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Abstract

Patient Record Summarization Through Joint Phenotype Learning and Interactive Visualization

Gal Levy-Fix

Complex patient are becoming more and more of a challenge to the health care system given the

amount of care they require and the amount of documentation needed to keep track of their state

of health and treatment. Record keeping using the EHR makes this easier but mounting amounts

of patient data also means that clinicians are faced with information overload. Information

overload has been shown to have deleterious effects on care, with increased safety concerns due

to missed information. Patient record summarization has been a promising mitigator for

information overload. Subsequently, a lot of research has been dedicated to record summarization

since the introduction of EHRs. In this dissertation we examine whether unsupervised inference

methods can derive patient problem-oriented summaries, that are robust to different patients. By

grounding our experiments with HIV patients we leverage the data of a group of patients that are

similar in that they share one common disease (HIV) but also exhibit complex histories of diverse

comorbidities. Using a user-centered, iterative design process, we design an interactive,

longitudinal patient record summarization tool, that leverages automated inferences about the

patient’s problems. We find that unsupervised, joint learning of problems using correlated topic

models, adapted to handle the multiple data types (structured and unstructured) of the EHR, is

successful in identifying the salient problems of complex patients. Utilizing interactive

visualization that exposes inference results to users enables them to make sense of a patient’s



problems over time and to answer questions about a patient more accurately and faster than using

the EHR alone.
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Chapter 1: Introduction

1.1 The need for longitudinal patient summaries

Most adults in the US today live with at least one chronic disease [1]. Many of those suffer from

multimorbidty, the existence of more than one disease [2]. With an aging population the number

of complex patients is on the rise [3]. Chronic disease and multimorbidty puts a high burden on

patients and also the healthcare system, with it being a leading driver of health care costs in the US

[4]. These patients often have long medical histories, with high utilization of health services, that is

complicated by simultaneous and interconnected disease processes. With the ubiquitous adoption

of electronic medical records, patient data is extensively recorded. However, with overwhelming

amounts of historical patient data, clinicians experience significant burden when needing to sift

through the patient record to get understanding of the patient case [5]. This is especially true for

patients with chronic problems for which temporality plays a large role [6]. Current electronic

health record (EHR) systems remain very visit oriented, with limited support for temporal views

(especially beyond one data source).

To support clinicians in making use of historical data there is a need for clinical decision sup-

port (CDS) that help clinicians effectively review and digest patient data, transforming data into

actionable insight. Most adopted CDS systems focus on generating alerts and recommendations

but few help clinicians make sense of patient data at the bedside. The task of establishing an accu-

rate and comprehensive mental image of the patient is particularly daunting for complex patients.

Difficulties include understanding the chronology of problems, symptoms, and treatment as well

as identifying how problems relate to one another [6].

Existing approaches to patient record summarization have focused on the problem oriented

record [7–9]. However few propose tools that facilitate clinicians ability to identify problems, how

1



they relate, and change overtime for a given patient. In order to effectively support clinicians in

these tasks there is a need for solutions that leverage methods in machine learning in order for

summarization to be robust and generalizable to diverse types of problems and patient complexi-

ties. Moreover, summarization solutions can benefit greatly from the utilization of visualizations

to facilitate quick identification of patterns and interactivity to allow for drilling down to patient

details to facilitate trust. Finally summarization approaches that leverages machine learning and

visualization in combination needs to be validated as a whole in realistic clinical settings to prove

clinical usefulness for realistic tasks to encourage adoption.

1.2 Selected use case - Human Immunodeficiency Virus (HIV) patients

An extreme example of patients that suffer from chronic disease and multimorbidty are pa-

tients with HIV. As a working example for complex patients, we elected to focus the work in this

dissertation on record summarization of patient with HIV. HIV is a chronic disease which requires

constant care and surveillance and is also associated with a high number of comorbidities [10].

Similar to other patients with chronic disease and multimorbidty patients have long and complex

medical histories which are difficult to track and are important to consider for effective treatment

decisions.

High multimorbidty rates in this population can be attributed to several factors. With the suc-

cess of Antiviral treatment (ART) HIV patient commonly live into their 70s and thus suffer from

multimorbidty that are associated with aging. The development of multimorbidty associated with

aging are caused through the low-grade inflation that is developed in older age. The same mecha-

nism of disease is reinforced through the chronic immune activation that occurs in HIV is suspected

to drive to expedited development of age-related multimorbidty [11]. Finally, ART toxicity is also

associated with increased risk of certain multimorbidty. HIV patients have been found to be at

higher risk for cardiovascular disease, renal disease, osteoporosis, metabolic disorders, and sev-

eral cancers [10]. Thus treatment decision and effective treatment of HIV patients focuses much

beyond viral-suppression and requires a holistic understanding of patient multimorbidty over time

2



[10]. Moreover, due to high healthcare utilization, patients have complex and long medical histo-

ries for which patient data review is particularly burdensome and exacerbates the need for summa-

rization. The intention is that the findings regarding longitudinal summarization of patients with

HIV will be able to generalize to other patient types that also exhibit multimorbidty and require

constant, chronic care.

1.3 Thesis approach

The studies in this thesis investigate the use of unsupervised computational methods and in-

teractive visualization to support automated longitudinal summarization of patient records with

chronic multimorbidty. Design and computational requirements for the automated summarization

are collected through an iterative user-centered design approach. The thesis describes the infor-

mation collection of target users, and several cycles of design requirements refinements, prototype

development, and evaluation of the proposed patient summarizer. As a generalizable use case, the

experimental design focuses on supporting clinicians from the HIV clinic at NewYork-Presbyterian

Hospital (NYPH) as potential users of the purposed summarizer system. Patient data of HIV posi-

tive patients are used to train and evaluate the computational model used for summarization. Aim

1 of this thesis describes the iterative user-centered-design approach used to come up with design

requirements for longitudinal patient summarization system; Aim 2 includes the computational

model development and evaluation for patient record summarization; and Aim 3 investigates the

use of the proposed summarization to support the clinical task of patient chart review through a

task-based experimental usability study with target users. All studies presented in this dissertation

using patient data or clinician participants were approved by the Columbia University Institutional

Review Board.

1.3.1 AIM I: Collecting design requirements through iterative user-centered design

Objective: Collect design requirements for longitudinal patient record summarization that sup-

ports the information needs of HIV clinicians when reviewing patient data for the purpose of

3



clinical care.

Hypotheses:

• �0,1: A problem oriented view of patient record augmented with how problems relate and

change over time is useful for clinicians in the context of HIV patient care, specifically in

patient chart review for new and existing patients

• �0,2: An interactive sankey diagram visualization of patient problems, how they change, and

relate overtime is an appropriate way to showcase patient information

• �0,3: The proposed visualization helps clinicians construct patient problem lists

Methods and materials: Aim 1 of this thesis relies on an iterative user-centered design approach

to come up with design requirements for longitudinal patient summarization system (Figure 1.1).

Information needs for longitudinal patient chart review are collected from published literature.

Semi-structured interviews with HIV clinicians are utilized to confirm that the identified informa-

tion needs from the literature are consistent with the needs of the selected use case for this thesis.

An initial prototype of the system is developed and tested in a preliminary user study. Information

needs collected from the literature, the clinician interviews, and the preliminary user study are

translated to design requirements of the patient summarizer system.

Primary findings: The information needs collected from the literature identified that in the chart

review of patient longitudinal data clinicians seem to i) identify the patient main problems, ii) ver-

ify those problems with alternative data sources in the patient record; and iii) ascertain the status

of the patient problem. Clinicians that care for patients with chronic disease and multimorbidity,

look to identify inter-relatedness in the data to support the complex state of their patients. The

information needs of clinicians that care for HIV patients were found to be consistent with those

identified in the literature. Interviews with HIV clinicians emphasized the importance of under-

standing the patient’s state of comorbidities that dominate a lot of their care plans. The preliminary

4
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Figure 1.1: Diagram of design process. Figure adapted from [12].

user study indicated that showcasing patient main problems using sankey diagram is a reasonable

representation of patient problems and their evolving dominance over time. Information needs col-

lected were translated into 6 design requirements for the summarization. Design requirements are

operationalized through a combination of interface design, computational method requirements,

and system interactivity.

1.3.2 AIM II: Summary and content selection through joint phenotype learning

Objective: Develop and evaluate computational model that infers patient problems and problem

correlations through time while preserving data provenance.

Hypotheses:

• �0,1:Proposed model is able to learn clinically interpretable phenotypes

• �0,2:Proposed model is able to learn HIV and non-HIV phenotypes using the EHR data of a

patient cohort with many comorbidities

• �0,3:Proposed model is able to learn clinically valid relationships between phenotypes
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• �0,4:Proposed model is able to learn diverse types of relationships between phenotypes

Methods and materials: In Aim 2 a joint computational phenotyping approach is developed

and utilized to identify patient problems and correlations between problems by training on struc-

tured and unstructured data from the electronic health records of a large patient cohort of HIV

patients. Previously proposed variational inference approach is extended to support multi-source

data. Learned phenotypes and phenotype-relationships identified from the patient population are

qualitatively evaluated for clinical validity by two clinical experts. Coverage and diversity of the

learned phenotypes and relationships are quantitatively compared to an available knowledge-based

baseline. The phenotyping approach allows for inference on a single patient record to generate a

patient-level summary of problems over time.

Primary findings: According to a qualitative evaluation by two clinicians of the proposed model

output, the model is able to identify clinically meaningful phenotypes and phenotype-relationships.

The method identifies several HIV sub-phenotypes as well as many non-HIV phenotypes. The

non-HIV phenotypes are found to be diverse and cover a wide range of comorbidities as seen

when comparing to a knowledge-base baseline that classifies diagnosis codes in to disease groups.

Phenotype relationships found are largely consistent with the knowledge baseline, with several

relationships identified to be clinically correct but that could not be inferred by the baseline. When

the model is applied on a single patient record it provides a summary of the patient phenotypes and

the data that was assigned to each phenotype. Patient data is found to be well represented by 1-10

phenotypes, providing significant dimensionality reduction to patient data that could be digested

by clinicians at the point of care.

1.3.3 AIM III: Usability testing of patient longitudinal summarizer

Objective: Implement and evaluate clinical utility of patient summarizer tool which on the

back-end leverages probabilistic model to automatically learn patient problems and on the front-

end displays problems in a web interactive environment.
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Hypotheses:

• �0,1:Implemented tool is found to aid clinician in obtaining a mental image of the patient

• �0,2:Principles from human-centered machine learning assist clinicians improves the usabil-

ity of a machine learning CDS system

Methods and materials: Aim 3 integrates the identified design requirements from Aim 1 and the

computational model from Aim 2 into a single system that summarizes and presents new patient

data in a secure interactive web environment. The summarizer utility in support patient chart

review is evaluated in a mixed-methods user study with clinicians simulating real world conditions.

The user study compares the performance of subjects in chart review tasks using the summarizer

to the EHR baseline. Under each study condition participants are asked to construct the patient

problem list, answer two clinical questions regarding the patient, and generated a short summary

of the patient case. Participants are asked to fill a standard usability survey and provide their free

form feedback regarding their experience with the tool.

Primary findings: Clinicians spent slightly more time constructing patient problem lists with the

summarizer, but generated lists with higher recall. The summary was found to increase question-

answer accuracy and reduce the time-to-completion significantly. A usability survey found that

half the users stated that they would use the system frequently. Most of the users found the system

consistent and easy to use. The visual representation of the patient problem over time using sankey

diagrams was well received and users found to be an intuitive snapshot of patient state over time.

Change in problem line thickness was found helpful in identifying new problems or flare up of

certain diseases. Users however did not want to relay on line thickness for certain diseases for

which laboratory results are clear indication of the disease state, such as HIV. Feedback from the

participants identified that some clinicians thought the summary provided enough information to

help them judge the accuracy of the automated summary, while others showed very low tolerance

for inconsistencies in the system. Several users indicated they wished the summary was directly

linked to more components in the patient EHR such as notes, laboratory test results, procedures,
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and medication dosages.
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Figure 1.2: Example of patient-specific summary over five years. The top 7 most salient problems
in between 2014 and 2018 are visualized and how their documentation has evolved through time.
The summary is presented at the year level by binning the patient’s documentation for that time
resolution. The patient has HIV-specific problems, as well as comorbidities, including asthma,
depression, and substance abuse. Relations among the inferred phenotypes are not shown. Dates
are changed to maintain patient privacy.

1.4 Contributions

This dissertation contributes a literature review regarding the use of machine learning and data

visualization for CDS and identifies gaps and opportunities for these methods in three main types

of CDS. We contribute the design requirements of an information tool that leverages visualiza-

tion, machine learning, and interactivity. We further identify that sankey diagrams are a viable

visualization for patient problems and their evolution over time. The dissertation further provides

a methodological contribution for joint learning of phenotypes and phenotype relationships using

EHR data. We extended previously proposed technique for variational inference for non-conjugate

distributions to allow for multiple inputs in the model. The proposed joint learning of phenotypes

and their relationships can be used for characterization of patient populations, for data driven phe-

notype relationship discovery, for patient summarization, and for down stream tasks such as patient
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level prediction. Finally, the dissertation demonstrates that coupling of interpretable unsupervised

machine learning and interactive visualization has the promise to support clinicians in patient chart

review.

1.5 Guide for the Reader

Chapter 2 outlines previous research on various types of CDS and the methodologies utilized

for those systems. The chapter outlines gaps and opportunities of using ML and data visualization

for patient summarization but also other types of CDS. The chapter also describes recent work on

Human Centered Machine Learning.

Chapter 3 describes our process to identify the informational needs of clinicians when review-

ing patient longitudinal data. We describe our findings and conduct interviews with HIV clinicians

to confirm their needs align with findings from the literature. We further describe a preliminary

study, evaluating the appropriateness of using sankey diagrams to represent patient problems over

time in a task based evaluations. We conclude the chapter by translating the identified information

needs to design requirements of a summarization system.

Chapter 4 we describe our work on the development and evaluation of a computational model

and it’s inference that leverage unsupervised probabilistic machine learning to perform inter-

pretable dimensionality reduction of patient data, both structured and unstructured.

Chapter 5 reports on the construction of a summarization system that leveraged the design re-

quirements identified in Chapter 3 and the model described in Chapter 4. The chapter describes the

experimental design of an evaluation study with clinicians to assess the usability of the proposed

summarization system to support them in patient chart review of HIV patients.
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Chapter 2: Background

2.1 Clinical decision support 1

The grand vision of a learning health system hold the promise for providing more personalized,

higher quality, safer, and efficient care [13]. The learning health system pipeline involves system-

atically gathering clinical data, learning from that data and generating evidence, and feeding it

back to clinicians in real-time to help with decision making. This process highly depends on the

robust development, evaluation, and adoption of various types of CDS in clinical care to deliver

knowledge to the point of care. However, for CDS to help realize the goals of a learning health

system, numerous challenges have to be addressed. Challenges to the effective use of CDS include

not being sufficiently patient-specific, utilizing simplistic CDS logic, lacking generalizability, and

failing to address human factor issues [14].

There is a growing interest in medicine to leverage machine learning for clinical decision sup-

port [15]. However, there has have been limited examples where machine learning based systems

have been used in the clinic. Bottlenecks of implementing machine learning based approaches

in the clinic have to do with accuracy and validation but many aspects also relate to the usability

of these systems, tying to user-centered design [16]. To overcome these challenges user-centered

design principles could be leveraged to make more user focused machine learning systems. Re-

search at the intersection of people’s needs and machine learning has had a growing interest in

recent years and has been referred to as human-centered machine learning (HCML). The premise

of this body of work is refocusing machine learning from a human goals perspective [17]. Outside

of the healthcare domain, emerging research in HCML includes several diverse sub fields such

as human-in-the loop approaches [18–20], method interpretability and explainability [21–23], and

1A large part of this chapter will appear in the Annual Review of Biomedical Data Science, Vol 4, 2021.
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fairness [24]. Healthcare oriented research on the matter has focused on calling for smart systems

that are better aligned with clinical task [25], method interpretability [26], and fairness [27].

Leveraging recent developments in machine learning and data visualization, especially in com-

bination under this paradigm of HCML, could help overcome previously cited challenges of CDS

and machine learning based CDS in particular. Machine learning methods have the potential to

enhance CDS tools by generating new knowledge from gathered data, providing better patient

specificity, supporting the identification of complex patterns, and improving generalizability to

different patients and conditions. Data and information visualization (dataVis) techniques, from

static to interactive visualizations to more complex visual analytics, have the potential to assist

with feeding back information to clinicians and improve the interpretability and transparency of

CDS systems. In this way machine learning and data visualization provide complimentary benefits

to CDS and may be synergistic in combination (Figure 2.1). Thus, there is a strong case for greater

focus on leveraging machine learning and data visualization in combination to help the realization

of a learning health system.

