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ABSTRACT

Data-Driven Quickest Change Detection

Mehmet Necip Kurt

The quickest change detection (QCD) problem is to detect abrupt changes in a

sensing environment as quickly as possible in real time while limiting the risk of

false alarm. Statistical inference about the monitored stochastic process is performed

through observations acquired sequentially over time. After each observation, QCD

algorithm either stops and declares a change or continues to have a further observation

in the next time interval. There is an inherent tradeoff between speed and accuracy

in the decision making process. The design goal is to optimally balance the average

detection delay and the false alarm rate to have a timely and accurate response to

abrupt changes.

The objective of this thesis is to investigate effective and scalable QCD approaches

for real-world data streams. The classical QCD framework is model-based, that is,

statistical data model is assumed to be known for both the pre- and post-change

cases. However, real-world data often exhibit significant challenges for data modeling

such as high dimensionality, complex multivariate nature, lack of parametric mod-

els, unknown post-change (e.g., attack or anomaly) patterns, and complex temporal

correlation. Further, in some cases, data is privacy-sensitive and distributed over a

system, and it is not fully available to QCD algorithm. This thesis addresses these

challenges and proposes novel data-driven QCD approaches that are robust to data

model mismatch and hence widely applicable to a variety of practical settings.

In Chapter 2, online cyber-attack detection in the smart power grid is formulated

as a partially observable Markov decision process (POMDP) problem based on the



QCD framework. A universal robust online cyber-attack detection algorithm is pro-

posed using the model-free reinforcement learning (RL) for POMDPs. In Chapter 3,

online anomaly detection for big data streams is studied where the nominal (i.e., pre-

change) and anomalous (i.e., post-change) high-dimensional statistical data models

are unknown. A data-driven solution approach is proposed, where firstly a set of

useful univariate summary statistics is computed from a nominal dataset in an offline

phase and next, online summary statistics are evaluated for a persistent deviation

from the nominal statistics.

In Chapter 4, a generic data-driven QCD procedure is proposed, called DeepQCD,

that learns the change detection rule directly from the observed raw data via deep re-

current neural networks. With sufficient amount of training data including both pre-

and post-change samples, DeepQCD can effectively learn the change detection rule

for all complex, high-dimensional, and temporally correlated data streams. Finally, in

Chapter 5, online privacy-preserving anomaly detection is studied in a setting where

the data is distributed over a network and locally sensitive to each node, and its sta-

tistical model is unknown. A data-driven differentially private distributed detection

scheme is proposed, which infers network-wide anomalies based on the perturbed and

encrypted statistics received from nodes. Furthermore, analytical privacy-security

tradeoff in the network-wide anomaly detection problem is investigated.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Suppose that a stochastic process produces a data stream x1,x2,x3, . . . , where

xt ∈ Rp is the observation made at time t and p ≥ 1 is the data dimensionality.

An abrupt change happens in the statistical properties of the observed process at an

unknown time τ , called the change-point, such that

xt ∼

f0, if t < τ,

f1, if t ≥ τ,

(1.1)

where f0 and f1 denote the pre- and post-change probability density functions (pdfs)

of xt, respectively. In the quickest change detection (QCD) framework, the objective

is to develop a sequential procedure for detecting changes as quickly as possible while

limiting the risk of false alarm.

In the QCD algorithms, at each time step, a decision is made based on the available

information on whether to stop and declare a change or continue to acquire a further

observation in the next time interval. The stopping time Γ, at which a change is

declared, is a random variable depending on the observations seen so far. That

is, {Γ = t} ∈ Ft,∀t ≥ 1, where Ft = σ(x1,x2, . . . ,xt) denotes the sigma-algebra

generated by the observations up to time t. The event {Γ < τ} corresponds to a false

alarm event and (Γ−τ)+ is called the detection delay, where (·)+ , max{0, ·}. While
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the goal is to minimize both the detection delays and the frequency of false alarm

events, there is an inherent tradeoff between these two objectives. Hence, ideally the

stopping time is chosen to optimally balance the detection speed and the detection

accuracy.

The QCD problem finds diverse applications in many fields such as critical infras-

tructure monitoring, industrial process control, environmental monitoring, cyberse-

curity, finance, video surveillance, navigation system monitoring, biomedical signal

processing, neuroscience, cognitive radio, healthcare, onset of a disease outbreak, so-

cial networks, and military [5, 65, 67, 68, 108, 133]. This thesis investigates effective

and scalable QCD approaches applicable to real-world settings.

The classical QCD framework is model-based, that is, the pre- and post-change

pdfs f0 and f1 are both assumed to be known, possibly with some unknown param-

eters [5, 108]. However, the real-world data often exhibits significant challenges for

data modeling such as high dimensionality, complex multivariate nature, lack of para-

metric models, unknown post-change (e.g., attack or anomaly) patterns, and complex

temporal correlation. For instance, in large-scale heterogeneous networks, such as In-

ternet of Things (IoT) networks, due to complex interactions between disparate IoT

devices, it is difficult to model and resource-demanding (computation, energy, and

time) to accurately estimate the joint probability distribution of the observed high-

dimensional data. Moreover, the real-world data often do not well fit into the existing

parametric models [68, 74]. Furthermore, in online attack or anomaly detection, the

post-change pdf is usually unknown due to unknown capabilities and strategies of

attackers and a myriad of vulnerabilities of modern complex systems [67]. Addition-

ally, complex temporal correlation between observations in real-world data streams

(e.g., surveillance videos) render accurate data modeling quite challenging. Further,

in some cases, the data is privacy-sensitive and distributed over a network, and it is

not fully available to QCD algorithm. This thesis addresses several of these challenges

over different problems and proposes novel data-driven QCD approaches. See Fig. 1.1
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Figure 1.1: An overview of the applications, challenges, and solution techniques.

for an overview of the applications, challenges, and solution techniques.

Chapter 2 addresses early detection of cyber-attacks for a safe and reliable opera-

tion of the smart power grid. In particular, the online attack detection is formulated

as a partially observable Markov decision process (POMDP) problem. Then, a uni-

versal robust online detection algorithm is proposed as a solution using the framework

of model-free reinforcement learning (RL) for POMDPs. The proposed detector does

not require attack models and hence it can detect new and unknown attack types.

Moreover, it is sensitive to detect slight deviations of sensor measurements from the

normal system operation, which significantly limits the action space of an attacker.

Numerical studies illustrate the effectiveness of the proposed RL-based detector in

timely and accurate detection of cyber-attacks targeting the smart grid.

Chapter 3 investigates real-time detection of abrupt anomalies in modern sys-

tems producing big (i.e., high-dimensional) data streams. With this goal, effective

and scalable algorithms are proposed, where the proposed algorithms are model-free

as both the nominal and anomalous multivariate data distributions are assumed to

be unknown. Useful univariate summary statistics are extracted from the observed

high-dimensional data and the online anomaly detection is performed in a single-

dimensional space. Anomalies are defined as being equivalent to persistent outliers
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and detected via a nonparametric cumulative sum (CUSUM)-like algorithm. In case

the observed data has a low intrinsic dimensionality, a submanifold, in which the

nominal data is embedded, is learned in an offline phase and next, the sequentially

acquired data is evaluated for a persistent deviation from the nominal submanifold.

Further, in the general case, an acceptance region is learned for nominal data via the

Geometric Entropy Minimization [48] in an offline phase, and next, it is evaluated

if the sequentially observed data persistently fall outside the nominal acceptance re-

gion. An asymptotic lower bound and an asymptotic approximation for the average

false alarm period of the proposed algorithm are provided. Moreover, a sufficient

condition is provided to asymptotically guarantee that the decision statistic of the

proposed algorithm does not diverge in the absence of anomalies. Experiments illus-

trate the effectiveness of proposed algorithms in quick and accurate anomaly detection

in high-dimensional settings.

Chapter 4 aims to unify the quickest change detection (QCD) framework via a

novel data-driven approach. To this end, a generic neural network architecture is

proposed for the QCD task, composed of initial data processing, recurrent, and re-

gression layers. The neural network learns the change detection rule directly from

data without needing the knowledge of statistical data models and feature engineer-

ing. Specifically, the initial data processing layers filter out noise and extract useful

features from data. The recurrent layers keep an internal state summarizing the data

stream seen so far and update the state as new information comes in. Finally, the

regression layers map the internal state into the decision statistic, defined as the pos-

terior probability of having change. Comparisons with the existing model-based QCD

algorithms demonstrate the power of the proposed data-driven approach, called Deep-

QCD, under several scenarios including transient changes and temporally correlated

data streams. Further, experiments with high-dimensional real-world data illustrate

the superior performance of DeepQCD compared to the existing alternatives in on-

line anomaly detection over surveillance videos and online attack detection over IoT
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networks.

Chapter 5 studies online privacy-preserving anomaly detection in a setting where

the data is distributed over a network and locally sensitive to each node, and its statis-

tical model is unknown. A novel data-driven differentially private solution scheme is

designed and analyzed in which each node observes a possibly high-dimensional data

stream for which it computes a local outlierness score at each time, perturbs and

encrypts it, and then sends it to a network-wide decision maker. The decision maker

decrypts the received messages, obtains an aggregate statistic over the network, and

then performs online anomaly detection via a generalized CUSUM algorithm. An

asymptotic lower bound and an asymptotic approximation are provided for the aver-

age false alarm period of the proposed algorithm. Additionally, an asymptotic upper

bound and asymptotic approximation are provided for the average detection delay

of the proposed algorithm under certain given anomaly signal. The analytical trade-

off between the anomaly detection performance and the differential privacy level is

shown, which is controlled via the amount of local perturbation noise. Experiments

with real-world data illustrate that the proposed solution scheme offers a good tradeoff

between quick anomaly detection and data privacy.
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Chapter 2

Online Cyber-Attack Detection in

Smart Grid: A Reinforcement

Learning Approach

2.1 Introduction

2.1.1 Background and Related Work

With the recent advancements in monitoring, sensing, signal processing, control, and

communication, advanced technologies are being integrated into the next-generation

power systems (i.e., smart grid). Due to such features, the smart grid depends on

a critical cyber infrastructure which makes it vulnerable to hostile cyber threats

[79,135,141]. Main objective of attackers is to damage or mislead the state estimation

mechanism in the smart grid to cause wide-area power blackouts or to manipulate

electricity market prices [138]. There are many types of cyber-attacks, among them

false data injection (FDI), jamming, and denial of service (DoS) attacks are well

known. FDI attacks add malicious fake data to sensor measurements [9, 66, 77, 82],

jamming attacks corrupt sensor measurements via additive noise [67], and DoS attacks
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block the access of system to sensor measurements [4, 66, 147]. The smart grid is a

complex network and any failure or anomaly in a part of the system may lead to huge

damages on the overall system in a short period of time. Hence, early detection of

cyber-attacks is critical for a timely and effective response. In this context, the QCD

framework [5, 107,108,133] can be quite useful.

If the probability density functions (pdfs) of sensor measurements for the pre-

change (i.e., normal system operation) and the post-change (i.e., after an attack or

anomaly) cases can be modeled sufficiently accurately, the well-known cumulative sum

(CUSUM) test is the optimal online detector [94] based on the Lorden’s minimax cri-

terion [84]. Moreover, if the pdfs can be modeled with some unknown parameters, the

generalized CUSUM test, which makes use of the estimates of unknown parameters,

has asymptotic optimality properties [5]. However, CUSUM-based detection schemes

require perfect data models for both the pre- and post-change cases. In practice,

capabilities of an attacker and correspondingly attack types and strategies can be to-

tally unknown. For instance, an attacker can arbitrarily combine and launch multiple

attacks simultaneously or it can launch a new unknown type of attack [67]. Then,

it may not be always possible to know the attacking strategies ahead of time and to

accurately model the post-change case. Hence, universal detectors, not requiring any

attack model, are needed in general. Moreover, the (generalized) CUSUM algorithm

has optimality properties in minimizing a least favorable (worst-case) detection delay

subject to false alarm constraints [5, 94]. Since the worst case detection delay is a

pessimistic metric, it is, in general, possible to obtain algorithms performing better

than the (generalized) CUSUM algorithm.

Considering the pre-change and the post-change cases as hidden states due to

the unknown change-point, a QCD problem can be formulated as a partially ob-

servable Markov decision process (POMDP) problem. For the problem of online

attack/anomaly detection in the smart grid, in the pre-change state, the system is

operated under normal conditions and using the system model, the pre-change mea-
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surement pdf can be specified highly accurately. On the other hand, the post-change

measurement pdf can take different unknown forms depending on the attacker’s strat-

egy. Furthermore, the transition probability between the hidden states is unknown

in general. Hence, the exact model of the POMDP is unknown.

Reinforcement learning (RL) algorithms are known to be effective in controlling

uncertain environments. Hence, the described POMDP problem can be effectively

solved using RL. In particular, as a solution, either the underlying POMDP model

can be learned and then a model-based RL algorithm for POMDPs [30, 114] can be

used or a model-free RL algorithm [53, 73, 83, 101, 102] can be used without learning

the underlying model. Since the model-based approach requires a two-step solution

that is computationally more demanding and only an approximate model can be

learned in general, we prefer to use the model-free RL approach.

Outlier detection schemes such as the Euclidean detector [87] and the cosine-

similarity metric based detector [111] are universal as they do not require any attack

model. They mainly compute a dissimilarity metric between actual sensor mea-

surements and predicted measurements (by the Kalman filter) and declare an at-

tack/anomaly if the amount of dissimilarity exceeds a certain predefined threshold.

However, such detectors do not consider temporal relation between attacked/anomalous

measurements and make sample-by-sample decisions. Hence, they are unable to dis-

tinguish instantaneous high-level random system noise from long-term (persistent)

anomalies caused, for example, by an unfriendly intervention to the system. Hence,

compared to the outlier detection schemes, more reliable universal attack detection

schemes are needed.

In this chapter, we consider the smart grid security problem from the defender’s

perspective and seek for an effective online detection scheme using RL techniques

(single-agent RL). Note that the problem can be considered from an attacker’s per-

spective as well, where the objective would be to determine the attacking strategies

leading to the maximum possible damage on the system. Such a problem can be
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particularly useful in vulnerability analysis, that is, to identify the worst possible

damage an attacker may introduce to the system and accordingly to take necessary

precautions [19, 41, 140]. In the literature, several studies investigate vulnerability

analyses using RL, see for example [19] for FDI attacks and [140] for sequential net-

work topology attacks. We further note that the problem can also be considered

from both defender’s and attacker’s perspectives simultaneously, that corresponds to

a game-theoretic setting.

Extension of single-agent RL to multiple agents is the multi-agent RL framework

involves game theory since in this case, the optimal policies of agents depend both

on the environment and the policies of the other agents. Moreover, stochastic games

extend the Markov decision processes to multi-agent case where the game is sequential

and consists of multiple states, and the transition from one state to another and also

the payoffs (rewards or costs) depend on joint actions of all agents. Several RL-

based solution approaches have been proposed for stochastic games, see for example

[21,51,80,98,136]. Further, if the game (i.e., the underlying state of the environment,

actions and payoffs of other agents) is partially observed, then it is called a partially

observable stochastic game, for which finding a solution is more difficult in general. In

this chapter, we consider the single-agent RL setting from the defender’s perspective.

2.1.2 Contributions

We propose an online cyber-attack detection algorithm using the framework of model-

free RL for POMDPs [64]. The proposed algorithm is universal, that is, it does not

require attack models. This makes the proposed scheme widely applicable and also

proactive in the sense that new unknown attack types can be detected. Since we follow

a model-free RL approach, the defender learns a direct mapping from observations

to actions (stop or continue) by trial-and-error. In the training phase, although it is

possible to obtain or generate measurement data for the pre-change case using the

system model under normal operating conditions, it is generally difficult to obtain



CHAPTER 2. ONLINE CYBER-ATTACK DETECTION IN SMART GRID: A
REINFORCEMENT LEARNING APPROACH 10

real attack data. For this reason, we follow a robust detection approach by training

the defender with low-magnitude attacks that corresponds to the worst-case scenarios

from a defender’s perspective since such attacks are quite difficult to detect. Then, the

trained defender becomes sensitive to detect slight deviations of sensor measurements

from the normal system operation. The robust detection approach significantly limits

the action space of an attacker as well. In other words, to prevent the detection, an

attacker can only exploit very low attack magnitudes, which are practically not much

of interest due to their minimal damage on the system.

2.1.3 Organization

We introduce the system model and the state estimation mechanism in Sec. 2.2. We

present the problem formulation in Sec. 2.3 and the proposed solution approach in

Sec. 2.4. We then illustrate the performance of the proposed RL-based detection

scheme via extensive simulations in Sec. 2.5. Finally, Sec. 2.6 concludes the chapter.

Boldface letters denote vectors and matrices, all vectors are column vectors, and ·T

denotes the transpose operator. Furthermore, P and E denote the probability and

expectation operators, respectively.

2.2 System Model and State Estimation

2.2.1 System Model

Suppose that there are K sensors in a power grid consisting of N + 1 buses, where

usually K > N to have the necessary measurement redundancy against noise [1]. One

of the buses is considered as a reference bus and the system state at time t is denoted

with φφφt = [φ1,t, . . . , φN,t]
T where φn,t denotes the phase angle at bus n at time t and

the phase angle of the reference bus is set to zero. Let the measurement taken at

sensor k at time t be denoted with xk,t and the measurement vector be denoted with



CHAPTER 2. ONLINE CYBER-ATTACK DETECTION IN SMART GRID: A
REINFORCEMENT LEARNING APPROACH 11

xt = [x1,t, . . . , xK,t]
T. We model the smart grid as a discrete-time linear dynamic

system as follows [1, 23,25,120]:

φφφt = Aφφφt−1 + vt, (2.1)

xt = Hφφφt + wt, (2.2)

where A ∈ RN×N is the system (state transition) matrix, H ∈ RK×N is the measure-

ment matrix determined based on the network topology, vt = [v1,t, . . . , vN,t]
T is the

process noise vector, and wt = [w1,t, . . . , wK,t]
T is the measurement noise vector. We

assume that vt and wt are independent additive white Gaussian random processes

where vt ∼N (0, σ2
v IN), wt ∼N (0, σ2

w IK), and IK ∈ RK×K is an identity matrix.

We assume that the system is stable under normal operating conditions. Moreover,

we assume that the system is observable, that is, the observability matrix

O ,

[ H
HA
...

HAN−1

]
has rank N .

The system model given in Eq. (2.1) and Eq. (2.2) corresponds to the normal

system operation. In case of a cyber-attack, however, the measurement model in

Eq. (2.2) is no longer true. For instance, in case of a(n):

1. FDI attack launched at time τ , the measurement model can be written as

xt = Hφφφt + wt + bt11{t ≥ τ},

where 11 is an indicator function and bt , [b1,t, . . . , bK,t]
T denotes the injected

malicious data at time t ≥ τ and bk,t denotes the injected false datum to the

kth sensor at time t,

2. Jamming attack with additive noise, the measurement model can be written as

xt = Hφφφt + wt + ut11{t ≥ τ},

where ut , [u1,t, . . . , uK,t]
T denotes the random noise realization at time t ≥ τ

and uk,t denotes the jamming noise corrupting the kth sensor at time t,
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3. Hybrid FDI/jamming attack [67], the sensor measurements take the following

form:

xt = Hφφφt + wt + (bt + ut)11{t ≥ τ},

4. DoS attack, sensor measurements can be partially unavailable to the system

controller. The measurement model can then be written as

xt = Dt(Hφφφt + wt),

where Dt = diag(d1,t, . . . , dK,t) is a diagonal matrix consisting of 0s and 1s.

