aaa and

l . The probability distribution p(Y|X,www,l ,aaa) can be obtained by plugging Equation

(5.42) into Equation (5.41). The probability distribution p(www|aaa) is the multivariate Nor-

mal distribution in Equation (5.34). By substituting Equations (5.34), (5.41) and (5.42)

into Equation (5.45):

q(www) µ eEq(aaa,l )[ln( l
2p )

l�p+1
2 �Âl

k=p
l
2 (yk�xxxT

k www)2+ln((2p)�
d
2 det(Diag(1/aaa))

1
2 )�wwwT Diag(aaa)

2 www]

q(www) µ e�Eq(l )[
l
2 ]Â

l
k=p(yk�xxxT

k www)2
e�wwwT Eq(aaa)[Diag(aaa)]

2 www

q(www) µ e�
1
2

⇣
Eq(l )[l ]Âl

k=p(yk�xxxT
k www)2+Âd

j=1 w2
jEq(a j)[a j]

⌘

. (5.46)

Equation (5.46) shows that q(www) is actually a multivariate Normal probability distribution, i.e.

q(www) ⇠ N (µµµ 0,⌃0). The mean vector µµµ 0 and covariance matrix ⌃
0 can be found by analyzing

the exponent in Equation (5.46):

Eq(l )[l ]
l

Â
k=p

(yk � xxxT
k www)2 +wwwTEq(aaa)[Diag(aaa)]www

= Eq(l )[l ]
l

Â
k=p

�
y2

k �2ykxxxT www+ xxxT
k wwwwwwT xxxk

�
+wwwTEq(aaa)[Diag(a)]www

=
l

Â
k=p

�
Eq(l )[l ]y2

k �2ykEq(l )[l ]xxxT
k www
�
+wwwT

 
Eq(l )[l ]

l

Â
k=p

xxxkxxxT
k

!
www+wwwTEq(aaa)[Diag(aaa)]www

=
l

Â
k=p

�
Eq(l )[l ]y2

k �2ykEq(l )[l ]xxxT
k www
�
+wwwT

 
Eq(aaa)[Diag(aaa)]+Eq(l )[l ]

l

Â
k=p

xxxkxxxT
k

!
www (5.47)

By comparison with the conventional multivariate Normal probability distribution, we can con-

clude that the covariance ⌃
0 = (Eq(aaa)[Diag(aaa)] +Eq(l )[l ]Âl

k=p xxxkxxxT
k )

�1. From the general

expansion of the argument in the exponent of a multivariate Normal probability distribution

q(www) ⇠ N (µµµ 0,⌃0), the term linearly depending on www, i.e. 2wwwT
⌃

0�1µµµ 0, is equal to the one in

Equation (5.47) so that:

2wwwT
⌃

0�1µµµ 0 =
l

Â
k=p

2ykEq(l )[l ]xxxT
k www (5.48)
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leading to:

µµµ 0 =⌃
0(Eq(l )[l ]

l

Â
k=p

ykxxxk). (5.49)

Finally, once the q(a j), q(l ) and q(www) have been identified, it is possible to compute the expec-

tations. Using the conventional formulas for the Gamma and multivariate Normal distributions

it is possible to obtain:

Eq(a j)[a j] =
a0

b0j
(5.50)

Eq(l )[l ] =
e0

f 0
(5.51)

Eq(www)[w
2
j ] = (⌃0+µµµ 0µµµ 0T ) j, j (5.52)

The last term to evaluate is Eq(www)[(yk � xxxT
k www)2]:

Eq(www)[(yk � xxxT
k www)2] = y2

k �2ykxxxT
k Eq(www)[www]+ xxxT

k Eq(www)[wwwwwwT ]xxxk. (5.53)

By recalling the conventional equality ⌃
0 = Eq(www)[wwwwwwT ]� µµµ 0µµµ 0T for a multivariate Normal

distribution, Equation (5.53) can be expressed as:

Eq(www)[(yk � xxxT
k www)2] = y2

k �2ykxxxT
k µµµ 0+ xxxT

k [⌃
0+µµµ 0µµµ 0T ]xxxk

= (yk � xxxT
k µµµ 0)2 + xxxT

k ⌃
0xxxk. (5.54)

It is now possible to conclude that the computation of the auxiliary distribution q(www,aaa,l )

fully depends on the values of the parameters a0. b0j, e0, f 0, µµµ 0 and ⌃
0. Through an iterative

process, the value of these parameters will be updated (iteratively) so to provide the optimal

estimation of the auxiliary distribution.

At this point we obtained the analytical expressions for the auxiliary distributions q(www),

q(l ) and q(aaa) and so we are ready to proceed to the computation of the objective function L .
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5.5.2. Objective function

By applying the chain rule, it is possible to write the logarithm of the probability distribution

p(Y,www,l ,a1, . . . ,ad|XXX) inside of the integral in Equation (5.31) as:

ln(p(Y,www,l ,a1, . . . ,ad|XXX)) = ln(p(Y|www,l ,XXX)p(l )p(www|aaa)p(aaa)) . (5.55)

By using the logarithm properties, the term inside the integral in Equation (5.31) can be ex-

pressed as:

q(www,l ,a1, . . . ,ad)ln
✓

p(Y,www,l ,a1, . . . ,ad |XXX)

q(www,l ,a1, . . . ,ad)

◆

= q(www,l ,a1, . . . ,ad)ln(p(Y,www,l ,a1, . . . ,ad |XXX))�q(www,l ,a1, . . . ,ad)ln(q(www,l ,a1, . . . ,ad)) .

