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Abstract

Articulatory precision is a critical factor that influences speaker intelligibility. In this paper, we

propose a new measure we call ‘articulation entropy’ that serves as a proxy for the number of distinct

phonemes a person produces when he or she speaks. The method is based on the observation that

the ability of a speaker to achieve an articulatory target, and hence clearly produce distinct phonemes,

is related to the variation of the distribution of speech features that capture articulation - the larger

the variation, the larger the number of distinct phonemes produced. In contrast to previous work,

the proposed method is completely unsupervised, does not require phonetic segmentation or formant

estimation, and can be estimated directly from continuous speech. We evaluate the performance of

this measure with several experiments on two data sets: a database of English speakers with various

neurological disorders and a database of Mandarin speakers with Parkinson’s disease. The results reveal

that our measure correlates with subjective evaluation of articulatory precision and reveals differences

between healthy individuals and individuals with neurological impairment.
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I. INTRODUCTION

Articulatory precision, or the accuracy with which articulators achieve their targets, varies

naturally in everyday speaking, depending on the situation (casual versus formal communication

settings), and the physical and psychological state of the speaker (e.g., fatigued versus excited)

[1], [2]. However, progressive and unremitting reductions in articulatory precision can be a sign

of underlying neurological disease [3], [4], [5]. For this reason, it is useful to quantitatively

characterize articulatory precision as a potential indicator for neurological health. In this paper

we define the precision of articulation as the size of a speaker’s “working phonemic inventory”

- the number of distinct phonemes a person produces when he or she speaks. To that end, we

propose a method that estimates this value from continuous speech samples.

Estimating articulatory precision from speech acoustics traditionally has focused on specific

aspects of vowel and consonant production. The vowel space area (VSA) is a commonly used

metric in the evaluation of pathological speech. It is defined as the area of the quadrilateral

spanned by the first and second formants of the 4 corner vowels /a, æ, i, u/ [6], [7]. This metric

can be interpreted as a measure of articulatory excursions and separability between distinct

vowel targets. It has been shown that dysarthric speakers have relatively compressed VSA when

compared against healthy individuals [8], [9], [10], [11]. The VSA is typically estimated from

isolated words that contain the corner vowels (e.g. hit, hat, hut, hot) with manual labeling of

individual phonemes, which can be cumbersome, time consuming, and error prone; a notable

exception is the paper by Sandoval et al. that measures the VSA directly from continuous

speech based on formant estimation of voiced speech segments (including vowels and voiced

consonants) [12]. Related to the VSA, Sapir and colleagues have proposed two other measures

of articulatory precision called the Vowel Articulation Index (VAI) and, its inverse, the Formant

Centralization Ratio (FCR) [13]. These methods are less sensitive to inter-speaker variability

and more sensitive to vowel formant centralization [14]. While these measures have shown to be

useful in a number of applications, they require precise formant estimation and hand labeling of

individual vowels. Furthermore, vowels only account for a part of a speech signal. It is known

that intelligibility also strongly depends on consonant production [15], [16]. Acoustic measures

of consonant precision traditionally have targeted spectral characteristics of stops, fricatives and

affricates [17], [9].

In this paper, we propose an unsupervised metric that considers both vowel and consonant

production and does not require hand labeling or formant estimation. Furthermore, it is a language
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Fig. 1. A framework for calculating articulation entropy.

independent measure and can be applied to continuous speech samples. In information theory,

entropy measures the expected amount of information contained in a message [18]. We extend

this idea to the acoustic representation of speech production. Here we consider the distribution

of sounds produced by an individual and use a non-parametric estimate of the entropy of this

distribution to characterize the speaker’s working phonemic inventory - we call this measure the

‘articulation entropy’ of the speaker. We evaluate the algorithm on speech samples from dysarthric

English and Chinese patients and show that articulation entropy correlates with perceptual

impressions of articulatory precision.

II. ARTICULATION ENTROPY

Consider a speech signal, xi(t), where i is the index of the speaker, with sampling rate Fs.