Particularly, if xk,t is available, then dk,t = 1, otherwise dk,t = 0. Note that

Dt = IK for t < τ ,

5. Network topology attack, the measurement matrix changes. Denoting the mea-

surement matrix under topology attack at time t ≥ τ by H̄t, we have

xt =

Hφφφt + wt, if t < τ

H̄tφφφt + wt, if t ≥ τ,

6. Mixed topology and hybrid FDI/jamming attack, the measurement model can

be written as follows:

xt =

Hφφφt + wt, if t < τ

H̄tφφφt + wt + bt + ut, if t ≥ τ.

2.2.2 State Estimation

Since the smart grid is regulated based on estimated system states, state estimation is

a fundamental task in the smart grid, that is conventionally performed using the static

least squares (LS) estimators [9,36,82]. However, in practice, the smart grid is a highly

dynamic system due to time-varying load and power generation [127]. Furthermore,

time-varying cyber-attacks can be designed and performed by the adversaries. Hence,

dynamic system modeling as in Eq. (2.1) and Eq. (2.2) and correspondingly using a
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dynamic state estimator can be quite useful for real-time operation and security of

the smart grid [66,67].

For a discrete-time linear dynamic system, if the noise terms are Gaussian, the

Kalman filter is the optimal linear estimator in minimizing the mean squared state

estimation error [56]. Note that for the Kalman filter to work correctly, the system

needs to be observable. The Kalman filter is an online estimator consisting of predic-

tion and measurement update steps at each iteration. Denoting the state estimates

at time t with φ̂φφt|t′ where t′ = t − 1 and t′ = t for the prediction and measurement

update steps, respectively, the Kalman filter equations at time t can be written as

follows:

Prediction:

φ̂φφt|t−1 = Aφ̂φφt−1|t−1,

Ft|t−1 = AFt−1|t−1A
T + σ2

v IN , (2.3)

Measurement update:

Gt = Ft|t−1H
T(HFt|t−1H

T + σ2
w IK)−1,

φ̂φφt|t = φ̂φφt|t−1 + Gt(xt −Hφ̂φφt|t−1),

Ft|t = Ft|t−1 −GtHFt|t−1, (2.4)

where Ft|t−1 and Ft|t denote the estimates of the state covariance matrix based on

the measurements up to t − 1 and t, respectively. Moreover, Gt is the Kalman gain

matrix at time t.

We next demonstrate the effect of cyber-attacks on the state estimation mech-

anism via an illustrative example. In IEEE-14 bus power system with system pa-

rameters chosen as A = IN , σ2
v = 10−4, and σ2

w = 2 × 10−4, we consider a random

FDI attack with various magnitude/intensity levels and show how the mean squared

state estimation error of the Kalman filter changes when FDI attacks are launched

on the system. We assume that the attacks are launched at τ = 100, that is, the sys-
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Figure 2.1: Mean squared state estimation error vs. time where random FDI attacks

with various magnitude levels are launched at time τ = 100.

tem is operated under normal (non-anomalous) conditions up to time 100 and under

attacking conditions afterwards. Three attack magnitude levels are considered:

• Level 1: bk,t ∼ U [−0.04, 0.04], ∀k ∈ {1, . . . , K} and ∀t ≥ τ ,

• Level 2: bk,t ∼ U [−0.07, 0.07], ∀k ∈ {1, . . . , K} and ∀t ≥ τ ,

• Level 3: bk,t ∼ U [−0.1, 0.1], ∀k ∈ {1, . . . , K} and ∀t ≥ τ ,

where U [ζ1, ζ2] denotes a uniform random variable in the range of [ζ1, ζ2]. The corre-

sponding mean squared error (MSE) versus time curves are presented in Fig. 2.1. We

observe that in case of cyber-attacks, the state estimates are deviated from the actual

system states where the amount of deviation increases with the attack magnitude.

2.3 Problem Formulation

Before we introduce our problem formulation, we briefly explain a POMDP setting

as follows. Given an agent and an environment, a discrete-time POMDP is defined
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by the seven-tuple (S,A, T ,R,O,G, γ) where S denotes the set of (hidden) states

of the environment, A denotes the set of actions of the agent, T denotes the set of

conditional transition probabilities between the states, R : S × A → R denotes the

reward function that maps the state-action pairs to rewards, O denotes the set of

observations of the agent, G denotes the set of conditional observation probabilities,

and γ ∈ [0, 1] denotes a discount factor that indicates how much present rewards are

preferred over future rewards.

At each time t, the environment is in a particular hidden state st ∈ S. Obtain-

ing an observation ot ∈ O depending on the current state of the environment with

the probability G(ot|st), the agent takes an action at ∈ A and receives a reward

rt = R(st, at) from the environment based on its action and the current state of the

environment. At the same time, the environment makes a transition to the next state

st+1 with the probability T (st+1|st, at). The process is repeated until a terminal state

is reached. In this process, the goal of the agent is to determine an optimal policy

π : O → A that maps observations to actions and maximizes the agent’s expected to-

tal discounted reward, that is, E
[∑∞

t=0 γ
trt
]
. Equivalently, if an agent receives costs

instead of rewards from the environment, then the goal is to minimize the expected

total discounted cost. Considering the latter, the POMDP problem can be written

as follows:

min
π:O→A

E
[ ∞∑
t=0

γtrt

]
. (2.5)

Next, we explain the online attack detection problem in a POMDP setting. We

assume that at an unknown time τ , a cyber-attack is launched to the system and our

aim is to detect the attack as quickly as possible after it occurs, where the attacker’s

capabilities/strategies are completely unknown. This defines a QCD problem where

the aim is to minimize the average detection delay (ADD) as well as the false alarm

rate (FAR). This problem can, in fact, be expressed as a POMDP problem (see

Fig. 2.2). In particular, due to the unknown attack launch time τ , there are two hidden

states: pre-attack and post-attack. At each time t, after obtaining the measurement
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Figure 2.2: State-machine diagram for the considered POMDP setting. The hid-

den states and the (hidden) transition between them happening at time t = τ are

illustrated with the dashed circles and the dashed line, respectively. The defender re-

ceives costs (r) depending on its actions and the underlying state of the environment.

Whenever the defender chooses the action stop, the system moves into a terminal

state and the defender receives no further cost.

vector xt, two actions are available for the agent (defender): stop and declare an

attack or continue to have further measurements. We assume that whenever the

action stop is chosen, the system moves into a terminal state, and always stays there

afterwards.

Furthermore, although the conditional observation probability for the pre-attack

state can be inferred based on the system model under normal operating conditions,

since the attacking strategies are unknown, the conditional observation probability

for the post-attack state is assumed to be totally unknown. Moreover, due to the

unknown attack launch time τ , state transition probability between the pre-attack

and the post-attack states is unknown.

Since our aim is to minimize the ADD as well as the FAR, both the false alarm
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and the detection delay events should be associated with some costs. Let the relative

cost of a detection delay compared to a false alarm event be c > 0. Then, if the true

underlying state is pre-attack and the action stop is chosen, a false alarm occurs and

the defender receives a cost of 1. On the other hand, if the underlying state is post-

attack and the action continue is chosen, then the defender receives a cost of c due

to the detection delay. For all other (hidden) state-action pairs, the cost is assumed

to be zero. Also, once the action stop is chosen, the defender does not receive any

further costs while staying in the terminal state. The objective of the defender is to

minimize its expected total cost by properly choosing its actions. Particularly, based

on its observations, the defender needs to determine the stopping time at which an

attack is declared.

Let Γ denote the stopping time chosen by the defender. Moreover, let Pk denote

the probability measure if the attack is launched at time k, that is, τ = k, and let Ek
denote the corresponding expectation. Note that since the attacking strategies are

unknown, Pk is assumed to be unknown. For the considered online attack detection

problem, we can derive the expected total discounted cost as follows:

E
[ ∞∑
t=0

γtrt

]
= Eτ

[
11{Γ < τ}+

Γ∑
t=τ

c
]

= Eτ
[
11{Γ < τ}+ c (Γ− τ)+

]
= Pτ ({Γ < τ}) + cEτ

[
(Γ− τ)+

]
, (2.6)

where γ = 1 is chosen since the present and future costs are equally weighted in

our problem, {Γ < τ} is a false alarm event that is penalized with a cost of 1, and

Eτ
[
(Γ− τ)+

]
is the ADD where each detection delay is penalized with a cost of c and

(·)+ = max(·, 0).

Based on Eq. (2.5) and Eq. (2.6), the online attack detection problem can be

written as follows:

min
Γ

Pτ ({Γ < τ}) + cEτ
[
(Γ− τ)+

]
. (2.7)
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Since c corresponds to the relative cost between the false alarm and the detection

delay events, by varying c and solving the corresponding problem in Eq. (2.7), a

tradeoff curve between ADD and FAR can be obtained. Moreover, c < 1 can be

chosen to prevent frequent false alarms.

Since the exact POMDP model is unknown due to unknown attack launch time τ

and the unknown attacking strategies and since the RL algorithms are known to be

effective over uncertain environments, we follow a model-free RL approach to obtain

an approximate solution to Eq. (2.7). Then, a direct mapping from observations to

the actions, that is, the stopping time Γ, needs to be learned. Note that the optimal

action is continue if the underlying state is pre-attack and stop if the underlying state

is post-attack. Then, to determine the optimal actions, the underlying state needs to

be inferred using observations and the observation signal should be well informative

to reduce the uncertainty about the underlying state. As described in Sec. 2.2, the

defender observes the measurements xt at each time t. The simplest approach can

be forming the observation space directly with the measurement vector xt but we

would like to process the measurements and form the observation space with a signal

related to the deviation of system from its normal operation.

Furthermore, it is, in general, possible to obtain identical observations in the pre-

attack and the post-attack states. This is called perceptual aliasing and prevent us

from making a good inference about the underlying state by only looking at the ob-

servation at a single time. We further note that in our problem, deciding on an attack

solely based on a single observation corresponds to an outlier detection scheme for

which more practical detectors are available not requiring a learning phase, see for

example [87, 111]. However, we are particularly interested in detecting sudden and

persistent attacks/anomalies that more likely happen due to an unfriendly interven-

tion to the system rather than random disturbances due to high-level system noise

realizations.

Since different states require different optimal actions, the ambiguity on the un-
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Smart Grid f(·) Defender
{xt} ot

Γ

Figure 2.3: A graphical description of the online attack detection problem in the

smart grid. The measurements {xt} are collected through sensors and processed to

obtain ot = f({xt}). The defender observes f({xt}) at each time t and decides on

the attack declaration time Γ.

derlying state should be further reduced with additional information derived from

the history of observations. In fact, there may be cases where the entire history of

observations is needed to determine the optimal solution in a POMDP problem [92].

However, due to computational limitations, only finite memory can be used in prac-

tice and an approximately optimal solution can be obtained. A simple approach is

to use a finite-size sliding window of observations as a memory and map the most

recent history window to an action, as described in [83]. This approach is particu-

larly suitable for our problem as well since we assume persistent attacks/anomalies

that happen at an unknown point of time and continue thereafter. That is, only

the observations obtained after an attack are significant from the attack detection

perspective.

Let the function that processes finite history of measurements and produces the

observation signal be denoted with f(·) so that the observation signal at time t is ot =

f({xt}), where {xt} denotes a sequence of measurement vectors from recent history.

Then, at each time, the defender observes f({xt}) and decides on the stopping time Γ,

as illustrated in Fig. 2.3. The aim of the defender is to obtain a solution to Eq. (2.7)

by using an RL algorithm, as detailed in the subsequent section.

2.4 Solution Approach

First, we explain our methodology to obtain the observation signal ot = f({xt}). Note

that the pdf of sensor measurements in the pre-attack state can be inferred using the
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baseline measurement model in Eq. (2.2) and the state estimates provided by the

Kalman filter. In particular, the pdf of the measurements under normal operating

conditions can be estimated as follows:

xt ∼N (Hφ̂φφt|t, σ
2
w IK).

The likelihood of measurements based on the baseline density estimate, denoted with

L(xt), can then be computed as follows:

L(xt) = (2πσ2
w)−

K
2 exp

( −1

2σ2
w

(xt −Hφ̂φφt|t)
T(xt −Hφ̂φφt|t)

)
= (2πσ2

w)−
K
2 exp

( −1

2σ2
w

ηt

)
,

where

ηt , (xt −Hφ̂φφt|t)
T(xt −Hφ̂φφt|t) (2.8)

is the estimate of the negative log-scaled likelihood.

In case the system is operated under normal conditions, the likelihood L(xt) is

expected to be high. Equivalently, small (close to zero) values of ηt may indicate

the normal system operation. On the other hand, in case of an attack/anomaly, the

system deviates from normal operating conditions and hence the likelihood L(xt)

is expected to decrease in such cases. Then, persistent high values of ηt over a time

period may indicate an attack/anomaly. Hence, ηt may help to reduce the uncertainty

about the underlying state to some extent.

However, since ηt can take any nonnegative value, the observation space is con-

tinuous and hence learning a mapping from each possible observation to an action

is computationally infeasible. To reduce the computational complexity in such con-

tinuous spaces, we can quantize the observations. We then partition the observation

space into I mutually exclusive and disjoint intervals using the quantization thresh-

olds β0 = 0 < β1 < · · · < βI−1 < βI = ∞ so that if βi−1 ≤ ηt < βi, i ∈ 1, . . . , I, the

observation at time t is represented with θi. Then, possible observations at any given
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time are θ1, . . . , θI . Since θi’s are representations of the quantization levels, each θi

needs to be assigned to a different value.

Furthermore, as explained before, although ηt may be useful to infer the underly-

ing state at time t, it is possible to obtain identical observations in the pre-attack and

post-attack states. For this reason, we propose to use a finite history of observations.

Let the size of the sliding observation window be M so that there are IM possible ob-

servation windows and the sliding window at time t consists of the quantized versions

of {ηj : t−M + 1 ≤ j ≤ t}. Henceforth, by an observation o, we refer to an obser-

vation window so that the observation space O consists of all possible observation

windows. For instance, if I = M = 2, then O = {[θ1, θ1], [θ1, θ2], [θ2, θ1], [θ2, θ2]}.

For each possible observation-action pair (o, a), we propose to learn a Q(o, a)

value (i.e., the expected future cost) using an RL algorithm where all Q(o, a) values

are stored in a Q-table of size IM × 2. After learning the Q-table, the policy of the

defender will be choosing the action a with the minimum Q(o, a) for each observation

o. In general, increasing I and M improves the learning performance but at the same

time results in a larger Q table, that would require to increase the number of training

episodes and hence the computational complexity of the learning phase. Hence, I

and M should be chosen considering the expected tradeoff between performance and

computational complexity.

The considered RL-based detection scheme consists of learning and online detec-

tion phases. In the literature, state-action-reward-state-action (SARSA), a model-free

RL control algorithm [126], was empirically shown to perform well over the model-free

POMDP settings [102]. Hence, in the learning phase, the defender is trained with

many episodes of experience using the SARSA algorithm and a Q-table is learned by

the defender. For training, a simulation environment is created and during the train-

ing procedure, at each time, the defender takes an action based on its observation and

receives a cost in return of its action from the simulation environment, as illustrated

in Fig. 2.4. Based on this experience, the defender updates and learns a Q-table.
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Algorithm 2.1 Learning Phase – SARSA Algorithm

1: Initialize Q(o, a) arbitrarily, ∀o ∈ O and ∀a ∈ A.
2: for e = 1 : E do
3: t← 0
4: s← pre-attack
5: Choose an initial o based on the pre-attack state and choose the initial a = continue.
6: while s 6= terminal and t < T do
7: t← t+ 1
8: if a = stop then
9: s← terminal

10: r ← 11{t < τ}
11: Q(o, a)← Q(o, a) + α (r −Q(o, a))
12: else if a = continue then
13: if t >= τ then
14: r ← c
15: s← post-attack
16: else
17: r ← 0
18: end if
19: Collect the measurements xt.
20: Employ the Kalman filter using Eq. (2.3) and Eq. (2.4).
21: Compute ηt using Eq. (2.8) and quantize it to obtain θi if βi−1 ≤ ηt < βi, i ∈

1, . . . , I.
22: Update the sliding observation window o with the most recent entry θi and

obtain o′.
23: Choose action a′ from o′ using the ε-greedy policy based on the Q-table (that is

being learned).
24: Q(o, a)← Q(o, a) + α (r +Q(o′, a′)−Q(o, a))
25: o← o′, a← a′

26: end if
27: end while
28: end for
29: Output: Q-table, that is, Q(o, a), ∀o ∈ O and ∀a ∈ A.

Then, in the online detection phase, based on the observations, the action with the

lowest expected future cost (Q value) is chosen at each time using the previously

learned Q-table. The online detection phase continues until the action stop is chosen

by the defender. Whenever stop is chosen, an attack is declared and the process is

terminated.

Note that after declaring an attack, whenever the system is recovered and returned

back to the normal operating conditions, the online detection phase can be restarted.

That is, once a defender is trained, no further training is needed. We summarize

the learning and the online detection stages in Alg. 2.1 and Alg. 2.2, respectively. In

Alg. 2.1, E denotes the number of learning episodes, T denotes the maximum length
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Algorithm 2.2 Online Attack Detection

1: Input: Q-table learned in Alg. 2.1.
2: Choose an initial o based on the pre-attack state and choose the initial a = continue.
3: t← 0
4: while a 6= stop do
5: t← t+ 1
6: Collect the measurements xt.
7: Determine the new o as in the lines 20–22 of Alg. 2.1.
8: a← arg minaQ(o, a).
9: end while

10: Declare an attack and terminate the procedure.

of a learning episode, α is the learning rate, and ε is the exploration rate, where

the ε-greedy policy chooses the action with the minimum Q value with probability

1− ε and the other action (for exploration purposes during the learning process) with

probability ε.

Since RL is an iterative procedure, same actions are repeated at each iteration

(learning episode). The time complexity of an RL algorithm can then be considered as

the time complexity of a single iteration [61]. As the SARSA algorithm performs one

update on the Q-table at a time and the maximum time limit for a learning episode

is T , the time complexity of Alg. 2.1 is O(T ). Moreover, the overall complexity of the

learning procedure is O(TE), as E is the number of learning episodes. Notice that

the time complexity does not depend on the size of the action and observation spaces.

On the other hand, as I and/or M increase, a larger Q-table needs to be learned,

that requires to increase E for a better learning. Furthermore, the space complexity

(memory cost) of Alg. 2.1 is M + 2 IM due to the sliding observation window of size

M and the Q-table of size IM × 2. Note that the space complexity is fixed over time.

During the learning procedure, based on the smart grid model and some attack models

(that are used to obtain low-magnitude attacks that correspond to small deviations

from the normal system operation), we can obtain the measurement data online and

the defender is trained with the observed data stream. Hence, the learning phase

does not require storage of large amount of training data as only a sliding observation

window of size M needs to be stored at each time.
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Environment

Defender

a o r

Figure 2.4: An illustration of the interaction between defender and the simulation

environment during the learning procedure. The environment provides an observation

o based on its internal state s, the agent chooses an action a based on its observation

and receives a cost r from the environment in return of its action. Based on this

experience, the defender updates Q(o, a). This process is repeated many times during

the learning procedure.

In Alg. 2.2, at each time, the observation o is determined and using the Q-table

(learned in Alg. 2.1), the corresponding action a with the minimum cost is chosen.

Hence, the complexity at a time is O(1). This process is repeated until the action

stop is chosen at the stopping time Γ. Furthermore, similarly to Alg. 2.1, the space

complexity of Alg. 2.2 is M + 2 IM .