(5.56)

The two logarithms in Equation (5.56) can be decomposed into sums of logarithms. The first

term leads to

ln(p(Y,www,l ,a1, . . . ,ad |XXX)) = ln(p(Y|www,l ,XXX)p(www|aaa)p(aaa)p(l ))

= ln(p(Y|www,l ,X))+ ln(p(www|aaa))+ ln(p(aaa))+ ln(p(l ))

(5.57)

and the second to

ln(q(www,l ,a1, . . . ,ad)) = ln(q(www))+ ln(q(l ))+ ln(q(aaa)) (5.58)

where ln(q(aaa)) = Âd
j=1 ln(q(a j)). Thus, the integral in Equation (5.31), which leads to the

formulation of the objective function, can be decomposed into the sum of 7 integrals: the 4

terms in Equations (5.57) and the 3 terms in Equation (5.58). At this point, the 7 terms can be

singularly analyzed.

1. p(Y|www,l ,XXX)

Let’s compute the integral of the first term in Equation (5.57) contributing to the objec-

tive function L :

Z
. . .
Z

q(l ,www,a1, . . . ,ad)ln(p(Y|www,X,l ))dwwwdlda1 . . .dad. (5.59)
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Since the term ln(p(Y|www,X,l )) is independent from aaa it is possible to write:

Z
. . .
Z

q(l ,www)ln(p(Y|www,X,l ))dwwwdl

= Eq(l ,www)

"
l

Â
k=q

ln(p(yk|www,xxxk,l ))

#

= Eq(l ,www)

"
l

Â
k=q

ln

 r
l
2p

e�
l
2 (yk�xxxT

k www)2

!#

=
l

Â
k=p

1
2
Eq(l )[ln((l ))]�

l

Â
k=p

1
2
Eq(l ) [l ]Eq(www)

⇥
(yk � xxxT

k www)2⇤+ const. (5.60)

By considering that the logarithmic expectation of the q(l ) Gamma distribution is

Eq(l )[ln(l )] = y(e0)� ln( f 0) and recalling the expectations expressed in Equations

(5.51) and (5.54), Equation (5.60) becomes:

l � p+1
2

(y(e0)� ln( f 0))�
l

Â
k=p

1
2

e0

f 0
[(yk � xxxT

k µµµ 0)2 + xxxT
k ⌃

0xxxk]+ const (5.61)

2. p(www|aaa)

The integral of the second term in Equation (5.57) contributing to the objective function

L is expressed as:

Z
. . .
Z Z

q(l )q(www)
d

’
i=1

q(ai)ln(p(www|a1, . . . ,ad))dwwwdlda1 . . .dad (5.62)

We can observe that ln(p(www|aaa)) is independent from l . By substituting Equation (5.34)

into Equation (5.62):

Eq(www,aaa)

✓
�1

2

◆�
ln(det(2pDiag(1/aaa)))+wwwT Diag(aaa)www

��

= �1
2

d

Â
j=1

Eq(a j)[ln(
2p
a j

)]� 1
2

d

Â
j=1

Eq(www)[w
2
j ]Eq(a j)[a j]. (5.63)

The expectations in Equation (5.63) can be computed as Eq(a j)[ln
⇣

2p
a j

⌘
] = ln(2p)�

(y(a0)� ln
⇣

b0j
⌘
), Eq(www)[w2

j ] = [⌃0+µµµ 0µµµ 0T ] j, j and Eq(a j)[a j] =
a0
b0j

leading to:

1
2

d

Â
j=1

(y(a0)� ln(b0j)�
a0

b0j
[⌃0+µµµ 0µµµ 0T ] j, j)+ const. (5.64)
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3. p(aaa)

The integral of the third term in Equation (5.57) can be expressed as:

Z
. . .
Z

q(l )q(www)
d

’
j=1

q(a j)
d

Â
j=1

ln(p(a j))dwwwdlda1 . . .dad (5.65)

The term Âd
j=1 ln(p(a j)) is independent from l and www, so we can write Equation (5.65)

as:

Eq(aaa)

"
d

Â
j=1

ln(p(a j))

#

=
d

Â
j=1

Eq(a j)

⇥
ln(p(a j))

⇤
(5.66)

Which can be rewritten as:

d

Â
j=1

"
(a0 �1)(y(a0)� ln(b j))�b0

a0

b0j

#
+ const. (5.67)

4. p(l )

Let’s compute the integral of the fourth term in Equation (5.57) contributing to the

objective function L :

Z
. . .
Z

q(l )q(www)
d

’
j=1

q(a j)ln(p(l ))dwwwdlda1 . . .dad (5.68)

The term p(l ) is independent from www and aaa , so Equation (5.68) can be written as:

Eq(l ) [ln(p(l ))] (5.69)

and, by analyzing the distribution, it is possible to obtain:

