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Abstract

Deep Probabilistic Graphical Modeling

Adji Bousso Dieng

Probabilistic graphicalmodeling (pgm) provides a framework for formulating an interpretable

generative process of data and expressing uncertainty about unknowns. This makes pgm very use-

ful for understanding the phenomena underlying data and for decision making. pgm has been

successfully used in domains where interpretable inferences are key, e.g. marketing, medicine,

neuroscience, and the social sciences. However pgm tends to lack flexibility. This lack of flex-

ibility makes pgm often inadequate for modeling large-scale high-dimensional complex data and

performing tasks that do require flexibility, e.g. vision and language applications.

Deep learning (dl) is an alternative framework for modeling and learning from data that has seen

great empirical success in recent years. dl is very powerful and offers great flexibility, but it lacks

the interpretability and calibration of pgm.

This thesis develops deep probabilistic graphical modeling (dpgm). dpgm consists in leveraging

dl to make pgm more flexible. dpgm brings about new methods for learning from data that exhibit

the advantages of both pgm and dl.

We use dl within pgm to build flexible models endowed with an interpretable latent structure. One

family of models we develop extends exponential family principal component analysis (ef-pca)

using neural networks to improve predictive performance while enforcing the interpretability of the



latent factors. Another model class we introduce enables accounting for long-term dependencies

when modeling sequential data, which is a challenge when using purely dl or pgm approaches.

This model class for sequential data was successfully applied to language modeling, unsupervised

document representation learning for sentiment analysis, conversation modeling, and patient rep-

resentation learning for hospital readmission prediction. Finally, dpgm successfully solves several

outstanding problems of probabilistic topic models, a widely used family of probabilistic graphical

models.

Leveragingdlwithin pgm also brings about new algorithms for learningwith complex data. We de-

velop reweighted expectation maximization (rem), an algorithm that unifies several existing maxi-

mum likelihood-based algorithms for learningmodels parameterized by deep neural networks. This

unifying view is made possible using expectation maximization, a canonical inference algorithm in

pgm. We also develop entropy-regularized adversarial learning, a learning paradigm that deviates

from the traditional maximum likelihood approach used in pgm. From the dl perspective, entropy-

regularized adversarial learning provides a solution to the long-standing mode collapse problem of

generative adversarial networks (gans), a widely used dl approach.
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Introduction

Probabilistic machine learning (pml) turns data into knowledge about the world. This in-

volves collecting data, specifying a model, fitting this model to the data, and performing evaluation

on some criterion of interest, e.g. predictive performance.

Probabilistic graphical modeling (pgm) is an approach to pml that specifies a model by specifying

an interpretable generative process of data. This generative process often involves sampling a set

of latent variables from some prior distribution and then conditioning on these latent variables to

generate data. The latent variables carry meaning; they represent the hidden structure underlying

the data. Learning with pgm involves estimating any parameters involved in specifying the model

and discovering the hidden structure by performing posterior inference, i.e. learning the conditional

distribution of the latent variables given the data. Often the posterior is intractable and we resort to

variational inference, which uses optimization to find a tractable proxy for the true posterior. pgm

has been widely applied, for example to discover themes underlying a corpus of documents (Blei

et al., 2003), to model speech (Rabiner, 1989), to understand user preferences for recommenda-

tion (Wang & Blei, 2011), to learn interaction patterns between different countries (Schein et al.,

2015), etc.

Despite its wide application, pgmmay lack flexibility. This has prevented its use in applications that

do require flexibility, for example in vision and language applications. This thesis develops deep

probabilistic graphical modeling (dpgm), which consists in leveraging deep learning (dl) to bring

flexibility to pgm. Leveraging dl often means using neural networks to parameterize conditional

1



distributions within a latent-variable model. dpgm is agnostic to the choice of the architecture

of these underlying neural networks. Therefore, the methodologies we develop in this thesis are

amenable to more recent neural network architectures developed by the dl community and any

future innovations in the development of neural network architectures. The promise of dpgm is

to birth methodologies that enjoy the interpretability and calibration of pgm, and the flexibility

of dl. Interpretability, by means of composing latent variables and parameters using inductive

biases from domain knowledge, offers the ability to control the behavior of artificial intelligence

(ai) systems. This controllability is key to a safe application of ai to critical domains such as

healthcare, autonomous and automated vision and language systems, and science.

The rest of the thesis is organized as follows.

In Chapter 1 we review the foundations for dpgm. We first review pgm, with a focus on the latent

variable approach to pgm. We describe exponential families as a unifying framework for repre-

senting distributions over random variables, observed or latent. We then describe several examples

of pgms: exponential family principal component analysis (ef-pca), latent Dirichlet allocation

(lda), and dynamic latent Dirichlet allocation (d-lda). We then discuss variational inference, a

framework for approximating posterior distributions over latent variables. The second part of this

chapter is a review of dl. We first describe several neural network architectures and then review

two dl methodologies that are key to dpgm, auto-encoding for dimensionality reduction and word

embeddings. The final section of this chapter is a discussion of a line of work that combines neu-

ral networks with latent variables. In particular, we will describe variational autoencoders (vaes)

and discuss latent variable collapse, a phenomenon that arises when parameterizing conditional

distributions of a latent variable model with deep neural networks.

In Chapter 2 we first describe three desiderata for dpgm and then introduce several instances of

dpgm. One model class we introduce, called deep generative skip models, extends ef-pca us-

ing neural networks. Deep generative skip models achieve superior predictive performance and

learn interpretable latent factors (Dieng et al., 2019a). A second model class we introduce, called

2



TopicRNN, marries latent variables and neural networks to model sequential data, addressing the

long-term dependency issue encountered by purely dl and pgm approaches such as recurrent neu-

ral networks (rnns) and hidden Markov models (hmms). The model class defined by TopicRNN

encodes inductive biases that have been shown useful for language modeling (Dieng et al., 2016),

conversation modeling (Wen & Luong, 2018), unsupervised document representation learning (Di-

eng et al., 2016), and patient representation learning for hospital readmission prediction (Xiao et al.,

2018a). Finally, we describe how to leverage word embeddings, a successful dl approach that con-

sists in representing words as continuous low-dimensional vectors, to solve several problems that

pertain to probabilistic topic models, one of the most important pgm class of models in terms of

domain application (Dieng et al., 2019c,b).

The models introduced in Chapter 2 have intractable likelihoods. They are fit by maximizing a

lower bound of the log marginal likelihood of the data, called the evidence lower bound (elbo), us-

ing variational inference (vi). This is the approach of vaes (Gershman &Goodman, 2014; Kingma

& Welling, 2014; Rezende et al., 2014). Since the lower bound is intractable, vaes use a Monte

Carlo approximation of it for learning. vaes are prone to two main problems. First, the elbo they

optimize may be a lose lower bound to the log-marginal likelihood of the data, which may hurt gen-

eralization performance. Second, vaes often suffer from latent variable collapse, a phenomenon

in which the learned latent variables do not represent good summaries of the data. In Chapter 3 we

propose an alternative approach for learning dpgms called reweighted expectation maximization

(rem). rem optimizes a better approximation of the log marginal likelihood of the data (Dieng &

Paisley, 2019). It uses self-normalized importance sampling with moment matching to maximize

the log marginal likelihood. rem generalizes several existing algorithms that are based on maxi-

mum likelihood, such as the importance weighted auto-encoder (iwae) (Burda et al., 2015a) and

reweighted wake-sleep (rws) (Bornschein & Bengio, 2014). rem leads to better generalization

performance and yields more interpretable latent variables.

Leveraging dl for pgm offers the opportunity to take advantage of algorithmic innovations in dl to

3



learn pgms. In Chapter 4 we build on generative adversarial networks (gans) and develop entropy-

regularized adversarial learning. Entropy-regularized adversarial learning provides an alternative

to maximum likelihood for fitting dpgms. From the perspective of dl, entropy-regularized adver-

sarial learning constitutes a solution to the mode collapse problem of gans (Dieng et al., 2019d).

Addressing this mode collapse problem is important because under mode collapse, gan outputs

lack diversity. This lack of diversity in outputs negatively affects the use of gans for data aug-

mentation, but also its application in healthcare and branches of machine learning (ml) such as

Fairness.

We concludewith a discussion of the contributions of this thesis and possibilities for futurework.
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Chapter 1: Foundations

In this chapter we lay the foundations for deep probabilistic graphical modeling (dpgm) by review-

ing probabilistic graphical modeling (pgm) and deep learning (dl). We end the chapter with a

discussion of probabilistic conditioning with neural networks and the latent variable collapse issue

that might arise from it.

1.1 Probabilistic Graphical Modeling

Pgm provides a useful framework for extracting knowledge from data. For example, a pgm fit

on a corpus of documents can tell us about the thematic structure underlying the documents. The

pgm approach to learning from data is to mimic the true process that generated the data. When

specifying a generative process for data, to approximate the true data generating process, pgm offers

the ability to incorporate our prior knowledge about the phenomenon under study. For example,

when studying a corpus of documents, pgm allows us to integrate the knowledge that there is a set

of topics discussed by all the documents in the corpus and that a given document expresses these

topics at different lengths.

1.1.1 Latent Variables & Interpretability

Consider observed a set of N i.i.d data points. Denote them by x1, . . . , xN . The true phenomenon

that generated these data is unknown and we want to learn about it. This will allow us to understand

and make discoveries about the phenomenon underlying the data, perform prediction, and simulate

new data. The pgm approach is to posit the existence of a set of latent variables, unobserved
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random variables that represent the hidden structure underlying the observed data. These latent

variables are composed with the observations to form an interpretable generative process of data

that approximates the true underlying data generating process. Often there are two sets of latent

variables: global latent variables and local latent variables. Global latent variables capture the

stable aspects of the underlying data generating process; they are shared across all the observations.

Local latent variables express the singularities of each observation. For example consider a dataset

of images of human faces. Global latent variables may represent the features of a face, e.g. eyes,

lips, nose, cheeks, hair. Local latent variables will capture instantiations of these features; for

example one image might depict brown eyes and dark hair whereas another image may depict green

eyes and red hair.

Denote by β the global latent variables and by z1, . . . , zN the local latent variables in a pgm.

The generative process specified by the pgm implies a joint distribution over data and latent vari-

ables,

p(x1:N, z1:N,β) = p(β) ·
N∏

i=1
p(zi |β) · p(xi |zi,β). (1.1)

The distributions p(β) and p(zi |β) are the priors over the global and ith local latent variable re-

spectively. Their distributional forms can be chosen depending on the problem under study. The

distribution p(xi |zi,β) describes how to generate the ith observation xi by conditioning on β and

zi. Our knowledge about the phenomenon under study is also expressed in terms of conditional

independencies between the different variables, observed and latent. For example, the conditional

distribution of xi may only depend on zi.

1.1.2 Exponential Families

The exponential family provides a unifying framework for specifying probability distributions over

random variables. The distributions mentioned above can be chosen to be in the exponential family.
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Table 1.1. Expressions of the sufficient statistic, the natural parameter, and the log normalizer for
different members of the exponential family.

Distribution Parameter θ t(x) η(θ) A(η(θ))

Bernoulli p x log p
1−p log(1 + exp(η(θ)))

Gaussian (µ,σ2) x, x2 ( µ
σ2 ,−

1
2σ2 ) −

η(θ)2
1

4η(θ)2
− 1

2 log(−2η(θ)2)
Poisson λ x log(λ) exp(η(θ))
Categorical p1:K (I(x = 1), . . . , I(x = K )) log(p1:K ) 0
Dirichlet α1:K log(x1:K ) α1:K

∑K
k=1 log Γ (ηk (θ))

Γ (
∑K

k=1 ηk (θ))
1
K

Gamma (α, β) (log(x), x) (α − 1,−β) log Γ (η1(θ)+1))
−η2(θ)η1 (θ)+1

Almost all of the distributions used in practice are members of the exponential family, for example

Gaussian, Gamma, Poisson, Bernoulli, Categorical, and Dirichlet. Below is the formal definition

of an exponential family.

Definition 1 A family of probability density functions P = {pθ : θ ∈ Θ} on a measure space

(X,B, ν) is said to form an exponential family if

pθ (x) = exp
(
η(θ)T t(x) − A(η(θ))

)
A(η(θ)) = log

∫
exp

(
η(θ)T t(x)

)
ν(dx)

where A(η(θ)) is called the log partition function (or log normalizer), η(θ) is called the natural

parameter, and t(x) denotes the vector of sufficient statistics.

Table 1.1 provides the expressions of the sufficient statistics, the natural parameter, and the log

normalizer for several members of the exponential family.

1.1.3 Example: Exponential Family PCA

One canonical example of a pgm is exponential family principal component analysis (ef-pca) (Tip-

ping & Bishop, 1999; Collins et al., 2002). Assume observed N i.i.d data points x1, . . . , xN where

xi ∈ R
D. ef-pca posits the following data generative process:
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1. Draw global latents β ∼ p(β)

2. For each data point i = 1 . . . N :

(a) Draw local latent variable zi ∼ p(z)

(b) Draw data point xi ∼ EF(ηi = f (β>zi))

Here EF(η) stands for an exponential family distribution with natural parameter η and f (·) is a

deterministic function that maps the dot product β>zi to the right space for the natural parameter.

Note the local latent variables and the global latent variables interact linearly. This is a simplifying

assumption that we will relax in Chapter 2. When fit to data, ef-pca learns interpretable low-

dimensional representations of data z1:N .

1.1.4 Example: Latent Dirichlet Allocation

Another canonical pgm is latent Dirichlet allocation (lda) (Blei et al., 2003). lda is a probabilistic

generative model of documents. It posits K topics β1:K , each of which is a distribution over a

vocabulary (a predefined set of words). lda assumes each document comes from a mixture of

topics, where the topics are shared across the corpus (they are global latent variables) and the

mixture proportions are unique to each document (they are local latent variables). The generative

process for each document is the following:

1. Draw topic proportion θd ∼ Dirichlet(αθ ).

2. For each word n in the document:

(a) Draw topic assignment zdn ∼ Cat(θd).

(b) Draw word wdn ∼ Cat(βzdn ).

Here, Cat(·) denotes the categorical distribution. lda places a Dirichlet prior on the topics,

βk ∼ Dirichlet(α β) for k = 1, . . . , K .
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The concentration parameters α β and αθ of the Dirichlet distributions are fixed model hyperpa-

rameters often chosen to achieve a certain level of sparsity. Note all the distributions in lda are

members of the exponential family.

lda is a powerful model for document corpora. It has been extended in many ways and applied

to many fields, such as marketing, sociology, political science, and the digital humanities. Boyd-

Graber et al. (2017) provide a review.

1.1.5 Example: Dynamic Latent Dirichlet Allocation

Dynamic latent Dirichlet allocation (d-lda) is an extension of lda that allows topics to vary over

time in order to analyze time-series corpora (Blei & Lafferty, 2006). The generative model of d-

lda differs from lda in that the topics are time-specific, i.e., they are β(t)
1:K , where t ∈ {1, . . . ,T }

indexes time steps. Moreover, the prior over the topic proportions θd depends on the time stamp of

document d, denoted td ∈ {1, . . . ,T }. The generative process for each document is:

1. Draw topic proportions θd ∼ LN (ηtd, a
2I).

2. For each word n in the document:

(a) Draw topic assignment zdn ∼ Cat(θd).

(b) Draw word wdn ∼ Cat(β(td )
zdn ).

Here, a is a model hyperparameter and ηt is a latent variable that controls the prior mean over the

topic proportions at time t. To encourage smoothness over the topics and topic proportions, d-lda

places random walk priors over β(t)
1:K and ηt ,

β̃(t)
k | β̃

(t−1)
k ∼ N ( β̃(t−1)

k , σ2I) and β(t)
k = softmax( β̃(t)

k )

ηt | ηt−1 ∼ N (ηt−1, δ
2I).

The variables β̃(t)
k ∈ R

V are the transformed topics; the topics β(t)
k are obtained after mapping β̃(t)

k

to the simplex, via the softmax(·) function. The hyperparameters σ and δ control the smoothness
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of the Markov chains.

1.1.6 Posterior Inference

To discover the structure specified by all the models described above, we need to revert the genera-

tive process of data and compute the conditional distribution of the latent variables given the data.

This conditional distribution is called the posterior distribution of the latent variables. Consider

the canonical ef-pca described earlier. The posterior distribution is

p(β, z1:N |x1:N ) =
p(β) ·

∏N
i=1 p(zi |β) · p(xi |zi,β)∫

p(β) ·
[∏N

i=1 p(zi |β) · p(xi |zi,β)dzi
]

dβ
(1.2)

For simple models, the posterior has an analytical form. For many models, this is not the case and

we must find a way to approximate the posterior.

1.1.7 Variational Inference

Variational inference (vi) approximates the posterior using optimization. The idea is to posit a

family of approximating distributions and then to find the member of the family that is closest to

the posterior. Typically, closeness is defined by the Kullback-Leibler (kl) divergence between the

approximating distribution and the true posterior.

Concretely, consider the canonical running example in Eq. 1.1. Denote by q(β, z1:N ;λ) the approx-

imating family, also called the variational family; it is indexed by λ, the variational parameters. vi

solves the following optimization procedure:

λ∗ = arg min
λ

kl (
q(β, z1:N ;λ) | |p(β, z1:N |x1:N )

)
. (1.3)

The kl above is intractable because the posterior is intractable. However, we can write the kl as
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follows,

kl (
q(β, z1:N ;λ) | |p(β, z1:N |x1:N )

)
= log p(x1:N ) − Eq(β,z1:N ;λ)

[
log

p(x1:N, z1:N,β)
q(β, z1:N ;λ)

]
(1.4)

This expression of the kl reveals two things. First, because log p(x1:N ) does not depend on the

parameters λ we want to optimize over, minimizing the kl is equivalent to maximizing the second

term on the right hand side of Eq. 1.4. Second, because kl is nonnegative, the second term on the

right hand side of Eq. 1.4, called the evidence lower bound (elbo), is a lower bound of the log

marginal likelihood of the data log p(x1:N ). The elbo is a function of the data and the variational

parameters λ,

elbo(x1:N,λ) = Eq(β,z1:N ;λ)

[
log

p(x1:N, z1:N,β)
q(β, z1:N ;λ)

]
≤ log p(x1:N ) (1.5)

The elbo is tractable, or can be tractably approximated, if we specify a tractable density for

q(β, z1:N ;λ). There aremanyways to specify the family q(β, z1:N ;λ). Oneway to specify q(β, z1:N ;λ)

is to use the mean field assumption.

Mean-field vi. The mean field assumption decomposes the variational distribution q(β, z1:N ;λ)

into a product of factors,

q(β, z1:N ;λ) = q(β;λβ) ·
N∏

i=1
q(zi;λi) (1.6)

whereλ = (λβ,λ1, . . . ,λN ). Using this decomposition, mean-fieldvi thenmaximizes the elbo,

elbo(x1:N,λ) = Eq(β;λβ )
∏N

i=1 q(zi ;λi )




log
p(β)
q(β)

+

N∑
i=1

log
p(zi |β)
q(zi;λi)

+

N∑
i=1

log p(xi |zi,β)



(1.7)

For certain classes of models, e.g. conditionally conjugate models (Ghahramani & Beal, 2001),

the elbo can be optimized using coordinate ascent or stochastic optimization. Blei et al. (2017a)

provide a review.
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Black-box variational inference (bbvi). For a general class of models, the elbo can be maxi-

mized using bbvi (Paisley et al., 2012; Ranganath et al., 2014). For simplicity, let’s lump all latent

variables into z and all the observations into x. The elbo is,

elbo = Eq(z;λ)
[
log p(x, z) − log q(z;λ)

]
(1.8)

bbvi optimizes the elbowith respect toλ using aMonte Carlo approximation of its gradients.

Score gradients. We can compute the gradient of the elbo with respect to λ as follows.

∇λelbo = ∇λ
∫ [

q(z;λ) log p(x, z) − q(z;λ) log q(z;λ)
]

dz (1.9)

=

∫ [
∇λq(z;λ) log p(x, z) − ∇λ

(
q(z;λ) log q(z;λ)

)]
dz (1.10)

=

∫ [
log p(x, z)∇λq(z;λ) − log q(z;λ)∇λq(z;λ) − q(z;λ)∇λ log q(z;λ)

]
dz (1.11)

=

∫ [
log p(x, z) − log q(z;λ)

]
∇λq(z;λ)dz −

∫
∇λq(z;λ)dz (1.12)

=

∫
q(z;λ)

[
log p(x, z) − log q(z;λ)

]
∇λ log q(z;λ)dz − ∇λ

∫
q(z;λ)dz (1.13)

= Eq(z;λ)
[(

log p(x, z) − log q(z;λ)
)
∇λ log q(z;λ)

]
(1.14)

where we used the identities
∫

q(z;λ)dz = 1 and ∇λ log q(z;λ) = ∇λq(z;λ)
q(z;λ) . The expectation in

Eq. 1.14 can be approximated using Monte Carlo, by averaging the quantity inside the expectation

evaluated at different samples z(1) . . . z(S) from q(z;λ),

∇λelbo ≈ 1
S

S∑
s=1

(
log p(x, z(s)) − log q(z(s);λ)

)
∇λ log q(z(s);λ) (1.15)

The estimator in Eq. 1.15 is an unbiased and consistent estimator of the true score gradient in

Eq. 1.14. However, it has high variance, especially when the dimensionality of the latents is large

enough. Researchers have developed other gradient approximation methods, for example using

Rao-Blackwellization (Casella & Robert, 1996; Ranganath et al., 2014) or control variates (Givens
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& Hoeting, 2012; Paisley et al., 2012).

Throughout this dissertation, we will rely on reparameterization (Givens &Hoeting, 2012; Kingma

& Welling, 2014), a simple method to approximate gradients of Monte Carlo objectives, which we

discuss next.

Reparameterization gradients. An alternative way to compute gradients of the elbo in Eq. 1.19 is

to introduce variables ε whose distribution q(ε) is free from the variational parameters λ and such

that

z ∼ q(z;λ) ⇐⇒ ε ∼ q(ε) and z = g(ε;λ) (1.16)

where g(·) is a function that composes ε andλ into samples from the variational distribution. Under

this reparameterization procedure, the elbo takes the form

elbo = Eq(ε)
[
log p(x, g(ε;λ)) − log q(g(ε;λ);λ)

]
(1.17)

The gradient of the elbo is therefore,

∇λelbo = Eq(ε)∇λ
[
log p(x, g(ε;λ)) − log q(g(ε;λ);λ)

]
(1.18)

and can be simply approximated using Monte Carlo,

∇λelbo ≈ 1
S

S∑
s=1
∇λ

[
log p(x, g(ε(s);λ)) − log q(g(ε(s);λ);λ)

]
(1.19)

where ε(1) . . . ε(S) ∼ q(ε). In all our experiments, we set S = 1, which has been shown enough for

learning (Kingma & Welling, 2014).
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1.2 Deep Learning

dl is a framework for learning from complex high-dimensional large-scale data. It has been very

successful in the domain of supervised learning, where data are labeled. In particular, dl is very

successful for vision and language applications, e.g. object detection, image captioning, machine

translation, document classification, etc. While pgm specifies the structure underlying the data

through a set of latent variables (Koller et al., 2009), dl uses neural networks to capture the structure

in data.

1.2.1 Neural Networks & Flexibility

Neural networks are a hierarchy of nonlinear deterministic functions (LeCun et al., 2015; Good-

fellow et al., 2016). Consider N i.i.d pairs (xi, yi) for i = 1 . . . N . A neural network with L layers

maps a given input xi to its output yi following a chain of transformations,

h0 = xi (1.20)

hl = f l (hl−1; Wl ) (1.21)

hL = fL (hL−1; WL) (1.22)

yi ∼ EF(ηi = g(V>hL)) (1.23)

Here h1:L are called hidden states. The lth hidden state is computed by composing an activation

function f l (·) with some transformation of the output of the previous layer that uses the weights Wl .

Different choices for the activation functions and the transformations yield different neural network

architectures, we review some later. The weights represent the model parameters which we aim

to learn. EF(η) denotes an exponential family with natural parameter η. The function g(·) maps

the dot product V>hL to the natural parameter space. For example when yi is in the reals, g(·) is

identity and if yi is categorical then g(·) = softmax(·).
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Neural networks have been shown to have the ability to represent any function (Hornik et al., 1989).

They can therefore capture the complex dependencies in data without any feature engineering. It is

this flexibility that has made dl very successful at modeling large-scale complex data.

However neural networks tend to overfit to data. dl approaches often require large datasets to

achieve good performance. Researchers have developed several regularization methods for neural

networks (Bishop, 1995; Maaten et al., 2013; Srivastava et al., 2014; Gal & Ghahramani, 2016;

Dieng et al., 2018c).

Neural networks are fit using stochastic gradient descent with backpropagation (Rumelhart et al.,

1986).

1.2.2 Example: Recurrent Neural Networks

Consider a sequence of observations, x1:T = (x1, ..., xT ). A recurrent neural network (rnn) factor-

izes its joint distribution according to the chain rule of probability,

p(x1:T ) =
T∏

t=1
p(xt |x1:t−1). (1.24)

To capture dependencies, the rnn expresses each conditional probability as a function of a low-

dimensional recurrent hidden state,

ht = fW (xt−1, ht−1) and p(xt |x1:t−1) = p(xt |ht ).