Remark 1: Since our solution approach is model-free, that is, it is not designed

for specific types of attacks, the proposed detector does not distinguish between an

attack and other types of persistent anomalies such as network topology faults. In

fact, the proposed algorithm can detect any attack/anomaly as long as the effect of

such attack/anomaly on the system is at a distinguishable level, that is, the estimated

system states are at least slightly deviated from the actual system states. On the

other hand, since we train the agent (defender) with low-magnitude attacks with

some known attack types (to create the effect of small deviations from actual system

operation in the post-attack state) and we test the proposed detector against various
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cyber-attacks in the numerical section (see Sec. 2.5), we lay the main emphasis on

online attack detection in this chapter. In general, the proposed detector can be

considered as an online anomaly detection algorithm.

Remark 2: The proposed solution scheme can be applied in a distributed smart

grid system, where the learning and detection tasks are still performed at a single

center but the sensor measurements are obtained in a distributed manner. We briefly

explain this setup as follows:

• In the wide-area monitoring model of smart grids, there are several local control

centers and a global control center. Each local center collects and processes

measurements of a set of sensors in its neighborhood, and communicates with

the global center and with the neighboring local centers, see for example [66].

• The system state is estimated in a distributed manner, for example, using the

distributed Kalman filter designed for wide-area smart grids in [66].

• Let hTk ∈ RN be the kth row of the measurement matrix, HT = [h1, . . . ,hK ].

Then, estimate of the negative log-scaled likelihood, ηt, can be written as follows

(see Eq. (2.8)):

ηt =
K∑
k=1

(xk,t − hTk φ̂φφt|t)
2. (2.9)

By employing the distributed Kalman filter, the local centers can estimate the

system state at each time t. Then, they can compute the term (xk,t − hTk φ̂φφt|t)
2

for the sensors in their neighborhood. Let the number of local centers be R and

the set of sensors in the neighborhood of the rth local center be denoted with

Sr. Then, ηt in Eq. (2.9) can be rewritten as follows:

ηt =
R∑
r=1

∑
k∈Sr

(xk,t − hTk φ̂φφt|t)
2

︸ ︷︷ ︸
ηt,r

=
R∑
r=1

ηt,r.
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• In the distributed implementation, each local center can compute ηt,r and report

it to the global center, which then sums {ηt,r, r = 1, 2, . . . , R} and obtain ηt.

• The learning and detection tasks (Alg. 2.1 and Alg. 2.2) are performed at the

global center in the same way as explained above.

2.5 Simulation Results

2.5.1 Simulation Setup and Parameters

Simulations are performed on an IEEE-14 bus power system that consists of N + 1 =

14 buses and K = 23 sensors. The initial state variables (phase angles) are determined

using the DC optimal power flow algorithm for case-14 in MATPOWER [150]. The

system matrix A is chosen to be an identity matrix and the measurement matrix

H is determined based on the IEEE-14 power system. The noise variances for the

normal system operation are chosen as σ2
v = 10−4 and σ2

w = 2× 10−4.

For the proposed RL-based online attack detection scheme, the number of quan-

tization levels is chosen as I = 4 and the quantization thresholds are chosen as

β1 = 0.95× 10−2, β2 = 1.05× 10−2, and β3 = 1.15× 10−2 via an offline simulation by

monitoring {ηt} during the normal system operation. Further, M = 4 is chosen, that

is, sliding observation window consists of 4 entries. Moreover, the learning parameters

are chosen as α = 0.1 and ε = 0.1, and the episode length is chosen to be T = 200.

In the learning phase, the defender is firstly trained over 4× 105 episodes where the

attack launch time is τ = 100 and then trained further over 4 × 105 episodes where

τ = 1 to ensure that the defender sufficiently explores the observation space under

normal operating conditions as well as the attacking conditions. More specifically,

since a learning episode is terminated whenever the action stop is chosen and obser-

vations under an attack become available to the defender only for t ≥ τ , we choose

τ = 1 in the half of the learning episodes to make sure that the defender is sufficiently
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trained under the post-attack regime.

To illustrate the tradeoff between the ADD and PFA, the proposed algorithm

is trained for both c = 0.02 and c = 0.2. Moreover, to obtain a detector that

is robust and effective against small deviations of measurements from the normal

system operation, the defender needs to be trained with very low-magnitude attacks

that correspond to slight deviations from the baseline. For this purpose, some known

attack types with low magnitudes are used. In particular, in one half of the learning

episodes, random FDI attacks are used with attack magnitudes being realizations

of the uniform random variable ±U [0.02, 0.06], that is, bk,t ∼ U [0.02, 0.06] is the

injected false datum to the kth sensor at time t ≥ τ , ∀k ∈ {1, . . . , K}. In the other

half of the learning episodes, random hybrid FDI/jamming attacks are used where

bk,t ∼ U [0.02, 0.06], uk,t ∼ N (0, σk,t), and σk,t ∼ U [2×10−4, 4×10−4], ∀k ∈ {1, . . . , K}

and ∀t ≥ τ . The total training time costs are recorded approximately as 5018 seconds

and 5106 seconds for c = 0.2 and c = 0.02, respectively.

2.5.2 Performance Evaluation

In this section, performance of the proposed RL-based attack detection scheme is

evaluated and compared with some existing detectors in the literature. Firstly, we

report the average false alarm period, E∞[Γ], of the proposed detection scheme, that

is, the first time on the average the proposed detector gives an alarm although no

attack/anomaly happens at all (τ =∞). The average false alarm periods are obtained

approximately as E∞[Γ] = 9.4696 × 105 for c = 0.2 and E∞[Γ] = 7.9210 × 106 for

c = 0.02. As expected, FAR of the proposed detector reduces as the relative cost of

the false alarm event, 1/c, increases.

Based on the optimization problem in Eq. (2.7), our performance metrics are

the PFA (i.e., Pτ ({Γ < τ})) and the ADD (i.e., Eτ
[
(Γ − τ)+

]
). Notice that both

performance metrics depend on the unknown attack launch time τ . Hence, in general,

the performance metrics need to be computed for each possible τ . For a representative
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Figure 2.5: ADD vs. PFA curves for the proposed algorithm and the benchmark tests

in case of a random FDI attack.

performance illustration, we choose τ as a geometric random variable with parameter

ρ such that P (τ = k) = ρ (1 − ρ)k−1, k = 1, 2, 3, . . . where ρ ∼ U [10−4, 10−3] is a

uniform random variable.

With Monte Carlo simulations over 10000 trials, we compute the PFA and the

ADD of the proposed detector, the Euclidean detector [87], and the cosine-similarity

metric based detector [111]. To obtain the performance curves, we vary the thresholds

of the benchmark tests and vary c for the proposed algorithm. To evaluate the

proposed algorithm, we use Alg. 2.2 that makes use of the Q-tables learned in Alg. 2.1

for c = 0.02 and c = 0.2. Furthermore, we report the precision, recall, and F-score

for all simulation cases. As the computation of these measures requires computing

the number of detected and missed trials, we define an upper bound on the detection

delay (that corresponds to the maximum acceptable detection delay) such that if

the attack is detected within this bound we assume the attack is detected, otherwise

missed. As an example, we choose this bound as 10 time units. Then, we compute
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Figure 2.6: Performance curves for the proposed algorithm and the benchmark tests

in case of a structured FDI attack.

the precision, recall, and F-score out of 10000 trials as follows:

Precision =
# trials (τ ≤ Γ ≤ τ + 10)

# trials (τ ≤ Γ ≤ τ + 10) + # trials (Γ < τ)
,

Recall =
# trials (τ ≤ Γ ≤ τ + 10)

# trials (τ ≤ Γ ≤ τ + 10) + # trials (Γ > τ + 10)
,

and

F-score = 2
Precision× Recall

Precision + Recall
,

where “# trials” means “the number of trials with”.

We evaluate the proposed and the benchmark detectors under the following attack

scenarios:

1. Firstly, we evaluate the detectors against a random FDI attack where bk,t ∼

U [−0.07, 0.07], ∀k ∈ {1, . . . , K} and ∀t ≥ τ . The corresponding tradeoff curves

are presented in Fig. 2.5.

2. We then evaluate the detectors against a structured FDI attack [82], where the

injected data bt lies on the column space of the measurement matrix H . We
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Figure 2.7: Performance curves for the proposed algorithm and the benchmark tests

in case of a jamming attack with AWGN.

choose bt = Hgt where gt , [g1,t, . . . , gN,t]
T and gn,t ∼ U [0.08, 0.12], ∀n ∈

{1, . . . , N} and ∀t ≥ τ . The corresponding performance curves are illustrated

in Fig. 2.6.

3. Then, we evaluate the detectors in case of a jamming attack with zero-mean

AWGN where uk,t ∼ N (0, σk,t) and σk,t ∼ U [10−3, 2 × 10−3], ∀k ∈ {1, . . . , K}

and ∀t ≥ τ . The corresponding tradeoff curves are presented in Fig. 2.7.

4. Next, we evaluate the detectors in case of a jamming attack with jamming

noise correlated over the sensors where ut ∼ N (0,Ut), Ut = ΣΣΣtΣΣΣ
T
t , and ΣΣΣt is

a random Gaussian matrix with its entry at the ith row and the jth column

is ΣΣΣt,i,j ∼ N (0, 8 × 10−5). The corresponding performance curves are given in

Fig. 2.8.

5. Moreover, we evaluate the detectors under a hybrid FDI/jamming attack where

bk,t ∼ U [−0.05, 0.05], uk,t ∼ N (0, σk,t), and σk,t ∼ U [5 × 10−4, 10−3], ∀k ∈

{1, . . . , K} and ∀t ≥ τ . The corresponding tradeoff curves are presented in
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Figure 2.8: Performance curves for the proposed algorithm and the benchmark tests

in case of a jamming attack with jamming noise correlated over the space.

Fig. 2.9.

6. Then, we evaluate the detectors in case of a random DoS attack where the

measurement of each sensor become unavailable to the system controller at each

time with probability 0.2. That is, for each sensor k, dk,t is 0 with probability

0.2 and 1 with probability 0.8 at each time t ≥ τ . The performance curves

against the DoS attack are presented in Fig. 2.10.

7. Further, we consider a network topology attack where the lines between the

buses 9-10 and 12-13 break down. The measurement matrix H̄t for t ≥ τ is de-

termined accordingly. The corresponding tradeoff curves are given in Fig. 2.11.

8. Finally, we consider a mixed topology and hybrid FDI/jamming attack, where

the lines between buses 9-10 and 12-13 break down for t ≥ τ and further, we

have bk,t ∼ U [−0.05, 0.05], uk,t ∼ N (0, σk,t), and σk,t ∼ U [5× 10−4, 10−3], ∀k ∈

{1, . . . , K} and ∀t ≥ τ . The corresponding performance curves are presented

in Fig. 2.12.
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Table 2.1 and Table 2.2 summarize the precision, recall, and F-score for the proposed

RL-based detector for c = 0.2 and c = 0.02, respectively against all the considered

simulation cases above. Moreover, for the random FDI attack case, Fig. 2.13 illus-

trates the precision versus recall curves for the proposed and benchmark detectors.

Since we obtain similar results for the other attack cases, we report the results for

the random FDI attack case as a representative.

For almost all cases, we observe that the proposed RL-based detection scheme

significantly outperforms the benchmark tests. This is because through the training

process, the defender learns to differentiate the instantaneous high-level system noise

from persistent attacks launched to the system. Then, the trained defender is able to

significantly reduce its FAR. Moreover, since the defender is trained with low attack

magnitudes, it becomes sensitive to detect small deviations of the system from its

normal operation. On the other hand, the benchmark tests are essentially outlier

detection schemes making sample-by-sample decisions and hence they are unable

to distinguish high-level noise realizations from real attacks that makes such schemes

more vulnerable to false alarms. Furthermore, in case of DoS attacks, since the sensor

measurements become partially unavailable so that the system greatly deviates from

its normal operation, all detectors are able to detect the DoS attacks with almost

zero ADD (see Fig. 2.10).

Measure FDI Jamming Corr. Jamm. Hybrid DoS Structured FDI Topology Mixed

Precision 0.9977 0.9974 0.9968 0.9973 0.9977 0.9968 0.9972 0.9973

Recall 1 1 1 1 1 0.9756 0.9808 1

F-score 0.9988 0.9987 0.9984 0.9986 0.9988 0.9861 0.9890 0.9986

Table 2.1: Precision, recall, and F-score for the proposed detector (c = 0.2) in detec-

tion of various cyber-attacks.



CHAPTER 2. ONLINE CYBER-ATTACK DETECTION IN SMART GRID: A
REINFORCEMENT LEARNING APPROACH 33

0 0.05 0.1 0.15 0.2 0.25 0.3

0

5

10

15

20

25

30

35

40

45

50

RL-based Detector

Euclidean Detector

Cos-Sim Detector

0.5 1 1.5 2 2.5

10
-3

0.05

0.06

0.07

Figure 2.9: Performance curves for the proposed algorithm and the benchmark tests

in case of a hybrid FDI/jamming attack.

Measure FDI Jamming Corr. Jamm. Hybrid DoS Structured FDI Topology Mixed

Precision 0.9998 0.9994 0.9998 0.9997 0.9995 0.9993 0.9999 0.9995

Recall 1 1 1 1 1 0.9449 0.9785 1

F-score 0.9999 0.9997 0.9999 0.9998 0.9997 0.9713 0.9891 0.9997

Table 2.2: Precision, recall, and F-score for the proposed detector (c = 0.02) in

detection of various cyber-attacks.

2.6 Concluding Remarks

In this chapter, an online cyber-attack detection problem is formulated as a POMDP

problem based on the QCD framework and a solution based on the model-free RL

for POMDPs is proposed. The numerical studies illustrate the advantages of the

proposed detection scheme in fast and reliable detection of cyber-attacks targeting

the smart grid. The results also demonstrate the high potential of RL algorithms in

solving complex cyber security problems.
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Figure 2.10: Performance curves for the proposed algorithm and the benchmark tests

in case of a DoS attack.

Note that the proposed online detection method is widely applicable to any QCD

problem where the pre-change model can be derived with some accuracy but the post-

change model is unknown. This is, in fact, commonly encountered in many practical

applications where the normal system operation can be modeled sufficiently accurately

and the objective is the online detection of anomalies or attacks that are difficult to

model in general. Moreover, depending on specific applications, if real post-change

data can be obtained, the real data can be further enhanced with simulated data

and the training can be performed accordingly, that would potentially improve the

detection performance.
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Figure 2.11: Performance curves for the proposed algorithm and the benchmark tests

in case of a network topology attack.
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Figure 2.12: Performance curves for the proposed algorithm and the benchmark tests

in case of a mixed network topology and hybrid FDI/jamming attack.
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Figure 2.13: Precision vs. recall for the proposed and the benchmark detectors against

a random FDI attack.
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Chapter 3

Online Nonparametric Anomaly

Detection for High-Dimensional

Data Streams

3.1 Introduction

3.1.1 Background

Anomaly refers to deviation from the expected behavior. Anomaly detection has been

widely studied and to name a few, many distance-based, density-based, subspace-

based, support vector machine (SVM)-based, neural networks-based, and informa-

tion theoretic anomaly detection techniques have been proposed in the literature

in a variety of application domains such as intrusion detection in computer and

communication networks, credit card fraud detection, and industrial damage de-

tection [17, 60, 104]. Early and accurate detection of anomalies has a critical im-

portance for safe and reliable operation of many modern systems such as the smart

grid [64,69] and the Internet of Things (IoT) networks [91] that produce big (i.e., high-

dimensional) data streams. Such sudden anomalies often correspond to changes in
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the underlying statistical properties of the observed processes. To detect the changes,

the framework of QCD [5,108] is quite suitable, where the statistical inference about

the monitored process is typically done through observations acquired sequentially

over time and the goal is to detect the changes as soon as possible after they occur

while limiting the risk of false alarm.

The well-known QCD algorithms are model-based, that is, they require either the

exact knowledge or parameter estimates of the probability density functions (pdfs)

of the observed data stream for both the pre- and post-change cases [5, 65, 108]. For

instance, the generalized likelihood ratio (GLR) approach estimates the unknown

pdf parameters, plugs them back into the likelihood ratio term, and performs the

change/anomaly detection accordingly [13, 67, 71]. On the other hand, in high-

dimensional settings, for example, large-scale complex networks consisting of large

number of nodes that exhibit complex interactions, it is usually difficult to model

or intractable to estimate the high-dimensional multivariate pdfs. Moreover, it is, in

general, quite difficult to model all possible types of anomalies. Hence, in a general

anomaly detection problem, the post-change (i.e., anomalous) pdf is totally unknown.

To overcome such difficulties, we propose to extract useful univariate summary statis-

tics from the observed high-dimensional data and perform the anomaly detection task

in a single-dimensional space, through which we also aim to make more efficient use

of limited computational resources and to speed up the algorithms, that is especially

required in time-sensitive online settings.

Although a summary statistic may not completely characterize a random process,

it can be useful to evaluate the non-similarity between random processes with differ-

ent statistical properties. In our problem, there are two main challenges to determine

good summary statistics: (i) summary statistics should be well informative to statis-

tically distinguish anomalous data from nominal (i.e., non-anomalous) data, (ii) since

we are in an online setting, computation of the summary statistics should be simple

to allow for real-time processing. In this chapter, we consider two alternative sum-
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mary statistics: (i) if the observed nominal data has a low intrinsic dimensionality,

firstly learning a representative low-dimensional submanifold in which the nominal

data are embedded and then computing a statistic that shows how much the incoming

data stream deviates from the nominal submanifold; (ii) in the general case, learning

an acceptance region for the nominal data via the Geometric Entropy Minimization

(GEM) [48, 122] and then computing a nearest neighbor (NN) statistic that shows

how much the incoming data stream is away from the acceptance region. We propose

to first compute a set of nominal summary statistics that constitute the baseline in

an offline phase and then monitor possible deviations of online summary statistics

from the baseline statistics.

Anomaly detection schemes based on parametric models are vulnerable to model

mismatch that limits their applicability. For instance, it is common to fit a Gaussian

or Gaussian mixture model to the observed data or the data after dimensionality

reduction [17, 40, 52, 104] and to assume Gaussian noise or residual terms, see for

example [139]. Such parametric approaches are powerful only if the observed data

perfectly matches with the presumed model. On the other hand, nonparametric (i.e.,

model-free) data-driven techniques are robust to data model mismatch, that results

in wider applicability of such techniques. Moreover, in high-dimensional settings, the

lack of parametric models is common and complicated parameter-laden algorithms

generally result in low performance, over-fitting, and bias towards particular anomaly

types [74]. Hence, in this chapter, we do not make parametric model assumptions for

the observed high-dimensional data stream nor for the extracted summary statistics.

However, note that if the observed data stream or the summary statistics can be well

modeled, then a parametric detection method can be preferred since the parametric

methods usually have higher statistical power and their performance can be analyzed

more easily. Hence, our method should be mainly advantageous in high-dimensional

settings where the statistical data models are unknown.

Conventional anomaly detection schemes ignore the temporal relation between
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anomalous data points and make sample-by-sample decisions [17,104]. Such schemes

are essentially outlier detectors that are vulnerable to false alarms since it is possible

to observe non-persistent random outliers under normal system operation (i.e., no

anomaly) due to for example, heavy-tailed random noise processes. On the other

hand, if a system produces persistent outliers, then this may indicate an actual

anomaly. Hence, we define an anomaly as persistent outliers and from the observed

data stream, we propose to accumulate statistical evidence for anomaly over time,

similarly to the accumulation of log-likelihood ratios (LLRs) in the well-known cu-

mulative sum (CUSUM) algorithm for the QCD [5, Sec. 2.2]. With the goal of

making a reliable decision, we declare an anomaly only if there is a strong evidence

for that. The sequential decision making based on the accumulated evidence also

enables the detection of small but persistent changes, which would be missed by the

outlier detectors.