(e0 �1)(y(e0)� ln( f 0))� f0
e0

f 0
+ const. (5.70)

At this point the expression for the integral of the first four terms in Equation (5.57) has

been derived. Next, we will evaluate the integrals of the three terms in Equation (5.58)

which are the so called ’entropies’.
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5. q(www)

Recalling the definition of entropy as the negative of the expected value of the natural

logarithm of a distribution with respect to itself, the negative integral of the first term in

Equation (5.58) can be interpreted as the entropy of the distribution q(www):

�
Z

. . .
Z

q(l )q(www)
d

’
j=1

q(a j)ln(q(www))dwwwdlda1 . . .dad. (5.71)

Since q(www) is a multivariate normal distribution, the entropy is given by:

�Eq(www) [ln(q(www))] =
1
2

ln(det(2pe⌃0)) =
1
2

ln(det(⌃0))+ const. (5.72)

6. q(l )

The entropy of the second term in Equation (5.58) contributing to the objective function

L is given by:

�
Z

. . .
Z

q(l )q(www)
d

’
j=1

q(a j)ln(q(l ))dwwwdlda1 . . .dad (5.73)

The distribution q(l ) is a Gamma(e0, f 0) distribution and its entropy is given by:

�Eq(l ) [ln(q(l ))] = e0 � ln( f 0)+ ln(G(e0))+(1� e0)y(e0). (5.74)

7. q(aaa)

The entropy of the distribution represented by the third term in Equation (5.58) con-

tributing to the objective function L can be written as:

�
Z

. . .
Z

q(l )q(www)
d

’
j=1

q(a j)ln(q(aaa))dwdlda1 . . .dad. (5.75)

The entropy given by Equation (5.75) can be computed by factorizing the distribution

q(aaa) so to obtain

�
Z

. . .
Z

q(l )q(www)
d

’
j=1

q(a j)
d

Â
j=1

ln(q(a j))dwwwdlda1 . . .dad (5.76)
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leading to:

�Eq(aaa)

"
d

Â
j=1

ln(q(a j))

#
. (5.77)

Since q(a j) is a Gamma(a0,b0j) distribution, the sum of the d entropies is given by:

�
d

Â
j=1
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⇥
ln(q(a j))

⇤
=

d

Â
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d

Â
j=1

ln(b0j).

(5.78)

Finally, we can compute the objective function L by considering the terms in Equations

(5.61), (5.64), (5.67), (5.70), (5.72), (5.74) and (5.78):
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d

Â
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ln(b0j)

+ const (5.79)

where bbb0 = {b01, . . . ,b
0
d}.

5.5.3. Practical implementation of the Variational Inference regression algorithm

Once the analytical expression fo the distributions q(www), q(aaa) and q(l ) have been derived and

the inference between their parameters a0, b0j, e0, f 0, µµµ 0 and ⌃
0 has been shown, it is possible to
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use these distributions in an iterative algorithm that updates the distributions’ parameters. The

correct implementation and convergence of the auxiliary distribution parameters is validated by

the objective function which is always negative and monotonically increasing before converg-

ing to a constant value. The implementation of the VI recurrent regression algorithm relies on

three steps. Let’s indicate with t the superscript of iteration t = 1, . . . ,Nt :

1. Initialization at time step t = 0: select an initial set of parameters a00,b
0
0, j,e

0
0, f 00 for

j = 1, . . . ,d. In this step the initial parameters for the distributions q(aaa) and q(l ) are

selected.

2. At the generic t +1th iteration:

• Update the parameters µµµ 0 and ⌃
0 according to:

⌃
0
t+1 = (Diag(

a0t
b0t, j

)+
e0t
f 0t

l

Â
k=p

xxxkxxxT
k )

�1 (5.80)

µµµ 0
t+1 = ⌃

0
t+1(

e0t
f 0t
)

l

Â
k=p

ykxxxk. (5.81)

• Update the parameters a0, b0j, e0, f 0 according to:

a0t+1 = a0 +
1
2

(5.82)

b0t+1, j = b0 +
1
2
[⌃0

t+1 +µµµ 0
t+1µµµ 0T

t+1] j, j (5.83)

e0t+1 = e0 +
l � p+1

2
(5.84)

f 0t+1 = f0 +
1
2

l

Â
k=p

(yk � xxxT
k µµµ 0

t+1)
2 + xxxT

k ⌃
0
txxxk. (5.85)

• Compute the value of the objective function L t at the tth iteration using Equation

5.31 and compare it with the value corresponding to the previous iteration.

3. Check convergence of L t to a constant value. Once this convergence is achieved, that

value of L t corresponds to the final value of L .

As the objective function L converges to a constant value, the auxiliary distribution q(www,aaa,l )

approaches the posterior distribution p(www,aaa,l |XXX).
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5.6. Numerical Simulations

A first comparison between the LS and Bayesian regression approaches is provided by analyz-

ing a dynamic oscillator. The Kalman gain Markov parameters are extracted and compared.

Secondly, the acceleration response time histories are generated by an 8-DOF shear type sys-

tem. The coefficients inside of the matrix �̃ are extracted through a conventional OLS regres-

sion according to Equation (5.23) and through Bayesian regression models according to the

procedure just presented.

