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ABSTRACT

Machine Learning Methods for Causal Inference with Observational Biomedical Data

Amelia Jean Averitt

Causal inference – the process of drawing a conclusion about the impact of an

exposure on an outcome – is foundational to biomedicine, where it is used to guide

intervention. The current gold-standard approach for causal inference is randomized

experimentation, such as randomized controlled trials (RCTs). Yet, randomized

experiments, including RCTs, often enforce strict eligibility criteria that impede the

generalizability of causal knowledge to the real world. Observational data, such

as the electronic health record (EHR), is often regarded as a more representative

source from which to generate causal knowledge. However, observational data is

non-randomized, and therefore causal estimates from this source are susceptible to

bias from confounders. This weakness complicates two central tasks of causal inference:

the replication or evaluation of existing causal knowledge and the generation of new

causal knowledge. In this dissertation I (i) address the feasibility of observational data

to replicate existing causal knowledge and (ii) present new methods for the generation

of causal knowledge with observational data, with a focus on the causal tasks of

comparing an outcome between two cohorts and the estimation of attributable risks

of exposures in a causal system.
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Chapter 1

Overview of Thesis

Introduction

Statistical inference is the process of determining relationships among entities in a

model through the analysis of data. While inference, on its own, refers to the general

process of arriving at a logical conclusion based on the validity of former evidence;

statistical inference differs in that the reasoning process occurs at the intersection of

philosophy, mathematics, and empirical science. These three disciplines contribute

to the main roles of statistical inference – the development of algorithms and the

inferential arguments which support them (Efron/Hastie 2016). Of the many

inference questions posited, the relationship between cause and effect, or causal

inference, is fundamental. Questions of causal inference are central to many disciplines,

such as economics, marketing, and health, but is specific to none. Rather, it is a

system that can be widely applied to support causal claims and evaluate their strength.

Causal inference is often explored through the use of a counterfactual – a population

that is identical to the treatment arm in all respects, except for the presence of the

intervention. However, the counterfactual is never observable, and approximations are
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needed (Rubin 1986). The current gold-standard for counterfactual causal inference

is randomized experimentation. The random allocation of patients is intended to

eliminate confounding, as the presence of potentially biasing features should be equal

between arms. In this case, the comparator arm then approximates the counterfactual

of the treatment arm (Rothman et al. 1998). In the potential outcomes framework,

this equality between arms is known as strong ignorability (Rosenbaum/Rubin

1983a). This assumption states that a unit’s assignment to a treatment is not a

function of that unit’s potential outcomes, and that treatment assignment is, therefore,

ignorable given their observed features. Causal claims borne from data that satisfy

this requirement are regarded as unconfounded as all factors of variation should be

equally represented in the treatment and comparator groups (Rubin 1974; Rubin

1986; Rubin 2005). Associations that result from a counterfactual comparison, if

found significant by the inference procedure, are recognized as causal knowledge. In

biomedicine, causal knowledge is often generated by randomized controlled trials

(RCTs), and is later applied in the treatment of patients. This practice of applying

causal knowledge is known as evidence based medicine (EBM) (Sackett et al. 1996).

The hierarchy of EBM assigns causal knowledge borne from the RCT to the highest

level of reputability, as the curated trial population, presence of the control group, and

randomized treatment allocation ensure high internal validity (Sackett et al. 1996;

Burns et al. 2011). However, randomized experiments, including RCTs, often enforce

unrealistic assumptions that impede the generalization of causal knowledge to the

real-world (Steckler/McLeroy 2008). More generalizable methods of causal

inference would be preferred.
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There exist many other methods to support causal inquiry from observational data,

including G-estimation (Robins 1986), Pearl’s do-calculus (Pearl 1995; Pearl

2000), structural equation modeling (Pearl 2012), Granger causality (Sorenson

2005), and instrumental variables (Becker 2016). However, these methods either

require experimental data, assumptions regarding the causal structure, or are intended

to model temporal causal structures. In this dissertation, I focus on observational

data, making few assumptions about the causal structure, and consider time-varying

confounding out of scope.

Problem Statement

Observational data is often lauded as a more externally valid source from which

to generate causal knowledge, but it suffers from complexities such as poor quality,

irregular sampling, and systematic biases that undermine its use in causal estimation

(Hripcsak/Albers 2012; Weiskopf et al. 2013). These weaknesses complicate

two central tasks of causal inference - the replication or evaluation of existing causal

knowledge, and the generation of new causal knowledge.

When evaluating existing causal knowledge through replication, the greatest obstacles

in the use of observational data are the effective management of observed and

unobserved confounding and the insufficient reporting of the experimental population.

Even with precise definitions of observational populations, it remains difficult to
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truly replicate causal estimates as all unit-level features of variation are typically not

disclosed and the majority of causal estimates are reported in summary. This has the

additional consequence of making the extent of generalizability unknown. This failure

of an RCT to represent an indicated population may be the result of cohort selection

for a single condition of interest that is further narrowed by a breadth of eligibility

criteria. This final cohort population may stand in stark comparison to the intended

target population (Wales 2009). However, the appropriate application of causal

knowledge would require that the intended real-world population be the same as the

experimental population, but this is a challenging task given that the RCT-reported

population characteristics are limited and only presented very coarsely.

The confounding typical of observational data may also interfere with popular

methods of generating new causal knowledge. When comparing two cohorts, the

calculation of unbiased causal estimates from this imperfect data source is often

framed as identifying a natural experiment. Natural experiments are a type of

observational study in which researchers do not have the ability to assign the

treatment, but treatments are nonetheless assigned nearly randomly. They are most

valid when they closely resemble a true experimental setting, in which treatment is

randomized (Meyer 1995; Shadish et al. 2002; Academy of Medical Sciences

2007; Craig et al. 2012). Popular pre-analysis methods for approximating natural

experiments include matching, in which treatment units are paired with similar

comparator units based on the pre-treatment features (Wilks 1932; Cochran 1953;

Greenberg 1953; Billewicz 1965; Rubin 1973a); and weighting, in which units
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are disproportionally considered so that the weighted expectation of features are

similar across arms (Czajka et al. 1992; Robins et al. 2000; Lunceford/Davidian

2004). All weighting methods generalize matching methods, and conversely, all types

of matching are special cases with discrete weights (Imai 2013). Under a matching

procedure, units may go unpaired, which is inefficient and may introduce new bias

(Rosenbaum/Rubin 1985b; King 2011b). Weighting is a more efficient method

for identifying a natural experiment. However, under many weighting techniques,

downstream estimates may be unstable. In this dissertation, I present a stable

weighting method to support causal inference from two cohorts of observational

data. This method will increase the confidence of causal claims from observational

data and may permit the identification of effective interventions and improve outcomes.

New causal knowledge is also generated through attributable risk (AR) estimation.

ARs are the proportion of an outcome in a population that could be prevented by

elimination of a causal exposure from the population if there are (i) no interactions

between causal exposures and (ii) all other effects of exposures are removed (Levin

1953). Typically, estimation of ARs would be based upon knowledge of the

relevant causal graph. However, in the setting of many potential exposures – the

high-dimensional setting – causal graph construction may be impractical. To estimate

the ARs of many exposures simultaneously in the absence of the causal graph,

model specification becomes increasingly important. In this dissertation, I explore a

particular the specification for AR estimation from unstructured binary exposures and

outcomes. In the absence of the causal graph, typical methods of high-throughput
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AR estimation include the Gamma Poisson Shrinker (GPS) (Bate/Evans 2009) and

Penalized Logistic Regression (PLR) (Hahn et al. 2017). However, GPS is univariate

and PLR is an unlikely causal model. Additionally, although techniques that support

adjustment for confounding exist for these methods, these models may still be subject

to bias by non-causal pathways between the exposure and the outcome, known as

backdoor paths (Pearl 1995). In a backdoor path, variables are not statistically

independent, but one does not necessarily cause the other. In this situation there

are two sources of association between the exposure and the outcome; (i) the true

causal effect of the exposure on the outcome, and (ii) the non-causal effect through

the backdoor path (Blackwell 2013). Consider the canonical example of lighters

(L), smoking (S), and lung cancer (LC). Though lighters may appear to be causally

related to lung cancer (L → LC), this apparent association is driven via a backdoor

path of the relationships between smoking and lighter (S → L), and smoking and lung

cancer (S → LC). This confounding via the backdoor path obscures the lack of a true

causal association (L → LC). When analyzing observational data, such a backdoor

path may emerge through collinear variables with causal associations with exposure

and outcome; in this case between lung cancer and lighters. Developing methods

that correct for such collinearities, can be leveraged to resolve the underlying causal

relationships we seek.

I present a multivariate, latent variable model for AR estimation with observational

data that effectively handles observed confounding, collinearities, and may be

more robust to unobserved confounding via backdoor paths. Furthermore, unlike
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comparator methods, the method I propose supports the evaluation of global risks,

the prediction outcomes, and estimation of causes at the individual level.

Purpose of the Study

This dissertation presents research which investigates (i) the replication and evaluation

of existing causal knowledge with observational data and (ii) the generation of new

causal knowledge with observational data.

In Aim 1 of this dissertation, I seek to determine the extent to which observational

data can be used to replicate existing causal knowledge from randomized experimental

results. If residual bias is present, we seek to characterize and quantify this bias, to

better understand the limitations of unmanipulated observational data in a causal

inference setting. In Aims 2 and 3 of this dissertation, I seek to develop methods that

support generating new causal knowledge from this biased data source. Aim 2 will

address reducing bias in causal estimates from observational data, when confronted

with the inference task of comparing two cohorts; and Aim 3 will seek to produce

unbiased, high-throughput attributable risk estimates.

Research questions, hypotheses, specific aims, and experimental designs can be found

in the sections that follow.
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Research Questions and Hypotheses

Aim 1. Determine the feasibility of observational data to replicate existing
causal knowledge.

Aim 1.1 Assess the ability to replicate causal claims from RCTs using electronic
health record (EHR) data.

Research Question
Does the construction of observational cohorts according
to RCT eligibility criteria encourage the causal effect
estimate to converge with that reported in the trial?

Hypothesis
Eligibility criteria are not sufficient to identify an
observational population in which experimental causal
estimates will replicate.

Aim 1.2 Examine potential sources of residual bias in effect estimates from
observational data sources.

Research Question
Why do observational causal effect estimates fail to
converge with that reported in the RCT?

Hypothesis
The residual bias between observational effect estimates
and RCT effect estimates is due to distributional
differences in potentially confounding variables.

Aim 2. Develop a method to identify natural experiments within
observational data.

Aim 2.1 Implement a generative adversarial network, Counterfactual χ-GAN, to
learn balancing weights.

8



Research Question
Can a generative adversarial network (GAN) be leveraged
to learn feature-balancing weights?

Hypothesis

In simulation, a GAN-based model will identify units
that are generated from the same underlying distribution,
and assign these units greater weights, thereby improving
feature balance.

Aim 2.2 Apply the Counterfactual χ-GAN to observational datasets.

Research Question
Can a generative adversarial network (GAN)-based model
improve feature-balance for noisy observational cohorts?

Hypothesis
The cGAN model will learn feature-balancing weights
for two cohorts; the resulting weighted metrics will be
more similar to that reported in truly randomized trials.

Aim 3. Develop a method for high-throughput causal attributable risk
estimation with observational data.

Aim 3.1 Implement a probabilistic model, Noisy-Or Risk Allocation (NORA), and
develop efficient probabilistic inference procedures.

Research Question
Will a Bayesian model that encodes the assumption of
causal independence produce attributable risk estimates
that are less biased than other state-of-the-art methods?

Hypothesis
In simulation, a Bayesian model that encodes the
assumption of causal independence will be less biased
from the ground truth than Logistic Regression.

Aim 3.2 Apply the NORA model to observational datasets.

Research Question
Can a Bayesian model that encodes the assumption of
causal independence be used to support high-throughput
attributable risk estimation with observational data?

Hypothesis
The attributable risk estimates learned by NORA will
coincide with causal relationships that are acknowledged
in biomedical literature.
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Experimental Design Associated with Hypotheses

Aim 1

Aim 1.1 Extract inclusion and exclusion from a published RCT protocol and

literature. Incrementally add criterion to an observational cohort that is constructed

according to the indication of the RCT. This observational cohort is queried multiple

times, with each query being subject to the addition of new eligibility criteria of the

target RCT. With each incremental criterion (i) the unadjusted odds ratio (OR) for

an endpoint and (ii) the OR adjusted by matching, are calculated and compared to

the OR that was calculated for this endpoint at the RCTs close.

Aim 1.2 Using the Observational Health Data Science and Informatics (OHDSI)

ATLAS tools, curate observational cohorts to match RCT populations. The trial’s

indication will identify a core set of patients to which inclusion and exclusion criteria

are applied to appropriately narrow the cohort. Subjects who remained eligible after

this pruning stage comprise the observational cohort of interest. This cohort is then

queried to contrast the characteristics of the observational cohort with the RCTs

participant features that are reported in the Demographics Table (”Table 1”).

Aim 2

Aim 2.1 Design and implement a model based on a generative adversarial network

(GAN), the Counterfactual χ-GAN (cGAN), that will learn feature-balancing weights
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for two cohorts. To determine the correctness of implementation, the cGAN and

comparators will be applied to simulated data of two cohorts, for which a portion of

each cohort is generated from the same distribution. The units that arise from this

same distribution will be more similar in their features and should have higher weights.

Outcomes will be simulated according to the distribution of origin to accommodate

analysis of the biasedness of the average treatment effects (ATE).

Aim 2.2 Apply the Counterfactual χ-GAN (cGAN) and a variety of other

comparator methods to observational cohorts from electronic health record (EHR)

data, constructed according to RCT indications. The successful application to real-

world clinical data will be evaluated by feature balance between the cohorts; measured

by the absolute standardized difference in the means (ASDM).

Aim 3

Aim 3.1 Develop a Bayesian, probabilistic model, the Noisy-Or Risk Allocation

model (NORA), for the estimation of ARs from observational data. NORA considers

multiple independent causes in a setting with binary exposures and outcomes. To

assess the correctness of implementation, NORA and logistic regression (LR) are

applied to simulated causal system, in which unobserved confounding exists. NORA

and LR are tasked with estimating the AR for a single exposure in our simulated

data. Estimates from NORA and LR are compared to the ground truth to evaluate

robustness to confounding.
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Aim 3.2 Apply NORA to observational datasets from the NewYork-Presbyterian

Hospital electronic health record (EHR). Exposure-outcome datasets are curated

according to several causal relationships acknowledged in published literature. NORA

and comparator methods – including direct calculation using the Levin 1953

attributable risk definition; approximation by disproportionality methods; and

regression-based methods – are applied to these datasets to estimate the ARs of

the exposures. NORA and comparators are evaluated on (i) their ability to make

AR estimations that coincide with the literature; (ii) their predictive power for an

individuals outcome; and (iii) their ability to rationalize over an individuals exposures.

Significance

The methods put forth in this dissertation will help to improve causal inferences from

observational data sources.

The ability to evaluate and replicate causal relationships from observational data may

confer many benefits. It may promote a more principled and data-driven practice of

evidence-based medicine, and encourage the current system of evidence-generation to

provide causal estimates from a more representative population. These actions may

contribute to more generalizable treatment effects that may be easily validated or

replicated with observational data.

The machine-learning methods to generate new causal knowledge from observational
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data sources advance both the computer science and clinical communities. The

methods presented in this dissertation are novel contributions to the breadth of

machine learning models that already exist. Future research may build upon this

dissertation’s models to further improve causal inferences from observational data.

The ability to generate new causal knowledge – by comparing two cohorts or

AR estimation – is an improvement over the current standard of inferences from

experimental design. The methods I present provide efficient and accurate inferences,

which will aid the clinical community to get better care to patients faster.

Questions of causal inference are broadly applicable to domains in which there is

actionable uncertainty, and may therefore benefit a wide audience. All of methods

within this dissertation may permit researchers across domains and institutions to

optimize outcomes with interventions.

Contributions

Aim 1. A number of techniques exist to improve and support causal estimates from

observational data, but at present, there is no widely-used framework to evaluate

modeling assumptions relative to experimental data. RCTs, which we accept to be

the least biased source of causal knowledge, can be compared to estimates generated

from observational data and, thus, provide a methodology to assess the validity of

causal claims and a platform with which to evaluate inference methods.
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Aim 2. The cGAN is an effective method of learning feature-balancing weights

to support counterfactual inference between two cohorts. The application of the

model to real-world data could provide an alternative means to causal inference

from observational data. Furthermore, if we assume that all potentially confounding

variables are observed and included as features, a superiority of cGAN in learning

balancing weights, suggests that average treatment effects (ATE) borne from cGAN-

weighted cohorts would be less biased than those estimates generated from typical

weighting methods.

Aim 3. NORA offers advantages over traditional methods of AR estimation. Unlike

comparator methods, NORA supports both local and global inferences. The likelihood

of the model encodes an intuitive and simplifying assumption of causality. In the

absence of causal graph construction, such simplifying assumptions can be powerful

tools for estimation even in the context where the assumptions are only partially met.

NORA is able to scale to very high dimensions due to the inherent regularizing effect;

and early simulations suggest that the model is robust to unobserved confounding and

collinearity. Our results show that NORA (i) predicts outcomes with similar or better

performance than related methods, (ii) recovers known, clinically meaningful AR

estimates, and (iii) produces interpretable estimates of the causes for an individual’s

outcome.
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Chapter 2

Background and Related Work

Historical Background

EBM and Experimental Data Since its inception in the 1990s, Evidence Based

Medicine (EBM) has become the standard of operation for clinicians. The practice

advocates a framework of clinical care which optimizes patient health through the

judicious consideration and application of medical evidence (Djulbegovic/Guyatt

1976; Djulbegovic/Guyatt 2017a; Djulbegovic et al. 2009; Sackett et al. 1996).

At the core of the EBM philosophy is the credibility of the medical evidence – the

application of any medical evidence is only justifiable if we first believe that evidence

is credible (Djulbegovic/Guyatt 1976). EBM encourages clinicians to seek

the most reputable evidence according to a hierarchy of study quality (Sackett

et al. 1996). The quality of a study is characterized by both the internal and external

validity; where internal validity refers to the extent to which a causal conclusion is

warranted and is typically measured by the absence of systematic error, and external

validity refers to the extent to which causal relationships of a study are able to persist

over variation in persons and treatment settings (Campbell/Stanley 1963). The

hierarchy of EBM assigns the randomized controlled trial (RCT) to the highest
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level of reputability, as the curated trial population, presence of the control group,

and randomized treatment allocation ensures the highest internal validity (Burns

et al. 2011).

It is often asserted that internal validity is a prerequisite for external validity, as

study results that fail to capture the true effect due to bias necessarily cannot

be expected to generalize outside of the study population (Calder et al. 1982;

Dekkers et al. 2010; Higgins et al. 2011). As such industry, academia, and

regulatory and government agencies alike, put high importance on the internal

validity of trials, prioritizing scientific rigor of the experiment over its ability

to replicate outside of the trial setting (Higgins et al. 2011). Similarly, most

empirical assessments of study quality for EBM, emphasize the evaluation of internal

validity, by limiting the scope of their assessment to factors such as randomization,

allocation, blinding, follow-up, and attrition (Moher et al. 1996; Moher et al. 2010;

Harbour/Miller 2001; Dijkers 2013). A common design element to support

high internal validity of a trial are selection criteria or eligibility criteria. If we

consider trial patients to be a function of their features, such as demographics,

laboratory measurements, and medical history; the eligibility criteria define the

features that all patients in a study must share. In theory, the eligibility criteria

support internal validity by ensuring the homogeneity of the study population and

reducing confounding. As such, eligibility criteria may increase the prospect of

uncovering the true association between an intervention and outcome (Velasco 2010).
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When operationalized, the eligibility criteria are represented as inclusion and

exclusion criteria (Campbell/Stanley 1963; Hyman 1982; Anderson-Cook

2005). With every addition of a criterion to a study population, it results a different

sub-population and increasingly controlled conditions (Velasco 2010). These

restrictive criteria may afford high internal validity, but it often comes at the expense of

external validity and, consequently, the successful practice of EBM (Rothwell 2006).

Because RCT’s are designed to support high internal validity and as such, eligibility

criteria are employed with the express purpose to construct a homogeneous,

predictable cohort; these trials may fail to incorporate patients with characteristics

that yield more variation in the treatment effect and may be more representative

of the real world. This may result in making any trial evidence, such as the

average treatment effect (ATE), poorly generalizable (Moher et al. 1996; Britton

et al. 1999; Wales 2009; Karanis et al. 2016; Stuart et al. 2015). However, is

fundamentally at odds with the practice of EBM. Because underlying this practice,

is the assumption that an intervention will show a similar effect in a real-world

population as shown in the experimental, RCT population. As such, there is an

inherent mismatch in what EBM acknowledges to be credible medical evidence and

what evidence may support replicable treatment effects in the real-world.

The relationship between RCTs and EBM may also be viewed in another manner. A

mismatch between the trial population and the real-world can be simply distilled into

the fact that the distributions of subpopulations that result from the application of
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the eligibility criteria – may be unequal. Because causal effects are not homogeneous,

each subpopulation may respond differently. This is known as the heterogeneity of

treatment effect (Longford 1999; Kravitz et al. 2004; Gabler et al. 2009). The

varied causal responses from these subpopulations are then aggregated into a single

metric, which is the treatment effect that is clinicians expect will replicate. A failure

to consider all of these subpopulations when randomizing in the experimental setting

may result in bias (Lachin et al. 1988; Kernan et al. 1999) or poor external validity

(Illari et al. 2011).

EBM and Non-Experimental Data To have a fully generalizable effect estimate

from experimental data would require (i) that the treatment effect be the same across

all subpopulations, or (ii) that you have a priori knowledge of all subpopulations and

are able to randomize across them. These are both infeasible. Alternatively, we could

use observational data to create causal knowledge and support EBM.

Observational data is data that is passively collected, ”without making any

engineering adjustments to the collection process beyond those adjustments that

are part of a normal operation” (Czitrom 1997). Importantly, electronic health

records (EHR) is a type of observational data (Murdoch/Detsky 2013). Since

the enactment of Health Information Technology for Economic and Clinical

Health (HITECH) in 1997, the collection of electronically formatted clinical

data has greatly increased (Charles 2013). This increase in observational data

stores has similarly occurred in other countries with EHR mandates (Heinze et
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al. 2011; Faxvaag et al. 2011; Tejero/Torre 2012; Shah 2012; Mense et al. 2013).

Observational data offers many advantages over experimental data. First and

foremost, there is a lot of it, which provides new opportunities and avenues for

pattern recognition (Imai et al. 2009). Observational data is suitable for studying

rare outcomes, which is often not supported in the experimental setting. But most

importantly, observational data is representative. That is, it is more likely to include

a broader representation of the at-risk population, which makes inferences from this

data source potentially more externally valid (Concato 2004; Thadhani 2006;

Kleinberg/Hripcsak 2011). If using observational data, we are much more likely

to capture all subpopulations of interest and produce a causal effect estimate that is

externally valid.

Observational data is more representative and can yield more generalizable estimates,

but observational data itself is plagued with problems that make these estimates

unreliable. Observational data is inaccurate, complex (Hripcsak/Albers 2012),

incomplete, especially with regards to poor documentation, breadth, and predictive

power of the data (Weiskopf et al. 2013). But most importantly, observational data

is biased. The lack of randomization, that is always present in the RCT, renders

studies with observational data susceptible to biases (Höfler 2005; Dahabreh

et al. 2012).

Herein is the central trade off with observational data – it’s use confers external
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validity but reduces internal validity. EBM could greatly benefit from use of this data,

but confidence in estimates from this source require that we improve the internal

validity by addressing the confounders that arise from the lack of randomization.

Review of Theories of Causal Inference

Causal inference refers to the process of drawing a conclusion about cause and effect

relationships (Vogt/Johnson 2011). Research on causal inference comes from a

variety of disciplines (Stuart 2010) statistics (Holland 1986; Thrusfield 2017;

Rubin 2012) epidemiology (Rothman 2000; Brookhart et al. 2006) sociology

(Morgan/Harding 2006) political science (Ho et al. 2007) social science (Sobel

2000).

Epistemological Frameworks. In order to rectify experimental and observational

causal inference, we should identify a single theoretical philosophy. This process is

known as identification strategy (Angrist et al. 1996; Angrist/Pischke 2010).

INUS Conditons. INUS conditions, sometimes referred to as Necessary and

Sufficient Conditions are a tool to aide in the search for precise definitions of conditions

that must be met in order for a phenomena to be truly present. This framework

asserts the four following definitions for defining a precise causal relationships between

an exposure (x) and an outcome (y).

Necessary causes. for x to be a necessary cause of y, then the presence of y

necessarily implies the prior occurrence of x. The presence of x, however, does
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not imply that y will occur.

Sufficient causes. for x to be a sufficient cause of y, then the presence of x

necessarily implies the subsequent occurrence of y. However, another cause z

may alternatively cause y. Thus the presence of y does not imply the prior

occurrence of x.

Contributory causes. for x to be a contributory cause of y, then the presence of

x permits the presence of y, but not with certainty. A contributory cause may

be neither necessary nor sufficient but it must contribute to the presence of the

outcome (iSTAR Assessment 2011).

J. L. Mackie proposed that true causes are at a minimum INUS conditions –

”Insufficient but Necessary parts of a condition which is itself Unnecessary but

Sufficient.” Mackie notes that outcomes often have a ”plurality of causes” (p.61); a

consequence of which is that an outcome may be resultant from more than one distinct

exposures (Mackie 1965).

Criteria-Based. I refer to the frameworks that enumerate principles that must be

present for a causal relationship to exist, as criteria-based.

Hill Criteria

The Hill Criteria draws upon biological and environmental axioms with scientific

knowledge to put forth what he describes as ”aspects of association” that capture

the notion that some causal effects are plausible given evidence and others are

not. The criteria include (i) strength of association (ii) consistency (iii) specificity
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(iv) temporality (v) biological gradient (vi) plausibility (vii) coherence (viii)

experiment and (xi) analogy. Of these, the only criteria that must be present for

a potential causal relationship to exist is temporality, Popular in epidemiology,

these criteria explicitly support drawing causal conclusions of observational data

sources, which involved disentangling true causal effects from biases (Hill 1965).

Susser Criteria

Susser’s Criteria is very similar to Hill’s, but slightly smaller in dimension. The

Susser Criteria include (i) association (ii) time order (iii) direction (iv) strength

(v) specificity (vi) consistency (vii) predictive performance and (viii) performance.

Unlike the Hill Criteria, the Susser criteria require that three of the criteria

must be present in order for a causal relationship to exist – association, time

order, and direction (Susser 1973).

Probabilistic Causality. Probabilistic causality is a framework which characterizes

the relationship between cause and effect using probability theory (Good/Suppes

1972; Salmon 1988; Pearl 1995; Yu et al. 2010). The fundamental concept behind

this framework is that exposures that are true causes alter the probabilities of outcomes.