3.1.2 Related Work

Batch algorithms are widely encountered in the anomaly detection literature [17,

104], that require the entire data before processing. Clearly, such techniques are not

suitable in the online settings. For instance, in [31, 72], via the principal component

analysis (PCA), the data are decomposed into normal and anomalous components

and the data points with large anomalous components are classified as anomalous.

The well-known nonparametric statistical tests such as the Kolmogrov-Smirnov test,

the Wilcoxon signed-rank test, and the Pearson’s chi-squared test are also mainly

designed for batch processing. Although several sliding window-based versions of

them have been proposed for online anomaly detection, see for example [67, 129],

the window-based approach has an inherent detection latency caused by the window

size. More importantly, such tests are primarily designed for univariate data, with no

direct extensions for multivariate data.

Various online anomaly detection techniques for multivariate data streams have
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also been proposed in the literature. The SVM-based one-class classification algo-

rithms in [110, 117] determine a decision region for nominal data after mapping the

data onto a kernel space, where there is no clear control mechanism on the false

alarm rate. Moreover, the choice and complexity of computing the kernel functions are

among the disadvantages of such algorithms. A similar algorithm is presented in [137]

where the training data might contain a small number of anomalous data points or

outliers. An extension of the one-class SVM algorithm [117] is proposed in [55] where

the objective is to detect anomalies in the presence of multiple classes. Further-

more, in [48,122,149], NN graph-based anomaly detection schemes are proposed with

sample-by-sample decisions. As discussed earlier, sequential decision making is more

effective and reliable compared to sample-by-sample decisions. In [24, 37, 45], two-

sample tests are proposed to evaluate whether two datasets have the same distribu-

tion, where the test statistics are the distance between the means of the two samples

mapped into a kernel space in [45] and the relative entropy (i.e., the Kullback-Leibler

(KL) divergence) between the two samples in [24,37]. Such approaches mainly suffer

from low time resolution because they need large sample sizes for reliable decisions.

In [18], an online sliding window-based two-sample test is proposed based on NN

graphs and an accurate approximation is presented for its average false alarm period

(FAP). The method requires to form a new NN graph after each observation and a

search over all possible window partitions, that might be prohibitive for real-time pro-

cessing. In [11], firstly in an offline phase the high-dimensional nominal observation

space is partitioned into several subregions and then the online phase decides, via

hypothesis testing, if an incoming batch of observations fall inside the predetermined

subregions consistently with the nominal case. Similar to the other window-based ap-

proaches, the algorithm is mainly designed for batch processing and hence it cannot

operate as fully-sequential. In [143], a new interpretation of the CUSUM algorithm

based on the discrepancy theory and the GEM method are presented to detect anoma-

lies in real-time, where the presented algorithm asymptotically achieves the CUSUM
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algorithm under certain conditions, however, no mechanism is provided to control its

false alarm rate.

3.1.3 Contributions

In this chapter, we propose online nonparametric anomaly detection schemes for high-

dimensional data streams [68]. We list our main contributions as follows:

• We propose to extract easy-to-compute univariate summary statistics from the

observed high-dimensional data streams, where the summary statistics are use-

ful to distinguish anomalous data from nominal data. We do not impose any re-

strictive model assumptions for both the observed high-dimensional data stream

and the extracted summary statistics. Hence, the proposed schemes are com-

pletely nonparametric.

• We propose a low-complexity CUSUM-like online anomaly detection algorithm

that makes use of the summary statistics.

• We provide an asymptotic lower bound and an asymptotic approximation for

the FAP of the proposed algorithm, where the bound and the approximation

can be easily controlled by choosing the significance level for outliers and the

decision threshold of the proposed algorithm.

• We provide a sufficient condition to asymptotically prevent false alarms due to

divergence of the decision statistic of the proposed algorithm in the absence of

anomalies.

3.1.4 Organization

The remainder of the chapter is organized as follows. We present the problem de-

scription and our solution approach in Sec. 3.2, the proposed univariate summary

statistics in Sec. 3.3, and the proposed online anomaly detection schemes with a false
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alarm rate analysis in Sec. 3.4. We then evaluate the proposed schemes over various

application settings in Sec. 3.5. Finally, Sec. 3.6 concludes the chapter.

3.2 Problem Description and Solution Approach

3.2.1 Problem Description

We observe a high-dimensional stationary data stream, particularly, at each time t we

acquire a new data point xt ∈ Rp where p � 1 is the dimensionality of the original

data space, also called the ambient dimension, and the data points are independent

and identically distributed (i.i.d.) over time. Suppose that an abrupt anomaly, such

as an unfriendly intervention (attack/intrusion) or an unexpected failure, happens in

the observed process at an unknown time τ , called the change-point, and continues

thereafter. That is, the process is under regular operating conditions up to time τ

and then its underlying statistical properties suddenly change due to an anomaly.

Denoting the pdfs of xt under regular (pre-change) and anomalous (post-change)

conditions as fx
0 and fx

1 6= fx
0 , respectively, we have

xt ∼

f
x
0 , if t < τ

fx
1 , if t ≥ τ.

Our goal is to detect changes (anomalies) with minimal possible delays and also

with minimal rates of false alarm for a secure and reliable operation of the monitored

system. In other words, we aim to detect the changes as quickly as possible after they

occur. The framework of QCD well matches with this purpose. A well-known problem

formulation in the QCD framework is the minimax problem proposed by Lorden [84].

In the minimax problem, the goal is to minimize the worst-case detection delay subject

to false alarm constraints. More specifically, let Γ denote the stopping time at which

a change is declared and Eτ denote the expectation measure if the change happens
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at time τ . The Lorden’s worst-case average detection delay (ADD) is given by

J(Γ) , sup
τ

ess sup
Fτ

Eτ
[
(Γ− τ)+ |Fτ

]
,

where (·)+ = max{0, ·}, Ft = σ(x1,x2, . . . ,xt) is the sigma-algebra generated by the

observations up to time t, and ess sup denotes the essential supremum, a concept in

measure theory, which is practically equivalent to the supremum of a set. J(Γ) is

called the worst-case delay since it is computed based on the least favorable change-

point and the least favorable history of observations up to the change-point. The

minimax problem can then be written as follows:

inf
Γ

J(Γ) subject to E∞[Γ] ≥ β, (3.1)

where E∞[Γ] is the FAP, that is, the average stopping time when no change occurs

at all (τ =∞), and β is the desired lower bound on the FAP.

If both fx
0 and fx

1 are known, then the well-known CUSUM algorithm is the

optimal solution to the minimax problem given in Eq. (3.1) [94]. Let

`t , log

(
fx

1 (xt)

fx
0 (xt)

)
denote the LLR at time t. In the CUSUM algorithm, the LLR is considered as the

statistical evidence for change at a time and the LLRs are accumulated over time. If

the accumulated evidence exceeds a predefined threshold, then a change is declared.

Denoting the CUSUM decision statistic at time t by gt and the decision threshold by

h, the CUSUM algorithm is given by

Γ = inf{t : gt ≥ h},

gt = max{0, gt−1 + `t}, (3.2)

where g0 = 0.

Since it is practically difficult to model all types of anomalies, fx
1 needs to be

assumed unknown for a general anomaly detection problem. In that case, if only fx
0
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is known and also has a parametric form, slight deviations from the parameters of fx
0

can be detected using a generalized CUSUM algorithm [5, Sec. 5.3], [66,67]. However,

in a general high-dimensional problem, it might be difficult to model or estimate the

high-dimensional multivariate nominal pdf fx
0 . Hence, in this chapter, we assume that

both fx
0 and fx

1 are unknown. We propose to use an alternative technique in that

we extract useful univariate summary statistics from the observed high-dimensional

data stream and perform the anomaly detection task in a single-dimensional space

based on the extracted summary statistics, as detailed below.

3.2.2 Proposed Solution Approach

Firstly, we assume that there is an available set of nominal data points X , {xi : i =

1, 2, . . . , N}, that are free of anomaly. Practically, this is, in general, possible since

the monitored system/process produces a data point at each sampling instant and a

set of nominal data points can be obtained under regular system operation. Using

X , we aim to extract univariate baseline statistics that summarize the regular system

operation such that the summary statistics corresponding to anomalous data deviate

from the baseline statistics. To this end, summary statistics should be well informative

to distinguish anomalous conditions from the regular operating conditions.

Let the summary statistic corresponding to xt be denoted by dt. Since the sta-

tistical properties of xt changes at time τ , we assume that the statistical properties

of dt also changes at τ . Denoting the nominal and anomalous pdfs of dt as fd0 and

fd1 6= fd0 , respectively, we then have

dt ∼

f
d
0 , if t < τ

fd1 , if t ≥ τ,

where we assume that fd0 and fd1 are both unknown. Nonetheless, extracting a set

of nominal summary statistics from X and using this set as i.i.d. realizations of the

nominal pdf fd0 , we can form an empirical distribution function (edf) of the nominal
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summary statistics that estimates the nominal cumulative distribution function (cdf)

F d
0 of dt. Then, based on the nominal edf of the summary statistics, for an incoming

data point xt at time t and its corresponding summary statistic dt, we can estimate

the corresponding tail probability (p-value), denoted with pt. In statistical outlier

detection, a data point xt is considered as an outlier with respect to the level of α if

its p-value is less than α, that is, pt < α. Let

st , log

(
α

pt

)
. (3.3)

Then, for an outlier xt, we have st > 0 and similarly, for a non-outlier xt, we have

st ≤ 0.

Under normal system operation, we may observe random non-persistent outliers

due to, for example, high-level random system noise. However, if a system produces

persistent outliers, then this may indicate an actual anomaly. Hence, we can model

anomalies as persistent outliers. Considering st in Eq. (3.3) as a positive/negative

statistical evidence for anomaly at time t, we can accumulate st’s over time and

obtain evidence for anomaly. We can then declare an anomaly only if we have a

strong (reliable) evidence supporting an anomaly. This gives rise to the following

CUSUM-like anomaly detection algorithm where we replace the LLR `t in the CUSUM

algorithm (see Eq. (3.2)) with st:

Γ = inf{t : gt ≥ h},

gt = max{0, gt−1 + st}, (3.4)

where g0 = 0.

In the following section, we present the proposed summary statistics. Then, in

Sec. 3.4, we explain the estimation of the tail probability pt (and hence st) based on

the nominal summary statistics.
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3.3 Summary Statistics

We explain our methodology to derive summary statistics for a general high-dimensional

data stream. We then explain the derivation of summary statistics in a special case

where the observed data exhibit a low intrinsic dimensionality.

3.3.1 GEM-based Summary Statistics

Given a nominal dataset X and a chosen significance level of α, the GEM method [48]

determines an acceptance region A for the nominal data based on the asymptotic

theory of random Euclidean graphs such that if a data point falls outside A, it is con-

sidered as an outlier with respect to the level α, otherwise considered as a non-outlier.

The GEM method is based on the nearest neighbor (NN) statistics that capture the

local interactions between data points governed by the underlying statistical proper-

ties of the observed data stream.

A computationally efficient GEM method presented in [122] is based on bipartite

kNN graphs (BP-GEM). In this method, firstly X is uniformly partitioned into two

subsets S1 and S2 with sizes N1 and N2 = N − N1, respectively. Then, for each

data point xj ∈ S2, the kNNs of xj among the set S1 are determined. Denoting the

Euclidean distance of xj to its ith NN in S1 by ej(i), the sum of distances of xj to

its kNNs can be computed as follows:

dj ,
k∑
i=1

ej(i). (3.5)

After computing {dj : xj ∈ S2}, dj’s are sorted in ascending order and the (1 − α)

fraction of xj’s in S2 corresponding to the smallest (1 − α) fraction of dj’s form the

acceptance region A. Then, for a new data point xt, if its sum of distances to its

kNNs among S1, denoted with dt, is greater than the smallest (1−α) fraction of dj’s,

that is, ∑
xj∈S2 11{dt > dj}

N2

> 1− α,
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then xt is considered as an outlier with respect to the level of α, where 11{·} denotes

an indicator function.

Let δ(·) be the Lebesgue measure in Rp. As k/N1 → 0 and k,N2 → ∞, the

acceptance region A determined by the BP-GEM method almost surely converges to

the minimum volume set of level α [122], given by

Λα , min

{
δ(A) :

∫
z∈A

fx
0 (z)dz ≥ 1− α

}
,

where δ(A) denotes the volume of A. Hence, the BP-GEM method asymptotically

achieves the most compact acceptance region for the nominal data.

If xt is an outlier, then it falls outside the acceptance region A, that is, the cor-

responding NN statistic dt takes a higher value compared to non-outliers. Moreover,

if the observed data stream persistently fall outside the acceptance region, or equiva-

lently if we persistently observe high NN statistics over time, then this may indicate

an anomaly. Hence, we can use the GEM-based NN statistic as a summary statistic to

distinguish anomalous data from nominal data. Moreover, we can use {dj : xj ∈ S2}

as a set of GEM-based nominal summary statistics.

A salient feature of extracting summary statistics based on the BP-GEM method is

that with the incoming data points in an online setting, there is no need to recompute

the NN graph. This is because for each data point, either newly acquired or belonging

to the set S2, the NNs are always searched among the time-invariant set S1. Hence,

obtaining new data does not alter the NNs of the points in S2. In the online phase,

the main computational complexity is then searching the NNs of incoming data points

among the set S1. To further reduce the complexity, fast NN search algorithms can

be employed to approximately determine the NNs, see for example [43].

Finally, since we capture local interactions between data points via their kNNs, k

should not be chosen too large. On the other hand, since the set S1 might contain some

outliers, an incoming data point might fall geometrically close to a few of such outliers.

Then, k should not be chosen too small in order to reduce the risk of evaluating an

outlier or anomalous data point as a non-outlier. Therefore, a moderate k value best
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fits to our purpose of extracting useful GEM-based summary statistics for anomaly

detection.

3.3.2 Summary Statistics for High-Dimensional Data Exhibit-

ing Low Intrinsic Dimensionality

In many practical applications, observed high-dimensional data exhibits a sparse

structure so that the intrinsic dimensionality of the data is lower than the ambi-

ent dimension, and hence the data can be well represented in a lower-dimensional

subspace. In such cases, we can model the data as follows:

xt = yt + rt, (3.6)

where yt is the representation of xt in a submanifold and rt is the residual term, that

is, the departure of xt from the submanifold, mostly consisting of noise.

Suppose that we learn a submanifold that the nominal data are embedded in.

Since the learned manifold is mainly representative for the nominal data, anomalous

data is expected to deviate from the nominal submanifold and hence the magnitude of

the residual term, that is, ‖rt‖2, is expected to take higher values for anomalous data

compared to nominal data. Hence, the magnitude of the residual term can be used

as a summary statistic to distinguish anomalous data. Given a nominal dataset X ,

let S1 and S2 be subsets of X , that is, S1,S2 ⊂ X , with sizes N1 and N2, respectively,

where N1, N2 ≤ N . Using S1, we can learn a representative submanifold that the

nominal data are embedded in. Then, using S2, we can compute the magnitude of

the residual terms, that is, {‖rj‖2 : xj ∈ S2}, as a set of nominal summary statistics.

There are various methods to determine the underlying submanifold, among which

the PCA is well known for learning a linear submanifold, called the principal subspace

[8, Sec. 12.1]. Next, we explain the PCA and the PCA-based summary statistics.

The PCA is a nonparametric linear submanifold learning technique as it is com-

puted directly from a given dataset without requiring any data model. Given a set of
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nominal data points S1, the PCA provides a linear subspace with dimensionality r ≤ p

such that (i) the variance of the projected data onto the r-dimensional subspace is

maximized and (ii) the sum of squares of the projection errors (residual magnitudes)

is minimized [8, Sec. 12.1].

In the PCA method, denoting x̄ as the sample mean, that is,

x̄ ,
1

N1

∑
xi∈S1

xi (3.7)

and Q as the sample data covariance matrix, that is,

Q ,
1

N1

∑
xi∈S1

(xi − x̄)(xi − x̄)T, (3.8)

firstly, the eigenvalues {λj : j = 1, 2, . . . , p} and the eigenvectors {vj : j = 1, 2, . . . , p}

of Q are computed, where

Qvj = λjvj, j = 1, 2, . . . , p.

Then, the dimensionality of the submanifold, r, can be determined based on the

desired fraction of data variance retained in the submanifold, given by

γ ,

∑r
j=1 λj∑p
j=1 λj

≤ 1, (3.9)

where the r-dimensional principal subspace is spanned by the orthonormal eigenvec-

tors v1, v2, . . . , vr corresponding to the r largest eigenvalues λ1, λ2, . . . , λr of Q.

Let V , [v1,v2, . . .vr]. The representation of xt in the linear submanifold can then

be determined as follows:

yt = x̄ +
r∑
j=1

vjv
T
j (xt − x̄)

= x̄ + V V T(xt − x̄).

Then, the residual term can be computed as

rt = xt − yt

= (Ip − V V T)(xt − x̄), (3.10)
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Obtain the new data point xt

Compute the summary statistic

Compute the tail probability p̂t and ŝt = log(α=p̂t)

Update the decision statistic: gt  (gt−1 + ŝt)
+

gt ≥ h

t t+ 1Declare an anomaly

0 ≤ gt < h

Online Phase

Offline Phase

A set of nominal data points:
X = fxi : i = 1; 2; : : : ; Ng

Baseline statistics

Figure 3.1: Diagram of the proposed detection schemes.

where Ip ∈ Rp×p is an identity matrix.

To obtain the PCA-based nominal summary statistics, firstly, using S1, we com-

pute Q based on Eq. (3.8), and then its eigenvalues and eigenvectors. Then, for a

chosen γ (see Eq. (3.9)), we determine r and the corresponding V . Finally, using S2

and Eq. (3.10), we compute {‖rj‖2 : xj ∈ S2}, that forms a set of nominal PCA-based

summary statistics.

Note that although here we have only focused on the PCA and the linear subman-

ifolds, using the same data model in Eq. (3.6) and following a similar methodology,

summary statistics can be extracted for any (possibly nonlinear) manifold learning

algorithm as long as it is appropriate for the observed high-dimensional data stream

and it allows for efficient computation of the residual terms rt (see Eq. (3.6)) both

for a given nominal dataset and also for the sequentially acquired out-of-sample data,

without re-running the manifold learning algorithm.
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3.4 Online Nonparametric Anomaly Detection

3.4.1 Proposed Algorithm

We firstly discuss the statistical outlier detection based on a set of nominal summary

statistics. Notice that for outliers, both of the proposed summary statistics, dt and

‖rt‖2, take higher values compared to non-outliers (see Sec. 3.3). Hence, outliers

correspond to the right tail events based on the nominal pdf of the summary statistics.

Let us specifically consider dt. In case the knowledge of the nominal pdf of dt (i.e.,

fd0 ) is available, we could compute the corresponding right tail probability as follows:

pt =

∫ ∞
dt

fd0 (z)dz = 1− F d
0 (dt), (3.11)

where F d
0 is the cdf of dt. If pt < α, we can then consider dt (correspondingly xt) as

an outlier with respect to the significance level α.