5.6.1. Dynamic oscillator

The system is represented by a linear dynamic oscillator. The spring element has stiffness equal

to k = 2500 N/m and the mass is equal to 1 kg. The damping ratio has been set to x = 1%. The

excitation source is a gaussian zero mean force whose standard deviation s is equal to 1 N. The

force acts so to excite the oscillator horizontally. The measurement noise has been simulated

by a gaussian white noise signal whose root mean square has been set at the 30% of the output

response.

The system Kalman gain Markov parameters are provided in Figure 5.1. The theoretical

Kalman Gain Markov parameters CK,CAK, . . . ,CA
p
K have been extracted by monitoring

both the input uuu and the output yyy according to theoretical formulations in Appendix 8.1. The

theoretical Kalman Gain Markov parameters have been than compared with those extracted by

the linear regression computed through OLS, Figure 5.1 (a), and with those computer by the

linear regression performed through Bayesian regression, Figure 5.1 (b).

(a) (b)

Fig. 5.1. System Kalman Gain Markov parameters: comparison with OLS (a) and Bayesian (b) Kalman
Gain Markov parameters.
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Figure 5.1 shows that the theoretical system Kalman gain Markov parameters CK,CAK,

. . . ,CA
p
K converge to zero, whereas the ones obtained by OLS solution do not because of

overfitting. Contrarily, the system Kalman gain Markov parameters obtained through Bayesian

regression converge to zero as well as the theoretical ones.

It is interesting to note that, by increasing the level of measurement noise, the system

Kalman gain Markov parameters computed by the linear regression models converge to the

theoretical system Kalman gain Markov parameters. That fact can be explained by consid-

ering that the theoretical formulation of the Kalman filter relies on the assumption that the

process noise wwwp and the measurement noise wwwm are uncorrelated each other. In absence of

external disturbances, the covariance matrices of wwwp and wwwm are respectively Q=BB
T s2 and

R = DD
T s2 and so correlated. By introducing external measurement disturbances (station-

ary and ergodic), the covariance matrix of wwwm is given by R = DD
T s2 +Rd where Rd is

the covariance matrix of the external disturbance. It is obvious that, by increasing the level

of measurement noise, the correlation between wwwp and wwwm is reduced and the system Kalman

gain Markov parameters obtained by the regression models converge to the one obtained by the

theoretical analysis.

5.6.2. 8-DOF shear type system

The system is an 8-DOF shear-type system. The mass and spring elements are numbered

in ascending order from the bottom to the top (Figure 5.2). The system is characterized by

horizontal springs of stiffness ki = 25000N/m (i = 1, . . . ,8), and each mass is equal to mi = 1kg

(i = 1, . . . ,8). The frame is subjected to modal damping with a damping factor of x = 1% for

each of the 8 vibration modes. The system is excited by an external force applied at the first

DOF via zero-order-hold (ZOH) for 100 sec duration with a time sampling of 0.01 seconds.

Such force is a zero-mean Gaussian white noise signal (standard normal distribution) whose

magnitude is scaled by a factor of 100. The output dataset consists of the time-histories of

the structural acceleration recorded at every level (full set of sensors) corrupted by different

levels of Gaussian white noise, in terms of root mean square (RMS), to simulate the effect of

measurement disturbances.
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Fig. 5.2. 8-DOF shear type system

For the 8-DOF system, the state space model order is n = 16, so the parameter p has been

set equal to 70. The regression methods (OLS and Bayesian regression) have been used so

to provide an estimate of the matrix � in the core equation of the O3KID algorithm. Once

the matrix � has been estimated, and the unwrapping procedure has been used to generate the

system Kalman gain Markov parameters, the ERA algorithm can be used to estimate the system

matrices A and C. The extraction of these matrices relies the singular value decomposition

(SVD) of the Henkel matrix of the system Kalman gain Markov parameters: the non-zero

singular values generated by the SVD identify the order of the system and, consequently, of

the system matrix A. If the dynamic response in the dataset has been generated from the

system subjected to external disturbances, distinguish the non-zero singular values may result

in a challenging task. Since the system is an 8-DOFs, the order of the system in its state space

representation is n = 16. According to the system order, only the largest 16 singular values

have been considered for the extraction of the system matrix A.

At this point, one important consideration has to be made. By considering a linear trans-

formation (matrix), it is well known the direct connection between the singular values and the

eigenvalues. Analogously to the eigenvalues, the singular values are representative of the entity

of the transformation of their associated eigenvectors. Let’s consider again the Henkel matrix

of the system Kalman gain Markov parameters for a state space system of order n = 16. The 16

largest singular values are supposed to be associated to the modal dynamic response, anyway,

some of them may be both corrupted by measurement noise or associated to the mathemati-

cal representation of the noise. In conclusion, due to measurement noise, the singular values

associated to the modal dynamic response might present lower values than the first 16.
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Three cases are presented for different values of the RMS of the gaussian white noise: 0%,

5% and 10% of the acceleration time histories RMSs. Nob = 50 observations of the acceleration

response time histories have been generated, for each case, so to extract Nob = 50 observations

of the natural frequencies and their standard deviations. The first case is a measurement noise

free test (RMS=0%). The identified natural frequencies and the relative standard deviations are

reported in Tables 5.1 and 5.2 respectively.