Figure 2.1: Synergy of data visualization, machine learning, and clinical decision support. This
chapter is dedicated to describing and synthesizing the current state of the literature on machine
learning and data visualization methods used for clinical decision support.

This review is based on a survey of the CDS literature and literature describing methodology

developed for CDS applications. Pool of papers was compiled through a search on PubMed for
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the terms “clinical decision support”, “machine learning”, or “visualization.” In addition, papers

were compiled from machine learning for health conference proceedings (Machine Learning for

Healthcare, NeurIPS Machine Learning 4 Health Workshops) and IEEE Visualization conference

proceedings. We focused our search to publications from 2010 to 2019, but also included earlier

seminal works dating back to 1959. Additional papers were identified through “pearl growing,”

until we reached thematic saturation. We restricted our focus to papers describing clinician-facing

clinical decision support, whether patient-specific or cohort-level, and utilizing EHR data collected

through clinical documentation. Papers were classified into three general types of CDS, although

gaps and opportunities from analysis of current work in these CDS types should also generalize to

other CDS types. The three CDS types described in this chapter are Infobutton, Content Summa-

rization and Organization, and Alert [28].

1. Infobuttons are a type of CDS developed to help clinicians retrieve external resources rel-

evant to the care of their patients such as scientific publications and guidelines. As medical

evidence is constantly generated and updated and as clinicians have less time at the point of

care, Infobuttons make it easier to stay up to date and well informed.

2. Content Summarization and Organization (CSO) CDS is used to summarize or re-organize

patient-level or cohort-level information to clinicians in a way that facilitates understanding,

pattern recognition, and decision making. Current EHR systems contain large amounts of

data even for single patients, making the tasks of information gathering and synthesis cogni-

tively difficult and time consuming. CSO CDS aims to help centralize and crystallize patient

data available for better and easier decision making.

3. Alert CDS provides alerts, reminders, and recommendations in the context of patient data,

clinician actions (such as medication orders), and clinical knowledge. Due to the high vol-

ume of data available in the EHR, limited clinician time, and evolving medical guidelines,

clinicians may miss important information regarding a given patient that could lead to better

and safer care. Alert CDS produces a single output such as a prediction, an alert, or a set of
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recommendations to clinicians in order to help direct action and prevent medical errors.

This chapter synthesizes previous work on each CDS type (Infobuttons, CSO CDS, and Alert

CDS) and the machine learning and data visualization methods utilized. Literature on each CDS

type is grouped and described by the type of methods they utilize (Figure 2.2). We review how

each CDS type has applied: (1) heuristics-based knowledge development methods (heuristics)

defined to be expert curated rules or knowledge-based sources such as ontologies; (2) machine

learning (ML) defined to be data-driven and learning-based methods for knowledge development;

and (3) data visualization (dataVis) defined to be the advanced visual representation of data and

information using static or interactive graphs, diagrams, or pictures to convey information; and

(4) any combination of these three methods. This thesis proposes to combine the use of machine

learning and visualization to construct a patient record summarization tool, a type of CSO CDS.

This section synthesizes why, when, and how machine learning and visualization are used in pre-

vious works in each CDS type. Works outside of the CDS domain that use machine learning and

visualization that can inform our work are also reviewed here.

2.1.1 Infobutton clinical decision support

Infobuttons are systems developed to help clinicians retrieve external resources such as sci-

entific publications and guidelines that are relevant to their patients and informational needs. As

medical evidence is constantly being generated and updated and with clinicians having less avail-

able time, Infobuttons make the task of accessing up to date medical evidence relevant to their

clinical cases easier.

Types of methods for Infobutton CDS

Of the three CDS types, Infobuttons represent the most common CDS implemented in the

EHR [28]. Research on heuristics-based Infobuttons, with most work taking place in the 1990s,

leverages a combination of ontological knowledge and rules to identify clinical concepts in patient
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Figure 2.2: Venn diagram showcasing the intersections between clinical decision support, machine
learning, and data visualization. We refer to heuristics-based methods as rules that are expert-
curated or that rely on knowledge sources such as ontologies. Machine-learning methods include
clinical data-driven methods. Visualization methods include static, interactive, as well as advanced
visual analytics from clinical data.

records and construct relevant search queries to look for relevant resources in scientific article

databases or online [29–36].

Infobuttons leveraging machine learning largely focus on the personalization and summariza-

tion of the outside resources retrieved by the system and returned to clinicians. These systems

largely represent experimental stand-alone systems that have not been integrated in EHR systems,

as have traditional Infobuttons. General approaches of these works include context aware scien-

tific article summarization, recommendation of outside resources based on patient data, learning

to rank models of articles based on clinician search queries, and question-answering related to a

patient’s clinical case [37–41].

Very limited works have leveraged data visualization for Infobutton CDS in isolation or in

combination with machine learning. The limited work in this area has looked at an interactive

citation screening system for improved clinical question answering [42].
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Table 2.1: Examples of Infobutton CDS by method type
Papers Type of method

utilized
Description

Powsner et al. 1989
[30]

Heuristics Utilize rule-based MEDLINE searches by clinical
topic

Cimino et al. 1997 [35] Heuristics Use terminology knowledge (Medical Entities Dictio-
nary) to select queries and resources

Elhadad et al. 2005
[37]

ML Use Natural language processing to tailor summaries
of scientific articles based on the clinical context of
the patient. Evaluated via user study of simulated
clinical task compared effectiveness of tailored sum-
mary, to non-tailored summary and general article
search

Monteiro et al. 2015
[38]

ML Recommender system of reports and studies based on
patient information and clinical context

Donoso-Guzmán and
Parra 2018 [42]

ML+dataVis Compare two relevance feedback algorithms, Roc-
chio and BM25, in an interactive visualization for ci-
tation screening. Evaluated efficiency and effective-
ness of tool in citation screening in user group

More papers by method
category:

Heuristics [29, 31, 33, 34, 43]

ML [40, 41]
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Gaps and opportunities for ML and dataVis in Infobutton CDS

Results of heuristics-based Infobuttons may still return large amounts of content for clinicians

to review in order to find relevant information for their patients. For instance, scientific literature

about a specific clinical concept might return hundreds of highly relevant publications. Further-

more, most Infobuttons search resources for one piece of information in the patient record and

does not consider combination of clinical concepts, potentially reducing the relevance and useful-

ness of the retrieved sources. One way to reduce the complexity and size of results is to curate

content based on clinical expertise, but this might limit the scope of Infobuttons as well as their

sustainability as new evidence emerges.

Data-driven methods can be used to organize further the results of Infobuttons, whether to con-

dense and synthesize the evidence or to personalize and tailor the evidence to the clinician’s infor-

mation needs and clinical context, thus making the information search quicker and more efficient

for the clinician [37]. An additional promise for data-driven Infobuttons, rather than rule-driven

ones is increased generalizability to different types of searches and concepts with less reliance on

manual curation of content. Supervised machine learning solutions, however still require anno-

tated data sets which in the clinical context can be time-consuming and expensive to obtain. It

is also important to note that data-driven systems have so-far been mostly evaluated for accuracy

and effectiveness in a laboratory setting outside of a deployed, real-world setting. More research

is required to evaluate their utility and performance in clinical settings. The lack of integration of

visualization in this line of research is also a missed opportunity. Work outside of the health do-

main has shown that data visualization can help users identify relevant information in information

retrieval tasks and facilitate thematic analysis of large sets of documents [44–47].

2.1.2 Clinical Summarization and Organization (CSO) clinical decision support

CSO clinical decision support systems either summarize or re-organize patient information.

Dashboards, that select specific data points and presents them in a centralized way, or summarizers

which synthesize entire records belong to this type of CDS. These systems aim to help users with
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information that is difficult to digest in its original form in the EHR due to its volume, complexity,

or it scattered nature in the EHR.

Type of methods for CSO decision support systems

Literature on CSO decision support largely leverage heuristics-based methods such as expert

curated variable selection and knowledge-based sources to organize [48, 49] and summarize pa-

tient information [50–58]. These systems have mainly focused on extractive summaries [59] which

extract selected information from the patient record into condensed tables,[50–56]. Fewer works

have provided abstractive summaries [59] which reformulate patient’s data. Those that have gener-

ated abstractive summaries of patient data have largely done so by automatically inferring patient

problem lists using structured data and supervised machine learning methods [58, 60–62].

Several data visualization technique have also been proposed in combination with heuristics-

based CSO systems. Popular approaches for visual extractive summaries have been small visuals

and patient data temporal views [63–74]. A few examples also exist of visualizations of abstractive

summaries or reorganization of selected patient data [75–85].

Machine learning used for CSO systems have generated abstractive summaries of the patient

rather than extractive summaries. That is, reducing patient data dimensionality and complexity into

more salient, condensed, and digestible form. These approaches have included automatically gen-

erating short narrative description of patients’ data and generating the patient’s problem list using

natural language processing methods (NLP) and supervised machine learning methods [62, 86–

92]. Another machine learning approach that has been used to reducing patients’ data dimension-

ality is computational phenotyping. Although most commonly proposed for feature engineering

for downstream predictive tasks, interpretable abstraction of patient’s clinical data from data driven

phenotyping could also be used for patient summarization in clinical decision support [93]. Com-

putational approaches that propose data-driven phenotyping include probabilistic models [93–98],

deep learning,[99–104] clustering [105], and decision trees [106].

Few examples in the literature have used a combination of machine learning and visualization
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methods for CAO systems. One group of works focus on leveraging machine learning and inter-

active visualization to showcase cohort visualizations aimed to assist clinicians with patient-level

decision making. These works mostly divide into performing two tasks: 1) computation of patient

sequence similarity using different clustering methods [107–109]; and 2) frequent patterns iden-

tification using advance association rules and latent model methods [110–112]. Another group

of work leverage the machine learning and visualization for patient-level visualization [113–115].

Some of these works have focus on generating abstractive summaries of patients’ data using semi-

supervised and unsupervised methods and visualizing those abstractions[114, 115]. Evaluation

methods utilized for systems leveraging machine learning and visualization include usability stud-

ies with clinical experts [107, 109, 110, 112, 113], interactivity performance [107], and prediction

performance using patient-level abstractions [114, 116]

Gaps and opportunities for ML and dataVis in CSO clinical decision support

Heuristics-based CSO systems have been shown to improve physicians’ information retrieval

capabilities, reduce information overload, improve patient outcomes, and increase guideline com-

pliance[5, 48, 50, 52, 53]. However, such systems often focus on one condition at a time and

require extensive expert input and thus are hard to scale to many patient and many disease types.

Moreover, these systems mostly focus on extractive summaries which may still contain over-

whelming amount of information and thus do effectively alleviate the problem of information

overload [127]. Furthermore, a lack visualization use can limit in the effectiveness of the proposed

summaries [83].

Machine learning based patient summarization of patient records using NLP have mostly fo-

cused on non-temporal summarization [56] or have leveraged only clinical text [78]. These meth-

ods are largely extractive and still suffer from many limitations including identifying concept sim-

ilarities, handling temporality, handling data missingness, identifying importance, leveraging ex-

isting knowledge, and deployment [128]. Introduction of machine learning methods that are un-

supervised and high-throughput automate dimensionality reduction of complex patient data into
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Table 2.2: Examples of CSO Clinical decision support by method type
Papers Type of method

utilized
Description

Alkesic et al. 2017 [49] Heuristics Organize clinical content using manual tagging of
EHR content for chronic disease tracking

Meystre and Haug 2006
[57]

Heuristics Infer patient problems using knowledge-based
sources

Powsner and Tufte
1994 [63]

dataVis Patient record summary using small graphs showing
laboratory results, medications, vitals, and imaging

Bui et al. 2007 [80] dataVis Problem centric patient record temporal abstractive
summary using knowledge-based source

Van Vleck and Elhadad
2010 [91]

ML Natural language processing and classification to pre-
dict problem relevance for clinical summarization.
Automated patient problem summaries compared to
expert generated gold standard

Joshi et al. 2016 [116] ML Learning identifiable patient phenotypes using non-
negative matrix factorization. Qualitative evaluation
of clinical expert of learned phenotypes and perfor-
mance in mortality prediction

Guo et al. 2018 [110] ML+dataVis Use tensor decomposition to identify latent evolutions
of care sequences. Present threads of latent sequences
in treatment sequences

Joshi et al. 2012 [115] ML+dataVis Utilize novel clustering algorithm to generate layered-
grouping of patient states. Real time visual of patient
severity by organ system during ICU stay

More papers by method
category:

Heuristics [48, 50, 51, 53–58]

ML [87–89, 91, 93–96, 98, 105, 106, 117–121]
dataVis [8, 63, 64, 66, 68–82, 84, 85, 122–126]
ML+dataVis [107–109, 111, 114]
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abstractive summaries that utilize more information from the patient record relative to extractive

summaries with little or no human input [93, 99, 129, 130]. However, few works in this area have

been investigated specifically for CSO systems and often do not consider any aspect of HCML,

such as usability and interpretability of model output for clinicians.

The use of data visualization have been shown to support pattern identification across patient

parameters and time [69] While visual summaries of patients’ raw data preserves data provenance

which can strengthen trust in the visuals [131], they are limited in how many dimensions they can

show [132] and may still lead to information overload [127]. Furthermore, previously proposed

systems in this category have mostly been non-interactive which limit the capacity of the user to

conduct exploratory analysis [133]. These systems fall short according to the Visual Information

Seeking Mantra: Overview first, Zoom and Filter then Details-on-Demand [134].

Works that combine both machine learning and data visualization methods are able to bypass

some of the limitations seen in systems that only leverage one such methodology. Such systems

are starting to appear [113]. However, most works leveraging both machine learning and data

visualization methods have focused on cohort-level visualizations rather than patient-level visual-

izations [107–112]. Furthermore, like for data-driven Infobuttons, few of these systems have been

evaluated for usefulness or usability at the point of care. Methods outside of the health domain that

can inform future research include automatic visual summaries of temporal new stories and topic

modeling [135, 136].

2.1.3 Alert clinical decision support

Alert clinical decision support produces a focused output such as a prediction about a specific

outcome, an alert, or a set of recommendations to clinicians in order to help direct action and

prevent medical errors in the context of patient data.
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Type of methods for Alert CDS

Of the three clinical decision support types, alert CDS has the most sustained interest in the

literature. Early work on these systems date back to the late 1950’s and continued with a recent

surge. Similar to the Infobutton systems, most mature systems implemented and used by clinicians

today leverage knowledge sources and expert curated rules [137–141]. Heuristics-based CDS have

largely underutilized visualization techniques. Existing examples of the use of visualization show-

case patient data alongside the alert or recommendation [142, 143]. Other work have proposed the

use of visualization for knowledge base maintenance at the back-end of alert systems but not for

the use of clinicians [142].

By contrast, the bulk of recent published work has focused on developing machine-learning

methods that have the potential to assist in future alert CDS. Proposed machine learning methods

have tackled a wide range of CDS applications and have leveraged a diverse set of approaches

(Figure 2.3). Applications of machine learning methods developed for use in future alert CDS sys-

tems comprise disease and disease-stage prediction, optimal treatment prediction, and readmission

and mortality prediction. The most popular machine learning approaches explored in recent years

include deep learning and probabilistic methods.

Only a few systems leverage both machine learning and visualization. Systems that do utilize

both methods motivate the use of visualization for added interpretability, model transparency, data

provenance, and usability [110, 118, 144–146].

Gaps and opportunities for ML and dataVis in Alert CDS

Heuristics-based alert CDS have been found to improve healthcare processes, but that there is

still little robust evidence of leading to improvements in clinical outcomes, costs, workload and

efficiencies [242, 243]. Commonly cited limitations of heuristics-based alert systems pertain to

their narrow clinical focus, most likely due to the need for manual curation of clinical expertise in

the systems. Few systems are ‘high-throughput’ or able to assist on wide range of conditions and

patient types. In practice, this can translate in multiple CDS systems, each relevant to a specific
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Table 2.3: Examples of Alert CDS by method type
Papers Type of method

utilized
Description

Warner et al. 1972,
Warner 1979; Kuper-
man et al. 1991 [137,
141, 235]

Heuristics Rule-based logical operators to assist with diagnosis

Miller et al. 1982; 1989
[140, 236]

Heuristics Knowledge-based system that can construct and re-
solve differential diagnoses. Evaluated for accuracy
compared to human experts. Evaluated for clinical
utility

Goldstein et al. 2000;
Gennari et al. 2003
[142, 143]

Heuristics+
dataVis

Guidelines and ontology-based treatment recommen-
dation system for chronic disease. presents the pa-
tients raw data related to the chronic problem such as
the patient’s blood pressure readings over time

Warner et al. 1964
[150]

ML Use Bayes’ Theorem to the diagnosis of congenital
heart disease. Compared accuracy of system to that
of clinical experts

Wang et al. 2014 [190] ML Use unsupervised probabilistic model to model dis-
ease progression.