The likelihood p(xt |ht ) can be of any form. We focus on the exponential family

p(xt |ht ) = ν(xt ) exp
{
(V>ht )>xt − A(V>ht )

}
, (1.25)

where ν(·) is the base measure, V>ht is the natural parameter—a linear function of the hidden state

ht—and A(V>ht ) is the log-normalizer. The matrix V is called the prediction or output matrix of
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the rnn.

The hidden state ht at time t is a parametric function fW (ht−1, xt−1) of the previous hidden state

ht−1 and the previous observation xt−1; the parameters W are shared across all time steps. The

function fW is the transition function of the rnn, it defines a recurrence relation for the hidden

states and renders ht a function of all the past observations x1:t−1; these properties match the chain

rule decomposition in Eq. 1.24.

The particular form of fW determines the rnn. Researchers have designed many flavors, in-

cluding the Elman recurrent neural network (ernn) (Elman, 1990), the long-short term mem-

ory (lstm) (Hochreiter & Schmidhuber, 1997) and the gated recurrent unit (gru) (Cho et al.,

2014).

Elman recurrent neural network. The ernn is the simplest rnn. In an ernn, the transition

function is

fW (xt−1, ht−1) = s(W>x xt−1 +W>h ht−1),

where we dropped an intercept term to avoid cluttered notation. Here, Wh is called the recur-

rent weight matrix and Wx is called the embedding matrix or input matrix. The function s(·) is

called an activation or squashing function, which stabilizes the transition dynamics by bounding

the hidden state. Typical choices for the squashing function include the sigmoid and the hyperbolic

tangent.

Long-short term memory. The lstm was designed to avoid optimization issues, such as van-

ishing (or exploding) gradients. Its transition function composes four ernns, three with sigmoid
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activations and one with a tanh activation:

f t = σ(W>x1xt−1 +W>h1ht−1) (1.26)

it = σ(W>x2xt−1 +W>h2ht−1) (1.27)

ot = σ(W>x4xt−1 +W>h4ht−1) (1.28)

ct = f t � ct−1 + it � tanh(W>x3xt−1 +W>h3ht−1) (1.29)

ht = ot � tanh(ct ). (1.30)

Here f t , it , and ot are called gates. The lstm state is the pair (ct, ht ). The state ct is the memory

cell; it is designed to capture long-term dependencies (Hochreiter & Schmidhuber, 1997). The gate

f t is the forget gate; it determines which part of memory to discard. The gate it controls the amount

of new information to add to the memory. Finally, the gate ot determines how the output state ht

depends on the memory cell.

Gated recurrent unit. grus provide a simpler way to parameterize a rnn than the lstm (Cho

et al., 2014). The hidden state ht of a gru is computed as

ut = σ(W>x1xt−1 +W>h1ht−1) (1.31)

rt = σ(W>x2xt−1 +W>h2ht−1) (1.32)

ht = ut � ht−1 + (1 − ut ) � tanh
(
W>x3xt−1 +W>h3(rt � ht−1)

)
. (1.33)

Here ut is called an update gate, it decides whether to change the previous configuration of the

hidden state or not. The variable rt is called a reset gate it indicates which coordinates of the

previous hidden state are to be updated.
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1.2.3 Example: Auto-Encoders

Auto-encoding is a successful dl technique for dimensionality reduction (Hinton & Salakhutdinov,

2006). The idea is to learn to reconstruct data. Consider a dataset of N i.i.d observations x1, . . . , xN .

An autoencoder (ae) minimizes reconstruction error,

L(θ, φ) =
N∑

i=1
‖xi − fθ (gφ(xi))‖22 . (1.34)

Here gφ(·) is called an encoder, it takes a data point xi as input and outputs hi = gφ(xi), which

is a low-dimensional representation of xi called a code. The function fθ (·) is called a decoder, it

maps the code hi to the observation space. Its output is x̃i which is optimized to be close to xi. Aes

have been shown to learn better low-dimensional representations of data than principal component

analysis (pca) (Hinton & Salakhutdinov, 2006). They have also been useful for other applications,

e.g. image denoising (Vincent et al., 2008).

1.2.4 Example: Word Embeddings

Word embeddings provide models of language that use vector representations of words (Rumelhart

&Abrahamson, 1973; Bengio et al., 2003). The word representations are fitted to relate to meaning,

in that words with similar meanings will have representations that are close. (In embeddings, the

“meaning” of a word comes from the contexts in which it is used (Harris, 1954).)

We focus on the continuous bag-of-words (cbow) variant of word embeddings (Mikolov et al.,

2013b). In cbow, the likelihood of each word wdn is

wdn ∼ softmax(ρ>αdn). (1.35)

The embedding matrix ρ is a L × V matrix whose columns contain the embedding representations

of the vocabulary, ρv ∈ RL. The vector αdn is the context embedding. The context embedding is
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the sum of the context embedding vectors (αv for each word v) of the words surrounding wdn.

1.3 Combining Neural Networks and Latent Variables

pgm and dl both aim to learn from data. While pgm uses latent variables to express the structure

underlying data in an interpretable way, dl uses neural networks to express the structure underlying

data in a flexible way. These two approaches of learning from data are complementary. Researchers

have developed methods that combine neural networks and latent variables (Kingma & Welling,

2013; Rezende et al., 2014; Johnson et al., 2016; Gao et al., 2016; Krishnan et al., 2017).

1.3.1 Probabilistic Conditioning with Neural Networks

Probabilistic conditioning with neural networks is a way to combine neural networks and latent

variables. There are two ways to do this:

• Use the output of a neural network that takes the latent variables as input to define the pa-

rameters of the conditional distribution of the data given the latent variables.

• Use the output of a neural network that takes data as input to define the parameters of the

posterior distribution of the latent variables given the data.

More concretely, consider our running pgm example, the ef-pca. It posits a shared global latent

structure β and a per-observation local latent structure z1:N . A data point x is drawn by condition-

ing on both β and z. In ef-pca, the global and local structure interact linearly in the likelihood

p(x | z,β). (See Section 1.1.3.) Allowing non-linear interactions between global and local structure

will make the model more flexible. This can be achieved using neural networks, the parameters of

which will be shared across the observations to model the global structure. The conditional distri-

bution of x given z is then

pβ (x, z) = p(x | fβ (z)) · p(z) (1.36)
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where fβ (·) is the neural network that defines the likelihood.

On the other hand, the local latent variables z1:N can be seen as low-dimensional representations

of the data. Each observation has its own representation in the latent space. We saw in Section 1.2

that aes are good at finding low-dimensional representations of data. We can use auto-encoding to

define the posterior distributions of the local latent variables,

qφ(z | x) = qφ(z | gφ(x)) (1.37)

where gφ(·) is the neural network that parameterizes the posterior, the encoder in an ae. Note

qφ(z | x) is not the true posterior distribution of the latent variables, but we can use it within the

framework of vi to learn approximations of the true posterior.

1.3.2 Variational Auto-Encoders

Variational autoencoders (vaes) tie model design and posterior inference within one framework.

They use Eq. 1.36 as a model for data and Eq. 1.37 as an approximate posterior over latent vari-

ables. More specifically, the likelihood is an exponential family whose natural parameter η(z;β)

is computed as follows:

1. h(1) = fβ0 (z)

2. h(l+1) = fβl

(
h(l)

)
l = 1 . . . L − 1

3. η(z; θ) = fβL

(
h(L)

)
.

The parameter β is the collection {β0, . . . ,βL}. The output h(l+1) of the (l + 1)th layer is computed

by composing the output h(1) of the previous layer with layer-specific parameters βl.

Vaes use stochastic gradient ascent to learn both sets of parameters β and φ. The objective is the
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elbo,

elbo(β, φ) = Eqφ (z | x)
[
log pβ (x, z) − log qφ(z | x)

]
. (1.38)

For a given setting of φ, maximizing the elbo with respect to β corresponds to maximizing the

likelihood of the observations. For a given setting of the model parametersβ, maximizing the elbo

with respect to φ can be interpreted in two different ways.

kl minimization perspective. We can write the elbo as

elbo(β, φ) = Eqφ (z | x)
[
log pβ (z | x) + log pβ (x) − log qφ(z | x)

]
. (1.39)

Since log pβ (x) does not depend on φ, maximizing the elbo with respect to φ is equivalent to

minimizing the kl between qφ(z | x) and the true posterior pβ (z | x). Indeed,

elbo(β, φ) = −kl(qφ(z | x) | |pβ (z | x)) + cst . (1.40)

Regularized autoencoder perspective. Maximizing the elbo with respect to φ can also be seen

as regularizing an ae. Rewrite the elbo as follows

elbo(β, φ) = Eqφ (z | x)
[
log pβ (x | z)

]
− kl(qφ(z | x) | |p(z)). (1.41)

Assume without loss of generality that the likelihood is Gaussian with identity variance and that

qφ(z | x) is also a Gaussian with identity variance. Assume we draw one sample zφ(x) = gφ(x) + ε

from qφ(z | x) where ε ∼ N (0, I). Assume the prior is standard Gaussian. The elbo is

elbo(β, φ) = ‖x − fβ (zφ(x))‖22 −
1
2
‖gφ(x)‖22 . (1.42)

When maximizing the elbo with respect to φ, the first term is the objective of an ae, it forces
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to learn settings of φ that are able to reconstruct the data well. The second term regularizes the

parameters φ such that the output of the encoder have bounded L2 norm.

In fact there is a second source of regularization in this particular case; noise ε is first added to

the code gφ(x) to get the latent code zφ(x), which is then used as input to the decoder fβ (·). This

added noise trades off some reconstruction error with the ability to simulate new data from the fitted

decoder.

Amortized variational inference and mean field variational inference. By using neural net-

works to define the approximate posterior over the latent variables, vaes are doing amortized vari-

ational inference (avi). The term comes from the fact that computing the approximate posterior

boils down to passing data through a shared neural network, which amortizes the cost of inference

for models with local latent variables when dealing with large datasets.

How does avi relate to mean field vi? Consider our canonical ef-pca example. Mean field vi uses

the factorization

q(β, z1:N ;λ) = q(β;λβ) ·
N∏

i=1
q(zi;λi) (1.43)

Mean field assumes all latent variables are independent, both local and global. We can relax this a

bit and assume the local latent variables z1:N are conditionally independent given the global latent

variables,

q(β, z1:N ;λ) = q(β;λβ) ·
N∏

i=1
q(zi | β;λi) (1.44)

We let each factor explicitly condition on data,

q(β, z1:N ;λ) = q(β;λβ) ·
N∏

i=1
q(zi | xi,β;λi) (1.45)

A way to get to avi is to assume that the global structure β represents a posteriori a neural network
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with parameters λβ and let each latent zi have its own distribution only through xi. Then we end

up with

q(β, z1:N ;λ) =
N∏

i=1
q(zi | xi,λβ) (1.46)

where the conditioning on xi andλβ corresponds to passing xi through the neural networkλβ.

1.3.3 Challenges: Latent Variable Collapse

The elbo in Eq. 1.38 is intractable because of the expectations. vaes leverage bbvi (Paisley

et al., 2012; Ranganath et al., 2014) and approximate the elbo with Monte Carlo samples from the

variational distribution. To reduce variance of the gradients of the elbo, vaes use reparameteri-

zation (Kingma & Welling, 2013; Rezende et al., 2014). This procedure often empirically leads to

a degenerate solution where

qφ(z | x) ≈ p(z).

The variational “posterior” does not depend on the data; this is referred to as latent variable col-

lapse. When the approximate posterior is close to the prior, posterior estimates of the latent variable

z do not represent faithful summaries of their data x—the vae has not learned good representations.

This issue is discussed in several papers (Bowman et al., 2015; Sønderby et al., 2016b; Kingma et al.,

2016; Chen et al., 2016; Zhao et al., 2017c; Yeung et al., 2017). In Chapter 2 we provide a solution

to this problem.
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Chapter 2: Deep Probabilistic Graphical Modeling

The previous chapter laid out the foundations for deep probabilistic graphical modeling (dpgm).

We reviewed latent-variable graphical models and their inference. These models have an inter-

pretable probabilistic structure and can be fit using variational inference (vi). However graphical

models tend to lack flexibility, which hinders their use when it comes to modeling high-dimensional

complex data and/or performing tasks that require flexibility (e.g. in vision and language applica-

tions.)

We reviewed deep learning (dl), a paradigm that offers flexibility both in terms of model specifica-

tion and model fitting by leveraging neural networks and backpropagation. Although flexible, dl

does not offer the same interpretability as probabilistic graphical modeling (pgm).

Finally, we described ways to combine neural networks and latent variables and the latent variable

collapse issue that might arise from it leading to a non-interpretable latent structure.

In this chapter, we develop dpgm, a set of methodologies that leverage dl for pgm. dpgm benefits

from the interpretability of pgm and the flexibility of dl. We first discuss three desiderata for dpgm

before describing several instances of dpgm. One instance extends exponential family principal

component analysis (ef-pca) using deep neural networks while preserving the interpretability of

the latent factors. Another instance corresponds to a model class for sequential data that allows

to account for long-range dependencies. Finally, we show how dpgm solves several problems of

probabilistic topic models.
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2.1 Desiderata

The goal of dpgm is to make pgm more flexible. This leads to three desiderata for dpgm, which

we discuss in more detail.

1. Generalization. Data are finite. We require systems built using dpgm to generalize beyond

the observed data. Here, the term “generalization" encapsulates two things: (1) the capac-

ity to assign high probability to unobserved data arising from the same distribution as the

training data1 and (2) the ability to yield good simulations of new data. The latter pertains

to the diversity and visual quality of data generated from the fitted model. We will measure

generalization using held-out predictive log-likelihood or measures of simulation quality.

2. Interpretability. pgm uncovers the hidden structure underlying data through a set of latent

variables. These latent variables capture meaning and are interpretable. We require the same

interpretability for dpgm. However, flexibility often comes in the way of interpretability.

The latent variable collapse problem described in Chapter 1 is one manifestation of this.

The dpgm instances we describe in Section 2.2, Section 2.3, and Section 2.4 will offer both

flexibility and interpretability. We will measure interpretability of the learned latent variables

using proxies of mutual information or performance on a downstream classification task.

3. Scalability. The data we deal with are large-scale and high-dimensional. We require dpgm

methods to scale both in terms of the number of observations and the dimensionality of each

observation.

2.2 From Exponential Family PCA to Deep Generative Skip Models

We introduce deep generative skip models (dgsms), a class of models that extends ef-pca using

neural networks. dgsms are efficiently fit using amortized variational inference (avi) (Gershman

& Goodman, 2014; Kingma &Welling, 2013; Rezende et al., 2014). When evaluated on image and
1this is the usual meaning of the word “generalization" in Machine Learning.
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text data, they achieve higher predictive performance and learn more interpretable latent factors

than several baselines.

2.2.1 Model Class

Assume observed N i.i.d data points x1, . . . , xN where xi ∈ R
D. Consider the data generative

process of ef-pca:

1. Draw global latents β ∼ p(β)

2. For each data point i = 1 . . . N :

(a) Draw local latent variable zi ∼ p(z)

(b) Draw data point xi ∼ EF(ηi = f (β>zi))

As discussed in Chapter 1, the global latent variables β capture features shared across all the obser-

vations. We can infer them using variational inference. In this section, we set β to be deterministic

parameters of a shared deep neural network. dgsms define the following generative process for

data,

1. For each data point i = 1 . . . N :

(a) Draw local latent variable zi ∼ p(z)

(b) Draw data point xi ∼ EF(ηi = fβ (zi)).

Here, the natural parameter is the output of a neural network fβ (·) that takes zi as input. It is

computed through the following chain:

1. h(1)
i = fθ0 (zi)

2. h(l+1)
i = gWl

(
fθl

(
h(l)

i

)
, zi

)
for l = 1 . . . L − 1

3. ηi = gWL

(
fθL

(
h(L)

i

)
, zi

)
.
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Here β = (W1, . . . ,WL, θ0, . . . , θL) The functions gW1 (·), . . . , gWL (·) and fθ0 (·), . . . , fθL (·) define

the neural network fβ (·). Their choices lead to different architectures. At a given layer l, the hidden

state h(l)
i of the neural network fβ (·) is a function of both the latent variable zi and the hidden

state from the previous layer h(l−1)
i . The dependence on zi, via gW1 (·), . . . , gWL (·), is called a skip

connection. Skip connections are widely used in dl, for example, in designing residual, highway,

and attention networks (Fukushima, 1988; He et al., 2016b; Srivastava et al., 2015; Bahdanau et al.,

2014). Here we use them to define dpgms to enforce a stronger dependence between the latent

variables and the observations.

dgsms are amenable to any type of skip functions; in this section we consider

gWl

(
fθl (h

(l)
i ), zi

)
= σl

(
W (h)

l fθl (h
(l)
i ) +W (z)

l zi
)

where σl is a typical nonlinear function such as sigmoid or ReLU. We set σL (·), the activation

at the last layer, to identity. The weights W (h)
l , 0 and W (z)

l , 0 are parameters of the model.

Similarly to other uses of skip connections (Fukushima, 1988; He et al., 2016b; Srivastava et al.,

2015; Bahdanau et al., 2014) we do not need to explicitly enforce the constraints W (h)
l , 0 and

W (z)
l , 0 in practice.

dgsms are amenable to any neural network architecture. Defining fθ0 (·), . . . , fθL (·) corresponds

to specifying a neural network architecture. In our empirical study we explore convolutional neural

networks (cnns) for image applications and long-short term memorys (lstms) for text applica-

tions.

2.2.2 Amortized Variational Inference

dgsms are fit using avi. For that we define a variational distribution over the latent variables,

qφ(z1:N |x1:N ) =
N∏

i=1
qφ(zi |xi) (2.1)
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We set each factor qφ(zi |xi) as a Gaussian whose mean and Covariance are the given by the output

of a neural network that takes xi as input,

qφ(zi |xi) = N (µi (xi; φ), Σi (xi; φ)) (2.2)

Hereµi (xi; φµ) and Σi (xi; φΣ ) are the neural networks for the mean and the covariance respectively

and φ = (φµ, φΣ ). In practice we use one shared neural network whose output is mapped to one of

two sets of weights to get the mean or the covariance. We use softplus(a) = log(1+ exp(a)) as the

final activation function when computing the covariance.

Note the variational distribution can also be parameterized using the same approach we used to

define the model. More concretely, when computing the mean and the covariance of the varia-

tional distributions, we can add skip connections from an input xi to each layer of the inference

network.

We now can form the evidence lower bound (elbo),

elbo =
N∑

i=1
Eqφ (zi |xi )

[
log pβ (xi |zi) − kl(qφ(zi |xi) | |p(zi))

]
(2.3)

The elbo is intractable but we can estimate it using Monte Carlo with the reparameterization

trick (Kingma & Welling, 2014). We can then optimize the elbo with respect to both the model

parameters β and the variational parameters φ.

2.2.3 Connections & Related Work

dgsm fit using avi are related to vaes. The difference between the approach of Kingma &Welling

(2013) and the approach described above is the use of skip connections, when defining the model

and/or the inference network. We verify empirically that these skip connections lead to more in-

terpretable latent factors than the vae. To make the connection more apparent, we call avi in the

context of dgsms, skip-vaes. Figure 2.1 highlights the methodological differences between vaes
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Figure 2.1. Left: The variational autoencoder (vae) and Skip Variational Autoencoder (skip-vae)
with a two-layer generative model. The function qφ denotes the variational neural network (here
identical for vae and skip-vae). The difference is in the generative model class: the skip-vae’s
generative model enforces residual paths to the latents at each layer. Right: Themutual information
induced by the variational distribution and KL from the variational distribution to the prior for the
vae and the skip-vae on MNIST as we vary the number of layers L. The skip-vae leads to both
higher KL and higher mutual information.

and skip-vaes and shows the benefit of skip-vaes over vaes in learning more interpretable latent

variables. This figure is a visualization of two interpretability metrics as a function of the depth of

the neural network used to define the generative model for data. The first interpretability metric is

the mutual information between the data and the latent variables (MI) whereas the second metric

is the Kullback-Leibler (kl) between the variational distribution and the prior. The higher these

metrics the better; higher MI and KL signal stronger correlation between the data and the latent

variables.

There have been many proposals for learning more interpretable latent variables with the vae.

These approaches tackle the latent variable collapse discussed in Chapter 1 from different angles.

One approach is to handicap the training of the generative model (Bowman et al., 2015) or weaken

its capacity (Gulrajani et al., 2016), effectively encouraging better representations by limiting the

generative model. Another approach replaces the simple spherical Gaussian prior with more so-

phisticated priors. For example van den Oord et al. (2017) and Tomczak & Welling (2017) pro-

pose parametric priors, which are learned along with the generative model. Still another approach
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Figure 2.2. Clustering of the latent variables learned by fitting a vae (left) and a skip-vae (right)
onMNIST and applying T-SNE on the test set. The model is a 9-layer PixelCNN and the variational
neural network is a 3-layer ResNet. The colors represent digit labels. The skip-vae clusters the
latent variables better than the vae; it discovers 7 digit classes. The remaining 3 classes are covered
by the other classes. The latent variables learned by the vae are not meaningful as they are spread
out. The skip-vae learns more useful latent representations.

uses richer variational distributions (Rezende & Mohamed, 2015). In another thread of research,

Makhzani et al. (2015); Mescheder et al. (2017) replace the KL regularization term in the vae

objective with adversarial regularizers and Higgins et al. (2017) dampen the effect of the KL regu-

larization term with Lagrange multipliers. Finally, one can appeal to new inference algorithms. For

example Hoffman (2017) uses Markov chain Monte Carlo (mcmc) instead of variational inference

and Kim et al. (2018) uses stochastic variational inference, initialized with the variational neural

network parameters, to iteratively refine the variational distribution. A very recent approach against

posterior collapse relies on ideas from directional statistics. More specifically it consists in using

the Von Mises-Fisher distribution for both the prior and the variational posterior and fixing the

dispersion parameter of the Von Mises-Fisher distribution to make the KL term in the elbo con-

stant (Guu et al., 2017; Xu & Durrett, 2018). However this practice might result in less expressive

approximate posteriors.

2.2.4 Empirical Study

We first set some definitions
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Table 2.1. Performance of skip-vae vs vae on MNIST as the dimensionality of the latent vari-
able increases. skip-vae outperforms vae on all collapse metrics while achieving a similar log
likelihood—as measured by elbo.

elbo KL MI AU
Dim vae skip-vae vae skip-vae vae skip-vae vae skip-vae

2 -84.27 −84.30 3.13 3.54 3.09 3.46 2 2
10 −83.01 -82.87 8.29 9.41 7.35 7.81 9 10
20 −83.06 -82.55 7.14 9.33 6.55 7.80 8 13
50 −83.31 -82.58 6.22 8.67 5.81 7.49 8 12
100 −83.41 -82.52 5.82 8.45 5.53 7.38 5 9

Definition 2 For any data x and variational posterior qφ(z|x), the variational joint qφ(x, z) is the

joint distribution of x and z induced by qφ(z | x). It induces a marginal qφ(z) called the aggregated

posterior (Makhzani et al., 2015; Mescheder et al., 2017)

qφ(x, z) = p(x) · qφ(z|x) and qφ(z) = Ep(x)qφ(z|x).

The mutual information Iq(x, z) induced by the variational joint is

Iq(x, z) = Ep(x) Eqφ (z | x) log qφ(z | x) − Eqφ (z) log qφ(z).

We next assess the performance of skip-vaes on learning latent representations of data by applying

it to both a standard vae (Kingma & Welling, 2013; Rezende et al., 2014) and to the recently

introduced semi-amortized variational autoencoder (sa-vae) (Kim et al., 2018). We use standard

benchmark datasets for images and text: MNIST, Omniglot, and the Yahoo corpus. Text datasets

have been shown to be particularly sensitive to latent variable collapse (Bowman et al., 2015).

The prior for all experiments is a spherical Gaussian, and the variational posterior is a diagonal

Gaussian. Experiments compare skip-vae to baselines when varying the dimensionality of the

latent variable and the complexity of the generative model.

Evaluation metrics Our evaluation metrics assess both the performance—as given by some mea-
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Table 2.2. Performance of skip-vae vs vae on MNIST (Top) and Omniglot (Bottom) as the com-
plexity of the decoder increases. Skip-VAE outperforms VAE on all collapse metrics while achiev-
ing a similar log likelihood—as measured by elbo. In particular, this advantage widens as the
number of layers increases. The number of latent dimensions is 20—they are all active under skip-
vae on Omniglot.

elbo KL MI AU
Layers vae skip-vae vae skip-vae vae skip-vae vae skip-vae

1 −89.64 -89.22 13.31 13.40 8.56 8.56 20 20
3 −84.38 -84.03 10.12 10.71 7.95 8.20 16 16
6 −83.19 -82.81 8.82 9.77 7.53 7.93 11 13
9 −83.06 -82.55 7.14 9.34 6.55 7.80 8 13

1 −97.69 -97.66 8.42 8.37 7.09 7.08 20 20
3 −93.95 -93.75 6.43 6.58 5.88 5.97 20 20
6 −93.23 -92.94 5.24 5.78 4.94 5.43 20 20
9 −92.79 -92.61 4.41 6.12 4.24 5.65 11 20

Table 2.3. VAE and SkipVAE on MNIST using 50 latent dimensions. The encoder is a 2-layer
MLP with 512 units in each layer. The decoder is also an MLP. The results below correspond to
different number of layers for the decoder.

elbo KL MI AU
Layers vae skip-vae vae skip-vae vae skip-vae vae skip-vae

2 −94.88 -94.80 24.23 26.35 9.21 9.20 17 24
3 −95.38 -94.17 21.87 26.15 9.20 9.21 13 21
4 −97.09 -93.79 20.95 25.63 9.21 9.21 11 21

sure of log-likelihood—as well as latent variable collapse. Performance is measured using standard

metrics: for image datasets we report the elbo as a measure of log-likelihood, for text we report

both the elbo and perplexity estimated using importance sampling.