1. 0%Noise

State f1 f2 f3 f4 f5 f6 f7 f8
True 4.4054896 13.0664453 21.2824388 28.7736844 35.2850766 40.594878 44.5222694 46.9335083
ERA 4.4046614 13.0626293 21.2844583 28.7842344 35.2771006 40.5805771 44.4945392 46.9202584
ERA-dc 4.4046614 13.0626293 21.2844583 28.7842344 35.2771006 40.5805771 44.4945392 46.9202584
VI-ERA 4.4099553 12.9121514 21.0469581 28.6682095 35.2538091 40.6605491 44.4832105 46.9363397
VI-ERA-dc 4.4099553 12.9121514 21.0469581 28.6682095 35.2538091 40.6605491 44.4832105 46.9363397

Table 5.1. 8-DOFs: identified natural frequencies, no noise.

State std1 std2 std3 std4 std5 std6 std7 std8
True 0 0 0 0 0 0 0 0
ERA 0.0186575 0.0248458 0.0359533 0.0471506 0.0540776 0.0578433 0.0737128 0.0756137
ERA-dc 0.0186575 0.0248458 0.0359533 0.0471506 0.0540776 0.0578433 0.0737128 0.0756137
VI-ERA 0.0146066 0.088025 0.1218259 0.0916647 0.1016702 0.1678594 0.2347524 0.1594731
VI-ERA-dc 0.0146066 0.088025 0.1218259 0.0916647 0.1016702 0.1678594 0.2347524 0.1594731

Table 5.2. 8-DOFs: identified natural frequencies’ standard deviation, no noise.

In absence of noise the effects of the overfitting are not considered and the conventional OLS

regression model provides better estimations than the Bayesian regression model.

By introducing a 5% RMS output noise, the problem due to overfitting appears. As shown

by the Tables 5.3 and 5.4 the first natural frequency at 4.405 Hz cannot be identified by the

OLS regression considering only 16 singular values, but more than 16 singular values need

to be considered. Contrarily, the Bayesian regression is still able to identify the first natural

frequency even though results are not as accurate as those in Tables 5.1 and 5.2.

2. 5%Noise

State f1 f2 f3 f4 f5 f6 f7 f8
True 4.4054896 13.0664453 21.2824388 28.7736844 35.2850766 40.594878 44.5222694 46.9335083
ERA 12.8754566 21.1565444 28.5426141 33.7359569 35.6370032 40.4416679 44.8922532 45.9223153
ERA-dc 12.8754566 21.1565444 28.5426141 33.7359569 35.6370032 40.4416679 44.8922532 45.9223153
VI-ERA 4.5211871 13.2938669 21.3115372 28.7928925 35.5220416 40.9760416 44.4419339 45.9708162
VI-ERA-dc 4.5211871 13.2938669 21.3115372 28.7928925 35.5220416 40.9760416 44.4419339 45.9708162

Table 5.3. 8-DOFs: identified natural frequencies, 5% measurement noise.
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State std1 std2 std3 std4 std5 std6 std7 std8
True 0 0 0 0 0 0 0 0
ERA 1.7689673 1.1646737 1.0488671 2.9301714 0.4238344 0.6897958 1.5655008 1.2764975
ERA-dc 1.7689673 1.1646737 1.0488671 2.9301714 0.4238344 0.6897958 1.5655008 1.2764975
VI-ERA 1.3584474 1.4971053 0.0604535 0.0631223 2.2320067 2.617175 2.0481248 1.1296203
VI-ERA-dc 1.3584474 1.4971053 0.0604535 0.0631223 2.2320067 2.617175 2.0481248 1.1296203

Table 5.4. 8-DOFs: identified natural frequencies’ standard deviation, 5% measurement noise.

Finally, a 10% RMS output noise has been used as measurement noise. Again, by consid-

ering only 16 singular values, the conventional OLS regression model is not able to correctly

identify the first natural frequency and a stabilization diagram is required.

3. 10%Noise

State f1 f2 f3 f4 f5 f6 f7 f8
True 4.4054896 13.0664453 21.2824388 28.7736844 35.2850766 40.594878 44.5222694 46.9335083
ERA 10.1868155 19.1090574 26.8000132 32.5106314 35.4456892 40.2191345 43.6276533 45.9906089
ERA-dc 10.1868155 19.1090574 26.8000132 32.5106314 35.4456892 40.2191345 43.6276533 45.9906089
VI-ERA 4.3539136 13.0815869 21.2980052 28.7850883 35.2717249 40.5541808 44.4473212 46.7643273
VI-ERA-dc 4.3539136 13.0815869 21.2980052 28.7850883 35.2717249 40.5541808 44.4473212 46.7643273

Table 5.5. 8-DOFs: identified natural frequencies, 10% measurement noise.

State std1 std2 std3 std4 std5 std6 std7 std8
True 0 0 0 0 0 0 0 0
ERA 5.2597368 3.7625974 3.2829824 2.3986221 0.6933501 2.1061994 1.9021779 1.1614249
ERA-dc 5.2597368 3.7625974 3.2829824 2.3986221 0.6933501 2.1061994 1.9021779 1.1614249
VI-ERA 0.5350292 0.0327529 0.0467729 0.067903 0.0756994 0.0702979 0.14049 0.3354919
VI-ERA-dc 0.5350292 0.0327529 0.0467729 0.067903 0.0756994 0.0702979 0.14049 0.3354919

Table 5.6. 8-DOFs: identified natural frequencies’ standard deviation, 10% measurement noise.