Tsoukalas et al. 2015
[118]

ML+dataVis Partially observable markov decision process model.
interactive graphical interface for optimal treatment
for Sepsis. Includes visual of patient vital history over
time, state transition probabilities, patient state his-
tory, and optimal action. Evaluate generalized error
of approach and in external tasks of mortality predic-
tion and length of stay prediction

Jeffery et al. 2017 [144] ML+dataVis Mobile app to showcase the predicted probability of
cardiac arrest overtime, including forecasted risk for
the next 24 hours. Evaluate tool for usability in a lab
setting with target audience

More papers by method
category:

Heuristics [138, 139]

ML [26, 97, 99–101, 103, 106, 120, 121, 129, 130,
149, 151–155, 158–170, 172–189, 191–197, 199–
201, 205–212, 214–223, 227, 229, 230, 237–240]

ML+dataVis [145, 146, 241]
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Figure 2.3: Machine learning applications and approaches for alert CDS. Applications include
disease classification or prediction [26, 97, 99, 100, 102, 106, 121, 129, 147–185], disease pro-
gression [101, 105, 118, 164, 186–200] , hospital readmission [201, 202], mortality prediction
[116, 119, 203, 204], treatment-response prediction [103, 111, 130, 205–210], treatment recom-
mendation [209–215], treatment identification [118, 216–220], and intervention prediction [209,
219–223]. Approaches include probabilistic methods [97, 150, 156, 162, 164, 178, 185, 193, 199,
200, 216, 222, 224–228], deep learning [100–103, 152, 156, 171, 173, 180, 181, 184, 189, 191,
195, 198, 218, 219, 229–231], support vectors [156, 163, 169, 178, 183, 189, 191], regression
[151, 158, 169, 172, 175, 194], decision trees [166, 169], collaborative filtering [187], clustering
[206, 232], reinforcement learning [59, 220, 233], and outlier detection [234].

subset of patients, with a need to deploy and manage them each to support diverse types of patients

and clinical contexts. This can lead to ‘alert overload’, with too many systems firing alerts to

clinicians, each with little awareness of the others.

Adding data visualizations to heuristics-based alert CDS can help with interpretability and data

provenance, leading to higher confidence in the system and usability. However very few works

have explored this research space.

Introducing machine-learning techniques into alert CDS can help generate evidence directly

from gathered clinical data, reducing the need for clinical knowledge to be codified manually

by experts [129, 153, 159]. Moreover, machine learning methods can also handle many more

predictors and complex relationships such as non-linearity, interactions, and temporality that would

be hard to codify in knowledge-based systems [159, 192, 244]. Machine learning methods can

also handle data with missingness, sparsity, noise, and irregular sampling [245, 246]. However,
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machine learning methods intended for CDS have often been criticized as uninterpretable, prone

to data biases, and dependent on the data they are evaluated on [26, 247–249]. This can make the

comparison of models problematic when evaluated on different data and also be regarded as ‘too

risky’ to incorporate into clinical decision making. Other significant limitations of data-driven alert

CDS is their lack of alignment with clinical workflows, with few proposed methods evaluating

clinical utility with clinically meaningful metrics, and they have not been deployed to clinical

settings [25, 250]. For instance, some approaches which ignore when data are generated in the

clinical workflow, can lead to data leakage when predicting outcomes and would not be possible

to implement.

While alert CDS that introduce data visualization for the end user are often more mindful of

user-centered considerations such as the clinical workflow they attempt to support, they too have

largely been evaluated on model accuracy, face validity of visualization, and interface usability

in a laboratory setting [118, 144, 146, 241, 251]. The need for more interpretable and transparent

learning methods has also been recognized outside of the health domain. Several reports have cited

the integration of data visualization for the interpretation and understanding of machine learning

methods and their results as key [252, 253].
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Chapter 3: Iterative user-centered design approach for longitudinal patient

record summarization

Involvement of end users in the design process in many domains has been widely considered

to be a key factor for product usefulness and usability [254]. One such design methods that puts

the intended user of a product at it’s center is called ‘User-Centered Design’ (UCD). The approach

originates with seminal work by Donald and Draper [16] from the mid 80’s. UCD approach is

meant to overcome limitation of the system-centered design paradigm, where system designers

focus on what the system should look like without much consideration of the intended users, and

insist that users learn the system, rather than the system adapt to its users. UCD process requires the

treatment of users as the subject of study and follows early focus on observing and understanding

user and tasks in design, empirical evaluation and measurement of user interactions, and iterative

design processes that involve cycling through design, evaluation, and re-design [16].

This dissertation follows an iterative UCD approach for collecting and iterating through the

design specifications of a longitudinal summarization system (steps (1) and (2) of figure 3.1).

This chapter describes the needs finding collection process (step (1) in figure 3.1) and the initial

round of design, low fidelity prototyping, and testing (step (2) in figure 3.1). The chapter ends with

our translation of the collected information needs to a set of design requirements. Another round of

the iterative design process (further prototype development, heuristic evaluation with target users,

and usability study) is described in Chapter 5.

3.1 User-centered design of clinical decision support systems

UCD approaches have also been utilized (with varying degrees) in the health domain, including

in the design of electronic health records [255], patient facing technologies [256], and consumer
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(1)
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(3)

Figure 3.1: Diagram of design process. Figure adapted from [12].

mobile health applications [257]. In fact the Office of the National Coordinator of Health Informa-

tion Technology (ONC) has included UCD requirements for certification criteria of EHRs [258].

The increased role of users in the design process have been shown to be effective in designing

and refining health IT system, significantly reducing usability problems [259–261] and providing

a low cost method for early detection of system error [262]. A recent literature review identi-

fied 24 studies leveraging UCD for health-related interventions, 9 of which were provider facing

applications, 11 were patient facing, 2 were both, and 2 were for care-givers. Of the 9 provider

facing interventions, 6 were found to be successful (defined as improving all tracked metrics) and

3 studies with mixed results [12].

3.1.1 User-centered design of patient record summarization systems

Under the UCD approach, the design process begins by gaining an understanding of the in-

formation needs and workflow of target users (Figure 3.1 (1)). The patient summarization we are

pursing is meant to assist clinicians in understanding the patient case when performing patient chart

review. Patient chart review can be done in different points of the clinician workflow, which may

26



require different amounts of detail and time commitment. One use scenario of the patient summary

is at the point of care, where clinician needs a gist of the medical history. Another scenario of use

is during admission time, when clinicians needs an in-depth history of the patient case. Finally,

clinicians and researchers also perform chart review in non-patient facing workflows in clinical

research settings.

Studies assessing the information needs of clinicians that conform to the UCD approach have

followed various methods (and a combination of these methods). Methods have included literature

review [263–266], expert consultation [263–265], semi-structured interviews with clinicians [113,

267, 268], ethnographic studies [266–271], simulated recall [272], focus groups [265, 266, 271,

273].

In our work we collect the information needs of clinicians from patient longitudinal summaries

by reviewing the relevant literature describing clinician information needs when acquiring a mental

model of the patient case. To confirm the identified informational needs from the literature are

consistent with the informational needs of clinicians seeing patients dealing with chronic disease

and multi-morbidity we triangulate our findings with the our selected use case, clinicians treating

HIV patients. We construct a low fidelity prototype bases on the information needs we identify

and run a formative study with clinicians to discover additional information needs and refine our

design requirements. In Chapter 5 of this dissertation we describe additional information needs

gathering after heuristic evaluation with experts.

Previous works have built a substantial body of knowledge detailing the goals and processes

by which clinicians obtain an overview of the patient case. These goals help us identify what are

the information needs of clinicians that stem from these tasks.

Identification of patient problems. The primary goal of clinicians when trying to get an overview

of a patient case is the identification of the patient main problems [274]. This goal is often

approached through a review of recent clinical notes [274, 275]. The required degree of prob-

lem comprehensiveness has been found to vary from complete comprehensiveness to a sufficient

overview of patient problems that is enough for them to act on [275]. Different degrees of compre-
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hensiveness is related to the time constraints the clinician has when obtaining the patient overview,

which requires prioritization of problems.

Validation of identified patient problems. After identifying patient problems from one source

of the patient record, clinicians often use other data sources from the patient record as well as

historical data to validate the problems they previously identified for the patient [6, 274, 276]. This

is sometimes done through directly locating specific details related to the problem at hand such as

medication or laboratory tests [113]. Moreover, throughout the patient data review clinicians are

still on the lookout for problems they may have overlooked which is an indication that they are

aware that no single source of data can be trusted to be fully complete [274].

Assessing problem status. Once clinicians have confidence in the patient problems, they aim

to assess the status of the problem, as in whether it is an active or resolved problem and if it’s an

active problem then whether it’s worsening, getting better, or stable. They do this by focusing on

the temporal structure of data in the patient record, using older data in comparison to recent data.

They are also on the lookout for change in the data such as medication orders that may signal a

problem status change that prompted previous clinicians to change the patient’s medications [6,

274].

Obtaining a temporal understanding of patient case. Clinicians aim to get historical overview

of the patient case. This information is often sought when clinicians want to understanding the

chronology of symptoms, developments, and the patient current state in more context [6, 113,

275].

Identifying correlations and relationships in the patient data. Clinicians look to identify corre-

lation between the patient data points to form and test hypotheses regarding the patient state and

reaction to treatments [6, 113, 275]. This has been especially emphasized when patient suffer from

multimorbidty which complicates the patient case [6].
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3.2 Clinicians’ information needs at the point of chart review for patients with multimor-

bidty

As the information needs collected from the literature largely reflected information needs of

general practitioners from longitudinal summaries we set out to assess whether they are consistent

with the information needs of clinicians treating HIV patients. To this end we set out to assess

whether a patient record summarization that showcases problems, their salience over time, and

how they relate to one another is useful in the context of HIV patient care. We did so by performing

semi-structured interviews with two physicians from the HIV clinic at NYPH about their perceived

use for such a summary and their general informational needs about patient history. The interviews

were designed to take about 30 minutes.

At the beginning of the interview we gave a general description of the proposed summarization

system. Clinicians were then asked several questions regarding the preserved utility from such a

summary. Questions included i) where in the clinical workflow the proposed summary would be

useful? ii) what they would use it for? and iii) what is the hardest or most time consuming part of

the process is now? Clinicians were then asked what they would want to know about the history of

the patient that is currently hard to identify in the medical record. They were also asked how the

care for HIV patients is different from the care of other patients and whether the proposed sum-

mary could support those unique needs. The clinicians interviewed were two Assistant Attendings

working in NYPH’s HIV clinic. An analysis of the interviews identified the following themes.

Summary perceived utility. A longitudinal Summarization system assisting clinicians in iden-

tifying patient problems and there change over time would benefit clinicians when treating HIV

patients. They noted that this type of summary would be especially beneficial in the HIV practice

at NYPH since clinicians often need to see patients they are not familiar with and thus need to

quickly understand the patient medical history. Moreover, these HIV patient suffer from many

amounts of comorbidities and come to seek care on a regular basis and thus have complex medical

histories with a lot of medical data documented in their records.
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Identification of change over time. When asked about what features in a patient summarizer

would be important they noted the intensity of the problem over time and any dramatic changes in

the status of a problem could help them prioritize care. They also noted that patient hospitalizations

were of note and the interventions they received during the hospitalization. In addition to their

history of visits, which could clue clinicians in to adherence and the general state of the patient.

Uniqueness of HIV patients. The clinicians emphasized that comorbidities are a large factor in

the care and the engagement of patients in their care. Thus there is an increased need to keep

close watch on comorbidities as they can out pace issues caused by HIV such as cardiac problems

and pulmonary problems. Moreover, problems associated with aging seem to arise sooner in the

HIV patient population. Furthermore, patients are seen by other clinicians to monitor their chronic

conditions and for acute problems and thus are hard to monitor.

Proposed scenarios of use for the summarization system. The clinicians indicated that there were

multiple scenarios in which the patient summarizer could be of use. The most primary scenario

of use mentioned was to aid in patient chart review in outpatient settings when clinician is first

familiarized with the patient case or when the clinician needs a quick review of a previously seen

patient, especially if the patient is treated by multiple clinics. The summary was also said to be

helpful for patient chart review in an inpatient HIV services or for sub-specialists since patients are

more likely to have never been seen by the caring clinician. Finally, the summarizer could also be

used during patient consultation to facilitate joint decision making.

3.3 Iterative user-centered design of the summarization system

The next step in the UCD process is ideation of potential design solutions to the user infor-

mation needs identified (Figure 3.1 (2)). We start with considering a visual design approach that

would support showcasing patient problems and their change over time. Previous works have pro-

posed temporal view of patient data but did not explicitly capture change in salience of problems in

a single visual. Previous works on temporal visuals of patient data could visually convey change in

salience by the density of observations assigned to a certain period [8, 80]. HARVEST showcased
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a problem dominance in a time period, but required the user to scroll over time and observe the

change in the font size of a word which could be difficult to track [78].

3.3.1 Design ideation

To support the visual encoding of changes in problems over time we were inspired by several

works outside of the health domain such as representation of story lines summaries using ’metro

maps’ (Figure 3.2) [135] and visualization of themes changes over time in large corpora [277].

From the literature healthcare visualization literature we were inspired by works using Sankey

diagrams for visualization of different care paths of patient cohort (Figure 3.3) [108, 109, 112].
2 · Shahaf et al

Fig. 1. A sample metro map, computed for the query ‘Gree* debt’. The main storylines discuss the
austerity plans, the riots, and the role of Germany and the IMF in the crisis.

Several methods have attempted to summarize and visualize complex stories [Swan and
Jensen 2000; Yan et al. 2011; Allan et al. 2001]. However, most of these methods work
only for simple stories, which are linear in nature. In contrast, complex stories exhibit
a very non-linear structure: stories spaghetti into branches, side stories, dead ends, and
intertwining narratives. To explore these stories, users needs a map to guide them through
unfamiliar territory.

In this paper we summarize methods we have developed for automatically creating metro
maps of information [Shahaf et al. 2012b; 2012a]. Metro maps consist of a set of lines
which have intersections or overlaps. Lines follow coherent narrative threads; different
lines focus on different aspects of the story. We found that this visualization allows users to
easily digest information at a holistic level, interact with the model and make modifications.

We show an example metro map in Figure 1 for the query ‘Gree* debt’. The main story-
lines discuss the austerity plan, the riots, and the role of Germany and the IMF. Note how
the blue and red lines intersect at an article about the austerity plan, as the plan plays an
important role in both storylines: it was a key precondition for Greece’s bailout, and also
triggered many of the strikes. We believe that metro maps can serve as effective tools to
help users cope with information overload in many fields, and frames a direction for re-
search on the automated extraction of information and construction of new representations
for summarizing and presenting complex sets of interrelated concepts.

2. CRAFTING AN OBJECTIVE FUNCTION

The problem of finding a good metro map is hard, especially because it is not clear what
we are looking for. Recognizing whether a map is good or not is easy for humans, but it is
a very intuitive notion. In the following, we review desired properties of a metro map. We
motivate and formalize several (sometimes conflicting) criteria.

Coherence. A first requirement is that each line tells a coherent story: Following the
SIGWEB Newsletter Spring 2013

Figure 3.2: Information representation through ‘metro maps of information’. Visual taken from
original work [135].

3.3.2 Prototyping 1.0: Sankey diagram to represent patient problems over time

We leveraged the sankey diagram visual encoding to represent patient problems over time.

To our knowledge our work represents the first to propose such visual representation of patients

over time. The preliminary design of the summary is presented in Figure 3.4. The x-axis of the

visual shows three selected time slices of the patient’s record. The problem proportion identified
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Figure 3.3: Cohort visualization of treatments and outcomes. Visual taken from original work
[108].

in each time slice is represented by a gray rectangular node. Problems with higher proportion are

represented with longer nodes. Nodes relating to the same problem over time are connected using

a colored link to help the user track the same problem over time. The positioning of the nodes on

the y-axis have no semantic meaning. In the first prototype of the tool, the problem proportions

in each time period were obtained using an off the shelf Correlated Topic Model (CTM) [278].

The CTM was used to summarize the patient record only using a single data type, diagnosis codes.