In our problem, although we do not have the knowledge of fd0 (and F d
0 ), using a

set of i.i.d. realizations of the nominal summary statistics, we can obtain an edf that

estimates F d
0 . Let {dj : xj ∈ S2} be the set of nominal summary statistics. Then,

the corresponding edf is given by

F̂ d
0,N2

(z) ,
1

N2

∑
xj∈S2

11{dj ≤ z}. (3.12)

Moreover, by the Glivenko-Cantelli theorem, F̂ d
0,N2

pointwise almost surely converges

to the actual cdf F d
0 as N2 → ∞ [132]. Then, we can estimate pt based on F̂ d

0,N2
as

follows:

p̂t = 1− F̂ d
0,N2

(dt)

=
1

N2

∑
xj∈S2

11{dj > dt}. (3.13)

That is, p̂t is simply the fraction of the nominal summary statistics {dj : xj ∈ S2}

greater than dt. If p̂t < α, then we consider xt as an outlier with respect to the level

of α.
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Let

ŝt , log

(
α

p̂t

)
. (3.14)

Notice that for an outlier xt with respect to a level of α, we have ŝt > 0 and similarly,

for a non-outlier xt, we have ŝt ≤ 0. Then, by replacing ŝt with st in Eq. (3.4), we

propose the following model-free CUSUM-like anomaly detection algorithm:

Γ = inf{t : gt ≥ h},

gt = max{0, gt−1 + ŝt}, (3.15)

where g0 = 0.1 Since we consider anomalies as equivalent to persistent outliers, the

decision statistic gt has a positive drift in case of an anomaly and a non-positive drift

in the absence of anomalies.

3.4.1.1 Summary of the Proposed Schemes

We summarize the proposed GEM-based and PCA-based detection schemes in Alg. 3.1

and Alg. 3.2, respectively. Moreover, we present a diagram of the proposed schemes in

Fig. 3.1. The proposed schemes consist of an offline phase for extracting the baseline

statistics for a given set of nominal data and an online phase for anomaly detection.

The offline phases are explained in Sec. 3.3. In the online phase, at each time t, a

new data point xt is observed and using the baseline statistics, the summary statistic

corresponding to xt is computed and then the tail probability p̂t and the statistical

evidence ŝt are estimated. The decision statistic gt is then updated and if it ex-

ceeds the predetermined decision threshold h, an anomaly is declared, otherwise the

algorithm proceeds to the next time interval and acquires further data. Note that

1In case where
∑

xj∈S2
11{dj > dt} = 0, we have p̂t = 0 (see Eq. (3.13)), and hence gt = ∞. In

this case, a small nonzero value, for example, 1/N2, can be assigned to p̂t in order to prevent the

decision statistic to raise to infinity due to a single outlier. This modification can be useful to reduce

the false alarm rate especially in the small-sample settings (small N2).
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the proposed detection mechanism is generic in the sense that after extracting useful

summary statistics for nominal data and computing an edf for the nominal summary

statistics, the proposed CUSUM-like algorithm can be employed for online anomaly

detection.

3.4.1.2 Space and Time Complexity

Algorithm 3.1: In the offline phase, Alg. 3.1 computes and stores {dj : xj ∈ S2}

and for the computation of any dj, it stores the smallest k distances (i.e., ej(i)’s),

see Eq. (3.5). Hence, the space complexity of the offline phase is O(k + N2). For

each xj ∈ S2, the algorithm computes its Euclidean distance to each data point

in S1 and computes the corresponding dj by summing up the smallest k distances.

The algorithm finally sorts the set {dj : xj ∈ S2}. Hence, the time complexity

of the offline phase is O(N2(N1p + k + log(N2))). In the online phase, the space

complexity is O(k). Moreover, at each time t, the time complexity of the online

phase is O(N1p + k + log(N2)). The term log(N2) is because the computation of

p̂t requires to determine how many of {dj : xj ∈ S2} are larger than dt, which is

equivalent to determine the position of dt among the sorted set of {dj : xj ∈ S2}.

Algorithm 3.2: The offline phase of Alg. 3.2 requires the storage of {‖rj‖2 : xj ∈ S2}

and (Ip−V V T). Hence, the space complexity is O(p2 +N2). Due to the computation

of the sample covariance matrix, the eigenvalue decomposition, the computation of

‖rj‖2 for each xj in S2, and sorting them out, the time complexity of the offline phase

is O(p3 + p2(N1 + N2) + N2 log(N2)). The online phase requires the storage of rt to

compute ‖rt‖2 at any time t. Hence, the space complexity is O(p). Moreover, for

an incoming data point xt, ‖rt‖2 is computed and its position in the sorted set of

{‖rj‖2 : xj ∈ S2} is determined, which has a time complexity of O(p2 + log(N2)) at

each time t.

Table 3.1 summarizes the space and time complexity of the proposed algorithms.
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Algorithm 3.1 GEM-Based Online Nonparametric Anomaly Detection

Offline Phase
1: Uniformly partition the nominal dataset X into two subsets S1 and S2 with sizes N1

and N2, respectively.
2: for j : xj ∈ S2 do
3: Search for the kNNs of xj among the set S1.
4: Compute dj using Eq. (3.5).
5: end for
6: Sort {dj : xj ∈ S2} in ascending order.

Online Detection Phase
1: Initialization: t← 0, g0 ← 0.
2: while gt < h do
3: t← t+ 1.
4: Obtain the new data point xt.
5: Search for the kNNs of xt among the set S1 and compute dt using Eq. (3.5).
6: p̂t = 1

N2

∑
xj∈S2 11{dj > dt}.

7: ŝt = log(α/p̂t).
8: gt ← max{0, gt−1 + ŝt}.
9: end while

10: Declare an anomaly and stop the procedure.

Space Time

Algorithm 3.1
Offline O(k +N2) O(N2(N1p+ k + log(N2)))

Online O(k) O(N1p+ k + log(N2))

Algorithm 3.2
Offline O(p2 +N2) O(p3 + p2(N1 +N2) +N2 log(N2))

Online O(p) O(p2 + log(N2))

Table 3.1: Space and time complexity of the proposed algorithms.

3.4.2 Analysis

If the decision statistic gt exceeds the test threshold h under regular conditions (no

anomaly), then a false alarm is given. In anomaly detection, false alarm is an unde-

sired event and for reliability of an anomaly detection scheme, performance guarantees

regarding the false alarm rate are often desirable. With this purpose, firstly the fol-

lowing theorem provides an asymptotic upper bound on the level of α such that in

the absence of anomalies, the decision statistic gt (almost surely) does not diverge in

the mean squared sense.

Theorem 3.1: In the absence of anomalies, that is, τ = ∞, if α < 1/e, where e
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Algorithm 3.2 PCA-Based Online Nonparametric Anomaly Detection

Offline Phase
1: Choose subsets S1 and S2 of X with sizes N1 and N2, respectively.
2: Compute x̄ and Q over S1 using Eq. (3.7) and Eq. (3.8), respectively.
3: Compute the eigenvalues {λj : j = 1, 2, . . . , p} and the eigenvectors {vj : j = 1, 2, . . . , p}

of Q.
4: Based on a desired level of γ (see Eq. (3.9)), determine r and form the matrix V =

[v1,v2, . . .vr].
5: for j : xj ∈ S2 do
6: rj = (Ip − V V T)(xj − x̄).
7: Compute ‖rj‖2.
8: end for
9: Sort {‖rj‖2 : xj ∈ S2} in ascending order.

Online Detection Phase
1: Initialization: t← 0, g0 ← 0.
2: while gt < h do
3: t← t+ 1.
4: Obtain the new data point xt.
5: rt = (Ip − V V T)(xt − x̄) and compute ‖rt‖2.
6: p̂t = 1

N2

∑
xj∈S2 11{‖rj‖2 > ‖rt‖2}.

7: ŝt = log(α/p̂t).
8: gt ← max{0, gt−1 + ŝt}.
9: end while

10: Declare an anomaly and stop the procedure.

denotes the Euler’s number, it holds asymptotically that, as N2 →∞,

P
(

sup
t≥0

E
[
g2
t | g0 = 0

]
<∞

)
= 1,

that is, the decision statistic does not grow unbounded in the mean squared sense,

with probability 1.

Proof. See Appendix A.

Theorem 3.1 provides a guidance to choose the level of α to reliably employ the

proposed algorithm. Specifically, α can be chosen smaller than 1/e to asymptotically

ensure that the decision statistic of the proposed algorithm stays finite over time

under regular conditions, that eliminates false alarms due to the divergence of the

decision statistic.

In the proposed CUSUM-like algorithm given in Eq. (3.15), the decision statistic

at time t, gt, is determined by {ŝn : n ≤ t} where ŝn’s are i.i.d. over time in the
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absence of anomalies. Hence, we have actually a random walk driven by {ŝn} with

lower threshold 0 and upper (decision) threshold h and our aim is to determine the

FAP (also called the average run length), that is, the first time, on average, the

upper threshold h is crossed in the absence of anomalies. In the literature, this

problem has been considered in several studies and some approximations and bounds

are provided for this quantity as the exact computation is analytically intractable [5,

Sec. 5.2.2], [16,58,97,113]. To be able to provide a performance guarantee regarding

the false alarm rate, we firstly derive an asymptotic lower bound on the FAP of the

proposed algorithm, as stated in the following theorem.

Theorem 3.2: For chosen 0 < α < 1/e and h > 0, the FAP of the proposed

algorithm, E∞[Γ], asymptotically (as N2 →∞) achieves the following lower bound:

E∞[Γ] ≥ e(1−θ)h, (3.16)

where 0 < θ < 1 is uniquely given by

θ =
W (α log(α))

log(α)
, (3.17)

and W (c) denotes the Lambert-W function2 providing solutions z to the equation

z ez = c.

Proof. See Appendix B.

Based on Theorem 3.2, α and h can be chosen to asymptotically achieve the

minimum acceptable level of FAP. Specifically, if the desired lower bound is L > 0,

then

E∞[Γ] ≥ e(1−θ)h ≥ L,

which is equivalent to

h ≥ log(L)

1−W (α log(α))/log(α)
,

2There is a built-in MATLAB function lambertw.
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Figure 3.2: The lower bound (dashed curve) on the decision threshold h of the pro-

posed algorithm for α < 1/e such that E∞[Γ] ≥ 106 as N2 →∞.

providing a lower bound on the test threshold h for a chosen level of α. As an example,

for L = 106, Fig. 3.2 illustrates the lower bound on h for 0 < α < 1/e.

Next, we investigate the tightness of the presented lower bound on the FAP in

the asymptotic regime (as N2 →∞). In particular, for different α levels, by varying

the test threshold h, we plot the FAP versus the presented lower bound in Fig. 3.3.

The figure shows that the FAP is approximately linear with the lower bound, where

the ratio between them depends on the level of α. Based on this observation, for a

chosen 0 < α < 1/e and h > 0, we propose the following (asymptotic) approximation

to the FAP:

E∞[Γ] ≈ g(α) e(1−θ)h, (3.18)

where θ is as given in Eq. (3.17) and g(α) numerically computed over a Monte Carlo

simulation is given in Fig. 3.4 and Table 3.2 for some α levels. Then, for a chosen

0 < α < 1/e and for a desired FAP A, the test threshold h can be chosen as

h =
log(A/g(α))

1−W (α log(α))/log(α)
,
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Figure 3.3: FAP vs. the presented lower bound in the asymptotic regime where

N2 →∞.

α 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35

g(α) 101 21.8 12.1 9.9 10.1 13 25.8 230

Table 3.2: g(α) computed over a Monte Carlo simulation for some α levels.

that asymptotically yields

E∞[Γ] ≈ A.

Finally, note that lower α and/or higher h lead to a larger FAP and also a larger

ADD. This is because lower α results in lower ŝt and hence lower gt, that increases the

stopping time Γ (see Eq. (3.14) and Eq. (3.15)). Similarly, higher h results in a larger

stopping time (see Eq. (3.15)). Hence, α and h are essentially tradeoff parameters

that can be used to strike a desired balance between the false alarm rate and the

ADD of the proposed algorithm. However, since the post-change (anomalous) case

is totally unknown and no anomalous data is available, it seems difficult to provide

theoretical results regarding the ADD of the proposed algorithm. Nonetheless, we

know that as the discrepancy, for example, the KL divergence, between the nominal
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Figure 3.4: g(α) vs. α.

and anomalous pdfs increases, it is likely to observe more significant outliers after

anomaly happens, that increases ŝt (see Eq. (3.13) and Eq. (3.14)) for t ≥ τ , which

in turn decreases the detection delays (see Eq. (3.15)).

Remark 1: For the proposed CUSUM-like test, we also derive the Wald’s ap-

proximation to the FAP in the asymptotic regime where N2 → ∞. In particular,

based on [5, Sec. 5.2.2.2] and with derivations similar to Theorem 3.2, for chosen

0 < α < 1/e and h > 0 and as N2 → ∞, the Wald’s approximation is given as

follows:

E∞[Γ] ≈ 1

1 + log(α)

(
h+

e(1−θ)h − 1

θ − 1

)
. (3.19)

However, since the Wald’s approximation ignores the excess over boundary (over-

shoot), it significantly underestimates the FAP as α decreases towards 0, as for smaller

α, the decision statistic gt of the proposed CUSUM-like test more frequently hits the

lower threshold 0 during the random walk. On the other hand, the approximation gets

better as α increases towards 1/e. Fig. 3.5 shows the FAP, the Wald’s approximation

given in Eq. (3.19), and the lower bound presented in Theorem 3.2 for various α and

h levels obtained via Monte Carlo simulations in the asymptotic regime as N2 →∞.
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Figure 3.5: FAP, the Wald’s approximation, and the presented lower bound for various

α and h levels.

As expected, the Wald’s approximation gets worse as α decreases, for example, it

becomes even lower than the presented lower bound for α = 0.1.

3.5 Performance Evaluation

In this section, we evaluate the performance of the proposed detection schemes. In

particular, we evaluate the GEM-based scheme in detection of cyber-attacks target-

ing the smart grid. Moreover, we evaluate both the GEM-based and the PCA-based

schemes in detection of changes in human physical activity and botnet attacks over

an IoT network. Throughout the section, we choose α = 0.2 and make the afore-
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mentioned modification for the proposed algorithms: in case where
∑

xj∈S2 11{dj >

dt} = 0, we assign p̂t = 1/N2 to prevent gt = ∞ due to a single outlier. For all the

proposed and the benchmark tests, we obtain the tradeoff curves between the ADD,

Eτ
[
(Γ − τ)+

]
, and the FAP, E∞[Γ], by varying their test threshold h. In computing

the detection delays, we assume that anomalies happen at τ = 1, that corresponds

to the worst-case detection delay for the proposed CUSUM-like algorithms since the

decision statistic gt is equal to zero just before the anomalies happen (recall that

g0 = 0).

We also present the receiver operating characteristic (ROC) curves for all tests

by varying their test thresholds. As the computation of the true positive rate (TPR)

requires to count the number of detected and missed trials, we need to define an

upper bound on the detection latency, that is, the maximum acceptable detection

delay, such that if the anomaly/change is detected within this bound, we assume it

is successfully detected, otherwise missed. In our experiments, as an example, we

choose this bound as 10 time units. We then compute the TPR out of 10000 trials

via Monte Carlo simulations as follows:

TPR ,
# trials (τ ≤ Γ ≤ τ + 10)

# trials (τ ≤ Γ ≤ τ + 10) + # trials (Γ > τ + 10)
,

where “# trials” means “the number of trials with”. Furthermore, we consider the

false alarm rate (FAR) as equivalent to the reciprocal of the FAP and use

FAR ,
1

E∞[Γ]
.

Then, as the ROC curve, we plot TPR versus FAR. In the following, we firstly briefly

explain the benchmark tests and then present the application setups along with the

corresponding performance curves.
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3.5.1 Benchmark Algorithms

3.5.1.1 Nonparametric CUSUM Test

In cases where the univariate test statistic is expected to take higher values in the

post-change case compared to the pre-change case, a nonparametric CUSUM test can

be used for change detection, where the difference between the test statistic and its

mean value in the pre-change case is accumulated over time and a change is declared

if the accumulated statistic exceeds a predetermined threshold. For instance, the chi-

squared statistic [97] and the magnitude of the innovation sequence in the Kalman

filter [142] are expected to increase in case of an anomaly (see Chapter 2) and several

variants of the nonparametric CUSUM test have been proposed in the context of

anomaly/attack detection in the smart grid [97,142].

In our case, both summary statistics, that is, dt and ‖rt‖2, are expected to increase

in case of an anomaly compared to their nominal mean values. Hence, after obtaining

a set of nominal summary statistics, we can compute the empirical mean of them and

then apply the nonparametric CUSUM test for online anomaly detection. Let us

specifically consider dt and let

d̄ ,
1

N2

∑
xj∈S2

dj

be the nominal empirical mean of dt. The nonparametric CUSUM test is then given

by

Γ = inf{t : gt ≥ h},

gt = max{0, gt−1 + dt − d̄}, (3.20)

where g0 = 0. For each application presented below, in an offline phase, we firstly

compute the empirical mean of the nominal summary statistics (either for dt or ‖rt‖2)

and then employ the nonparametric CUSUM test.
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3.5.1.2 Online Discrepancy Test (ODIT)

The ODIT presented in [143] is a sequential nonparametric anomaly detection algo-

rithm based on the GEM. It consists of offline and online phases where its offline

phase is identical to the offline phase of Alg. 3.1. In the online phase, instead of

using the entire set {dj : xj ∈ S2}, only a threshold distance d[K] is used, denoting

the largest Kth element among {dj : xj ∈ S2}. Specifically, for a chosen significance

level α, K = dαN2e is chosen, denoting the smallest integer greater than αN2. The

online phase is identical to the nonparametric CUSUM test given in Eq. (3.20), after

replacing d̄ with d[K].

3.5.1.3 Information Theoretic Multivariate Change Detection (ITMCD)

Algorithm

The ITMCD algorithm presented in [37] is a sequential nonparametric change detec-

tion algorithm for multivariate data streams. In particular, it is a two-sample test

based on the KL divergence between the multivariate distributions corresponding to

two consecutive (over time) sliding windows of observations. The KL divergence is

estimated in a nonparametric way based on the distances of observations to their NNs

both within a window and between the windows.

Let Xt,w1 and Xt,w2 denote the most recent consecutive sliding windows of obser-

vations at time t with sizes w1 and w2, respectively. That is, at time t, we have

Xt,w1 = {xt−w1+1, . . . ,xt} and Xt,w2 = {xt−w1−w2+1, . . . ,xt−w1}. Moreover, let em,n(i)

denote the Euclidean distance between xi ∈ Xt,wm and its kth NN among the set

Xt,wn , where m,n ∈ {1, 2}. The KL divergence between the multivariate distribu-

tions corresponding to Xt,wm and Xt,wn is estimated as follows [37,134]:

KLt,m,n , log

(
wn

wm − 1

)
+

p

wm

∑
xi∈Xt,wm

log

(
em,n(i)

em,m(i)

)
,

where xt ∈ Rp. The ITMCD algorithm is then given by

Γ = inf{t : KLt,1,2 + KLt,2,1 ≥ h}.
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The algorithm is based on the fact that the discrepancy between the multivariate

distributions increases in case of a change/anomaly. Particularly, after an anomaly,

since the window Xt,w1 includes recently acquired anomalous observations before Xt,w2 ,

the distribution of the observations in Xt,w1 changes while the observations in Xt,w2

still have the nominal distribution for some time period. Then, the KL divergence

between the two windows of observations increases compared to the case where the

both windows have the same nominal distribution. Note that the ITMCD algorithm

requires, after obtaining each new observation, repeating the search for the kth NN

for each data point within both its own window and the other window. This is com-

putationally intensive for an online algorithm. Further, the window-based approach

reduces the time resolution and induces an inherent detection latency. Throughout

the section, we choose k = 4 and the window sizes as w1 = 20 and w2 = 100 for the

ITMCD algorithm.

3.5.1.4 NN-Based Online Change Detection Algorithm

In [18], a nonparametric online two-sample test is presented based on NN graphs.