A comparison between the elements of the first row of the matrix � which have been es-

timated through LS (a) and Bayesian (b) regression and shown in Figure 5.3. The result is

consistent to the one provided in Figure 5.1 showing the system Kalman gain Markov parame-

ters.
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(a)

(b)

Fig. 5.3. Estimated regression coefficients (first row of �)

The estimation of the mode shapes extracted through the Bayesian regression, for the last

case presented (10% RMS output noise), is shown and compared with the real mode shapes in

Figure 5.4.

Fig. 5.4. 8-DOF shear type system mode shapes.

In conclusion, the advantage of the Bayesian regression model over the conventional OLS
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solution has been shown. The robustness to overfitting of the Bayesian model allows to cor-

rectly estimate the modal parameters relying on less singular values than those needed by the

conventional OLS solution. In this context, by using a stabilization diagram to properly identify

the modal parameters, the system identification algorithm relying on the Bayesian regression

model allows to identify the stabilized natural frequencies for lower orders (number of singular

values considered).

5.7. Conclusions

In this chapter, an alternative formulation of O3KID relying on a Bayesian regression model

has been presented. The advantages of a Bayesian regression model over the conventional OLS

regression model has been shown in the numerical simulations subjected to different levels of

measurement noise. Conventional OLS regression models are used to extract regression coeffi-

cients whose estimation is affected by overfitting problems in presence of external disturbances.

The robustness of the Bayesian models to external noise has been proven and shown by means

of two numerical simulations. In the first numerical simulation, it has been proven that the sys-

tem Kalman gain Markov parameters extracted through the Bayesian approach approximate the

theoretical values. In the second simulation, the benefits of the Bayesian regression model led

to a better estimation of the modal parameters by considering low orders of the system model.
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Chapter 6

6. Conclusions and future directions

In this thesis, output-only structural damage assessment methods based on both parametric and

nonparametric models have been developed and presented.

The damage assessment methodology proposed in Chapter 2 is conducted within a statisti-

cal pattern recognition framework. In this context, two phases have to be defined: 1) a training

phase, in which data are collected from a structure assumed to operate in its standard condi-

tions, so to obtain a training model, 2) a test phase, in which new data are collected and tested,

so to assess the presence of damage following a novelty detection approach. A training model

is developed based on the statistical distribution of the damage sensitive features extracted from

the training dataset. The first part of this work consists in the formulation of the cepstral co-

efficients as functions of the structural parameters and in their adaptation as damage sensitive

features in SHM. Cepstral coefficients represent valuable damage sensitive features since they

are able to provide a compact representation of data requiring a low user expertise. The dam-

age assessment algorithm using cepstral coefficients has been implemented based on simulated

data and a comparison of the results with those obtained using AutoRegressive coefficients

is provided. Compared with the AutoRegressive coefficients, the cepstral coefficients require

less computational time and are stable to the presence of nonlinearities in the data. The ana-

lytical formulation of the cepstral coefficients showed that any term of the cepstral coefficient

sequence can be written as the sum of two terms, one which does not vary over the monitoring

location (it is the same at any monitored location) and another term which is characterized by

the local dynamic response. The variability induced by the second term can be reduced through

a PCA process. The application of the PCA to generate a nonparametric model represents a

relevant part of this study since it allows us to reduce the variance of data collected at differ-

ent sensors and subjected to external noise, different excitations and environmental conditions.

The performance of the damage assessment method has been presented through numerical and

experimental tests. In particular, the analysis of the data collected from the Z24 bridge in

Switzerland presents an enlightening comparison between modal parameters analysis and sta-

tistical pattern recognition, between local and global cepstral analysis, in a context in which

PCA is extremely useful to reduce effects of external disturbances.
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The implementation of an output-only damage assessment algorithm based on the extrac-

tion of modal parameters solely based on the knowledge of the structural dynamic response

has been investigated in chapter 3. The Inner Product Vector (IPV) based methodology has

been adapted to output-only analysis so that an effective estimation of the structural modes is

obtained through the cross-correlation of manipulated dynamic signals. The proposed damage

assessment strategy has been shown effective to assess the presence of structural damage and

its location within the structure. The robustness of the methodology to measurement noise has

been tested through numerical simulations and its performance validated on experimental data

measured on a steel frame at the Los Alamos National Laboratory. The presented damage as-

sessment algorithm is particularly effective for those cases in which a large amount of sensors

is used to monitor the structure’s dynamic response: the larger the number of sensors used,

the better the resolution of the damage location. However, one of the main limitations of the

proposed IPV-based approach is that it still requires the manual estimation of the structural

modes’ contributions to the frequency content of the dynamic response and this represents a

critical point in an automatized damage assessment algorithm since it depends on the user ex-

pertise. For such a reason, in chapter 4, the implementation of an algorithm that automatizes

this procedure has been presented.