However, like necessary causes, the outcome may still occur in the absence of an

exposure, or fail to occur in the presence of an exposure. Under this framework,

true causal exposures (E) will increase the probability of an outcome (O). This is

often expressed by conditional probabilities, and is formalized by the following simple

expression;

P (O|E) > P (O) (2.1)

22



Singular Causation. A subset of probabilistic causality is Singular Causation.

Where the above framework of probabilistic causality addresses general or type-

level inquiries, Singular Causation addresses singular, token level, or actual

inquiries (Hausman 2005). This framework largely differentiates itself from the

general inquiry in that it considers how probabilities change over time (Ray

1992; Kvart 2004).

Counterfactual Reasoning. The preferred framework of causal inference in

biomedicine, Counterfactual Reasoning leverages if-clauses that are contrary to

the truth to investigate what would have happened had the world been different

(Lyon 1967; Lewis 1973a, 1973b; Mackie 1980). Counterfactual conditionals are

often framed in the statement, if E had not occurred, O would not have occurred

(Goodman 1947).

The counterfactual conceptualization of causal inference was first popularized in

the experimental setting (Neyman 1923; Fisher 1935; Neyman et al. 1935;

Cochran/Cox 1950; Payne 2015; Cox 1958; Winship/Morgan 1999). The

theory was later formalized to the non-experimental setting (Rubin 1974, 1977, 1978;

Rubin 1980; Rubin 1986; Rubin 1990; Pratt/Schlaifer 1984). For this suitability

with observational data, this will be the preferred framework used throughout the

proposal. For this reason, I will briefly discuss the theoretical details.

Potential Outcomes. Consider a causal setting in which we are interested in the
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T = 0 T = 1
Y0 Y T=0

0 Y T=1
0

Y1 Y T=0
1 Y T=1

1

Table 2.1: Potential Outcomes by State Assignment

binary outcome, Y . For any outcome of interest, we begin by assuming that units may

be a priori exposed to two states (T ) but that each unit is ultimately only exposed to

one state. I herein refer to these states as treatment (T = 1) and control (T = 0). Both

the treatment and control state are characterized by a set of unseen conditions. A

unit’s exposure to the states’ conditions will dictate their development of the outcome

of interest.

Foundational to this framework, is the assumption that units have potential outcomes,

Yi in both states. Regardless of which state the unit is exposed to, units have potential

outcomes for (i) the state in which they are exposed and, (ii) the states in which they

are not exposed. Note that in practice, only the potential outcomes for the state in

which the unit was exposed is observable. Units assigned to the treatment group,

T = 1, only have observable outcomes in the outcome state, Y1; and conversely units

assigned to the control group, T = 0, only have observable outcomes in the outcome

state, Y0. Referring to Table 2 the potential outcomes, Y1(T = 0) and Y0(T = 1)

are unobservable. Simply, the counterfactual framework asserts that individuals

have potential outcomes in all states, though they can only be observed in one state

(Winship/Morgan 1999).

Causal Effects. Throughout causal inference, we are interested in quantifying the

extent to which the treatment state affects the outcome, as compared to the control
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state. Using the notation from (Winship/Morgan 1999), for each individual i, the

causal effect is calculated as the difference between the two potential outcomes in the

treatment and control states. This is known as the Individual Treatment Effect (ITE)

(Equation 2.2).

ITEi = Y1,i − Y0,i (2.2)

When summarized over a large number of units, this quantity is averaged, and is

known as the unconditional Average Treatment Effect (ATE) (Equation 2.3).

ATE = E[Y1 − Y0]

= E[Y1]− E[Y0]

(2.3)

When estimating the ATE ( ˆATE) from a sample of observational data in which units’

behaviors are not known, the naive estimate is given by the difference between the

sample mean of the outcome of units in treatment state and the sample mean of the

outcome for units in the control state. Equation 2.4.

ˆATEnaive = E
[
Y1|T = 1

]
− E

[
Y0|T = 0

]
(2.4)

Each term of the naive ˆATE is a conditional corresponding to a treatment state.

The conditional ATE for those assigned to the treatment state (T = 1) is given by

Equation 2.5, and is often called the average treatment effect of the treated or ATT.

And for those assigned to the control state (T = 0), the conditional ATE is given by
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Equation 2.6 and is called the average treatment effect of the control, or ATC.

E[ATE|T = 1] = E
[
Y T=1
1 − Y T=1

0

]
(2.5)

E[ATE|T = 0] = E
[
Y T=0
1 − Y T=0

0

]
(2.6)

In observational studies, the naive ˆATE estimator (2.4) will only converge with the

true, population ATE (2.3) if both the proportion of units assigned to the treatment

state (π) and the four potential outcomes (Table 2) are known. A decomposition of

this relationship, using the definitions of ATT and ATC, is shown in Equation 2.7.

ATE =π(Y1|T = 1) + (1− π)(Y0|T = 0)

=π
[
E[Y T=1

1 ]− E[Y T=1
0 ]

]
+ (1− π)

[
E[Y T=0

1 ]− E[Y T=0
0 ]

]
=
[
(π)E[Y T=1

1 ] + (1− π)E[Y T=0
1 ]

]
−
[
(π)E[Y T=1

0 ] + (1− π)E[Y T=0
0 ]

]
(2.7)

Both Y T=0
1 and Y T=1

0 exist in theory, but recall that only one potential outcome is

ever observable for a single unit. This is widely called the fundamental problem of

causal inference. This inhibits the direct calculation of ITE or ATE. In order for the

naive estimator (Equation 2.4) to be unbiased, it is sufficient that E[Y T=1
1 ] = E[Y T=0

1 ]

and E[Y T=0
0 ] = E[Y T=1

0 ]. Substituting these equivalencies in the ATE (Equation 2.8)

recovers the naive estimator in Equation 2.4, when this assumption is met. This
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highlights the requirements for unbiased ATE estimation.

ATE =
[
(π)E[Y T=1

1 ] + (1− π)E[Y T=1
1 ]

]
−
[
(π)E[Y T=0

0 ] + (1− π)E[Y T=0
0 ]

]
=E[Y T=1

1 ]
[
(π + (1− π))

]
− E[Y T=0

0 ]
[
(π + (1− π))

]
=E[Y T=1

1 ]− E[Y T=0
0 ]

(2.8)

Assumptions. To ensure that the proxies for unseen potential outcomes yield

unbiased causal effect estimates, we enforce the assumptions of the counterfactual

framework.

SUTVA. Stable Unit Treatment Value Assignment (SUTVA) requires that

”the [potential outcome of] one unit should be unaffected by the particular

assignment of [states] to the other units” (Cox 1958; Rubin 1986). This is

colloquially known as non-interference between states (Rubin 1980; Rubin 1986;

Rubin 1990). The canonical example of a SUTVA violation is from agriculture.

Consider we wanted to measure the causal effect of a fertilizer on crop yield. We

treat some plots with the fertilizer and the others are non-treated. If a heavy

rain falls and the run-off from the treated plots flows into the untreated plots,

then the outcome of the untreated plots is no longer a function of the state to

which it was assigned.

In addition to interference by states, SUTVA may also be violated when there are

hidden states (Laffers/Mellace 2016) or when the states alter the potential

outcomes (Garfinkel et al. 1992). Generally, SUTVA cannot be confirmed by

the data, and is assumed true unless there is explicit violation.
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Ignorability. This assumption states that a unit’s assignment to a state

is not a function of that unit’s potential outcomes. More simply, state

assignment is unconfounded, and therefore ignorable (Rosenbaum/Rubin

1983a; Rosenbaum/Rubin 1983b; Rosenbaum/Rubin 1984). In the

epidemiology literature, this is referred to as exchangeability. In observational

studies, causal effects are generally non-estimable because units in the treatment

state and the control state are not exchangeable. If this assumption is met, the

treatment and control groups are identical insofar as the potential outcomes are

concerned (VanderWeele/Hernán 2013).

For the purposes of this proposal, I will make the distinction between the the

conditional and unconditional forms of this assumption.

Unconditional Ignorability Both of the potential outcomes, Y1 and Y0, must

be jointly independent of the assigned state. Equation 2.9 (Rubin 1974). When

the researcher has the ability to manipulate state assignment, as is the case in

perfect randomization, this form of ignorability is satisfied.

Y0, Y1 ⊥ T (2.9)

Conditional Ignorability In observational studies, when the researcher does

not have the ability to alter state assignment, conditional ignorability (Equation

2.10) must be satisfied. Under this condition, the potential outcomes, Y1 and

Y0, must be conditionally independent of state assignment given the value of
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their features, X.

Y0, Y1 ⊥ T | X (2.10)

When the conditional form of ignorability is upheld, the ATE can be estimated

through stratification (Winship/Morgan 1999). If the set of stratifying

features, S, accounts for all confounding between the treatment state and the

control state, then the unconditional ATE can be estimated as a weighted sum

of the outcome over strata.

∑
S

[
E[Y |T = 1, S = X]− E[Y |T = 0, S = X]

]
Pr(S = X) (2.11)

In both the conditional and unconditional forms of ignorability, satisfaction of

this assumption has the important consequences of making the features in both

the treatment and the control states, distributionally equal. This equality of

the empirical distribution, F̃ (·), is summarized by, Equation 2.12

F̃ (X|T = 1) = F̃ (X|T = 0) (2.12)

As proved by (Rosenbaum/Rubin 1983b) a causal effect can be accurately

estimated from observational data so long as the aforementioned assumptions

hold and the units can be compared according to their features or function

thereof.
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Review of Methods of Causal Inference with

Observational Data

The Comparison of Two Cohorts

Using the theory of counterfactual inference, we can design an observational study

such that strong ignorability is upheld and the ATE will be less biased (Imai

et al. 2009). These designs can broadly be broken into two approaches – The first

are pre-analysis manipulations, such as matching and weighting, which create a

pseudo-population with feature-balance. The second are peri-analysis manipulations,

such as statistical adjustment, which remove the effect of specified confounders. Other

methods for causal estimation with observational data exist, such as graphical models

& Bayesian networks, instrumental variables, structural equation modeling, and

Granger causality, but they are considered out of scope for this review.

Matching

Matching is the most developed and popular strategy for causal analysis in

observational studies (Pearl 2010; King/Nielsen 2018). In practice, this involves

pre-processing the data such that each treatment unit is paired with a similar control

unit based on the pre-treatment features, (X). In line with the assumption of strong

ignorability, the goal of matching is to achieve feature-balance (Ho et al. 2007; Imbens

2009; Morgan/Winship 2007). In this condition, important factors of variation are

30



equal between treatment arms, and the only difference that remains is the presence

or absence of the treatment (Greenland et al. 1999; Zhao 2004). In line with this

end-result, all matching methods couple units from the treatment group (T = 1) with

units from the control group (T = 0) that share similar or exact values of observable

features (Imai et al. 2009; Zubizarreta 2012; Papanicolas/Smith 2014; Nielsen

2016). The matching methods reduces bias in average treatment effect (ATE) estimate

(Wilks 1932; Cochran 1953; Greenberg 1953; Billewicz 1965; Rubin 1973a).

There are a number of different kinds of methods of matching, but each matching

procedure is a combination of a (i) balancing metric, (ii) distance measure, and (iii)

matching procedure.

Balancing Metric. The metric or metrics that we want to match units on.

A balancing metric b(x) is a function of the observed features such that the

conditional distribution of x given b(x) is the same for the treated and comparison

groups. Equation 2.13 (Rosenbaum/Rubin 1983b; Zhao 2004). Balancing

Metrics can be grouped into (i) Raw Features and (ii) Balancing Scores.

F̃ (X|T = 1, b(x)) = F̃ (X|T = 0, b(x)) (2.13)

i. Raw Features. are a fine balancing metric. It requires matching each treatment

unit to a control unit with exactly the same values on all features, and then

disregarding all non-matched units (Rosenbaum et al. 2007; Imai et al. 2008).

A true balancing metric of raw features is the case in which the metric to match

on is the full set of features for a single unit. Matching on this is a very difficult
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task in high dimensions.

b(x) = X (2.14)

ii. Balancing Scores. are a coarser balancing metric and is a more feasible

method in higher dimensions. I refer to balancing scores as ”approximate”

because these scores are of lower dimension than the original features. The

features themselves form the balancing score, so matching on the score may be

easier to implement than matching on all features, but will presumably reflect

the same information. There are two notable balancing scores – propensity

scores and prognosis scores.

Propensity Scores are the most popular balancing metric. This score is the

probability of being assigned to the treatment (T = 1) conditional on observed

features (X). Equation 2.15 (Barnow/And Others 1980; Rosenbaum/

Rubin 1983b; Lechner 2001; King/Nielsen 2018).

ei = Pr(Ti = 1|Xi) (2.15)

Prognosis scores, alternatively, are the predicted outcome under the control

condition. This is tantamount to modeling and matching on baseline risk, prior

to treatment. Equation 2.16 (Hansen 2008; Stuart 2010; Arbogast/Ray

2009; Glynn et al. 2012; Kelcey 2013).

ei = Pr(Y |Xi, T = 0) (2.16)
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Balancing scores may be estimated through logistic regression models

(Rosenbaum/Rubin 1983b; D ’agostino 1998; Weitzen et al. 2004);

recursive partitioning, random forests, or other tree-based models (Setoguchi

et al. 2008; Lee et al. 2010; Westreich 2010; Linden/Yarnold 2017) which

may include the use of bagging or boosting methods (McCaffrey et al. 2004a;

Hernán/Robins 2006; Lee et al. 2010); support vector machines (Westreich

2010); and neural networks (Glynn et al. 2006; Cavuto et al. 2006; Setoguchi

et al. 2008).

Distance. After we define a balancing metric, it is necessary to quantify the

difference between two units. The difference – or conversely, similarity – between

any two units, i and j, is called a distance, Dij. There are different distance

metrics depending on the balancing metric chosen – raw features or balancing

score.

i. Distance Metrics for Raw Features. Distance calculation on the raw features

is dependent on the type of data, whether its categorical or whether its quadratic.

I define categorical data as that which can be represented as binary feature

vectors (Cha 2007; Seung-Seok et al. 2014). There are many different metrics

to quantify this distance, but a few of the most popular are Jaccard/Tanimoto

and Hamming.

Tanimoto/Jaccard. In the case of binary feature vectors, Tanimoto distance

and Jaccard distance are equivalent. This quantifies the ratio of the common

elements to the number of all different elements (Kompan 2011; Kohonen
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et al. 2001; Lourenco et al. 2004; Deza/Deza 2009; Vilar et al. 2012;

Goshtasby 2012).

Hamming. Measures the total mismatches of the corresponding feature

categories of two units but is applicable to any ordered sets of equal length

(Hamming 1950; Lourenco et al. 2004; Morris et al. 2014).

Similarly to the categorical distances, there are quadratic distances, which are

continuously measured variables, such as measurements which are common in

the electronic health record. Quadratic distances measure the distance between

continuous feature vectors (Deza/Deza 2009; Shirkhorshidi et al. 2015).

Again, there are many distance metrics for this type of data, the most common

of which being Euclidean, Mahalanobis, and the Canberra Metric.

Euclidean. Measures the ”ordinary” straight-line distance between points

in Euclidean space (Spiel et al. 2008; Deza/Deza 2009; Nielsen 2016).

Mahalanobis. The Euclidean distance adjusted for covariance. If there

are two features that are highly correlated, then their contribution to the

distances should be lower (Rubin/Thomas 2000; Rosenbaum et al. 2007;

Stuart 2010; King 2011b; Baltar et al. 2014).

The Canberra Metric. Used for data scattered around an origin. This

metric is sensitive to small changes when feature values are near zero

(Lance/Williams 1966; Lance/Williams 1967; Kaur 2014).

For both categorical and quadratic data, the choice of distance calculation on

34



raw features is dependent upon your research question. Relevant considerations

include whether you value similarity or dissimilarity; and whether zeros hold

important information. This is design decision that is likely specific to the

research question, and reflects your beliefs about potentially confounding features

to match on.

ii. Distance Metrics for Balancing Scores. Balancing scores are the lower

dimensional, often scalar representation, of features. There are specific distance

metrics to aid matching on this data, including Linear or Log Linear Distance.

Linear. The difference between the balancing scores of two units. Equation

2.17

Dij = b(xi)− b(xj) (2.17)

Log Linear. (Rubin/Thomas 1992) states that this distance supports

matching on a scalar linear summary of features X, [that is a monotonic]

function of the probability that a unit receives the treatment. It is noted

that this is a particularly effective tool at reducing bias (Rosenbaum/

Rubin 1985a; Rubin/Thomas 1992; Rubin 2001). The equation for this

distance is given by 2.18, in which ”logit” refers to the log-odds of the

balancing score. This metric is strictly greater than zero, and is scaled,

which provides constancy, a property the linear difference does not have.

Dij = |logit(b(xi))− logit(b(xj))| (2.18)
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Matching Procedure. The final component of matching, are the details of

the matching procedure itself. These include the (1) tolerance limit on distances,

(2) the ratio of matching, and (3) whether units are replaced if matched.

1. Tolerance Limit on Distances. The tolerance limit describes how close two

units must be to be considered similar. There are three domains of tolerance –

(i) a distance of zero, (ii) distance within a caliper, and (iii) distance within a

strata.

(i) Distance of Zero. Each unit i in the treatment group, is matched with control

unit j such that the predetermined observed features of unit i, Xi = Xj = x

(Rosenbaum/Rubin 1985a; Dehejia/Wahba 2002; Zhao 2004). A Tolerance

limit of zero, means the distance between two units must be exactly 0 for them

to be considered a match (Equation 2.19). Assuming perfect measurement and

perfect information, this would completely eliminate bias. In the case of raw

features, this is an exceptionally difficult task, especially with high dimensional

data, because it would involve finding an exact match for all the features

(Lalonde 1986). In the case of a balancing score, this is almost impossible

(Imai et al. 2009).

Dij = 0 (2.19)

A version of Distance of Zero is referred to a fine balance. Per Rosenbaum, the

term ”finely balanced” is intended to suggest that the nominal variable, often

with many levels, has been balanced exactly at every level, that is, with fine

attention to detail (Rosenbaum 1989; Rosenbaum et al. 2007). This enforces
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balance on a variable that is difficult to balance by other methods.

(ii) Distance within a Caliper. Units are matched when balancing scores differs

by less than pre-specified amount, C, called a caliper width. Equation 2.20

(Austin 2010, 2011a; Lunt 2014). This is very common when using propensity

scores (Austin 2011a; Lunt 2014).

|Dij| ≤ C (2.20)

This method is especially popular with propensity score matching in light of

how difficult it is to find an exact match. But selecting the caliper width has a

bias-variance trade off that can affect the quality of the match. Narrow calipers,

match more similar subjects, which will decrease bias but increase variance.

Wider calipers, will result in matching less similar subjects, which will increase

the bias but decrease the variance (Austin 2011a).

(iii) Distance within a Strata. Sometimes called blocking or stratification

(Imbens/Rubin 2015), this process matches units that are in similar ranges

of the distribution of each feature or single balancing metric. Equation 2.21

(Cochran 1968; Rosenbaum/Rubin 1985a; Stuart 2010). The current

convention is to use 5 strata – ”quintiles” – but larger sample sizes may require

more strata (Rosenbaum/Rubin 1984; D ’agostino 1998; Lunceford/

Davidian 2004; Austin 2011a; Imbens/Rubin 2015).

b(xi), b(xj) ∈
[
Lower Bound,Upper Bound

]
(2.21)
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2. Ratio of Matching. The second consideration in the matching procedure is

the ratio of matching, which can be grouped into pair and subset. Pair matching,

sometimes called optimal pair matching is 1:1 matching. This process selects, for

each treated unit i, the single control unit, j, with the most similar balancing

score or smallest distance from unit i (Hansen/Olsen Klopfer 2006; Stuart

2010). This is effectively, the Nearest Neighbor method. Optimal pair matching

is closely aligned with the idea of matched pairs in randomized experiments,

which has high power because groups are maximally similar (Wacholder/

Weinberg 1982).

In the presence of lots of data, as is typical in EHRs and other observational

sources, its possible to get several good control for every treatment unit (Smith

1992; Rubin/Thomas 2000; Stuart 2010). In this case, the ratio of matching

is something I call, Subset Matching. These can arranged into three groups. (i)

Fixed Number of Comparators, (ii) Variable Number of Comparators, and (iii)

Variable Number of Treatment and Comparators.

(i) Fixed Number of Comparators. Matching one treatment unit to k control

units (Rosenbaum/Rubin 1983b). Selecting the number of controls, k, involves

a bias-variance trade-off in which increasing k will increase bias and decrease

variance (Austin 2010; Stuart 2010).

(ii) Variable Number of Comparators. When one treatment unit is matched

with a varying number of controls (Ming/Rosenbaum 2001; Hansen/Olsen

Klopfer 2006; Stuart 2010). This is frequently used to match units within a
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caliper or strata. In this case, there is a bias-variance trade-off when selecting

the width of the caliper. A wide caliper will increase bias and decrease variance;

and a narrow caliper will decrease bias increase variance (Austin 2010, 2011b).

(iii) Variable Number of Treatment and Comparators. In which one treatment

unit is matched with one or more control units, or multiple treatment units is

matched with one control unit (Rosenbaum 1989, 1991; Thrusfield 2017;

Hansen 2004; Hansen/Olsen Klopfer 2006; Rosenbaum 2012). Using a

variable number of treatment and comparators offers efficiency gains, especially

when units are scarce. A sub-method of this group, is Cardinality Matching,

which seeks to maximize the total number of matched samples (or the cardinality),

through whatever means necessary, but subject to a constraint on feature-balance

(Zubizarreta et al. 2014; Keele/Zubizarreta 2014). These constraints

could be (a) Weak, which requires the means on features to be balanced (”means

balanced”) (Zubizarreta 2012) (b) Strength-k, which is weak balance on k

covariates (Hsu et al. 2015) and (c) Fine Balance, which requires the distribution

of one nominal feature to be the same across arms (Rosenbaum et al. 2007).

3. Replacement. Once a control unit is selected, the matching procedure must

specify whether or not the unit goes back into the pool. When units are not

replaced, a single comparator unit is matched to one treatment unit. This is

a greedy procedure, so the order of matching matters and the result, and it

may only yield a local optimum. As a result, this may increase bias of effect

estimates (Parsons 2001). Conversely, control units can be selected with
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replacements. Under this procedure, a single comparator unit can be matched to

multiple treatment units. Under this matching procedure, the order of matching

does not matter and a global optimum can be achieved (Zubizarreta 2012;

Keele/Zubizarreta 2014).

Matching methods possess a number of strengths. They support flexible and robust

causal modeling under selection on observables (Imai 2013). Matching separates

reducing selection bias from the analysis of outcomes (Rosenbaum/Rubin 1983b;

Rubin 2007), and reduces the dependence of estimates in parametric models (Ho

et al. 2007). With exact matching, controlling further is unnecessary as strong

ignorability is upheld (Iacus et al. 2012).

That being said, exact matches are infeasible. With increasing dimensions, matching

becomes increasing difficult. Generally, matching methods do not perform as

well when the features are not normally distributed or there are many features

(Gu/Rosenbaum 1993; Stuart 2010). Matching is also blind to subpopulation

imbalance (King/Nielsen 2018) and is inefficient, resulting in units being unmatched.

If there are many unmatched units, it can result in larger bias than if the matches

are inexact but more individuals remain in the analysis (Rosenbaum/Rubin 1985a;

King 2011a). Matching can pose difficult a-priori assumptions, it may be hard

to know if a tolerance level, caliper, or strata is reasonable (Smith/Todd 2005).

Lastly, matching does not account for unobserved confounding and may introduce a

bias-variance trade off.
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Weighting

Weighting in the causal inference setting is similar to survey sampling re-weighting

(Morgan/Todd 2008). In survey sampling, when the sample is not representative of

the overall population population, units are disproportionally considered to make the

sample look more like the population. Larger weights are assigned to the individuals

who are under-represented in the sample, and a lower weight is assigned to those who

are over-represented. Similarly, in the causal inference setting, if one treatment arm

fails to look like the other, the arm may consider units differently by assigning them

a weight. Weighting methods generalize matching methods. Similarly, all types of

matching are special cases of weighting with discrete balancing weights (Imai 2013).

The balancing weight dictates how much more or less we want to consider types of

units, with the same weights being applied uniformly within unit type. In practice,

weights are multiplied by each units’ features and outcome metric. The application of

the weights to cohort features results in a pseudo population in which the unconditional

form of strong ignorability is enforced and counterfactual reasoning of the weighted

outcome can take place (Czajka et al. 1992; Robins et al. 2000; Lunceford/

Davidian 2004).

It is infeasible for observational populations to have a convenient representation

of types of units. How units are identified by types is being actively studied and

continues to be an open research question. A review of the literature shows the

following weighting methods have been used; (i) inverse probability of treatment

weighting, (ii) augmented inverse probability of treatment weighting, (iii) weighting

by the odds of treatment, (iv) kernel weighting/overlap weighting, and (v) coarsened
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exact matching

(i) Inverse Probability of Treatment Weighting. Also called inverse

propensity weighting, is by far the most popular weighting method. Like

matching methods, inverse probability of treatment weighting (IPTW) is a

method to control for observed confounding. Despite obvious ties to propensity

score matching, IPTW was developed independently (Robins 1986).

IPTWs are constructing by estimating each units’ probability of having received

their respective treatment, based on the observed features. Units are then

weighted by the inverse of this estimated probability (Heckman et al. 1998;

Dehejia/Wahba 2002; Thoemmes/Ong 2016). IPTWs are generalized in

Equation 2.22 where in Ti = 1 is the propensity score. Like the matching, this

weighting metric is very sensitive to extreme values of the propensity score, and

could result in high variance or instability in these cases.

wi =
Ti

P (Ti = 1|Xi)
+

1− Ti
1− (P (Ti = 1|Xi))

(2.22)

To combat the instability in Equation 2.22, researchers developed a variation

of this metric. It involves the baseline probability of being assigned to their

treatment, which is estimated from a model with no features, being normalized

by the probability of assigning treatment given the features. These are referred

to stabilized weights, and tend to produce estimates with smaller variances.
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Equation 2.23

wi =
P (Ti = 0)

P (Ti = 1|Xi)
+

1− P (Ti = 0)

1− (P (Ti = 1|Xi))
(2.23)

(ii) Augmented Inverse Propensity Weighting. Yet another variation of

IPTW. This method produces consistent ATE estimates if either the outcome

model or propensity model is misspecified, but the other model is correctly

specified (Robins et al. 1994; Glynn/Quinn 2009). As such, the weighting

technique is said to produce a doubly robust ATE model (Scharfstein et

al. 1999).

(iii) Weighting by the Odds of Treatment. Though this method does not

appear to be in practice, weighting by the odds of treatment is an alternative

weighting technique, in which both the treatment and control groups are weighted

to represent the treatment group (Hirano et al. 2003; Morgan/Todd 2008).