Quantitatively assessing latent variable collapse is more difficult. We employ three metrics KL,

MI, and AU. The first metric is the KL regularization term of the elbo as written in Eq. 2.3. The

second measure of latent variable collapse is the mutual information induced by the variational

joint Iq(x, z). We follow Hoffman & Johnson (2016) and approximate this mutual information

using Monte Carlo estimates of the two KL terms. In particular KL(q(z; φ) ‖ p(z)) is approximated
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Table 2.4. skip-vae and skip-sa-vae perform better than their counterparts (vae, sa-vae) on
the Yahoo corpus under all latent variable collapse metrics while achieving similar log-likelihoods.
In particular, all latent dimensions are active when using skip-sa-vae. Perplexity (PPL) for the
variational models is estimated by calculating the log marginal likelihood with 200 samples from
q(z | x; φ).

Model Dim PPL elbo KL MI AU

language model - 61.60 - - - -
vae 32 62.38 −330.1 0.005 0.002 0
skip-vae 32 61.71 −330.5 0.34 0.31 1
sa-vae 32 59.85 −327.5 5.47 4.98 14
skip-sa-vae 32 60.87 −330.3 15.05 7.47 32
sa-vae 64 60.20 −327.3 3.09 2.95 10
skip-sa-vae 64 60.55 −330.8 22.54 9.15 64

as

KL(q(z; φ) ‖ p(z)) = Eq(z;φ)
[
log q(z; φ) − log p(z)

]
≈

1
S

S∑
s=1

log q(z(s); φ) − log p(z(s))

where each aggregated posterior q(z(s); φ) is also approximated by Monte Carlo.

The third measure of latent variable collapse is the number of "active" dimensions of the latent

variable z. This is defined in Burda et al. (2015a) as

AU =
D∑

d=1
1

{
Covp(x)

(
Eq(z|x;φ)[zd]

)
≥ ε

}
,

where zd is the dth dimension of z and ε is a threshold. (1{·} is an indicator giving 1 when its

argument is true and 0 otherwise.) We follow Burda et al. (2015a) and use a threshold of ε = 0.01.

We observe the same phenomenon: the histogram of the number of active dimensions of z is bi-

modal, which means that it is not highly sensitive to the chosen threshold.

Images We studied MNIST and Omniglot. We use a 3-layer ResNet (He et al., 2016a) (with 3 × 3

filters and 64 feature maps in each layer) as the variational neural network and a 9-layer Gated
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PixelCNN (van den Oord et al., 2016) (with 3 × 3 filters and 32 feature maps) as the likelihood.

For the baseline approach without skip connections we apply a linear map to the sample from

the variational posterior (to project out to the image spatial resolution), concatenate this with the

original image, and feed this to the PixelCNN. This set up reflects the set up of current state-of-

the-art settings for modeling images with vaes (Gulrajani et al., 2016; Chen et al., 2016). For the

generative skip model, we apply a linear map to the sample and concatenate it with the output from

each layer of the PixelCNN (before feeding it to the next layer). This results in more parameters

for the skip-vae model but we will see shortly that the baseline vae’s performance on the collapse

metrics worsens more quickly than the skip-vae as the capacity of the model increases.

Table 2.1 shows the results on MNIST when varying the size of the latent dimension. In all sce-

narios, the generative skip model yields higher KL between the variational posterior and the prior,

higher mutual information, and uses more latent dimensions (as measured by AU).

Table 2.2 varies the generativemodel’s complexity by increasing its depth. We used 20-dimensional

latent variables. With the vae, as the generative model becomes more expressive the model be-

comes less reliant on z as evidence by the poor performance on the collapse metrics. The generative

skip model mitigates this issue and performs better on all latent-variable-collapse metrics. Note the

elbo is similar for both models. These results indicate that the family of generative skip models

has a strong inductive bias to share more mutual information between the observation and the la-

tent variable. Similar results are observed when using weaker models. For example in Table 2.3 we

used feed forward neural networks (mlps) for both the variational neural network and the genera-

tive model. We set the dimensionality of the latent variables to 50. Even with this weaker setting

the skip-vae leads to less collapse than the vae.

Quality of the learned latent variables. To measure the quality of the learned latent variables for

both the vae and the skip-vae we ran two sets of analyses: one quantitative and one qualitative.

Qualitatively we cluster the latent variables using the learned variational neural network and the test

set. Figure 2.2 illustrates this. It shows a clear clustering of the MNIST digits with the latent space
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learned by the generative skip model. This is not the case for the latent variables learned by the vae

which are more spread out. Note we did not fit a vae and a skip-vae with 2-dimensional latents for

the visualization as this is not a realistic setting in practice. Instead we fit the vae and the skip-vae

on 50-dimensional latents—as is usual in state-of-the-art image modeling with vaes—and used

t-SNE to project the learned latents on a two-dimensional space.

Quantitativelywe performed a classification experiment onMNIST using the latent variables learned

by the variational neural networks of vae and skip-vae as features. This experiment uses 50 latent

dimensions, a 9-layer PixelCNN as the generative model, a 3-layer ResNet as the variational neural

network, and a simple 2-layer mlp over the posterior means as the classifier. The mlp has 1024

hidden units, ReLU activations, and a dropout rate of 0.5. The classification accuracy of the vae

is 97.19% which is lower than the accuracy of the skip-vae which is 98.10%. We also studied

this classification performance on a weaker model. We replaced the 9-layer PixelCNN and the 3-

layer ResNet above by two mlps. The vae achieved an accuracy of 97.70% whereas the skip-vae

achieved an accuracy of 98.25%.

Text Next we analyze the Yahoo Answers dataset from Yang et al. (2017), a common benchmark

for deep generative models of text. Successfully training vaes for text with flexible autoregressive

likelihoods such as LSTMs remains an important open issue in the field. In many cases the gen-

erative model learns to ignore the latent variable (setting KL(q(z | x; φ) ‖ p(z)) close to zero) and

collapses to a deterministic language model Bowman et al. (2015).

We use the same training setup as the current best model from Kim et al. (2018). Concretely, the

variational neural network is a 1-layer LSTMwith 1024 hidden units, whose last hidden state is used

to predict the mean vector and the (log) variance vector of the variational posterior. The generative

model is also a 1-layer LSTM with 1024 hidden units. In the non-skip generative model the sample

from the variational posterior is used to predict the initial hidden state of the decoder and also fed

as input at each time step. In the generative skip model we also concatenate the sample with the

decoder’s hidden state before projecting out to the vocabulary space. In both cases we apply an
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additional softmax layer to approximate the predictive distribution over the next word.

In addition to the vanilla vae, we also study the sa-vae (Kim et al., 2018), which proposes a differ-

ent optimization-based strategy for targeting the latent variable collapse issue when training vaes

for text. sa-vae combines stochastic variational inference (Hoffman et al., 2013) with amortized

variational inference by first using an inference network over x to predict the initial variational

parameters and then subsequently running iterative inference on the elbo to refine the initial vari-

ational parameters. In our experiments we used 10 steps of iterative refinement for sa-vae and

skip-sa-vae.

Table 2.4 shows the results. Here we compare performance of adding the skip connections to both

vae and SA-VAE. Table 2.4 shows that skip-vae is better than vae at avoiding latent variable

collapse for similar log likelihoods. The same conclusion holds when comparing SA-VAE and Skip-

SA-VAE.Without any skip connections the generative model learns to ignore the latent variable and

the mutual information is lower. Adding skip connections increases the mutual information. All in

all skip-sa-vae outperforms all models and achieves perfect latent variable usage when the number

of latent dimensions is either 32 or 64.

2.2.5 Conclusion

We proposed deep generative skip model a class of models that extend ef-pca. When fit using

avi to scale inference, dgsms lead to more interpretable latent variables. This is verified on both

image and text datasets. The approach consists in using skip connections to promote a stronger

dependence between the observations and their associated latent variables.

One interesting line of future work is to study the constraints that should be imposed on the skip

model to achieve a good performance—asmeasured by predictive log-likelihood—while also yield-

ing more expressive latent representations.
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T

TopicRNN

D

Figure 2.3. Graphical model of TopicRNN. There are D documents. Each document has T words
x1:T . Observations are shaded in grey, deterministic variables are represented in squares, and latent
variables are represented using unshaded circles. The unobserved h1:T represent the hidden states of
the rnn. The observed variables l1:T correspond to stop word indicators: lt = 1 if xt is a stop word
and 0 otherwise. The latent variable θd is shared by all the words in document d. The observation
model over a word xt is p(xt | lt, θd) = softmax(V>ht + (1 − lt )B>θd).

2.3 Deep Sequential Models with Long-Range Latent Context

One challenge in modeling sequential data is the difficulty to capture long-term dependencies. pgm

approaches, such as the hidden Markov model (hmm), make Markov assumptions that prune these

long-term dependencies. dl approaches such as recurrent neural networks (rnns) and their vari-

ants (lstm, gated recurrent unit (gru)) have unlimited memory, in theory, but face optimization

challenges in practice that hinder their ability to capture long-term dependencies (Bengio et al.,

1994; Pascanu et al., 2013).

In this section, we introduce a new class of model for sequential data, called TopicRNN, that allows

to capture long-range dependencies. TopicRNNmarries latent variables with neural networks. The

latent variables model the structure shared by all the elements in a sequence whereas the neural net-

work focuses on capturing local dependencies. This marriage has been shown useful for language

modeling (Dieng et al., 2016), conversation modeling (Wen & Luong, 2018), patient representation

learning for hospital readmission (Xiao et al., 2018a), and unsupervised document representation

learning (Dieng et al., 2016).
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2.3.1 Inductive Biases for Sequential Data Modeling

One advantage of pgm is that it makes it easy to include inductive biases when specifying a model.

There are many known inductive biases for discrete sequences. To illustrate what these inductive

biases are, let’s consider the following excerpt from the CNN news network.

“The U.S.presidential race isn’t only drawing attention and controversy in the United States – it’s

being closely watched across the globe. But what does the rest of the world think about a campaign

that has already thrown up one surprise after another? CNN asked 10 journalists for their take on

the race so far, and what their country might be hoping for in America’s next—”

The missing word in this excerpt can be predicted with high accuracy by accounting for two types

of contexts: local context and global context. Local context is defined as the set of few words

preceding the word to be predicted. Order matters when defining local context, it defines syntax in

language. Going back to our example above the phrase “America’s next" represents local context

for the word we want to predict. It already tells us what the function of the word we want to predict

is. Here we know we have to predict a noun. Global context defines the semantics of the word

of interest. Order does not matter. The semantic is defined by the semantics of the words that

appear in the same paragraph. Here such words are “America", “United States", “race", “country",

“campaign", and “presidential". Accounting for this global context narrows down the search for

eligible words to “President" and its synonyms. A good language model, a model of sequences

of words, should capture at least these two important properties of natural language: syntax (local

context) and semantics (global context).

When should we account for which types of context? Local context should always be accounted

for. An element of a sequence depends on the elements immediately preceding it. Global context is

needed to predict certain elements in the sequence but not all elements in a sequence exhibit long-

range dependencies. A priori we do not know which elements in a sequence do require long-term

context and which elements do not. Ultimately, we want to discover those elements after we fit a
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model to data. In what follows, we make the simple assumption that these elements correspond to

stop words in language. We will justify this assumption later.

2.3.2 Model Class

We now describe TopicRNN. Consider D i.i.d pairs (x(d), l(d)) for d = 1 . . . D. Here x(d) = x(d)
1:T

is a document and l(d) = l(d)
1:T is a vector indicating whether each word in document d is a stop

word or not. We determine this using a predefined stop word list. Under TopicRNN, a given pair is

generated as follows:

1. Draw a global context vector θd ∼ N (0, I)

2. For each word in the sequence, t = 1 . . .T :

(a) Compute local context h(d)
t = fη

(
x(d)

t−1, h
(d)
t−1

)
(b) Draw stop word indicator l (d)

t ∼ Bernoulli
(
σ

(
Γ>h(d)

t

))
(c) Draw word x(d)

t ∼ Cat
(
pd

t

)
where pd

t = softmax
(
V>h(d)

t + (1 − l (d)
t ) · β>θd

)
Figure 2.3 shows the graphical model corresponding to this generative process. Here θd represents

global context, it is shared across all the words in the document. We chose its prior to be a standard

Gaussian. The function fη (·) is a neural network that takes as input the previous input x(d)
t−1 and its

own previous output h(d)
t−1. It can be implemented using any of the rnn cells described in Chapter 1.

The functionσ(·) is the logistic function. The stop word indicator l (d)
t controls how the latent global

context θd affects the output. If l (d)
t = 1 (indicating x(d)

t is a stop word), the global context θd has

no contribution to the output. Otherwise, we add a bias to favor those words that are more likely to

appear when mixing with θd , as measured by the dot product between θ and the latent word vector

bi for the ith vocabulary word.

To understand the bias termβ>θd recall latent Dirichlet allocation (lda), a probabilistic topicmodel

described in Chapter 1. Marginalize out its per-word discrete topic assignments, the conditional
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distribution of the words in the document given the topics and topic proportions under lda is

p(x(d)
1:T |θd,β) =

T∏
t=1

K∑
k=1

θdkβx(d)
t
=

T∏
t=1
β>θd

���x(d)
t

(2.4)

This implies x(d)
t |θd,β ∼ β

>θd . Although this term has the same form as the bias term in TopicRNN

the constraints put on the matrices β and θd are different in lda and in TopicRNN. In lda both

β and θd are modeled using the Dirichlet distribution whereas in TopicRNN they are modeled

as a deterministic model parameter and a standard Gaussian. Adding a simplex constraints to θd

enforces interpretability for β (Donoho & Stodden, 2004) We can achieve this in TopicRNN by

simply mapping the global context vector θd to softmax(·). In our empirical study we use a standard

Gaussian for simplicity and found the matrix β still captures interpretable word clusters.

2.3.3 Amortized Variational Inference

We fit TopicRNN using avi. For that we have to specify a variational family over the global context

θd . Denote by qφ
(
θ1:D

���x
(1:D)
1:T , l(1:D)

1:T

)
the variational family; it is indexed by φ. We factorize it

as

qφ
(
θ1:D

���x
(1:D)
1:T , l(1:D)

1:T

)
= qφ

(
θd

���x
(d)
1:T, l

(d)
1:T

)
Each factor qφ

(
θd

���x
(d)
1:T, l

(d)
1:T

)
is a Gaussian whose mean and covariance are given by the outputs of

neural networks,

qφ
(
θd

���x
(d)
1:T, l

(d)
1:T

)
= N

(
µ(d)

(
x(d)

1:T, l
(d)
1:T ; φµ

)
,Σ (d)

(
x(d)

1:T, l
(d)
1:T ; φΣ

))
Here φ =

(
φµ, φΣ

)
. In practice we use one shared neural network whose output we map to the

mean and the covariance using two different sets of weight matrices. The input of this shared

neural network is the bag-of-word representation of the document x(d)
1:T multiplied by 1 − l(d)

1:T . This
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multiplication zeroes out the contributions of the stop words in the inference of θd .

We can now form the elbo,

elbo =
D∑

d=1
E

qφ

(
θd

���x
(d)
1:T ,l

(d)
1:T

) {
log p

(
x(d)

t |l
(d)
t , θd

)}
− kl

(
qφ

(
θd

���x
(d)
1:T, l

(d)
1:T

) ���
���p(θd)

)
.

The elbo is intractable. We approximate it usingMonte Carlowith the reparameterization trick (Kingma

& Welling, 2013; Rezende et al., 2014). Importantly, we apply truncated backpropagation through

time, which unrolls the rnn fη (·) a fixed number of time steps (instead of accounting for all the

elements in the sequence of words when computing the states of the rnn, which would cause op-

timization issues (Bengio et al., 1994; Pascanu et al., 2013).)

2.3.4 Application to Language Modeling

We first tested TopicRNN on the word prediction task using the Penn Treebank (PTB) portion of

the Wall Street Journal. We use the standard split, where sections 0-20 (930K tokens) are used

for training, sections 21-22 (74K tokens) for validation, and sections 23-24 (82K tokens) for test-

ing (Mikolov et al., 2010). We use a vocabulary of size 10K that includes the special token unk

for rare words and eos that indicates the end of a sentence. TopicRNN takes documents as inputs.

We split the PTB data into blocks of 10 sentences to constitute documents as done by (Mikolov &

Zweig, 2012). The inference network takes as input the bag-of-words representation of the input

document. For that reason, the vocabulary size of the inference network is reduced to 9551 after

excluding 449 pre-defined stop words.

In order to compare with previous work on contextual rnns (e.g. Mikolov & Zweig (2012)), we

trained TopicRNN using different network sizes. We performed word prediction using a recurrent

neural network with 10 neurons, 100 neurons and 300 neurons. For these experiments, we used a

multilayer perceptron with 2 hidden layers and 200 hidden units per layer for the inference network.

The dimensionality K of θd was tuned depending on the size of the rnn. For 10 neurons we
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Table 2.5. TopicRNN and its counterparts exhibit lower perplexity scores across different network
sizes. These results prove TopicRNN has more generalization capabilities: for example we only
need a TopicGRU with 100 neurons to achieve a better perplexity than stacking 2 LSTMs with 200
neurons each: 112.4 vs 115.9)

10 Neurons 100 Neurons 300 Neurons

Method Val Test Val Test Val Test

rnn 239.2 225.0 150.1 142.1 − 124.7
rnn + lda 197.3 187.4 132.3 126.4 − 113.7
TopicRNN 184.5 172.2 128.5 122.3 118.3 112.2
TopicLSTM 188.0 175.0 126.0 118.1 104.1 99.5
TopicGRU 178.3 166.7 118.3 112.4 99.6 97.3

used K = 18. For 100 and 300 neurons we chose K = 50. We used the validation set to tune the

hyperparameters of the model (including K). We used a maximum of 15 epochs for the experiments

and performed early stopping using the validation set. For comparison purposes we did not apply

regularization and used 1 layer for the rnn and its counterparts in all the experiments.

Table 2.5 reports perplexity on the validation set and the test set for different network sizes. Perplex-

ity can be thought of as a measure of surprise for a language model. It is defined as the exponential

of the average negative log likelihood. We learn three things from Table 2.5. First, the perplexity is

reduced the larger the network size. Second, rnns with global context features perform better than

rnns without context features. Third, we see that TopicRNN gives better perplexity than the pre-

vious baseline result reported by Mikolov & Zweig (2012). Note we compute the perplexity scores

for word prediction using a sliding window, to compute θ as we move along the sequences. The

topic vector θ that is used from the current batch of words is estimated from the previous batch of

words. This enables fair comparison to previously reported results (Mikolov & Zweig, 2012).

2.3.5 Unsupervised Feature Learning and Application to Sentiment Analysis

We performed sentiment analysis using TopicRNN as a feature extractor on the IMDB100K dataset.

This data consists of 100,000 movie reviews from the Internet Movie Database (IMDB) website.

The data is split into 75% for training and 25% for testing. Among the 75K training reviews, 50K
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Figure 2.4. Clusters of a sample of 10000 movie reviews from the IMDB 100K dataset using
TopicRNN as feature extractor. We used K-Means to cluster the feature vectors. We then used PCA
to reduce the dimension to two for visualization purposes. red is a negative review and green is a
positive review.

are unlabelled and 25K are labelled as carrying either a positive or a negative sentiment. All 25K

test reviews are labelled. We trained TopicRNN on 65K random training reviews and used the

remaining 10K reviews for validation. To learn a classifier, we passed the 25K labelled training

reviews through the learned TopicRNN model. We then concatenated the output of the inference

network and the last state of the rnn for each of these 25K reviews to compute the feature vectors.

We then used these feature vectors to train a neural network with one hidden layer, 50 hidden

units, and a sigmoid activation function to predict sentiment, exactly as done in Le & Mikolov

(2014b).

To train the TopicRNN model, we used a vocabulary of size 5,000 and mapped all other words to

the unk token. We took out 439 stop words to create the input of the inference network. We used

500 units and 2 layers for the inference network, and used 2 layers and 300 units per-layer for the

rnn. We chose a step size of 5 and defined 200 topics. We did not use any regularization such as

dropout. We trained the model for 13 epochs and used the validation set to tune the hyperparameters

of the model and track perplexity for early stopping. This experiment took close to 78 hours on a

MacBook pro quad-core with 16GHz of RAM.

Table 2.6 summarizes sentiment classification results from TopicRNN and other methods. Our
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Table 2.6. Classification error rate on IMDB 100k dataset. TopicRNN achieves state of the art error
rate amongst methods that first perform unsupervised feature extraction before doing sentiment
classification.

Model Reported Error rate

BoW (bnc) (Maas et al., 2011) 12.20%
BoW (b∆ tć) (Maas et al., 2011) 11.77%
LDA (Maas et al., 2011) 32.58%
Full + BoW (Maas et al., 2011) 11.67%
Full + Unlabelled + BoW (Maas et al., 2011) 11.11%
WRRBM (Dahl et al., 2012) 12.58%
WRRBM + BoW (bnc) (Dahl et al., 2012) 10.77%
MNB-uni (Wang & Manning, 2012) 16.45%
MNB-bi (Wang & Manning, 2012) 13.41%
SVM-uni (Wang & Manning, 2012) 13.05%
SVM-bi (Wang & Manning, 2012) 10.84%
NBSVM-uni (Wang & Manning, 2012) 11.71%
seq2-bown-CNN (Johnson & Zhang, 2014) 14.70%
NBSVM-bi (Wang & Manning, 2012) 8.78%
Paragraph Vector (Le & Mikolov, 2014) 7.42%
SA-LSTM with joint training (Dai & Le, 2015) 14.70%
LSTM with tuning and dropout (Dai & Le, 2015) 13.50%
LSTM initialized with word2vec embeddings (Dai & Le, 2015) 10.00%
SA-LSTM with linear gain (Dai & Le, 2015) 9.17%
LM-TM (Dai & Le, 2015) 7.64%
SA-LSTM (Dai & Le, 2015) 7.24%
Virtual Adversarial (Miyato et al. 2016) 5.91%

TopicRNN 6.28%

error rate is 6.28%.2 This is close to the state-of-the-art 5.91% (Miyato et al., 2016) despite that

we do not use the labels and adversarial training in the feature extraction stage. Our approach is

most similar to Le & Mikolov (2014b), where the features were extracted in a unsupervised way

and then a one-layer neural net was trained for classification.

Figure 2.4 shows the ability of TopicRNN to cluster documents using the feature vectors as created

during the sentiment analysis task. Reviews with positive sentiment are colored in green while

reviews carrying negative sentiment are shown in red.
2The experiments were solely based on TopicRNN. Experiments using TopicGRU/TopicLSTM are being carried

out and will be added as an extended version of this paper.

44



2.3.6 Conclusion

We introduced TopicRNN, a class of model for sequential data that marries latent variables and

neural networks. The latent variables model the structure shared between all the elements of a

sequence whereas the neural network models local dependencies. TopicRNN yields competitive

per-word perplexity on the Penn Treebank benchmark dataset. It is effective at learning unsuper-

vised document features for sentiment classification on the IMDB benchmark dataset. TopicRNN

has also been applied to healthcare data where learning meaningful patient representations can help

predict hospital readmission (Xiao et al., 2018a). Finally, it has been used for conversation mod-

eling by Wen & Luong (2018). Future work can study the performance of TopicRNN when words

that do not need global context are learned instead of chosen to be stop words of language.

2.4 Topic Modeling in Embedding Spaces

Topic models are statistical tools for discovering the hidden semantic structure in a collection of

documents (Blei et al., 2003; Blei, 2012). Topic models and their extensions have been applied

to many fields, such as marketing, sociology, political science, and the digital humanities. Boyd-

Graber et al. (2017) provide a review.

Most topic models build on lda (Blei et al., 2003), which we described in Chapter 1. lda is a

powerful model and it is widely used. However, it suffers from a pervasive technical problem—it

fails in the face of large vocabularies. Practitioners must severely prune their vocabularies in order

to fit good topic models, i.e., those that are both predictive and interpretable. This is typically done

by removing the most and least frequent words (called stop words and rare words respectively.)

On large collections, this pruning may remove important terms and limit the scope of the models.

The problem of topic modeling with large vocabularies has yet to be addressed in the research

literature.