In order to implement an automated version of the IPV method, chapter 4 focuses entirely

on the design and implementation of a clustering Bayesian algorithm and of a classifier that

is able to automatically distinguish the contribution of specific mode to the dynamic response

spectra before and after the occurrence of damage. The contributions of different structural

modes to the spectral content have been interpreted as statistical distributions and, conse-

quently, the spectra as mixtures of these statistical distributions. Numerical simulations proved

that a Variational-Inference based approach allows to automatically detect the structural mode’s

contributions to the spectra and to extract some features that characterize each of the modes so

to recognize the same mode before and after the occurrence of damage. This methodology

is particularly effective for those cases in which, because of damage, new structural modes

contribute to the dynamic response of the system. Once this procedure is implemented, it be-

comes possible to assess the presence and location of damage through the IPV-based damage

assessment algorithm previously developed. The proposed methodology has been tested and

validated through the analysis of both numerical and experimental data.

Finally, in chapter 5, the data overfitting problem affecting regression algorithms at the
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core of conventional system identification algorithms is addressed. The Ordinary Least Squares

(OLS) method is conventionally used to extract the parameters of regression models from which

the structural modal parameters are estimated. The reasons for using OLS are associated to its

simplicity in the implementation and to the fact that it represents the Best Linear Unbiased Es-

timator (BLUE). In this chapter it has been confirmed that, according to the theory, OLS might

lead to overfitting problems when the order of the regression model is large. In this framework,

Variational Inference regression models represent a valid alternative to the conventional OLS

because of their robustness to overfitting. A Bayesian Variational Inference regression algo-

rithm has been designed and implemented on O3KID and the benefits of such integration have

been shown in numerical examples. Although the estimation of the modal parameters through

the Bayesian approach is less accurate than the one provided by the OLS approach in absence of

external disturbances, when measurement noise is introduced in system, the Bayesian approach

provides better estimates. This result led us to consider the newly developed Bayesian system

identification algorithm as a valid alternative to the conventional algorithm when dealing with

noisy measurements.

The adaptation of the cepstral coefficients to SHM represents one of the first approaches

to the field of domain adaptation. In this thesis, cepstral coefficients, features largely used in

acoustics, have been successfully adapted to structural engineering as damage sensitive features

for structural damage assessment purpose. Along this line, future research could be conducted

to develop damage assessment algorithms that explore the applicability of new damage sen-

sitive features commonly used in other fields. For example, transfer learning is a particularly

interesting topic in the field of SHM, where most of datasets obtained during operational condi-

tions are used as representative of the healthy conditions and few information about the system

in its damaged condition are available. In this framework, transfer learning consists in learn-

ing the procedure for the extraction of damage sensitive features based on data provided by

a source domain and in transferring and adapting the learnt damage sensitive features to the

target domain.

In the analysis of the Z24 bridge, the nonparametric model has been obtained through PCA

based on datasets presenting similar external conditions, hence, the acceleration response time

histories considered have been recorded during the summer period. For this reason, future re-

search could be conducted so to develop a damage assessment algorithm based on the cepstral

coefficients able to filter more effectively the fluctuations of the structural properties due to dif-
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ferent environmental conditions. Furthermore, PCA requires the use of large training datasets

and the computation of the covariance matrix of data might require a significant computational

effort, thus future research can be focused on the seeking of alternative methods for the damage

sensitive features extraction.
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8. Appendix

8.1. AutoRegressive coefficients

Any time signal can be mathematically represented by an AR model of order p as follows:

x(k) =
p

Â
j=1

a jx(k� j)+ e(k) (8.1)

where x(k) is the value of the signal at time instant kDT , given the sampling interval DT , the

jth AutoRegressive coefficient a j and the residual error at the kth time step e(k). The AR

coefficients can be easily evaluated by regression methods, e.g. Ordinary Least Square. The

definition of the order p represents the hardest challenge concerning the development of such

a model. Obviously, the higher the order of the model, the better the approximation of the

observed signal. Anyway, model orders too large should be avoided to prevent data overfitting.

The Akaike Information Criterion (AIC) represents a valuable method commonly employed for

the model order selection. Such method provides a model representing the best compromise

between the one that best fits the data and the one that has the least number of parameters to

estimate the data. The AIC for a model of order p is given by:

AIC(p) = ns[ln(s2
p)+1]+2p (8.2)

where ns is the total number of data points to estimate, s2
p is the mean of the sum of square

residual errors, e(k). The AIC value is evaluated for a range of possible orders (1-maxp), e.g. in

the analysis of the 8-DOFs shear type system this range has been set to vary between 1 and 20.

The optimal order is selected computing the AIC values and picking the smallest value greater

than a prescribed threshold set by the user. In this thesis, the threshold has been set set at the

5% of the difference between AIC(1) and AIC(maxp). The results of the damage detection

assignment when using AR models are largely affected by the user’s expertise since he has to

set maxp and the threshold arbitrarily.
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8.2. The Riccati equation for the computation of the steady-state Kalman filter

The discrete-time linear-invariant state space representation of a dynamic system according to

Equations (5.1) and (5.2):

xxx(k+1) =Axxx(k)+Buuu(k)

yyy(k) =Cxxx(k)+Duuu(k) (8.3)

can be modified to account for the process and measurement noise:

xxx(k+1) =Axxx(k)+Buuu(k)+www0
p(k) (8.4)

yyy(k) =Cxxx(k)+Duuu(k)+www0
m(k) (8.5)

according to Equations (5.3) and (5.4).