We assume that this signal can be partitioned into Ni equal length segments (between 40ms to

200ms). For each frame, a D-dimensional feature vector is extracted and denoted by the random

variable zi ∈ RD×1, sampled from an unknown continuous distribution f iz(z). We posit that the

entropy of f iz(z) is a proxy for the working phonemic inventory as it captures the diversity of

sounds produced as a person speaks. The framework to calculate articulation entropy is shown

in Figure 1. It consists of a pre-processing step that normalizes the intensity of the speech signal,

followed by feature extraction, and a non-parametric entropy estimation step. We describe these

steps below.
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A. Pre-processing

Speech samples are first passed through a voice activity detection (VAD) algorithm to exclude

all silences and pauses during speech. We use the VAD algorithm described in [19]. To remove

energy-dependence effects on the variation in the speech features, we normalize the intensity

of the speech signal after VAD. To normalize, we select a speech sample as a reference and

normalize all of the other speech samples from all speakers to the energy level of the reference

sample.

B. Feature extraction

Two window lengths are adopted to capture the short-term speech acoustics and the long-

term articulatory movement: we use a short term 20ms frame and a longer analysis window

that ranges between 40ms to 200ms. The speech signal is initially split into 20ms frames (with

10ms overlap) and a feature vector is extracted for each frame. The 20ms feature vectors are

concatenated into a longer super-vector that captures the articulatory motion. For example, for

a longer analysis window of 100ms, features from 10 consecutive (overlapping) 20ms frames

are concatenated into a single vector. Previous studies reveal that average phoneme duration can

vary between 40ms to 200ms [20]; therefore, in the results section we examine different analysis

window lengths that span this range.

We evaluate our algorithm with four families of spectral features: (1) the log-magnitude of

the FFT of each frame (2) the Mel-frequency cepstral coefficients (MFCCs), (3) the linear

prediction coding (LPC) envelope, and (4) the mel-spectrum with cubic root compression features

(MelRoot3) [21]. The performance of the algorithm using these features is reported in Section

III-A1.

C. Entropy estimation

Given a speech sample from speaker i, the features are extracted as described in the previous

section, then stacked in a single multi-dimensional feature matrix Zi ∈ RN i
s×D. where N i

s is

the number of long segments extracted from speaker i’s speech sample. This feature matrix can

be interpreted as a set of N i
s samples of the unknown D-dimensional continuous distribution

f iz(z). We associate the larger variation in the features with a larger working phonemic inventory.

We use the entropy of the distribution from which these features are sampled to measure this

variation.
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Typically, estimating entropy requires complete knowledge of the data distribution. For ex-

ample, a Gaussian distribution is often assumed and the closed-form entropy estimator is used.

However, it is known that speech does not follow a Gaussian distribution [22], [23]. In fact,

for our application, the underlying distribution is completely unknown. To estimate information-

theoretic parameters in these scenarios a non-parametric approach can be used [24], [25], [26].

We estimate the Rényi entropy [27] directly from the data samples without having to make

assumptions about the underlying data distribution. The Rényi entropy of the distribution is

defined as

Hα(f) =
1

1− α
ln

N∑
i=1

fα(zi), (1)

where α is a user-selected parameter between 0 and 1 1. The authors in [26], showed that the

Rényi entropy can be estimated directly from a set of samples using a graph theoretic approach.

From the samples, a fully connected Euclidean graph can be calculated. From the graph, the

minimal spanning tree (MST) can be derived. The authors in [26] showed that the sum of the

edge weights of the MST can be used to estimate the entropy. For more details on the estimator

please refer to [26].

We illustrate this procedure with an example. The hypothesis is that when two speakers read

the same content, the distribution of acoustic features for the speaker who has more precise

articulation should have larger variation, and a larger entropy, than that of the speaker who

has imprecise articulation. Consider features extracted from speech samples produced by two

individuals who read the same content: One has mild dysarthria, and the other has severe

dysarthria. For each frame, we extract 13-dimensional MelRoot3 features from 20ms frames,

then concatenate these to form a 100ms analysis window (per section II-B). We reduce the

dimension of this data using principal components analysis (PCA) to 2 for visualization [28]. In

the actual implementation of the algorithm, much higher-dimensional feature sets are used. In

Figure 2 we show two graphs, with the nodes representing a 100ms 2-D feature and the edges

representing the Euclidean edges of the MST. In each figure, we also show the estimate of the

entropy obtained per the method in [26]. From the figure, it is clear that the speaker with mild

dysarthria (right) has a much higher articulation entropy than the speaker with severe dysarthria

(left). Readers are invited to listen to the supplementary speech recordings as evidence of the

perceptual differences in articulation.

1We set α = 0.99 in the experiment, which approximates the commonly used Shannon entropy.
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Fig. 2. Comparison of speech feature distributions for two speakers with dysarthria. The speaker on the left has severe dysarthria

and the speaker on the right has mild dysarthria.