In this section we describe how we leverage word embeddings, a successful advance of dl, to solve
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Figure 2.5. Ratio of the held-out perplexity on a document completion task and the topic coher-
ence as a function of the vocabulary size for the etm and lda on the 20NewsGroup corpus. The
perplexity is normalized by the size of the vocabulary. While the performance of lda deteriorates
for large vocabularies, the etm maintains good performance.

the problems described above. We develop the embedded topic model (etm) (Dieng et al., 2019c).

The etm marries lda and word embeddings to enable flexible topic modeling at large scale. The

flexibility provided by the word embeddings will allow us to not have to prune stop words and rare

words to learn interpretable topics. Furthermore, we devise an efficient avi procedure to fit the

etm. The recognition network used for avi will allow us to perform evaluation on new documents

without running an optimization loop, as required in lda. Other benefits brought in by the use of

the word embeddings in the context of topic modeling is that novel unseen words can be assigned

to a given topic.

Figure 2.5 illustrates one of the advantages of the etm over lda. This figure shows the ratio be-

tween the perplexity on held-out documents (a measure of predictive performance) and the topic

coherence (a measure of the quality of the topics), as a function of the size of the vocabulary. (The

perplexity has been normalized by the vocabulary size.) This is for a corpus of 11.2K articles from

the 20NewsGroup and for 100 topics. The red line is lda; its performance deteriorates as the vo-

cabulary size increases—the predictive performance and the quality of the topics get worse. The

blue line is the etm; it maintains good performance, even as the vocabulary size gets large.
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Figure 2.6. A topic about Christianity found
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Figure 2.7. Topics about sports found by the
etm on The New York Times. Each topic is
a point in the word embedding space.

Figures 2.6 and 2.7 show topics in the embedding space of words from a 300-topic etm of The New

York Times. These topics are about Christianity and sports.

We now describe the etm in detail.

2.4.1 The Embedded Topic Model

The etm is a topic model that uses embedding representations of both words and topics. It contains

two notions of latent dimension. First, it embeds the vocabulary in an L-dimensional space. These

embeddings are similar in spirit to classical word embeddings. Second, it represents each document

in terms of K latent topics.

In traditional topic modeling, each topic is a full distribution over the vocabulary. In the etm,

however, the k th topic is a vector αk ∈ R
L in the embedding space. We call αk a topic embedding—

it is a distributed representation of the k th topic in the semantic space of words.

In its generative process, the etm uses the topic embedding to form a per-topic distribution over

the vocabulary. Specifically, the etm uses a log-linear model that takes the inner product of the

word embedding matrix and the topic embedding. With this form, the etm assigns high probability

to a word v in topic k by measuring the agreement between the word’s embedding and the topic’s

embedding.
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Denote the L × V word embedding matrix by ρ; the column ρv is the embedding of term v. Under

the etm, the generative process of the dth document is the following:

1. Draw topic proportions θd ∼ LN (0, I).

2. For each word n in the document:

a. Draw topic assignment zdn ∼ Cat(θd).

b. Draw the word wdn ∼ softmax(ρ>αzdn ).

In Step 1,LN (·) denotes the logistic-normal distribution (Aitchison& Shen, 1980; Blei & Lafferty,

2007); it transforms a standard Gaussian random variable to the simplex. A draw θd from this

distribution is obtained as

δd ∼ N (0, I) ; θd = softmax(δd). (2.5)

(We replaced the Dirichlet with the logistic normal to easily use reparameterization in the inference

algorithm; see Section 2.4.2.)

Steps 1 and 2a are standard for topicmodeling: they represent documents as distributions over topics

and draw a topic assignment for each observed word. Step 2b is different; it uses the embeddings

of the vocabulary ρ and the assigned topic embedding αzdn to draw the observed word from the

assigned topic, as given by zdn.

The topic distribution in Step 2bmirrors the continuous bag-of-words (cbow) likelihood in Eq. 1.35.

Recall cbow uses the surrounding words to form the context vector αdn. In contrast, the etm uses

the topic embedding αzdn as the context vector, where the assigned topic zdn is drawn from the

per-document variable θd . The etm draws its words from a document context, rather than from a

window of surrounding words.

The etm likelihood uses a matrix of word embeddings ρ, a representation of the vocabulary in a

lower dimensional space. In practice, it can either rely on previously fitted embeddings or learn

them as part of its overall fitting procedure. When the etm learns the embeddings as part of the
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fitting procedure, it simultaneously finds topics and an embedding space.

When the etm uses previously fitted embeddings, it learns the topics of a corpus in a particular

embedding space. This strategy is particularly useful when there are words in the embedding that

are not used in the corpus. The etm can hypothesize how those words fit in to the topics because it

can calculate ρ>v αk , even for words v that do not appear in the corpus.

2.4.2 Inference and Estimation

We are given a corpus of documents {w1, . . . ,wD}, where wd is a collection of Nd words. How do

we fit the etm?

The marginal likelihood. The parameters of the etm are the embeddings ρ1:V and the topic

embeddings α1:K ; each αk is a point in the embedding space. We maximize the marginal likelihood

of the documents,

L(α, ρ) =
D∑

d=1
log p(wd | α, ρ). (2.6)

The problem is that the marginal likelihood of each document is intractable to compute. It in-

volves a difficult integral over the topic proportions, which we write in terms of the untransformed

proportions δd in Eq. 2.5,

p(wd | α, ρ) =
∫

p(δd)
Nd∏

n=1
p(wdn | δd, α, ρ) dδd . (2.7)

The conditional distribution of each word marginalizes out the topic assignment zdn,

p(wdn | δd, α, ρ) =
K∑

k=1
θdk βk,wdn

. (2.8)

Here, θdk denotes the (transformed) topic proportions (Eq. 2.5) and βkv denotes a traditional “topic,”
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i.e., a distribution overwords, induced by theword embeddings ρ and the topic embedding αk ,

βkv = softmax(ρ>αk )��v . (2.9)

Eqs. 2.7 to 2.9 flesh out the likelihood in Eq. 2.6.

Variational inference. We sidestep the intractable integral with variational inference, which we

reviewed in Chapter 1. Variational inference optimizes a sum of per-document bounds on the log

of the marginal likelihood of Eq. 2.7. There are two sets of parameters to optimize: the model

parameters, as described above, and the variational parameters, which tighten the bounds on the

marginal likelihoods.

To begin, posit a family of distributions of the untransformed topic proportions q(δd ; wd, ν). We

use avi, where the variational distribution of δd depends on both the document wd and shared

variational parameters ν. In particular q(δd ; wd, ν) is a Gaussian whose mean and variance come

from an “inference network,” a neural network parameterized by ν (Kingma &Welling, 2014). The

inference network ingests the document wd and outputs a mean and variance of δd . (To accommo-

date documents of varying length, we form the input of the inference network by normalizing the

bag-of-word representation of the document by the number of words Nd .)

We use this family of variational distributions to bound the log-marginal likelihood. The elbo is a

function of the model parameters and the variational parameters,

L(α, ρ, ν) =
D∑

d=1

Nd∑
n=1
Eq

[
log p(wnd | δd, ρ, α)

]
−

D∑
d=1

KL(q(δd; wd, ν) | | p(δd)). (2.10)

The first term of the elbo (Eq. 2.10) encourages variational distributions q(δd ; wd, ν) that place

mass on unnormalized topic proportions δd that explain the observed words while the second term

encourages q(δd ; wd, ν) to be close to the prior p(δd). Maximizing the elbo with respect to

the model parameters (α, ρ) is equivalent to maximizing the expected complete log-likelihood,∑
d log p(δd,wd | α, ρ).

50



The elbo in Eq. 2.10 is intractable because the expectation is intractable. However we can use

Monte Carlo to approximate the elbo,

L̃(α, ρ, ν) =
1
S

D∑
d=1

Nd∑
n=1

S∑
s=1

log p(wnd | δ
(s)
d , ρ, α) −

D∑
d=1

KL(q(δd; wd, ν) | | p(δd)) (2.11)

where δ(s)
d ∼ q(δd; wd, ν) for s = 1 . . . S. To reduce variance we use the reparameterization trick

when sampling the unnormalized proportions δ(1)
d , . . . , δ(S)

d (Kingma & Welling, 2014; Titsias &

Lázaro-Gredilla, 2014; Rezende et al., 2014). That is, we sample δ(s)
d from q(δd; wd, ν) as

ε (s)
d ∼ N (0, I) and δ(s)

d = µd + Σ
1
2

d � ε
(s)
d (2.12)

where µd and Σd are the mean and covariance of q(δd; wd, ν) respectively.

We also use data subsampling to handle large collections of documents (Hoffman et al., 2013) and

set S = 1. Denote by B a minibatch of documents. Then the approximation of the elbo using data

subsampling is

L̃(α, ρ, ν) =
D
|B|

∑
d∈B

Nd∑
n=1

log p(wnd | δd, ρ, α) −
D
|B|

∑
d∈B

KL(q(δd; wd, ν) | | p(δd)) (2.13)

Finally, given the prior p(δd) and q(δd; wd, ν) are both Gaussians, the KL is closed-form,

KL(q(δd; wd, ν) | | p(δd)) =
1
2

{
tr(Σd) + µ>d µd − log det(Σd) − K

}
. (2.14)

Here both µd and Σd depend implicitly on ν and wd via the inference network.

We optimize the elbo with respect to both the model parameters (α, ρ) and the variational pa-

rameters ν. We set the learning rate with Adam (Kingma & Ba, 2015). The procedure is shown in

Algorithm 1, where the notation NN(x ; ν) represents a neural network with input x and parameters

ν.
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Algorithm 1: Flexible topic modeling with the etm
Initialize model and variational parameters
for iteration i = 1, 2, . . . do
Compute βk = softmax(ρ>αk ) for each topic k
Choose a minibatch B of documents
for each document d in B do
Get normalized bag-of-word representat. xd
Compute µd = NN(xd ; νµ)
Compute Σd = NN(xd ; νΣ )
Sample θd ∼ LN (µd, Σd)
for each word in the document do
Compute p(wdn | θd) = θ>d β·,wdn

end for
end for
Estimate the elbo and its gradient (backprop.)
Update model parameters α1:K
Update variational parameters (νµ, νΣ )

end for

2.4.3 Related Work

One of the goals in developing the etm is to incorporate word similarity into the topic model, and

there is previous research that shares this goal. These methods either modify the topic priors (Pet-

terson et al., 2010; Zhao et al., 2017b; Shi et al., 2017; Zhao et al., 2017a) or the topic assignment

priors (Xie et al., 2015). For example Petterson et al. (2010) use a word similarity graph (as given

by a thesaurus) to bias lda towards assigning similar words to similar topics. As another example,

Xie et al. (2015) model the per-word topic assignments of lda using a Markov random field to

account for both the topic proportions and the topic assignments of similar words. These methods

use word similarity as a type of “side information” about language; in contrast, the etm directly

models the similarity (via embeddings) in its generative process of words.

Other work has extended lda to directly involve word embeddings. One common strategy is to

convert the discrete text into continuous observations of embeddings, and then adapt lda to gen-

erate real-valued data (Das et al., 2015; Xun et al., 2016; Batmanghelich et al., 2016; Xun et al.,

2017). With this strategy, topics are Gaussian distributions with latent means and covariances, and
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the likelihood over the embeddings is modeled with a Gaussian (Das et al., 2015) or a Von-Mises

Fisher distribution (Batmanghelich et al., 2016). The etm differs from these approaches in that it is

a model of categorical data, one that goes through the embeddings matrix. Thus it does not require

pre-fitted embeddings and, indeed, can learn embeddings as part of its inference process.

There have been a few other ways of combining lda and embeddings. Nguyen et al. (2015) mix

the likelihood defined by lda with a log-linear model that uses pre-fitted word embeddings; Bunk

& Krestel (2018) randomly replace words drawn from a topic with their embeddings drawn from a

Gaussian; and Xu et al. (2018) adopt a geometric perspective, using Wasserstein distances to learn

topics and word embeddings jointly.

Another thread of recent research improves topic modeling inference through deep neural networks

(Srivastava & Sutton, 2017; Card et al., 2017; Cong et al., 2017; Zhang et al., 2018). Specifically,

these methods reduce the dimension of the text data through amortized inference and the variational

auto-encoder (Kingma & Welling, 2014; Rezende et al., 2014). To perform inference in the etm,

we also avail ourselves of amortized inference methods (Gershman & Goodman, 2014).

Finally, as a document model, the etm also relates to works that learn per-document representa-

tions as part of an embedding model (Le & Mikolov, 2014a; Moody, 2016; Miao et al., 2016). In

contrast to these works, the document variables in the etm are part of a larger probabilistic topic

model.

2.4.4 Empirical Study

We study the performance of the etm and compare it to other unsupervised document models. A

good document model should provide both coherent patterns of language and an accurate distri-

bution of words, so we measure performance in terms of both predictive accuracy and topic inter-

pretability. We measure accuracy with log-likelihood on a document completion task (Rosen-Zvi

et al., 2004; Wallach et al., 2009); we measure topic interpretability as a blend of topic coherence

and diversity. We find that, of the interpretable models, the etm is the one that provides better
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Table 2.7. Word embeddings learned by all document models (and skip-gram) on the New York
Times with vocabulary size 118,363.

Skip-gram embeddings etm embeddings

love family woman politics love family woman politics
loved families man political joy children girl political
passion grandparents girl religion loves son boy politician
loves mother boy politicking loved mother mother ideology
affection friends teenager ideology passion father daughter speeches
adore relatives person partisanship wonderful wife pregnant ideological

nvdm embeddings ∆-nvdm embeddings

love family woman politics love family woman politics
loves sons girl political miss home life political
passion life women politician young father marriage faith
wonderful brother man politicians born son women marriage
joy son pregnant politically dream day read politicians
beautiful lived boyfriend democratic younger mrs young election

prodlda embeddings

love family woman politics
loves husband girl political
affection wife boyfriend politician
sentimental daughters boy liberal
dreams sister teenager politicians
laugh friends ager ideological

predictions and topics.

In a separate analysis, we study the robustness of each method in the presence of stop words. Stan-

dard topic models fail in this regime—since stop words appear in many documents, every learned

topic includes some stop words, leading to poor topic interpretability. In contrast, the etm is able

to use the information from the word embeddings to provide interpretable topics.

Corpora. We study the 20Newsgroups corpus and the New York Times corpus.

The 20Newsgroup corpus is a collection of newsgroup posts. We preprocess the corpus by filtering

stop words, words with document frequency above 70%, and tokenizing. To form the vocabulary,

we keep all words that appear in more than a certain number of documents, and we vary the thresh-
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Table 2.8. Top five words of seven most used topics from different document models on 1.8M
documents of the New York Times corpus with vocabulary size 212,237 and K = 300 topics.

LDA
time year officials mr city percent state
day million public president building million republican
back money department bush street company party
good pay report white park year bill
long tax state clinton house billion mr

nvdm
scholars japan gansler spratt assn ridership pryce
gingrich tokyo wellstone tabitha assoc mtv mickens
funds pacific mccain mccorkle qtr straphangers mckechnie
institutions europe shalikashvili cheetos yr freierman mfume
endowment zealand coached vols nyse riders filkins

∆-nvdm
concerto servings nato innings treas patients democrats
solos tablespoons soviet scored yr doctors republicans
sonata tablespoon iraqi inning qtr medicare republican
melodies preheat gorbachev shutout outst dr senate
soloist minced arab scoreless telerate physicians dole

prodlda
temptation grasp electron played amato briefly giant
repressed unruly nuclei lou model precious boarding
drowsy choke macal greg delaware serving bundle
addiction drowsy trained bobby morita set distance
conquering drift mediaone steve dual virgin foray

Labelled prodlda
mercies cheesecloth scoreless chapels distinguishable floured gillers
lockbox overcook floured magnolias cocktails impartiality lacerated
pharm strainer hitless asea punishable knead polshek
shims kirberger asterisk bogeyed checkpoints refrigerate decimated
cp browned knead birdie disobeying tablespoons inhuman

Labelled etm
music republican yankees game wine court company
dance bush game points restaurant judge million
songs campaign baseball season food case stock
opera senator season team dishes justice shares
concert democrats mets play restaurants trial billion

etm
game music united wine company yankees art
team mr israel food stock game museum
season dance government sauce million baseball show
coach opera israeli minutes companies mets work
play band mr restaurant billion season artist
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Figure 2.8. Interpretability as measured by the exponentiated product of topic coherence and topic
diversity (the higher the better) vs. predictive performance as measured by log-likelihood on doc-
ument completion (the higher the better) on the 20NewsGroup dataset. Both interpretability and
predictive power metrics are normalized by subtracting the mean and dividing by the standard de-
viation across models. Better models are on the top right corner. Overall, the etm is a better topic
model.
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old from 100 (a smaller vocabulary, whereV = 3,102) to 2 (a larger vocabulary, whereV = 52,258).

After preprocessing, we further remove one-word documents from the validation and test sets. We

split the corpus into a training set of 11,260 documents, a test set of 7,532 documents, and a vali-

dation set of 100 documents.

The New York Times corpus is a larger collection of news articles. It contains more than 1.8 million

articles, spanning the years 1987–2007. We follow the same preprocessing steps as for 20News-

groups. We form versions of this corpus with vocabularies ranging fromV = 5,921 toV = 212,237.

After preprocessing, we use 85% of the documents for training, 10% for testing, and 5% for vali-

dation.

Models. We compare the performance of the etm against several document models. We briefly

describe each below.

We consider latent Dirichlet allocation (lda) (Blei et al., 2003), a standard topic model that posits

Dirichlet priors for the topics βk and topic proportions θd . (We set the prior hyperparameters to

1.) It is a conditionally conjugate model, amenable to variational inference with coordinate ascent.

We consider lda because it is the most commonly used topic model, and it has a similar generative
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Figure 2.9. Interpretability as measured by the exponentiated product of topic coherence and topic
diversity (the higher the better) vs. predictive performance as measured by log-likelihood on doc-
ument completion (the higher the better) on the New York Times dataset. Both interpretability and
predictive power metrics are normalized by subtracting the mean and dividing by the standard de-
viation across models. Better models are on the top right corner. Overall, the etm is a better topic
model.
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process as the etm.

We also consider the neural variational document model (nvdm) (Miao et al., 2016). The nvdm

is a multinomial factor model of documents; it posits the likelihood wdn ∼ softmax(β>θd), where

the K-dimensional vector θd ∼ N (0, IK ) is a per-document variable, and β is a real-valued matrix

of size K × V . The nvdm uses a per-document real-valued latent vector θd to average over the

embedding matrix β in the logit space. Like the etm, the nvdm uses amortized variational infer-

ence to jointly learn the approximate posterior over the document representation θd and the model

parameter β.

nvdm is not interpretable as a topic model; its latent variables are unconstrained. We study a

more interpretable variant of the nvdm which constrains θd to lie in the simplex, replacing its

Gaussian prior with a logistic normal (Aitchison & Shen, 1980). (This can be thought of as a

semi-nonnegative matrix factorization.) We call this document model ∆-nvdm.

We also consider prodlda (Srivastava&Sutton, 2017). It posits the likelihoodwdn ∼ softmax(β>θd)

where the topic proportions θd are from the simplex. Contrary to lda, the topic-matrix β is un-

constrained. prodlda is fit using amortized variational inference with batch normalization (Ioffe
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& Szegedy, 2015) and dropout (Srivastava et al., 2014).

Finally, we consider a document model that combines prodlda with pre-fitted word embeddings.

We call this document model Labelled prodlda.

We study two variants of the etm, one where the word embeddings are pre-fitted and one where

they are learned jointly with the rest of the parameters. The variant with pre-fitted embeddings is

called the “labelled etm.” We use skip-gram embeddings (Mikolov et al., 2013b).

Algorithm settings. Given a corpus, each model comes with an approximate posterior inference

problem. We use variational inference for all of the models and employ stochastic variational in-

ference (svi) (Hoffman et al., 2013) to speed up the optimization. The minibatch size is 1,000

documents. For lda, we set the learning rate as suggested by Hoffman et al. (2013): the delay is

10 and the forgetting factor is 0.85.

Within svi, lda enjoys coordinate ascent variational updates, with 5 inner steps to optimize the

local variables. For the other models, we use amortized inference over the local variables θd . We

use 3-layer inference networks and we set the local learning rate to 0.002. We use `2 regularization

on the variational parameters (the weight decay parameter is 1.2 × 10−6).

Qualitative results. We first examine the embeddings. The etm, nvdm, ∆-nvdm, and prodlda

all involve a word embedding. We illustrate them by fixing a set of terms and calculating the words

that occur in the neighborhood around them. For comparison, we also illustrate word embeddings

learned by the skip-gram model.

Table 2.7 illustrates the embeddings of the different models. All the methods provide interpretable

embeddings—words with related meanings are close to each other. The etm, the nvdm, and

prodlda learn embeddings that are similar to those from the skip-gram. The embeddings of ∆-

nvdm are different; the simplex constraint on the local variable changes the nature of the embed-

dings.

We next look at the learned topics. Table 2.8 displays the 7 most used topics for all methods,
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as given by the average of the topic proportions θd . lda and the etm both provide interpretable

topics. The rest of the models do not provide interpretable topics; their model parameters β are not

interpretable as distributions over the vocabulary that mix to form documents.

Quantitative results. We next study the models quantitatively. We measure the quality of the

topics and the predictive performance of the model. We found that amongmodels with interpretable

topics, the etm provides the best predictions.

We measure topic quality by blending two metrics: topic coherence and topic diversity. Topic

coherence is a quantitative measure of the interpretability of a topic (Mimno et al., 2011). It is the

average pointwise mutual information of two words drawn randomly from the same document (Lau

et al., 2014),

TC =
1
K

K∑
k=1

1
45

10∑
i=1

10∑
j=i+1

f (w(k)
i ,w(k)

j ),

where {w(k)
1 , . . . ,w(k)

10 } denotes the top-10 most likely words in topic k. Here, f (·, ·) is the normal-

ized pointwise mutual information,

f (wi,w j ) =
log P(wi,w j )

P(wi )P(w j )

− log P(wi,w j )
.

The quantity P(wi,w j ) is the probability of words wi and w j co-occurring in a document and

P(wi) is the marginal probability of word wi. We approximate these probabilities with empirical

counts.

The idea behind topic coherence is that a coherent topic will display words that tend to occur in

the same documents. In other words, the most likely words in a coherent topic should have high

mutual information. Document models with higher topic coherence are more interpretable topic

models.

We combine coherence with a second metric, topic diversity. We define topic diversity to be the

percentage of unique words in the top 25words of all topics. Diversity close to 0 indicates redundant
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topics; diversity close to 1 indicates more varied topics.

We define the overall metric for the quality of a model’s topics as the exponentiated product of its

topic diversity and topic coherence.

A good topic model also provides a good distribution of language. To measure predictive quality,

we calculate log likelihood on a document completion task (Rosen-Zvi et al., 2004; Wallach et al.,

2009). We divide each test document into two sets of words. The first half is observed: it induces a

distribution over topics which, in turn, induces a distribution over the next words in the document.

We then evaluate the second half under this distribution. A good document model should provide

higher log-likelihood on the second half. (For all methods, we approximate the likelihood by setting

θd to the variational mean.)

We study both corpora and with different vocabularies. Figure 2.8 and Figure 2.9 show inter-

pretability of the topics as a function of predictive power. (To ease visualization, we normalize

both metrics by subtracting the mean and dividing by the standard deviation.) The best models are

on the upper right corner.

lda predicts worst in almost all settings. On the 20NewsGroups, the nvdm’s predictions are in

general better than lda but worse than for the other methods; on the New York Times, the nvdm

gives the best predictions. However, topic quality for the nvdm is far below the other methods.

(It does not provide “topics”, so we assess the interpretability of its β matrix.) In prediction, both

versions of the etm are at least as good as the simplex-constrained ∆-nvdm. More importantly,

both versions of the etm outperform the Labelled prodlda; signaling the etm provides a better

way of integrating word embeddings into a topic model.

These figures show that, of the interpretable models, the etm provides the best predictive perfor-

mance while keeping interpretable topics. It is robust to large vocabularies.

Stop words

We now study a version of the New York Times corpus that includes all stop words. We remove
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our

together

never

good

very

why
right

best

passing

always

can

us

going

fine
better

we

just

what

way

lot

how

Topic 181

Figure 2.10. A topic containing stop words found by the etm on The New York Times. The etm is
robust even in the presence of stop words.

infrequent words to form a vocabulary of size 10,283. Our goal is to show that the labeled etm

provides interpretable topics even in the presence of stop words, another regime where topic models

typically fail. In particular, given that stop words appear in many documents, traditional topic

models learn topics that contain stop words, regardless of the actual semantics of the topic. This

leads to poor topic interpretability.

We fit lda, the ∆-nvdm, the labelled prodlda, and the labelled etm with K = 300 topics. (We

do not report the nvdm because it does not provide interpretable topics.) Table 2.9 shows the

logarithm of the topic quality (the product of topic coherence and topic diversity). Overall, the

labelled etm gives the best performance in terms of topic quality.