The CTM in its original form can only handle a single data source at a time, and often is used to

identify themes in large sets of written documents.

We implemented the summarizer prototype as a web-based interactive tool using the Javascript

library D3.js. Users interact with the tool by entering the patient id number they wish to summarize,

the number of top problems to view, the criteria by which top problems are selected, and whether

the problems are grouped or visualized individually. The user can also select to view automated

labels for the problems assigned using the most probably diagnosis code in the topic. Hovering

over each problem link shows the diagnosis code cloud of the phenotype learned by the model.
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Figure 3.4: Preliminary design of summary of patient problems over time using Sankey diagram

3.3.3 Testing 1.0: Formative usability study

To assess the usability of the proposed visualization and its ability to support clinicians in

identifying patient problems and their change over time we conducted a formative user study.

The user study was performed with two physicians (participant 1 and 2), two patient cases of

similar complexity (patient A and B), under two study conditions (Condition 1 and 2). Patient

data was automatically summarized using computational phenotyping model that learns problem

correlations but only uses a single data type, patients’ diagnosis codes. Under Condition 1 a

participant starts by constructing a problem list using the visualization summary of the patient

provided by the tool, then the participant moves to the patient record in the EHR system to validate

or change the problem list. In Condition 2, the participant constructs the patient problem list using

the EHR system alone.

Participant 1 reviewed patient A under Condition 1 and the patient B under Condition 2. Partic-

ipant 2 reviewed the patients under the opposite conditions (patient A under Condition 2 and patient

B under Condition 1). Since participants have never seen the tool before, a short overview of the

tool and its functionalities is given to each participant. A gold standard problem list is generated
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by a third clinical expert. The amount of time participant took to complete the patient problem list

under each condition was tracked. The problem list generated under each condition is compared

to the gold standard list for each patient. Precision and recall are calculated and used to compare

the study conditions. An error analysis of the tool is preformed to identify if miss-representations

of the patient problems are caused by the computational model, visualization decisions, or the

underlying data. At the end of the task each participant is asked for their feedback of the tool.

An analysis of study results indicated that the problem lists from Condition 1 (using the EHR+

tool) were more complete but took longer to construct (an average of 12 minutes versus 6 minutes

under Condition 2 (EHR only)). Errors in the visualization tool were largely due to incomplete

diagnosis code data in the patient record, fewer errors were due to modeling and visualization

decisions. The study findings suggested that results could be improved by modeling additional data

types other than diagnosis codes codes such as clinical notes, laboratory tests, and medications.

This suggests that the investigation of a more advance inference method that allows for multiple

input types is warranted.

Feedback from participants also indicated the desirability of patient specific problem labeling

and word-clouds. Furthermore, the study of usefulness of the tool with varying degree of record

complexity is required. The results of the pilot study were presented in the 2017 Visual Analytics

in Health Care (VAHC) workshop.

3.4 Design requirements of the summarization system

To generate the design requirements of the patient longitudinal summarizer we translated the

gathered informational needs of clinicians that we collected from the literature review, the clinician

interviews, and the formative study of initial summarizer prototype. In Table 3.1 we list the infor-

mation need and its corresponding design requirement. We operationalize each design requirement

using i) visualization; ii) machine learning; and iii) interactivity or a combination of methods. We

describe the selected operationalization of each design requirement below.
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Table 3.1: Information needs to design requirements
Information need Design requirement

1. Key problem identification Problem-oriented summary that generalizes to differ-
ent patient complexities and problems and is able
to perform effective content selection to identify pa-
tient’s top problems

2. Multimorbidity summarization Conveys patient’s problems in context of each other;
allows for identification of correlations among data
and problems

3. Problem verification Allows access to patient data related to a problem to
verify problem and establish trust in system

4. Problem Status ascertainment Captures salience of a given problem and any changes
to problem status

5. Longitudinal information regarding pa-
tient problems

Temporal view of problems

6. Reduction of patient data information
overload

Generates a digestible summary of patient data by
providing meaningful information reduction

R1: Support problem oriented view of the patient record. This aims to assist users identify

patients’ main problems. The design requirements is operationalized through robust inference of

patient problems based on their clinical documentation. We elect to use a computational pheno-

typing model we develop that is able to perform inference over structured and unstructured data

from the patient record. The model simultaneously identifies a list of patient problems and is able

to prioritize problems by their respective salience in the record. The model is unsupervised and

is able to handle different patient complexities (with little or many problems) and is able identify

various types of problems. The development and evaluation of the model is discussed in Chapter

4 of this dissertation.

The visual and interactivity of the summary interface is the second way that the design re-

quirement is operationalized. The visualization we elected to use shows all or selected patient

problems. We do so through the use of sankey diagram, where each sankey link represents a prob-

lem. Through the system’s interactivity, users can select to view all of the patient’s top problem

and zoom-in and view a single problem at a time.
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R2: Support summarization of patients with multimorbidty. The model performs simulta-

neous inference of patient problems and accounts for correlations between problems. The model

also explicitly learns relationships between problems it identifies from a cohort of similar patients.

Problem relatedness is used in the summary interface and allows users to elect to view problems

and their related problems at the same time.

R3: Support users in verifying patient problems. Allow verification of patient problems by

checking associated patient data from different sources in the patient record. The design require-

ment is execute by leveraging an interpretable phenotyping model that allows users to identify the

patient underlying data and the problem they were associated with. This allows for users to ver-

ify suspected problems but also apply judgment regarding the accuracy and trustworthiness of the

summarization. The visual design of the tool needs to allows this information to accessible and

easy to navigate.

R4: support problem status ascertainment of each identified problem. Problem salience is

identified by the model through the amount of the patient data attributed to each problem in each

time period. Problem salience is visually encoded in each time period through the width of the

sankey link associated with the problem. Change in salience is visually encoded through the change

in width of the sankey diagram.

R5: The system must support temporal views of patient problems over time. To support such a

need the ML model used to summarize the patient problems needs to be able to provide a temporal

summary of patient and the visualization needs to support the visual encoding of such a summary.

R6: Support information overload reduction through providing interpretable dimensionality

reduction of patient data. This is achieved through digestible abstractive summarization of patient

raw data and grouping into clinically meaningful problems. Further problem abstraction is pro-

vided by allowing users to simultaneously view related problems. The visual interface supports

36



this design requirements by providing a high level overview of the patient problems through the

sankey diagram. Users are able to leverage the summary interactivity to zoom-in- and out of the

patient underlying data.
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Chapter 4: Summary and content selection through joint phenotype learning

4.1 Introduction

The EHR have improved the availability of patient records, but this has not always translated to

increased availability of relevant information to clinicians [279]. This is partly because increased

amounts of data in EHRs has made it more difficult for clinicians to review patients’ previous

medical histories and obtain an overview of the patient record [275]. Increased amounts patient

data have also raised concerns regarding clinician information overload [5], having effects on care

quality [280], and patient safety [281].

Patient record summarization has been suggested as a valuable tool to support clinicians in

making sense of increasingly large patient records[282]. There are a number of open challenges as-

sociated with robust summarization of clinical documentation [128], including content selection—

identifying the right summary elements at the right granularity in the input patient record— and

content organization—organizing summary output in a coherent and actionable fashion for the

clinicians, all the while preserving data provenance.

Previous work has shown that problem-oriented summaries support the information needs of

clinicians [7, 73, 78, 283]. High-throughput computational phenotyping methods that utilize both

structure and unstructured EHR data are attractive for identifying a patient’s problems in a robust

and scalable fashion [93]. Other unsupervised methods to identifying phenotypes using multiple

data types such as matrix and tensor factorization have been shown to generate interpretable pheno-

types but have largely been restricted to the use of structured data [129, 227, 284, 285] or clinical

notes in isolation [116]. Considering the characteristics of EHR data (missingness, heterogene-

ity, uncertainty), Bayesian generative approaches are attractive to handle them and provide easily

interpretable outputs that quantify their uncertainty.
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EHR-driven phenotyping more generally have been proposed for several use cases, most of-

ten for cohort identification [286–288], patient population characterization [289, 290], but also for

clinical decision support [61, 78, 291]. Approaches for EHR phenotyping divide into those lever-

aging expert-curated rule based algorithms [292] and those utilizing computational algorithms

[93]. Computational algorithms proposed for EHR phenotyping include methods that are fully

unsupervised [93], semi-supervised [293], and supervised [294, 295]. Strategies for feature engi-

neering also ranged from expert feature engineering [296], automated feature selection [293, 297],

to representation learning [99, 102].

To enable a problem-oriented summarizer to identify a target patient’s comprehensive list of

problems and their salience, we propose a probabilistic machine learning approach that can iden-

tify a large number of phenotypes/problems using patients’ structured and unstructured data in an

unsupervised fashion. The machine learning model is trained on the EHR data of many patients

to simultaneously learn probabilistic definitions of many phenotypes at the same time. Figure 4.1

shows a graphical schema of the proposed approach .

To identify the appropriate granularity of the learned phenotypes, the model is trained on a

target patient population of the same clinic. Each phenotype definition is composed of diagnoses,

medications, laboratory tests, and clinical notes that have been observed to commonly co-occur

in the training patient population. Figure 4.2 shows an example phenotype learned by the model.

Figure 4.3 shows phenotype-phenotype correlations learned by the model. Phenotypes are labeled

with their most probable diagnosis code. The learned phenotypes from the model are then used

to summarize a single patient EHR data over time. Figure 4.4 shows an automatically generated

example summary of a single patient record over a five year period that leverages the proposed

approach.

Since our use case for summarization are HIV patients, we focus on phenotyping the patient

population from the HIV clinic at NYPH. We hypothesize that 1) the model will learn many clin-

ically valid phenotypes and phenotype relationships; 2) training the model on an HIV-positive

patient population will result in the identification of several HIV phenotypes, representing the
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Figure 4.1: Schema of summary and content selection approach using joint phenotyping.

different presentations and progression stages of HIV—a granularity that would likely be missed

if trained on a more general and heterogeneous patient population; 3) the model will also learn

non-HIV phenotypes, representative of the many comorbidities of HIV; 4) the model will identify

correlations among phenotypes that indicate clinically valid relations of different types beyond

simple is-a relationships.

4.2 Methods

4.2.1 The model

The model we proposed is based on the correlated topic model (CTM) [278]. In our context,

topics are equivalent to phenotypes and documents are the patient records. We make a method-

ological contribution by expanding the CTM and its inference method to support multiple input

sources, beyond the single input source usually assumed in topic modeling. We make this impor-

tant expansion to the model since unlike topic identification in general text, clinical documentation

is more than just clinical notes. Instead, our model is able to learn phenotype definitions through

identifying co-occurring patterns in clinical notes, laboratory tests, ordered medications, and diag-
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Figure 4.2: Example of learned phenotype and its probabilistic definition across the four data types
(yellow for diagnosis codes, green for notes, purple for medications, and blue for laboratory tests).
The mostly likely diagnosis code is assigned as label for the phenotype.)

nosis codes. Incorporating multiple sources of data into the phenotypes definitions allows for more

robust phenotype definitions that can help overcome the inaccuracies present when just relying on

an single source of patient data (e.g., diagnosis codes). This is supported by previous work that

has shown that incorporating heterogeneous data yields superior phenotypes [93].

It has been previously proposed to leverage topic-model like models to learn clinical pheno-

types. Our model differs in that we do not assume that phenotypes identified in each patient record

are independent from one another. We remove the assumption of independence by allowing for

phenotypes to be correlated. To do this our model, like the original CTM, replaces the traditional

Dirichlet distribution used in Latent Dirichlet Allocation (LDA) [298] to govern topic proportions

with a logit-normal distribution [278]. The logit-normal distribution allows for phenotype pro-

portions in each patient record to be correlated with one another (through the normal covariance
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Figure 4.3: Example of five learned phenotypes and their learned correlations (d).

matrix) but also add up to 1 or 100% of the patient record, as desired when modeling proportions.

Changing the previously assumed Dirichlet distribution with a logit-normal distribution removes

the conditional conjugacy between the posterior distribution and prior distribution of the pheno-

type proportions. To perform posterior inference Wang and Blei [299] propose Laplace Variational

Inference, a generalized form of variational inference (VI) that can handle non-conjugate models.

However Laplace VI previously only supported a single data types as input. In this paper we gen-

eralize the proposed Laplace VI even further to allow for multiple input types. This makes the

model inference especially relevant to clinical data which contains many different data types. The

model training is time-agnostic and treats each patient record as bag of observations, one for each

data type. While motivation behind the model is to assign phenotypes on a single patient level for

patient-level summarization, in this paper we focus on the learned phenotypes on the population

level. Each phenotype is labeled using the most probably diagnosis code.

The generative process of each patient record (D) with #< number of tokens for " data types
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Enter patient id:  Number of problems:  View past:  Label:  

Jan'10-
Dec'10

Jan'11-
Dec'11

Jan'12-
Dec'12

Jan'13-
Dec'13

Jan'14-
Dec'14

Chronic obstructive lung disease

Chronic heart failure

HIV

Atrial fibrillation

Asymptomatic HIV

20192015 2016 20182017

Figure 4.4: Example of patient-specific summary over five years. The top five most salient prob-
lems in 2019 are selected and visualized to showcase how their documentation has evolved through
time. In this setup, the summary was produced at the year level by binning the patient’s docu-
mentation for that time resolution. The patient has HIV-specific problems, although their HIV
is becoming asymptomatic, as well as comorbidities, all cardiac in nature. (Relations among the
inferred phenotypes are not shown. Dates are changed to maintain patient privacy.)

is provided below. The graphical representation of the model is presented in Figure 4.5.

1. Draw log phenotype proportion a3 ∼ # (`0, Σ0)

2. For each =< token (G3,=<) in data type (< = 1, ..., "):

(a) Draw phenotype assignment I3,=< |a3 ∼ "D;C (c(a3))

(b) Draw token G=< |I=< , V:,< ∼ "D;C (VI=< )

4.2.2 Probabilistic inference

The phenotype definition and their correlations with one another are obtained through perform-

ing Bayesian posterior inference which estimates the conditional probability of the unobserved or

latent model variables given the observed model variables. In the case of the proposed model
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Figure 4.5: The graphical representation of the multi-input correlated topic model. Multiple inputs
are represented by the additional plate notation M that is not present in the single-input CTM
model.

this means calculating the probability of the phenotype proportions of each patient record (a) and

phenotype assignment of each input (/=<) given the observed patient data (-=<3) and phenotype

distributions (V), or ?(a, I |G3,=< , V). When the posterior distribution has a conjugate prior this

greatly simplifies the Bayesian analysis and allows for the use of popular sampling methods for

approximate inference such as Markov chain Monte Carlo sampling such as Gibbs sampling as

employed in [93].

However, conjugacy limits the types of distributions used in the model, and thus restricts the

flexibility of data modeling. In order to allow for phenotypes to be correlated with one another the

prior distribution used to model the phenotype proportions in the patient record needs to allow for

phenotype correlations. Since that is not possible with the Dirichlet distribution, it needs to be re-

placed with a different distribution that meets this criteria. However since the Dirichlet distribution

is the conjugate prior to the multivariate distribution used to model the phenotype data assignments,

this modeling change means that the model losses its conditional conjugacy. Hence, deterministic

approximate inference methods such as VI is more feasible than other sampling methods.

By contrast to sampling approximation methods for inference, the theoretical guaranties of

convergence of VI methods to the true posterior have been less studied. However, VI has become

a popular inference method in Bayesian statistics as it tends to be faster and scale better with large
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and complex data [300]. Even in VI, some popular implementations such as mean-field variational

depend of conjugate models. Wang and Blei [299] propose Laplace VI, a generalized form of VI

that can handle non-conjugate models. The method uses Laplace approximations in the coordinate

ascent updates within the variational optimization problem. This methods was shown to generalize

to different types of non-conjugate model and have superior performance compared to the original

ad-hoc inference method previously proposed here [278]. In this paper we generalized the Laplace

VI for multiple input types. The mathematical derivation of the Laplace VI with multiple input

types is shown below.

As presented in the graphical model (see Figure 4.5), the under-script < represents the <-th

input type, where < = 1, ..., " . The derivation below contributes to the previously proposed

inference by [299] by allowing for M input types instead of a single input type. The model is

represented by the joint probability distribution in equation (1). The inference problem is to solve

for the posterior distribution which is the conditional distribution of the latent variables a and I

given G in equation (2).