This could be a useful technique in the case of very small treatment groups, and

a larger, more heterogeneous control groups.

wi = Ti + (1− Ti)
P (Ti = 1|Xi)

1− P (T = 1|Xi)
(2.24)

In the weighting by the odds of treatment procedure, all units in the treatment

group receive a weight of 1. And control units are weighted up to the full sample

using the 1/(1P (T = 1|Xi)), and then weighted to the treatment group using

by P (T = 1|Xi)
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(iv) Kernel Weighting & Overlap Weighting. Other methods that do

not appear to be in practice. An implicit assumption of feature-balance is

that the baseline risks for each group are the same. Two methods, which

I found independently of one another in my literature review, both seek to

equilibrate baseline risk through approximately the same means. The first is

Kernel Weighting and the second is Overlap Weighting. Both of these methods

seek to directly correct any differences between the non-treated potential outcome

for the treatment and control groups. Put simply, these methods seek to adjust

the baseline risk of the outcome to be equal across arms.

In kernel weighting, sometimes called kernel balancing, weights are then chosen

on the control units such that the treated and control group have equal [means.

As] a result, the expectation of the non-treatment potential outcome must also

be equal for the treated and control groups after weighting (Rosenblatt 1956;

Imbens 2004; Hazlett 2016).

In overlap weighting, each unit’s weight is proportional to the probability of

that unit being assigned to the opposite group. In theory, this method would

have perfect balance of feature means. Equations 2.25 and 2.26 (Li et al. 2018).

w0 ∝ P (Ti = 1|Xi) (2.25)

w1 ∝ 1− P (Ti = 1|Xi) (2.26)
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(v) Coarsened Exact Matching. Though Coarsened Exact Matching (CEM)

involves a fair amount of matching, this procedure also uses weighting. The

idea behind CEM is to coarsen each feature, so make the recording less precise,

whereupon features are matched on these coarsened values. The coarsened

features are stratified, and comparators are weighted proportionally to their

prevalence to the treatment group. From here, coarsened values are dropped,

and the analysis is completed on uncoarsened data (Grove/Fisher 1930; King

2011b; Iacus et al. 2012; Kallus 2017).

CEM has efficiency gains over matching because unmatched units don’t have

to be ’thrown out.’ However, CEM bounds the degree of model dependence by

ex-ante user choice.

Overall, like matching methods weighting offer flexible and robust causal modeling

under selection on observables (Imai/Ratkovic 2013). Unlike matching, weighting

is suitable when more than two groups to compare, and the procedure is much more

efficient as all units are included in the analysis (Halpern 2014). This is useful

when there is no common support between arms (Crump et al. 2009). However,

there is a fair amount of model dependence, which makes estimates susceptible to

model misspecification. Additionally, the weights themselves are also estimated

and thus have sampling variability. And like many other causal inference methods,

weighting does not account for unobserved confounding (Imai/Ratkovic 2013).

Most notable is that weights, particularly IPTW-based metrics, can be unstable.

When the propensity score is extreme (very close to 0 or very close to 1) the weights
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become problematic and can leave to downstream complication with ATE estimation

(Li et al. 2018).

Adjustment

Adjustment can mean many things, but in the case of causal inference, it refers to

the idea of statistical adjustment. When treatment and control groups are not similar,

we can use statistical adjustment to “control” for feature imbalance (McNamee

2005; Pourhoseingholi et al. 2012). Adjustment methods can be grouped into two

categories: (i) stratification and (ii) multivariate modeling methods.

Stratification. (Frangakis/Rubin 2002) states that, the basic principal

stratification of [a population], P, with respect to [a set of] confounders, C, is

the partition of units i = 1 ... N such that within any subset of P, all units have

the same vector of confounders. In the literature, there is a distinction between

adjustment for pre-treatment variables and post-treatment variables.

Adjustment on pre-treatment variables accounts for potentially confounding

features. Whereas adjustment on post-treatment variables – a process known as

principle stratification – adjusts for things like adherence and loss-to-follow-up

(Robins 1986; Angrist et al. 1993; Frangakis/Rubin 2002; Vanderweele

2011; Pearl 2011).

Under stratification, comparator arms are split into subgroups according to

the presence and absence of the confounder. When the cohort is split on

all observed confounders, the ATE is taken in the subgroups for which all
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confounders are absent. This method is best suited for a small study sample

with a limited number of confounders. Because as the number of confounders

increases, this becomes an increasingly difficult task (Imbens/Rubin 2009;

Imbens et al. 2009). In this process, one could understratify in which you

don’t account for enough confounders, and produce a biased estimate; or

one could overstratify which results is a very small number of units in each

confounder-free arm, and will increase variance of effect estimates (Greenland

et al. 2000; Greenland/Morgenstern 2001; Reuter 1991). For these

reasons, adjustment by multivariate modeling methods is more popular.

Multivariate Modeling Methods. Multivariate modeling methods,

sometimes called “response surface remodeling” is a method of reducing bias

in ATE estimates from regression (Schochet 2010). states that ’we can

adjust for differences between the treatment and comparators group’s observable

[characteristics. If] the functional form relationship between the outcome

and features is specified correctly, [models can] produce unbiased estimates

of [ATEs].’ In practice this entails, explicitly modeling the relationship between

treatment, outcome, and features (Pourhoseingholi et al. 2012; Kaplan

2018). Adjustment is, of course, useful in traditional regression settings for ATE,

such as linear or logistic regression. But because these methods underlie much

of the more complex machine learning methods, they can be useful with those

methods too (Peters et al. 2013; Hill 2011; Zigler et al. 2012; Belloni

et al. 2013; Langevin et al. 2004; Wager/Athey 2018).
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In the linear regression setting. The main effect model for a relationship between

an outcome, Y and an exposure, T , is given by Equation 2.27.

Yi = β̂0 + β̂1Ti + εi (2.27)

The same causal model, but adjusted for a single feature, C, is given by Equation

2.28.

Yi = β̂0 + β̂1Ti + β̂2Ci + εi (2.28)

It’s the same as the model above, but there is an additional term for the

feature. Assuming 2.28 is the true and correct specification of this causal system,

including the feature, C, in the adjusted model reduces bias in the coefficient

for treatment, β1 (Neyman 1923; Splawa-Neyman et al. 1990; Rubin 1973b,

1973a, 1974, 1977, 1978; Rubin 1985; Rubin 1986; Rubin 1990; Holland/

Rubin 1987; Holland 1988; Rosenbaum/Rubin 1983b; Rosenbaum/Rubin

1983a; Rosenbaum/Rubin 1984; Rosenbaum/Rubin 1985a; Rosenbaum/

Rubin 1985b; Sobel 1994; Sobel 1995; Kaplan 2018). The coefficient of

treatment supports ATE estimation, and provides additional insight into the

direction, magnitude, and significance of the association between the treatment

and the outcome (Cox 2013). When adjusting in multivariate models, one can

adjust (i) by the observed features or (ii) by the propensity score.

(i) Adjustment by Observed Features. This is popular method to adjust for

observed pre-treatment, potentially confounding variables. As mentioned earlier,
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a confounder is an extraneous variable whose presence affects the variables being

studied so that the results do not reflect the actual relationship between the

variables under study (Elwood 1988; Robins/Greenland 1994; Kelsey/

Thompson 1986). Therefore, if the model is specified correctly, including

potentially biasing variables as features will adjust for this distorting effect

(Jager et al. 2008).

(ii) Adjustment by Propensity Scores. Alternatively, some researchers adjust on

the propensity score. In theory, when the features X are sufficient to control

for confounding of the effect of exposure on outcome, then adjustment for the

propensity score, ei, is also sufficient. Equation 2.28 (Rosenbaum/Rubin

1983b; Vansteelandt/Daniel 2014). Because the propensity score is scalar,

this has the benefit of reducing the number of variables in the model needed to

reach causal unbiasedness and may increase stability of estimates (Rosenbaum/

Rubin 1983b; D ’agostino 1998).

Y ⊥ T |e (2.29)

Adjustment methods offer several strengths for reducing ATE estimates. They are

complementary to matching methods and can be used together to produce good results

(Stuart 2010). In some modelling methods, the coefficients have high interpretability.

With small sample and large number of features, adjusting by propensity score

can simplify adjustment (Steyer et al. 2002). One can easily check magnitude of

confounding by comparing the treatment coefficient of the main effect model and
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adjusted model. However, adjustment methods perform poorly in the absence of

common support. This scenario requires the extrapolation of ATE (Dehejia/Wahba

2002; Glazerman et al. 2003) and offers no evidence on the counterfactual state,

which forces stronger reliance on our modeling (Gelman/Hill 2006). Like weighting

and matching, adjustment is also susceptible to misspecification, and it requires

assumption about relationships between exposure, outcome, and features. And finally,

the sample size will always limit the number of degrees of freedom available for feature

adjustment (Gelman/Hill 2006).

Attributable Risk Estimation

Attributable risks (AR) are probability of an exposure being a cause of an outcome;

they help us interpret and communicate causal relationships between exposure and

outcome (Leviton 1973; Miettinen 1974; Markush 1977). The AR may also be

referred to as the population AR (Breslow/Day 1980; Boslaugh/McNutt 2008);

the risk difference (Sinclair 2003), or the population etiologic fraction (Kleinbaum

et al. 1982; Schlesselman/Stolley 1982).

Often in health, there is high uncertainty of exposure-outcome relationships. We

leverage risks, such as the AR, to inform the risk factors for the outcomes, and

to better communicate and understand the causal system. This is because ARs

support the inference of whether a given outcome was caused by a particular exposure

(Rosen 1978). Such an assessment can be made at the population level (global
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inference) or at the individual level (local inference). At the population level, the

AR can be interpreted as the proportional increase in average outcome risk over a

specified time interval that would be achieved when under the exposure of interest

from the population while accounting for other risk factors (Rockhill et al. 1998;

Greenland/Robins 1988). While at the individual level, the AR can be interpreted

as the increase in outcome risk for a particular patient that would be achieved when

under the exposure of interest, given that individuals other exposures. AR’s local

inferences could be used to inform treatment by highlighting the likely cause of an

outcome for a single patient. While the global inferences may assist in identifying risk

factors to be prioritized in public health policy, or the treatment of a single patient in

which features are not known.

Typical estimation of AR requires knowledge of the causal graph, in which

relationships between exposures, outcomes, and confounders are made explicit. But in

the setting of many potential exposures – the high-throughput setting – causal graph

construction may be infeasible. As an alternative, confounders to AR estimation may

be controlled for through propensity-score modeling, however this may be inefficient

when estimating AR for many exposures. To estimate the ARs of many exposures

simultaneously without knowledge of the causal graph, the primary question is one of

model specification. For this research, we explore a particular model specification for

estimating attributable risks in the context of unstructured binary exposures and

outcomes.
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When causal graph construction is not feasible, common methods for AR estimation

include (i) calculation of outcome proportion that is attributable to an exposure, using

the definition of AR from (Levin 1953); (ii) approximation using disproportionality

methods; and (iii) regression-based models.

Levin’s Calculation Though many variations on AR exist, one of the earliest

such formula for an exposure’s AR is given by Equation 2.30, in which P (D) is the

prevalence of the exposure in the population and P (D|F̄ ) is the conditional probability

of disease among those without the exposure, F (Levin 1953).

AR =
P (D)− P (D|F̄ )

P (D)
(2.30)

If an exposure corresponds with an increased probability of the disease or outcome,

P (D|F ) > P (D|F̄ ), then the AR will be bounded between 0 and 1. (Crowson

et al. 2009) This exposure is then considered a risk factor or a determinant of that

outcome.

Disproportionality Analyses. DPAs are univariate methods that are often used

in the analysis of spontaneous reporting data. Under a fixed time, disproportionality

methods, such as risk ratios (RRs) or odds ratios (ORs), may be used to infer the

unconditional AR for a cohort using Equation 2.31. (Rothman 1976; Crowson

et al. 2009)

AR =
RR− 1

RR
(2.31)
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These statistical measures of the strength quantify the association between an

exposure and an outcome by identifying exposures that co-occur with the outcome

more often than expected. (Kim 2017; Schmidt/Kohlmann 2008; Zhang/Yu

1998) RRs and ORs are suitable for large counts of data, however when counts are

small, estimates may become unstable. Consider, the example, the situation in

which the expected number of outcomes (E) is 0.005 and the observed number of

outcomes (N) is 1. In this scenario the RR would be 200, which suggests a strong

association between exposure and outcome, but may reasonably have occurred by

chance. (Canida 2017)

The Multi-Gamma Poisson Shrinker (MGPS) is another disproportionality method that

corrects for this instability by imposing a prior that shrinks large RRs that stem from

small counts. (Dumouchel 1999; DuMouchel/Pregibon 2001; Canida 2017).

Under the MGPS, N are modeled using a Poisson likelihood (µ) and E is treated as a

constant. For every exposure-outcome pair, 〈i, j〉, this model estimates λ = µ
E

. Both

the prior and the posterior for λ are given by a mixture of two gamma distributions.

An expression for this metric can be found in Equation 2.32, in which θ represents

the parameteres of the two gamma distributions. The Empirical Bayes Geometric

Mean (EBGM) of the posterior distribution serves as a summary statistic that may

replace the RR or OR to support AR estimation. (Ihrie 2019) The MGPS-EBGM is

currently the preferred method to data-mine for high association exposure-outcome

relationships in Food and Drug Administration (FDA) data. (Harpaz et al. 2013;
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Sakaeda et al. 2013; Ali 2011)

EBGMi,j = eE[log(λi,j)|Ni,j,θ] (2.32)

Both the Levin Definition and disproportionality methods, like the RR and MGPS-

EBGM, provide signals that may be used to identify the risk factors that have high

attributable risk. These methodologies support population-level (global) inferences of

the exposure through AR estimation but are not suitable for risk estimation at the

individual-level, in which exposures may vary.

Regression-based Methods. Regression-based models are multivariate methods

that are often used in epidemiological studies where confounder-control is required.

(Greenland/Drescher 1993; Coughlin et al. 1991; Kooperberg/Petitti 1991;

Cox/Li 2012; Deubner et al. 1980) These methods often regress the outcome of

interest by the exposures, as explanatory variables. Regression-based methods may

provide individual-level (local) inferences of the outcome, in the form of a probability.

They may also be used to support global inferences of the exposures through AR

estimation, but the AR must be derived from the model coefficients. This is a

straight-forward calculation in the setting of logistic regression, but may be a more

complex task in other models. Even when calculated, AR estimates may be unstable

and lack interpretability.

Univariate models - such the Levin Definition and DPAs – do not control for

confounding, which makes AR estimates susceptible to bias. Current regression-based
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methods may also be insufficient, as they assume a very particular model specification

that should align with causal assumptions. If specified incorrectly, regression-based

models may be biased by backdoor paths between the exposure and the outcome

(Pearl 1993), or subject to challenges in interpretation of regression coefficients if

collinearity in the explanatory variables exists (Belsley et al. 2004). Furthermore,

neither DPA nor regression-based methods may be used to all three attributable

risk-related tasks: (i) global inferences of the exposure risk, (ii) local inferences of the

exposure risk, and (iii) local inferences of the outcome probability.

A Brief Overview of Gaps

In reviewing these methods of causal inference, I noted the weaknesses associated with

each method and identified a desiderata of features for an ideal method to generate

new causal inference from observational data. The finalized desiderata includes

(i) robustness to observed confounding, (ii) robustness to unobserved confounding,

(iii) flexibility with heterogeneous data; (iv) efficiency, (v) scalability, (vi) model

independence, and (vii) feasibility of implementation. Notable gaps in this review are

an efficient, model-independent weighting method, and a method of high-throughput

AR estimation.
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Chapter 3

Aim 1. Determine the feasibility of observational data to

replicate existing causal knowledge.

A number of techniques exist to improve and support causal estimates from

observational data, but at present, there is no widely-used framework to evaluate

modeling assumptions relative to experimental data. RCTs, which we accept to be

the least biased source of causal knowledge, can be compared to estimates generated

from observational data and, thus, provide a methodology to assess the validity of

causal claims and a platform with which to evaluate inference methods. This can

serve as framework for evaluating methods for causal inference. Evidence-Based

Medicine (EBM) requires medical practitioners to consider empirical and experimental

evidence when treating their patients. EBM encourages practitioners to seek the most

reputable evidence according to a hierarchy, in which randomized controlled trials

(RCTs) are regarded as the gold standard source. While RCTs can offer precise and

valid insights into the efficacy and safety, the results are often criticized for their poor

generalizability and may therefore be unsuitable to serve as evidence for the practice

of medicine. This failure of an RCT to represent an indicated population may be the

result of cohort selection for a single condition of interest that is further narrowed

by a breadth of eligibility criteria. This final cohort population may stand in stark
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comparison to the intended target population, which could have multiple problems

and comorbidities. Observational data sources, such as the electronic health record

(EHR), are regarded as more representative of the target patient population; but they

cannot guarantee distributional similarity on confounding variables. How and the

extent to which observational data differs from experimental data is unknown.
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Aim 1.1. Assess the ability to replicate causal

claims from RCTs using electronic health record

(EHR) data.

Background. In medicine, we often trust that biomedical research results will

generalize to any given population (Ioannidis 2014; Contopoulos-Ioannidis

et al. 2008; Wong/Steiner 2018). The practice of applying medical evidence to

clinical care is known as Evidence Based Medicine (EBM), wherein clinicians are

encouraged to consume evidence to inform the best treatment of their patients

(Djulbegovic et al. 2009; Djulbegovic/Guyatt 1976; Sackett et al. 1996).

Underlying the practice of EBM is the assumption that the effect shown in

experimental study populations will replicate in real-word populations that any

clinician sees.

The hierarchy of EBM assigns the randomized controlled trial (RCT) to the highest

level of reputability (Sackett et al. 1996). A common design element of RCTs are

eligibility criteria. If we consider trial patients to be a function of their features,

such as demographics, laboratory measurements, and medical history; the eligibility

criteria nominally define the features that all patients in a study must share. Strict

RCT eligibility criteria may disallow patients with characteristics that yield more

variation in the treatment effect and may be more representative of the real world.
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The population that results from the application of a study’s eligibility criteria may

not be the same population as the study population. This may result in poor external

validity – the extent to which causal relationships of a study are able to persist over

variation in persons and treatment settings (Campbell/Stanley 1963). With poor

external validity, study evidence, such as the average treatment effect (ATE), cannot

be replicated over any population of patients (Wales 2009; Moher et al. 1996;

Britton et al. 1999; Karanis et al. 2016; Stuart et al. 2015). Presumably, the

eligibility criteria of a study should be sufficient to identify the precise population in

which the ATE will replicate, which we call the applicable population.

When assessing replicability of a clinical study, it is important to examine whether or

not the effect of the treatment varies across patient subgroups, such as those defined

by age, sex, or medical history. This type of variation is known as the heterogeneity

of treatment effect (HTE) (Kerbyson et al. 2014). If an experimental population

differs from a real-world population among subpopulations that induce HTE, the

effect estimates may not be replicated in the real-world population. In practice,

it is not feasible that clinicians evaluate HTE for each patient; rather they must

assume that HTE is not present across subgroups. However, when applying evidence

to real-world populations, this assumption is likely unmet, as recent research has

empirically proven that HTE is often found to exist (Fredriksson/Johansson

2008; Xie et al. 2012). This raises concerns for replicability of studies in highly

heterogeneous, real-world populations.
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When a clinician evaluates whether or not a trial’s findings are applicable to a

single patient, the most thorough assessment they can make employs the eligibility

criteria. The eligibility criteria should nominally define the applicable population, but

this assumption is only valid if the criteria capture all subpopulation heterogeneity.

However, this presumption has not been tested.

We seek to assess the sufficiency of eligibility criteria in constructing a fully externally

valid cohort, and the degree to which the effect estimate varies as a function of eligibility

criteria. This is in contrast to research which seeks to replicate effect estimates from

experimental studies with observational data, (Anglemyer et al. 2014; Hemkens

et al. 2016; Franklin et al. 2017; Franklin et al. 2019; Cain et al. 2015; Hernán/

Robins 2016; Bollen et al. 2015) which investigate neither how the effect estimates

change with each application of eligibility criterion, nor how well the eligibility criteria

identify the applicable population from the population that meets the study indication.

This study complements existing research on replicability of effect estimates from

experimental studies with observational data (Anglemyer et al. 2014; Hemkens

et al. 2016; Franklin et al. 2019; Franklin et al. 2017; Franklin/Schneeweiss

2017; Cain et al. 2015; Hernán/Robins 2016; Bollen et al. 2015; Open Science

Collaboration 2015). We investigate how similar the applicable real-world

population is to the clinical trial population and assess HTE in the excluded population

through an analysis of eligibility criteria. This research bridges the knowledge gap

around the sufficiency of eligibility criteria in constructing what should be a fully
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externally-valid cohort.

Research Questions. Does the construction of observational cohorts according to

RCT eligibility criteria encourage the causal effect estimate to converge with that

reported in the trial?

Methods. We hypothesized that HTE is present in real-world populations and could

be demonstrated through an analysis of eligibility criteria. Specifically, we evaluated

whether each addition of an inclusion criterion would increase effect estimate similarity

between the observational cohort and the published RCT estimates. To address this, we

applied RCT eligibility criteria to EHR data, used state-of-the-art methods to control

for confounding, and evaluated local causal estimates. To curate the observational

cohorts, we leveraged the OHDSI ATLAS cohort-creation tool (Hripcsak et al. 2015).

We first constructed a baseline study population, that was defined by the indication

of the study drug and any age and gender restrictions put forth by the trial. To be

eligible for the baseline cohort, patients must have the target indication, have no

inpatient or outpatient use of either drug under comparison, and initiate treatment in

an outpatient setting. This is a restrictive requirement but makes treatment naivety

very likely in the context of observational data. Inclusion and exclusion criteria

extracted for each trial were identified as the union of criteria from (i) publications,

(ii) protocols, and (iii) clinicaltrails.gov, and were operationalized using the OHDSI

CDM. Operationalization was done as faithfully as possible and intended to mirror the
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interpretation of clinicians. To ensure the fidelity of this process, operationalization

was supervised by a clinician. All criteria were operationalized except for soft criteria,

which we define as criteria that cannot be reasonably put into a computable form, e.g.

current participation in another study in the prior 12 weeks or expected survival of

two years.

Inclusion and exclusion criteria extracted from published RCT protocols and

literature were incrementally added to an observational cohort that was constructed

according to the baseline study population of the comparison RCT. With each

incremental criterion, effect estimates for endpoints associated with each RCT were

calculated and compared to the published RCT results. Unadjusted effect estimates

and effect estimates with propensity score matched cohorts were both calculated.

Adjusted effects were estimated using the OHDSI CohortMethod package (Schuemie

et al. 2016). Propensity scores were estimated using a logistic regression, regularized

with a Laplace prior, and fit using a large collection of conditions, procedures,

medications, and measurements excluding the outcomes of interest. We matched

units in a 1:1 fashion on the propensity score, using a caliper of 0.2. The data were

analyzed in a main-effect outcome model with no covariates. For this research, the

outcome model used was a logistic regression. This model was selected to produce the

same effect estimates (odds ratios) that were reported in the literature.

This method was applied to the RCT, Efficacy and Tolerability of sitagliptin

Compared with glimepiride in Elderly Patients with Type 2 Diabetes Mellitus and

63



Inadequate Glycemic Control: A Randomized, Double-Blind, Non-Inferiority Trial,

which evaluated the occurrence of hypoglycemia associated with sitagliptin compared

to glimepiride in elderly patients (65-80 years of age) with Type 2 Diabetes Mellitus

(T2DM) and inadequate glycemic control (Hartley et al. 2015). This trial will

be queried for the endpoints of (i) composite serious adverse-events (SAEs); (ii)

hypoglycemia; (iii) HbA1c < 7.0%; and (iv) HbA1c < 6.5%. The eligibility criteria

for this RCT are detailed in Table 3.1. Details on how the interventions and outcome

were defined and codified can be found in the Appendix for Aim 1.2.

Figure 3.1: Sequential eligibility criteria and resultant counts in each cohort, associated
with the Hartley, et al RCT.

Data. The observational clinical data for our cohorts will be obtained from the

NewYork-Presbyterian Hospital (NYPH) clinical data warehouse (CDW). The CDW

contains observational clinical data for 5.37 million individual subjects from 1986-2017.
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Patients generated during outpatient, inpatient, and emergency room visits. Data

will be formatted according to the OHDSI common data model (CDM) to support

downstream interoperability of our models within the OHDSI community and to

promote their adoption by OHDSI collaborators. Data modalities used to train our

models will include clinical labs, medications, procedures, and diagnosis codes. Cohort

size under each incremental criterion can be found in Table 3.1.

Evaluation. The goal of this Aim is to best attempt to replicate RCT trial results

with observational data. In the event that the effect estimates are discordant, we

assume that the underlying patient populations are dissimilar or that there exists a

heterogeneity of treatment effect for some eligibility criteria.

Results. The results of this Aim suggest the presence of HTE in the excluded

population. The change from the Indication Only cohort (subject to no eligibility

criteria) to the Indication+Eligibility Criteria cohort (subject to all eligibility criteria),

highlights the lack of HTE for some variables but the presence of HTE for others.

The presence of HTE in the excluded population is demonstrated in If there is very

little variation in the observational effect estimate when subject to different eligibility

criteria, this may be indicative of a lack of HTE (homogeneity of treatment effect).

This potential lack of HTE in the excluded population is seen in the outcomes of

composite endpoint of SAEs, HbA1c < 6.5%, and HbA1c < 7.0%. For these outcomes,

both the unadjusted and matched analysis of the data under increasing criteria resulted

in minimal changes to the effect estimate. However, the outcome of hypoglycemia
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Figure 3.2: Odds ratio for (i) composite serious adverse-events (SAEs); (ii)
hypoglycemia; (iii) HbA1c < 7.0%; and (iv) HbA1c < 6.5% under increasing eligibility
criteria.

shows greater changes to the effect estimate when patients that do not meet the

eligibility criteria are removed. If removal of these patients greatly changed the effect

estimate, than this may indicate that more heterogeneous outcomes were also excluded.

Though the effect estimate for all outcomes demonstrates a trend towards the reported

RCT effect estimate, the results presented here are underpowered to evaluate the
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significance of this trend (Figure 1). The odds ratio (OR) for the composite endpoint

of SAEs showed a non-significant harmful effect of sitagliptin versus glimepiride on

a composite endpoint of serious adverse events (ORRCT = 1.15 [0.38, 3.46]). Our

observational results, though also non-significant, indicate that contrary results to the

trial – that glimepiride had comparatively higher risk for this outcome (ORUnadjusted =

0.77 [0.20, 3.12] and ORMatched = 0.67 [0.09, 4.02]). The effect of sitagliptin versus

glimepiride on hypoglycemia was found to be significant in the trial (ORRCT = 0.17

[0.04, 0.78]), which indicates a protective effect of sitagliptin for this outcome. When

all criteria were applied, the observational ORs similarly found a protective effect of

sitagliptin. Of the three observational effect estimates for hypoglycemia, adjustment

by matching most closely resembled the trial (ORMatched = 0.25 [0.04, 1.00] and

ORUnadjusted = 0.59 [0.23, 1.48]). The RCT found a significant protective effect

of sitagliptin as compared to glimepiride for both efficacy endpoints, HbA1c <

6.5% (ORRCT = 0.38 [0.21, 0.69]) and HbA1c < 7.0% (ORRCT = 0.58 [0.38, 0.87]).