Particularly, for a sliding window of observations, the algorithm partitions the win-

dow into two sets and decides whether the two sets of observations have the same

distribution by evaluating how many observations have their NNs from the other

set. Given the most recent W observations SW , {xt−W+1, . . . ,xt} with indices

tW , {t−W + 1, . . . , t}, the stopping time is given by

Γ = inf{t : max
t−n1≤m≤t−n0

ZW (m, t) ≥ h}, (3.21)

where

ZW (m, t) ,
−RW (m, t) + E[RW (m, t)]√

Var[RW (m, t)]
,

RW (m, t) ,
∑
i∈ tW

∑
j ∈ tW

(AtW ,ij + AtW ,ji)Bij(m, tW ),

AtW ,ij , 11{xj is one of the kNNs of xi among SW},
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Bij(m, tW ) , 11
{(
PtW (i) ≤ m,PtW (j) > m

)
or
(
PtW (i) > m,PtW (j) ≤ m

)}
,

and PtW (·) denotes the random permutation among the indices tW . The mean

E[RW (m, t)] and variance Var[RW (m, t)] under random permutation are given in [18,

Sec. 2]. In our experiments, we choose W = 50, k = 10, n0 = 10, and n1 = 40.

The test in Eq. (3.21) is based on the idea that if the data distribution changes

at some time, then each set of observations are likely to find their NNs within their

own set rather than the other set, that leads to a larger decision statistic. To employ

the test, at each time, the sliding observation window is updated with the incom-

ing data point and a new NN graph is formed for the new window of observations.

Partitioning the observation window into two parts is also a part of the decision

process. Particularly, for all possible n1 − n0 + 1 partitions of the observation win-

dow, ZW (m, t) is computed and maximum among them is considered as the decision

statistic. The computational complexity at a time due to building a new NN graph

and searching the decision statistic among all possible window partitions might be

prohibitive in time-sensitive online settings. Moreover, since the decision mechanism

is mainly a two-sample test, the method cannot operate as fully-sequential and for re-

liable decisions, the window size should be chosen sufficiently large. That reduces the

time resolution and usually leads to larger detection delays. Furthermore, as argued

in [18], the method is mainly effective in the detection of sharp changes/anomalies, as

otherwise the difference between two samples would not be significant. That makes

the method ineffective against gradual changes/anomalies such as stealthily designed

small-magnitude false data injection (FDI) attacks in the smart grid and low-rate

distributed denial of service (DDoS) attacks over IoT networks.

3.5.1.5 QuantTree

The QuantTree algorithm presented in [11] partitions the high-dimensional observa-

tion space using a nominal dataset into a finite number of subregions, say K, such that
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the nominal data fall into the K subregions with prespecified probabilities π1, . . . , πK ,

where
∑K

i=1 πi = 1. Then, in the online phase, for a batch of W observations, it counts

how many observations fall into the predetermined subregions, say y1, . . . , yK , where∑K
i=1 yi = W . In the nominal case, expected number of observations in the subregions

are Wπ1, . . . ,WπK . The Pearson’s chi-squared test is then used to determine whether

the observed y1, . . . , yK are likely in the nominal case. The algorithm is mainly de-

signed for batch processing, but it can be extended for real-time processing via a

sliding window of observations, that leads to the sliding-window chi-squared test, as

described in [67]. In this case, y1, . . . , yK are determined based on the most recent W

observations xt−W+1, . . . ,xt. The corresponding stopping time is then given by

Γ = inf

{
t : χt ,

K∑
i=1

(yi −Wπi)
2

Wπi
≥ h

}
,

where the decision statistic χt is asymptotically (as W → ∞) a chi-squared random

variable with K − 1 degrees of freedom. In our experiments, we choose W = 256 and

K = 16 with πi = 1/16, ∀i ∈ {1, . . . , 16}.

3.5.2 Online Cyber-Attack Detection in Smart Grid

We consider the IEEE-57 bus power system that consists of 57 buses and 80 sensors.

Let φφφt ∈ R57 denote the bus voltage angles (phases) and xt ∈ R80 denote the mea-

surement vector collected through the sensors at time t. Suppose that the smart grid

operates according to the following linearized DC model [1]:

xt = H φφφt +ωωωt, (3.22)

where H ∈ R80×57 is the measurement matrix determined based on the power network

topology and ωωωt ∈ R80 is the measurement noise vector. Moreover, let

ωωωt ∼ N (080, σ
2I80), (3.23)
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Figure 3.6: Histogram of the GEM-based nominal summary statistics for the IEEE-57

bus power system.

where 080 ∈ R80 consists of all zeros and σ2 denotes the noise variance for each

measurement. We simulate the DC optimal power flow for case-57 using MAT-

POWER [150] and obtain the nominal voltage angles φφφt. Since we consider a steady-

state (i.e., static) power system model, we expect that the voltage angles stay nearly

the same in the absence of anomalies.

Notice that Eq. (3.22) defines the regular system operation. However, in case of

an anomaly (e.g., a cyber-attack), the measurement model in Eq. (3.22) no longer

holds. For instance, in case of an FDI attack launched at time τ , the measurement

vector takes the following form:

xt = H φφφt + at +ωωωt, t ≥ τ,

where at , [at,1, at,2, . . . , at,80]T is the injected malicious data at time t. We aim to

timely detect the FDI attacks targeting the smart grid.

Based on Eq. (3.22) and Eq. (3.23), we have

xt ∼ N (H φφφt, σ
2I80), (3.24)
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Figure 3.7: FAP of Alg. 3.1 for the smart grid data, the theoretical approximations,

and the theoretical lower bound for various test thresholds.

that is, the nominal data covariance matrix is diagonal and every dimension has equal

variance. If we collect a set of nominal data and perform the PCA, we can observe that

every dimension is equally important so that the observed high-dimensional nominal

data does not exhibit a low intrinsic dimensionality. Nevertheless, we can still use

the proposed GEM-based detector (see Alg. 3.1).

In this setup, we generate synthetic data based on the system and attack models

presented above. Specifically, during the normal system operation (see Eq. (3.24)),

we assume σ2 = 10−2 and acquire N = 105 nominal data points, and then uniformly

partition them into two parts S1 and S2 with sizes N1 = 2× 103 and N2 = 9.8× 104,

respectively. We choose k = 4 and for each data point xj ∈ S2, we compute dj, the

sum of distances of xj to its kNNs among S1 (see Eq. (3.5)). Then, we obtain the

histogram of {dj : xj ∈ S2}, as given in Fig. 3.6.

Fig. 3.7 shows the FAP of Alg. 3.1, the asymptotic lower bound given in Eq. (3.16),

our asymptotic approximation to the FAP given in Eq. (3.18), and the Wald’s asymp-

totic approximation given in Eq. (3.19), as the test threshold h varies. We observe
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Figure 3.8: ADD vs. FAP in detection of an FDI attack against the smart grid.

that our approximation is quite close to the actual FAP. Furthermore, Fig. 3.8 and

Fig. 3.9 illustrate the performance of the all tests in detection of an FDI attack against

smart grid, where at,i ∼ U [−0.14, 0.14],∀i ∈ {1, 2, . . . , 80},∀t ≥ τ and U [ρ1, ρ2] de-

notes a uniform random variable in the range [ρ1, ρ2]. The figures illustrate that the

proposed algorithm outperforms the benchmark tests or at least performs nearly with

them. In this experiment, we also note that the detection delays critically depend on

the attack magnitude, particularly, smaller detection delays are obtained for larger at-

tack magnitudes. Finally, to illustrate how the proposed algorithm works, we present

a sample path of decision statistic gt over time in Fig. 3.10, where the FDI attack

is launched at τ = 200. We observe that after the attack is launched, the decision

statistic steadily increases and exceeds the test threshold h, illustrated with the red

dashed line, while staying near zero before the attack.
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Figure 3.9: ROC curve in detection of an FDI attack against the smart grid.

3.5.3 Online Detection of Changes in Human Physical Ac-

tivity

The Human Activities and Postural Transitions (HAPT) dataset [112] obtained from

the UCI Machine Learning Repository [28] contain data for six physical activities:

sitting, standing, laying, walking, walking upstairs, and walking downstairs. The

first three, that is, sitting, standing, and laying, are static and the remaining three

are dynamic activities. We divide the given dataset into two parts based on the

given activity labels such that the first part of the dataset contains data for static

activities and the second part contains data for dynamic activities. Our goal is to

quickly detect changes from a static to a dynamic activity where each data point is

561-dimensional. We hence consider the static activities as the pre-change (nominal)

state and the dynamic activities as the post-change (anomalous) state. Although

there are finite number of data points in the given dataset, we assume that at each

time we sequentially observe a new data point. Particularly, up to the change-point

τ , at each time, we observe a data point sampled uniformly among the set of data
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Figure 3.10: Sample path of the decision statistic where the FDI attack is launched

at τ = 200.

points corresponding to static activities and after the change-point, at each time, we

observe a data point sampled uniformly from the set of dynamic activities.

We firstly uniformly select 2500 data points from the set of data points corre-

sponding to static activities and using the PCA method (see Alg. 3.2), we obtain the

eigenvalues of the corresponding sample data covariance matrix, as shown in descend-

ing order in Fig. 3.11. We observe through Fig. 3.11 that the nominal data exhibit

a low intrinsic dimensionality. We then choose the minimum desired γ as 0.99. Ac-

cordingly, we choose r = 115 and retain approximately γ = 0.9903 fraction of the

data variance in the 115-dimensional principal subspace. Then, for the entire set of

static activities (S2 = X ), we compute the PCA-based nominal summary statistics

that form the histogram shown in Fig. 3.12.

In cases where the observed data stream exhibits a low intrinsic dimensionality,

another approach is applying the proposed GEM-based detection scheme (Alg. 3.1)

after dimensionality reduction. That is, after obtaining the matrix V as described

in Alg. 3.2, each data point in the nominal training set, xi ∈ X , and also each
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Figure 3.11: Eigenvalues of the sample data covariance matrix for a representative

set of static activities in the HAPT dataset.

sequentially available data point, xt, can be projected onto a r-dimensional space as

V Txi and V Txt, respectively. Alg. 3.1 can then be employed over the low-dimensional

space, which is computationally more efficient compared to employing the algorithm

over the original data space. We employ Alg. 3.1 over the projected data, where we

obtain the projection matrix V as described above and uniformly choose S1 and S2

(in Alg. 3.1) with sizes N1 = 1000 and N2 = 4738, respectively. Fig. 3.13 and Fig. 3.14

show that the proposed algorithms perform superior or at least comparable to the

benchmark algorithms. Furthermore, Fig. 3.15 illustrates the FAP, the asymptotic

lower bound, and the asymptotic approximations for the proposed algorithms. In all

the relevant figures, we use an asterisk for Alg. 3.1 to emphasize that it is employed

based on the projected low-dimensional data.

3.5.4 Online Detection of IoT Botnet Attacks

Data for network-based detection of IoT botnet attacks (N-BaIoT) [91] obtained from

the UCI Machine Learning Repository [28] contain network traffic statistics for an IoT
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Figure 3.12: Histogram of the PCA-based nominal summary statistics corresponding

to the static activities in the HAPT dataset.

network under both normal and attack conditions, where the IoT network consists

of nine devices, namely a thermostat, a baby monitor, a webcam, two doorbells,

and four security cameras and the IoT devices are connected via Wi-Fi to several

access points. In case of botnet attacks, attackers search for vulnerable devices in the

network and inject malwares to the vulnerable devices. Then, they take control of the

compromised devices and use them as a part of a bot network (botnet) to perform

large-scale attacks such as DDoS attacks over the entire network [6, 62, 91]. In the

N-BaIoT dataset, statistical features such as time intervals between packet arrivals,

packet sizes and counts are extracted from the real network traffic for each IoT device

such that each data point is 115-dimensional. For each device, the data is obtained

under both normal operating conditions and several different attacks performed by

BASHLITE and Mirai botnets.

Timely and accurate detection of IoT botnet attacks has a critical importance to

prevent further malware propagation over the network, for example, by disconnecting

the compromised devices immediately after the detection. As an illustrative attack
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Figure 3.13: ADD vs. FAP for detecting changes in human physical activities.

case, we consider that a spam attack is performed over the network by the BASHLITE

botnet [91] and we monitor the thermostat device for anomaly detection. Firstly,

based on the PCA method summarized in Alg. 3.2, 6500 data points chosen uniformly

among the nominal dataset are used to compute the sample data covariance matrix,

where the corresponding eigenvalues are presented in Fig. 3.16. We observe that the

nominal data can be represented in a lower-dimensional linear subspace and choosing

r = 5, we retain nearly all the data variance in the 5-dimensional principal subspace,

that is, γ ≈ 1. Then, using the entire nominal dataset, we compute the magnitudes

of the residual terms, constituting the nominal summary statistics, a histogram of

which is presented in Fig. 3.17 where the frequencies are shown in the log-scale to

have a better illustration.

We assume that before the attack launch time τ , at each time, we observe a

nominal data point sampled uniformly from the nominal dataset and after the attack,

at each time, we observe a data point sampled uniformly from the “junk” dataset

given for the thermostat [91]. The corresponding performance curves are presented

in Fig. 3.18 and Fig. 3.19. Similarly to the previous application case, we employ
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Figure 3.14: ROC curve in detection of human activity change.

Alg. 3.1 using the projected r-dimensional data where we uniformly choose S1 and

S2 in Alg. 3.1 with sizes N1 = 1215 and N2 = 11896, respectively.

In this experiment, we observe that the nonparametric CUSUM test and the ODIT

perform considerably worse than the other detectors. This is because of some signif-

icant outliers in the nominal dataset. Specifically, we observe through Fig. 3.17 that

the baseline summary statistics mostly lie on an interval of smaller values, that is,

the majority of the nominal data points well fit to the principal subspace. However,

we also observe that for some nominal data points, the summary statistics take sig-

nificantly high values, that dramatically increase the empirical mean of the nominal

summary statistics. This, in turn, leads to large detection delays for the nonparamet-

ric CUSUM test. Moreover, the significant outliers among the nominal data points

(with very large ‖rt‖2) also increase the false alarm rate of the nonparametric CUSUM

test. Similarly, the ODIT gives frequent false alarms because of the significant nom-

inal outliers with large NN distances. This is where an advantage of Alg. 3.1 over

the ODIT appears: Alg. 3.1 depends on how likely it is to observe a NN distance,

specifically, the p-value, rather than the distance itself, which makes it more reliable
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Figure 3.15: FAP of the proposed algorithms for the human activity data, the theo-

retical approximations, and the theoretical lower bound for various test thresholds.

in the case of significant nominal outliers. Finally, Fig. 3.20 illustrates the FAP of the

proposed algorithms along with the asymptotic approximations and the asymptotic

lower bound, as the test threshold varies.

3.6 Concluding Remarks

We have proposed nonparametric data-driven online anomaly detection schemes for

big data streams. The proposed schemes are reliable, effective, scalable, and hence

ideally suited for high-dimensional settings. Moreover, they are widely applicable in

a variety of settings as we do not make unrealistic data model assumptions. We have

considered both the special case where the observed data stream has a low intrin-

sic dimensionality and the general case. In both cases, we have proposed to extract

and process univariate summary statistics from the observed high-dimensional data

streams, where the summary statistics are useful to distinguish anomalous data from

nominal data. We have proposed a low-complexity CUSUM-like anomaly detection
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Figure 3.16: Eigenvalues of the sample data covariance matrix for a representative

set of nominal data points (thermostat) in the N-BaIoT dataset.

algorithm based on the extracted summary statistics. We have provided a sufficient

condition to asymptotically ensure that the decision statistic of the proposed algo-

rithm does not grow unbounded in the absence of anomalies. We have also provided

a controllable asymptotic lower bound and an accurate asymptotic approximation

for the FAP of the proposed algorithm. Experiments with synthetic and real-world

data demonstrate the effectiveness of the proposed schemes in timely and accurate

detection of anomalies in a variety of high-dimensional settings.

3.7 Appendix to Chapter 3

3.7.1 Proof of Theorem 3.1

Proof. Firstly, we derive the asymptotic distribution of ŝt (see Eq. (3.14)) in the

absence of anomalies, that is, for t < τ . By the Glivenko-Cantelli theorem, the edf

of the nominal summary statistics, that is, F̂ d
0,N2

given in Eq. (3.12), converges to the
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Figure 3.17: Histogram of the PCA-based summary statistics for the nominal data

(thermostat) in the N-BaIoT dataset.

cdf F d
0 as N2 → ∞ [132]. Hence, p̂t in Eq. (3.13) converges to pt in Eq. (3.11) and

equivalently ŝt converges to st in Eq. (3.3). The proposed CUSUM-like detector in

Eq. (3.15) thus converges to the algorithm in Eq. (3.4). It is well known that the

cdf of any continuous random variable is uniformly distributed U [0, 1] [99]. Then, we

have

pt = 1− F d
0 (dt) ∼ U [0, 1].

The cdf of st, t < τ , denoted with F st
0 , is then given by

F st
0 (y) = P(st ≤ y) = P

(
log

(
α

pt

)
≤ y

)
= P

(
pt ≥

α

ey

)
=

1− α
ey
, if y > log(α)

0, otherwise.
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Figure 3.18: ADD vs. FAP in detection of a spam attack launched by a BASHLITE

botnet.

Moreover, the pdf of st, t < τ , denoted with f st0 , is given as follows:

f st0 (y) =
∂F st

0 (y)

∂y

=

α e
−y, if y > log(α)

0, otherwise.

(3.25)

Then, based on Eq. (3.25), we have E[st] = 1 + log(α) and E[s2
t ] = 1 + (1 + log(α))2.

From Eq. (3.4), we have gt = max{0, gt−1 +st}, that implies g2
t ≤ (gt−1 + st)

2. We

can then write

E[g2
t | gt−1] ≤ E[(gt−1 + st)

2 | gt−1]

= g2
t−1 + 2gt−1E[st] + E[s2

t ]

= g2
t−1 + 2gt−1(1 + log(α)) + 1 + (1 + log(α))2. (3.26)

Next, we solve the following inequality for E[g2
t | gt−1] ≤ g2

t−1:

g2
t−1 + 2gt−1(1 + log(α)) + 1 + (1 + log(α))2 ≤ g2

t−1, (3.27)
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Figure 3.19: ROC curve in detection of a spam attack launched by a BASHLITE

botnet.

which is equivalent to

−2gt−1(1 + log(α)) ≥ 1 + (1 + log(α))2. (3.28)

Recalling that gt−1 ≥ 0 and since the RHS of Eq. (3.28) is positive, the solution to

Eq. (3.28) is given as follows:

α < 1/e and gt−1 ≥
1 + (1 + log(α))2

−2(1 + log(α))
. (3.29)

Firstly, let α < 1/e and gt−1 ≥ f(α), where

f(α) ,
1 + (1 + log(α))2

−2(1 + log(α))
> 0.

Then, based on Eq. (3.26), Eq. (3.27), and Eq. (3.29), we have

E[g2
t | gt−1] ≤ g2

t−1. (3.30)

Moreover, since gt−1 ≥ f(α) > 0, we have

gt−1 = max{0, gt−2 + st−1} = gt−2 + st−1. (3.31)
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Figure 3.20: FAP of the proposed algorithms for the IoT data, the theoretical ap-

proximations, and the theoretical lower bound for various test thresholds.

Here, we can either have gt−2 < f(α) or gt−2 ≥ f(α). In the case where gt−2 < f(α) <

∞, since P(st−1 <∞) = 1 (see Eq. (3.25)), we have P(gt−1 <∞) = 1 (see Eq. (3.31)).