?(a, I, G) =
"∏
<=1

?(G< |I<)?(I< |a)?(a) (4.1)

?(a, I |G) = ?(a, I, G)∫
?(a, I, G)3I3a

(4.2)

The integral in the denominator of equation (2) is intractable to compute exactly [278]. As

proposed by [299] the posterior is approximated using Laplace VI through optimization. A family

of densities are posited over the latent variables. The model assumptions include:

1. The variational distribution is fully factorized:

@(a, I) = @(a)
"∏
<=1

@(I<) (4.3)

2. a is real valued and ?(a) is twice differentiable with respect to a
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3. The distribution ?(I< |a) is in the exponential family:

?(I< |a) = ℎ(I<)4G?{[(a)) C (I<) − 0([(a))} (4.4)

4. The distribution ?(G< |I<) is in the exponential exponential family such that:

?(G< |I<) = ℎ(G<)4G?{C (I<)) < C (G<), 1 >} (4.5)

In VI the approximation for the posterior distribution is obtained through minimizing the

Kullback-Leiber (KL) divergence to the exact posterior.

@∗(a, I) = 0A6<8= !(&(a, I) | |%(a, I |G) (4.6)

Under standard VI theory minimizing the KL divergence between @(a, I) and the true posterior

?(a, I |G) is the same as maximizing the lower bound of the log marginal likelihood of observed

data G. Using Jensens’s inequality the variational object ! (@) is defined by equation (5).

;>6?(G) = ;>6
∫

?(a, I, G)3I3a

≥ �@ [;>6(?(a, I, G))] − �@ [;>6(@(a, I))]

= �@ [;>6(?(a, I, G))] − �@ [;>6(@(a)
"∏
<=1

@(I<)]

≡ ! (@)

(4.7)

Setting the partial derivative of ! (@) with respect to @ to zero provides the optimal variational

updates to @(a) and @(I<) seen in Equations (9) and (10). When ?(a) is conjugate to ?(I< |a) then

equations (5) and (6) have closed form solutions. In the case of this non-conjugate model [299]

put forward approximates to the updates using Laplace approximation.

@∗(a) ∝ 4G?{�@(I) [;>6
"∏
<=1

?(I< |a)?(a)]} (4.8)
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@∗(I1) ∝ 4G?{�@(a) [;>6?(G1 |I1)?(I1 |a)]}
...

@∗(I<) ∝ 4G?{�@(a) [;>6?(G< |I1)?(I< |a)]}

(4.9)

The following is the derivation of the variational update to @∗(a) using the previously stated

assumption that ?(I< |a) is assumed to belong to the exponential family.

@∗(a) ∝ 4G?{�@(I) [;>6
"∏
<=1

?(I< |a)?(a)]}

= 4G?{�@(I) [;>6?(a) +
"∑
<=1

;>6(I< |a)]}

= 4G?{�@(I) [
"∑
<=1

;>6(ℎ(I<)4G?{[(a)) C (I<) − 0([(a))})) + ;>6?(a)]}

= 4G?{�@(I) [
"∑
<=1
([(a)) C (I<) − 0([(a))) + ;>6?(a)]}

= 4G?{�@(I) 5 (a)}

(4.10)

The function 5 (a) in Equation (10) has no closed form and this is approximated with the

following 2nd order Taylor approximation around â which is the a that maximizes ∇ 5 (a).

5 (a) ≈ 5 (â) + ∇ 5 (â) (a − â) + 1
2
(a − â))∇2 5 (â) (a − â) (4.11)

Thus the update for @(a) is approximate with N(â,−∇2 5 (â)−1)
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The sufficient statistics of the exponential family are:

ℎ(I<) = 1

C (I<) =
∑
=

I<=

[(a) = a − ;>6{
∑
:

4G?{a}

0([(a)) = 0

(4.12)

Using the sufficient statistics above 5 (a) is the following:

5 (a) =
"∑
<=1
([(a)) − 0([(a)) − 1

2
(a − `0))Σ−1

0 (a − `0)

= [(a))
"∑
<=1
{�@(I) [C (I<)]} −

1
2
(a − `0))Σ−1

0 (a − `0)
(4.13)

The first derivative and second derivative of 5 (a) are the following:

∇ 5 (a) = c8 (1[8= 9] − c 9 )
"∑
<=1

�@(I) [C (I<)] − Σ−1
0 (a − `0)

=

"∑
<=1

�@(I) [C (I<] − c
 ∑
:=1
[
"∑
<=1

�@(I) [C (I<)]]: − Σ−1
0 (a − `0)

(4.14)

where c ∝ 4G?{[(a)}

∇2 5 (a)8 9 = (−c818= 9 + c8c 9 )
 ∑
:=1
[
"∑
<=1

�@(I) [C (I)]]: − (Σ−1
0 )8 9 (4.15)

The update to @(I<) where < = 1, ..., < is the following:

@∗(I<) ∝ 4G?{�@(a) [;>6?(G< |I<)?(I< |a)]}

= 4G?{;>6?(G< |I<) + �@(a) [;>6?(I< |a)]}
(4.16)
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Using the exponential form of ?(I< |a) and ?(G< |I<):

;>6@(I<) = ;>6?(G< |I<) + �@(a) [;>6?(I< |a)]

= ;>6?(G< |I<) + ;>6ℎ(I<) + �@(a) [[(a)) ]C (I<) − �

= ;>6ℎ(I<) + C (I<)) < C (G<), 1 > +;>6ℎ(I<)+

�@(a) [[(a)) ]C (I<) − �

(4.17)

@(I<) ∝ ℎ(I<)4G?{�@(a) [[(a)) ] + C (G<)) C (I<)} (4.18)

4.2.3 Dataset

The model was trained on the EHR data of 7,523 patients from an HIV clinical from NYPH.

The data spanned 8 years and included the data types: words from clinical notes, laboratory tests or-

dered, medication orders, and assigned diagnoses codes from across all clinical settings (inpatient,

outpatient, emergency). For the purpose of the model training each patient record was restricted to

the most recent 2.5 years data. The final training data set included the following total data counts

and unique vocabulary size in brackets: total words from clinical notes: 128,034,516 (unique:

25,894); total laboratory tests: 463,524 (unique: 129); total medications: 510,820 (unique: 6,714);

and total diagnosis codes: 246,623 (unique: 2,956).

4.2.4 Model training and parameter selection

The parameters of the normal distribution governing phenotype proportions a3 were initialized

with `0 equal to a zero vector and Σ0 set to the identity matrix. The phenotype distribution V:,< for

each input type was initialized with a Uniform distribution over the (K-1) simplex. This equivalent

to initializing topics with a Dirichlet distribution with parameterization of 1. A small amount of

random positive noise was added to each uniform distribution so there was a small variation in the

initial phenotypes. Three alternatives of the model were estimated (K=50, 100, 250).

To identify the best performing model of the three alternative number of phenotype (K=50,
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100, 250), a clinical expert reviewed 20 randomly selected phenotypes from each model. The best

performing model is further evaluated for the clinical correctness of the phenotypes and phenotype-

relatedness learned by the model.

4.3 Evaluation Setup

We evaluate our hypotheses 1 through 4 using a mixture of qualitative and quantitative evalua-

tions. Qualitative evaluation of the phenotypes and phenotype relatedness was performed by two

clinical experts. The quantitative evaluation was performed through a comparison to the Clinical

Classification Software (CCS), which provides expert-curated manual classification of diagnosis

codes into largely clinically homogeneous groups [301]

4.3.1 Hypothesis 1: clinical validity

To evaluate the clinical validity of the learned phenotypes, 50 randomly selected phenotypes

were evaluated independently by two clinicians. The phenotypes were evaluated according to

their coherence, granularity, and label quality [93]. Previous works citing clinical evaluation of

phenotypes by experts have reported the scoring of a single clinician [93, 129]. Since this scoring

can very subjective, we opted for two clinicians to score the phenotypes and the final score assigned

is the average of the two clinicians. Since we did not want the opinion of one clinicians to be

influenced by the other, there was not adjudication stage in the scoring (common on qualitative

rating tasks made by more than one reviewer). This made the qualitative evaluation a very stringent

task. We provide an analysis of the agreement between the clinicians scoring which can illuminate

the level of subjectivity of this type of evaluation.

Phenotype coherence

Phenotype coherence is meant to capture the quality of each learned phenotype according to

its most probably observations. A coherent phenotype is defined to describe a single condition

with few or no unrelated observations (clinical words, laboratory tests, medications, and diagnosis
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codes). The expert was asked to rate each phenotype as having: ‘bad coherence’ (score=1) , ‘some

coherence’ (score=2), ‘good coherence’ (score=3), or ‘excellent coherence’ (score=4). Phenotypes

with ‘bad coherence’ should look like a random combination of observations, ‘some coherence’

indicates the observations assigned to the phenotype are somewhat related to one another, ‘good

coherence’ indicates the phenotype is a very good representation of a disease, and ‘excellent co-

herence’ indicates the phenotype definition has almost no unrelated observations assigned to it.

Phenotype granularity

The clinical experts were asked to characterize the granularity of each randomly selected phe-

notype by assessing whether the model learned a ‘single disease’ (score=3), a ‘group of diseases’

(score=2), or a ’non-disease’ phenotype (score=1).

Label quality

The representativeness of the automatically assigned phenotype label of the phenotype as a

whole was evaluated. Each label was categorized by the clinical experts as ‘unrelated’ to the

rest of the phenotype (score=1), ‘related’ to the rest of the phenotype (score=2), or ‘actionable’

(score=3). Labels that were deemed as actionable are those representative of a single phenotype

and have the appropriate granularity to provide a clinician information that could be used without

additional information to guide further testing, diagnosis, or counseling.

Phenotype relatedness

Next, the clinical validity of the phenotypes-relatedness were evaluated by a single clinical

expert. The expert reviewed all phenotypes relationships that were indicated to have a correlation

greater than 0.5 correlation coefficient. Two sets of phenotype-relationships were evaluated: 1)

positive phenotype relationships learned between "more common" non-HIV phenotypes, defined

as phenotypes that were represented in more than 5% of the patient population in our dataset;
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and 2) positive relationships learned between "rarer" non-HIV phenotypes, represented in 5% of

sample population or less. The justification for evaluating relationships between "more common"

phenotypes is that the model findings are grounded in more patient record, which could result

in more robust findings. However, evaluating phenotype relationships identified between "rarer"

phenotypes could still be interesting to assess in case the model is able to identify less known

clinical relationships.

4.3.2 Hypothesis 2: focus on HIV phenotypes

Our second hypothesis was that since HIV is a complex disorder with diverse presentations

and severity among patients, the model would identify several distinct HIV phenotypes. In evalu-

ating this hypothesis, we wished to understand to what extent the model is able to learn multiple

clinically valid HIV phenotypes and also characterize what those phenotypes were. To do so we

had an HIV clinical expert review all the phenotypes automatically labeled as ‘HIV’. The clinical

expert was asked to i) indicate if the phenotype was clinically valid, ii) indicate if the phenotype

was indeed an ‘HIV’ phenotypes; and iii) give a more granular description of the phenotype if

it was indeed an ‘HIV’ phenotype in order to assess if the model identified disease progression,

presentation, or acuity.

4.3.3 Hypothesis 3: focus on non-HIV phenotypes

To assess if the model was able to learn diverse phenotypes, representative of the many comor-

bidities of HIV we quantitatively compared the phenotypes learned to the disease groups identified

in the CCS. We did this by categorizing all 250 learned phenotypes according to their labels’ cor-

responding CCS level-1 category. If the model was able to learn phenotypes that fit into many CCS

categories, we would could conclude that the model was able to learn diverse types of phenotypes,

beyond HIV.
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4.3.4 Hypothesis 4: types of phenotype- relatedness

We performed two evaluations to assess whether the model was able to identify correlations

among phenotypes that indicate clinically valid relations of different types beyond simple is-a re-

lationships. The first evaluation included a clinical expert review phenotype-pairs identified by the

model as highly related and determine what kind of relationship type the model learned. Example

relationship types include comorbidities, same phenotype, phenotype sub-type, and others. In the

second evaluation we counted how many significant phenotype-relations learned by the model in-

dicated an is-a relationship, as evidenced by same level 1 CCS categories, versus a more diverse

relation type such as comorbidity when spanning different CCS categories.

4.4 Results

The qualitative evaluation by the clinical expert indicated that the 250-phenotype model yielded

the most coherent and granular phenotypes of the three models (K=50, 100, 250). All results below

are described for the evaluation performed for the K=250 phenotype model.

4.4.1 Hypothesis 1: clinical validity

Phenotype quality

Of the 50 evaluated phenotypes from the 250-phenotype model, 10% of the phenotypes (n=5)

were deemed to have no coherence (average coherence score of 1 or 1.5) while the large majority

of evaluated phenotypes (n=45) were deemed to be coherent (with average coherence score of 2

or above) (see Figure 4.6). The most number of phenotypes were scored as having ’good coher-

ence’ (n=13), followed by 12 phenotypes with an average of 3.5 (between ‘good coherence’ and

‘excellent coherence’). The ‘bad coherence’ phenotypes were found to be non-disease specific,

but instead captured documentation related to general primary care visits. Figure 4.7 shows the

diagnosis codes of example phenotypes with coherence scores 1 (‘bad coherence’) through 4 (‘ex-

cellent coherence’) by both the clinical experts. The phenotypes in the example identified a clinic
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visit phenotype (scored 1), grouping of cancers phenotype (scored 2), grouping of heart diseases

phenotype (scored 3), and an Arterial fibrillation phenotype (scored 4).

Comparing the coherence phenotype scoring assigned by the two clinicians we found that the

two clinicians had a low agreement on the exact coherence score assigned to the phenotypes (scores

1 through 4) but that the average difference between the scores was less than 1 point (0.9). This

indicates that the clinicians evaluation of the phenotypes was not far apart. When comparing the

clinician agreement on whether a phenotype was identified as not coherent (score of 1) versus

coherent (score of 2 and above) the agreement was high, at 90% of the evaluated phenotypes

(see Table 4.1). Of the 5 phenotypes that the reviewers did not agree on, 4 looked like HIV

clinic well visits. The disagreement seemed to stem from whether the model identified a disease

phenotype or a clinical-settings phenotype. An example such phenotype had the following top 5

diagnosis codes: ‘Human immune virus disease’, ‘Obesity NOS’, ‘Elevated blood pressure w/o

hypertension’, ‘Hypertension NOS’, and ‘Laboratory exam NOS’.
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Figure 4.6: Phenotype coherence scores. Average score across the two clinical expert scores. Score
1=‘bad coherence’, 2=‘good coherence’, 3= ‘very good coherence’, 4=‘excellent coherence’.

The phenotype granularity scores indicated that 90% of the evaluated phenotypes (n=47) had

a granularity score 2 or greater (see Figure 4.8). This means that almost all of the evaluated

phenotypes were deemed by both reviewers to identify a single or a group of diseases. The most

number of phenotypes were assigned an average score of 2.5 (n=31), the next most prevalent score
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Figure 4.7: Example phenotypes by coherence score assigned by the clinical experts. Each phe-
notype is represented here by its top diagnosis codes rather than all 4 data types for the sake of
space. Score 1=‘bad coherence’, 2=‘good coherence’, 3= ‘very good coherence’, 4=‘excellent
coherence’.

was 2 (n=13). This indicates that the model mostly identified phenotypes that were a group of

diseases rather than a single disease. An example of a phenotype that had an average granularity

score of 2.5 had different diagnoses codes identifying a fall or accident and different body parts

such as shoulder, forearm, limb and hand. One reviewer scored the phenotype as identifying a

single disease being ‘limb injury due to accident’, while the other reviewer believed that since

multiple body parts were identified the phenotype represented a group of diseases.

The phenotype labels were mostly found to be ‘related’ with a score of 2.5 (n=21) or 2 (n=19)

(see Figure 4.9). Only 3 phenotype labels were identified as ‘actionable’ with a score of 3 by both

reviewers. The feedback from the reviewers was that the diagnosis code used for the phenotypes
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Table 4.1: Comparison of 2 clinician scoring for phenotype coherence
Clinician 1

Not Coherent Coherent

Clinician 2 Not Coherent 1 1
Coherent 4 45
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Figure 4.8: Phenotype granularity scores. Average score across the two clinical expert scores.
Score 1=’non disease’, 2=’group of diseases’, 3= ’single disease’.

was too granular to adequately represent the entire phenotype.

Phenotype-relatedness quality

Of the learned phenotype-pair correlations, 471 (1.5% of all possible phenotype-phenotype

pairs) were significant (correlation coefficient above 0.5 in absolute value). Of the 471 signifi-

cantly correlated phenotype-pairs, 395 where positive correlated (Figure 4.10) and 76 were neg-

atively correlated. We had a clinical expert perform clinical validity of the learned phenotype

relationships.