Application of the eligibility criteria appear to be less impactful on the effect estimates

of efficacy – resulting in smaller changes to the OR – than on effect estimates of

adverse effects. For the endpoint of HbA1c < 7.0%, ORMatched = 0.14 [0.000, 1.97] and

ORUnadjusted = 1.36 [0.28, 6.64]) which indicates that patients taking sitagliptin were

more likely to achieve these efficacy endpoints. For the endpoint of HbA1c < 6.5%,

all observational estimates were similarly protective to the trial (ORUnadjusted = 0.34

[0.10, 1.55] and ORMatched = 0.25 [0.01, 1.69]).
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Discussion. The variation of effect estimate as a function of the eligibility criteria

suggests that there exists a HTE among the real-world subpopulations. Based

on these results, careful consideration beyond eligibility criteria is necessary to

determine whether results of a given RCT are an appropriate source of evidence when

considering the care of a given patient.

As a consequence of this empirical demonstration, this research suggests that eligibility

criteria are not sufficient for identifying the applicable real-world population in which

experimental treatment effects will replicate. The observational effect estimates under

all eligibility criteria were all marked with varying degrees residual bias that could not

be accounted for by our outlined procedure. Because we carefully identified real-world

populations according to all of the trial eligibility criteria, we assume that our

procedure identifies the correct patients from our observational data source. However,

given the failure of replication that was seen, it is possible that the identification of

patients by eligibility criteria fails to create a cohort in which the correct patients

occur in the correct proportions. The RCT effect estimates that were presented in

this Aim, are an average of individual treatment effects – trial participants may have

a treatment effect below or above this average number (Gabler et al. 2009). Such

variability is also known as the HTE (Duan/Wang 2012). For perfect replication

with observational data, the distribution of treatment effect must be the same as that

in the trial. Therefore, the inability of perfect replication may due attributable to the

HTE.
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Through our replicability efforts, we were also able to articulate a framework of

external validity. As noted earlier, external validity refers to the extent to which

the trial results can be applied outside of the experimental setting.15 The results of

Study 1 demonstrate that we were never able to achieve perfect replication, despite

high-fidelity application of criteria and adjustment for potential confounders through

stratification and matching. As a consequence of this failure, we may assert that

the results of the trials in Study 1 are not externally valid for our population. This

process can be applied to any study of an intervention and comparator, and may

provide valuable insight into the generalizability of causal knowledge.

Limitations. This research does have limitations. The translation of clinical

trial eligibility criteria to operationalized and computable queries may be prone

to subjectivity. Though we sought to represent the criteria as unbiasedly as possible

and consulted with clinicians to ensure accuracy, there is inherent ambiguity in the

criteria themselves, which make perfect RCT representation impossible. Furthermore,

information regarding the eligibility criteria may be found within the clinical note,

which was not used when constructing the cohorts in this research. The effect estimates

show in Aim 1.1 were learned from a single sites data. The results we show, may

therefore, not be generalizable to either other observational data sources or the RCT.

Finally, as noted before, it is likely that the results presented in Aim 1.1 are under-

powered. The underpowering of this study likely stems from low patient counts in

this study; as we required that patients both be inpatient, treatment näıve, and

meet strict eligibility criteria. As a consequence, the results are underpowered for
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the detection of causal relationships. As such, the empirical results presented must

be interpreted with caution.Lastly, and most notably, experimental data and EHR

data are fundamentally different, which makes comparison between these two sources

difficult. Though differences to experimental data may be inherent, the EHR houses

the information that is available to clinicians at the time when treatment decisions

are made. Furthermore, it is a valuable resource for identifying the applicable patients

to support the practice of EBM. We believe that discrepancies between experimental

data and EHR data are necessary to study so that we may develop methodologies to

ensure appropriate applicability at the point of care.
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Aim 1.2. Examine potential sources of residual

bias in effect estimates from observational data

sources.

Background. Generalizability closes the gap between biomedical research and

clinical practice (Wong/Steiner 2018). When research is translated into the

healthcare setting, the application of biomedical evidence to clinical care is known as

Evidence Based Medicine (EBM). Since its inception in the 1990s, EBM has become

the standard of operation for many clinicians (Djulbegovic/Guyatt 2017a, 2017b;

Djulbegovic et al. 2009; Sackett et al. 1996). EBM encourages clinicians to

seek the most reputable evidence for any patient, according to a hierarchy of study

quality in which randomized controlled trials (RCTs) are the best single study design

(Sackett et al. 1996). RCTs are most often used to unbiasedly assess the effect of

an intervention, such as a drug or procedure, on an outcome.

Though EBM may be employed successfully for many different clinical decisions,

challenges remain. Underlying EBM’s success is the assumption that the effect shown

in RCTs will replicate in real-world populations (Ioannidis 2014; Contopoulos-

Ioannidis et al. 2008). However, research has shown that factors beyond the

intervention itself, such as age, sex, or medical history, may modify the measured

effect, a phenomenon known as heterogeneity of treatment effect (HTE) (Kerbyson
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et al. 2014). If the RCT population differs from the real-world population based on

factors that induce HTE, RCT results will not be replicated in real-world application.

Realistically, clinicians cannot evaluate HTE on a case-by-case basis and must assume

that HTE is not a significant factor. However, when applying evidence from RCTs,

this assumption is likely unmet. Research has shown that HTE is often found to

exist (Fredriksson/Johansson 2008; Xie et al. 2012). This raises concerns for

reproducibility of studies in the presence of additional heterogeneity in real-world

populations.

The RCT is well-regarded for many reasons, but randomization is the most important.

Randomization ensures the highest possible internal validity, which speaks to whether

the true effect is biased by systematic error (Campbell/Stanley 1963; Burns

et al. 2011). The notion of internal validity does not speak to how well the causal

relationship will generalize, only how unbiased it is for the study population. The

patients for which the effect estimate is internally valid are nominally defined by

eligibility criteria. These criteria both stipulate the characteristics that all study

patients must share and nominally identify the real-world population for which

the effect is internally valid. When operationalized, the eligibility criteria are

represented as inclusion and exclusion criteria; (Campbell/Stanley 1963; Hyman

1982; Anderson-Cook 2005), and with every addition of a criterion to a study

population, a different sub-population is identified with increasingly controlled

conditions (Velasco 2010). If HTE exists, then application of eligibility criteria

to a population may identify a subpopulation of patients for which there is a more
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homogeneous effect of the intervention.

RCTs often employ very restrictive eligibility criteria and are often cited as poorly

representative of the real-world, as many subpopulations may be excluded. This may

result in poor external validity. External validity refers to the extent to which the

treatment effect estimate applies those outside of the study with potentially different

patient and treatment setting characteristics (Campbell/Stanley 1963). External

validity always poses a concern, except in the circumstance in which HTE is known

to be absent.

With poor external validity, replication of the study effect can be challenging (Wales

2009; Moher et al. 1996; Britton et al. 1999; Karanis et al. 2016; Stuart

et al. 2015). Replication of trial evidence with real-world data, ideally, requires that

the right persons, in the right treatment setting, exist in the right proportions. In

the context of treating a population that differs significantly from the clinical trial

population, it can be unclear how appropriate the evidence is for this new population.

Presumably, the eligibility criteria of a study should be sufficient to identify the

population in which the effect will replicate, which we call the applicable population.

To address this knowledge gap, we leverage observational data to assesses if RCT

populations and real-world populations after application of eligibility criteria differ. If

the populations differ, the evidence may not apply due to HTE. If HTE exists in

observational populations, it may impede the replication of RCT effect estimates.
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These methods will contribute (i) a means to determine if the eligibility criteria are

adequate for identifying the applicable population; (ii) a framework for evaluating the

external validity of studies; and (iii) highlight tensions between assumptions of EBM

practice and qualities of reputable evidence.

This research may encourage clinicians to reconsider the assumptions made when

practicing EBM, and whether these assumptions are valid. Furthermore, the empirical

evidence put forth by this study highlights the limitations of the current system of

clinical knowledge generation. The current system sacrifices external validity in favor of

internal validity, through the selection of the experimental population. Such a decision

impedes the ability of experimental evidence to translate to the general population,

resulting in non-optimal or damaging clinical care. This problem motivates the use

of study populations that are more representative of the real-world and is only truly

optimized when study populations and the populations targeted for treatment are

one in the same. Such an analysis is called real-world evidence (RWE) generation, in

which clinical knowledge is learned from the analysis of routinely-collected, real-world

data (Sherman et al. 2016). The results of this research identify the need for RWE

in clinical medicine and underscore how RWE may improve the practice of EBM.

Research Questions. Why do observational causal effect estimates fail to converge

with that reported in the RCT?
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Methods. We hypothesized that significant baseline characteristic differences exist

between clinical trial populations and observational cohorts that meet all eligibility

criteria. Such differences could be the source of poor external validity in the presence

of HTE. The presence of differences could be confirmed by comparing empirical

distributions of features between the RCT data and real-world observational data.

However, patient-level RCT data is rarely released, so such as assessment is infeasible

for most published RCTs. The best available proxy is to compare the real-world

observational cohort to the summary of baseline characteristics of RCTs, as commonly

presented in Table 1 of RCT publications. We will refer to these summary statistics

as baseline characteristics. The baseline characteristics summarize the baseline

demographic and clinical characteristics for each arm of the study (Schulz et al. 2010).

The intent of publishing this table is to describe the clinical trial population in detail

and report the similarity of arms in the RCT post-randomization. This data can also be

used to evaluate external validity, and by association, replicability (Furler et al. 2012).

To examine how potential differences between experimental and observational cohorts

may contribute to poor replicability, we compared RCT baseline characteristics with

the same metrics from observational EHR data.

Data. Observational clinical data was obtained from the Columbia University Irving

Medical Center (CUIMC) clinical data warehouse (CDW). Data elements evaluated

in this study include laboratory measurements, diagnosis codes, and medications.

This database is comprised predominantly of emergency and inpatient visits with a

smaller number of outpatient visits at the hospital’s teaching clinics. The data used
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for this research was formatted according to the Observational Health Data Sciences

and Informatics’ common data model (CDM) to support downstream interoperability

within the OHDSI community and to support replication and extension by OHDSI

collaborators.

Cohort Creation. Corresponding to each RCT, observational cohorts were curated

from EHR data according to two approaches. The first approach curated based on

only the indication of the drug (Indication Only), e.g. diabetes or heart failure. This

cohort represents the most basic assessment that clinicians can make when considering

a treatment for a patient, per EBM. The second approach curated based on both

the indication of the drug and all published eligibility criteria (Indication+Eligibility

Criteria). This cohort represents the most thorough assessment that clinicians can

make under EBM. Both the Indication Only and Indication+Eligibility Criteria cohorts

were constructed using OHDSI’s ATLAS tool. ATLAS is an analytics platform used

to support the design and execution of observational analyses. Part of this platform

includes the ability to create cohort definitions. Cohort definitions identify a set of

patients that satisfy one or more criteria for a duration of time. The Indication Only

and Indication+Eligibility Criteria cohorts were defined using this tool. The indication

and eligibility criteria that were extracted from published RCT documentation were

operationalized using the OMOP CDM and served as criteria for cohort definitions.

This was a rigorously done procedure, in which medical doctors were consulted to

ensure the accuracy of the operationalization and faithfulness to the original criteria.

To operationalize the criteria, we created concept sets, which enumerate both the
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medical concepts that should be included in the definition of our criteria. and

excludes the concepts that should not be included. This procedure often employed

the hierarchical relationships that exist in the OMOP CDM ontology, wherein all

descendants of a single concept could be selected as part of a concept set and selectively

removed, if needed. This procedure is outlined in Figure 3.3.

Figure 3.3: Pipeline to operationalize eligibility criteria using OHDSI tools. The
process begins by identifying the resources (e.g., an RCT protocol) that detail the
eligibility criteria of a trial. Each criterion is then extracted and mapped to codified
concepts in a controlled vocabulary. The concept is then mapped to the OHDSI
common data model, which aggregates the same concepts from different vocabularies,
into a single standardized concept. This concept is then refined to best define the
eligibility criterion.

Trial Selection. For this research, we purposefully picked landmark clinical trials,

which are highly influential studies that are noted to change the practice of medicine.

We began with a list of landmark trials, and after application of criteria that are

outlined below, we decided on a small number. Our primary focus was landmark

trials, but to increase the diversity of studies and to demonstrate applicability outside

of efficacy trials, we evaluated a safety trial that met our criteria as well. When

selecting candidate trials for this research, there were practical considerations that

informed our choice of trials (Bartlett et al. 2019). The RCT must have an active
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intervention and comparator drug, as we would be unable to sufficiently codify a cohort

exposed to a placebo. Additionally, the intervention cannot be a new investigatory

drug, as it would not exist in our EHR. The eligibility criteria for the RCT must be

published and accessible; and most of the eligibility criteria must be hard criteria

that are easily operationalized into concept codes (e.g., “age of at least 55 years”).

While most trials have inescapable soft criteria that are not easily operationalized

(e.g., “no contraindications” or “no current participation in another clinical trial”),

it is important that our chosen trials have few of these. Consider, for example, the

soft criteria “expected survival of at least two years” which embodies a judgment call

by a healthcare practitioner that cannot reasonably replicated with data. Finally, we

sought trials that detailed a patient population that exists within the CUIMC EHR.

This would ensure that a sufficient number of patients remain in our cohorts after

application of the eligibility criteria. Because we are interested in comparing the RCT

Table 1 metrics with the same metrics from our observational cohort, it is important

that our observational data contain as many patients as possible, as greater number

of patients will increase confidence that our reported data is truly representative of

the CUIMC population. To that end, we investigated four trials (1) the RENAAL

Trial, which compared the effect of losartan and placebo on diabetic nephropathy

(Ishii 1972); (2) the ACCOMPLISH Trial (Jamerson et al. 2008), which compared

benazepril-amlodipine to benazepril and hydrochlorothiazide on CV-related mortality,

(3) the PROVE-IT Trial (Cannon et al. 2004), which compared atorvastatin and

pravastatin in patients with a history of acute coronary syndrome (ACS); and (4) the

sitagliptin and glimepiride trial (Hartley et al. 2015), which compared sitagliptin and
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glimepiride in elderly, diabetic patients. RENAAL, ACCOMPLISH, and PROVE-IT

are Landmark RCTs with efficacy endpoints, and the sitagliptin versus glimepiride

trial is a smaller trial with a safety endpoint. Details on how the Indication Only and

Indication+Eligibility Criteria cohorts were created can be found in the Appendices

for Aim 1.1 and 1.2

Evaluation. For each RCT under study, we calculated the pooled baseline

characteristics using the metrics reported for both the intervention and comparator

arms. Discrete data was summed across both arms and is presented as a percent.

Continuous data was taken as the average of each arm’s reported metrics, weighted by

the proportion of patients in that arm. The Indication Only and Indication+Eligibility

Criteria cohorts were queried to obtain metrics that corresponds to the RCT baseline

characteristics. To explore the differences that exist between the observational patient

cohorts and the RCT patient cohort, we calculated (i) the standardized difference in the

means for continuous variables and (ii) percentage point differences between discrete

variables (∆RCT ). If ∆RCT evaluates to zero, this indicates that the observational

cohort does not differ from the trial cohort. If ∆RCT does not equal zero, this indicates

that observational and trial cohorts differ, with greater magnitudes corresponding to

greater discrepancies between the cohorts.

Results. The results of this Study are presented in Tables 3.4, 3.5, 3.6, and 3.7 and

Figure 3.8.
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  sitagliptin vs glimepiride 

Hartley, 2008 
 NewYork-Presbyterian Hospital 

Baseline 

Charactertics 
Sitagliptin Glimepiride Pooled  Indication Only 

With Eligibility 

Criteria 

 n=197 n= 191 n= 388 !  n=5942 ∆!"# n=3056 ∆!"# 

Age 
70.6 70.8 70.7 4.85  69.03 

-

0.260† 
68.98 -0.275 

Sex          

Male 93 77 43.8%   35.87% -0.079 31.41% -0.124 

Female 104 114 56.2%   64.11% 0.079 68.55% 0.124 

Unknown 0 0 0.0%   0.02% 0.000 0.03% 0.000 

Race          

White 121 103 57.7%   16.62% -0.411 16.10% -0.416 

Multi-racial 48 61 28.1%   33.03% 0.049 34.29% 0.062 

Native 

American/ 

Alaska 

Native 

18 15 8.5%   0.09% -0.084 0.07% -0.084 

Asian 5 12 4.4%   1.17% -0.032 1.44% -0.029 

African 

American 
4 0 1.0%   11.51% 0.105 11.32% 0.103 

Native 

Hawaiian/ 

Pacific 

Islander 

1 0 0.3%   0.35% 0.001 0.29% 0.000 

Unknown 0 0 0.0%   37.23% 0.372 36.49% 0.365 

Body 
Weight 76.9 75.3 76.11   76.81 0.028 75.39 -0.030 

BMI 29.7 29.7 29.7 4.54  30.35 0.064 30.19 0.055 

Duration of 
DM (yrs) 8 9.4 8.69 6.43  3.97 -0.549 3.30 -0.668 

HbA1c % 
mean 7.8 7.8 7.8 0.7  7.52 -0.167 6.81 -0.120 

Min 6.4 5.7 6.06   3.87 -1.305 4.29 -1.059 

Max 10.6 9.9 10.25   15.8 3.307 15.8 3.3301 

HbA1c           

< 8.0% 131 125 66.0%   59.61% -0.064 59.00% -0.070 

>=8.0% 66 66 34.0%   33.74% -0.003 34.20% 0.002 

Unknown 0 0 0.00%   6.65% 0.066 6.81% 0.068 

FPG 168.4 169.7 169.04 33.21  140.35 -0.448 141.55 -0.440 

∆!"# = difference from observational cohort and reported RCT data; standardized difference in the means 
for continuous variables; difference in percentage points for discrete variables 
BMI=body mass index; DM=diabetes mellitus; yrs=years; HbA1c=hemoglobin A1c; Min=minimum; 
Max=maximum; FPG=fasting plasma glucose 

Figure 3.4: Results for sitagliptin versus glimepiride trial.

Sitagliptin vs Glimepiride: The sitagliptin versus glimepiride trial in elderly patients

with Type 2 Diabetes Mellitus is given in Table 1. Application of eligibility criteria to

the Indication Only cohort identified the Indication+Eligibility Criteria cohort that

was more similar to the RCT with regard to BMI, Fasting Plasma Glucose, and HbA1c

% (mean); and less similar to the RCT with regard to Age, Years Since Diabetes

Diagnosis, Gender, HbA1c>8%, Race/Ethnicity, and Weight. Indication+Eligibility
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  The PROVE IT Trial                                                                 
Cannon, 2004 

 
NewYork-Presbyterian Hospital 

Baseline 
Charactertics 

Pravastati
n 

Atorvast
atin Pooled  Indication Only With Eligibility 

Criteria  
n=2063 n=2099 n=4162 !  n=3972 ∆!"# n=3180 ∆!"# 

Age 58.3 58.1 58.20 11.25  60.37 0.137 59.95 0.111 
Sex          
     Male 1617 1634 78.11%   45.92% -0.322 45.88% -0.323 
     Female 445 465 21.89%   54.08% 0.322 54.09% 0.323 
     Unknown   0.00%   0.03% 0.000 0.03% 0.000 
Race          
     White 1865 1911 90.73%   28.23% -0.611 71.42% -0.604 
     Other 198 188 9.27%   71.77% 0.611 28.58% 0.604 
Diabetes 361 373 17.64%   29.82%  26.57%  
Hypertension 1014 1077 50.24%   60.72% 0.105 57.64% 0.074 
Current Smoker 766 763 36.74%   4.48% -0.323 4.18% -0.326 
Prior MI 395 374 18.48%   34.42% 0.159 34.40% 0.159 
PCI          
Prior to Index 
Event                320 322 15.43%   10.31% -0.048 10.31% -0.051 

After Index 
Event 1426 1442 68.91%   15.30% -0.536 15.16% -0.538 

Coronary 
Bypass Surgery 221 233 10.91%   4.00% -0.069 1.38% -0.095 

Peripheral 
Artery Disease 136 105 5.79%   15.17% 0.094 13.33% 0.075 

Prior Statin 
Therapy 514 535 25.20%   42.73% 0.175 37.30% 0.121 

Index Event          
Unstable Angina  614 604 29.26%   48.47% 0.192 50.88% 0.046 
MI without ST 
segment 
elevation 
(NSTEMI)  

757 747 36.14%   19.80% -0.163 15.22% -0.209 

MI with ST 
segment 
elevation 
(STEMI)  

690 748 34.55%   31.73% -0.028 33.90% 0.163 

Median Lipid 
Values          

Total Cholesterol 180 181 180.50 -  171.67 -0.151 169.54 -0.194 
LDL Cholesterol 106 106 106.00 -  100.41 -0.110 99.18 -0.138 
HDL Cholesterol 39 38 38.50 -  45.07 0.364 45.06 0.370 
Triglycerides 154 158 156.02 -  141.95 -0.110 137.95 -0.145 
∆!"# = difference from observational cohort and reported RCT data; standardized difference in the means 
for continuous variables; difference in percentage points for discrete variables 
MI=myocardial infarction; PCI=percutaneous coronary intervention; NSTEMI=non-ST-elevation 
myocardial infarction; STEMI=ST-elevation myocardial infarction; LDL=low-density lipoproteins; 
HDL=high-density lipoproteins 

 

Figure 3.5: Results for atorvastatin vs pravastatin trial (PROVE-IT).

Criteria patients did not significantly differ from the trial in regards to BMI, Weight,

and HbA1c % (mean), all other baseline characteristics metrics did significantly differ.

These results highlight that the indicated real-world population and the real-world

population that meets the stringent eligibility criteria have generally less progressed
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  The RENAAL Trial                                                                 
Brenner, 2001 

 

NewYork-Presbyterian Hospital 

Baseline 
Characteristics 

Losartan Placebo Pooled  Indication Only 
With Eligibility 

Criteria  
n=751 n=762 n=1513 !  n=3818 ∆!"# n=72 ∆!"# 

Age 60 60 60.00 7.00  63.72 0.257  -0.095 
Sex          
Male 462 494 63.19%   40.86% -0.223 40.28% -0.229 
Female 286 268 36.62%   59.11% 0.225 59.72% 0.231 
Unknown 0 0 0.00%   0.03% 0.000 0.00% 0.000 
Race          
Asian 117 135 16.66%   0.58% -0.157 0.00% -0.153 
Black 125 105 15.20%   15.82% 0.006 13.89% -0.013 
White 358 378 48.65%   0.92% -0.481 1.39% -0.486 
Hispanic 140 136 18.24%   36.14% 0.179 41.67% 0.234 
Other 11 8 1.26%   27.50% 0.262 18.06% 0.168 
Unknown 0 0 0.00%   19.04% 0.190 25.00% 0.250 
BMI 30.0 29 29.50 6.00  30.56 0.084 34.00 0.386 
Blood 
Pressure 
mmHg 

         

Systolic 152.0 123 137.39 19.50  136.95 -0.017 137.78 0.015 
Diastolic  82.0 82 82.00 10.50  71.01 -0.796 71.94 -0.741 
Mean Aterial 105.5 106 105.75 11.25  104.01 -0.109 104.86 -0.055 
Pulse 69.4 70.8 70.11 17.75  79.65 0.454 77.56 0.359 
Medical 
History          

Use of 
antihypertensio
n drugs 

693 721 93.46%   18.91% -0.745 4.17% -0.893 

Angina 
Pectoris 

65 75 9.25%   14.14% 0.049 5.56% -0.037 

Myocardial 
Infarction 

75 94 11.17%   17.89% 0.067 2.78% -0.084 

Coronary 
Revasc. 1 1 0.13%   2.02% 0.019 0.00% -0.001 

Stroke 0 1 0.07%   8.64% 0.086 0.005 -0.001 
Lipid Disorder 234 271 33.38%   58.15% 0.248 43.06% 0.097 
Amputation 65 69 8.86%   1.60% -0.068 0.00% -0.089 
Neuropathy 375 397 51.02%   19.83% -0.312 11.11% -0.399 
Retinopathy 494 470 63.71%   5.40% -0.583 4.17% -0.595 
Current 
Smoking 

147 130 18.31%   6.47% -0.118 2.78% -0.155 

Laboratory 
Values          

Median 
Urinary 
Alb:Creat Ratio 

1237 1261 1249.09   NED  NED - 

Serum 
Creatinine 
mg/dL 

1.9 1.9 1.90 0.50  1.89 -0.004 2.45 0.282 

Serum 
Cholsterol 
mg/dL 

         

Total 227 229 228.01 55.50  164.98 -0.926 171.11 -0.908 
LDL 142 142 142.00 45.99  132.18 -0.005 98.99 -0.837 
HDL 45 45 45.00 15.50  43.86 -0.056 43.02 -0.112 
Serum 
Triglycerides 
mg/dL 

213 225 219.04 190.0
7 

 154.29 -0.310 156.21 -0.308 

Hemoglobin 12.5 12.5 12.50 1.85  11.53 -0.470 11.92 -0.243 
Glycosylated 
hemoglobin 
(%) 

8.5 8.4 8.45 1.65  8.35 -0.339 8.24 -0.080 

∆!"# = difference from observational cohort and reported RCT data; standardized difference in the means for 
continuous variables; difference in percentage points for discrete variables 
BMI=body mass index; mmHg=millimeter of mercury; Revasc=revascularization; Alb=albumin; 
Creat=creatinine; mg/dL=milligrams per deciliter; LDL=low-density lipoproteins; HDL=high-density 
lipoproteins 

 

Figure 3.6: Results for losartan vs placebo trial (RENAAL).