While the etm has a few “stop topics” that are specific for stop words (see, e.g., Figure 2.10), ∆-

nvdm and lda have stop words in almost every topic. (The topics are not displayed here for space

constraints.) The reason is that stop words co-occur in the same documents as every other word;

therefore traditional topic models have difficulties telling apart content words and stop words. The

labelled etm recognizes the location of stop words in the embedding space; its sets them off on

their own topic.
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Table 2.9. Topic quality on the New York Times data in the presence of stop words. Topic quality
here is given by the product of topic coherence and topic diversity (higher is better). The labeled
etm is robust to stop words; it achieves similar topic coherence than when there are no stop words.

tc td Quality

lda 0.13 0.14 0.0182
∆-nvdm 0.17 0.11 0.0187

Labelled prodlda 0.03 0.53 0.0159
Labeled etm 0.18 0.22 0.0396

2.4.5 Conclusion

We developed the etm, a generative model of documents that marries lda with word embeddings.

The etm assumes that topics and words live in the same embedding space, and that words are

generated from a categorical distribution whose natural parameter is the inner product of the word

embeddings and the embedding of the assigned topic.

The etm learns interpretable word embeddings and topics, even in corpora with large vocabularies.

We studied the performance of the etm against several document models. The etm learns both

coherent patterns of language and an accurate distribution of words.

The construct used to define the etm can be used to extend all versions of lda, e.g. dynamic

lda (Blei&Lafferty, 2006), supervised lda (Mcauliffe&Blei, 2008), and correlated lda (Lafferty

& Blei, 2005). In the next section we will apply the etm technique for flexible dynamic topic

modeling.

2.5 Dynamic Embedded Topic Modeling

Here we develop the deep embedded topic model (detm), a model that combines the advantages of

dynamic latent Dirichlet allocation (d-lda) and the etm. Like d-lda, it allows the topics to vary

smoothly over time to accommodate datasets that span a large period of time. Like the etm, the

detm uses word embeddings, allowing it to generalize better than d-lda and improving its topics.
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We describe the model in Section 2.5.1 and then we develop an efficient structured variational

inference algorithm in Section 2.5.2.

2.5.1 Model Description

The detm is a dynamic topic model that uses embedding representations of words and topics.

For each term v, it considers an L-dimensional embedding representation ρv. The detm posits

an embedding α(t)
k ∈ RL for each topic k at a given time stamp t = 1, . . . ,T . That is, the detm

represents each topic as a time-varying real-valued vector, unlike traditional topic models (where

topics are distributions over the vocabulary). We refer to α(t)
k as topic embedding (Dieng et al.,

2019c); it is a distributed representation of the k th topic in the semantic space of words.

The detm forms distributions over the vocabulary using the word and topic embeddings. Specifi-

cally, under the detm, the probability of a word under a topic is given by the (normalized) exponen-

tiated inner product between the embedding representation of the word and the topic’s embedding

at the corresponding time step,

p(wdn = v | zdn = k, α(td )
k ) ∝ exp{ρ>v α

(td )
k }. (2.15)

The probability of a particular term is higher when the term’s embedding and the topic’s embed-

dings are in agreement. Therefore, semantically similar words will be assigned to similar topics,

since their representations are close in the embedding space.

The detm enforces smooth variations of the topics by using a Markov chain over the topic embed-

dings α(t)
k . The topic representations evolve under Gaussian noise with variance γ2,

p(α(t)
k | α

(t−1)
k ) = N (α(t−1)

k , γ2I). (2.16)

Similarly to d-lda, the detm considers time-varying priors over the topic proportions θd . In ad-

dition to time-varying topics, this construction allows the model to capture how the general topic
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usage evolves over time. The prior over θd depends on a latent variable ηtd (recall that td is the time

stamp of document d),

p(θd | ηtd ) = LN (ηtd, a
2I) where p(ηt | ηt−1) = N (ηt−1, δ

2I).

Figure 2.11 depicts the graphicalmodel for thedetm. The full generative process is as follows:

1. Draw initial topic embedding α(1)
k ∼ N (0, I).

2. Draw initial topic proportion mean η1 ∼ N (0, I).

3. For time step t = 2, . . . ,T :

(a) Draw topic embeddings α(t)
k ∼ N (α(t−1)

k , γ2I) for k = 1, . . . , K .

(b) Draw topic proportion means ηt ∼ N (ηt−1, δ
2I).

4. For each document d:

(a) Draw topic proportions θd ∼ LN (ηtd, a
2I).

(b) For each word n in the document:

i. Draw topic assignment zdn ∼ Cat(θd).

ii. Draw word wdn ∼ Cat(softmax(ρ>α(td )
zdn )).

Steps 1 and 3a give the prior over the topic embeddings; they encourage smoothness on the resulting

topics. Steps 2 and 3b are shared with d-lda; they describe the evolution of the prior mean over

the topic proportions. Steps 4a and 4b-i are standard for topic modeling; they represent documents

as distributions over topics and draw a topic assignment for each word. Step 4b-ii is different—it

uses the L ×V word embedding matrix ρ and the assigned topic embedding α(td )
zdn at time instant td

to form a categorical distribution over the vocabulary.

Since the detm uses embedding representations of the words, it learns the topics in a particular

embedding space. This aspect of themodel is useful when the embedding of a newword is available,

i.e., a word that does not appear in the corpus. Specifically, consider a term v? that was not seen

in the corpus. The detm can assign it to topics by computing the inner products ρ>
v?
α(t)

k , thus

leveraging the semantic information of the word’s embedding.
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Figure 2.11. Graphical representation of detm. The topic embeddings α(t)
k and the latent means ηt

evolve over time. For each document at time step t, the prior over the topic proportions θd depends
on ηt . The variables zdn denote the topic assignment; the variables wdn denote the words.

2.5.2 Structured Amortized Variational Inference

We observe a dataset D of documents {w1, . . . ,wD} and their time stamps {t1, . . . , tD}. Fitting a

detm involves finding the posterior distribution over the model’s latent variables, p(θ, η, α | D),

where we have marginalized out the topic assignments z from Eq. 2.15 for convenience,3

p(wdn | α
(td )
1:K ) =

K∑
k=1

p(wdn | zdn = k, α(td )
k ). (2.17)

The posterior is intractable. We approximate it with variational inference (Jordan et al., 1999; Blei

et al., 2017a).

Variational inference approximates the posterior using a family of distributions qν (θ, η, α). The

parameters ν that index this family are called variational parameters, and are optimized to minimize

the kl divergence between the approximation and the posterior. Solving this optimization problem

is equivalent to maximizing the elbo,

L(ν) = Eq
[
log p(D, θ, η, α) − log qν (θ, η, α)

]
. (2.18)

3 Marginalizing zdn reduces the number of variational parameters and avoids discrete latent variables in the inference
procedure, which is useful to form reparameterization gradients.
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The model’s log-joint distribution in Eq. 4.1 is

log p(D, θ, η, α) =
K∑

k=1

T∑
t=1

log p(α(t)
k | α

(t−1)
k ) +

T∑
t=1

log p(ηt | ηt−1) +
D∑

d=1
log p(θd | ηtd )

+

D∑
d=1

Nd∑
n=1

log *
,

K∑
k=1

θdk β
(td )
k,wdn

+
-
, (2.19)

where β(td )
k,wdn

, softmax(ρ>α(td )
k ) |wdn

, wdn denotes the nth word in the dth document, and Nd is the

total number of words of the dth document.

To reduce the number of variational parameters and speed-up the inference algorithm, we use an

amortized variational distribution, i.e., we let the parameters of the approximating distributions be

functions of the data (Gershman & Goodman, 2014; Kingma & Welling, 2014). Additionally, we

use a structured variational family to preserve some of the conditional dependencies of the graphical

model (Saul & Jordan, 1996). The specific variational family in the detm takes the form

qν (θ, η, α) =
∏

d

q(θd | ηtd,wd) ×
∏

t

q(ηt | η1:t−1, w̃t ) ×
∏

k

∏
t

q(α(t)
k | α

(1:t−1)
k , w̃t ). (2.20)

(To avoid clutter, we suppress the notation for the variational parameters.)

The distribution over the topic proportions q(θd | ηtd,wd) is a logistic-normal whose mean and

covariance parameters are functions of both the latent mean ηtd and the bag-of-words representation

of document d. In particular, these functions are parameterized by feed-forward neural networks

that input both ηtd and the normalized bag-of-words representation. The distribution over the latent

means q(ηt | η1:t−1, w̃t ) depends on all previous latent means η1:t−1. We use an lstm to capture

this temporal dependency. We choose a Gaussian distribution q(ηt | η1:t−1, w̃t ) whose mean and

covariance are given by the output of the lstm. The input to the lstm at time t is formed by the

concatenation of ηt−1 and the average of the bag-of-words representation of all documents whose

time stamp is t. Here, w̃t denotes the normalized bag-of-words representation of all such documents.

Finally, the distribution over the topic embeddings q(α(t)
k | α

(1:t−1)
k , w̃t ) is built analogously, using
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Algorithm 2: Flexible dynamic topic modeling with the detm
Input: Documents {w1, . . . ,wD} and their time stamps {t1, . . . , tD}

Initialize all variational parameters
for iteration 1, 2, 3, . . . do
Sample the latent means and the topic embeddings,
η ∼ q(η | w̃) and α ∼ q(α | w̃)

Compute the topics β(t)
k = softmax(ρ>α(t)

k ) for
k = 1, . . . , K and t = 1, . . . ,T

Obtain a minibatch of documents
for each document d in the minibatch do
Sample the topic proportions θd ∼ q(θd | ηtd,wd)
for each word n in the document do
Compute p(wdn | θd) =

∑
k θdk β

(td )
k,wdn

end for
end for
Estimate the elbo in Eq. 2.21 and its gradient w.r.t.

the variational parameters (backpropagation)
Update the model and variational parameters (Adam)

end for

an lstm to capture the temporal dependencies.

We optimize the elbo with respect to the variational parameters. Because the expectations in

Eq. 4.1 are intractable, we use black box variational inference, obtaining unbiased gradient estima-

tors with a Monte Carlo method. In particular, we use one sample from the variational distribution

to form reparameterization gradients (Kingma & Welling, 2014; Titsias & Lázaro-Gredilla, 2014;

Rezende et al., 2014).

To sample from qν (θ, η, α) using reparameterization, we first sample a set of standard Gaussian

auxiliary latent variables ε ∼ N (0, I) and we then use a deterministic transformation hν (ε) that

gives the samples (θ, η, α). Therefore, the realized values of the latent variables are now functions

of the variational parameters ν, since (θ, η, α) = hν (ε). Given these samples, we estimate the elbo
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in Eq. 4.1 as

L(ν) ≈
D∑

d=1

Nd∑
n=1

log *
,

K∑
k=1

θdk β
(td )
k,wdn

+
-
−

K∑
k=1

T∑
t=1

kl
(
q(α(t)

k | α
(1:t−1)
k , w̃t ) | | p(α(t)

k | α
(t−1)
k )

)
−

T∑
t=1

kl (
q(ηt | η1:t−1, w̃t ) | | p(ηt | ηt−1)

)
−

D∑
d=1

kl (
q(θd | ηtd,wd) | | p(θd | ηtd )

)
. (2.21)

Here, each kl divergence corresponds to the kl between two Gaussian distributions whose param-

eters are functions of the latent variables in the conditioning set. Therefore, the kl terms can be

obtained in closed form as a function of these latent variables.

The variational optimization problem reduces to a stochastic optimizationmethod that approximates

the gradients ∇νL(ν) by differentiating through Eq. 2.21 w.r.t. ν. To speed up the algorithm, we

estimate the sum over documents by taking a minibatch of documents at each iteration; this allows

to handle large collections of documents (Hoffman et al., 2013). We set the learning rate with Adam

(Kingma & Ba, 2015). Algorithm 2 summarizes the procedure.

2.5.3 Related Work

The detm builds on word embeddings, topic models, and dynamic topic models.

Word embeddings are low-dimensional continuous representations of words that capture their se-

mantics (Rumelhart & Abrahamson, 1973; Bengio et al., 2003, 2006; Mikolov et al., 2013a,b; Pen-

nington et al., 2014; Levy & Goldberg, 2014). Some recent work finds embedding representations

that vary over time (Bamler & Mandt, 2017; Rudolph & Blei, 2018). Despite incorporating a time-

varying component, these works have a different goal than the detm. Rather than modeling the

temporal evolution of documents, they model how the meaning of words shifts over time. (In fu-

ture research, the detm developed here could be used in concert with these methods.)

There has been a surge of methods that combine word embeddings and probabilistic topic models.

Some methods modify the prior distributions over topics in lda (Petterson et al., 2010; Xie et al.,
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2015; Shi et al., 2017; Zhao et al., 2017a,b). These methods use word embeddings as a type of “side

information.” There are also methods that combine lda with word embeddings by first converting

the discrete text into continuous observations of embeddings (Das et al., 2015; Xun et al., 2016;

Batmanghelich et al., 2016; Xun et al., 2017). These works adapt lda for real-valued observations,

for example using a Gaussian likelihood. Still other ways of combining lda and word embeddings

modify the likelihood (Nguyen et al., 2015), randomly replace words drawn from a topic with the

embeddings drawn from a Gaussian (Bunk & Krestel, 2018), or use Wasserstein distances to learn

topics and embeddings jointly (Xu et al., 2018). In contrast to all these methods, the detm uses

sequential priors and is a probabilistic model of discrete data that directly models the words.

Another line of research improves topic modeling inference through deep neural networks; these are

called neural topic models (Miao et al., 2016; Srivastava & Sutton, 2017; Card et al., 2017; Cong

et al., 2017; Zhang et al., 2018). Most of these works are based on the variational autoencoder

(Kingma & Welling, 2014) and use amortized inference (Gershman & Goodman, 2014). Finally,

the etm (Dieng et al., 2019c) is a probabilistic topic model that also makes use of word embeddings

and uses amortization in its inference procedure.

The first and most common dynamic topic model is d-lda (Blei & Lafferty, 2006). Bhadury et al.

(2016) scale up the inference method of d-lda using a sampling procedure. Other extensions of

d-lda use stochastic processes to introduce stronger correlations in the topic dynamics (Wang &

McCallum, 2006; Wang et al., 2008; Jähnichen et al., 2018). The detm is also an extension of

d-lda, but developed for a different purpose. The detm better fits the distribution of words via the

use of distributed representations for both the words and the topics.

2.5.4 Empirical Study

We use the detm to analyze the transcriptions of the United Nations (un) general debates from

1970 to 2015, a corpus of acl abstracts from 1973 to 2006, and a set of articles from Science

Magazine from 1990 to 1999. We found the detm provides better predictive power and higher
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Table 2.10. Summary statistics of the un, science, and acl datasets.

Dataset # Docs Train # Docs Val # Docs Test # Timestamps Vocabulary

un 196,290 11,563 23,097 46 12,466
science 13,894 819 1,634 10 25,987

acl 8,936 527 1,051 31 35,108

Table 2.11. Performance as measured by perplexity (ppl), topic coherence (tc), topic diversity
(td), topic quality (tq), and runtime (in minutes per epoch) on the un dataset. The detm achieves
better predictive and qualitative performance than d-lda and d-lda-rep and runs significantly
faster than d-lda.

method ppl tc td tq runtime
d-lda (Blei & Lafferty, 2006) 2393.5 0.1317 0.6065 0.0799 28.70

d-lda-rep 2931.3 0.1180 0.2691 0.0318 6.00
detm 1970.7 0.1206 0.6703 0.0809 3.70

topic quality in general on these datasets when compared to d-lda.

On the transcriptions of the un general debates, we additionally carried out a qualitative analysis

of the results. We found that the detm reveals the temporal evolution of the topics discussed in the

debates (such as climate change, war, poverty, or human rights).

We compared the detm against two versions of d-lda, labeled as d-lda and d-lda-rep, which

differ only in the inference method (the details are below). The comparison of the detm against

d-lda-rep reveals that the key to the detm’s performance is the model and not simply the scalable

inference procedure.

Datasets. We study the detm on three datasets. The un debates corpus4 spans 46 years (Baturo

et al., 2017). Each year, leaders and other senior officials deliver statements that present their gov-

ernment’s perspective on the major issues in world politics. The corpus contains the transcriptions

of each country’s statement at the un General Assembly. We follow Lefebure (2018) and split the

speeches into paragraphs, treating each paragraph as a separate document.

The second dataset contains ten years of science articles, from 1990 to 1999. The articles are from
4See https://www.kaggle.com/unitednations/un-general-debates.
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Table 2.12. Performance as measured by perplexity (ppl), topic coherence (tc), topic diversity
(td), topic quality (tq), and runtime (in minutes per epoch) on the science dataset. The detm
achieves better predictive and qualitative performance than d-lda and d-lda-rep and runs signif-
icantly faster than d-lda.

method ppl tc td tq runtime
d-lda (Blei & Lafferty, 2006) 3600.7 0.2392 0.6502 0.1556 15.03

d-lda-rep 8377.4 0.0611 0.2290 0.0140 0.36
detm 4206.1 0.2298 0.8215 0.1888 0.47

Table 2.13. Performance as measured by perplexity (ppl), topic coherence (tc), topic diversity
(td), topic quality (tq), and runtime (in minutes per epoch) on the acl dataset. The detm achieves
better predictive and qualitative performance than d-lda and d-lda-rep and runs significantly
faster than d-lda.

method ppl tc td tq runtime
d-lda (Blei & Lafferty, 2006) 4324.2 0.1429 0.5904 0.0844 26.30

d-lda-rep 5836.7 0.1011 0.2589 0.0262 1.60
detm 4120.6 0.1630 0.8286 0.1351 0.75

jstor, an on-line archive of scholarly journals that scans bound volumes and runs optical character

recognition algorithms on the scans. This data was used by Blei & Lafferty (2007).

The third dataset is a collection of articles from 1973 to 2006 from the acl Anthology (Bird et al.,

2008). This anthology is a repository of computational linguistics and natural language processing

papers.

For each dataset, we apply standard preprocessing techniques, such as tokenization and removal of

numbers and punctuation marks. We also filter out stop words, i.e., words with document frequency

above 70%, as well as standard stop words from a list. Additionally, we remove low-frequency

words, i.e., words that appear in less than a certain number of documents (30 documents for un

debates, 100 for the science corpus, and 10 for the acl dataset). We use 85% randomly chosen

documents for training, 10% for testing, and 5% for validation, and we remove one-word documents

from the validation and test sets. Table 2.10 summarizes the characteristics of each dataset.

Methods. We compare the detm against two variants of d-lda. One variant is the original
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Figure 2.12. Temporal evolution of the top-10 words from a topic about climate change learned
by the detm. This topic is in agreement with historical events. In the 1990s the destruction of the
ozone layer was of major concern. More recently the concern is about global warming. Events such
as the Kyoto protocol and the Paris convention are also reflected in this topic’s evolution.

model and algorithm of Blei & Lafferty (2006). The other variant, which we call d-lda-rep, is

the d-lda model fitted using mean-field variational inference with the reparameterization trick.

The comparison against d-lda-rep helps us delineate between performance due to the model and

performance due to the inference algorithm.

Figure 2.13. Evolution of word probability across time for eight different topics learned by the
detm. For each topic, we choose a set of words whose probability shift aligns with historical events
(these are not the words with the highest probability in each topic). For example, one interesting
finding is the increased relevance of the words “gender” and “equality” in a topic about human
rights.
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Settings. We use 50 topics for all the experiments and follow Blei & Lafferty (2006) to set the

variances of the different priors as δ2 = σ2 = γ2 = 0.005 and a2 = 1.

For the detm, we first fit 300-dimensional word embeddings using skip-gram (Mikolov et al.,

2013b).5 We apply the algorithm in Section 2.5.2 using a batch size of 200 documents for all

datasets except for acl, for which we used 100. To parameterize the variational distribution, we

use a fully connected feed-forward inference network for the topic proportions θd . The network has

ReLU activations and 2 layers of 800 hidden units each. We set the mean and log-variance for θd

as linear maps of the output. We applied a small dropout rate of 0.1 to the output of this network

before using it to compute the mean and the log-variance. For the latent means η1:T , each bag-of-

word representation w̃t is first linearly mapped to a low-dimensional space of dimensionality 400.

This conforms the input of an lstm that has 4 layers of 400 hidden units each. The lstm output

is then concatenated with the previous latent mean ηt−1, and the result is linearly mapped to a K-

dimensional space to get the mean and log-variance for ηt . We apply a weight decay of 1.2 ·10−6 on

all network parameters. We run Algorithm 1 for a maximum of 1000 epochs on science and acl

and for 400 epochs on the un dataset; the stopping criterion is based on the held-out log-likelihood

on the validation set. The learning rate is set to 0.001 for the un and science datasets and to

0.0008 on the acl corpus. We fixed the learning rate throughout training. We clip the norm of the

gradients of the elbo to 2.0 to stabilize training.

We fit d-lda using the published code of Blei & Lafferty (2006).6 To fit d-lda, Blei & Lafferty

(2006) derived a bound of the elbo to enable a coordinate-ascent inference algorithm that also

uses Kalman filtering and smoothing as a subroutine. Besides loosening the variational bound on

the log-marginal likelihood of the data, this algorithm presents scalability issues both in terms of

the number of topics and in terms of the vocabulary size. (See Table 2.13 for a comparison of the

runtime acrossmethods.) To fitd-lda, we followBlei&Lafferty (2006) and initialize the algorithm

with lda. In particular, we run 25 epochs of lda followed by 100 epochs of d-lda.
5More advanced methods can be used to learn word embeddings. We used skip-gram for simplicity and found it

leads to good performance.
6See https://github.com/blei-lab/dtm.
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We also fit d-lda-rep to overcome the scalability issues of d-lda by leveraging recent advances

in variational inference. We use stochastic optimization based on reparameterization gradients

and we draw batches of 1,000 documents at each iteration. We collapse the discrete latent topic

indicators zdn to enable the reparameterization gradients, and we use a fully factorized Gaussian

approximation for the rest of the latent variables, except for η1:T , for which we use a full-covariance

Gaussian for each of its dimensions. We run 5 epochs of lda to initialize d-lda-rep and then run

120 epochs of the d-lda-rep inference algorithm. For d-lda-rep, we use RMSProp (Tieleman

& Hinton, 2012) to set the step size, setting the learning rate to 0.05 for the mean parameters and

to 0.005 for the variance parameters.

Quantitative results. We compare the detm, d-lda, and d-lda-rep according to two metrics:

perplexity on a document completion task and topic quality. The perplexity is obtained by comput-

ing the probability of each word in the second half of a test document, conditioned on the first half

(Rosen-Zvi et al., 2004; Wallach et al., 2009). To obtain the topic quality, we combine two metrics.

The first metric is topic coherence; it provides a quantitative measure of the interpretability of a

topic (Mimno et al., 2011). We obtain the topic coherence by taking the average pointwise mutual

information of two words drawn randomly from the same document (Lau et al., 2014); this requires

to approximate word probabilities with empirical counts. The second metric is topic diversity; it

is the percentage of unique words in the top 25 words of all topics (Dieng et al., 2019c). Diver-

sity close to 0 indicates redundant topics. We obtain both topic coherence and topic diversity by

averaging over time. Finally, topic quality is defined as the product between topic coherence and

diversity (Dieng et al., 2019c).

Table 2.13 shows that the detm outperforms both d-lda and d-lda-rep according to both per-

plexity and topic quality on almost all datasets. In particular, the detm finds more diverse and

coherent topics. We posit this is due to its use of embeddings.

Qualitative results. The detm finds that the topics’ evolution over time are in agreement with

historical events. As an example, Figure 2.12 shows the trajectory of a topic on climate change (a

74



topic that d-lda-rep did not discover). In the 1990s, protecting the ozone layer was the primary

concern; more recently the topic has shifted towards global warming and reducing the greenhouse

gas emissions. Some events on climate change, such as the Kyoto protocol (1997) or the Paris

convention (2016), are also reflected in the topic’s evolution.

We now examine the evolution of the probability of individual words. Figure 2.13 shows these

probabilities for a variety of words and topics. For example, the probability of the word “Vietnam”

in a topic on Southeast Asia decays after the end of the war in 1975. In a topic about nuclear

weapons, the concern about the arms “race” between the USA and the Soviet Union eventually

decays, and “Iran” becomes more relevant in recent years. Similarly, words like “equality” and

“gender” become more important in recent years within a topic about human rights. Note that the

names of the topics are subjective; we assigned the names inspired by the top words in each topic

(the words in Figure 2.13 are not necessarily the most likely words within each topic). One example

is the topic on climate change, whose top words are shown in Figure 2.12. Another example is the

topic on human rights, which exhibits the words “human” and “rights” consistently at the top across

all time steps.

2.5.5 Conclusion

We developed the detm, a probabilistic model of documents that combines word embeddings and

dynamic latent Dirichlet allocation (d-lda). The detm models each word with a categorical dis-

tribution parameterized by the dot product between the embedding of the word and an embedding

representation of its assigned topic. Each topic embedding is a time-varying vector in the embed-

ding space of words. Using a random walk prior over these topic embeddings, the detm uncovers

smooth topic trajectories. We applied the detm to analyze three different corpora and found that the

detm outperforms d-lda both in terms of predictive performance and topic quality while requiring

significantly less time to fit.
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Chapter 3: Learning via Reweighted Expectation Maximization

The models described in Chapter 2 were fitted using avi. avi scales learning by using recognition

networks to define the variational family. It then maximizes the elbo, a lower bound of the log

marginal likelihood of the data. Because the elbo is often intractable, avi uses Monte Carlo to

approximate it. Monte Carlo estimates of the elbo are biased and lead to a loose bound of the

log marginal likelihood. To address this, several other learning algorithms have been proposed that

maximize a tighter lower bound than the elbo (e.g. Bornschein & Bengio (2014); Burda et al.