In the "more common" phenotype set, 82 phenotype pairs were found to have a correlation

greater than 0.5 (Figure 4.11). These 82 correlations resulted from 61 unique phenotypes, hence

on average each phenotype had more than significant correlation with more than one phenotype. Of

the 82 reviewed relations 80 (98%) were found clinically valid. One relation rated non clinically

valid was the high correlation between a non-disease phenotype for outpatient visits and a non-

disease phenotype for inpatient visits. The other non clinically valid relation was between a joint
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Figure 4.9: Phenotype coherence scores. Histogram of average phenotype coherence scores as-
signed by the two clinical expert. Score 1=‘not related’, 2=‘related’, 3= ‘actionable’.

disease phenotype and a phenotype that seemed to be a mix of hepatitis C, liver disease, and

obesity.

In the "more rare" phenotype set, 21 phenotype pairs were found be have a correlation greater

than 0.5 (Figure 4.12). These 21 correlations results from 23 unique phenotypes. Of the 21 re-

viewed relations 12 (57%) were found to clinically valid. Most of phenotype pairs that the clinician

deemed as unrelated were not very coherent phenotypes which could be expected from phenotypes

that were assigned to less of the 5% of the training set.

4.4.2 Hypothesis 2: focus on HIV phenotypes

Of the 250 phenotypes, 73 where identified as ’HIV’ according to their automatically generated

label. The clinical expert evaluation of the these phenotypes showed that most of the identified phe-

notypes represented a routine primary care visit of an HIV patient. Three phenotypes were clear

representations of HIV phenotype and two other phenotypes representing AIDS, the development

of HIV into a disease. The rest of the phenotypes were of HIV comorbidities (psychiatric, can-

cer, renal, neurological, etc) mixed with HIV related observations. A few phenotypes captured

behavioral phenotypes (substance abuse) and 11 phenotypes were deemed as non-coherent.
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Figure 4.10: All significant pairwise-positive correlations visualized

4.4.3 Hypothesis 3: focus on non-HIV phenotypes

When categorized into CCS categories according to their ICD label, the learned phenotypes

were were found to cover 16 out of the 18 CCS level 1 classifications (Table 4.2). The two CCS

level 1 categories not captured in the phenotype labels pertained to pediatric conditions. Beyond

the most prevalent CCS category related to HIV, ‘Mental Illness’ (which include substance use)

and ‘Disease of the circulatory system’ were the most frequent disease groups identified by the

model (Figure 4.13). This finding reflects the high coverage of the learned phenotypes related to
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ness.

the types of conditions characteristics of the input population.

4.4.4 Hypothesis 4: types of phenotype- relatedness

Of the 82 relations evaluated, 63 fit into the same CCS multi-level classification, level 1 cate-

gory and thus could be inferred using the CCS. However 19 relations were not of the same level

1 category. Out of those 19, 2 were deemed to be unrelated by the clinical expert, 17 relations

(21%) were clinically correct and could not be inferred from the CCS and showed more diversity
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Figure 4.12: All significant pairwise-positive correlations for ‘rare’ phenotypes (defined as present
in less than 5% of the training set).

in the relation type learned: the phenotype for severe HIV and one representing the non-disease

ICU visits, as well as comorbidity relations like in the pair for ‘end-stage renal disease’ and ‘acute

respiratory failure.’

4.4.5 Patient-level Content selection

After the model learns 250 phenotypes from the patient population in the HIV clinic, the model

can be applied to the data found in a single patient record. Running the model inference on patient
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Table 4.2: 250 phenotypes by their CCS category
CCS level 1 Number of
category phenotypes

Infectious and parasitic diseases 83
Mental illness 32
Circulatory system 26
Neoplasms 23
Respiratory system 13
Endocrine; nutritional; and metabolic diseases 12
Digestive system 10
Musculoskeletal system and connective tissue 10
Genitourinary system 10
Nervous system and sense organs 8
Symp; signs; and ill-defined conditions 8
Blood and blood-forming organs 6
Injury and poisoning 4
Skin and subcutaneous tissue 3
Complications of pregnancy 1
Resid. codes; unclassified; all E codes 1
Certain cond. originating in perinatal period 0
Congenital anomalies 0

level data (without re-learning the model parameters) provides a 250 dimensional summarization

of the patient record. To summarize the patient record over time, we can run the model inference

on the patient data after segmenting the patient data at the desired time granularity. The identified

phenotype proportions over time is inputted to a sankey visualization presented in Figure 4.4. Each

sankey line represents a phenotype identified to be relevant in the patient record. The height of each

sankey link indicates the proportion of the phenotype in that period. In order to be actionable and

avoid information overload the summary showcases the patient’s top 5 problems. Top problems

are defined at the phenotypes that are found by the model to have the highest probability among

the 250 phenotypes learned by the model. The visualization then illustrates how the proportion of

the phenotypes increased, decreased, or stayed the same from one period to the next. As a clinical

decision support tool, this summary and visualization of the change in phenotypes identified in the

patient record could signal to users what health problems the patient possess and how their salience

has changed over time.
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Diseases of the circulatory system

Complications of pregnancy
Diseases of the blood and blood-forming organs

Diseases of the genitourinary system

Diseases of the digestive system

Diseases of the respiratory system

Diseases of the musculoskeletal system and 
connective tissue
Diseases of the nervous system and sense organs

Diseases of the skin and subcutaneous tissue

Endocrine; nutritional; and metabolic diseases

Infectious and parasitic disease

Mental illness

Injury and poisoning
Symp; signs; and ill-defined conditions

Neoplasms

Residual codes; unclassified; all E codes [259. and 260.]

Figure 4.13: 250 learned phenotypes colored by their labels’ corresponding CCS category. Size of
the circle indicates proportion of phenotype represented in the training set.

The described approach for patient summarizing using the proposed phenotyping model ben-

efits from several of the key characteristics of the model. Since the phenotyping model is fully

unsupervised the model can easily be utilized for other patient populations by re-training the model

on relevant patient data. For instance if patient record summarization was desired for oncology pa-

tients, the model can be retrained on oncology patients to learn cancer-specific phenotypes as well

relevant co-morbidity phenotypes. The patient summary benefits from the high-throughput nature

of the model in that the model learns many phenotypes at the same time and is able to summa-

rize the patient record according to all the phenotypes found to be prevalent in the patient record.

Finally the model provides a probabilistic summary of the patient record. The generated patient

summary is probabilistic in two senses; 1) each data point has a probability of being associated

with the phenotypes; and 2) the phenotype assignments to the patient is also probabilistic which

can be interpreted as the salience of the associated phenotype in that time period.

To ensure that the model provides a digestible summary of the patient record we analyzed how

many phenotypes are required to capture the large majority of the patient record in our training
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set. If we find that the model assigns a large number of phenotypes to each patient record then

the proposed summary may still provide too much information to be useful at the bedside. In our

analysis we found that more than half of patients in our data set were almost completely described

by 1-5 phenotypes (Figure 4.14). The large majority of the remaining patients were described by

6-20 phenotypes. Hence, even though the model is trained to learn a large number of phenotypes

(K=250), each patient record is summarized by only a few phenotypes. This indicates that the

model has the potential to reduce many thousands of data points in the record of each patient to a

list of a handful of problems and how they have changed over time.
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Figure 4.14: Number of phenotypes needed to explain 90% of a given patient record. For example,
65% of the patient records in the training set are almost fully explained (90% of data) by 1-5
phenotypes. Each patient record is likely explained by a different 1-5 phenotypes from the 250
phenotypes the model learned from the entire patient cohort.

4.5 Discussion

Evaluation results show the model simultaneously identifies 250 phenotypes with good coher-

ence and coverage. Learned phenotype relatedness were found clinically meaningful and diverse,

identifying some relations out of scope of the baseline resource. Our experimentation shows that

when training the model on a cohort of HIV patients, the model learns multiple HIV phenotypes

that can provide good granularity when used for single-patient problem-oriented summarization.

The model was also found to identify a wide range of non-HIV phenotypes, yet commonly en-

countered in HIV patients. The learned phenotype-phenotype correlations learned from the patient
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cohort could be used to group and organize highly-related phenotypes in the patient-level sum-

mary, to provide a clearer overview of the patient’s problems. In many settings but notably urgent

care and emergency settings in particular, patient summarization enabled by this model, could pro-

vide clinicians a tool for more rapid understanding of the patient comorbidities, leading to better

diagnosis, expedited referrals, and potentially a reduction in over-testing. In Chapter 5 of this dis-

sertation we present the evaluation study of the patient record summarization in assisting clinicians

to review patient records more effectively and accurately.
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Chapter 5: Usability testing of patient summarization system with target

users

Data visualization applications in the health domain have been evaluated using a variety of

evaluation methods as reviewed by [302]. These evaluations have been described by two useful

dimensions: i) evaluation settings and ii) evaluation measurements. Evaluation settings used in

the literature include lab settings with proxies to target users, lab settings with target users, partial

roll out or implementation, and full roll-out of system. Previously used evaluation measurements

used include unstructured interviews, user surveys (with and without scoring scales), task based

measurements, and other outcomes such as health outcomes.

The review recommendations identified that evaluation studies going forward should leverage

commonly reported metrics for better comparability with existing literature, focus on interaction

and workflow, in addition to adopting a phase evaluation strategy. In this Chapter we describe

our work on designing and implementing an evaluation study of the patient record summarization

system. We sought to follow the recommendations identified by [302] while staying consistent

with the UCD approach.

In the final aim of this dissertation we set out to combine the design requirements that we

identified in Aim 1 and the modeling we developed in Aim 2 to generate a joint phenotype driven

summarization system of patient data. After the prototype was complete we ran several heuristic

evaluation sessions with two clinical experts. Each expert was asked to explore the summarization

tool for 12 HIV patients. Experts reviewed the patient data using the tool as well as the EHR record

for each patient. The experts provided feedback about the tool’s accuracy, usability, and assisted

in designing the next usability study. We then proceeded to conduct a usability study with target

users (rather than proxies) to assess the usefulness of the system to support users in the intended
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task we aimed to assist in, patient chart review at the bedside. The design of the study tasks in

addition to a few summarizer features were informed by the previous heuristic evaluations. The

recruited expert for the heuristic evaluation were not recruited for the usability study.

5.1 Prototype no. 2: Combining joint phenotyping and interactive visualization

In this section we describe the tool architecture, the back-end model and front-end interface, as

well as the user study of the tool.

5.1.1 Summarization pipeline architecture

The tool consists of three main processes 1) offline training of a phenotyping model on rele-

vant patient populations; and 2) running the target patient data through the already trained model

to obtain a summary; and 3) sending the patient summary from the model to the web-based visu-

alization tool. The first process is done ahead of time while processes 2 and 3 can be done real

time.

5.1.2 Off-line phenotype learning

The model is trained ahead of time to learn phenotype definitions by leveraging the structures

and unstructured data from the records of many patients. For the model to learn phenotypes at the

right granularity, the model is trained on a patient population that is similar to the target patient.

Each phenotype definition is composed of diagnoses, medications, laboratory tests, and clinical

notes that have been observed to commonly co-occur in the training patient population.

The model also learns the phenotype-phenotype relatedness of each phenotype pair the model

produces. By modeling correlations among the phenotypes the model can more accurately reflect

the clinical processes of the phenotypes, which are likely to correlate with one another. The learned

relationships can also be used on the patient level summary for organizational purposes and for

providing higher level abstraction of problems into related problem groupings.
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5.1.3 Patient-level phenotype summary

The phenotypes learned from the patient population are then used by the model to assign phe-

notype proportions to the target patient. To generate a temporal summary of patient phenotype

proportions, the model is run on chunks of the patient data at the time granularity the user is in-

terested in. For each time period of interest the model generates a probability distribution over

all possible phenotypes. Phenotypes assigned a high probability in a time period indicate that the

data types learned to be associated with that phenotype from the population level where present

in the patient record during that time period. Since the same phenotype definitions are used to

summarize the patient record over time, the temporal summary of the patient provides how the

probability of a single phenotype changes over time. If phenotype probability can be used to proxy

phenotype salience, then the temporal summary could pick up on changes in the health status of

certain patient problems over time. In addition to the phenotype probabilities over time, the model

also provides the information of which data points in the patient record were mapped to what

phenotype, allowing for a high level of model transparency, interpretability, and maintained data

provenance.

5.1.4 The front-end visualization

The front-end of the summarizer is a web-based interactive visualization built using D3.js,

a JavaScript library for producing dynamic, interactive data visualization in a web browser. The

visualization is hosted using a simple command-line http server established on a secure server using

port-forwarding. This means that the web-application is only viewable from the single machine

that launches the server. The front-end visualizer reads in json files that contain the problem

proportions the model identified for each patient record and time period of interest. The tool

interface also reads in the problem assignments of each patient data point, in addition to patient

specific problem labels. For the purpose of the evaluation study all the json summary files were

pre-generated but these files can also be generate on the fly as more patient data is recorded over

time.
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The interactive visualization tool is composed of (A) a user selection menu allowing for the

selection of the patient id, the number of top problems to view (X), and number of period to

view (Y); (B) a summary of the patient problems over time represented in the color-coded sankey

diagram; and (C) scrollable boxes showcasing the patient raw data and their assignment to the

phenotypes (Figure 5.1). Each colored sankey line represents a patient phenotype. The rectangular

sankey nodes for each phenotype represent the phenotype proportion identified for the patient

during that time period. The tool default is to show the patient’s most probable 10 problems in the

last 5 time periods. The phenotypes presented in the summary are the X number of phenotypes

that had the greatest probability over Y most recent periods selected to be viewed. Hence, if the

phenotypes presented in the tool may change a little depending if the user chooses to concentrate

on the last 2 years of data versus the last 5 years of data. Even though the phenotype definitions are

learned from the entire population, the tool shows a custom phenotype label for the patient using

the most probably diagnosis code assigned to that phenotype that was present in the patient data.

If for some reason the patient does not have any diagnosis codes associated with the phenotype, a

phenotype is assigned a label using the CCS category from the population level phenotype. Patient

data boxes.

The patient raw data summarized are presented in the scrollable boxes on the right. Each of

the 4 data type are presented in their own box ordered as follows diagnosis codes, medications,

laboratory tests, and words from clinical notes. Each data point in each time period is has a color

coded bar behind it indicating the phenotype that the data point was assigned to and the number of

times it appeared during that time period. Users can browse all the data points by time period using

the drop down menu or one phenotype at a time by clicking on the phenotype sankey diagram.

5.1.5 Data

To train the phenotyping model (described in Chapter 4) we used the EHR data of 6,553 pa-

tients from an HIV clinical from NYPH. The patient population was the same one used for the

evaluation of the model in Chapter 4 but we now trained the model on the same data conformed
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31

Prototype no. 2: interface design + model

Diagnosis
codes

Medications

Laboratory
Test

Clinical 
Notes

20192018201720162015

Part A. Part B. 

Part C. 

2014 2015 20172016 2018

Figure 5.1: Example of patient-specific summary over five years. The top 7 most salient problems
in between 2014 and 2018 are visualized and how their documentation has evolved through time.
The summary is presented at the year level by binning the patient’s documentation for that time
resolution. The patient has HIV-specific problems, as well as comorbidities, including asthma,
depression, and substance abuse. Relations among the inferred phenotypes are not shown. Dates
are changed to maintain patient privacy.

to the OMOP Common Data model [303]. The data spanned 5 years and included the data types:

words from clinical notes, laboratory tests ordered, medication orders, and assigned diagnoses

codes from across all clinical settings (inpatient, outpatient, emergency). For the purpose of the

model training each patient record was restricted to the most recent 4 visits. This was done in

order to capture relatively constant period in the patient phenotypes. The final training data set

included the following total data counts and unique vocabulary size in brackets: total words from

clinical notes: 37,831,411 (unique: 7,536); total laboratory tests: 1,856,892 (unique: 831); total

medications: 144,975 (unique: 1,970); and total diagnosis codes: 172,550 (unique: 1,991). For

patient summarization, patient data spanned the five most recent years of data. Patient data was

aggregated at the yearly level by enumerating the number of times each observation appeared in

the patient record during the year.
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5.2 Evaluation methods

5.2.1 Usability Study with HIV clinicians

The goal of the evaluation study was to assess the ability of the tool to support clinicians in

reviewing patient charts. Subjects were recruited via an invitation email sent to clinicians that

regularly care for HIV patient from NYPH’s Division of Infectious Diseases. Inclusion criteria

for participants was that they were practicing clinicians at NYPH in east or west campus and that

regularly care for patients with HIV. Participation was voluntary and compensated. All subjects

were experienced users of the EHR system at NYPH but had never seen the summarization tool

before.