82



 

  The ACCOMPLISH Trial                                                                 
NEJM, 2008 

 
NewYork-Presbyterian Hospital 

Baseline 
Characteristics 

Benazepril-
Amlodipine 

Benazepril
– HCTZ 
Group 

Pooled 

 

Indication Only With Eligibility 
Criteria 

 n=5744 n= 5762 n= !  n=36854 ∆!"# n=4198 ∆!"# 
Age          
>=65 years 3813 3827 66.40%   17.98% -0.451 60.05% -0.063 
>= 70 years 2363 2340 40.87%   9.59% -0.295 43.22% 0.023 
Gender          
Female 2296 2246 39.48%   67.81% 0.283 70.41% 0.309 
Male 3448 3515 60.52%   32.18% -0.283 29.56% -0.310 
Unknown 0 0 0.00%   0.01% 0.000 0.02% 0.000 
Race          
White 4817 4795 83.54%   25.31% -0.595 10.65% -0.729 
Black 697 719 12.31%   14.38% 0.010 12.51% 0.002 
Hispanic 300 323 5.41%   30.25% 0.230 36.45% 0.310 
Other  230 247 4.15%   19.41% 0.167 30.12% 0.260 
Unknown 0 0 0.00%   7.25% 0.134 10.26 0.103 
Weight 88.7 88.5 88.60 18.95  78.01 -0.346 74.65 -0.514 
Waist 
Circumference 

103.9 103.8 103.85 15.30  NED - NED - 

Body Mass Index 31 31 31.00 6.20  30.13 -0.061 29.95 -0.096 
Blood Pressure          
Systolic 145.3 145.4 145.35 18.25  129.75 -0.704 133.41 -0.537 
Diastolic 80.1 80.1 80.10 10.75  76.78 -0.251 73.85 -0.479 
Pulse 70.5 70.3 70.40 11.00  79.33 0.552 77.95 0.496 
eGFR 78.9 79 78.95 21.35  NED* - NED* - 
Serum Values          
Creatinine mg/dL 1.00 1.00 1.00 0.30  1.08 0.098 1.33 0.308 
Glucose mg/dL 127.9 127.0 127.45 46.60  149.55 0.336 165.77 0.581 
Potassium 
mmol/liter 4.3 4.3 4.30 0.40  4.28 -0.031 4.36 0.107 

Total Cholesterol 
mg/dL 184.9 184.1 184.50 39.90  187.36 0.053 168.80 -0.282 

HDL mg/dL 49.6 49.5 49.55 14.10  50.31 0.038 46.87 -0.140 
Previous AHT 
treatments 

         

0 169 153 2.80%   75.42% 0.726 2.28% -0.006 
1 1312 1279 22.52%   10.10% -0.124 6.60% -0.159 
2 2116 2047 36.18%   7.38% -0.288 12.97% -0.232 
>=3 2147 2283 38.50%   7.11% -0.314 78.21% 0.397 
Lipid Lowering 
Agents 

3851 3971 67.98%   12.31% -0.557 79.75% 0.118 

Beta Blockers 2675 2807 47.64%   13.18% -0.345 73.56% 0.259 
Antiplatlet 
Agents 

3710 3735 64.71%   17.48% -0.472 87.71% 0.230 

Characteristics          
Previous MI 1337 1372 23.54%   2.98% -0.206 16.76% -0.068 
Previous Stroke 762 736 13.02%   1.94% -0.111 10.53% -0.025 
Previous 
Hospitalization for 
Unstable Angina 

653 671 11.51%   2.12% -0.094 11.78% 0.003 

Diabetes Mellitus 3478 3468 60.37%   22.68% -0.377 85.76% 0.254 
Renal Disease 352 353 6.13%   7.25% 0.011 34.69%   0.286 
eGFR <60 1047 1030 18.05%   0.47% -0.176 16.59% -0.015 
Previous Coronary 
Revasc. 2044 2073 35.78%   1.56% -0.342 7.99% -0.278 

Coronary Artery 
Bypass Grafting 1248 1197 21.25%   0.53% -0.207 1.98% -0.193 

Percutaneous 
Coronary 
Intervention 

1055 1123 18.93%   1.08% -0.179 6.52% -0.124 

Left Ventricular 
Hypertrophy 763 758 13.22%   0.21% -0.130 1.32% -0.119 

Current Smoking 641 658 11.29%   1.87% -0.094 7.48% -0.038 
Dyslipidemia 4221 4319 74.22%   18.01% -0.562 77.45% 0.032 
AFib 376 403 6.77%   3.67% -0.031 13.63% 0.069 
∆!"# = difference from observational cohort and reported RCT data; standardized difference in the means for continuous variables; difference in 
percentage points for discrete variables 
NED = not enough data for measurement; NED* = eGFR is incomplete in a biased manner due to lack of reporting of values greater than 60. 

Figure 3.7: Results for benazepril-amlodipine vs benazepril and hydrochlorothiazide
(HCTZ) trial (ACCOMPLISH).
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diabetes than those patients in the trial. This is exemplified by (i) Years Since

Diabetes Diagnosis, which is 3.97 for the Indication Only cohort and 3.30 in the

Indication+Eligibility Criteria cohort, but is 8.69 in the trial (p=0.007) and (ii)

Fasting Plasma Glucose, which is 140.35 in the Indication Only cohort and 141.55

in the Indication+Eligibility Criteria cohort, but is 169.04 in the trial (p=0.007).

With regard to these two baseline characteristics metrics, the application of the

eligibility criteria to the Indication Only cohort identified a subset of patients with a

Fasting Plasma Glucose that was more similar to the trial and a Years Since Diabetes

Diagnosis that was less similar to the trial.

PROVE-IT: The atorvastatin versus pravastatin trial in patients with a history of

ACS (PROVE-IT Trial) is given in Table 2. Application of eligibility criteria to the

Indication Only cohort identified the Indication+Eligibility Criteria cohort that was

more similar to the RCT with regard to Age, Race/Ethnicity, Diabetes, Hypertension,

Prior MI, Peripheral Artery Disease, and Prior Statin Therapy, and less similar to the

RCT with regard to Sex, Current Smoker, Percutaneous Coronary Intervention, Index

Event, and Median Lipid Values. Indication+Eligibility Criteria patients differed

significantly from the trial in regards to all baseline characteristics.

The results for this trial show that patients that meet either the Indication or the

Indication subject to all criteria, have less severe cardiovascular lipid measurements

than patients in the trial. This is demonstrated in the Median Lipid Values, where in

Total Cholesterol, LDL, HDL, and Triglycerides are 171.67, 100.41, 45.07 and 141.95,
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respectively, in the Indication Only cohort and 169.55, 99.19, 45.07, and 138.00,

respectively, in the Indication+Eligibility Criteria. This is compared to the 180.50,

106.00, 38.50, and 156.02, respectively, that is reported in the trial.

RENAAL: The losartan versus placebo trial in patients with diabetic nephropathy

(RENAAL Trial) is given in Table 3. Application of eligibility criteria to the

Indication Only cohort identified the Indication+Eligibility Criteria cohort that was

more similar to the RCT with regard to Age, Pulse, Angina Pectoris, Coronary

Revascularization, Stroke, Lipid Disorder, Total Cholesterol, Serum Triglycerides,

Hemoglobin, and Glycosylated Hemoglobin, and less similar to the RCT with regard

to Sex, Race/Ethnicity, Blood Pressure measurements, Use of Antihypertensive

Drugs, Myocardial Infarction, Amputation, Neuropathy, Retinopathy, Current

Smoking, Laboratory Values, LDL and HDL. Indication+Eligibility Criteria patients

significantly differ from the trial in regards to Angina Pectoris, Stroke, Amputation,

Lipid Disorder, Glycosylated Hemoglobin % all other baseline characteristics

metrics significantly differ. Significance of Median Urinary Alb:Creatinine Ratio

measurements could not be assessed due to insufficient reporting in the EHR.

Similar to the trial results previously mentioned, patients enrolled in the RCT

demonstrate hallmarks of advanced disease. A greater proportion of trial patients

had a medical history of amputation (8.86%), neuropathy (51.02%), and retinopathy

(63.71%), than compared to either the Indication Only cohort (1.60%, 19.83%, 5.40%,

respectively) or the Indication+Eligibility Criteria cohort (0.00%, 11.11%, 4.17%).
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ACCOMPLISH: The benazepril-amlopidine versus benazepril-hydocholorothiazide

trial in patients with systolic hypertension (ACCOMPLISH Trial) is given in Table

4. Application of eligibility criteria to the Indication Only cohort identified the

Indication+Eligibility Criteria cohort that was more similar to the RCT with regard to

Age, Potassium, Lipid Lowering Agents, Beta Blockers, Antiplatelet Agents; History

of MI, Stroke, Hospitalization for Unstable Angina, Diabetes Mellitus, eGFR<60,

Coronary Revascularization, CABG, PCI, Left Ventricular Hypertrophy, Current

Smoking, Dyslipidemia, and AFib, and less similar to the RCT with regard to Sex,

Race/Ethnicity, Weight, Blood Pressure Measurements, Pulse, Creatinine, Glucose,

Total Cholesterol, HDL, and History of Renal Disease. Indication+Eligibility Criteria

patients significantly differ from the trial in regards to all baseline characteristics,

except for history of Previous Hospitalization for Unstable Angina. Significance of

Waist Circumference and eGFR could not be assessed due to data availability and

insufficient reporting in the EHR.

The results of the four trials are summarized in Figure 1. In this Figure, each quadrant

of the plot corresponds to a trial. For each trial, the ∆RCT for baseline characteristics

are plotted for Indication Only vs RCT and Indication+Eligibility Criteria vs RCT.

The minimum and maximum HbA1c measurements for the NCT01189890 trial were

excluded in this plot due to biologically implausible values that were likely transcription

errors.
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Figure 3.8: Summary of ∆RCT for baseline characteristics of Indication Only vs RCT
and ∆RCT Indication+Eligibilty Criteria vs RCT

Discussion. Based on the results of the research presented, the eligibility criteria,

that nominally should be sufficient for effect replication, may not actually be sufficient

if HTE exists. If HTE exists and the differences we observed in our cohort are

common, factors beyond eligibility criteria may be necessary to identify applicable

patients. This finding has significant implications on how we create and apply

biomedical evidence.

The expectation of EBM is that the population of patients that a single clinician
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sees, is an applicable population, and will mirror the population in the RCT in all

ways including the distribution of the treatments effect. This assumption does not

take into account variation undocumented factors that affect HTE. If factors that

induce HTE are not accounted for in the eligibility criteria but exist, a clinician

cannot reasonably assume that the treatment effect will be seen in his treated patient

population. The discrepancies between experimental and real-world populations that

are presented here may be due to a number of sources, including overly restrictive

eligibility criteria, insufficient documentation of eligibility criteria, or the self-selection

of trial participants. When seeking to rectify this gap and improve generalizability

of RCT findings, these issues may be addressed by the relaxation of trial eligibility

criteria, a thorough and accurate description of eligibility criteria (perhaps recorded

in a codified manner), or the active recruitment of a representative experimental

population. Regardless of the source of this discrepancy, until addressed, careful

consideration beyond who is eligible for the trial is necessary to determine whether

results of a given RCT are an appropriate source of evidence when considering the

care of a given patient.

Limitations. This research does have limitations. Most importantly, the trials

presented in this research were selected according to a set of criteria that enabled

their analysis using the tools described. These criteria included an active intervention

and comparator, published eligibility criteria, and ease of operationalization of

concepts. The trials that were investigated as part of this research represent common

indications. It is possible that the results presented here are specific to trials of
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common conditions and may not be representative of rare condition trials.

As in Aim 1.1, (i) the operationalization of clinical trial eligibility criteria into a

computable format may be prone to subjectivity; (ii) and the EHR data may be

inherently different than the experimental data. Though we attempted to translate

the eligibility criteria as faithfully as possible into the observational setting, errors

may have been made. In the presence of many eligibility criteria, small discrepancies

between the intended meaning of a criterion and the operatonalized criterion may

be compounded. Additionally, when subjecting an observational cohort to many

criteria, the resultant cohort may become very small, leading to a lack of power for

the detection of relevant differences. In our evaluation of the external validity of trials,

we compare aggregate metrics rather than a full distribution of features, which would

be preferable. This comparison is the best we can do with the data that is available

to us. However, such a comparison may fail to capture meaningful differences between

the trial and real-world populations, as distributions with greatly differing functional

forms may still have similar means.
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Chapter 4

Aim 2. Develop a method to identify natural experiments

within observational data.

Causal inference often relies on the counterfactual framework, which requires that

treatment assignment is independent of the outcome, known as strong ignorability.

Approaches to enforcing strong ignorability in causal analyses of observational data

include weighting and matching methods. Effect estimates, such as the average

treatment effect (ATE), are then estimated as expectations under the reweighted

or matched distribution, P . The choice of P is important and can impact the

interpretation of the effect estimate and the variance of effect estimates. In this

work, instead of specifying P , we learn a distribution that simultaneously maximizes

coverage and minimizes variance of ATE estimates. In order to learn this distribution,

this Aim proposes a generative adversarial network (GAN)-based model called the

Counterfactual χ-GAN (cGAN), which also learns feature-balancing weights and

supports unbiased causal estimation in the absence of unobserved confounding.

Our model minimizes the Pearson χ2-divergence, which we show simultaneously

maximizes coverage and minimizes the variance of importance sampling estimates.

To our knowledge, this is the first such application of the Pearson χ2-divergence.

We demonstrate the effectiveness of cGAN in achieving feature balance relative to
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established weighting methods in simulation and with real-world medical data.
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Aim 2.1. Implement a generative adversarial

network, Counterfactual χ-GAN, to learn

balancing weights.

Background. Causal assessment often relies on the framework of counterfactual

inference. In this framework, each unit, i, has a potential outcome given that they

received a treatment and a potential outcome given that they received a control –

Y1,i and Y0,i, respectively. This framework seeks to contrast the outcome, Y for an

individual under these two hypothetical states as shown in Eq. 4.1 (Rubin 1974).

ITE = Y1 − Y0 (4.1)

The effect of the treatment on the outcome can then summarized by calculating

population-level effect estimates, such as the average treatment effect (ATE), which is

defined as the expected difference in outcomes (Eq. 4.2).

ATE = E[Y1 − Y0] = E[Y1]− E[Y0] (4.2)

Estimating this requires access to the outcome for the state in which units were

not assigned (i.e., E[Y0|T = 1] and E[Y1|T = 0]). In practice, however, these true

counterfactuals are never observed as a single population (or individual) cannot

simultaneously be both treated and untreated. This is known as the ’fundamental
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problem of causal inference.’ Therefore, approximations that employ more than one

population are used as a proxy for these unobserved states (Holland 1986). These

approximations seek to construct populations such that the observed ATE, ˆATE,

equals the true ATE that would arise from a counterfactual population. In other

words, we seek an ˆATE that is unbiased.

ˆATE = E[Y1|T = 1]− E[Y0|T = 0] (4.3)

A decomposition of the ATE, demonstrates that a sufficient condition for unbiased

ˆATE estimation is that E[Y1|T = 1] = E[Y1|T = 0] and E[Y0|T = 0] = E[Y0|T = 1]

(Kempthorne 1955). Within the counterfactual framework, this equality is central

to the assumption of strong ignorability (Eq. 4.4) (Rosenbaum/Rubin 1983a).

Yi(1), Yi(0) ⊥⊥ Ti (4.4)

This assumption states a unit’s assignment to a treatment is independent of that unit’s

potential outcomes, Yi, and that treatment assignment is, therefore, ignorable. Causal

claims borne from data that satisfy this requirement are regarded as unbiased as all

confounding factors that could induce a dependence between Yi and Ti are equally

represented in the treatment and comparator arms (Rubin 1974). Consequently, this

means that the distribution of features is the same in both arms and features are said

to be balanced. Other assumptions, such as positivity and the Stable Unit Treatment

Value Assumption (SUTVA), are also necessary and assumed to be true (Rubin
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1980).

Matching and weighting are popular pre-analysis manipulations to approximate

the unconditional form of strong ignorability in observational populations. These

methods create pseudo-populations in which the assumption is met without need

for further manipulation (Rubin 1973b). This is opposed to methods of statistical

adjustment, which occur peri-analysis, and approximate the conditional form of strong

ignorability (Leger 1994). Arguably, the most common strategy for weighting is the

inverse probability of treatment weighting (IPW) (Thoemmes/Ong 2016), though

other methods include the direct minimization of imbalance (Gretton et al. 2009;

Kallus 2016, 2017) or weighting by the odds of treatment, kernel weighting, and

overlap weighting (Rosenblatt 1956; Hellerstein/Imbens 1999; Hazlett 2016;

Li et al. 2018; Kallus 2018b).

A commonality among these methods is that they implicitly or explicitly all specify

a distribution function, P , that the expectation in Eq. 4.2 is taken with respect

to. This distribution is often the distribution associated with the treated (p1(x)),

the controls (p2(x)), or a combination thereof (e.g. 1
2
p1(x) + 1

2
p2(x)). This choice

of distribution can lead to high variance effect estimates in circumstances where

there are regions of poor overlapping support between the treated and untreated

populations. An effect of this is often observed in the context of IPW analyses with

instability due to propensity scores near zero or one (Kang/Schafer 2007).
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In this work, we instead construct an implicit distribution, P , that focuses on the

regions of the sample space with significant overlap between the treated and untreated

populations. Such a construction involves an inherent trade-off between coverage and

variance. For example, mixture distributions that will be valid for a larger region

of the sample space will also produce high variance estimates in the context of a

fixed sample budget. In the context of infinite sample sizes and positivity, one could

specify any distribution P without concern for effect estimate variance. The mixture

distribution of the treated and untreated populations would be a reasonable choice

given a goal of maximizing coverage. However, in real-world settings with limited data,

positivity may not be present and ATE estimates over such a distribution may be

high variance in practice and theoretically invalid. In such a setting, valid estimates

can only be made for subpopulations with significant distributional overlap. We

formulate an approach that constructs a distribution P for estimating an ATE that

both maximizes coverage and minimizes variance. Informally, P can be considered the

distribution of a natural experiment where the choice of treatment, T , is independent

of potential confounders, X.

We propose the Counterfactual χ-GAN (cGAN) that uses an adversarial approach to

learn a distribution that trades off coverage and effect estimate variance for two or

more observational study arms. This approach learns stable, feature balancing weights

without reliance on the propensity score. The target distribution, P , is identified

by minimizing the Pearson χ2-divergence between P and the sampling distributions

Qa for each study arm. To our knowledge, this is the first such application of the
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Pearson χ2-divergence. Because P is being compared to all study arms, this encourages

coverage, while, as we will show, the χ-divergence inherently minimizes the variance

of importance sampling estimates of the ATE.

Research Questions. Can a generative adversarial network (GAN) be leveraged to

learn feature-balancing weights?

The Model We introduce the Counterfactual χ-GAN (cGAN), an adversarial

approach to feature balance in causal inference that is based on importance sampling

theory. Using an adversarial approach based on variational minimization based on

the f -GAN, we minimize the sum of the Pearson χ2-divergences between a deep

generative model and the sampling distributions from each arm of a study. We show

that minimizing the χ2-divergence is equivalent, up to a constant factor, to minimizing

the variance of importance sampling estimates to be made in approximating quantities

such as ATEs. Similar to other weighting approaches, this approach assumes SUTVA,

positivity, and no unmeasured confounders. In the following, P is the constructed

target distribution and Qa is the sampling distribution for each study arm.

Importance Sampling and the χ2-divergence Importance sampling is a strategy

for estimating expectations under an unknown target distribution given a known

proposal distribution (Muller 1966). Though the importance sampling has broader

usage than our application, we focused on the use of importance sampling for estimation

of the average treatment effect (ATE) because of its close relationship with the χ2

divergence. The importance sampling weight is defined as a likelihood ratio: the
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Figure 4.1: Architecture of Counterfactual χ-GAN

likelihood of an observation under the target distribution, p(x) divided by the likelihood

under the proposal distribution, q(x). Weighted expectations based on the proposal

distribution approximate unweighted expectations from the target distribution at

shown in Eq. 4.5.

Eq
[
p(x)

q(x)
φ(x)

]
= Ep [φ(x)] (4.5)

Consider the units in an arm of an observational study as being samples from such a

proposal distribution. One strategy for obtaining unbiased expectations of treatment

effects is to identify importance sampling weights for each arm that approximate

expectations from a shared target distribution. However, this problem is underspecified

given that we could choose any target distribution with the correct support. In this

work, we choose the target distribution that yields importance sampling approximations

with smallest variance. Eq. 4.6 shows the form for the variance of importance sampling
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estimates where φ(x) is the constant function. This choice is to make the formulation

of the cGAN as outcome agnostic as possible. This form highlights its connection with

the χ2-divergence, which has a function form as shown in Eq. 4.7. This connection was

previously noted in (Dieng et al. 2016). Therefore, the solution which minimizes the

χ2-divergence would also minimize the variance expectations for unknown outcomes.

Of note, importance sampling is known to be a method that can produce high variance

estimates, but since we will be minimizing the variance directly, this is less of a concern

here.

σ2
q =

µ2

n

(∫
q(x)

[
p(x)2

q(x)2
− 1

])
dx (4.6)

χ2(p ‖ q) =

∫
q(x)

[
p(x)2

q(x)2
− 1

]
dx (4.7)

Likelihood Ratios, Overlap, & the ATE Importance sampling weights can be

leveraged to estimate an ATE in that region of q(x) where there is significant overlap

of probability mass/density between treatment arms. This is the region that satisfies

the idea of a natural experiment and in which ATE estimations are reliable. Informally,

we seek to get the most coverage of the overlapping region of q(x), as it results in

importance sampling estimates with low variance.

Typically, the expectation in the ATE is taken with respect to the original feature

distribution, q(x). Under cGAN-weighted data, expectations are taken with respect to

the target distribution p(x). As such, calculations of the ATE from the cGAN are not

equivalent to what many would classically consider the ATE, but rather, is an ATE
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with respect to the new, learned feature distribution. We call this new estimate the

ATEp. This inequality is demonstrated in Equation 4.8. This set of equations shows

that the typical ATE, ATEq, is not equivalent to the expectation that we estimate,

the ATEp.

ATEq = Eq(y1)[y1]− Eq(y0)[y0]

= Eq(x)Eq(y1|x)[y1|x]− Eq(x)Eq(y0|x)[y0|x]

= Eq(x)Eq(y|x,t=1)[y|x, t = 1]− Eq(x)Eq(y|x,t=0)[y|x, t = 0]

= Eq(x|t=1)
q(x)

q(x|t = 1)
Eq(y|x,t=1)[y|x, t = 1]− Eq(x|t=0)

q(x)

q(x|t = 0)
Eq(y|x,t=0)[y|x, t = 0]

6= Eq(x|t=1)
p(x)

q(x|t = 1)
Eq(y|x,t=1)[y|x, t = 1]− Eq(x|t=0)

p(x)

q(x|t = 0)
Eq(y|x,t=0)[y|x, t = 0]

(4.8)

Consider two distributions Q1 and Q2 that represent two arms of a study. It is

possible to make unbiased ATEp estimates based on a single distribution, P , leveraging

likelihood ratios/importance sampling weights as shown in Eq. 4.9.

ATEp = Ep[Y1]− Ep[Y0] = Eq1
[
p(x)

q1(x)
Y1

]
− Eq2

[
p(x)

q2(x)
Y0

]
(4.9)

We will leverage an approach based on adversarial learning to simultaneously maximizes

coverage, minimizes the variance defined in Eq. 4.6, and directly estimates likelihood

ratios, p(x)
q1(x)

and p(x)
q2(x)

.
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f-GAN The f -GAN framework provides a strategy for estimation and minimization

of arbitrary f -divergences based on a variational divergence minimization approach

(Nowozin et al. 2016).

Df (P ‖ Q) =

∫
X
q(x) sup

t∈domf∗

{
t
p(x)

q(x)
− f ∗(t)

}
dx (4.10)

≥ sup
T∈T

(∫
X
p(x)T (x)dx−

∫
X
q(x)f ∗(T (x))dx

)
(4.11)

= sup
T∈T

(Ex∼P [T (x)]− Ex∼Q[f ∗(T (x))]) (4.12)

where T is a class of function such that T : X → R, f is the function that characterizes

the χ2-divergence, f(u) = (u− 1)2, f ∗ is the Fenchel conjugate of f , f ∗(t) = 1
4
t2 + t,

and P and Q are probability distributions with continuous densities, p(x) and q(x).

T is typically a multi-layer neural network. This formulation lower bounds the χ2-

divergence based on functions T , P , and Q in such a way that unbiased noisy gradients

of the lower bound can be easily obtained based on samples from P and Q. In addition,

the variational function, T , has a tight bound for T ∗ = f ′
(
p(x)
q(x)

)
which is equivalent

to 2
(
p(x)
q(x)
− 1
)

in the case of the χ2-divergence. To respect the bounds of T that

result in valid likelihood ratios, we represent T as a nonlinear transformation of an

unbounded function V : T (x) = gf (V (x)) = −2 + log(1 + eV (x)). The likelihood ratio,

p
q
, is easily derived from here and provides the importance sampling weights necessary

for approximating expectations under p(x) as shown in Eq. 4.5.

The Counterfactual χ-GAN The cGAN builds on importance sampling theory

and extends the f -GAN framework to learn feature balancing weights through an
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adversarial training process. Previously, (Tao et al. 2018) have explored importance

weights from critics of divergence-based GAN models. However, unlike this method

and other f -GANs where there is a generator, G and a single variational function,

the cGAN employs dual training from at least two variational functions (Figure 4.1).

Consider a set of A treatments, each associated with one of A populations, or arms

of a study. Each population contains Na units and are drawn from an unknown

and population-specific distribution Qa. Based on the connection between the

χ2-divergence and the variance of importance sampling estimates outlined above,

our objective is to identify a target distribution that minimizes the χ2-divergence

to all populations being compared: arg minp
∑A

a=1 χ
2 (p(x) ‖ qa(x)). This is the sum

of the divergences between the generator and the unweighted treatment arms. It is

minimized when p(x) equals qa(x) for all a and is directly proportional to the sum of

the variances of importance sampling estimates under the target distribution, P , with

proposals, Qa. Because of the constant in Eq. 4.6, minimizing the χ2-divergence is

equivalent to minimizing a normalized variance which weighs each population equally

regardless of the number of units and the magnitude of the treatment effect, φ.

As a byproduct of minimizing this divergence, we will also identify a set of importance

weights, wa,n, for each unit in each population that allows estimation of expectations

from the same target distribution, P , thus satisfying the unconditional form of strong

ignorability. Using these importance weights, expectations can be approximated

102



Algorithm 1: Minibatch stochastic gradient cGAN optimization

Input : (x1,1,...,x1,N1 ,...,xA,NA)
Output : θ, ω1:A

Initialize θ, ω1:A and minibatch size, M .
while F (θ, ω1:A) not converged do

for a ∈ (1, . . . , A) treatment groups do
Sample a batch of noise samples, z1:M ∼ pg, where pg is a prior
distribution such as an isotropic Gaussian

Sample minibatch of data, xa,1:M ∼ qa
Compute gradient w.r.t. variational function parameters
∇ωaF =

∑M
m=1∇ωa(gf (Vωa(Gθ(zm)))− 1

4
gf (Vωa(xa,m))2− gf (Vωa(xa,m)))

Ascend the ωa gradient according to a gradient-based optimizer
end
Compute gradient w.r.t. generator parameters

∇θF =
∑M

m=1

∑A
a=1∇θ [gf (Vωa(Gθ(zm)))]

Descend the θ gradient according to a gradient-based optimizer
Update Vωa and Gθ learning rates according to schedule

end

as Ep[φ] ≈
∑Na

n=1wa,nφ(xa,n) where wa,n = 1
c

p(xa,n)

qa(xa,n)
, where c =

∑Na
n=1

p(xn)
qa(xn)

is n

normalizing constant, p is the density of the shared target distribution, qa is the

density of the proposal distribution, and xa,n ∼ Qa. Note that our strategy eliminates

the need to explicitly evaluate p (xa,n) and qa(xa,n) as the likelihood ratio is estimated

directly by the f -GAN. If desired, expectations can also be approximated using

the sample-importance-resampling (SIR) algorithm where samples approximately

distributed according to p can be simulated by drawing samples from the weighted

empirical distribution q̂a(x) = 1
Na

∑Na
n=1wa,nδ(x− xa,n) (Doucet et al. 2001).