(2015b).)

In this chapter, we develop an algorithm for fitting dpgms called reweighted expectation maximiza-

tion (rem). rem optimizes an asymptotically unbiased approximation of the log marginal likeli-

hood of the data. This procedure involves learning a proposal distribution over the latent variables.

We propose to leverage moment matching to learn expressive proposals. Because rem optimizes a

better approximation to the log marginal likelihood of the data, it generalizes better to unseen data

than approaches such as the vae.

3.1 Rethinking elbo Maximization for Fitting dpgms

For simplicity, we focus on the simplest dpgm. We consider a set of N i.i.d datapoints x1, . . . , xN .

We posit each observation xi is drawn by first sampling a latent variable zi from some fixed prior

p(z) and then sampling xi from pθ (xi | zi)—the conditional distribution of xi given zi. We define

the conditional pθ (xi | zi) using a deep neural network with parameters θ. Our goal is to learn the

parameters θ and perform posterior inference over the latent variables.
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One way to achieve this goal is to use vi and maximize the elbo,

elbo = Eqφ (z)
[
log pθ (x, z) − log qφ(z)

]
. (3.1)

This is the approach of the vae (Kingma &Welling, 2013; Rezende et al., 2014), which maximizes

the elbo with respect to both φ and θ. To better understand what this maximization procedure

corresponds to, consider the expression of the log marginal likelihood of the data in terms of the

elbo

log pθ (x) = Eqφ (z)
[
log pθ (x, z) − log qφ(z)

]
+ kl

(
qφ(z) | |pθ (z | x)

)
. (3.2)

The log marginal likelihood log pθ (x) does not depend on the variational parameters φ. Therefore

performing posterior inference by minimizing the kl term kl
(
qφ(z) | |pθ (z | x)

)
is equivalent to

maximizing the elbo, for a fixed θ. However log pθ (x) depends on the parameters θ, which makes

the kl minimization over a “moving target"—the true posterior pθ (z | x) changes with θ. As a

result, there is possibility of running into a bad local optimum in which the kl is rendered small

but the neural network parameterizing the model is useless.

In what follows, we first review expectation maximization (em) and propose an algorithm that

leverages em to fit the model parameters θ. Posterior inference can be done, once the model is fit,

by minimizing kl using amortized vi.

3.2 Expectation Maximization

Em was first introduced in the statistics literature, where it was used to solve problems involving

missing data (Dempster et al., 1977). One classic application of em is to fit mixtures of Gaussians,

where the cluster assignments are considered unobserved data (Murphy, 2012). Another use of

em is for probabilistic PCA (Tipping & Bishop, 1999). em is a maximum likelihood iterative

optimization technique that directly targets the log marginal likelihood and served as the departure
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point for the development of variational inference methods.

The em objective is the log marginal likelihood of the data in Eq. 3.2. em alternates between an

E-step, which sets the kl term in Eq. 3.2 to zero, and an M-step, which fits the model parameters

θ by maximizing elbo using the proposal learned in the E-step. Note that after the E-step, the

objective in Eq. 3.2 says the log marginal is exactly equal to the elbo which is a tractable objective

for fitting the model parameters. em alternates these two steps until convergence to an approximate

maximum likelihood solution for pθ (x).

Contrast this with vi. The true objective for vi is the kl term in Eq. 3.2, kl
(
qφ(z) | |pθ (z | x)

)
,

which is intractable. The argument in vi is that minimizing this kl is equivalent to maximizing

the elbo, the first term in Eq. 3.2. This argument only holds when the log marginal likelihood

log pθ (x) has no free parameters, in which case it is called the model evidence. Importantly, vi

does not necessarily maximize log pθ (x) because it chooses approximate posteriors qφ(z) that may

be far from the exact conditional posterior.

In contrast em effectively maximizes log pθ (x) after each iteration. Consider given θt , the state of

the model parameters after the tth iteration of em. em learns θt+1 through two steps, which we

briefly review:

E-step: set qφ(z) = pθt (z | x) (3.3)

M-step: define θt+1 = arg max
θ

L(θ)

= arg max
θ
Eqφ (z)

[
log pθ (x, z) − log qφ(z)

]

= arg max
θ
Epθt (z | x)

[
log pθ (x, z) − log pθt (z | x)

]
= arg max

θ
Epθt (z | x)

[
log pθ (x, z)

]
(3.4)

78



The value of the log marginal likelihood for θt+1 is greater than for θt . To see this, write

log pθt (x) = L(θt ) + kl
(
qφ(z) | |pθt (z | x)

)
= L(θt )

≤ L(θt+1) ≤ L(θt+1) + kl
(
qφ(z) | |pθt+1 (z | x)

)
= log pθt+1 (x)

where the second equality is due to the E-step, the first inequality is due to the M-step, and the

second inequality is due to the nonnegativity of kl.

We next propose an algorithm that leverages em to fit the model parameters θ.

3.3 Reweighted Expectation Maximization

We develop rem, an algorithm that leverages em to fit the model parameters θ. Assume given θt

from the previous iteration of em. We want to find the next settings of the parameters θt+1 that

maximize the objective in the M-step in Eq. 3.4,

L(θ) =
N∑

i=1
Epθt (zi | xi )

[
log pθ (xi, zi)

]
(3.5)

=

N∑
i=1

∫
pθt (zi, xi)

pθt (xi)
log pθ (xi, zi) dzi . (3.6)

This objective is intractable because it involves the marginal pθt (xi)1. However we can make it

tractable using self-normalized importance sampling (Owen, 2013),

L(θ) =
N∑

i=1
Erηt (zi | xi )

[
w(xi, zi; θt, ηt ) log pθ (xi, zi)
Erηt (zi | xi )

(
w(xi, zi; θt, ηt )

) ]
. (3.7)

1Although the marginal here does not depend on θ, it cannot be ignored because it depends on the ith datapoint.
Therefore it cannot be pulled outside the summation.
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where w(xi, zi; θt, ηt ) =
pθt (zi,xi )
rηt (zi | xi ) . Here rηt (zi | xi) is a proposal distribution. Its parameters ηt were

fitted in the previous iteration (the tth iteration.) We now approximate the expectations in Eq. 3.7

using Monte Carlo by drawing K samples z(1)
i , . . . , z(K )

i from the proposal,

αk
it =

w(xi, z(k)
i ; θt, ηt )∑K

k=1 w(xi, z(k)
i ; θt, ηt )

L(θ) =
N∑

i=1

K∑
k=1
αk

it · log pθ (xi, z(k)
i ) (3.8)

Note the approximation in Eq. 3.8 is biased but asymptotically unbiased. More specifically, the

approximation improves as the number of particles K increases.

We use gradient-based learning which requires to compute the gradient of L(θ) with respect to the

model parameters θ, this is

∇θL(θ) =
N∑

i=1

K∑
k=1
αk

it · ∇θ log pθ (xi, z(k)
i ). (3.9)

We now describe how to learn expressive proposals by leveraging moment matching.

3.3.1 Learning Expressive Proposals via Moment Matching

Denote by ηt the proposal parameters at the previous iteration. We learn ηt+1 by targeting the true

posterior pθt (z | x),

ηt+1 = arg min
η
Lrem(η) = kl(pθt (z | x) | |rη (z | x)). (3.10)

Unlike the importance weighted auto-encoder (iwae), the proposal here targets the true posterior

using a well defined objective—the inclusive kl divergence. The inclusive kl induces overdis-

persed proposals which are beneficial in importance sampling (Minka et al., 2005).
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Algorithm 3: Learning with reweighted expectation maximization (rem (v1))
Input: Data x
Initialize model and proposal parameters θ, η
for iteration t = 1, 2, . . . do
Draw minibatch of observations {xn}

B
n=1

for observation n = 1, 2, . . . , B do
Draw z(1)

n , . . . , z(K )
n ∼ rηt (z

(k)
n | xn)

Compute importance weights w(k) =
pθt (z(k)

n ,xn)

rηt (z(k)
n | xn)

Compute µnt andΣnt using Eq. 3.16 and Eq. 3.17
Set proposal s(z(t)

n ) = N (µnt,Σnt )
end for
Compute ∇ηL(η) as:
∇ηL(η) = 1

|B |
∑

n∈B
∑K

k=1
v(k)∑K
k=1 v(k)∇η log rη (z(k)

n | xn)
Update η using Adam
Compute ∇θL(θ) as
∇θL(θ) = 1

|B |
∑

n∈B
∑K

k=1
w(k)∑K
k=1 w(k)∇θ log pθ (xn, z(k)

n )
Update θ using Adam

end for

The objective in Eq. 3.28 is still intractable as it involves the true posterior pθt (z | x),

Lrem(η) = −
N∑

i=1
Epθt (zi | xi )

[
log rη (zi | xi)

]
+ const., (3.11)

where const. is a constant with respect to η that we can ignore. We use the same approach as for

fitting the model parameters θ. That is, we write

Lrem(η) =−
N∑

i=1
Es(zi )

[
v(xi, zi; θt, ηt ) log rη (zi | xi)
Es(zi )

(
v
(
xi, zi; θt, ηt

)) ]
. (3.12)

where v(xi, zi; θt, ηt ) =
pθt (zi,xi )

s(zi ) . Here s(zi) is a hyperproposal that has no free parameters. (We

will describe it shortly.) The hyperobjective in Eq. 3.12 is still intractable due to the expectations.
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We approximate it using Monte Carlo by drawing K samples z(1)
i , . . . , z(K )

i from s(zi). Then

βk
it =

v
(
xi, z(k)

i ; θt, ηt
)

∑K
k ′=1 v

(
xi, z(k ′)

i ; θt, ηt
)

Lrem(η) = −
N∑

i=1

K∑
k=1
βk

it · log rη (z(k)
i | xi), (3.13)

We choose the proposal s(zi) to be a full Gaussian whose parameters are found by matching the

moments of the true posterior pθt (zi | xi). More specifically, s(zi) = N (µit, Σit ) where

µit = Epθt (zi | xi )[zi]

Σit = Epθt (zi | xi )

[(
zi − µ

(t)
i

) (
zi − µ

(t)
i

)>]
. (3.14)

The expressions for the mean and covariance matrix are still intractable. We estimate them us-

ing self-normalized importance sampling, with proposal rηt (zi | xi), and Monte Carlo. We first

write

µit = Erηt (zi | xi )

(
w(xi, zi; θt, ηt )

Erηt (zi | xi )
(
w(xi, zi; θt, ηt )

) zi

)
, (3.15)

(the covarianceΣit is analogous), and then estimate the expectations using Monte Carlo,

µit ≈

K∑
k=1
αk

it · z
(k)
i

Σit ≈

K∑
k=1
αk

it

[
(z(k)

i − µit )(z(k)
i − µit )>

]
. (3.16)

Note Eq. 3.16 imposes the implicit constraint that the number of particles K be greater than the

square of the dimensionality of the latents for the covariance matrix Σit to have full rank. We lift

82



Algorithm 4: Learning with reweighted expectation maximization (rem (v2))
Input: Data x
Initialize model and proposal parameters θ, η
for iteration t = 1, 2, . . . do
Draw minibatch of observations {xn}

B
n=1

for observation n = 1, 2, . . . , B do
Draw z(1)

n , . . . , z(K )
n ∼ rηt (z

(k)
n | xn)

Compute importance weights w(k) =
pθt (z(k)

n ,xn)

rηt (z(k)
n | xn)

Compute µnt =
∑K

k=1
w(k)∑K
k=1 w(k) z

(k)
n andΣnt =

∑K
k=1

w(k)∑K
k=1 w(k) (z(k)

n − µnt )(z(k)
n − µn)>

Set proposal s(z(t)
n ) = N (µnt,Σnt )

end for
Compute ∇ηL(η) = 1

|B |
∑

n∈B
∑K

k=1
v(k)∑K
k=1 v(k)∇η log rη (z(k)

n | xn) and update η using Adam

Compute ∇θL(θ) = 1
|B |

∑
n∈B

∑K
k=1

v(k)∑K
k=1 v(k)∇θ log pθ (xn, z(k)

n ) and update θ using Adam
end for

this constraint by adding a constant ε to the diagonal ofΣit and setting

Σit ≈

K∑
k=1

(z(k)
i − µit )(z(k)

i − µit )>. (3.17)

Algorithm 3 summarizes the procedure for fitting deep generative models with rem where v(k) is

computed the same way as v(xi, zi; θt, ηt ). We call this algorithm rem (v1).

We can also consider using the rich moment matched distribution s(z) to directly update the gen-

erative model. This changes the objective L(θ) in Eq. 3.8 to

L(θ) =
N∑

i=1

K∑
k=1
βk

it · log pθ (xi, z(k)
i ) (3.18)

where z(1)
i , . . . , z(K )

i ∼ s(zi) and βk
it is as defined in Eq. 3.13. We let the recognition network

rηt (zi | xi) be learned the same way as done for rem (v1). Algorithm 4 summarizes the procedure

for fitting dpgms with rem (v2).

83



Table 3.1. Comparing rem against the vae, the iwae, and reweighted wake-sleep (rws). rem
uses a rich distribution s(z) found by moment matching to learn the generative model and/or the
recognition network rη (z | x).

Method Objective Proposal Hyperobjective Hyperproposal
vae vi rη (z | x) KL(rη (z | x) | |pθ (z | x)) rη (z | x)
iwae em rη (z | x) Liwae(η) rη (z | x)
rws em rη (z | x) KL(pθ (z | x) | |rη (z | x)) rη (z | x)

rem(v1) em rη (z | x) KL(pθ (z | x) | |rη (z | x)) s(z)
rem (v2) em s(z) KL(pθ (z | x) | |rη (z | x)) rη (z | x)

3.4 Connections

rem generalizes and connects algorithms that rely on importance sampling to optimize a tighter

approximation of the log marginal likelihood (e.g. iwae (Burda et al., 2015b) and rws (Bornschein

& Bengio, 2014).) We discuss this next.

3.4.1 Importance-Weighted Auto-Encoders

iwae was introduced to learn better generative models (Burda et al., 2015b). It relies on impor-

tance sampling to optimize both the model parameters and the recognition network. iwae maxi-

mizes

Liwae(θ, η) =
N∑

i=1
log *

,

1
K

K∑
k=1

pθ (xi, z(k)
i )

rη (z(k)
i | xi)

+
-

(3.19)

where rη (z(k)
i | xi) is an importance sampling proposal and z(k)

1 , . . . , z(K )
i ∼ rη (z(k)

i | xi). This objec-

tive is simply a biased Monte Carlo approximation of the log marginal likelihood using importance
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sampling. To confirm this, write

log pθ (x1:N ) =
N∑

i=1
log pθ (xi) (3.20)

=

N∑
i=1

log
∫

pθ (xi, zi) · rη (zi | xi)
rη (zi | xi)

dzi (3.21)

=

N∑
i=1

logErη (zi | xi )

(
pθ (xi, zi)
rη (zi | xi)

)
(3.22)

≈

N∑
i=1

log *
,

1
K

K∑
k=1

pθ (xi, z(k)
i )

rη (z(k)
i | xi)

+
-

(3.23)

where z(k)
1 , . . . , z(K )

i ∼ rη (z(k)
i | xi). Note the vae lower bounds Eq. 3.22 using concavity of loga-

rithm, which leads to the elbo objective.

The iwae objective is shown to be a tighter approximation to the log marginal likelihood of the

data than the elbo (Burda et al., 2015b); this tightness is determined by the number of particles K

used for importance sampling.

Consider taking gradients of Liwae(θ, η) with respect to the model parameters θ,

∇θLiwae(θ, η) =
N∑

i=1
∇θ log *

,

1
K

K∑
k=1

pθ (xi, z(k)
i )

rη (z(k)
i | xi)

+
-

(3.24)

=

N∑
i=1

∇θ

(
1
K

∑K
k=1

pθ (xi,z(k)
i )

rη (z(k)
i | xi )

)
1
K

∑K
k=1

pθ (xi,z(k)
i )

rη (z(k)
i | xi )

(3.25)

=

N∑
i=1

1
K

∑K
k=1

pθ (xi,z(k)
i )

rη (z(k)
i | xi )

∇θ log pθ (xi, z(k)
i )

1
K

∑K
k=1

pθ (xi,z(k)
i )

rη (z(k)
i | xi )

(3.26)

=

N∑
i=1

K∑
k=1
αk

it · ∇θ log pθ (xi, z(k)
i ) (3.27)

where αk
it was previously defined in Eq. 3.8. Note Eq. 3.27 is the expression of the rem gradient

with respect to the model parameters θ (Eq. 4.17.)
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iwae updates the proposal by taking gradients ofLiwae(θ, η) with respect to η. As pointed out in Le

et al. (2017) this objective does not correspond to minimizing any divergence between the iwae’s

proposal rη (z(k)
i | xi) and the true posterior. However Liwae(θ, η) can be viewed as a divergence

between an importance weighted distribution and the true posterior. We refer the reader to Cremer

et al. (2017) for a detailed exposition.

To illustrate how rem (v1) improves upon the iwae, consider replacing s(zi) in the definition of

v(xi, zi; θt, ηt ) with rηt (zi | xi). Then taking gradients of Eq. 3.13 with respect to η reduces to the

iwae gradient for updating the recognition network rη (zi | xi). Instead of using rηt (zi | xi), rem (v1)

uses a more expressive distribution found via moment matching to update the recognition network.

This further has the advantage of decoupling the generative model and the recognition network as

they do not use the same objective for learning.

3.4.2 Reweighted Wake-Sleep

The rws algorithm extends the wake-sleep (ws) algorithm of Hinton et al. (1995) to importance

sampling the same way the iwae algorithm extends the vae to importance sampling. It uses the

same importance sampling approximation of the logmarginal likelihood as iwae (Eq. 3.23.) There-

fore rws leads to the same gradients with respect to the model parameters than iwae. The two

approaches differ in how they learn the proposal.

The rws proposal minimizes the inclusive kl, similarly to rem,

ηt+1 = arg min
η
Lrws(η) = kl(pθt (z | x) | |rη (z | x)). (3.28)

However, unlike rem which leverages the fact that the inclusive kl admits moment matching as a
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solution, rws minimizes an approximation of the kl,

Lrws(η) = −Epθ (z | z)
(
log rη (z | x)

)
+ cst (3.29)

= −

∫
pθ (x, z)∫
pθ (x, z) dz

log rη (z | x)dz + cst (3.30)

= −Erη (z | x)

*...
,

pθ (x,z)
rη (z | x)

Erη (z | x)

(
pθ (x,z)
rη (z | x)

) log rη (z | x)
+///
-

+ cst (3.31)

≈ −

K∑
k=1

wk log rη (z(k) | x) + cst (3.32)

where z(1), . . . , z(K ) ∼ rη (z | x) and wk =
pθ (z(k),x)
rη (z(k) | x) . rws updates its proposal by taking gradients

of Lrws(η) with respect to η,

∇ηLrws(η) = −
K∑

k=1
wk∇η log rη (z(k) | x) (3.33)

rem improves upon rem by using a richer hyperproposal than rη (z(k) | x) to update its proposal.

To see this, replace s(z) used to compute the gradients of the rem objective with respect to η with

rη (z(k) | x) to recover the rws gradients.

Table 3.1 highlights the differences between the vae, the iwae, rws, rem(v1), and rem(v2).

3.5 Empirical Study

In this section, we showcase the benefits of using rem over the vae and the iwae. We assess

generalization using predictive log-likelihood on held-out data.

Note rws requires specific architectures, e.g. NADE (Uria et al., 2016) or SBN (Saul et al., 1996),

to achieve good results. In our empirical studies we focus on the controlled setting of Burda et al.

(2015b), which uses simple MLPs for density estimation. rws achieves significantly worse results

than the vae when using MLPs and we don’t report those results.
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Figure 3.1. rem achieves significantly better performance than the vae and the iwae on three
benchmark datasets in terms of log-likelihood (the higher the better).

We consider several benchmark datasets, which we describe next.

3.5.1 Datasets

We evaluated all methods on the omniglot dataset and two versions of mnist. The omniglot is

a dataset of handwritten characters in a total of 50 different alphabets (Lake et al., 2013). Each of

the characters is a single-channel image with dimension 28×28. There are in total 24,345 images in

the training set and 8,070 images in the test set. mnist is a dataset of images of handwritten digits

introduced by LeCun et al. (1998). The first version of mnistwe consider is the fixed binarization of

the mnist dataset used by Larochelle &Murray (2011). The second version of mnist corresponds

to random binarization; a random binary sample of digits is newly created during optimization to

get a minibatch of data. In both cases the images are single-channel and have dimension 28 × 28.
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There are 60,000 images in the training set and 10,000 images in the test set. All these datasets are

available online at https://github.com/yburda/iwae.

3.5.2 Settings

We used the same network architecture for all methods. We followed Burda et al. (2015b) and set

the generative model, also called a decoder, to be a fully connected feed-forward neural network

with two layers where each layer has 200 hidden units. We set the recognition network, also called

an encoder, to be a fully connected feed-forward neural network with two layers and 200 hidden

units in each layer. We use two additional linear maps to get the mean and the log-variance for the

distribution rη (z | x). The actual variance is obtained by exponentiating the log-variance.

We used a minibatch size of 20 and set the learning rate following the schedule describes in Burda

et al. (2015b) with an initial learning rate of 10−3. We use this same learning rate schedule for

both the learning of the generative model and the recognition network. We set the dimension of

the latents used as input to the generative model to 20. We set the seed to 2019 for reproducibility.

We set the number of particles K to 1,000 for both training and testing. We ran all methods for 200

epochs. We used Amazon EC-2 P3 GPUs for all our experiments.

3.5.3 Results

We now describe the results in terms of quality of the learned generative model and proposal.

em-based methods learn better generative models. We assess the quality of the fitted generative

model for each method using log-likelihood. We report log-likelihood on both the training set and

the test set. Figure 3.1 illustrates the results. Thevae performs the worse on all datasets and on both

the training and the test set. The iwae performs better than the vae as it optimizes a better objective

function to train its generative model. Finally, both versions of rem significantly outperform the

iwae on all cases. This is evidence of the effectiveness of em as a good alternative for learning
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Table 3.2. rem (v1) outperforms rem (v2) on all but one dataset. This suggests that recognition
networks are effective proposals for the purpose of learning the generative model.

rem Fixed MNIST Stochastic MNIST Omniglot
Proposal Hyperproposal Train Test Train Test Train Test
rη (z | x) s(z) 87.77 87.91 88.68 88.95 109.84 113.94

s(z) rη (z | x) 87.84 87.99 88.58 88.92 110.63 114.73
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Figure 3.2. rem learns a better proposal than the vae and the iwae. This figure also shows that
the quality of the iwae’s fitted posterior deteriorates as K increases.

deep generative models.

Recognition networks are good proposals. Here we study the effect of the proposal on the per-

formance of rem. We report the log-likelihood on both the train and the test set in Table 3.2. As

shown in Table 3.2, using the richer distribution s(z) does not always lead to improved performance.

These results suggest that recognition networks are good proposals for updating model parameters

in deep generative models.

The inclusive KL is a better hyperobjective. We also assessed the quality of the learned proposal

for each method. We use the kl from the fitted proposal to the prior as a quality measure. This
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form of kl is often used to assess latent variable collapse. Figure 3.2 shows rem learns better

proposals than both the iwae and the vae. It also confirms the quality of the iwae degrades when

the number of particles K increases.
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Chapter 4: Entropy-Regularized Adversarial Learning

Maximum likelihood is the de-facto approach for fitting pgms to data. The models in Chapter 2

were fit by maximizing likelihood using avi. Because the likelihood is intractable for dpgms, we

relied on amortized vi and maximized the elbo

elbo = Epd (x) Eqφ (z | x)

[
log

pθ (x, z)
qφ(z | x)

]
= −KL(qφ(z | x)pd (x) | |pθ (x, z)). (4.1)

Maximizing the elbo is equivalent to minimizing the kl between the model joint and the vari-

ational joint, which leads to issues such as latent variable collapse (Bowman et al., 2015; Dieng

et al., 2018b). Furthermore, optimizing Eq. 4.1 may lead to blurriness in the generated samples

because of a property of the reverse kl known as zero-forcing (Minka et al., 2005).

In Chapter 3, we proposed rem, an algorithm that optimizes a better approximation to the log

marginal likelihood of the data using em and moment matching.

In this chapter, we develop entropy-regularized adversarial learning as an alternative to maximum

likelihood for fittingdpgms. From the perspective of pgm, entropy-regularized adversarial learning

opens the door for using pgm in tasks where high simulation quality matters (e.g. image generation,

image superresolution, data augmentation, and model-based reinforcement learning.) From the dl

perspective, entropy-regularized adversarial learning provides a solution to the long-standing mode

collapse problem of generative adversarial networks (gans).
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4.1 Generative Adversarial Networks

The gan of Goodfellow et al. (2014) is a dl technique for simulating high-quality data. The gan

and its extensions have achieve state-of-the-art performance in the image domain; for example in

image generation (Karras et al., 2019; Brock et al., 2018), image super-resolution (Ledig et al.,

2017), and image translation (Isola et al., 2017).