Then, from Eq. (3.30),

P(E[g2
t | gt−1] <∞) = 1. (3.32)

Note that

E
[
E[g2

t | gt−1] | g0 = 0
]

= E[g2
t | g0 = 0], (3.33)

where in the LHS of Eq. (3.33), the inner expectation is with respect to (wrt) gt | gt−1

and the outer expectation is wrt gt−1 | g0 = 0. Moreover, in the RHS of Eq. (3.33),

the expectation is wrt gt | g0 = 0. Then, based on Eq. (3.32) and Eq. (3.33), and since

the expectation of a finite variable is also finite, we have

P(E[g2
t | g0 = 0] <∞) = 1.

Further, in the case where gt−2 ≥ f(α), similar to Eq. (3.30), we have

E[g2
t−1 | gt−2] ≤ g2

t−2. (3.34)
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Using nested expectations, Eq. (3.30), and Eq. (3.34), we can write

E[g2
t | gt−2] = E

[
E[g2

t | gt−1] | gt−2

]
≤ E[g2

t−1 | gt−2] ≤ g2
t−2.

Here, since gt−2 ≥ f(α) > 0, we have

gt−2 = max{0, gt−3 + st−2} = gt−3 + st−2.

Again, there are two possibilities: we either have gt−3 < f(α) or gt−3 ≥ f(α) and as

such the procedure repeats itself backward in time. The conclusion is that if there

exists ω ≤ t such that gt−ω < f(α), then we have P(E[g2
t | g0 = 0] < ∞) = 1.

Since g0 = 0 < f(α), there indeed exists at least one ω, which is ω = t, such that

gt−ω < f(α). Then, in case where α < 1/e and gt−1 ≥ f(α), we have P(E[g2
t | g0 =

0] <∞) = 1.

Next, let α < 1/e and gt−1 < f(α). Since gt = max{0, gt−1 + st}, we either have

gt = 0 or gt = gt−1 + st. If gt = 0, we clearly have E[g2
t | g0 = 0] = 0 < ∞. On the

other hand, if gt = gt−1 + st, we have

E[g2
t | gt−1] = g2

t−1 + 2gt−1E[st] + E[s2
t ]

= g2
t−1 + 2gt−1(1 + log(α)) + 1 + (1 + log(α))2

< g2
t−1 + 1 + (1 + log(α))2 (3.35)

< f(α)2 + 1 + (1 + log(α))2 <∞, (3.36)

where Eq. (3.35) follows since gt−1(1 + log(α)) < 0 and Eq. (3.36) follows since

gt−1 < f(α). Then, using nested expectations and the fact that the expectation of a

finite variable is finite, we obtain the following inequality:

E
[
E[g2

t | gt−1] | g0 = 0
]

= E[g2
t | g0 = 0] <∞,

that also implies

P(E
[
g2
t | g0 = 0

]
<∞) = 1.
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In conclusion, if α < 1/e, we have shown above that for both of the complementary

conditions, namely gt−1 ≥ f(α) and gt−1 < f(α), we have

P(E
[
g2
t | g0 = 0

]
<∞) = 1. (3.37)

The implication is that α < 1/e is a sufficient condition to obtain Eq. (3.37), asymp-

totically as N2 →∞.

3.7.2 Proof of Theorem 3.2

Proof. As discussed in Appendix 3.7.1, as N2 →∞, ŝt converges to st and hence the

proposed CUSUM-like detector in Eq. (3.15) converges to the algorithm in Eq. (3.4).

Note that if α < 1/e, then E[st] = 1+log(α) < 0. In [5, Sec. 5.2.2.4], for CUSUM-like

algorithms such as Eq. (3.4), a lower bound on the FAP is then given as follows:

E∞[Γ] ≥ e−w0h,

where w0 < 0 is the solution to

E[e−w0st ] = 1. (3.38)

Defining θ , w0+1, we can rewrite Eq. (3.38) based on the pdf of st (see Eq. (3.25))

as follows:

E[e−w0st ] =

∫ ∞
log(α)

e(1−θ)yαe−ydy

= α

∫ ∞
log(α)

e−θydy

= α
e−θ log(α)

θ
= 1, (3.39)

provided that θ > 0. The conditions w0 = θ − 1 < 0 and θ > 0 together lead to

0 < θ < 1. Moreover, we can rewrite Eq. (3.39) as follows:

θ eθ log(α) = α,
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and multiplying both sides by log(α), we have

θ log(α) eθ log(α) = α log(α). (3.40)

Now, define z , θ log(α) and c , α log(α) so that Eq. (3.40) can be rewritten as

z ez = c,

where z = W (c) = W (α log(α)). Then, we have

θ =
W (α log(α))

log(α)
.

Next, we show that there exists a unique solution to Eq. (3.39) by contradiction.

Assume that there exists two solutions θ1 and θ2 to Eq. (3.39) where θ1 6= θ2. Further,

without loss of generality, assume θ2 < θ1. Then, we have 0 < θ2 < θ1 < 1. From

Eq. (3.39), we have

α
e−θ1 log(α)

θ1

= 1,

which implies that
log(θ1)

1− θ1

= log(α), (3.41)

and similarly,
log(θ2)

1− θ2

= log(α). (3.42)

Then, based on Eq. (3.41) and Eq. (3.42), we have

log(θ1)

1− θ1

=
log(θ2)

1− θ2

. (3.43)

Furthermore, for 0 < θ < 1, we have

∂ log(θ)
1−θ

∂θ
=

1/θ − 1 + log(θ)

(1− θ)2

=
µ− 1− log(µ)

(1− 1/µ)2
> 0, (3.44)

where µ , 1/θ > 1. The inequality in Eq. (3.44) follows due to the fact that log(µ) <

µ− 1 for µ > 1. Then, since the first order derivative of the function

log(θ)

1− θ



CHAPTER 3. ONLINE NONPARAMETRIC ANOMALY DETECTION FOR
HIGH-DIMENSIONAL DATA STREAMS 86

is positive, it is monotonically increasing in the range of 0 < θ < 1. Since 0 < θ2 <

θ1 < 1, we then have
log(θ2)

1− θ2

<
log(θ1)

1− θ1

,

which contradicts with Eq. (3.43). Hence, there exists a unique solution to Eq. (3.39).
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Chapter 4

DeepQCD: A Unified Data-Driven

Approach to Quickest Change

Detection

4.1 Introduction

This chapter aims to unify the QCD framework via a novel easy-to-implement data-

driven solution approach, which is applicable to a variety of real-world settings.

4.1.1 Background

Existing QCD approaches can be classified in terms of assumptions on the change-

point model, density knowledge, observation model, and internal memory structure,

as detailed next.

4.1.1.1 Change-point Model

Based on the change-point model, two common problem formulations exist: the

Bayesian and the minimax. The Bayesian formulation assumes that the change-point
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is random with a known prior distribution where the distribution of the change-

point can either be dependent on the observations or independent from the observa-

tions [95]. The minimax formulation assumes that the change-point is deterministic

but unknown.

In the Bayesian setting, the change-point is commonly assumed to be a geometric

random variable with parameter ρ, denoted with τ ∼ geo(ρ), where

πt , P(τ = t) = ρ (1− ρ)t−1, t = 1, 2, 3, . . . (4.1)

The design goal is to minimize the average detection delay (ADD) subject to an upper

bound on the probability of false alarm (PFA). Let Pt and Et be the probability and

the expectation operators, respectively, given that the change happens at time τ = t.

The ADD is then given by

ADD(Γ) , E[(Γ− τ)+] =
∞∑
t=1

πt Et[(Γ− t)+],

and the PFA is given by

PFA(Γ) , P(Γ < τ) =
∞∑
t=1

πt Pt(Γ < t).

The Bayesian QCD problem is then written as follows:

min
Γ

ADD(Γ) subject to PFA(Γ) ≤ α, (4.2)

where α ∈ (0, 1) is the desired upper bound on the PFA.

In the minimax setting, the design goal is to minimize the worst-case ADD subject

to an upper bound on the average false alarm period (FAP). There exist two well-

known problem formulations in the minimax setting depending on the definition of

the worst-case ADD. Firstly, the Lorden’s definition on the worst-case ADD is given

by [84]

J(Γ) , sup
τ

ess sup
Fτ

Eτ
[
(Γ− τ)+ |Fτ

]
. (4.3)
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Notice that J(Γ) is computed based on the least favorable change-point and the least

favorable history of observations up to the change-point. The Lorden’s minimax

problem is then written by [84]

inf
Γ

J(Γ) subject to E∞[Γ] ≥ β, (4.4)

where E∞[Γ] denotes the FAP, that is, the average stopping time when no change

occurs at all (τ = ∞) and β ≥ 1 is the desired lower bound on the FAP. The false

alarm rate (FAR) is defined to be the reciprocal of the FAP:

FAR ,
1

E∞[Γ]
.

Hence, a lower bound on the FAP corresponds to an upper bound on the FAR.

Secondly, Pollak has the following definition on the worst-case ADD [105]:

D(Γ) , sup
τ

Eτ
[
Γ− τ |Γ ≥ τ

]
. (4.5)

Notice that D(Γ) is less pessimistic than J(Γ). The Pollak’s problem is written as

follows [105]:

inf
Γ

D(Γ) subject to E∞[Γ] ≥ β. (4.6)

4.1.1.2 Density Knowledge

In terms of the density knowledge, the following three cases are common: (i) known

pre- and post-change pdfs, (ii) known pre-change pdf, unknown post-change pdf,

and (iii) unknown pre- and post-change pdfs. The first case has been extensively

studied, especially for the independent and identically distributed (i.i.d.) observation

setting, and the optimality properties of the well-known QCD algorithms have been

established in this case [5,133]. In particular, many existing QCD algorithms require

the computation of the likelihood ratio (LR), which is possible only if the pre- and

post-change pdfs are known.
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In the second case, several approaches have been developed depending on the

knowledge about the post-change pdf. In particular, if the post-change pdf belongs

to a certain parametric family of distributions, either the unknown parameters can be

estimated and the estimated parameters are incorporated into the change detection

process, called the GLR approach [13, 66, 71] or a robust detection approach can be

employed where the worst-case parameters are determined and the change detection is

performed accordingly [131]. However, if the post-change pdf is completely unknown,

the online data stream can be evaluated as to whether it statistically fits to the pre-

change pdf [64,67,129]. In the third case, if both the pre- and post-change pdfs belong

to a parametric distribution family with some unknown parameters, then as before,

either the unknown parameters can be estimated or the worst-case parameters can be

determined. Alternatively, a nonparametric (i.e., model-free) approach can be taken

if the data distributions are completely unknown [68,70].

4.1.1.3 Observation Model

There exist many time series models: i.i.d. observations, independent but non-

identically distributed observations, autoregressive (AR) model, autoregressive mov-

ing average (ARMA) model, state-space model, hidden Markov model (HMM), and

so forth [5, 39, 93, 106]. Almost all prior work in the QCD framework studied the

i.i.d. observation setting, for both the pre- and post-change cases. This is mainly

because it gets more complicated (increasing space and time complexity) to compute

the LR as the observations get more correlated over time. Hence, the assumption

of temporally independent observations greatly simplifies the QCD algorithms, en-

abling low-complexity recursive implementations suitable for real-time processing. In

the general non-i.i.d. observation setting, asymptotically optimal model-based QCD

procedures are extended from the i.i.d. observation setting, where simple recursive

implementations are usually no longer possible [71,128,133].
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4.1.1.4 Internal Memory Structure

In terms of utilizing the observation history in the decision making process, there

exist two different QCD approaches: window-limited and fully-sequential. On the

one hand, the window-limited procedures restrict the internal memory to a finite

number of recent observations and decide on the change accordingly while ignoring

the further past observations, see [46] for example. The window-limited procedures

have an inherent detection latency because of the window size, which is itself a design

parameter. Specifically, a larger window size leads to a larger ADD while a smaller

window size ignores more (possibly useful) information from the past. In the extreme

case, the past observations are completely ignored and only the latest observation

is utilized for the change detection, see the Shewhart test [96] for example. On the

other hand, the fully-sequential procedures decide on the change based on the entire

observation history via keeping a summary of the observations seen so far in their

internal memory. The fully-sequential QCD procedures are usually preferred over the

window-limited procedures as they can ideally capture all the relevant information

from the observation history. However, to reduce the memory requirements, the

existing fully-sequential QCD procedures usually make simplified assumptions such

as temporally independent observations.

4.1.2 Motivations

Real-world data streams often have unknown statistical properties [68]. Then, for

the change detection, either the underlying probabilistic data models can be learned

from data and an existing model-based QCD procedure can be employed accordingly

or the change detection rule can be directly learned from data. The former approach

requires fitting an existing parametric model to the observed data stream and esti-

mation of unknown model parameters, which might be costly or even intractable for

complex, temporally correlated, and high-dimensional data streams. Moreover, it is

vulnerable to model mismatch as the real-world data often do not perfectly fit into
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the existing parametric models and even the lack of parametric models is common in

high-dimensional settings [74]. Hence, in practice, usually only an approximate model

can be learned, which degrades the performance of the corresponding model-based

QCD procedure. The latter direct approach is model-free, robust to data model mis-

match, and widely applicable to a variety of practical settings. Hence, this chapter

aims to propose an effective model-free solution approach.

In [3], responding to changes in a potentially adversarial environment rapidly

yet accurately is addressed as a problem faced by animal brains at every level from

neurons to behavior. It is argued that neurons are optimized for tracking abrupt

changes in the input spike statistics and moreover, intracellular dynamics of the

leaky-integrate-and-fire neurons remarkably resemble the information accumulation

and decision process of the Bayesian-optimal Shiryaev algorithm [119] in the QCD

framework. It is also argued that the neurons have a tradeoff between speed and

accuracy in their decision making process, just like the QCD procedures. These

well motivate us to propose a data-driven QCD procedure based on the deep neural

networks and the Shiryaev algorithm. Finally, deep learning (DL) does not require

explicit data modeling or feature engineering, which enables an entirely data-driven

QCD procedure.

4.1.3 Contributions

We propose a novel generic fully-sequential data-driven QCD procedure, called Deep-

QCD, that learns the change detection rule directly from the observed raw data via

deep neural networks. With sufficient amount of training data, DeepQCD can ef-

fectively learn the change detection rule for all types of data distributions including

complex and high-dimensional distributions, all observation settings including tem-

porally correlated data streams, and all change-point models. Hence, the proposed

approach well unifies the QCD framework.

Motivated from the Bayesian-optimal Shiryaev algorithm [119], DeepQCD esti-
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mates the posterior probability that change has taken place given all observations

seen so far and declares a change as soon as the posterior probability is reliably high.

For this purpose, an internal state representation is built from the observation his-

tory via recurrent memory cells, which summarizes the useful information relevant

to the QCD task. In addition to being intuitive and easy-to-implement, DeepQCD

turns out to be very powerful as its performance is similar as or even superior to

that of the existing model-based QCD procedures that are designed with the com-

plete statistical knowledge of the observed data stream. Furthermore, in challenging

real-world applications such as online anomaly detection over surveillance videos and

online cyber-attack detection over Internet of Things (IoT) networks, DeepQCD sig-

nificantly outperforms existing benchmark algorithms.

4.1.4 Organization

The remainder of the chapter is organized as follows. Sec. 4.2 provides a brief liter-

ature review on the related work. Sec. 4.3 presents the generic QCD procedure that

motivates the proposed solution approach. Sec. 4.4 describes the proposed DeepQCD

algorithm. Sec. 4.5 justifies the proposed data-driven approach through comparisons

with the existing model-based QCD algorithms. Sec. 4.6 evaluates the performance

of DeepQCD in real-world applications. Finally, Sec. 4.7 concludes the chapter.

4.2 Related Work

In the nonparametric detection, classical procedures are the statistical goodness-of-fit

tests such as the Kolmogrov-Smirnov test, Anderson–Darling test, Wilcoxon signed-

rank test, and Pearson’s chi-squared test [124]. The goodness-of-fit tests are mainly

designed for processing univariate data in batch, where their window-limited versions

can be employed for online change detection [67, 129]. Furthermore, for multivariate

data streams, support vector machine (SVM)-based one-class classification algorithms
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[55, 117, 137], nearest neighbor (NN) graph-based algorithms [18, 68, 122, 143, 149],

subspace-based algorithms [68,109], and information theoretic algorithms [24,37] have

been proposed for online data-driven change and anomaly detection.

Since the fundamental building block of the proposed DeepQCD algorithm is

the recurrent memory cells, we provide a brief review on how the recurrent neural

networks (RNNs) have been used in the relevant literature. There are three common

uses of the RNNs in online change and anomaly detection. The first approach is

based on learning a pre-change prediction model via training the RNN only with the

pre-change data [10,63,86]. For online anomaly detection, the trained RNN predicts

the future observations and an anomaly is declared if large prediction errors occur.

The second approach builds a classifier on the entire sequence via training the RNN

with both pre-change (nominal) and post-change (anomalous) data [144]. In the

online detection phase, after observing the entire data sequence, the trained RNN

makes a binary decision as to whether the sequence is nominal or anomalous. In

the third approach, an RNN-based autoencoder is trained only with the pre-change

data in order to learn a nominal reconstruction model [85, 88, 100]. The underlying

assumption is that only the nominal data can be reconstructed well. Hence, in the

online detection phase, an anomaly is declared if large reconstruction errors occur. In

addition to these three common use cases, in a recent study [34], an RNN is designed

with a special structure by making use of the wavelet layers, called the pyramid RNN,

with the purpose of detecting gradual and multi-scale changes more effectively.

4.3 Generic QCD Procedure

In the QCD framework, the stopping time Γ is determined based on the information

derived from the history of observations. Let st be the internal state representation

(memory) of the decision maker at time t, based on the data stream seen so far, that

is, {x1,x2, . . . ,xt}, where xt ∈ Rp is the observation made at time t and p ≥ 1 is the
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data dimensionality. Ideally, the internal state effectively captures and summarizes

all the relevant (to the QCD task) information in the observation history and as new

observations are made, the internal state is updated accordingly. Let φ(·, ·) be a

function that processes the latest observation xt and updates the internal state, as

given by

st = φ(xt, st−1). (4.7)

Based on the internal state, the decision maker either chooses to stop and declare a

change or to continue acquiring further observations. More particularly, the internal

state st is mapped to a decision statistic dt via a function ω(·) as

dt = ω(st), (4.8)

and the decision is made based on a threshold-crossing mechanism. In other words,

the decision maker declares a change as soon as the decision statistic exceeds a certain

threshold h > 0. Hence, the stopping time is given by

Γ = inf{t : dt ≥ h}. (4.9)

This procedure (see Fig. 4.1) is common for all QCD algorithms. What make

algorithms different from each other are the state update function φ(·, ·) and the

decision mapping ω(·). In particular, the existing QCD algorithms characterize φ(·, ·)

and ω(·) in special forms depending on the assumptions on pre- and post-change

pdfs, observation model, change-point model, and internal memory structure. In this

chapter, we consider the most general case where no assumptions are imposed on

the observed data stream. Instead, we aim to learn both φ(·, ·) and ω(·) from data

and thereby to achieve an entirely data-driven (model-free) QCD procedure. Before

introducing the proposed DeepQCD algorithm, we briefly explain below a few existing

QCD algorithms and how they fit into the generic QCD procedure (see Fig. 4.1).
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xt

st

φ(·, ·)

ω(·)

dt ≥ hdt < h

t← t+ 1 Γ← t

Figure 4.1: Generic QCD procedure.