The objective function for the cGAN is shown in Eq. 4.13 and is closely related to the

objective defined in (Nowozin et al. 2016). θ parameterizes the generative model and

ωa parameterizes the variational model for each treatment arm, a. In our experiments,
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Vωa for all a are neural networks that mirror discriminators in the traditional GAN

framework and Pθ is a neural networks that mirrors the generator. Note that the

generator in the original f -GAN framework is usually Qa. In our case, to achieve the

desired directionality of the χ2-divergence, the empirical distribution must be Qa and

the generator must be P .

F (θ, ω1:A) =
A∑
t=1

(
Ex∼Pθ

[
gf (Vωt(x))

]
+

Ex∼Qa
[
− 1

4
gf (Vωa(x))2 − gf (Vωa(x))

])
(4.13)

Importance weights can be computed based on the fact that the bound in Eq. 4.12 is

tight for T ∗(x) = f ′
(
p(x)
q(x)

)
where f(u) = (u− 1)2. We can therefore, approximate the

desired importance weights as described in Eq. 4.5 as wa,n =
gf (Vωa (xa,n))

2
+ 1 for all

a ∈ (1, . . . , A) and n ∈ (1, . . . , Na). Ultimately, the ATE can be estimated between

any two treatment arms according to Eq. 4.9. For example, the ATE between arms 1

and 2 could be estimated as ˆATE =
∑N1

n=1 [w1,nY1,n]−
∑N2

n=1 [w2,nY2,n].

Practical Considerations In the original GAN and f -GAN formulations the

gradients for the generator is replaced with a related gradient that significantly

speeds convergence of the model. Because our objective is minimization of the true

χ2-divergence rather than perfect distributional matching, we do not employ this loss

function trick but instead apply the gradient as derived from the loss function in

Eq. 4.13. Although it is the case that the domain of the Fenchel conjugate for the
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χ2-divergence is R, we constrained it to t ≥ −2 which produces valid likelihood ratios.

Gradient descent-based optimization of GANs is a notedly difficult task. (Mescheder

et al. 2018; Arjovsky/Bottou; Gulrajani et al.) Though many methods are

proposed to stabilize training, we have found it sufficient to employ a set of algorithmic

heuristics: (i) standardization of our data by the joint mean and variance over all A

populations prior to training; (ii) periodically re-centering the distribution of each

discriminator to a noisy estimate of the mean of the generator distribution. This

re-centering is accomplished by setting the value of a vector that is added to the input

of the discriminators.

The approach for minibatch stochastic gradient descent for the cGAN is shown in

Algorithm 1. The objective function F (Eq. 4.13) is optimized by minimizing with

respect to the parameters θ of the generator and maximizing with respect to the

parameters ω1:A of the discriminators.

Related Work Causal inference with observational data has a rich literature

that cuts across many disciplines (Thrusfield 2017; Rubin 1973b, 1974; Pearl

2000) including machine learning (Johansson et al. 2016; Kallus 2018a; Shalit

et al. 2017; Ratkovic 2014; Schwab et al. 2018). More specifically there

have been several approaches to applying adversarial networks for counterfactual

inference (Kallus 2018a; Yoon et al. 2018). However, most existing methods for

counterfactual inference are not directly comparable to the cGAN, as we aim to
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identify the most appropriate counterfactual distribution given the available data and

maximize feature balance whereas most methods evaluate ATE estimation or ITE

estimation directly.

In contrast to representational learning approaches and some GAN approaches, our

approach does not rely on a predefined outcome to identify matched cohorts. The

approach outlined in (Kallus 2018a) is the most similar in spirit to our approach

but differs in that our objective directly minimizes the variance of expectations that

might be used in ATE estimation, whereas (Kallus 2018a) minimizes a bound on

the variance of the average treatment effect on the treated. As a result, there is no

need for a regularizer, to perform cross-validation to select an appropriate level of

regularization, or perform a constrained optimization over weights.

Experimentation. To evaluate the cGAN when the ground truth is known, we

applied the model on simulated data of two populations/treatment arms, A = 2.

See Figure 4.2 Each population was comprised of two subpopulations. Each

subpopulation contained 10 features, drawn from a randomly generated multivariate

normal distribution with a normal-Wishart prior distribution. Population 1 was

composed of an equal number of samples (N=1000) from subpopulation A and

subpopulation B; and Population 2 was composed of an equal number of samples from

subpopulation A and subpopulation C (N=2000). By construction, subpopulation A

is a latent population associated with a natural experiment, since it is part of both

Population 1 and 2.
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Figure 4.2: Schematic of Simulation

Because our simulation deliberately constructs populations from a shared

subpopulation distribution (A), we would expect points generated from this

subpopulation to have higher weights. Intuitively, the variance of importance

sampling estimates should be small for both treatment groups (a = 1 and a = 2) if

the learned target distribution, Pθ is one that overlaps both populations maximally

while excluding density unique to one group.

To better demonstrate how the cGAN supports counterfactual reasoning, we have

additionally conducted an analysis of the average treatment effect (ATE) for our

experiment with simulated data. We simulated a continuous outcome according

to the subpopulation of origin – Pop 1A ∼ N (60, 1); Pop 1B ∼ N (40, 1); Pop 2A
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Figure 4.3: Simulation Results. Left: Select features (i) by population of origin;
(ii) with subpopulation A highlighted; (iii) samples from the generator; (iv) opacity
adjusted by weight. Right: Weights by subpopulation

∼ N (−10, 1); Pop 2C ∼ N (10, 1). Under this outcome function, the estimate of

average treatment effect (ATE) under the mixture distribution (of Pop 1 and Pop 2)

is 50. When estimating the ATE under the overlapping subpopulation distribution –

those from Pop 1A and Pop 2A – the ATE is 70. We applied weights from the cGAN

and comparators to the simulated outcomes to assess the ability of the weighting

methods to estimate one of the two ATEs. In addition, we also calculated the effective

sample size (ESS), neff , using the Kish Method (Kish 1965). The ESS may be used

to determine the quality of a Monte Carlo approximations of importance sampling.

The calculation of neff can be found in the equation below, wherein w are the weights.

neff =
(
∑n

i=1wi)
2∑n

i=1w
2
i
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To investigate (i) feature-balancing weights, (ii) the biasedness of ATE, and (iii) the

ESS, a variety of comparator methods were implemented in addition to the cGAN

. They include binary regression propensity score; generalized boosted modeling of

propensity scores (McCaffrey et al. 2004b); covariate-balancing propensity scores

(Imai 2013); non-parametric covariate-balancing propensity scores (Fong et al. 2018);

entropy balancing weights (Hainmueller 2011); empirical balancing calibration

weights (Chan et al. 2016); optimization-based weights (Keele/Zubizarreta 2014).

To better understand how simulation parameters effect cGAN and comparator

performance on ATE and ESS, we have additionally implemented a sensitivity analysis.

This sensitivity analysis explores how combinations of (i) the per-arm sample size

(N); (ii) the unbiased average treatment effect that exists in the truly counterfactual

populations (’true’ ATE); and (iii) the size of the truly counterfactual populations as a

proportion of the total population (overlap) effect the outcome measures. In addition

to the simulation parameters outlines above – which outlines a per-arm population

size of 2000 in which the size of the truly counterfactual populations is 0.5 (50%) of

the population, and an unbiased, ’true’ ATE of 50 – simulations were replicated for

all combinations of N=[2000, 4000, 8000], overlap=[0.1, 0.5, 0.9] and a ’true’ ATE =

[400, 70, 0.2]. This range for the sensitivity analysis represents the breadth of values

that may be present in these parameters.

Results. The results of our simulation is summarized in Figures 4.3. In the left

hand-side of the Figure, the columns show the marginals of three pairs of continuous

features. Row (i) shows the raw data, colored by which population units were drawn
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from. Row (ii) shows the same data as above, but coloring by subpopulation to

highlight the overlapping distribution. Row (iii) shows a set of samples from the

generator after training colored in blue. Row (iv) depicts the original data from

Row (i) with the opacity of data points reflecting the importance weights. The

right-hand side of the Figure shows the distribution of weights by subpopulation.

Note that, in both Populations 1 and 2, the mean weights of units from subpopulation

A have weights near 5x10−4, which is the uniform weight when 2000 units are in each

population. Units from other subpopulations have near negligible weights, and would

not meaningfully contribute to expectations in 4.9.

Subpopulation Mean Weight
1A 4.997x10−4

2B 2.557x10−7

2A 4.992x10−4

2C 7.863x10−7

Table 4.1: Results of Application to Simulated Data. Mean cGAN-weight by
subpopulation.

In the left-most figure, as you move down any column of feature pairs, it is apparent

that points from the overlapping subpopulation A are both captured by the generator

and assigned higher weights. This is confirmed by plotting the weights of data points

by subpopulation (right-hand side of 4.3). Weights from subpopulations 1A and 2A

are substantially higher than those from subpopulations 1B and 2C.

The results of this simulation further demonstrate that the ATE estimate from

cGAN-weighted data is less biased than estimates from other weighting methods,

given their respective targets. By construction, the causal effect of the comparable
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subpopulations is 70. cGAN-weighted data produced an ATE of 70.01. We see

similarly good performance when inspecting the ESS. The cGAN has an ESS of

3870. Given that there are 4000 units that are comparable across the two arms (each

subpopulation contains 2000 units), this is an appropriate estimate (Table 4.2).

The results of the sensitivity analysis can be found in Appendix for Aim 3.1. The

results of this analysis show that superiority of cGAN performance over comparator

methods persists despite the simulations parameters. Across all combinations of

per-arm sample size, overlap, and ’true ATE, the cGAN consistently produced the

least biased estimate of ATE and yielded the maximally appropriate ESS given the

parameters.

Weighting Method ATE ESS
unweighted 50.03 8000
IPW 92.00 6551
clipped IPW 87.24 6997
binary regression PS 92.00 6551
generalized boosted modeling PS 84.51 7207
covariate balancing PS 91.83 6686
non-parametric covariate balancing PS 37.65 11
entropy balancing 104.13 65
empirical balancing calibration weights 52.06 65
optimization-based weights 52.07 114
cGAN 70.01 3870

Table 4.2: Results of Simulation. The average treatment effect and effective sample
size (ESS) after application of weighting methods from the Counterfactual χ-GAN
and comparators.
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Discussion. In Aim 2.1, we introduce the Counterfactual χ-GAN. It is a deep

generative model for feature balance that minimizes the variance of importance

sampling estimates of treatment effects. We leverage the f -GAN framework for

estimating the χ2-divergence and likelihood ratios necessary for achieving this.

The experiments presented here suggest that cGAN is an effective method of learning

feature balancing weights to support counterfactual inference. If we assume that all

potentially confounding variables are observed, the superiority of cGAN in learning

balancing weights, suggests that ATE borne from cGAN-weighted cohorts would be

less biased than those estimates generated from traditional weighting methods.

Limitations. This method does, however, come with limitations. Training of the

model is completed via backpropogation. Therefore, matching based on a combination

of discrete and continuous values poses a challenge. In addition, GANs are well known

for their instability and lack of objective measures for convergence. This work shares

those limitations. Furthermore, assessing model convergence is a difficult task, and at

present, is only evaluated uring heuristics. The simulations presented in Aim 2.1 may

also present a limitation for their research. Notably, the data generation procedure

outlined here may be a simplified task for the model
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Aim 2.2. Apply the Counterfactual χ-GAN to

observational datasets.

Background. Observational data is a vast but imperfect source of biomedical data.

The calculation of unbiased causal estimates from this source are often framed as

identifying a natural experiment. Natural experiments are a type of observational

study in which researchers do not have the ability to assign the treatment, but

treatments are nonetheless assigned nearly randomly. They are most valid when

they closely resemble a true experimental setting, in which treatment is randomized

(Meyer 1995; Shadish et al. 2002; Academy of Medical Sciences 2007; Craig

et al. 2012). Popular pre-analysis methods for approximating natural experiments

include matching, in which treatment units are paired with similar comparator units

based on the pre-treatment features (Wilks 1932; Cochran 1953; Greenberg 1953;

Billewicz 1965; Rubin 1973a); and weighting, in which units are disproportionally

considered so that the weighted expectation of features are similar across arms

(Czajka et al. 1992; Robins et al. 2000; Lunceford/Davidian 2004). All weighting

methods generalize matching methods, and conversely, all types of matching are special

cases with discrete weights (Imai 2013). Under a matching procedure, units may

go unpaired, which is inefficient and may introduce new bias (Rosenbaum/Rubin

1985b; King 2011b). Weighting is a more efficient method for identifying a natural

experiment. However, under many weighting techniques, downstream estimates

may be unstable. A stable weighting method to support causal inference from
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observational data would increase the confidence of these claims and may permit the

identification of effective interventions and improve outcomes. This Aim proposes the

Counterfactual χ-GAN (cGAN), a variation on a generative adversarial network that

learns stable feature balancing weights for two or more treatment and comparator arms.

The cGAN mechanics, intuition, and learning procedure are described in Aim 2.1.

Research Questions. Can a generative adversarial network (GAN)-based model

improve feature-balance for noisy observational cohorts?

Methods. To determine if the cGAN can improve feature-balance in noisy

observational cohorts, we additionally applied the model to observational cohorts

curated according to the indication of experiments using real-world clinical data from a

large, academic medical center. For this experiment, we constructed the treatment and

comparator cohorts according to the protocol and indication of a published randomized

clinical trial. The experiment compares sitagliptin and glimepiride in elderly patients

with Type II Diabetes Mellitus (N=144 per arm) (Hartley et al. 2015). We present

the 37 most frequent clinical measurements from the electronic health record.

Data. Cohorts were created from the Columbia University Medical Center’s EHR

according to the indication of a published RCT. The selected trial compares sitagliptin

and glimepiride in elderly patients with Type II Diabetes Mellitus (T2DM). Patients

were identified from the NewYork-Presbyterian Hospital EHR according to the

indication and age restriction of the published RCT. Eligible patients must have
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at least two diagnoses of T2DM, never had an inpatient exposure to either drug, never

had a previous prescription of either drug, but had at least one new prescription

of either drug. Data from 144 patients taking sitagliptin and 144 patients taking

glimepiride were included.

Evaluation. We evaluate the ability of the cGAN to improve feature balance by

comparing the Absolute Standardized Difference of Means (ASDM) between the

treatment and comparator cohorts under different weighting methods. the ASDM is a

popular method of assessing cohort similarity, with a lower metric corresponding to

improved feature balance. The ASDM is presented for the cGAN and the comparator

weighting methods – binary regression propensity score; generalized boosted modeling

of propensity scores (McCaffrey et al. 2004b); covariate-balancing propensity scores

(Imai 2013); non-parametric covariate-balancing propensity scores (Fong et al. 2018);

entropy balancing weights (Hainmueller 2011); empirical balancing calibration

weights (Chan et al. 2016); optimization-based weights (Keele/Zubizarreta 2014).

Under the clipped-IPW procedure, propensity scores greater than 90th percentile and

less than 10th percentile are assigned to the values of the percentiles at 90th and 10th,

respectively (Cole/Hernán 2008).

Results. The ASDM for the clinical cohorts is presented in Figure 4.4. These findings

are summarized by the mean ASDM over all features, under the varying weighting

methods in Table 4.3. cGAN improved mean ASDM from the unweighted cohort and

improved feature balance the most among all evaluated methods. Note that this task is
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Figure 4.4: Absolute standardized difference of the means (ASDM) of real-world
clinical features after application weighting methods from the Counterfactual χ-GAN
and comparators.

particularly challenging due to the high dimensionality of the data and small study size.

The results of this experiment can be found in Figure 4.4 and Table 4.3. They

demonstrate that cGAN-weighting achieves better feature balance than comparator

methods.

Discussion. The application of the model to real-world EHR data, demonstrates

that this method could provide an alternative means to causal estimation from

observational data when the assumptions of no unobserved confounding, positivity,
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Weighting Method ASDM
unweighted 0.1103
IPW 0.0876
clipped IPW 0.0631
binary regression PS 0.0625
generalized boosted modeling PS 0.0749
covariate balancing PS 0.0681
non-parametric covariate balancing PS 0.0596
entropy balancing 0.0524
empirical balancing calibration weights 0.0524
optimization-based weights 0.0536
cGAN 0.0364

Table 4.3: Results of Application to Clinical Data. Absolute standardized difference of
the means (ASDM) of real-world clinical features after application weighting methods
from the Counterfactual χ-GAN and comparators.

and SUTVA are met. Our experiments suggest that the flexibility of our framework

produces improved feature balance relevant for valid causal estimates. Furthermore,

the use of cGAN-learned likelihood ratios/importance sampling weights to identify

this overlapping population, permits the visualization of distributions region in which

expectations – such as the ATE – are well-estimated.

Limitations. As noted in Aim 2.1, the cGAN does have limitations, including

challenges in a training procedure that accommodate both continuous and discrete data

types and the assessment of convergence. Though sensitivity to hyperparameters was

present in the simulation of Aim 2.1, it was a greater encumbrance in the application

to clinical data. The model is very response to small changes in hyperparameters,

which is compounded in high-dimensional settings. The experimental set up for this

Aim also suffers limitations. First and foremost, preprocessing assumptions were

made to faciliate the model’s application to clinical data. These include (i) which
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measurement to late, if multiple of the same measurements were present and (ii)

imputation if a measurement was missing. Both of these techniques may affect or

bias the data in some way.

In order to determine the utility of the cGAN in supporting unbiased causal claims

from observational data, it would need to be compared to the gold-standard. In

this case, the gold-standard would be the prospective, randomized, experiment that

we based our cohort off of, Hartley et al. 2015. However, we found that the

observational population from NYP differed dramatically from the experimental

populations. As such, these populations will never be comparable, despite enforcement

of exchangeability by the model. This could be addressed by multi-site collaboration,

provided the patient heterogeneity matches that of the target RCT.
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Chapter 5

Aim 3. Develop a method for high-throughput attributable

risk estimation with observational data.

Attributable risk describes the risk for an outcome that can be allocated to a particular

cause. Observational attributable risk estimation is implicitly causal inference and

as with all causal inquiries with observational data, the predicating assumptions are

important. In the high-dimensional setting with many potential causes, it may be

difficult to construct expert-guided directed causal graphs. Instead, we develop a

model that applies a simple assumption that captures an intuitive notion of causality

known as causal independence. Typical methods of high-dimensional attributable risk

estimation include signal detection approaches such as the Gamma Poisson Shrinker

(GPS) and regression approaches such as Penalized Logistic Regression (PLR). Models

such as PLR make good predictions of the outcome for individuals, but often result in

global estimates that are unstable or lack interpretability as attributable risk estimates.

Models such as the GPS make interpretable global estimates of risk, but are univariate,

cannot account for confounding, and lack inferences for individuals. This research

proposes the Noisy-Or Risk Allocation (NORA) model, a multivariate latent variable

model that assumes causal independence to estimate global risks, predict outcomes,

and estimate causes at the individual level. We applied NORA in simulation and to
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clinical data and demonstrate that it is able to predict outcomes with similar or better

performance than related methods, recover known, clinically meaningful attributable

risk estimates, and produce interpretable estimates of the causes for an individual’s

outcome.
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Aim 3.1. Implement a probabilistic model,

Noisy-OR Risk Allocation (NORA), and develop

efficient probabilistic inference procedures.

Background. In the practice of clinical medicine, we seek to intervene on the

normal course of disease to improve health. This assessment begins with the

identification of the events, conditions, or characteristics – the exposures – that play

a role in the occurrence of our outcome (effect) of interest.(Rothman 1976) The

relationship between exposure and outcome is quantified by measures of association,

most common of which is risk. In epidemiology, the risk is the is the proportion

of subjects that develop the outcome of interest within a specific period, out of all

subjects followed within the same period.(Cole et al. 2015) A variation of risk is the

attributable risk (AR). AR is the proportion of an outcome in a population that could

be prevented by elimination of a causal exposure from the population if there are (i)

no interactions between causal exposures and (ii) all other effects of exposures are

removed. (Leviton 1973; Miettinen 1974; Markush 1977) The AR may also be

referred to as the population AR (Breslow/Day 1980; Boslaugh/McNutt 2008);

the risk difference (Sinclair 2003), or the population etiologic fraction (Kleinbaum

et al. 1982; Schlesselman/Stolley 1982).

ARs support the inference of whether a given outcome was caused by a particular
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exposure. (Rosen 1978) Such an assessment can be made at the population level

(global inference) or at the individual level (local inference). At the population level,

the AR can be interpreted as the proportional increase in average outcome risk over a

specified time interval that would be achieved when under the exposure of interest

from the population while accounting for other risk factors. (Rockhill et al. 1998;

Greenland/Robins 1988) While at the individual level, the AR can be interpreted

as the increase in outcome risk for a particular patient that would be achieved when

under the exposure of interest, given that individuals other exposures. AR’s local

inferences could be used to inform treatment by highlighting the likely cause of an

outcome for a single patient. While the global inferences may assist in identifying risk

factors to be prioritized in public health policy, or the treatment of a single patient in

which features are not known.

Ideally, estimation of AR would be based on knowledge of the relevant causal graph,

in which relationships between exposures, outcomes, and confounders are made

explicit. But in the setting of many potential exposures – the high-dimensional setting

– causal graph construction may be infeasible. As an alternative, confounders to AR

estimation may be controlled for through propensity-score modeling, however this

may be inefficient when estimating AR for many exposures. However, this approach

does not lend itself to making local inferences about a particular patient. In this

work, we explore a particular model specification for estimating attributable risks in

the context of unstructured binary exposures and outcomes.
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In this setting, typical methods of AR estimation include the (i) calculation of excess

risk by the (Levin 1953) definition; (ii) approximation using disproportionality

methods for signal detection such as RRs or the Gamma Poisson Shrinker (GPS); (iii)

and regression-based methods such as Penalized Logistic Regression (PLR). The Levin

Definition and approximation by disproportionality methods, make interpretable

global estimates of ARs, but lack inferences for individuals. Furthermore, these

methods are univariate and cannot account for confounding. Regression-based

methods are powerful tools for the prediction of individual-level outcomes, but may

often result in global estimates that are unstable or lack interpretability as AR

estimates.

This research proposes the Noisy-Or Risk Allocation (NORA) model. NORA is a

multivariate latent variable model with a likelihood that captures the notion of causal

independence. Unlike comparator methods, NORA is able to estimate global ARs,

predict outcomes, and estimate ARs of exposures at the individual-level.

Research Questions. Will a Bayesian model that encodes the assumption of causal

independence produce attributable risk estimates that are less biased than other state-

of-the-art methods?

The Model. NORA is a Bayesian, probabilistic model that supports AR estimation

of an uncertain causal system in which many potential risk factors exist. Let N be

the number of patients and K be the number of unique exposures. Xn,k is a binary
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indicator of exposure k for patient n; Zn,k is a binary indicator of activation of exposure

k for patient n; Rk is the AR of exposure k; and Yn is a binary indicator of outcome

for patient n. Activation of an exposure is defined as a binary variable representing

whether that exposure is a cause of the outcome for patient n. In other words, for

an exposure Xn,k to contribute to the outcome Y , it must be present (Xn,k = 1) and

activated (Zn,k = 1). The activation of the kth risk for the nth person is given by Zn,k,

which is dependent on both the presence (Xn,k) and the risk (Rk) of the exposure, k.

Xn,k

Zn,kRk

Yn

↵

�
1

2

�1

�2

N

K

1

Figure 5.1: Noisy-Or Risk Allocation Model

The model is predicated upon the Noisy-Or Gate, a model which expresses the

conditional probabilities of one or more binary exposures on a single binary outcome

(Good 1959; Cheng 1997; Pearl 1993; Kim/Pearl). The modeling assumptions

of NORA are intuitive and many causal problems of interest can be distilled into a
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binary representation of the data. The exposures are assumed to affect the outcome

independently, a property known as causal independence (Srinivas 2013; Blutner).

The notion of causal independence is formalized in Equation 5.1. This assumption

means that the probability of surviving an outcome given an exposure, is independent

of the probability of surviving, given other exposures.

p(Y = 0|X) =
I∏
i=1

p(Y = 0|Xi) (5.1)

The Noisy-Or Gate satisfies this assumption and its functional form is shown in

Equation 5.2.

p(Y |X) = 1−
I∏
i=1

(1− p(Y |Xi)) (5.2)

The generative process for NORA is based on this and given by Algorithm 2. The

full joint distribution is shown in Equation 8.1 and the associated graphical model is

shown in Figure 5.1.

p(Z, Y,R, α, β) = p(α;λ)p(β;κ)
N∏
p(Yn|Zn,1:K)

K∏
p(Rk|α, β)

K∏ N∏
p(Zn,k|Xn,k, Rk)

(5.3)

The likelihood of Y embodies the assumption that causal influences are independent in

determining the effect. Given Xn, the posterior distribution of Zn is deterministically

0 when Y = 0, and when Y = 1 the posterior of Zn,j is independent of the posterior

for Zn,k for all j and k, given that at least one cause is activated (i.e., Zn,l = 1).
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Algorithm 2: Generative Process for the NORA Model

Choose α ∼ Gamma(λ1, λ2)
Choose β ∼ Gamma(κ1, κ2)
for k ∈ {1, . . . , K} exposures do

Choose an attributable risk Rk ∼ Beta(α, β)
end
for n ∈ (1, . . . , N) patients do

for k ∈ {1, . . . , K} exposures do
Choose an activation Zn,k ∼ Bernoulli(Xn,kRk)

end

Choose an outcome Yn ∼ Bernoulli
([

1−
∏K

k=1(1− Zn,k)
])

based on the

activations
end

Simply, when outcome is absent (Y = 0), there is an absence of explaining-away and

all activations (Z) must be zero; when the outcome is present (Y = 1), the activations

(Zs) are coupled by explaining-away, only in the absence of an activated cause. This

corresponds to the intuitive assumption of causal independence. For example, taking

drug B does not influence whether drug A causes the outcome.

NORA has a Bayesian formulation that confers many benefits for causal AR modeling.

It can accommodate AR estimation for which there is varying amount of evidence. The

model can encode our assumptions about what the data look like using informative

priors. Our prior on the risks (R) bounds them between zero and one, constrains the

risks in a natural way. These, in combination with the non-negativity of the risks

allows for inference in high dimensional datasets with limited observations.