Patient case selection

Cases for patient review were selected from the NYPH HIV patient clinic and selection fo-

cused on patients with a long history of care with multiple comorbidities, and a combination of

outpatient, inpatient, and ED visits. Patients data included in the study ranged between 4 to 5 years

of clinical follow-up at NYPH, although patients had longer histories that were not included in

the evaluation. Over the included period all of the patients had seen several medical providers,

numerous visits, and significant documentation with a sizeable number of diverse problems. All

records were checked to ensure that the physician participant reviewing the patient case had not

cared for the patient in the last two years.

Study protocol

Each participating clinician was randomly assigned to review 4 patient cases, with 10 minutes

dedicated to each patient case to simulate realistic time constraints. Clinicians reviewed 2 patient

cases with the baseline system which is the EHR at NYPH (Condition A) and 2 patient cases with

the aid of the summarizer (Condition B). The order in which participants reviewed each patient

and under what condition were alternated (Table 5.2).
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Table 5.1: Summary statistics on electronic health data of the 8 study patient cases
Mean Median Range

Number of visits at NYPH 88 66 47 -176
Number of notes 764 487 128- 2,112
Total laboratory tests 2,233 1,584 364-4,906
Unique laboratory tests 475 425 288-760
Total diagnosis codes 1,756 1,911 1,177- 1,975
Unique diagnosis codes 306 227 63- 751
Total medications 1,716 1,778 1,461- 1,887
Unique medications 186 113 21- 539
Words from clinical notes 22,614 15,839 5,323-51,347
Unique words 7,526 7,529 7,503 - 7,535

Table 5.2: Study protocol of 2 groups of 8 clinicians (total of 16) reviewed 4 patient cases each
(total of 8 patient cases). Bold patient ids indicates the study condition with summarizer (Condition
B) and the non-bold represents the baseline use of the EHR (Condition A).

Clinician Case 1 Case 2 Case 3 Case 4

Clinician 1 Pt F Pt H Pt D Pt A
Clinician 2 Pt F Pt H Pt D Pt A
Clinician 3 Pt H Pt A Pt F Pt D
Clinician 4 Pt H Pt A Pt F Pt D
Clinician 5 Pt D Pt F Pt A Pt H
Clinician 6 Pt D Pt F Pt A Pt H
Clinician 7 Pt A Pt D Pt H Pt F
Clinician 8 Pt A Pt D Pt H Pt F

Clinician 9 Pt G Pt E Pt C Pt B
Clinician 10 Pt G Pt E Pt C Pt B
Clinician 11 Pt E Pt B Pt G Pt C
Clinician 12 Pt E Pt B Pt G Pt C
Clinician 13 Pt B Pt C Pt E Pt G
Clinician 14 Pt B Pt C Pt E Pt G
Clinician 15 Pt C Pt G Pt B Pt E
Clinician 16 Pt C Pt G Pt B Pt E
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Table 5.3: Participant Tasks under Condition A (EHR) and Condition B (Summarizer)
Condition A Condition B

Task 1.1 Generate problem list using EHR alone
(PL-EHR)

Generate problem list using summarizer
tool alone (PL-Viz)

Task 1.2 N/A Review patient data with EHR, revise
PL-Viz from task 1.1 if needed (PL-
Viz+EHR)

Task 2 Answer two questions about patient using
EHR alone (Q-EHR)

Answer two questions about patient using
tool alone (Q-Viz)

Task 3 Generate 1-2 sentence patient summary
with the EHR alone, noting if each prob-
lem is improving, stable, worsening when
possible (Summary-EHR)

Generate 1-2 sentence patient summary
using the tool alone, noting if each prob-
lem is improving, stable, worsening when
possible (summary-Viz)

Evaluation tasks

For each patient case the clinicians were asked to perform 3 main tasks (Table 5.3). Task 1

was to generate a patient problem list using the EHR alone if under Condition A (referred to as

PL-EHR) and using the summarizer if under Condition B (PL-Viz). Since the summarizer is not

intended to replace the EHR but to aid clinician to gain an overview of the patient, participants were

asked to confirm the problem list they generated under condition A and to revise it if you needed

to (PL-Viz+EHR). Task 2 was to answer two patient specific questions regarding the patient’s

treatment or medical history (e.g. Q1: In 2013 patient sought physical therapy, what was it for?

and Q2: What was the HIV medication regimen in 2014?). Question answers under Condition A

are referred to as Q-EHR and under Condition B as Q-Viz. Participants did not verify their answer

to the questions with the EHR when under Condition B. Finally, in Task 3 participants were asked

to generate a 1-2 sentence patient summary of the patient case. In the summary participants were

asked to note the status of mentioned problems, that is if problems were improving, worsening, or

stable. If they were unable to note the status of a problem given using the EHR (Condition A) or

the summarizer (Condition B) they could note this in their answer. After reviewing 4 patient cases

participants were asked to complete a usability questionnaire following the System Usability Scale

(SUS) [304] and provide free-form feedback regarding the tool.
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Table 5.4: SUS Questionnaire
Question

I think that I would like to use this system frequently
I found the system unnecessarily complex.
I thought the system was easy to use.
I think that I would need the support of a technical person to be able to use this system
I found the various functions in this system were well integrated
I thought there was too much inconsistency in this system
I would imagine that most people would learn to use this system very quickly
I found the system very cumbersome to use
I felt very confident using the system
I needed to learn a lot of things before I could get going with this system

Evaluation metrics

To assess performance under each study conditions data measurements collected included:

a) -to-completion of Tasks 1.1 through 3; b) problem list precision and recall for problem lists

PL-EHR, PL-Viz, and PL-Viz+EHR. Precision and recall were calculated in comparison to gold-

standard lists generated by two clinicians; c) correctness of clinical questions for Q-EHR and Q-

Viz, scored in comparison to gold-standard solutions generated by two clinicians. Each question

was scored out of 100%. Questions were scored with a score of zero if were incorrect or were not

answered, a score of 50% if partially correct, and 100% if perfectly correct; d) patient summary

score, ranging between score=0 if summary was not completed, score=50 if completed but did not

note status, and score=100 if successfully noted problem status; e) usability of the summarization

is assessed through a post-study questionnaire adapted from the System Usability Scale (SUS)

which is a standard tool to measure usability [304].

The 10 items asked in SUS, users are asked to score one of five responses Strongly Agree

(score=5), Agree (score=4), Neutral (score=3), Disagree (score=2), and Strongly Disagree (score=1).

Data collection This study used Open Broadcaster Software (OBS) which allows to record mul-

tiple screens and audio. All participants used the same computer connected to two large external

screens and had access to the EHR on one screen and the summarizer interface on the other. All

answers were entered by the participants in a Word document.
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Statistical analysis

Two clinicians completed an answer key for the medical questions and constructed gold-

standard problem lists for each patient case. Question responses and problem lists generated by

the study participants were compared to the gold-standard solutions and problem list accuracy

and questions correctness were calculated. Problem lists accuracy metrics calculated included

precision and recall. Statistical significance between the recall and precision of the two study con-

ditions is tested using the non-Parametric test Wilcoxon signed-rank test. statistically significant

difference between the conditions for the question correctness was calculated using a Wilcoxon

signed-rank test as well. A comparison of the average to completion under the treatment and the

control conditions is evaluated using Multi-source Analysis of Variance (ANOVA).

5.3 Results

Sixteen clinicians participated in the evaluation study, 14 infectious disease clinicians from the

NYPH HIV clinic, 1 pediatrics infectious disease clinician, and 1 hospital internist from Weill

Cornell. In total the participants included 5 Assistant Attendings, 2 Associate Attendings, 4 Nurse

Practitioners, and 5 Clinical Fellows. Subjects completed 4 patient cases for a total 64 case reviews,

32 with the aid of the summarizer tool and 32 with the EHR alone. Since the 16 clinicians were split

into two groups, to review 4 different patient cases each patient case was reviewed by 8 clinicians,

4 times with the aid of the summarization tool and 4 times with the EHR. The time constraint set to

10 minutes per patient case was found to be quite strict and the participants needed to complete the

problem list, clinical questions, and summary in a brisk pace. Out of the 64 case reviews, 7 cases

could not be completed in full due to time running out. In each of the 7 cases where the participants

could not finish all sub-tasks in time only as single sub-task was missed (6 patient summaries and

1 clinical question; 4 under the EHR condition and 3 under the summarization condition). For the

result analysis, a time penalty of 10 minutes was assigned to the sub-task when participants could

not get to it in time in order to avoid recording 0 minutes for the tasks which would have biased
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the results. The solution to the sub-task is recorded as wrong.

5.3.1 Task 1: Problem lists

Problem list construction using Condition A (EHR) versus Condition B (Summarizer)

To construct the problem lists under Condition A (EHR) that most used strategy was to looked

for the last note in the time period of interest that was written by the patient’s primary care physi-

cian (PCP). Once they found that note they skimmed through it, noting any mentioned problems.

Once constructing the list of problems, participants often looked for medications mentioned in the

same note to verify they were consistent with the listed problems. At times, when there was a

mentioned problem but with no relevant medication they removed the problem from the list. Some

participants scrolled through the patient notes to confirm the identified problems with another note.

One or two participants also searched for notes written by specialists, stating that they would likely

have problem lists with a different focus and thus were interested to look at those for complete-

ness. Since participant recognized the name of the PCP of these patients they often search for the

clinicians notes by name. They also often mentioned that they know that the specific PCP makes

detailed notes and thus they don’t need to view any other data source in order to construct the

patient problem list.

Under Condition B (summary system) participants had two stages for the completion of the

problem list: Task 1.1 entailed generating a list with the summarizer alone; and Task 1.2 was

to look at the patient EHR to edit the problem list from Task 1.1 if they wanted to. Strategies

taken to construct PL-Viz varied somewhat between participants. Three main user behaviours

were identified. Strategy 1 included just reading off the problem labels off of the sankey diagram,

without investigating the underlying data assigned to each problem. Often they choose to ignore

problems for which the sankey link was very thin in last time period presented, indicating that no

patient data was mapped to the problem in that year. In strategy 2 participants took a very different

approach and clicked on every problem link and on each time period, looking through the patient

data assigned to each problem quite a bit. In strategy 3, users only glanced at the sankey diagram
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but directly navigated to the option of viewing all of patient data by period.

Problem list accuracy using Condition A (EHR) versus Condition B (Summarizer)

Problem list accuracy was calculated in comparison to an expert-generated gold-standard prob-

lem lists created by two clinicians (Figure 5.2). Problem list precision was found to be fairly simi-

lar between the study conditions and differences were not found to be statistically significant. The

average precision for PL-Viz was the highest with precision of 0.66 (median precision=0.667).

Precision was slightly lower for PL-EHR at 0.65 (median precision=0.667). Finally, the lowest

precision was obtained for PL-Viz+EHR at 0.61 (median precision=0.62). That is the average (and

median) problem list precision under Condition B was reduced in Task 1.2 from Task 1.1, when

clinicians were asked to review the patient EHR and make any edits to the patient problem they

generated with the summary alone (PL-Viz). Problem list edits made in Task 1.2 were largely

including more problems to the list. Only one clinician removed a problem previously identi-

fied in PL-Viz. The additional problems added to the list in PL-Viz+EHR were often not on the

gold-standard list which increased the false positive rate, reducing precision.

By contrast to precision, PL-Viz+EHR had the highest average recall at 0.9 (median recall=1).

PL-EHR had the second highest average recall of 0.84 (median recall=0.8), followed by the average

recall of 0.75 (median recall=0.77) for PL-Viz. Hence the problem lists PL-Viz+EHR were found

to be most complete, with the fewest false negatives (hence missed problems). When performing

non-parametric test for the differences in the median recalls they were found not to be statistically

significant.

5.3.2 Task 2: Clinical questions

Question answering using Condition A (EHR) versus Condition B (Summarizer)

Most of the participants attempted to answer the clinical questions by searching for clinical

notes that may have this information. This general strategy was used even when the question

was regarding medication that was used certain problems or about procedure performed. Some
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Figure 5.2: Boxplot figure of problem list precision and recall by condition.

questions were easier to find in the notes, such as the HIV medication regimen the patient was

on, since most of the participants knew that this information was well documented in the clinical

notes of the patient. However when the question were regarding medication treatment the patient

received while in an inpatient setting (such as an IV drip) this was harder or even impossible to find

in the notes. In which case users scrolled through the medication orders in the EHR. Questions that

had any temporal aspect to it, such as assessing the continuity of medication was also difficult to

do under Condition A. To obtain this information users often selected two notes to view that were

a few years apart in an attempt to identify any change in the treatment of the patient.

Under Condition B questions were much easier to answer, even for users that were less secure

in their use a of the system. Participants often navigated to the problem that was most relevant

to the question in the sankey diagram and browsed its supporting data, either for the entire time

period presented or specifically to the year of interest if specified in the question. At times when the

information was not found under the expected problem the users navigated to option of viewing all

of the patient data for each time period and browsed the data in this manner to find the information

they needed.
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Question-answer correctness using Condition A (EHR) versus Condition B (Summarizer)

Most of the clinical questions were answered correctly under both condition, with the median

questions score being 100 under both conditions A and B. The average question accuracy score

was higher for Q-Viz at 91 (standard deviation=17.6) than 85 (standard deviation=21) for Q-EHR.

Accuracy differences were not found to be statistically significant. In 3 instances (out of 64 ques-

tion responses) clinicians were not able to find the answer to a patient question under Condition

A. This did not occur under Condition B, but one participant did run out of time while completing

one of the questions.
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Figure 5.3: Boxplot figure of clinical question answer scores by study condition. The mean ques-
tion score by condition is showcased by the red dot and number label.
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Task 3: Patient summary

Summary contraction using Condition A (EHR) versus Condition B (Summarizer)

Under Condition A, participants often searched for the latest note written by the patient’s PCP

and searched inside the note for the case summary. Participants often wrote verbatim what the note

stated. If the patient summary on the notes indicated any status change they did so as well in their

response to the evaluation Task. When the status of the problem was not mentioned they failed

to specify the status as well. Several participants navigated to view the laboratory results of the

patients to note the status of their viral load to indicate how controlled their HIV was.

Under Condition B participants used the sankey diagram to indicate any notable problems. To

indicate the status of the problem, participants tried to note if there were any medication changes

to indicate a change in the problem status. No participant blindly trusted the width of the sankey

diagram as an indication of the change in the problem status, especially for chronic problems.

Some acute problems were noted if the sankey diagram had a sudden increase in its width and the

underlying data supported the spike.

Summary quality using Condition A (EHR) versus Condition B (Summarizer)

The average summary quality under Condition A was slightly higher than under Condition B,

with average quality score of 62.5 compared to average score of 61 (respectively). The lowest

score under both conditions was 0, while under Condition B the lower 25th percentile score was

37.5 while under Condition A it was still 0. However, the median quality score under Condition

A was 100, and only 50 under Condition B. Four clinicians ran out of time and were not able to

complete patient summaries for one of their patient cases, 2 instances were under Condition A and

2 were under Condition B.

79



●
●

62.5 60.94

0

25

50

75

100

Condition A Condition B
cond

Su
m

m
ar

y
cond
●

●

ehr
viz

Su
m

m
ar

y 
Q

ua
lit

y 
Sc

or
e

Figure 5.4: Boxplot figure of patient summary scores by study condition. The mean summary
score by condition is showcased by the red dot and number label.

Time-to-completion

Total time-to-completion of the problem lists under Condition B (PL-Viz+EHR) was longer

than under Condition A (at 4.58 and 3.2 minutes on average). Since under Condition B users

took time to construct the problem list using the summarizer and then looked into the EHR to

verify and edit if they wished the slightly longer time to completion was expected. By contrast,

question answering was statistically significant faster under Condition B than under Condition A

(at 1.8 and 3.07 minutes on average). The patient summary took an average of 2.7 minutes under

Condition A and 2 minutes under Condition B. According to the ANOVA analysis of the time to

completion of the tasks, factors found to statically affect the time to completion were the patient,

the clinicians, the task, the study condition interaction with the task. These results make sense

as some patient cases were more difficult than others, variation between clinician was noticeable,
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and the evaluation condition influenced the time-to-completion and the directionality of that effect

depended on the task.
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Figure 5.5: Time to completion of each task by condition. The three outliers (1 for Q-Viz, 1 for
Summary-EHR, and 1 for Summary-Viz) at 10 and 12 minutes are users that did not complete
those tasks in time. In those cases, the time to completion was changed to 10 minutes of for the
task as a penalty.

Usability scores

The usability survey of the system found that half of the participant (n=8) indicated they would

use the system frequently, 5 were unsure, and 3 indicated they would not. The system was largely

found to be not complex, easy to use, consistent, and with well integrated features.