The algorithmic idea behind gans is to learn to sample high-quality data from a generator by fol-

lowing feedback from a critic (also called a discriminator.) Both the generator and the discriminator

are deep neural networks.

A gan samples data by sampling noise δ from a fixed distribution p(δ) and then using this noise as

input to the generator, the output of which is the sample from the gan. Denote by θ the parameters

of the generator. Denote by x̃(δ; θ) the gan sample. The generative process for data defined by the

gan implies a density pθ (x). However this density is undefined (Mohamed & Lakshminarayanan,

2016). Although gans do not define a tractable density over the generated samples, they can fit

their parameters θ by leveraging feedback from the discriminator. Denote by Dφ the discriminator;

it is a deep neural network with parameters φ that takes a sample and outputs the probability that

the input sample is from the true data generating distribution or from the generator. The parameters

θ and φ are learned jointly by optimizing the gan objective,

LGAN(θ, φ) = Ex∼pd (x)
[
log Dφ(x)

]
+ Eδ∼p(δ)

[
log

(
1 − Dφ(x̃(δ; θ))

)]
, (4.2)

where pd (x) is the empirical data distribution. gans iteratively maximize the loss in Eq. 4.2 with

respect to φ and minimize it with respect to θ. Maximizing the loss LGAN(θ, φ) with respect to φ

forces the discriminator to assign high probability to the real data and low probability to samples

from the generator. On the other hand, minimizing the loss LGAN(θ, φ) with respect to θ forces

the discriminator to assign high probability to samples from the generator. These two iterative

optimization loops are at odds with each other, hence the word “adversarial" in the name of the
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approach.

In practice, the minimax procedure described above is stopped when the generator produces re-

alistic data. This is problematic because producing realistic data does not necessarily correlate

with achieving goodness of fit to the true data generating distribution. For example, memorizing

the training data is a trivial solution to producing realistic data. Fortunately, gans do not merely

memorize the training data (Zhang et al., 2017; Arora et al., 2017).

However gans are able to produce samples indistinguishable from real data while still failing to

fully capture the data generating distribution (Brock et al., 2018; Karras et al., 2019). Indeed gans

suffer from an issue known as mode collapse. When mode collapse happens, the generative dis-

tribution pθ (x) implied by the gan sampling procedure is degenerate and has low support (Arora

et al., 2017, 2018). Mode collapse causes gans, to fail both qualitatively and quantitatively. Qual-

itatively, mode collapse causes lack of diversity in the generated samples. This is problematic for

certain applications of gans, e.g. data augmentation. Quantitatively, mode collapse causes poor

generalization to new data. This is because when mode collapse happens, there is a (support) mis-

match between the learned distribution pθ (x) and the data distribution. Using annealed importance

sampling with a kernel density estimate of the likelihood,Wu et al. (2016) report significantly worse

log-likelihood scores for ganswhen compared tovaes. Similarly poor generalization performance

was reported by Grover et al. (2018).

4.1.1 Why does mode collapse happen?

For simplicity, and only for the rest of this section, let’s denote by t(x) a target distribution of interest.

Assume we are using the gan minimax framework to approximate t(x) with f (x). Denote by D(x)

the discriminator. The loss is,

LGAN = Ex∼t(x)
[
log D(x)

]
+ Ex∼ f (x)

[
log(1 − D(x))

]
. (4.3)
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The loss LGAN in Eq. 4.3 is a concave function of D(x). Taking the gradient of LGAN in Eq. 4.3

with respect to D(x) and setting it to zero yields the optimal discriminator (Goodfellow et al.,

2014),

D∗(x) =
t(x)

t(x) + f (x)
(4.4)

Replacing this optimal discriminator in Eq. 4.3 and rearranging terms leads to the following objec-

tive for learning f (x):

JS(t(x) | | f (x)) =
1
2
kl(t(x) | |r (x)) +

1
2
kl( f (x) | |r (x)), (4.5)

where r (x) = t(x)+ f (x)
2 .

Let’s look more closely at the objective function JS(t(x) | | f (x)), which we minimize to find a good

approximation f (x) for the target distribution t(x). The objective JS(t(x) | | f (x)) is the sum of two

kl divergences. The first kl, kl(t(x) | |r (x)) has a zero-avoiding behavior (Minka et al., 2005;

Dieng et al., 2017), minimizing it yields a distribution r (x) that overgeneralizes t(x). This can be

achieved without requiring f (x) to cover all the modes of t(x). Furthermore, the second kl term,

kl( f (x) | |r (x)), has a zero-forcing behavior (Minka et al., 2005; Dieng et al., 2017), minimizing it

yields a distribution f (x) that undergeneralizes r (x). As a consequence, minimizing JS(t(x) | | f (x))

tends to lead to a distribution f (x) that does not cover all the modes of the target distribution

t(x).

4.1.2 Motivating entropy regularization

In light of the analysis in Section 4.1.1, a natural way to prevent mode collapse in gans is to

maximize entropy (Belghazi et al., 2018). Indeed, adding the entropy of f (x) to the objective
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JS(t(x) | | f (x)) leads to an entropy-regularized objective,

L( f (x)) =
1
2
kl(t(x) | |r (x)) +

1
2
kl( f (x) | |r (x)) − λEx∼ f (x)[log f (x)] (4.6)

=
1
2
kl(t(x) | |r (x)) +

(
1
2
− λ

)
kl( f (x) | |r (x)) − λEx∼ f (x)[log r (x)]. (4.7)

Let’s now look closely at Eq. 4.7. The first kl, kl(t(x) | |r (x)) has the same weight as in Eq. 4.5, it

yields r (x) that overgeneralizes t(x). The second kl, which leads to a distribution f (x) that under-

generalizes r (x), has reduced effect. There is a new term, −Ex∼ f (x)[log r (x)], whose minimization

enforces high cross-entropy between f (x) and r (x). This in turn forces f (x) to cover the modes of

the target distribution t(x).

Unfortunatelymaximizing entropy is impossible forgans, because their entropy is not well-defined.

gan researchers have looked at indirect ways to alleviate mode collapse. For example, Srivastava

et al. (2017) use a reconstructor network that reverses the action of the generator. Lin et al. (2018)

use multiple observations (either real or generated) as an input to the discriminator to prevent mode

collapse. Azadi et al. (2018) and Turner et al. (2018) use sampling mechanisms to correct errors of

the generative distribution. Xiao et al. (2018b) relies on identifying the geometric structure of the

data embodied under a specific distance metric. Other works have combined adversarial learning

with maximum likelihood (Grover et al., 2018; Yin & Zhou, 2019); however, the low sample quality

induced by maximum likelihood still occurs. Finally, Cao et al. (2018) introduce a regularizer

for the discriminator to encourage diverse activation patterns in the discriminator across different

samples.

4.2 Prescribed Generative Adversarial Networks

In this section we leverage the minimax procedure used when fitting gans, called adversarial learn-

ing, within the context of dpgms. We build on adversarial learning in such a way that our desiderata

for dpgm are met. In particular, we maximize entropy to enforce diversity in the data generating
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process. We call the resulting learning algorithm entropy-regularized adversarial learning. We

call a dpgm fit using entropy-regularized adversarial learning a prescribed gan (Presgan.)

In this section, we focus on a simple dpgm where the generative process is to sample from the prior

p(z) and then condition on the sample to draw data from pθ (x | z), an exponential family distribution

parameterized by a deep neural network. This generative process implies awell-defined density over

x,

pθ (x) =
∫

pθ (x | z) · p(z)dz. (4.8)

For simplicity we define the prior p(z) and the likelihood pθ (x | z) to be Gaussians,

p(z) = N (z | 0, I) and pθ (x | z) = N (x |µθ (z),Σθ (z)) . (4.9)

The mean µθ (z) and covariance Σθ (z) of the conditional pθ (x | z) are given by a neural network

that takes z as input. In general, both the mean µθ (z) and the covariance Σθ (z) can be functions

of z. For simplicity, in order to speed up the learning procedure, we set the covariance matrix to

be diagonal with elements independent from z, i.e.,Σθ (z) = diag
(
σ2

)
, and we learn the vector σ

together with θ. From now on, we parameterize the mean with η, writeµη (z), and define θ = (η,σ)

as the parameters of the generative distribution.

To fit the model parameters θ, we optimize an adversarial loss similarly to gans. Unlike gans, the

entropy of the generative distribution of a Presgan is well-defined, and therefore we can prevent

mode collapse by adding an entropy regularizer to Eq. 4.2. The idea of entropy regularization has

been widely applied in many problems that involve estimation of unknown probability distributions.

Examples include approximate Bayesian inference, where the variational objective contains an en-

tropy penalty (Jordan, 1998; Bishop, 2006; Wainwright et al., 2008; Blei et al., 2017b); reinforce-

ment learning, where the entropy regularization allows to estimate more uncertain and explorative

policies (Schulman et al., 2015;Mnih et al., 2016); statistical learning, where entropy regularization

allows an inferred probability distribution to avoid collapsing to a deterministic solution (Freund &
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Schapire, 1997; Soofi, 2000; Jaynes, 2003); or optimal transport (Rigollet &Weed, 2018). More re-

cently, Kumar et al. (2019) have developed maximum-entropy generators for energy-based models

using mutual information as a proxy for entropy.

Entropy regularized adversarial learning keeps gans’ ability to generate samples with high percep-

tual quality while enforcing diversity in the data generation process. The loss is

LPresGAN(θ, φ) = LGAN(θ, φ) − λH
(
pθ (x)

)
. (4.10)

HereH
(
pθ (x)

)
denotes the entropy of the generative distribution. It is defined as

H
(
pθ (x)

)
= −Epθ (x)

[
log pθ (x)

]
. (4.11)

The loss LGAN(θ, φ) in Eq. 4.10 can be that of any of the existing gan variants. In our empirical

study we explore the standard deep convolutional generative adversarial network (dcgan) (Radford

et al., 2015) and the more recent Stylegan (Karras et al., 2019).

The constant λ in Eq. 4.10 is a hyperparameter that controls the strength of the entropy regulariza-

tion. In the extreme case when λ = 0, the loss function LPresGAN(θ, φ) coincides with the loss of a

gan, where we replaced its ill-defined generative distribution with that in Eq. 4.8. In the other ex-

treme when λ = ∞, optimizingLPresGAN(θ, φ) corresponds to fitting a maximum entropy generator

that ignores the data. For any intermediate values of λ, the first term of LPresGAN(θ, φ) encourages

the generator to fit the data distribution, whereas the second term encourages diversity.

The entropyH
(
pθ (x)

)
is intractable because the integral in Eq. 4.11 cannot be computed. However,

fitting the parameters θ of Presgans only requires the gradients of the entropy.

We fit Presgans following the same adversarial procedure used in gans. That is, we alternate

between updating the parameters of the generative distribution θ and the parameters of the discrim-

inator φ. The full procedure is given in Algorithm 5. We now describe each part in detail.
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4.2.1 Fitting the discriminator

Since the entropy term in Eq. 4.10 does not depend on φ, optimizing the discriminator is analogous

to optimizing the discriminator of a gan,

∇φLPresGAN(θ, φ) = ∇φLGAN(θ, φ). (4.12)

To prevent the discriminator from getting stuck in a bad local optimum where it can perfectly dis-

tinguish between real and generated data by relying on the added noise, we apply the same amount

of noise to the real data x as the noise added to the generated data. That is, when we train the

discriminator we corrupt the real data according to

x̂ = x + σ � ε, (4.13)

where σ is the standard deviation of the generative distribution and x denotes the real data. We

then let the discriminator distinguish between x̂ and x(z, ε; θ) from Eq. 4.18.

Using the same noise has a theoretical motivation. Let pd (x) denote the data distribution and pg (x)

the distribution implied by the sampling procedure:

z ∼ p(z) and x = µη (z) (4.14)

where µη (·) is the output of the generator. Adding noise with the same variance σ to a sample

from pd (x) and to a sample from pg (x) is equivalent to convolving both distributions with the same

Gaussian N (x̃|x,σ2):

pd,σ (x̃) =
∫

pd (x)N (x̃|x,σ2)dx (4.15)

pg,σ (x̃) =
∫

pg (x)N (x̃|x,σ2)dx (4.16)
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Now observe that if pd = pg then pd,σ = pg,σ for any value of σ. This property holds only when

using the same noise variance σ.

The data noising procedure described above is a form of instance noise (Sønderby et al., 2016a).

However, instead of using a fixed annealing schedule for the noise variance as Sønderby et al.

(2016a), we let σ be part of the parameters of the generative distribution and fit it using gradient

descent according to Eq. 4.25.

4.2.2 Fitting the generator

We fit the generator using stochastic gradient descent. This requires computing the gradients of

LPresGAN(θ, φ) with respect to θ,

∇θLPresGAN(θ, φ) = ∇θLGAN(θ, φ) − λ∇θH
(
pθ (x)

)
. (4.17)

We form stochastic estimates of ∇θLGAN(θ, φ) based on reparameterization (Kingma & Welling,

2013; Rezende et al., 2014; Titsias & Lázaro-Gredilla, 2014); this requires differentiating Eq. 4.2.

Specifically, we introduce a noise variable ε to reparameterize the conditional from Eq. 4.9,1

x(z, ε; θ) = µη (z) + σ � ε, (4.18)

where θ = (η,σ) and ε ∼ N (0, I). Here µη (z) and σ denote the mean and standard deviation

of the conditional pθ (x | z), respectively. We now write the first term of Eq. 4.17 as an expecta-

tion with respect to the latent variable z and the noise variable ε and push the gradient into the

expectation,

∇θLGAN(θ, φ) = Ep(z)p(ε)
[
∇θ log

(
1 − Dφ(x(z, ε; θ))

)]
. (4.19)

1With this reparameterization we use the notation x(z, ε; θ) instead of x̃(z; θ) to denote a sample from the generative
distribution.
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In practice we use an estimate of Eq. 4.19 using one sample from p(z) and one sample from

p(ε),

∇̂θLGAN(θ, φ) = ∇θ log
(
1 − Dφ(x(z, ε; θ))

)
(4.20)

The second term in Eq. 4.17, corresponding to the gradient of the entropy, is intractable. We esti-

mate it using the same approach as Titsias & Ruiz (2018). We first use the reparameterization in

Eq. 4.18 to express the gradient of the entropy as an expectation,

∇θH
(
pθ (x)

)
= −∇θEpθ (x)

[
log pθ (x)

]
= −∇θEp(ε)p(z)

[
log pθ (x)��x=x(z,ε;θ)

]

= −Ep(ε)p(z)
[
∇θ log pθ (x)��x=x(z,ε;θ)

]

= −Ep(ε)p(z)
[
∇x log pθ (x)��x=x(z,ε;θ)∇θx(z, ε; θ)

]
,

where we have used the score function identity Epθ (x)
[
∇θ log pθ (x)

]
= 0 on the second line. We

form a one-sample estimator of the gradient of the entropy as

∇̂θH
(
pθ (x)

)
= −∇x log pθ (x)��x=x(z,ε;θ) × ∇θx(z, ε; θ). (4.21)
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In Eq. 4.21, the gradient with respect to the reparameterization transformation∇θx(z, ε; θ) is tractable

and can be obtained via back-propagation. We now derive ∇x log pθ (x),

∇x log pθ (x) =
∇xpθ (x)

pθ (x)

=

∫
∇xpθ (x, z)dz

pθ (x)

=

∫ ∇xpθ (x | z)
pθ (x | z) pθ (x, z)

pθ (x)
dz

=

∫
∇x log pθ (x | z)pθ (z | x)dz

= Epθ (z | x)
[
∇x log pθ (x | z)

]
.

While this expression is still intractable, we can estimate it. One way is to use self-normalized

importance sampling with a proposal learned using moment matching with an encoder as we did

in Chapter 3 (Dieng & Paisley, 2019). However, this would lead to a biased (albeit asymptotically

unbiased) estimate of the entropy. In this paper, we form an unbiased estimate of ∇x log pθ (x) using

samples z(1), . . . , z(M) from the posterior,

∇̂x log pθ (x) =
1
M

M∑
m=1
∇x log pθ (x | z(m)), where z(m) ∼ pθ (z | x). (4.22)

We obtain these samples using Hamiltonian Monte Carlo (hmc) (Neal et al., 2011). Crucially, in

order to speed up the algorithm, we initialize the hmc sampler at stationarity. That is, we initialize

the hmc sampler with the sample z that was used to produce the generated sample x(z, ε; θ) in

Eq. 4.18, which by construction is an exact sample from pθ (z | x). This implies that only a few hmc

iterations suffice to get good estimates of the gradient (Titsias & Ruiz, 2018). We also found this

holds empirically; for example in the empirical study, we use 2 burn-in iterations and M = 2 hmc

samples to form the Monte Carlo estimate in Eq. 4.22.

Finally, using Eqs. 4.17 and 4.20 to 4.22 we can approximate the gradient of the entropy-regularized
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adversarial loss with respect to the model parameters θ,

∇̂θLPresGAN(θ, φ) = ∇θ log
(
1 − Dφ(x(z, ε; θ))

)
+
λ

M

M∑
m=1
∇x log pθ (x | z(m))��x=x(z(m),ε;θ) × ∇θx

(
z(m), ε; θ

)
. (4.23)

In particular, the gradient with respect to the generator’s parameters η is unbiasedly approximated

by

∇̂ηLPresGAN(θ, φ) = ∇η log
(
1 − Dφ(x(z, ε; θ))

)
−
λ

M

M∑
m=1

x(z(m), ε; θ) − µη
(
z(m)

)
σ2 ∇ηµη (z(m)),

(4.24)

and the gradient estimator with respect to the standard deviation σ is

∇̂σLPresGAN(θ, φ) = ∇σ log
(
1 − Dφ(x(z, ε; θ))

)
−
λ

M

M∑
m=1

x(z(m), ε; θ) − µη
(
z(m)

)
σ2 · ε. (4.25)

These gradients are used in a stochastic optimization algorithm to fit the generative distribution of

Presgan.

Note there are two failure cases brought in by learning the varianceσ2 using gradient descent.

The first failure mode is when σ2 gets very small, which makes the gradient of the entropy in

Eq. 4.24 dominate the overall gradient of the generator. This is problematic because the learning

signal from the discriminator is lost.

The second failure mode is when the variance gets very large. Consider the adversarial loss with

data noising,

L(η,σ, φ) = Epd (x)p(ε)
[
log Dφ(x + σ � ε)

]
+ Ep(z)p(ε)

[
log

(
1 − Dφ

(
µη (z) + σ � ε

))]
(4.26)

When pd = pg, then the adversarial loss function L(η,σ, φ) is constant with respect to σ and as
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Algorithm 5: Entropy-Regularized Adversarial Learning
Initialize parameters η,σ, φ
for iteration t = 1, 2, . . . do
Draw minibatch of observations x1, . . . , xb, . . . , xB
for b = 1, 2, . . . , B do
Get noised data: εb ∼ N (0, I) and x̂b = xb + σ � εb
Draw latent variable zb ∼ N (0, I)
Generate data: sb ∼ N (0, I) and x̃b = x̃b(zb, sb; θ) = µη (zb) + σ � sb

end for
Compute ∇φLPresGAN(θ, φ) (Eq. 4.12) and take a gradient step for φ
Initialize an hmc sampler using zb
Draw z̃(m)

b ∼ pθ (z | x̃b) for m = 1, . . . , M and b = 1, . . . , B using that sampler
Compute ∇̂ηLPresGAN((η,σ), φ) (Eq. 4.24) and take a gradient step for η
Compute ∇̂σLPresGAN((η,σ), φ) (Eq. 4.25) and take a gradient step for σ
Truncate σ in the range [σlow,σhigh]

end for

a result, the gradient of L(η,σ, φ) with respect to σ is zero. However, during training pd , pg.

This can lead to large values for σ because the generator can completely fool the discriminator so

that Dφ(x̃) = 1
2 , its optimal value, by letting σ → ∞. However setting σ very large is undesirable

since it corresponds to the bad equilibrium point where the samples from the data distribution and

from the generative distribution are indistinguishable from one another simply because they are

both buried in noise.

4.2.3 Variance Regularization

We propose to alleviate the two failure modes discussed above by regularizing the variance to pre-

vent it from reaching very low or very large values.

Truncation. One way to regularize the variance σ is to simply bound it during optimization,

σlow ≤ σ ≤ σhigh. Note this is applied element-wise. The limits σlow and σhigh are hyperparame-

ters.

Entropy minimization. To avoid large values of σ, we can minimize the entropy of the noise
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process N (x̃|x,σ2). The regularized objective for Presgan becomes

LPresGAN(η,σ, φ) = LGAN(η,σ, φ) − λH (pη,σ (x)) + λ̃
D∑

d=1
logσ2

d (4.27)

where λ̃ > 0 is a hyperparameter that determines the strength of the regularization of the entropy

of the noise process. The hyperparameter λ controls the entropy regularization of the generative

distribution, as described earlier.

Note making σ arbitrarily large increases the entropy of the generative distribution pη,σ (x). How-

ever, the term λ̃
∑D

d=1 logσ2
d in Eq. 4.27 will prevent that behavior and ensures the entropy of the

generative distribution is maximized by means of the latent variables z and not the noise variance

σ.

Regularizing the variance of the noise process as described above yields an interesting result we

summarize in the following proposition.

Proposition. Consider the generative distribution of Presgan under a Gaussian likelihood

pη,σ (x) =
∫
N (x|µη (z),σ2)p(z)dz.

Then when λ̃ = λ in Eq. 4.27,

I(x, z) = H (pη,σ (x)) −
D∑

d=1
logσ2

d

where I(x, z) denotes the mutual information between x and z under the generative model.

The proposition above means that under Gaussian likelihood and Gaussian noise process, optimiz-

ing Eq. 4.27 is equivalent to adversarial learning with a mutual information regularizer.

Proof. Denote by I(x, z) the mutual information between x and z under the Presgan generative
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distribution. Then,

I(x, z) =
∫

pη,σ (x, z) log
pη,σ (x, z)

pη,σ (x)p(z)
dxdz (4.28)

=

∫
pη,σ (x, z) log

pη,σ (x|z)
pη,σ (x)

dxdz (4.29)

= −

∫
pη,σ (x) log pη,σ (x)dx +

∫
p(z)

(∫
pη,σ (x|z) log pη,σ (x|z)dx

)
dz (4.30)

= H (pη,σ (x)) −
D∑

d=1
logσ2

d + cst (4.31)

where we used the Gaussian assumption on the likelihood to replace
∫

pη,σ (x|z) log pη,σ (x|z)dx,

the negative entropy of a Gaussian, with −
∑D

d=1 logσ2
d + cst.

4.3 Empirical Study

Here we demonstrate Presgans’ ability to prevent mode collapse and generate high-quality sam-

ples. We also evaluate its predictive performance as measured by log-likelihood.

4.3.1 Simulation Study

In this section, we fit a gan to a toy synthetic dataset of 10 modes. We choose the hyperparameters

such that the gan collapses. We then apply these same hyperparameters to fit a Presgan on the

same synthetic dataset. This experiment demonstrates the Presgan’s ability to correct the mode

collapse problem of a gan.

We form the target distribution by organizing a uniform mixture of K = 10 two-dimensional Gaus-

sians on a ring. The radius of the ring is r = 3 and each Gaussian has standard deviation 0.05. We

then slice the circle into K parts. The location of the centers of the mixture components are deter-
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Figure 4.1. Density estimation with gan and Presgan on a toy two-dimensional experiment. The
ground truth is a uniform mixture of 10 Gaussians organized on a ring. Given the right set of
hyperparameters, a gan could perfectly fit this target distribution. In this example we chose the
gan hyperparameters such that it collapses—here 4 out of 10 modes are missing. We then fit the
Presgan using the same hyperparameters as the collapsing gan. The Presgan is able to correct
the collapsing behavior of the gan and learns a good fit for the target distribution.

mined as follows. Consider the k th mixture component. Its coordinates in the 2D space are

centerx = r · cos
(
k ·

2π
K

)
and centery = r · sin

(
k ·

2π
K

)
.

We draw 5,000 samples from the target distribution and fit a gan and a Presgan.

We set the dimension of the latent variables z used as the input to the generators to 10. We let both

the generators and the discriminators have three fully connected layers with tanh activations and

128 hidden units in each layer. We set the minibatch size to 100 and use Adam for optimization

(Kingma & Ba, 2014), with a learning rate of 10−3 and 10−4 for the discriminator and the generator

respectively. The Adam hyperparameters are β1 = 0.5 and β2 = 0.999. We take one step to

optimize the generator for each step of the discriminator. We pick a random minibatch at each

iteration and run both the gan and the Presgan for 500 epochs.

For Presganwe set the burn-in and the number of hmc samples to 2. We choose a standard number

of 5 leapfrog steps and set the hmc learning rate to 0.02. The acceptance rate is fixed at 0.67. The

log-variance of the noise of the generative distribution of Presgan is initialized at 0.0. We put a

threshold on the variance to a minimum value of σlow = 10−2 and a maximum value of σhigh = 0.3.