As is the case with other adjustment methods, like logistic regression, NORA assumes

strong ignorability and adjusts for confounding through conditioning on observe

confounders. However, the success of such methods to support causal estimation

depends on the accuracy of the likelihood assumptions. ARs from NORA may be
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interpreted as causal if the causal independence assumption holds and there is no

unobserved confounding.

Inference The risks (R) and the activations (Z) were inferred using an optimized

Gibbs sampler. A Metropolis algorithm was used to perform inference on the risk

priors (α and β). The posterior of Z is given by Equation 5.4, which can be normalized

and sampled via enumeration.

p(Zn,k| . . .) ∝
[
1−
(
1−Zn,k

)∏
j 6=k

(
1−Zn,j

)]Yn[(
1−Zn,k

)∏
j 6=k

(
1−Zn,j

)](1−Yn)
(Xn,kRk)

Zn,k(1−Xn,kRk)
1−Zn,k

(5.4)

Given that R is a conjugate prior for Z, the posterior of R is Beta distributed,

Beta(α∗, β∗), where α∗ is given by Equation 5.6 and β∗ is given by Equation 5.7.

The posteriors for α and β were sampled with a Metropolis algorithm based on the

likelihood of their respective Markov blankets.

p(Rk| . . .) =
1

B(α∗, β∗)

[
Rα∗−1
k (1−Rk)

β∗−1] (5.5)

α∗ = α +
N∑
n=1

Zn,k (5.6)

β∗ = β +
N∑
n=1

Xn,k −
N∑
n=1

Zn,k (5.7)

Data. Data for Aim 3A will be simulated according to Figure 5.2
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Figure 5.2: NORA Simulation Schema

Evaluation. To understand NORA’s properties, we simulated data according to the

toy causal system represented in Table 1, wherein High Cholesterol is the exposure

with the greatest risk for the outcome, myocardial infarction (MI). We hypothesized

that we would recover the risk of MI associated with High Cholesterol within a small

margin of error when all variables are observed despite disregarding knowledge of the

causal graph. We also hypothesize that the degree of bias due to confounding via the

backdoor path would be less under the NORA model than under logistic regression

(LR). The data in the simulation is generated such that Sedentary Lifestyle could

serve as a confounder of the relationship between High Cholesterol and MI in the

setting where Obesity and Sedentary Lifestyle are unobserved. In all simulations,

we will compare the average risk estimates over 100 trials for all variables on the

outcome, MI, as determined by both the NORA model and LR.

Both NORA and LR will be applied to the simulated data twice; (i) the Main Effect
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Model, in which the confounding variables (Obesity and Sedentary Lifestyle) are

not observed; and (ii) the Adjusted Model, in which the confounding variables are

observed. The true causal attributable risk of myocardial infarction is known to be

0.3 for High Cholesterol. We evaluated the empirical bias of both methods in the

simulation.

Results. NORA, modeling main-effects only, resulted in 1000-trial average for the

risk of MI from High Cholesterol of 0.177; with full adjustment for confounding, NORA

found the 100-trial average for attributable risk of MI from High Cholesterol to be 0.298

(Truth = 0.30); LR, when modeling main effect only found the attributable risk of MI

from High Cholesterol to be 0.459; and when modeled with all confounders, resulted

in a probability of 0.821. When the backdoor-path/confounders were unobserved, the

risk estimate of High Cholesterol from the NORA model changed 37.1%, versus 78.9%

when estimated from LR. Given the structure of our simulation, it is not surprising

NORA was able to recover the true risk of High Cholesterol in our simulation, with

greater accuracy than the LR. However, the misspecification of using LR when causal

independence exists also led to a greater sensitivity to unobserved confounders. We

also note that the lack of knowledge of the causal graph did not adversely affect the

estimate despite the collinearity of High Cholesterol, Obseity, and Sedentary Lifestyle.

Discussion. NORA a new method of attributable risk estimation that supports

both local and global inferences. The likelihood of the model encodes an intuitive

and simplifying assumption of causality. In the absence of causal graph construction,
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such simplifying assumptions can be powerful tools for estimation even in the context

where the assumptions are only partially met as indicated by our simulations.Our

simulation demonstrates that NORA is able to recover risks with high accuracy, and

indicate that it may be less prone to confounding via the backdoor path than other

models when misspecified. Unlike other methods of causal inference with observational

data, our simulations have shown that if there is significant collinearity in a causal

graph, NORA is able to accurately estimate attributable risks nonetheless in absence

of knowledge of the graph structure.

Limitations. As with all models, NORA does have limitations. The Model is

Bayesian, which confers many benefits, however we make certain distributional choices

and have not assessed model sensitivity to those choices. With the simulation presented

in Aim 3.1, the data was generated based on an assumption of causal independence,

which may be a simplified learning task for our model. However, the simulation

was primarily to evaluate the impact of lack of knowledge of the causal graph and

model misspecification when logistic regression is used to control for the effect of other

exposures in a causally independent system.

Aim 3.2. Apply the NORA model to observational

datasets.

Background. To determine NORA’s utility in practice, we applied the model to

ten different observational cohorts with the hypothesis that the model would be able
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to recover known, clinically meaningful causal relationships previously acknowledged

in published literature.

We conducted several experiments, each associated with a specific outcome of interest

and a set of exposures from a specific data type. Outcomes included disseminated

intravascular coagulation (DIC), glaucoma, hearing loss, heart failure, Kaposi sarcoma,

mucositis, renal impairment, disorder of the spleen, and hypothyroidism. More

information regarding the domains of exposure can be found in Table 5.1.

NORA’s mechanics, intuition, and learning procedure are described in Aim 3.1.

Outcome Exposure domain

disseminated intravascular coagulation (DIC) procedures
glaucoma conditions
hearing Loss ingredient-level drugs
heart Failure conditions
Kaposi Sarcoma conditions
mucositis ingredient-level drugs
renal impairment conditions
Disorder of the Spleen conditions
hypothyroidism procedures
mucositis procedures

Table 5.1: Application to clinical data. Outcomes of interest and domains of exposures.

ARs were estimated for the causal systems within the EHR using (i) NORA, (ii)

L1-regularized Logistic Regression (L1), (iii) the Levin-AR calculation (Equation 2.30),

and (iv) AR estimation using DPAs, including the RR and GPS-EBGM (Equation

2.31).
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Research Questions. Can a Bayesian model that encodes the assumption of causal

independence be used to support high-throughput attributable risk estimation with

observational data?

Data. Observational cohorts for NORA’s application to clinical data were procured

from the a large academic medical center’s electronic health record (EHR) system.

The EHR contains 5.4 million clinical observations from 1986 to 2017. Patients

encounters are documented in the EHR at each outpatient, inpatient, and emergency

department visit. Data modalities generally include, but are not limited to, diagnoses,

clinical measurements, medications, and procedures.

Construction of observational cohorts was the same workflow for all outcomes. (1)

Eligible patients were required to have at least 365 days of clinical observation.

Because this requirement is the same for all outcomes of interest, each cohort

contained the same number of patients (N=105,377). (2) From this population,

patients were identified as having the outcome of interest or not. (3) The set of

exposures (either procedure, condition, or ingredient-level drug) was determined as

the unique set of exposures from the outcome-positive and outcome-negative patients.

(i) For outcome-negative patients, this includes all exposures from the beginning to

the end of the clinical record. (ii) For outcome-positive patients,this includes all

exposures that occurred from the beginning of the patient record to the day before

their outcome diagnosis. (4) Lastly, exposures were binarized for all patients in the

cohort – for any exposure, k, Xk = 1 if patient n had the exposure, and Xk = 0 if
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they did not have the exposure. Details on how outcomes were defined and counts of

the number of positive patients and number of unique exposures can be found in the

Appendix for Aim 3.2.

To accommodate the spontaneous occurrence of the outcome in the absence of any

true risk-factors, we have included an exposure that is present for all individuals (the

intercept). (Henrion 1987) As the EHR may be noisy or incomplete, the intercept

will permit AR estimation by NORA in the absence of perfect data from this source.

Evaluation. To contextualize the results of our experiments with clinical data, we

propose a three-part evaluation that addresses (1) the local inference of the outcome,

(2)the global inference of the exposures, and (3) the local inference of the exposures.

The local inference of the outcome is evaluated through the predictive performance of

a held-out dataset. Cohorts were split into train and test sets (80 and 20, respectively).

Such an assessment is only feasible for methods in which prediction is possible, so only

NORA and L1 may be evaluated in this respect. ARs for NORA will be determined by

taking the median value of model-learned risks over the final 250 iterations of inference.

The global inference of the exposures is evaluated by comparing the gold-standard,

real-world AR estimates with the model-based AR estimates from NORA, L1, the

Levin-AR calculation, RR, and MGPS. A model-based AR estimate that coincides

with the real-world AR estimate is indicative of a stable, unbiased method. To
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evaluate this completely, thousands of exposure-outcome relationships would require

a real-world AR estimates. Such a literature review is infeasible. To demonstrate how

much an assessment would take place, we present an analysis of one exposure for the

outcome of Kaposi sarcoma.

The local inference of the exposures is evaluated through an inspection of high-AR

exposures for an individual with an outcome of interest. Such an assessment employs

both the risk-factors that a single patient is exposed to, and the AR associated with

those exposures. We evaluated the posterior distribution over the set of activations

(Zn) to evaluate the probability that a given exposure is a cause for a patient’s outcome

given a point estimate of the remaining latent variables. Given the large number of

patients, this evaluation would be infeasible to carry out or summarize for all patients.

To demonstrate how such an assessment would take place, we present an analysis of

one individual for the outcome of heart failure.

Results. The exposures and ARs for the five highest risk exposures, as estimated by

NORA, L1, the Levin-AR calculation, RR, and GPS-EBGM, can be found in the

Appendix for Aim 3.2.

When evaluating the local inference of the outcome, NORA had better predictive

ability than L1 for certain outcomes and L1 had better predictive performance for

others. Overall, NORA has a higher average AUC of 0.6817 as compared to L1 with

an AUC of 0.6669. The results of this evaluation are summarized by the area under
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the receiver operating curve (AUROC) reported in Table 5.2.

NORA L1

disseminated intravascular coagulation (DIC) 0.8878 0.7773
glaucoma 0.7017 0.6999
hearing loss 0.5056 0.6329
heart failure 0.8030 0.7953
Kaposi sarcoma 0.8011 0.5624
mucositis (v drugs) 0.5291 0.6560
renal impairment 0.8170 0.7965
disorder of the spleen 0.6248 0.5000
hypothyroidism 0.5643 0.6349
mucositis (v procedures) 0.5829 0.6134

Table 5.2: Local inference of the outcome – Area Under the Receiver Operating Curve
(AUROC) for NORA (median over last 250) and L1

For each method, the three exposures with the highest ARs for Kaposi sarcoma are

presented in Table 5.4. Kaposi sarcoma is a cancer of endothelial origin. Prior to

the 1980s, the disease was considered rare, only occurring in a small population of

men elderly men from an isolated geographic region. The disease may also arise in

immuno-compromised or immuno-suppressed patients. After the 1980s, the disease

increased in prevalence, with many cases due to the spread of human immunodeficiency

virus (HIV) (Gupta/Kumar). A 2018 article by Liu, et al reported the AR of HIV for

Kaposi sarcoma to be 0.0048. (Liu et al. 2018) NORA, L1, the Levin-AR calculation,

and GPS-EBGM all identify HIV as one of the highest AR exposures. However, the

estimates from L1, the Levin-AR calculation, and GPS-EBGM are extremely high,

only the estimate from NORA is the correct order of magnitude. This suggests that

NORA may produce accurate population-level estimates of attributable risks. The

top-1 attributable risks for all evaluated outcomes are shown in Table 5 and top-5
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results for each outcome can be found in Appendix for Aim 3.2.

Gold-Standard NORA L1 Levin AR RR GPS-EBGM

Human
immunodeficiency

virus infection
0.0048 0.0070 0.7872 0.2022 0.9566 0.9603

Table 5.4: Global inference of the exposures – attributable risk estimates of HIV for
Kaposi sarcoma vs gold-standard estimate

The results of our simulation to evaluate the local inference of the exposures are shown

in Figure 5.3. This heart failure patient had twenty unique exposures. Of these,

cardiomyopathy (0.367), preinfarction syndrome (0.084), coronary arteriosclerosis

in native artery (0.045), and essential hypertension (0.023) were the highest AR

exposures for this patient. These exposures are known risk-factors of heart failure and

are biologically sensible. Though this patient had other exposures, such as abdominal

pain and sprains and strains of joints and adjacent muscles, these do not have a causal

relationship with the outcome and have an estimated AR of near zero.

Discussion. NORA a new method of attributable risk estimation that supports both

local and global inferences. When applied to real-world clinical data, NORA identifies

a cohesive set of high-AR risk factors that have reasonable estimates of risk. Our

model is able to identify global risks for high-burden and rare clinical outcomes. To

our knowledge, NORA is the only model of AR that is able to support these three

types of inferences related to attributable risk estimation. By design, this model may

be simultaneously applicable at the patient-level with outcome predictions and causal

136



ab
do

m
in

al
 p

ai
n

ac
ut

e 
po

st
he

m
or

rh
ag

ic
 a

ne
m

ia

ac
ut

e 
up

pe
r 

re
sp

ir
at

or
y 

in
fe

ct
io

n

as
th

m
a

be
ni

gn
 n

eo
pl

as
m

 o
f 

co
lo

n

ca
rd

io
m

yo
pa

th
y

ch
es

t p
ai

n

co
ro

na
ry

 a
rt

er
io

sc
le

ro
si

s 
in

 n
at

iv
e 

ar
te

ry

es
se

nt
ia

l h
yp

er
te

ns
io

n

go
ut

hy
pe

rl
ip

id
em

ia

hy
po

−
os

m
ol

al
it

y 
an

d 
or

 h
yp

on
at

re
m

ia

in
te

rn
al

 h
em

or
rh

oi
ds

 w
it

ho
ut

 c
om

pl
ic

at
io

n

le
ak

 te
rm

m
us

cl
e 

pa
in

no
ni

nf
ec

ti
ou

s 
co

li
ti

s

pr
ei

nf
ar

ct
io

n 
sy

nd
ro

m
e

pr
em

at
ur

e 
be

at
s

pu
re

 h
yp

er
ch

ol
es

te
ro

le
m

ia

sp
ra

in
s 

an
d 

st
ra

in
s 

of
 jo

in
ts

 a
nd

 a
dj

ac
en

t m
us

cl
es

0.00

0.25

0.50

0.75

1.00

Exposures

A
tt

ri
bu

ta
bl

e 
R

is
k

Figure 5.3: Local inference of the exposures – the average attributable risk of each
exposure for a single heart failure patient.

estimation and at the population-level informing public-health with estimates of risks

across the entire population.

Limitations. In addition to those noted in Aim 3.1, the application of NORA to EHR

data may confer additions limitations. The model may learn artifacts of the record

itself, rather than true documentation patterns. Additionally, the model depends on

the accuracy of EHR timestamps. If timestamps are off then we may (i) miss certain

exposures timestamp is erroneously in the future and beyond the outcome) or (ii)

reverse the temporality, in which the outcome may appear to be an exposure because

the timestamp is erroneously late. Lastly, the assumption of causal independence

may not be true. In that context, it is unclear how the inferred parameters should be

interpreted if this model is applied.

137





Chapter 6

Conclusions

Understanding the relationship between cause and effect answers causal questions,

which are absolutely fundamental in many disciplines, but none more so than

healthcare. In healthcare, we are interested in intervening in what would be the

normal course of disease in order to improve the lives of individuals. If we understand

and communicate causes causes, then we are more likely to take better action or

optimize an intervention. Knowledge of what causes serious, high-burden outcomes

supports the explanation and understanding of the phenomenon and informs our

treatment and prevention new cases. And this is principally what happens in the

practice of medicine everyday. We study things to understand what to do to live

healthier lives, and we make this assessment with causal inference.

The methods that I presented in this dissertation address two complex tasks in causal

inference from observational data – the replication or evaluation of existing causal

knowledge, and the generation of new causal knowledge.

In Aim 1 of this dissertation, I address the ability to replicate and evaluate causal

claims from observational data sources. A number of techniques exist to improve
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and support causal estimates from observational data, but at present, there is no

widely-used framework to evaluate modeling assumptions relative to experimental

data. RCTs, which we accept to be the least biased source of causal knowledge, can

be compared to estimates generated from observational data and, thus, provide a

methodology to assess the validity of causal claims and a platform with which to

evaluate inference methods. This can serve as framework for evaluating methods for

causal inference. The research in Aim 1 empirically demonstrates that eligibility

criteria are not sufficient for identifying the applicable real-world population in

which experimental treatment effects will replicate. For perfect replication with

observational data, the distribution of treatment effect must be the same as that

in the trial. Therefore, the inability of perfect replication may due attributable to

the presence of HTE, which is not accounted for with the eligibility criteria. This

has important consequences on the practice of EBM, as our research indicates

that evidence cannot reasonably be transferred to a patient given the current data

reporting standards.

In Aims 2 and 3 of this dissertation, I present new methods to generate causal

knowledge from observational data. In Aim 2, I address causal knowledge that arises

from the comparison of two cohorts. And in Aim 3, I address causal knowledge in the

form of attributable risk estimation.

Aim 2 presents a novel, deep-learning based method that uses adversarial training

to learn feature-balancing weights, called the Counterfactual χ-GAN (cGAN).
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The experiments presented in Aims 2.1 and 2.2 suggest that cGAN is an effective

method to learn balancing weights, that may support counterfactual inference. The

application of the model to real-world EHR data, demonstrates that this method

could provide an alternative means to causal estimation from observational data when

other assumptions of counterfactual inference are met. Our extended simulations

suggest that our framework is flexible to produce valid causal estimates from a variety

of settings. Furthermore, if all confounding variables are assumed to be observed,

the superiority of cGAN suggests that average treatment effects (ATE) borne from

cGAN-weighted cohorts would be less biased than comparator methods.

Aim 3 presents a new, high-throughput method of AR estimation – Noisy-Or Risk

Allocation (NORA) model. In all causal inquiries, the predicating assumptions are

important. In the high-dimensional setting, the assumption of causal independence is

particularly important because it supports inference in the presence of many causes

– the multivariable setting. When the causal graph is infeasible to construct in this

setting, but we would like to make inferences over many exposures, the assumptions

of NORA offer advantages for unbiased AR estimation. The model combines the

Bayesianism and the multivariable modeling with a likelihood that captures the notion

of causal independence. This allows the model to effectively account for confounding

and collinearity. assuming conditional ignorability and SUTVA, the experiments

presented in Aims 3.1 and 3.2 demonstrate that NORA is able to recover known,

clinically meaningful causal relationships with similar or better performance than

the state-of-the-art. Furthermore, unlike comparator methods, which are unable to
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support inferences at the global and local levels. To our knowledge, NORA is the only

model of attributable risk that is able to support both types of inference, which helps

us rectify care of a single patient with public-health and aids in our understanding of

health-promotion.
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Hsu, Jesse Y./José R. Zubizarreta/Dylan S. Small/Paul R. Rosenbaum. 2015. “Strong

control of the familywise error rate in observational studies that discover effect

modification by exploratory methods”. Biometrika 102 (4): 767–782.

Hyman, Ray. 1982. Quasi-Experimentation: Design and Analysis Issues for Field

Settings (Book).

Iacus, Stefano M./Gary King/Giuseppe Porro. 2012. “Causal inference without balance

checking: Coarsened exact matching”. Political Analysis 20 (1): 1–24.

Ihrie, John. 2019. EBGM Disproportionality Scores for Adverse Event Data Mining.

Illari, Phyllis McKay/Federica Russo/Jon Williamson. 2011. “Causality, theories and

medicine”. In Causality in the Sciences. Oxford.

Imai, Kosuke. 2013. Matching and Weighting Methods for Causal Inference.

Imai, Kosuke/Gary King/Clayton Nall. 2009. “The Essential Role of Pair Matching

in Cluster-Randomized Experiments, with Application to the Mexican Universal

Health Insurance Evaluation”. Statistical Science 24 (1): 29–53.

Imai, Kosuke/Gary King/Elizabeth Stuart. 2008. “Misunderstandings Among

Experimentalists and Observationalists about Causal Inference”. Journal of the

Royal Statistical Society, Series A 171, part.

Imai, Kosuke/Marc Ratkovic. 2013. “Covariate balancing propensity score”. J. R.

Statist. Soc. B 76 (1): 243–263.

Imbens/Rubin. 2009. “Chapter 15 Design in Observational Studies: Matching to

Ensure Balance in Covariate Distributions”. In Causal Inference Part II.

161



Imbens, G/G King/D McKenzie/G Ridder. 2009. “On the Benefits of Stratification in

Randomized Experiments”. unpublished manuscript, Department of Economics,

Harvard University.

Imbens, Guido W. 2009. “Better LATE Than Nothing: Some Comments on

Deaton (2009) and Heckman and Urzua”. unpublished manuscript, Department of

Economics, Harvard University.

— . 2004. “Nonparametric Estimation of Average Treatment Effects under Exogeneity:

A Review NONPARAMETRIC ESTIMATION OF AVERAGE TREATMENT

EFFECTS UNDER EXOGENEITY: A REVIEW*”. Source: The Review of

Economics and Statistics 86 (1): 4–29.

Imbens, Guido W./Donald B. Rubin. 2015. Causal inference: For statistics, social,

and biomedical sciences an introduction, 1–625. Cambridge University Press. arXiv:

arXiv:1011.1669v3.

Ioannidis, John P A. 2014. “How to make more published research true.” PLoS

medicine 11 (10): e1001747.

Ishii, H. 1972. “Symposium I. Hormone therapy in otolaryngology, especially short term

general dosage of adrenal cortex hormones (Japanese)”. Journal of Otolaryngology

of Japan 75 (12): 1464–1465.

Jager, K.J./C. Zoccali/A. MacLeod/F.W. Dekker. 2008. “Confounding: What it is

and how to deal with it”. Kidney International 73 (3): 256–260.

Jamerson, Kenneth/Michael A. Weber/George L. Bakris/Björn Dahlöf/Bertram Pitt/
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Chapter 8

Appendix

Appendix for Aim 1.1

Figure 8.1: Sitagliptin vs Glimepiride, Outcome Definitions

 

 Included Concepts Excluded Concepts 

O
ut

co
m

e 

concept concept code concept name concept code concept name 

Hypoglycemia 24609 hypoglycemia   

HbA1c % 40775446 Hemoglobin A1c | Bld-
Ser-Plas   

Composite Serious 
Adverse Event 

439777 Anemia   

35205182 Angina unstable   

313217 Atrial fibrillation   

444031 Chronic heart failure   

37604042 Gastrointestinal 
haemorrhages   

4288544 Inguinal hernia   

35707868 Lower gastrointestinal 
haemorrhage   

4101468 Gastroenteritis   

35708417 Colon cancer   

4162276 Malignant melanoma   

36617702 Prostate cancer   

4164436 Peripheral nerve 
entrapment syndrome   

135360 Syncope   

440417 Pulmonary embolism   
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Figure 8.2: Sitagliptin vs Glimepiride, Concept DefinitionsTable A.1: Study 1, Sitagliptin vs Glimepiride, Concept Definitions  
 

 Included Concepts Excluded Concepts 
In

di
ca

tio
n concept concept code concept name concept code concept name 

Type II Diabetes 
Mellitus 201826 Type 2 diabetes mellitus   

 

 
Included Concepts Excluded Concepts 

El
ig

ib
ili

ty
 C

ri
te

ri
a  

concept concept code concept name concept code concept name 

Type I Diabetes 
Mellitus 201254 Type 1 diabetes mellitus   

Liver Disease 194984 Disease of Liver   

 
 
Cardiovascular 
disease 

373503 Transient cerebral 
ischemia   

316139 Heart failure   

374384 Cerebral ischemia   

375557 Cerebral embolism   

372924 Cerebral artery 
occlusion   

40479625 Atherosclerosis of artery   

4215140 Acute coronary 
syndrome   

Hypertension 
3004249 BP systolic   

3012888 BP diastolic   

Peripheral Vascular 
Disease (PVD) 321052 Peripheral vascular 

disease   

Triglycerides  3022192 
Triglyceride 
[Mass/Volume] in 
Serum or Plasma 

  

Human 
Immunodeficiency 
Virus (HIV) 

439727 
Human 
Immunodeficiency virus 
infection 

  

Malignancy/"Certain 
Cancers" 

443392 Malignant neoplastic 
disease 4300118 Squamous cell 

carcinoma 

  4179980 Malignant basal cell 
neoplasm of skin 

Hematologic 
Disorder 443723 disorder of cellular 

component of blood 4280354 nutritional anemia  

Estimate Glomerular 
Filtration Rate 
(eGFR) 

3049187 eGFR with normals for 
non-black   

3053283 eGFR with normals for 
black   

Dipeptidyl peptidase 
4 (DPP-4) inhibitors  21600783 Dipeptidyl peptidase 4 

(DPP-4) inhibitors   

Insulin 21600713 Insulins and Analogues   

GLP-1 memetic 40219409 GLP-1 Receptor Agonist   

Peroxisome 
proliferator-activated 
receptor (PPAR) 

4354720 PPAR gamma   

Kidney Disease 4030518 Renal Impairment   

Surgical Procedure 4301351 Surgical Procedure   

Substance Abuse 

36903635 Substance-Related 
Disorders 35809374 Tobacco withdrawal 

syndrome 

  36919133 Tobacco abuse 

  4209423 Nicotine dependence 

  36919130 Nicotine dependence 

  434697 Maternal tobacco 
abuse 

Note that all concepts definitions include descendants 
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Appendix for Aim 1.2

Figure 8.3: Sitagliptin vs Glimepiride, Cohort Creation
Table A.2: Study 1, Sitagliptin vs Glimepiride, Cohort Creation  
 

Indication 

A condition occurrence of Type II Diabetes Mellitus 
∧ 

Age between 65 and 80 
∧ 

Continuous observation of at least 365 days before and 0 days after index 
 

Eligibility 
Criteria 

No High Triglycerides Exactly 0 triglyceride measurements > 600mg/dL2  

No Hypertension Exactly 0 BP Systolic measurements > 140 mmHg2  	⋀ 

Exactly 0 BP Diastolic measurements > 90 mmHg2 

No HIV Exactly 0 diagnoses of HIV1 

No Type I Diabetes Mellitus ≤ 3 diagnoses of Type I Diabetes Mellitus2 

No Surgical Procedures Exactly 0 Surgical Procedures3 

No cardiovascular disease Exactly 0 diagnoses of CVD2 

No Liver Disease Exactly 0 diagnoses of Liver Disease2 

No PVD Exactly 0 diagnoses of PVD2 

No Insulin or GLP-1 use Exactly 0 drug exposures to Insulin/GLP-14 

No DPP-4 Use Exactly 0 drug exposures to DPP-42 

No Malignancy/Certain 
Cancers Exactly 0 diagnoses of Malignancy or “Certain Cancers”1 