Participant feedback

Participant feedback was analyzed and the following themes were identified:
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Figure 5.6: Usability survey results. Question scores were normalized so that low scores (1-
2) express negative sentiment towards the usability of the summary, high scores (4-5) indicate
favorable sentiment towards the summary, and a score of 3 is neutral.

Interface Design and temporal awareness. Several clinicians (C6, C7, C8, C12, C13, C14) em-

phasized the utility of such a quick temporal snapshot of patient data, which makes it easier to

navigate one period at a time. One clinician noted they liked the problem list view of the sankey

diagram, with the detailed data on the side (005). However, another clinician noted that the sankey

diagram could take less space in the visualization (001). One clinician (C12) noted the interface

was “helpful because it displays a lot of data very quickly and succinctly that is difficult to get

out the chart”. Several clinicians (C5, C8) noted they liked the color coding of the problems and

problem thickness, and others (C5, C7, C11) mentioned they liked red font for new data points

. Visualization novelty and time constraints. One clinician (C5) emphasized they were not used

to reviewing visualizations for patient data other than for laboratory results. One clinician (C1)

noted that because of the time constraint they didn’t get a chance to explore the entire summary in

detail. A few participants (C6, C7, C13) stated that they needed more time with the tool to become

familiar with it in order to gain an understanding of what it gets right and wrong. Another (C16)

stated that they need more time to investigate how the sankey line width correlated with the patient

state.

Input data, additional features, and problematic features. Several clinicians (C5, C8) noted they

liked that the summarization used multiple input types, which made the summary more robust.
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Clinicians emphasized the importance of laboratory tests, medications, and clinical notes but were

skeptical in the utility of the diagnosis codes which often do not accurately reflect the patient state.

The laboratory tests would need to be linked to numerical results, the medication names linked to

dosages, and the clinical words need to be filtered in order to be useful (C1, C6, C2, C8). One

clinician (C13) noted they wanted more transparency of where the data was coming from and an-

other (C1) noted they wanted to know how many visits were represented in each time slice. Other

features that were requested by a few (C15, C11) included sorting capabilities of the patient data

and search functionality. One clinician (C7) also asked to include procedure data, and to split the

data to medical and surgical. Another clinician (C3) wanted a separation of chronic and acute

problems. One clinician noted that the summarizer may under-represent problems that are poorly

documented in clinician documentation such as substance abuse.

Problematic features in the visuals included the sankey links going up and down. Some clini-

cians (C5) said they expected the ups and downs to have meaning, even though they did not have

one. This also made it difficult for some users to follow the contours of the line making them click

on the wrong problem and made it difficult read the problem labels. The first period of the data

was hard for some clinicians (C5, C11) to navigate to, in addition to understanding when they were

viewing problem specific data and when they were viewing all the data.

Trade-off between transparency and perceived accuracy. The general sentiment of participants

was that the problem-level abstraction of the patient data were mostly consistent, with the main

problems identified for the patient being correct (C3, C4, C16, C5). However, several participants

(C1, C3, C6, C14, C10, C11) agreed that the exposed modeling inference for each patient data

point had some low-level inconsistencies, mapping certain data points to unrelated problems (e.g.

hypertension medication assigned to the HIV). Consequently, some clinicians (C3, C16) noted

that even few inconsistencies would make them lose trust in the system, causing them to spend

more time looking through the raw data or even conclude that they would not use the system

as is (C6). Other clinicians (C4, C2) believed the system was consistent or that they were used

to dealing with EHR inconsistencies and ‘messiness’. One clinician (C8) noted that there was
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enough information provided in the tool that allowed them to easily apply clinical judgment and

decide if presented information was trustworthy. The same clinician also noted that they would be

interested in a system that would improve and learn from user corrections, through a human-in-the

loop approach, with the assistance of an easy-to-use interface.

A few clinicians (C9, C16) responded they were more comfortable searching for information

in the EHR since they were more familiar with it. However, the summary tool would help if they

were not familiar with the EHR. They added that they have a good sense of what information they

can trust and cannot trust in the EHR system. Two clinician (C3, C9) expressed that he would

worry about the tool not being comprehensive and may be missing data. Others (C3, C16) noted

they would want to verify the summary information with the EHR. One clinician (C13) noted that

the summarizer would be a useful addition for any EHR but that clinicians would need to build it

into their workflows.

Disease status, change overtime, prioritization, and context. According to several participants

(C2, C7, C8, C10, C16) the width of the sankey links were noted to help bring attention to new

problems, events, or flare ups of a problem. One clinician (C8) noted “I really love how you can

see over time how things change in terms of what is receiving attention and what are the predom-

inant themes in the patient record”. Multiple participants noted (C1, C7, C10) that this type of

information would be difficult to manually identify in the patient EHR or using other data repre-

sentations such as lists. Participants (C2, C10) added the tool was useful in comparing problem

dominance and save time on assessing prioritization. Others (C2, C12) said the summarizer did

a really good job at weeding out noisy data and helped identify relevant information. However,

participant (C7) wished they could shuffle the rank of the problem by prevalence in a certain time

period and two clinicians (C14, C15) wanted resolved problems to be removed from the visual.

However, several clinicians (C3, C6, C7) noted that in order to make judgments regarding the

status change of a problem they would need additional context provided in relevant clinical notes.

Although it was acknowledged that currently it could be hard to find relevant notes using the EHR.

Others (C4, C6, C14, C7) pointed out the need for laboratory results or medication changes.
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5.4 Discussion

The study results identify that fully unsupervised probabilistic phenotyping coupled with in-

teractive visualization can generate clinically meaningful patient summaries for complex patients

such as those with HIV. The summaries were robust to different patients as they identified the HIV

condition in each patient but also additional diverse comorbidities in each patient case. The patient

main problems for each patient were found to be largely consistent with the gold-standard problem

lists. The visual representation of problems using the color coded sankey diagram that widened and

narrowed over time was interpretable and assisted clinicians identify salient patient problems over

time. The heavy use by participants of the sankey diagrams, the detailed lists of the patient data,

and transitioning from viewing all of the patient data to filtering to problem related data showcased

the utility of allowing for different levels of detail granularity and focus in the summary.

Exposing the model inference for each data point in the patient record to the user through the

summarizer interface provided useful evidence regarding the accuracy and robustness of each prob-

lem identified by the summarizer. For instance problems that had only a few data points mapped to

them or mostly unrelated data points helped clinicians identify problems that could be ignored in

the summary. Although exposing such low-level inference to the user helped with interpretability

and explainability, it also exposed some low-level modeling errors for individual data points. In-

accuracies in data assignments influenced the participants’ perception of the summary consistency

to differing degrees which points to an interesting trade off between transparency and perceived

accuracy of machine learning based CDS. Some clinicians noted using clinical judgment with the

information provided by the summary they could use the summary confidently, the same was they

have to do with the EHR which also contains inaccuracies. Other clinicians noted that even slight

inaccuracies in the data assignments made them lose their trust and confidence in the system.

Although there were differences between the problem list and question accuracy between Con-

dition A and B, there were not found to be statistically significant. This is likely a limitation of

the sample size, which is a common limitation of evaluation studies that are difficult to run in
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large scales [12]. The study showed that the average precision of the problem lists under all study

conditions were in the 0.61-0.66 range, which is not very high. Moreover, precision was found to

decrease when users revised the problems lists they found with the tool (PL-Viz) once looking at

the EHR (PL-Viz+EHR). This was largely due to the addition of patient problems that were not in

the gold-standard problem lists. The extra problems that were not in the gold-standard were not

necessary wrong but were not thought to be significant enough to be put in the gold-standard. This

highlights a few things i) constructing patient problem list is a taxing task, especially for complex

patients that have a lot of documentation in the EHR. This may have caused participants to gen-

erate very long problem lists, basically adding any problem that may be significant for the sake

of completeness. When generating the gold-standard lists the clinical experts were not under time

constraints and had more time to filter the lists to only the problems they thought were significant.

Furthermore, the low precision rates also point to the general subjectivity of problem lists and the

difficulty of assessing their accuracy in comparison to a pre-generated gold-standard. To avoid

this limitation it may be better to restrict problem lists to the top 5 or 10 problems in the patient

case instead of assigning no limitation on the number of noted problems. Moreover asking the

participants to rank the problems in order of importance could allow to assess precision@K and

recall@K, metrics that are commonly used in information retrieval tasks in which the order of the

elements matter.

The gain in efficiency in answering the clinical questions using the summarizer versus the EHR

highlights the difficulty of identifying certain types of information in the EHR. The summarizer

was able to concentrate the multi-source information in one place, making it easy to identify medi-

cation by year, and identify notable events by sudden width change in the temporal sankey diagram.

However it was noted from the participant feedback that still a lot of the patient story, data context,

and assessment of the treating clinicians was missing form the tool and thus required access to the

EHR. Hence it was agreed upon by several participants that the summary could provide a great

overview and navigational tool for the raw EHR. Greater integration of the summarization system

with the EHR, allowing for seamless navigation from the summarizer components into the patient
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notes and laboratory results could further improve the utility of such a tool in both accuracy and

efficiency when reviewing patient historical data.
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Chapter 6: Conclusion and Future Work

6.1 Conclusion

Complex patient are becoming more and more of a challenge to the health care system given

the amount of care they require and the amount of documentation needed to keep track of their

state of health and treatment. Record keeping using the EHR makes this easier but mounting

amounts of patient data also means that clinicians are faced with information overload. Information

overload has been shown to have deleterious effects on care, with increased safety concerns due to

missed information. Patient record summarization has been a promising mitigator for information

overload. Subsequently, a lot of research has been dedicated to record summarization since the

introduction of EHRs. In this dissertation we examine whether unsupervised inference methods

can derive patient problem-oriented summaries, that are robust to different patients. By grounding

our experiments with HIV patients we leverage the data of a group of patients that are similar in that

they share one common disease (HIV) but also exhibit complex histories of diverse comorbidities.

Using a user-centered, iterative design process, we design an interactive, longitudinal patient record

summarization tool, that leverages automated inferences about the patient’s problems. We find

that unsupervised, joint learning of problems using correlated topic models, adapted to handle the

multiple data types (structured and unstructured) of the EHR, is successful in identifying the salient

problems of complex patients. Utilizing interactive visualization that exposes inference results to

users enables them to make sense of a patient’s problems over time and to answer questions about

a patient more accurately and faster than using the EHR alone.
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6.2 Contributions

At the point of care clinicians have a lot of data at their disposal but in order for them to utilizes

this information to provide better care for their patients they needs assistance from CDS. To enable

scalable and generalizable CDS, a new generation of systems need to leverage advancements in

machine learning. However, for the systems to be useful for clinicians these systems need to be

interpretable and user friendly, requiring the benefits visualization. This dissertation contributes

by identifying gaps and opportunities for machine learning and visualization in CDS. It also in-

vestigates the use of such an approach for patient record summarization of complex patients. The

contributions of the work in more detail are the following:

• Identified gaps and opportunities for the use of ML and dataVis in CDS. Through an ex-

pansive review of CDS literature we classify works into three CDS types (Infobutton CDS,

CSO CDS, and Alert CDS) and by the methods they utilized (Heuristics, ML, and visualiza-

tion). We identify gaps and opportunities for the use of ML and dataVis in all three types

of CDS. Specifically, highlighting the need for greater utilization of these methods for CSO

CDS including patient records summarization.

• Generated design requirements for longitudinal summarization of patient records. Through

an iterative user-centered design approach we collected the information needs from longi-

tudinal patient summarization. We leveraged previous literature, clinician interviews, and

early usability testing with clinicians of an initial prototype. We translated the identified

information needs into a set of design requirements. The design requirements translated to a

set of visual design decision, modeling requirements, and interactivity features.

• Developed and evaluated an unsupervised probabilistic model to jointly learn pheno-

types and phenotype relationships using multi-source patient data found in the EHR.

We show that the model when trained on the EHR data of many HIV patients is able to learn

clinically meaningful phenotype and phenotype relationships. The model was able to learn
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multiple HIV phenotypes as expected when training on a patient population of HIV patients

and also learn many non-HIV phenotypes. When comparing to knowledge-based baseline of

disease hierarchies the model was able to learn phenotype relationships that were clinically

meaningful but that could not be inferred from the baseline.

• Expanded Laplace variational inference to accommodate multi-dimensional data in

non-conjugate Bayesian models. Previously proposed Laplace variational inference, is a

generalized form of variational inference that can handle non-conjugate models. In this

dissertation we generalize the proposed Laplace variational inference even further to allow

for multiple input types. This makes the model inference especially relevant to clinical data

which contains many different data types that are important in combination when seeking to

learn robust models on clinical data.

• Demonstrated the potential of reproducible, scalable, interpretable approach for pa-

tient record summarization through the use of unsupervised join learning of pheno-

types and interactive data visualizations. In the Aim 3 of this dissertation we evaluate the

usability of summarization system that leverages a fully unsupervised computational method

for patient record summarization, coupled with interactive visualization. The approach was

found to successfully support the task of patient chart review of patient with complex med-

ical histories and multitude of chronic and acute comorbidities. The system in combination

with the EHR was found to support clinicians in generated problems lists with high recall

rates and more accurate question- answering. Through participant feedback we identified

next iteration on the design requirements of the summarization system.

6.3 Limitations

We acknowledge that this dissertation posses from several limitations. The limitations include

the following:

• Generalizability. The aim of the research is to assess the viability of using unsupervised
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machine learning and visualization to assist in the summarization of records of patients that

suffer from chronic disease and multimorbidty. To do so we elected to focus our experimen-

tation on patients with HIV, as an extreme example of complex patients with multimorbidty.

The generalizability of our findings to other patient populations and other clinician special-

ization was not assessed in this dissertation.

• Computational Baseline. The performance of our developed computational phenotyping

model used for patient problem inference was not compared to other computational meth-

ods. The focus of this dissertation is to assess a computational method that satisfies all the

desirable criteria of patient summarization as listed in the design requirements discussed in

Chapter 3. No other computational method fully satisfy those criteria and thus we elected to

evaluate our method using expert scoring and comparison to expert generated groupings of

disease (the CCS). Other computational methods that have been evaluated for unsupervised

phenotyping have failed to utilize both structured and unstructured data or do not explic-

itly allow for phenotype interrelatedness, which we thought important when summarizing

patients with multimorbidity.

• Visualization alternatives. The effectiveness of the sankey visual representation of patient

problems and their change over time was not compared to other possible visual representa-

tions of the same information. While many other works have experimented with the repre-

sentation of temporal summaries of patients. No proposed visualization was set to explicitly

expressed change in salience of multiple problems over time.

• Input data selection and processing. Patient summarization was performed using multiple

input types including diagnosis codes, laboratory test names, medication names, and words

from clinical notes. The selection of different input types and the their processing could have

influenced our findings. For example words from clinical notes were processed one word at

a time and thus lost some of their context such as negation. This may have some deleterious

effect on our findings.
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6.4 Future Work

This work showcases the great potential of our developed approach for patient record summa-

rization available at the point of care. However, as the mentioned limitations indicate there are

several interesting directions of future work. Those include the following:

• Summarize other patient types. Future work should evaluate the effectiveness of the pro-

posed patient summarization approach for different patient populations and different clinical

specializations. Interesting application of the method would be to other patient populations

that suffer from chronic disease and multimorbidity such as cancer patients, diabetes pa-

tients, among others. It would also be of interest to assess the effectiveness of this method

on general population patients that may be less complex but may be more heterogeneous in

their problems.

• Include additional data types. The current phenotyping model and patient summarization

was performed using diagnosis codes, clinical words, laboratory test order, and medication

orders. However, the model and thus the summarization can run on many more data sources

such as procedure codes or laboratory value ranges. Although previous experimentation to

expand found that including other variables did not improve the performance of the model

in terms of automated metrics for model fit such as held-out log-likelihood [93], adding

additional data types to the patient summary through the model could be especially useful

for tool users. Adding additional data types was noted by a few participants of the evaluation

study as being useful additions to the tool.

• Further iterate on summary design. The final usability study presented in this dissertation

identified usability weaknesses and more desired features that could improve the utility clin-

ician get from the summarizer. Features include integrating the tool with the EHR to provide

a seamless navigation between the summary and the patient data.

• Formally evaluating sankey width and patient state correlation. More formal evaluation
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should be conducted to assess how well phenotype salience, as inferred from the probabilistic

phenotyping model, correlates with testable bio-markers of disease state. Examples include

viral load for HIV, and other laboratory tests for renal disease, cardiac disease, and diabetes.
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