When comparing the articulation entropy of multiple speakers, we must also consider the

differences in length between the resulting speech samples. In order to obtain an unbiased

estimate of entropy values, the same number of feature samples should be used to estimate the

entropy using the MST approach described above. As a result, we use bootstrap sampling [29].

The sampling process is done multiple times, which allows us to estimate the entropy values for

each batch and a final estimate by averaging.

III. EXPERIMENTAL EVALUATION

We evaluate the approach on two data sets: a database of English-speaking dysarthric patients

and a database of Mandarin-speaking dysarthric patients. We provide the Matlab source code

for readers who are interested in using this measure2.

A. Evaluation on English dysarthric speech

We use a corpus of English dysarthric speech that contains speech samples from 57 speakers

with three types of neurological disorders: 15 speakers with ataxic dysarthria, 16 mixed flaccid-

spastic dysarthria, and 26 speakers with hypokinetic dysarthria. Each speaker provided a speech

sample consisting of 5 phonetically balanced sentences with an average of 16 syllables in each

sentence. The 5 sentences were concatenated into a single utterance - therefore there are a total

of 57 speech samples (one per speaker) in this dataset. All speech was sampled at a rate of 16

kHz with 16-bit resolution. Seven second year master’s students from the speech and language

pathology (SLP) program at Arizona State University were asked to listen to the speech samples

2 http://www.public.asu.edu/%7Evisar/software/Arti%5FEn.zip
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and rate the articulatory precision of the speaker on a scale from 1 (normal) to 7 (severely

abnormal). The Evaluator Weighted Estimator (EWE) was used to combine the multiple ratings

into a single one by calculating the mean value weighted by individual reliability [30]. The

details of this dataset can be found in [31]. In this experiment we evaluate the Pearson correlation

between the estimated articulation entropies and the weighted average subjective ratings of all

speakers.

1) Evaluation with different feature sets and different window sizes: In Section II-B, four

candidate feature sets were briefly described. Here we analyze which feature sets best captures

articulatory precision and at what time scale.

After VAD and intensity normalization, the following features were initially extracted from

segmented 20ms frames (with 10ms overlap): 128-D log-spectrum features, 13-D MFCC features,

13-D MelRoot3 features, and 128-D LPC envelope features. Various window lengths ranging

from 40ms to 200ms were also examined. Short-term features were stacked according to different

window length settings. Therefore, for a given feature type and a given analysis window, we

formed 57 feature matrices - one for each speaker.

The bias and variance of the non-parametric entropy estimator depends on both the sample size

and the dimension of the data [32]. Thus, to exclude the influence of these two factors, we used

PCA to reduce the dimension of the feature sets and randomly resampled the rows of the data

matrix to ensure that each speaker’s matrix has the same sample size and same dimension. The

dimension reduction is best demonstrated by an example: Suppose the dimension of the stacked

MFCC and MelRoot3 features using a 40ms long window was 13 × 4; whereas the dimension

of the log-spectrum and LPC features was 128× 4. To ensure that all feature sets had the same

dimension, we reduced the dimension of the log-spectrum and LPC features from 128 × 4 to

13 × 4 using PCA. The sampling process can also be demonstrated with an example: suppose

the sample size of the data matrix for each speaker was N i
s (where i was the speaker index).

We randomly sampled each speaker’s data matrix using
⌊
0.9×min

i
(N i

s)
⌋

samples. Bootstrap

sampling was repeated 50 times for each speaker and the articulation entropy was estimated for

each batch. The final entropy measure was taken as the average of the individual estimates.

The correlation between estimated entropies and the subjective articulatory precision ratings is

shown in Table I. From the table, we can see that the MelRoot3 features with a window length of

160ms outperformed the others significantly (p� 0.01). A correlation value of −0.581 indicates

a moderate to strong correlation between the unsupervised articulation entropy metric and the
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TABLE I

CORRELATION BETWEEN ARTICULATION ENTROPY AND PERCEPTUAL IMPRESSIONS OF ARTICULATION FOR DIFFERENT

FEATURES AND DIFFERENT WINDOW LENGTHS.

log-spectrum MFCC LPC envelope Melroot3

40ms -0.044 -0.432 -0.343 -0.483

80ms -0.117 -0.469 -0.435 -0.546

120ms -0.162 -0.457 -0.474 -0.568

160ms -0.196 -0.432 -0.505 -0.581

200ms -0.196 -0.407 -0.515 -0.564

combined perceptual ratings.