No Hematologic Disorders Exactly 0 diagnoses of Hematologic Disorders1 
No Renal Impairment Exactly 0 diagnoses of Renal Impairment1 

No eGFR ≥ 35 mL/min Exactly 0 eGFR measurements ≥ 35 mL/min1 

No Substance Abuse Exactly 0 diagnoses of a History of Substance Abuse1 
1between all days before and 1 days before index start date 
2between 365 days before and 1 days before index start date 
4between 56 days before and 1 day before index start state 
3between 28 days before and 1 day before index start state 
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Figure 8.4: PROVE-IT, Cohort Creation
Table B.2: Study 1,  PROVE-IT, Cohort Creation  
 

Indication 

A condition occurrence of Acute Coronary Syndrome 
∧ 

Age ≥ 18 years 
∧ 

Continuous observation of at least 0 days before and 0 days after index 
 

Eligibility 
Criteria 

No long-term LLT Use  

Exactly 0 drug exposures to LLT2 	∧ 
Exactly 0 measurement of Total Cholesterol > 240mg3 

 

∨ 
 

≥ 1 drug exposures to LLT2  ∧ 
Exactly 0 measurement of Total Cholesterol > 200mg3 

No Statin Use over 80mg Exactly 0 drug exposures to Statins ≥80mg1 

No LLT Use with Fibric 
Acid Derivatives  Exactly 0 drug exposures to LLT with Fibric Acid1 

No LLT Use with Niacin  Exactly 0 drug exposures to LLT with Niacin1 
No CYP450 3A4 Use Exactly 0 drug exposures Inhibitors of CYP450 3A41 
No Percutaneous 
Coronary Intervention Exactly 0 procedures of PIC3 

No Coronary Artery 
Bypass Surgery 

Exactly 0 procedures of Coronary Artery Bypass 
Surgery4 

No Obstructive 
Hepatobiliary Disease 

Exactly 0 diagnoses of Obstructive Hepatobiliary 
Disease2 

No Liver Disease Exactly 0 diagnoses of Liver Disease1 

No Creatinine Kinase 
Levels > 3x Normal  

Exactly 0 measurements of Creatinine Kinase > 354 
U/L ∧ Gender is Female1  

 
∨ 
 

Exactly 0 measurements of Creatinine Kinase > 318 
U/L ∧ Gender is Male1  

No Creatinine Levels > 
20mg Exactly 0 measurements of Creatinine > 20mg5 

1between all days before and 1 days before index start date 
2between 365 days before and 1 days before index start date 
3between 180 days before and 1 days before index start date 
4between 60 days before and 1 day before index start state 
5between 30 days before and 1 day before index start state 
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Figure 8.5: PROVE-IT, Concept DefinitionsTable B.1: Study 1 Concept Definitions: PROVE-IT 
 

 Included Concepts Excluded Concepts 

In
di

ca
tio

n 

concept concept code concept name concept code concept name 

Acute Coronary 
Syndrome 

35205182 Angina unstable 4329847 Old myocardial 
infarction 

4329847 Myocardial infarction 44820861 

Acute myocardial 
infarction of 
unspecified site, 
subsequent episode 
of care 

  44832376 

Acute myocardial 
infarction of other 
specified sites, 
subsequent episode 
of care 

  44834721 

Acute myocardial 
infarction of other 
lateral wall, 
subsequent episode 
of care 

  44832374 

Acute myocardial 
infarction of other 
inferior wall, 
subsequent episode 
of care 

  44819697 

Acute myocardial 
infarction of other 
anterior wall, 
subsequent episode 
of care 

  44820860 

Acute myocardial 
infarction of 
inferoposterior wall, 
subsequent episode 
of care 

  44820859 

Acute myocardial 
infarction of 
inferolateral wall, 
subsequent episode 
of care 

  44820858 

Acute myocardial 
infarction of 
anterolateral wall, 
subsequent episode 
of care 
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 Included Concepts Excluded Concepts 

El
ig

ib
ili

ty
 C

ri
te

ri
a 

concept concept code concept name concept code concept name 

Long Term Lipid-
Lowering Therapy  21601853 Lipid Modifying Agents   

Total Cholesterol 3027114 
Cholesterol 
[Mass/volume] in 
Serum or Plasma 

  

Statin  21601855 HMG CoA reductase 
inhibitors   

Lipid Lowering 
Therapy with Fibric 
Acid 

21601864 Fibrates   

Lipid Lowering 
Therapy with 
Niacin 

1517824 Niacin   

CYP420-34 21601919 Imidazole and triazole 
derivatives   

Percutaneous 
Coronary 
Intervention 

4216130 Percutaneous coronary 
intervention   

Coronary Artery 
Bypass Surgery 37522318 Coronary artery bypass   

Obstructive 
Hepatobilliary 
Disease 

35902850 
Obstructive bile duct 
disorders (excl 
neoplasms) 

  

Hepatic Disease 194984 Disease of liver   

Creatinine Kinease 
Level 3007220 

Creatine kinase 
[Enzymatic 
activity/volume] in 
Serum or Plasma 

  

Creatinine Serum 3016723 Creatinine 
serum/plasma   

Note that all concepts definitions include descendants 
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Figure 8.6: ACCOMPLISH, Cohort Creation
Table C.2: Study 1, ACCOMPLISH, Cohort Creation  
 

Indication 

A condition occurrence of Hypertension 
∧ 

Age ≥ 55 years 
∧ 

Continuous observation of at least 0 days before and 0 days after index 
 

Eligibility 
Criteria 

High Systolic Blood 
Pressure or Treatment with 
Antihypertensives  

≥1 drug exposures to antihypertensive drug1 

∨ 
≥1 measurements of Systolic Blood Pressure ≥ 160mmHg1 

If Age ≥ 60 years, 1+ of the following; If 55 ≤ Age  ≤	60 years, 2+ of the following 
Myocardial Infarction  a diagnosis of Myocardial Infarction1  
Unstable Angina a diagnosis of Unstable Angina1  
Coronary                                    
Revascularization A procedure of Coronary Revascularization1  

Stroke A diagnosis of Stroke1 

Peripheral Arterial 
Occlusive Disease 
 (PROC) 

A diagnosis of PROC1 

Diabetes Mellitus A diagnosis of Diabetes Mellitus1 

Left Ventricular 
Hypertrophy A diagnosis of Left Ventricular Hypertrophy1 

Elevated Serum  
Creatinine 

A measurement of Creatinine > 1.71 ∧ Gender is Male  
 

∨ 
 

A measurement of Creatinine > 1.51 ∧ Gender is Female  

ACE Inhibitor or 
Aldosterone Receptor 
Blocker (ARB) Use with 
Elevated Albumin  
Creatinine Ratio 

≥1 drug exposures to ACE Inhibitor/ARB drug1  ∧	Albumin 
Creatinine Ratio > 300mg/dL1 
 

∨ 
 

Exactly 0 drug exposures to ACE Inhibitor/ARB drug1  ∧
	Albumin Creatinine Ratio > 200mg/dL1 

No Angina Pectoris Exactly 0 diagnoses of Angina Pectoris2 

No Heart Failure  Exactly 0 diagnoses of Myocardial Infarction3  
No Acute Coronary 
Syndrome Exactly 0 diagnoses of ACS3 

No Coronary 
Revascularization Exactly 0 procedures of coronary revascularization2  

No Stroke Exactly 0 diagnoses of stroke2 

No Ischemic 
Cerebrovascular Episodes Exactly 0 diagnoses of ischemic cerebrovascular episodes2 

1between all days before and 1 days before index start date 
2between 90 days before and 1 days before index start date 
2between 30 days before and 1 days before index start date 
 
 
 

Figure 8.7: ACCOMPLISH, Concept DefinitionsTable C.1: Study 1, ACCOMPLISH,  Concept Definitions 
 

 Included Concepts Excluded Concepts 

In
di

ca
tio

n  concept concept code concept name concept code concept name 

Hypertension 316866 Hypertensive 
disorder   
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Included Concepts Excluded Concepts 

El
ig

ib
ili

ty
 C

ri
te

ri
a 

concept concept code concept name concept code concept name 
Antihypertensive Drug     

ACE Inhibitors 21601783 Ace Inhibitors, Plain   

Aldosterone  21601533 Aldosterone antagonists   

Acute Coronary 
Syndrome 4215140 Acute coronary syndrome   

Angina Pectoris 321318 Angina pectoris   

Antihypertensive Drugs 21600381 Antihypertensives   

Antidiabetic Drugs 

21600744 Blood Glucose Lowering 
Drugs, Excluding Insulins   

21600713 Insulins and Analogs   

4336036 Oral Hypoglycemic 
Agents, Oral   

Cardiovascular Disease 
(CVD) 134057 Disorder of cardiovascular 

system   

Coronary 
Revascularization 

37522318 Coronary artery bypass   

4184298 Percutaneous transluminal 
angioplasty   

Diabetes Mellitus 35502089 
Glucose metabolism 
disorders (including 
diabetes mellitus) 

  

Heart Failure 316139 Heart failure   

Insulin 21600713 Insulins and Analogues   

Ischemic 
Cerebrovascular 
Episodes 

373503 Transient cerebral 
ischemia   

36718067 Transient ischemic attack   

Albumin 3024561 Albumin serum/plasma   

Myocardial Infarctions 
4329847 Myocardial infarction   

35205189 Myocardial infarction   

Overnight Fasting 
Plasma Glucose 3037110 

Fasting glucose 
[Mass/volume] in Serum 
or Plasma 

  

Peripheral Arterial 
Occlusive Disease 
(PROC) 

2002187 Aorta-iliac-femoral 
bypass   

37522314 Carotid endarterectomy   

37522318 Coronary artery bypass   

37520683 Leg amputation   

Renal Disease 37019308 Renal disorder   

Left Ventricular 
Hypertrophy  35205348 Ventricular hypertrophy 4231591 Right ventricular 

hypertrophy 

Serum Creatinine 3016723 Creatinine serum/plasma   

Systolic blood pressure 

3004249 BP systolic   

3018586 Systolic blood pressure--
sitting   

3035856 Systolic blood pressure--
standing   

3009395 Systolic blood pressure--
supine   

Target Organ Damage 

4349444 Hypertrophy, Left 
Ventricular   

75650 Proteinuria   

37019318 Renal failure   

376103 Retinopathy   

443605 Vascular dementia   

Type 2 Diabetes Mellitus 201826 Type 2 diabetes mellitus   

Unstable Angina 35205182 Angina unstable   

Note that all concepts definitions include descendants 
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Figure 8.8: RENAAL, Cohort Creation
Table D.2: Study 1, RENAAL, Cohort Creation  
 

Indication 

A condition occurrence of Type 2 Diabetes Mellitus 
∧ 

70 years	≥ Age ≥ 31 years 
∧ 

Continuous observation of at least 0 days before and 0 days after index 
 

Eligibility 
Criteria 

Nephropathy  A diagnoses of nephropathy exposures to antihypertensive1 

Hypertensive or 
Normotensive 

A diagnoses of hypertension1  
∨ 

≥1 measurement of Systolic Blood Pressure  ≥  110 
mmHg1 

No Recent Insulin Use Exactly 0 drug exposures of Insulin2 

No history Ketoacidosis Exactly 0 diagnoses of Ketoacidosis1 

HbA1c < 12% ≥1 measurement of HbA1c <12%1 

Not Pregnant Exactly 0 measurements of a Pregnancy Test with value > 
253 

No Type I Diabetes Mellitus Exactly 0 diagnoses of Type I Diabetes Mellitus1 

No Diabetic Renal Disease Exactly 0 diagnoses of Non-Diabetic Renal Disease1 
No Myocardial Infarction Exactly 0 diagnoses of Myocardial Infarction4 

No CABG Exactly 0 procedures of CABG4 

No Cerebrovascular 
Accident Exactly 0 diagnoses of Cerebrovascular Accident2 

No PTCA Exactly 0 procedures of PTCA4 
No TIA Exactly 0 diagnoses of TIA5 

No Heart Failure Exactly 0 diagnoses of Heart Failure1 

No Renal Artery Stenosis Exactly 0 diagnoses of Renal Artery Stenosis1 
No Primary Aldosteronism Exactly 0 diagnoses of Primary Aldosteronism1 
No Phaeochromocytoma Exactly 0 diagnoses of Phaeochromocytoma1 

1between all days before and 1 days before index start date 
2between 180 days before and 1 days before index start date 
3between 300 days before and 0 days before index start date 
4between 30 days before and 0 days before index start date 
5between 365 days before and 0 days before index start date 
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Figure 8.9: RENAAL, Concept DefinitionsTable D.1: Study 1, RENAAL,  Concept Definitions 
 

 Included Concepts Excluded Concepts 

In
di

ca
tio

n concept concept code concept name concept code concept name 

Type 2 Diabetes 
Mellitus 201826 Type 2 diabetes 

mellitus   

 

 
Included Concepts Excluded Concepts 

El
ig

ib
ili

ty
 C

ri
te

ri
a 

concept concept code concept name concept code concept name 

Nephropathy 37019299 Nephropathy   

Hypertension 316866 Hypertensive 
disorder   

Systolic Blood 
Pressure 3018586 Systolic blood 

pressure--sitting   

Insulin  21600713 Insulins and 
Analogues   

Ketoacidosis 4209145 Ketoacidosis   

HbA1c 40775446 Hemoglobin A1c | 
Bld-Ser-Plas   

Pregnancy 44786908 HEDIS 2014 Value 
Set - Pregnancy Tests   

Type I Diabetes 
Mellitus 201254 Type 1 diabetes 

mellitus   

Non Diabetic Renal 
Disease 37019308 Renal disorder 

443731 
Renal disorder due to 
type 2 diabetes 
mellitus 

193782 End stage renal 
disease 

46271022 Chronic kidney 
disease 

Myocardial 
Infarction 

4329847 Myocardial 
infarction   

35205189 Myocardial 
infarction 

Coronary Artery 
Bypass Grafting 37522318 Coronary artery 

bypass   

Cerebrovascular 
Accident 36703451 

Central nervous 
system haemorrhages 
and cerebrovascular 
accidents 

  

Percutaneous 
transluminal 
coronary angioplasty 
(PTCA) 

2000064 
Percutaneous 
transluminal 
coronary angioplasty    

4006788 
Percutaneous 
transluminal 
coronary angioplasty 

Transient Ischemic 
Attack (TIA) 373503 Transient cerebral 

ischemia   

Heart Failure 316139 Heart failure   
Renal Artery 
Stenosis 37003676 Renal vascular and 

ischaemic conditions   

Primary 
Aldosteronism 

35506454 
 

Primary 
hyperaldosteronism   

Phaeochromocytoma 4118993 Pheochromocytoma   

Note that all concepts definitions include descendants 
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Appendix for Aim 2.1

Results of the sensitivity analysis for the Counterfactual χ-GAN (cGAN)

simulation on average treatment effect (ATE). Investigating cGAN and

comparator performance on ATE estimation as a function of (i) the per-arm sample size

(N); (ii) the unbiased average treatment effect that exists in the truly counterfactual

populations (ATE); and (iii) the size of the truly counterfactual populations as a

proportion of the total population (overlap). Blanks denote parameter combinations

where the method failed.

overlap = 0.1
N=2000 N=4000 N=8000

ATE=400 ATE=70 ATE=0.2 ATE=400 ATE=70 ATE=0.2 ATE=400 ATE=70 ATE=0.2
unweighted -320.02 33.94 2.00 -320.01 34.02 2.02 -319.99 34.01 1.99

cGAN 380.84 68.59 0.27 397.11 69.99 0.40 393.93 69.84 0.20
IPW -243.06 48.65 2.14 -263.69 44.08 2.06 -262.37 44.67 2.03

clipped IPW -315.23 35.86 2.03 -317.81 34.66 2.03 -318.35 34.67 1.99
PS ATE -243.06 48.65 2.14 -263.69 44.08 2.06 -262.37 44.67 2.03

Twang ATE -291.83 41.05 2.08 -287.34 40.86 2.08 -283.29 41.21 2.03
CBPS ATE -244.10 48.47 2.14 -268.38 43.47 2.07 -264.68 44.39 2.03

NPCBPS ATE -162.12 10.62 0.76 -28.95 12.98 -0.09 70.66 38.77 0.93
Ebal ATE - - - - - - - - -

EBCW ATE - - - - - - - - -
OptWeight ATE -121.22 65.84 3.09 48.33 95.04 3.48 -481.75 59.62 -0.29

overlap = 0.5
N=2000 N=4000 N=8000

ATE=400 ATE=70 ATE=0.2 ATE=400 ATE=70 ATE=0.2 ATE=400 ATE=70 ATE=0.2
unweighted -0.05 50.02 1.15 -0.02 49.98 1.23 0.00 50.00 1.21

cGAN 395.98 69.84 0.15 398.84 69.85 0.22 396.34 69.84 0.23
IPW 303.49 109.02 1.34 245.04 95.42 1.38 234.96 94.21 1.45

clipped IPW 204.59 91.74 1.30 201.40 87.92 1.37 202.73 88.48 1.42
PS ATE 303.49 109.02 1.34 245.04 95.42 1.38 234.96 94.21 1.45

Twang ATE 186.64 84.48 1.25 192.12 84.87 1.36 195.88 84.86 1.33
CBPS ATE 255.46 101.84 1.32 230.91 93.46 1.38 227.68 93.51 1.47

NPCBPS ATE 30.56 26.88 0.43 -41.37 17.46 0.02 226.39 48.89 1.96
Ebal ATE 44.73 101.65 2.18 151.19 104.79 1.91 272.24 114.02 1.76

EBCW ATE 22.36 50.83 1.09 75.59 52.40 0.96 136.24 57.01 0.88
OptWeight ATE 17.97 50.73 1.10 77.52 52.37 0.96 129.05 56.93 0.82
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overlap = 0.9
N=2000 N=4000 N=8000

ATE=400 ATE=70 ATE=0.2 ATE=400 ATE=70 ATE=0.2 ATE=400 ATE=70 ATE=0.2
unweighted 320.03 65.99 0.39 319.98 65.97 0.42 320.00 66.01 0.39

cGAN 391.30 69.70 0.21 398.60 69.87 0.22 399.23 69.97 0.19
IPW 687.17 133.96 0.69 687.76 132.10 0.64 688.01 133.43 0.65

clipped IPW 667.27 132.96 0.71 663.66 130.67 0.69 669.53 132.36 0.69
PS ATE 667.17 133.96 0.69 687.76 132.10 0.64 688.01 133.43 0.65

Twang ATE 660.29 126.71 0.59 663.88 126.30 0.61 664.90 126.73 0.56
CBPS ATE 677.92 133.21 0.72 678.58 131.59 0.68 675.98 132.44 0.67

NPCBPS ATE 126.94 30.07 0.22 161.38 32.48 0.18 159.74 30.11 0.12
Ebal ATE 608.81 131.94 0.91 663.72 132.23 0.75 649.80 132.49 0.78

EBCW ATE 304.40 65.97 0.45 331.87 66.12 0.38 324.90 66.24 0.39
OptWeight ATE 303.84 65.96 0.45 331.56 66.08 0.37 324.93 66.25 0.39

Results of the sensitivity analysis for the Counterfactual χ-GAN (cGAN)

simulation on Estimated Sample Size (ESS). Investigating cGAN and

comparator performance on ESS estimation as a function of (i) the per-arm sample size

(N) and (ii) the size of the truly counterfactual populations as a proportion of the total

population (overlap). A high-quality ESS is one which converges with (N ∗2)∗overlap.

This should approximate the number of units over which counterfactual inference is

appropriate. Note that ESS does not change over variations in true average treatment

effect. Blanks denote parameter combinations where the method failed.

overlap = 0.1 overlap = 0.5 overlap = 0.9
N=2000 N=4000 N=8000 N=2000 N=4000 N=8000 N=2000 N=4000 N=8000

unweighted 4000.00 8000.00 16000.00 4000.00 8000.00 16000.00 4000.00 8000.00 16000.00
cGAN 389.69 755.53 1520.70 1928.02 3913.03 7896.35 3548.88 7126.55 14276.81
IPW 1632.30 6106.11 12101.71 2153.86 5832.96 12741.01 3807.50 7650.75 15341.37

clipped IPW 3980.70 7996.73 15981.06 3351.64 6838.98 13881.66 3884.54 7805.16 15611.48
PS ATE 1632.30 6106.11 12101.71 2153.86 5831.96 12741.01 3807.50 7650.73 15341.37

Twang ATE 3550.66 7436.22 14876.05 3590.72 7064.62 14425.47 3866.83 7745.95 15539.17
CBPS ATE 1658.62 6489.88 12490.85 2608.01 6167.73 13140.15 3878.17 7789.09 15587.93

NPCBPS ATE 12.83 5.00 5.04 85.10 36.42 2.22 74.32 6943.35 47.38
Ebal ATE - - - 458.70 323.47 164.66 2590.64 6336.13 13867.72

EBCW ATE - - - 458.70 323.46 164.66 2590.64 6336.07 13867.72
OptWeight ATE 10.68 10.58 9.58 828.62 594.60 275.50 2796.29 6591.70 14041.60

196



Appendix for Aim 3.1

The full joint distribution for the Noisy-OR Risk Allocation (NORA) model is given

by Equation 8.1

p(Z, Y,R, α, β) = p(α;λ)p(β;κ)
N∏
p(Yn|Zn,1:K)

K∏
p(Rk|α, β)

K∏ N∏
p(Zn,k|Xn,k, Rk)

(8.1)

Posterior of Z The posterior of Z is given by,

p(Z|X, Y,R) =
p(R,X, Y |Z)p(Z)

p(R,X, Y )

The likelihood of Z is p(R,X, Y |Z) and can be determined upon the removal of terms

from the full joint that are independent of Z.

p(X, Y,R|Z) =
N∏
p(Yn|Zn,1:K)

The prior, p(Z), and the likelihood, p(X, Y,R|Z) are given by the functional forms,

p(Zn,k|Xn,kRk) = Xn,kR
Zn,k
k (1−Xn,kRk)

1−Zn,k
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p(Yn|Z1:K) =
[
1−

K∏
k=1

(
1− Zn,k

)]Yn[ K∏
k=1

(
1− Zn,k

)](1−Yn)

Therefore, the posterior of Z is given by,

p(Z|R,X, Y ) =
N∏
p(Yn|Zn,1:K)

N∏ K∏[
p(Zn,k|Xn,kRk)

]

We can recover the probability distribution of Z from the joint distribution by summing

over the discrete cases of Z and removing the those ns which do not contribute.

p(Zn,k| . . .) ∝
[
1−

(
1− Zn,k

)∏
j 6=k

(
1− Zn,j

)]Yn[(
1− Zn,k

)∏
j 6=k

(
1− Zn,j

)](1−Yn)
(Xn,kRk)

Zn,k(1−Xn,kRk)
1−Zn,k

(8.2)

Posterior of R The posterior of R is given by,

p(R|Z,X, Y ) =
p(Z,X, Y |R)p(R)

p(Z,X, Y )
(8.3)

The likelihood of R, p(Z,X, Y |R), can be determined upon the removal of terms from

the full joint that are independent of R.

p(R|Z,X, Y ) =
K∏
p(Rk|α, β)

N∏ K∏[
p(zn,k|xn,kRk)

]
(8.4)
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Plug in functional form of the expressions above, which are given by the following,

p(Rk|α, β) = Beta(α, β) =
1

B(α, β)

[
R

(α−1)
k (1−Rk)

(β−1)
]

(8.5)

p(zn,k|Xn,k, Rk) = (Xn,kRk)
Zn,k(1−Xn,kRk)

(1−Zn,k) (8.6)

Therefore, the posterior of R is given by,

p(R|Z,X, Y ) =
1

B(α, β)

[
K∏[

R
(α−1)
k (1−Rk)

(β−1)
] N∏ K∏[

(Xn,kRk)
Zn,k(1−Xn,kRk)

(1−Zn,k)
]]

(8.7)

Breaking exposures into k and ¬k,

p(R|Z,X, Y ) =
1

B(α, β)

[
R

(α−1)
k (1−Rk)

(β−1)
][
R(α−1)
¬k (1−R¬k)(β−1)

]
N∏[

(Xn,kRk)
Zn,k(1−Xn,kRk)

(1−Zn,k)
][

(Xn,¬kR¬k)
Zn,¬k(1−Xn,¬kR¬k)

(1−Zn,¬k)
]
(8.8)

Pull out exposures, ¬k, that are unrelated to, k.

p(R|Z,X, Y ) =
1

B(α, β)

[
R

(α−1)
k (1−Rk)

(β−1)
] N∏[

(Xn,kRk)
Zn,k(1−Xn,kRk)

(1−Zn,k)
]

(8.9)

Distribute exponent out over X and R, and then distribute out the product

p(R|Z,X, Y ) =
1

B(α, β)

[
R

(α−1)
k (1−Rk)

(β−1)
] N∏[

X
Zn,k
n,k

] N∏[
R
Zn,k
k

] N∏[
(1−Xn,kRk)

(1−Zn,k)
]

(8.10)
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Rearrange to group like terms; product in exponent will become sum by virtue of a

shared base and Z taking a value of either 0 or 1.

p(R|Z,X, Y ) =
1

B(α, β)

[
R

(α−1)
k (1−Rk)

(β−1)
][
R

∑N Zn,k
k

] N∏[
X
Zn,k
n,k

] N∏[
(1−Xn,kRk)

(1−Zn,k)
]

(8.11)

Because Xn,k is either 0 or 1, and Z is either 0 or 1, XZ
n,k will always evaluate to 1, as

11 = 1, 10 = 1, 01 = 1, and 00 = 1. Therefore the expression XZ
n,k drops out of the

posterior.

p(R|Z,X, Y ) =
1

B(α, β)

[
R

(α−1)
k (1−Rk)

(β−1)
][
R

∑N Zn,k
k

] N∏[
(1−Xn,kRk)

(1−Zn,k)
]

(8.12)

Similarly, in the expression (1−Xn,kRk)
(1−Z), when X is 0, the expression simplifies to

1(1−Z); which will either be 11 = 1 or 10 = 1 under the different values of Z. Therefore,

in this case where X is 0, the expression drops out of the posterior. When X is 1,

the expression simplifies to (1 − Rk)
(1−Z). This simplified expression with make a

contribution of the total number of times the exposure k occurs across all patients

p(R|Z,X, Y ) =
1

B(α, β)

[
R

(α−1)
k (1−Rk)

(β−1)
][
R

∑N Zn,k
k

][
(1−Rk)

(1−
∑N Zn,k)

]
(8.13)

Group exponents according to shared bases.

p(R|Z,X, Y ) =
1

B(α, β)

[
(R

(α−1+
∑N Zk)

k )(1−Rk)
(β−1−

∑N Xk−
∑N Zk)

]
(8.14)
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which is equivalent to a Beta distribution, Beta(α∗, β∗), where α∗ and β∗ are;

α∗ = α +
N∑
Zk (8.15)

β∗ = β +
N∑
Xk −

N∑
Zk (8.16)
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