The regularization parameter λ is 0.1. We fit the log-variance using Adam with a learning rate of
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10−4.

Figure 4.1 demonstrates how the Presgan alleviates mode collapse. The distribution learned by

the regular gan misses 4 modes of the target distribution. The Presgan is able to recover all the

modes of the target distribution.

4.3.2 Assessing mode collapse

In this section we evaluate Presgans’ ability to mitigate mode collapse on real datasets. We run

two sets of experiments. In the first set of experiments we adopt the current experimental protocol

for assessing mode collapse in the gan literature. That is, we use the mnist and stackedmnist

datasets, for which we know the true number of modes, and report two metrics: the number of

modes recovered by the Presgan and the kl divergence between the label distribution induced by

the Presgan and the true label distribution. In the second set of experiments we demonstrate that

mode collapse can happen in gans even when the number of modes is as low as 10 but the data is

imbalanced.

Increased number of modes. We consider the mnist and stackedmnist datasets. mnist is

a dataset of hand-written digits,2 in which each 28 × 28 × 1 image corresponds to a digit. There

are 60,000 training digits and 10,000 digits in the test set. mnist has 10 modes, one for each digit.

stackedmnist is formed by concatenating triplets of randomly chosen mnist digits along the

color channel to form images of size 28 × 28 × 3 (Metz et al., 2017). We keep the same size as

the original mnist, 60,000 training digits for 10,000 test digits. The total number of modes in

stackedmnist is 1,000, corresponding to the number of possible triplets.

We consider dcgan as the base architecture and, following Radford et al. (2015), we resize the

spatial resolution of images to 64 × 64 pixels.

To measure the degree of mode collapse we form two diversity metrics, following Srivastava et al.
2See http://yann.lecun.com/exdb/mnist.
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Table 4.1. Assessing mode collapse on mnist. The true total number of modes is 10. All methods
capture all the 10 modes. The kl captures a notion of discrepancy between the labels of real versus
generated images. Presgan generates images whose distribution of labels is closer to the data
distribution, as evidenced by lower kl scores.

Method Modes KL
dcgan (Radford et al., 2015) 10 ± 0.0 0.902 ± 0.036

veegan (Srivastava et al., 2017) 10 ± 0.0 0.523 ± 0.008
pacgan (Lin et al., 2018) 10 ± 0.0 0.441 ± 0.009
Presgan (this paper) 10 ± 0.0 0.003 ± 0.001

Table 4.2. Assessing mode collapse on stackedmnist. The true total number of modes is 1,000.
All methods suffer from collapse except Presgan, which captures nearly all the modes of the data
distribution. Furthermore, Presgan generates images whose distribution of labels is closer to the
data distribution, as evidenced by lower kl scores.

Method Modes KL
dcgan (Radford et al., 2015) 392.0 ± 7.376 8.012 ± 0.056

veegan (Srivastava et al., 2017) 761.8 ± 5.741 2.173 ± 0.045
pacgan (Lin et al., 2018) 992.0 ± 1.673 0.277 ± 0.005
Presgan (this paper) 999.6 ± 0.489 0.115 ± 0.007

(2017). Both of these metrics require to fit a classifier to the training data. Once the classifier

has been fit, we sample S images from the generator. The first diversity metric is the number of

modes captured, measured by the number of classes that are captured by the classifier. We say that

a class k has been captured if there is at least one generated sample for which the probability of

being assigned to class k is the largest. The second diversity metric is the kl divergence between

two discrete distributions: the empirical average of the (soft) output of the classifier on generated

images, and the empirical average of the (soft) output of the classifier on real images from the test

set. We choose the number of generated images S to match the number of test samples on each

dataset. That is, S = 10,000 for both mnist and stackedmnist. We expect the kl divergence

to be zero if the distribution of the generated samples is indistinguishable from that of the test

samples.

We measure the two mode collapse metrics described above against dcgan (Radford et al., 2015)

(the base architecture of Presgan for this experiment). We also compare against other methods that
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Table 4.3. Assessing the impact of the entropy regularization parameter λ on mode collapse on
mnist and stackedmnist. When λ = 0 (i.e., no entropy regularization is applied to the genera-
tor), then mode collapse occurs as expected. When entropy regularization is applied but the value
of λ is very small (λ = 10−6) then mode collapse can still occur as the level of regularization is
not enough. When the value of λ is appropriate for the data then mode collapse does not occur.
Finally, when λ is too high then mode collapse can occur because the entropy maximization term
dominates and the data is poorly fit.

mnist stackedmnist
λ Modes KL Modes KL
0 10 ± 0.0 0.050 ± 0.0035 418.2 ± 7.68 4.151 ± 0.0296

10−6 10 ± 0.0 0.005 ± 0.0008 989.8 ± 1.72 0.239 ± 0.0059
10−2 10 ± 0.0 0.003 ± 0.0006 999.6 ± 0.49 0.115 ± 0.0074

5 × 10−2 10 ± 0.0 0.004 ± 0.0008 999.4 ± 0.49 0.099 ± 0.0047
10−1 10 ± 0.0 0.005 ± 0.0004 999.4 ± 0.80 0.102 ± 0.0032

5 × 10−1 10 ± 0.0 0.006 ± 0.0011 907.0 ± 9.27 0.831 ± 0.0209

aim at alleviating mode collapse in gans, namely, veegan (Srivastava et al., 2017) and pacgan

(Lin et al., 2018). For Presgan we set the entropy regularization parameter λ to 0.01. We chose

the variance thresholds to be σlow = 0.001 and σhigh = 0.3.

Tables 4.1 and 4.2 show the number of captured modes and the kl for each method. The results

are averaged across 5 runs. All methods capture all the modes of mnist. This is not the case on

stackedmnist, where the Presgan is the only method that can capture all the modes. Finally, the

proportion of observations in each mode of Presgan is closer to the true proportion in the data, as

evidenced by lower kl divergence scores.

We also study the impact of the entropy regularization by varying the hyperparameter λ from 0 to

0.5. Table 4.3 illustrates the results. Unsurprisingly, when there is no entropy regularization, i.e.,

when λ = 0, then mode collapse occurs. This is also the case when the level of regularization is

not enough (λ = 10−6). There is a whole range of values for λ such that mode collapse does not

occur (λ ∈ {0.01, 0.05, 0.1}). Finally, when λ is too high for the data and architecture under study,

mode collapse can still occur. This is because when λ is too high, the entropy regularization term

dominates the loss in Eq. 4.10 and in turn the generator does not fit the data as well. This is also

evidenced by the higher kl divergence score when λ = 0.5 vs. when 0 < λ < 0.5.
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Figure 4.2. Assessing mode collapse under increased data imbalance on mnist. The figures show
the number of modes captured (higher is better) and the kl divergence (lower is better) under
increasingly imbalanced settings. The maximum number of modes in each case is 10. All methods
suffer frommode collapse as the level of imbalance increases except for the Presganwhich is robust
to data imbalance.

Increased data imbalance. We now show that mode collapse can occur in gans when the data is

imbalanced, evenwhen the number of modes of the data distribution is small. We followDieng et al.

(2018a) and consider a perfectly balanced version of mnist as well as nine imbalanced versions. To

construct the balanced dataset we used 5,000 training examples per class, totaling 50,000 training

examples. We refer to this original balanced dataset as D0. Each additional training set Dk leaves

only 5 training examples for each class j ≤ k, and 5,000 for the rest. (See the Appendix for all the

class distributions.)

We used the same classifier trained on the unmodified mnist but fit each method on each of the 9

new mnist distributions. We chose λ = 0.1 for Presgan. Figure 4.2 illustrates the results in terms

of both metrics—number of modes and kl divergence. dcgan, veegan, and pacgan face mode

collapse as the level of imbalance increases. This is not the case for Presgan, which is robust to

imbalance and captures all the 10 modes.
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Figure 4.3. Generated images on ffhq for Stylegan (left) and Presgan (right). The Presgan
maintains the high perceptual quality of the Stylegan.
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Table 4.4. Fréchet Inception distance (fid) (lower is better). Presgan has lower fid scores than
dcgan, veegan, and pacgan. This is because Presganmitigates mode collapse while preserving
sample quality.

Method Dataset fid
dcgan (Radford et al., 2015) mnist 113.129 ± 0.490

veegan (Srivastava et al., 2017) mnist 68.749 ± 0.428
pacgan (Lin et al., 2018) mnist 58.535 ± 0.135
Presgan (this paper) mnist 42.019 ± 0.244

dcgan stackedmnist 97.788 ± 0.199
veegan stackedmnist 86.689 ± 0.194
pacgan stackedmnist 117.128 ± 0.172
Presgan stackedmnist 23.965 ± 0.134
dcgan cifar-10 103.049 ± 0.195
veegan cifar-10 95.181 ± 0.416
pacgan cifar-10 54.498 ± 0.337
Presgan cifar-10 52.202 ± 0.124
dcgan celeba 39.001 ± 0.243
veegan celeba 46.188 ± 0.229
pacgan celeba 36.058 ± 0.212
Presgan celeba 29.115 ± 0.218

4.3.3 Assessing sample quality

In this section we assess Presgans’ ability to generate samples of high perceptual quality. We rely

on perceptual quality of generated samples and on Fréchet Inception distance (fid) scores (Heusel

et al., 2017). We also consider two different gan architectures, the standard dcgan and the more

recent Stylegan, to show robustness of Presgans vis-a-vis the underlying gan architecture.

dcgan. We use dcgan (Radford et al., 2015) as the base architecture and build Presgan on

top of it. We consider four datasets: mnist, stackedmnist, cifar-10, and CelebA. cifar-10

(Krizhevsky et al., 2009) is a well-studied dataset of 32 × 32 images that are classified into one

of the following categories: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

CelebA (Liu et al., 2015) is a large-scale face attributes dataset. Following Radford et al. (2015),

we resize all images to 64 × 64 pixels. We use the default dcgan settings. We refer the reader

to the code we used for dcgan, which was taken from https://github.com/pytorch/

examples/tree/master/dcgan. We set the seed to 2019 for reproducibility.
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There are hyperparameters specific to Presgan. These are the noise and hmc hyperparameters.

We set the learning rate for the noise parameters σ to 10−3 and constrain its values to be between

10−3 and 0.3 for all datasets. We initialize logσ to −0.5. We set the burn-in and the number of

hmc samples to 2. We choose a standard number of 5 leapfrog steps and set the hmc learning

rate to 0.02. The acceptance rate is fixed at 0.67. We found that different λ values worked better

for different datasets. We used λ = 5 × 10−4 for cifar-10 and celeba λ = 0.01 for mnist and

stackedmnist.

We found the Presgan’s performance to be robust to the default settings for most of these hyper-

parameters. However we found the initialization for σ and its learning rate to play a role in the

quality of the generated samples. The hyperparameters mentioned above for σ worked well for all

datasets.

Table 4.4 shows the fid scores for dcgan and Presgan across the four datasets. We can conclude

that Presgan generates images of high visual quality. In addition, the fid scores are lower because

Presgan explores more modes than dcgan. Indeed, when the generated images account for more

modes, the fid sufficient statistics (the mean and covariance of the Inception-v3 pool3 layer) of the

generated data get closer to the sufficient statistics of the empirical data distribution.

We also report the fid for veegan and pacgan in Table 4.4. veegan achieves better fid scores

than dcgan on all datasets but celeba. This is because veegan collapses less than dcgan as

evidenced by Table 4.1 and Table 4.2. pacgan achieves better fid scores than both dcgan and

veegan on all datasets but on stackedmnist where it achieves a significantly worse fid score.

Finally, Presgan outperforms all of these methods on the fid metric on all datasets signaling its

ability to mitigate mode collapse while preserving sample quality.

Besides the fid scores, we also assess the visual quality of the generated images. In ?? of the ap-

pendix, we show randomly generated (not cherry-picked) images from dcgan, veegan, pacgan,

and Presgan. For Presgan, we show the mean of the conditional distribution of x given z. The

samples generated by Presgan have high visual quality; in fact their quality is comparable to or
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better than the dcgan samples.

Stylegan. We now consider a more recent gan architecture (Stylegan) (Karras et al., 2019) and a

higher resolution image dataset (ffhq). ffhq is a diverse dataset of faces from Flickr3 introduced

by Karras et al. (2019). The dataset contains 70,000 high-quality png images with considerable

variation in terms of age, ethnicity, and image background. We use a resolution of 128 × 128

pixels.

Stylegan feeds multiple sources of noise z to the generator. In particular, it adds Gaussian noise

after each convolutional layer before evaluating the nonlinearity. Building Presgan on top of

Stylegan therefore requires to sample all noise variables z through hmc at each training step.

To speed up the training procedure, we only sample the noise variables corresponding to the input

latent code and condition on all the other Gaussian noise variables. In addition, we do not follow

the progressive growing of the networks of Karras et al. (2019) for simplicity.

For this experiment, we choose the same hmc hyperparameters as for the previous experiments but

restrict the variance of the generative distribution to be σhigh = 0.2. We set λ = 0.001 for this

experiment.

Figure 4.3 shows cherry-picked images generated from Stylegan and Presgan. We can observe

that the Presgan maintains as good perceptual quality as the base architecture. In addition, we

also observed that the Stylegan tends to produce some redundant images (these are not shown in

Figure 4.3), something that we did not observe with the Presgan. This lack of diversity was also

reflected in the fid scores which were 14.72 ± 0.09 for Stylegan and 12.15 ± 0.09 for Presgan.

These results suggest that entropy regularization effectively reducesmode collapse while preserving

sample quality.
3See https://github.com/NVlabs/ffhq-dataset.
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4.3.4 Assessing held-out predictive log-likelihood

In this section we evaluate Presgans for generalization using predictive log-likelihood. We use the

dcgan architecture to build Presgan and evaluate the log-likelihood on two benchmark datasets,

mnist and cifar-10. We use images of size 32 × 32.

We compare the generalization performance of the Presgan against the vae (Kingma & Welling,

2013; Rezende et al., 2014) by controlling for the architecture and the evaluation procedure. In

particular, we fit a vae that has the same decoder architecture as the Presgan. We form the vae

encoder by using the same architecture as the dcgan discriminator and getting rid of the output

layer. We used linear maps to get the mean and the log-variance of the approximate posterior.

To measure how Presgans compare to traditional gans in terms of log-likelihood, we also fit a

Presgan with λ = 0.

Consider an unseen datapoint x∗. We estimate its log marginal likelihood log pθ (x∗) using impor-

tance sampling,

log pθ (x∗) ≈ log *.
,

1
S

S∑
s=1

pθ
(
x∗ | z(s)

)
· p

(
z(s)

)
r
(
z(s) | x∗

) +/
-
, (4.32)

where we draw S samples z(1), . . . , z(S) from a proposal distribution r (z | x∗).

There are different ways to form a good proposal r (z | x∗), and we discuss several alternatives in

Section 4.5.1 of the appendix. In this paper, we take the following approach. We define the proposal

as a Gaussian distribution,

r (z | x∗) = N (µr,Σr ). (4.33)

We set the mean parameter µr to the maximum a posteriori solution, i.e.,

µr = arg max
z

(
log pθ

(
x∗ | z

)
+ log p (z)

)
.

116



We initialize this maximization algorithm using the mean of a pre-fitted encoder, qγ (z | x∗). The

encoder is fitted by minimizing the reverse kl divergence between qγ (z | x) and the true posterior

pθ (z | x) using the training data. This kl is

kl
(
qγ (z | x) | |pθ (z | x)

)
= log pθ (x) − Eqγ (z | x)

[
log pθ (x | z)p(z) − log qγ (z | x)

]
. (4.34)

Because the generative distribution is fixed at test time, minimizing the kl here is equivalent to

maximizing the second term in Eq. 4.34, which is the elbo objective of vaes.

We set the proposal covarianceΣr as an overdispersed version4 of the encoder’s covariance matrix,

which is diagonal. In particular, to obtainΣr we multiply the elements of the encoder’s covariance

by a factor γ. In our experiments we set γ to 1.2.

We use S = 2,000 samples to form the importance sampling estimator. Since the pixel values are

normalized in [−1,+1], we use a truncated Gaussian likelihood for evaluation. Specifically, for each

pixel of the test image, we divide the Gaussian likelihood by the probability (under the generative

model) that the pixel is within the interval [−1,+1]. We use the truncated Gaussian likelihood at

test time only.

Settings. For the Presgan, we use the same hmc hyperparameters as for the previous experiments.

We constrain the variance of the generative distribution usingσlow = 0.001 andσhigh = 0.2. We use

the default dcgan values for the remaining hyperparameters, including the optimization settings.

For the cifar-10 experiment, we choose λ = 0.001. We set all learning rates to 0.0002. We set

the dimension of the latent variables to 100. We ran both the vae and the Presgan for a maximum

of 200 epochs. For mnist, we use the same settings as for cifar-10 but use λ = 0.0001 and ran

all methods for a maximum of 50 epochs.

Results. Table 4.5 summarizes the results. Here gan denotes the Presgan fitted using λ =

0. The vae outperforms both the gan and the Presgan on both mnist and cifar-10. This is
4In general, overdispersed proposals lead to better importance sampling estimates.
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Table 4.5. Generalization performance as measured by negative log-likelihood (lower is better)
on mnist and cifar-10. Here the gan denotes a Presgan fitted without entropy regularization
(λ = 0). The Presgan reduces the gap in performance between the gan and the vae on both
datasets.

mnist cifar-10
Train Test Train Test

vae −3483.94 −3408.16 −1978.91 −1665.84
gan −1410.78 −1423.39 −572.25 −569.17

Presgan −1418.91 −1432.50 −1050.16 −1031.70

unsurprising given vaes are fitted to maximize log-likelihood. The gan’s performance on cifar-

10 is particularly bad, suggesting it suffered from mode collapse. The Presgan, which mitigates

mode collapse achieves significantly better performance than the gan on cifar-10. To further

analyze the generalization performance, we also report the log-likelihood on the training set in

Table 4.5. We can observe that the difference between the training log-likelihood and the test log-

likelihood is very small for all methods.

4.4 Appendix

4.5.1 Other ways to compute predictive log-likelihood

Here we discuss different ways to obtain a proposal in order to approximate the predictive log-

likelihood. For a test instance x∗, we estimate the marginal log-likelihood log pθ (x∗) using impor-

tance sampling,

log pθ (x∗) ≈ log *.
,

1
S

S∑
s=1

pθ
(
x∗ | z(s)

)
p
(
z(s)

)
r
(
z(s) | x∗

) +/
-
, (4.35)

where we draw the S samples z(1), . . . , z(S) from a proposal distribution r (z | x∗). We next discuss

different ways to form the proposal r (z | x∗).

One way to obtain the proposal is to set r (z | x∗) as a Gaussian distribution whose mean and vari-

ance are computed using samples from an hmc algorithm with stationary distribution pθ (z | x∗) ∝

pθ (x∗ | z)p(z). That is, the mean and variance of r (z | x∗) are set to the empirical mean and variance
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of the hmc samples.

The procedure above requires to run an hmc sampler, and thus it may be slow. We can accelerate

the procedure with a better initialization of the hmc chain. Indeed, the second way to evaluate the

log-likelihood also requires the hmc sampler, but it is initialized using a mapping z = gη (x?). The

mapping gη (x?) is a network that maps from observed space x to latent space z. The parameters

η of the network can be learned at test time using generated data. In particular, η can be obtained

by generating data from the fitted generator of Presgan and then fitting gη (x?) to map x to z by

maximum likelihood. This is, we first sample M pairs (zm, xm)M
m=1 from the learned generative

distribution and then we obtain η by minimizing
∑M

m=1 | |zm−gη (xm) | |22 . Once the mapping is fitted,

we use it to initialize the hmc chain.

A third way to obtain the proposal is to learn an encoder network qη (z | x) jointly with the rest of

the Presgan parameters. This is effectively done by letting the discriminator distinguish between

pairs (x, z) ∼ pd (x) · qη (z | x) and (x, z) ∼ pθ (x, z) rather than discriminate x against samples from

the generative distribution. These types of discriminator networks have been used to learn a richer

latent space for gan (Donahue et al., 2016; Dumoulin et al., 2016). In such cases, we can use

the encoder network qη (z | x) to define the proposal, either by setting r (z | x∗) = qη (z | x∗) or by

initializing the hmc sampler at the encoder mean.

The use of an encoder network is appealing but it requires a discriminator that takes pairs (x, z).

The approach that we follow in the paper also uses an encoder network but keeps the discriminator

the same as for the base dcgan. We found this approach to work better in practice. More in

detail, we use an encoder network qη (z | x); however the encoder is fitted at test time by maximizing

the variational elbo, given by
∑

n Eqη (zn | xn)
[
log pθ (xn, zn) − log qη (zn | xn)

]
. We set the proposal

r (z | x∗) = qη (z | x∗). (Alternatively, the encoder can be used to initialize a sampler.)
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4.5.2 Assessing mode collapse under increased data imbalance

In the main paper we show that mode collapse can happen not only when there are increasing

number of modes, as done in the gan literature, but also when the data is imbalanced. We consider

a perfectly balanced version of mnist by using 5,000 training examples per class, totalling 50,000

training examples. We refer to this original balanced dataset as D1. We build nine additional

training sets from this balanced dataset. Each additional training set Dk leaves only 5 training

examples for each class j < k. See Table 4.6 for all the class distributions.

Table 4.6. Class distributions using the mnist dataset. There are 10 class—one class for each of
the 10 digits in mnist. The distribution D1 is uniform and the other distributions correspond to
different imbalance settings as given by the proportions in the table. Note these proportions might
not sum to one exactly because of rounding.

Dist 0 1 2 3 4 5 6 7 8 9

D1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
D2 10−3 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
D3 10−3 10−3 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
D4 10−3 10−3 10−3 0.14 0.14 0.14 0.14 0.14 0.14 0.14
D5 10−3 10−3 10−3 10−3 0.17 0.17 0.17 0.17 0.17 0.17
D6 10−3 10−3 10−3 10−3 10−3 0.20 0.20 0.20 0.20 0.20
D7 10−3 10−3 10−3 10−3 10−3 10−3 0.25 0.25 0.25 0.25
D8 10−3 10−3 10−3 10−3 10−3 10−3 10−3 0.33 0.33 0.33
D9 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 0.49 0.49
D10 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 0.99
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Conclusion

Probabilistic graphical modeling with latent variables provides a useful framework for learning

from data. It enables accounting for uncertainty, learning the latent structure underlying data in

an interpretable way, and incorporating prior knowledge. However probabilistic graphical model-

ing might lack flexibility for the purpose of learning from the types of high-dimensional complex

data we currently encounter in practice. This thesis developed deep probabilistic graphical mod-

eling, which leverages deep learning to bring flexibility to probabilistic graphical modeling. We

used neural networks to extend the canonical ef-pca to model and learn interpretable quantities

from image and text data. We leveraged recurrent neural networks to build a class of models for

sequential data where long-term dependencies are accounted for using latent variables. We solved

several problems that probabilistic topic models suffer from using distributed representations of

words for model specification and neural networks for inference. This thesis also made contri-

butions on the algorithmic front. We developed reweighted expectation maximization (rem), an

algorithm that unifies several existing maximum likelihood-based algorithms for learning models

parameterized by deep neural networks. This unifying view is made possible using expectation

maximization, a canonical inference algorithm for probabilistic graphical models. rem leads to

better generalization to unseen data. Finally, we showed how to leverage the learning procedure

behind generative adversarial networks to fit probabilistic latent-variable models. This new algo-

rithm, called entropy-regularized adversarial learning, constitutes a solution to the mode collapse

121



problem that is pervasive in generative adversarial networks.

There are several choice points for deep probabilistic graphical modeling, each of which can be

explored for future work.

1. Prior. Choosing a prior pertains to specifying our a priori knowledge of the latent struc-

ture. Several of the model classes we developed above used simple priors. Future work will

explore how to devise richer priors for deep probabilistic graphical modeling. We will also

explore how to translate domain knowledge into prior specification to apply deep probabilistic

graphical modeling to new domains (e.g. science.)

2. Likelihood. We leveraged neural networks or word embeddings to define the conditional

distribution of the data given the latent variables as an exponential family. The exponential

family provides an umbrella distribution for the types of data we encounter in practice (e.g.

real-valued, categorical, and binary.) Future work can explore other distributional forms for

the likelihood (e.g. distributions specified via a sampling procedure) or use constrained neural

networks to parameterize the likelihood (e.g. invertible neural networks.)

3. Posterior. We used variational inference as a framework for inferring the posterior distri-

bution of the latent variables. In particular, we used distributions that are amenable to repa-

rameterization such as the Gaussian, and parameterized them using neural networks. Future

work can explore other choices of approximate posterior distributions, especially for discrete

latent variables often used in probabilistic graphical modeling.

4. Algorithm. We explored both maximum likelihood and adversarial learning for model fit-

ting. These two paradigms are complementary. Adversarial learning favors high quality of

simulation of new data while maximum likelihood favors high held-out likelihood on unseen

data. In future workwewill explore howwe can combine the strength of these two approaches

to achieve all aspects of generalization as described in our desiderata. We will also explore

how to make entropy-regularized adversarial learning amenable to discrete data and discrete

latent variables.
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