2) Comparison with VSA: For comparison, we also estimated the VSA for each speaker by

using the automatic VSA estimation method in [12]. However, this measure shows no correlation

(0.08) with the perceptual ratings. Since the VSA relies only on vowel production, the algorithm

likely requires more than the five available sentences to form a robust estimate of the vowel

space. In addition, the VSA requires robust formant estimation in order to obtain a reliable

estimate. For the more severe speakers in the database, this may be difficult to estimate, since

most formant estimation methods are tailored to healthy speech.

3) Articulation entropy for voiced/unvoiced speech: We also examined the difference in artic-

ulation entropy for voiced (V) and unvoiced (UV) speech samples. A V/UV detection algorithm

was used to separate the voiced and unvoiced segments for each speaker. The articulation entropy

was calculated on the frames of V and UV speech respectively for each speaker. Random

sampling was used to ensure the number of samples for the voiced and unvoiced parts were

balanced.

Figure 3 shows the articulation entropies of V/UV segments for all 57 speakers in the dataset.

From this figure we can see that: (1) the entropy values of voiced and unvoiced speech samples

follow each other, which is consistent with the fact that most dysarthric speakers have both

distorted consonants and vowels [10][33]; (2) for some of the speakers, there exists a gap between

voiced entropy and unvoiced entropy, which implies that the speaker is able to produce either

voiced or unvoiced speech samples more clearly. To show this, two speakers with different

profiles were selected: one speaker showing a much larger entropy for voiced than unvoiced

speech (Speaker 25), and another showing the opposite (Speaker 38). To listen to the difference,
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Fig. 3. Articulation entropies for voiced and unvoiced speech samples.

frames detected as voiced were concatenated into a voiced speech stream, and frames detected

as unvoiced were concatenated into an unvoiced speech stream. The samples were included as

supplemental material. For speaker 25, we can hear that the voiced phonemes (especially vowels)

were relatively clear and differentiated, but the unvoiced speech samples were indistinct. For

speaker 38, the voiced phonemes were constrained and sound very similar to each other, while

the unvoiced phonemes were clear.

B. Evaluation on Mandarin speech

The second dataset we evaluated contains Mandarin speech samples from 10 speakers with PD

and an age- and gender-matched healthy control group (7 speakers). Each speaker was recorded

in a sound-treated booth while reading the Rainbow passage (translated to Mandarin) [34] into a

Shure microphone connected to a Tascam portable digital recorder. In addition, each speaker was

recorded in two conditions, a habitual condition and a loud condition. For the habitual condition,

the speakers were instructed to speak in their typical manners, while for the loud condition, they

were told to speak using a voice twice as loud as their regular talking voice [35]. It has been

shown that loud speech can lead to significant intelligibility gains partly because loud speech

requires more exaggerated articulator motion [36].

Speech samples in both the habitual and loud conditions were first normalized such that they

have the same intensity level. Pauses were removed using the VAD and the articulation entropy

was calculated using the MelRoot3 features with a 160ms window size. In the left plot of Figure

4 we show the average articulation entropy for both groups and for both conditions in each group.

A 2×2 ANOVA test showed that there is a significant difference (p� 0.01) between the healthy

group and the PD group and a significant difference (p� 0.01) between the habitual and loud
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Fig. 4. Articulation entropy for Mandarin speech data in habitual and loud conditions. Red are healthy speakers, and black are

PD speakers.

conditions. However, there was no interaction between the two factors. This is consistent with

the expectations that (1) the PD group exhibits reduced articulator movement resulting in lower

articulatory precision when compared to the healthy group [37] and (2) there is an improvement

in the articulatory precision of PD patients speaking in the loud condition [36]. In the right plot

of Figure 4 we show the change in entropy for each individual speaker. It can be seen that for

all but one speaker, the articulation entropy improved.

IV. CONCLUSION

Traditional estimation of articulatory precision relies on subjective evaluation or simple ob-

jective metrics such as the vowel space area (VSA). In this paper, we propose a more general

measure called articulation entropy that serves as a proxy for a speaker’s working phonemic

inventory. The method extracts features from a continuous speech signal and calculates the

entropy of the feature distribution. Compared to the VSA, it is completely unsupervised and does

not require any phonetic segmentation. We have shown that the articulation entropy correlates

with subjective evaluation of articulatory precision on English dysarthric speech and it captures a

clear difference between healthy and PD Mandarin speakers in both habitual and loud conditions.
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