The basic assumptions are here summarized:

1. www0
p(k) is the process noise assumed to be Gaussian, zero-mean (E[www0

p(k)] = 0) and white

with the covariance matrix (E[www0
p(k)www0T

p ( j)] =Q
0d (k� j)) given d (k� j) = I for k = j

and d (k� j) = 0 for k = j;

2. www0
m(k) is the measurement noise assumed to be Gaussian, zero-mean (E[www0

m(k)] = 0)

and white with the covariance matrix (E[www0
m(k)www0T

m ( j)] =R
0d (k� j));

3. the initial condition xxx(0) is unknown, only its mean x̄xx(0) = 0 and covariance matrix

Px(0) are known;

4. xxx(0), www0
p( j) and www0

m(k) are mutually uncorrelated for all j and k so that x̄xx(0) and Px(0)

are independent of www0
p( j) and www0

m(k);

5. future inputs are uncorrelated from past outputs so that E[uuu(k)yyyT ( j)] = 0 for k� 1 �

j � 0.

The equation of a generic linear time-varying observer can be written as:

x̂xx(k+1) = F(k)x̂xx(k)+K(k)yyy(k)+H(k)uuu(k) (8.6)

where x̂xx 2 Rn⇥1 is the observer vector and F 2 Rn⇥n, K 2 Rn⇥m and H 2 Rn⇥r are the
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generic observer system matrices.

The state error can be computed as the difference between the real state value and its esti-

mation as:

eee(k) = xxx(k)� x̂xx(k) (8.7)

so that:

eee(k+1) = xxx(k+1)� x̂xx(k+1)

= Axxx(k)+Buuu(k)+www000
ppp(k)�F(k)x̂xx(k)�K(k)yyy(k)�H(k)uuu(k)

= [A�K(k)C]eee(k)+ [A�F(k)�K(k)C]x̂xx(k)

+[B�K(k)D�H(k)]uuu(k)�K(k)www0
m(k)+www0

p(k). (8.8)

By taking the expectation of Equation (8.8), the unbiased and zero-mean estimation error

can be computed as:

E[eee(k+1)] = [A�K(k)C]E[eee(k)]+ [A�F(k)�K(k)C]E[x̂xx](k)

+[B�K(k)D�H(k)]E[uuu(k)]. (8.9)

Given that the process and measurement signals are zero-mean, i.e. E[www0
m(k)] =E[www0

p(k)] =

0. The estimation error is zero-mean only if:

F(k) = A�K(k)C (8.10)

H(k) = B�K(k)D (8.11)

x̂xx(k) = E[xxx(0)] = x̂xx(0). (8.12)
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So that

E[eee(k+1)] = [A�K(k)C]E[eee(k)]

= [A�K(k)C][A�K(k)C] . . . [A�K(k)C]E[eee(0)]

= 0 (8.13)

given that E[eee(0)] =E[xxx(0)� x̂xx(0)] = 0. Considering the assumptions in Equation (8.10), (8.11)

and (8.12), Equation (8.8) becomes:

eee(k+1) = [A�K(k)C]E[eee(k)]�K(k)www0
m(k)+www0

p. (8.14)

It is possible to compute the covariance matrix P(k+1):

P(k+1) = E[eee(k+1)eeeT (k+1)]

= [A�K(k)C]E[eee(k)eeeT (k)][A�K(k)C]T

+K(k)E[www0
m(k)www

0T
m (k)]KT (k)+E[www0

pwww0T
p ] (8.15)

and, defining E[www0
m(k)www0T

m (k)] =R
0 and E[www0

pwww0T
p ] =Q

0, it is possible to write:

P(k+1) = [A�K(k)C]P(k)[A�K(k)C]T +K(k)R0
K

T (k)+Q
0. (8.16)

The Kalman Filter K(k) is selected so to minimize the expected value of the squared norm of

eee(k), which is equivalent to minimize the trace (sum of diagonal elements) of the matrix P(k)

J(k) = E[eeeT (k)eee(k)] = traceE[eee(k)eeeT (k)] = trace[P(k)]. (8.17)

Thus, the objective is to find K(k) which maximizes the trace[P(k+1)]:

d [trace[P(k+1)]]
dK(k)

=�2[A�K(k)C]P(k)CT +2K(k)R= 0. (8.18)

Solving Equation (8.18) for K(k):

K(k) =AP(k)CT [R0+CP(k)CT ]�1. (8.19)
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By plugging Equation (8.19) into Equation (8.16), and recalling that P(k) =P
T (k), the discrete

time algebraic Riccati equation can be obtained:

P(k+1) =AP(k)AT �AP(k)CT [R0+CP(k)CT ]�1
CP(k)AT +Q

0. (8.20)

Equations (8.19) and (8.20) can be iteratively used until the Kalman gain K(k) converges to

the steady-state Kalman gain K. This procedure has been followed to provide the theoretical

formulation of the theoretical Kalman Gain Markov parameters in section 5.6.1.