4.3.1 CUSUM Algorithm

In each QCD algorithm, the internal state has a particular definition. Moreover, to

achieve low space and time complexity, usually a recursive state update rule is de-

sired, for which simplifying assumptions are imposed such as temporally independent

observations. The cumulative sum (CUSUM) algorithm is the optimal solution to

the Lorden’s minimax problem given in Eq. (4.4) [94]. In the CUSUM algorithm, the

log-likelihood ratio (LLR) is considered as the statistical evidence for change at a time

and the accumulation of LLRs over time correspond to the state of the algorithm. In

particular, let `t be the LR at time t, given by

`t ,
f1(xt)

f0(xt)
. (4.10)
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Assuming that the observations are i.i.d. over time for both the pre- and post-change

cases, the state is updated recursively as follows:

st = max {0, st−1 + log(`t)} , (4.11)

where s0 = 0. The decision statistic is identical to the state, that is,

dt = st, (4.12)

and hence the decision mapping ω(·) is an identity function. The change is declared

at the first time the accumulated statistical evidence is reliably high:

Γ = inf{t : dt ≥ h}. (4.13)

Notice that the CUSUM update given in Eq. (4.11) is a special form of the generic

state update in Eq. (4.7), and the CUSUM decision mapping given in Eq. (4.12) is

a special form of the generic mapping in Eq. (4.8). Moreover, the CUSUM stopping

time given in Eq. (4.13) is identical to Eq. (4.9).

4.3.2 Shiryaev Algorithm

The Shiryaev algorithm is the optimal solution to the Bayesian QCD problem given

in Eq. (4.2) [119]. In the Shiryaev algorithm, the state corresponds to the probability

that change has taken place given the data stream seen so far, that is,

st = P (t ≥ τ |x1,x2, . . . ,xt) . (4.14)

The Bayesian formulation assumes that τ ∼ geo(ρ), see Eq. (4.1). Moreover, assuming

that the observations are independent over time, the following recursive state update

rule is employed:

st =
s̃t−1`t

s̃t−1`t + (1− s̃t−1)
, (4.15)

where

s̃t , st + ρ(1− st),
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and s0 = 0. The decision statistic is identical to the state,

dt = st, (4.16)

and the change is declared as soon as the posterior probability of having change

exceeds the test threshold:

Γ = inf{t : dt ≥ h}, (4.17)

where h ∈ (0, 1). Notice that the Shiryaev state update given in Eq. (4.15) is a

special form of Eq. (4.7). Similarly, the decision mapping given in Eq. (4.16) and the

stopping time given in Eq. (4.17) both fit to the generic QCD procedure.

4.3.3 Shiryaev-Roberts Procedure

The Shiryaev-Roberts (SR) procedure is an asymptotically optimal solution to the

Pollak’s minimax problem given in Eq. (4.6) [133]. The SR procedure is obtained

from the Shiryaev algorithm in a special regime where ρ → 0, that is, where the

change is a rare event and the change-point τ is uniform over time. The state of the

SR procedure is updated recursively as follows:

st = (1 + st−1)`t, (4.18)

where s0 = 0. As before, the decision statistic is the same with the state, that is,

dt = st, (4.19)

and the stopping time is given by

Γ = inf{t : dt ≥ h}. (4.20)

Notice that the SR procedure summarized through Eq. (4.18)-(4.20) also fits to the

generic QCD procedure.
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4.3.4 Window-Limited Goodness-of-Fit Tests

In the CUSUM, Shiryaev, and the SR procedures, the state is well aligned with

the QCD task, the space complexity (memory requirement) is low, and the state

can be recursively updated with low time complexity. However, these algorithms

require that both the pre- and post-change pdfs are known so that the LR can be

computed, and moreover the observations are independent over time. In some cases,

such assumptions might not hold and alternative solutions are sought. For example,

when the pre-change pdf is known but the post-change pdf is completely unknown,

the observed data stream can be analyzed as to whether it fits to or deviates from

the pre-change pdf. For this purpose, a window-limited goodness-of-fit test [67, 129]

can be used. In this case, let an online sliding-window state be formed with the latest

K ≥ 1 observations, given by

st = [xt−K+1,xt−K+2, . . . ,xt]. (4.21)

At each time t, the goodness-of-fit test analyzes the sliding-window state and makes

a decision accordingly.

As an example, the sliding-window chi-squared test described in [67] considers an

i.i.d. univariate data stream x1, x2, x3, . . . with a known pre-change pdf f0 and divides

the range of f0 into L disjoint and mutually exclusive intervals I1, I2, . . . , IL such that

p1 = P(xt ∈ I1), p2 = P(xt ∈ I2), . . . , pL = P(xt ∈ IL) are the probabilities that the

data resides in each interval in the pre-change case, where
∑L

i=1 pi = 1. Then, for

any given state, the expected number of data points in the predetermined intervals

are Kp1, Kp2, . . . , KpL. At time t, for the state st, let the number of data points

residing in each interval be counted as N1,t, N2,t, . . . , NL,t, where
∑L

i=1Ni,t = K.

The decision statistic is then computed as

dt =
L∑
i=1

(Ni,t −Kpi)2

Kpi
, (4.22)

where dt is asymptotically (as K → ∞) a chi-squared random variable with L − 1

degrees of freedom in the pre-change case, that is, for t < τ . However, if the observed
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data stream deviates from the pre-change pdf, the decision statistic given in Eq. (4.22)

is expected to increase. The stopping time of this procedure is thus given by

Γ = inf {t : dt ≥ h} .

Notice that the window-limited online goodness-of-fit tests can also be expressed

within the generic QCD procedure (see Fig. 4.1) via a simple sliding-window state

as given in Eq. (4.21) and batch processing the observations in the current state to

compute a decision statistic, see the chi-squared decision statistic in Eq. (4.22) for

example. For the sliding-window state, at each time t, the state update is performed

by simply removing the oldest observation xt−K and including the newest observation

xt.

4.3.5 Shewhart Test

Finally, in terms of the internal memory, an extreme case is deciding on the change

based only on the latest observation while ignoring the past observations at all. In

the corresponding setting, the classical QCD procedure is the Shewhart test. In case

the pre- and post-change pdfs are known, the Shewhart test computes the LLR and

compares it with a certain threshold. Here, the internal state corresponds to the

latest observation, see Eq. (4.21) when K = 1, that is,

st = xt, (4.23)

the decision statistic is the LLR, given by

dt = log

(
f1(st)

f0(st)

)
, (4.24)

and the change is declared whenever the LLR exceeds a certain threshold:

Γ = inf {t : dt ≥ h} . (4.25)

The Shewhart test described through Eq. (4.23)-(4.25) also fits into the generic QCD

procedure. Next, we explain the proposed model-free DeepQCD algorithm.
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ω(·)

Figure 4.2: Proposed generic neural network architecture for the data-driven QCD

(DeepQCD). At each time t, the new observation xt is processed and the extracted

features are used to update the internal state st. The internal state is then mapped

to the decision statistic dt.

4.4 Data-Driven QCD via Deep Learning

Suppose that a dataset is available including both pre- and post-change samples. To

obtain an effective data-driven QCD procedure, we propose to train a deep neural

network consisting of three building blocks: initial data processing layers, recurrent

layers, and regression layers (see Fig. 4.2). The purpose of this architecture is to

learn both the state update and the decision mapping from data without imposing

model assumptions on the observed data stream. As illustrated in Fig. 4.2, the data

processing and recurrent layers together correspond to the state update function φ(·, ·)

and the regression layers correspond to the decision mapping ω(·).
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4.4.1 Data Processing Layers

The first few layers of the network perform an initial processing on the new observation

xt to extract useful features from it. The initial data processing can be especially

useful for high-dimensional data to filter out the noise and keep only the relevant

informative (i.e., task-oriented) part of the data. Moreover, to extract the most

relevant and useful information, the data processing layers should be chosen specific

to the observed data type. For instance, for a video data stream, convolutional layers

can be used. Further, depending on the observed data type, the data processing

layers can simply consist of dense layers or even the initial data processing might not

be necessary at all, that is, the raw data can be directly input to the recurrent layers.

4.4.2 Recurrent Layers

The recurrent layers serve as the memory of the network, which summarizes the

data stream seen so far, where at each time t, the internal state is updated based

on the new observation xt. The recurrent layers are the most fundamental building

block of our solution structure. This is because how effective the recurrent layers are

in capturing the relevant information from the observation history critically affects

the performance of the QCD procedure. In practice, advanced recurrent memory cells

such as the long short-term memory (LSTM) [49] and gated recurrent unit (GRU) [20]

can be used in the recurrent layers.

The RNNs encode the observation history into an internal state via sequential

data processing, just like the QCD procedures build an internal state from the sequen-

tially acquired observations. Although, in principle, the latest RNN state captures

all the past observations, remembering arbitrarily long histories can be practically

difficult [29]. Nevertheless, from the QCD perspective, the recent history is partic-

ularly more important since the observations after the change (i.e., {xt}t≥τ ) are the

most informative about the change event. Furthermore, the advanced memory cells

such as the LSTM and GRU can make a selective use of the observation history by
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suppressing the noise and keeping the relevant information. Therefore, we expect

that RNNs can well serve as the memory of our data-driven QCD procedure.

Notice that unlike the sliding-window state where the memory is hard-coded with

the latest K observations and K is a design parameter, the RNNs automatically dis-

cover a way to build the internal state from the observation history. In fact, a key

advantage of DL is that the solution depends much less on human input and interpre-

tation but rather the data speaks itself. In other words, the neural network learns to

perform the desired task by directly interacting with the data. Note, however, that

for an effective learning, the amount of data should be sufficiently large.

4.4.3 Regression Layers

In the proposed solution structure, finally, the recurrent layers are followed by a few

dense layers that map the internal state st to the decision statistic dt. Motivated

by the Bayesian-optimal Shiryaev algorithm, our decision statistic at time t is the

posterior probability that change has occurred given all the observations seen until

time t, that is,

dt = P (t ≥ τ |x1,x2, . . . ,xt) . (4.26)

It appears that for this decision statistic, setting the ground truth labels in the training

phase is particularly convenient. That is, in the pre-change case, the ground truth

label d̂t is given by, see Eq. (4.26),

d̂t = 0, t < τ, (4.27)

and in the post-change case, the ground truth label is given by, see Eq. (4.26),

d̂t = 1, t ≥ τ. (4.28)

The dense layers essentially perform a regression task mapping the internal state into

the posterior probability of having change.
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4.4.4 DeepQCD

The proposed DeepQCD algorithm consists of an offline training and an online de-

tection phases. In the training phase, the neural network is trained end-to-end with

the objective of minimizing the difference between the estimated decision statistics dt

and the ground truth labels d̂t. As the loss function, either the mean squared error,

given by

ED
[
(d̂t − dt)2

]
,

or the binary cross entropy loss, given by

−ED
[
d̂t log(dt) + (1− d̂t) log(1− dt)

]
,

can be used where D denotes the training dataset. During the training phase, the

neural network weights are adjusted towards minimizing the loss function.

After the training phase is over, the trained neural network is used for the QCD

task. Specifically, in the online phase, at each time t, the new observation xt is

given as an input to the network and the network outputs the decision statistic dt

(see Fig. 4.2). A change is declared at the first time the decision statistic exceeds a

predetermined threshold h ∈ (0, 1):

Γ = inf {t : dt ≥ h} .

The test threshold h controls the speed-accuracy tradeoff in the decision making

process. Specifically, a larger threshold reduces the frequency of false alarms but also

increases the ADD.

4.5 Justification of the Data-Driven QCD Proce-

dure

In this section, we consider a few cases studied in the QCD literature and in each

case, we evaluate the existing model-based QCD algorithms designed with the full
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st

Figure 4.3: Neural network architecture for the experiments in Sec. 4.5.

statistical knowledge of the observed data stream. Further, we evaluate the proposed

DeepQCD algorithm implemented with no prior knowledge about the observed data.

The purpose here is to justify and exhibit the power of DeepQCD as compared to the

(optimal) model-based approaches.

4.5.1 I.I.D. Observation Process

Consider a data stream described through Eq. (1.1) and let the observations be inde-

pendent over time for both the pre- and post-change cases. Firstly, in the Bayesian

setting where τ ∼ geo(ρ), we compare DeepQCD with the optimal Shiryaev algorithm

described through Eq. (4.15)-(4.17).

As an example, we choose ρ = 0.001, the data dimensionality as p = 7, f0 ∼

N (0p, Ip), and f1 ∼ N (1p, Ip), where 0p denotes a p-dimensional vector consisting of

all zeros, 1p denotes a p-dimensional vector consisting of all ones, and Ip is a p × p

identity matrix. For the given setup, we generate the training data as consisting

of 3200 independent data streams. The length of each data stream is chosen to be

2000 where the observations are from the pre-change pdf up to time τ and from the
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post-change pdf afterwards. In other words, the training dataset is given by

D = {(xit, d̂it), t = 1, 2, . . . , 2000, i = 1, 2, . . . , 3200},

and for the ith data stream in the training set (i.e., {xi1,xi2, . . . ,xi2000}), we have

xit ∼

f0, if t < τ,

f1, if t ≥ τ,

where τ ∼ geo(0.001). Note that if the random change-point τ is greater than the

specified stream length 2000, then the corresponding data stream contains only the

pre-change observations. Moreover, the ground truth labels are set as follows:

d̂it =

0, if t < τ,

1, if t ≥ τ.

For DeepQCD, we choose a neural network architecture as shown in Fig. 4.3, where

the network is composed of a recurrent layer and two regression layers. The recurrent

layer contains an LSTM cell with 16 units (i.e., st ∈ R16) whereas the regression layers

are composed of two dense layers with 10 neurons and 1 neuron, respectively. In the

first dense layer, we use the rectified linear unit (ReLu) activation function while we

use the sigmoid activation in the second dense layer. Moreover, we use the binary

cross entropy loss as the loss function and the adaptive moment (Adam) stochastic

gradient descent method [59] with a learning rate of 0.001 as the optimizer during

the training phase.

After the training phase, we evaluate the performance of DeepQCD and the

Shiryaev algorithm in the Bayesian setting, where τ ∼ geo(0.001). Fig. 4.4 shows

the tradeoff between the ADD and PFA as the test threshold h varies for both al-

gorithms. We observe through Fig. 4.4 that DeepQCD performs nearly the same

as the optimal Shiryaev algorithm. Recall that the Shiryaev algorithm is designed

with the complete knowledge of the observed data stream, namely the pre- and post-

change pdfs f0 and f1, the geometric change-point model with the known parameter
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Figure 4.4: ADD vs. PFA curves for DeepQCD and the Shiryaev algorithm in the

Bayesian setting where τ ∼ geo(0.001).

ρ, and the i.i.d. observation model. Hence, Fig. 4.4 demonstrates the power of the

proposed data-driven DeepQCD algorithm as it performs near-optimally without any

prior information regarding the observed data stream.

Secondly, in the minimax setting, the CUSUM algorithm described through

Eq. (4.11)-(4.13) is the optimal solution to the Lorden’s problem [94] and it is asymp-

totically optimal for the Pollak’s problem [133]. Furthermore, the SR procedure

described through Eq. (4.18)-(4.20) is asymptotically optimal for the Pollak’s prob-

lem [133]. Note that as the CUSUM and the SR procedures have their optimality

properties in the minimax setting based on the pessimistic measures of the ADD, see

Eq. (4.3) and Eq. (4.5), it is, in principle, possible to obtain better QCD procedures

than the CUSUM and the SR procedures.

We evaluate DeepQCD, the CUSUM algorithm, and the SR procedure using the

same experimental setup as in the Bayesian setting except for the change-point model.

Firstly, assuming τ = ∞, we compute the FAP of the algorithms for various test

thresholds. Next, assuming τ = 1, we compute the ADD of the algorithms for the
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Figure 4.5: ADD vs. FAP curves for DeepQCD, the CUSUM algorithm, and the SR

procedure.

same set of test thresholds. Fig. 4.5 illustrates that DeepQCD significantly outper-

forms the model-based CUSUM and the SR procedures. Note that in this experiment,

we use the same trained network in the Bayesian setting and observe that even if the

online data stream mismatches the training data in terms of the change-point model,

the trained network still performs the QCD task very well. In fact, in this experi-

ment, while generating the training data, we prefer to use random change-points to

make sure that the neural network learns the transition from the pre-change to the

post-change case over different change-points.

4.5.2 AR Observation Process

Consider a first-order AR observation process driven by temporally independent

Gaussian noise:

xt =

µ0 + λ0xt−1 + εt, if t < τ,

µ1 + λ1xt−1 + εt, if t ≥ τ,

(4.29)
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where εt ∼ N (0, 1) and |λ0|, |λ1| ≤ 1. Our goal is to timely detect possible changes

in the drift of the AR(1) observation process (i.e., from µ0 to µ1) and its correlation

coefficient (i.e., from λ0 to λ1). Notice that the observations are correlated over time

except for the special case where λ0 = λ1 = 0.

In [106], the CUSUM and the SR procedures are adapted to the AR(1) observation

process given in Eq. (4.29). Specifically, the LR is derived as [106]

`t = e[xt−0.5(xt−1(λ0+λ1)+µ0+µ1)] [xt−1(λ1−λ0)+µ1−µ0], (4.30)

and then the CUSUM and the SR procedures are extended from the i.i.d. obser-

vation setting to the AR(1) observation setting using the LR expression given in

Eq. (4.30). It is shown that the modified versions of the CUSUM and the SR pro-

cedures are asymptotically minimax-optimal [106]. Hence, we compare DeepQCD

with the modified CUSUM and the modified SR procedures. Further, we extend the

Shiryaev algorithm to the AR(1) observation setting using the LR expression given

in Eq. (4.30), and compare DeepQCD with the modified Shiryaev algorithm in the

Bayesian setting.

As an example, let µ0 = 0, λ0 = −0.3, µ1 = 1, and λ1 = 0.2. Then, for the AR(1)

observation process given in Eq. (4.29), we generate the training data consisting of

3200 independent data streams where each stream length is 2000 as in the previous

subsection. As before, to obtain different change-points while generating the training

data, we use a geometric change-point with the parameter ρ = 0.001. Finally, we use

the same neural network structure (see Fig. 4.3) and the same training specifications

given in the previous subsection.

After the training phase, firstly in the Bayesian setting where τ ∼ geo(0.001),

we evaluate the performance of DeepQCD and the modified Shiryaev algorithm (see

Fig. 4.6). Next, we evaluate DeepQCD, the modified CUSUM and the modified

SR procedures where τ = ∞ for the FAP and τ = 1 for the ADD calculations

(see Fig. 4.7). The figures illustrate that DeepQCD performs nearly same or even

better than the model-based benchmark algorithms, demonstrating the power of the
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Figure 4.6: ADD vs. PFA curves for DeepQCD and the modified Shiryaev algorithm

for detecting changes in an AR(1) observation process in the Bayesian setting where

τ ∼ geo(0.001).

proposed data-driven procedure in a temporally correlated AR(1) observation setting.

4.5.3 Transient Change Detection

In the QCD framework, the change is usually assumed to be persistent, that is, the

post-change period is infinitely long after change happens, see Eq. (1.1) for example.

However, in some applications such as radar, sonar, intrusion detection, and industrial

monitoring [46], the change might be transient, that is, it occurs for a short period

of time and then disappears. In such cases, we can write

xt ∼


f0, if t < τ1,

f1 6= f0, if τ1 ≤ t < τ2,

f0, if t ≥ τ2,

where the change lasts for the time period [τ1, τ2). Assume that the observations are

independent over time given τ1 and τ2.
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Figure 4.7: ADD vs. FAP curves for DeepQCD, the modified CUSUM algorithm, and

the modified SR procedure for detecting changes in an AR(1) observation process.

In the transient QCD framework, a common objective is to detect the change

before it disappears. Let Γ be the stopping time at which a change (from f0 to f1) is

declared. Then,

{τ1 ≤ Γ < τ2}, (4.31)

{Γ ≥ τ2}, (4.32)

and

{Γ < τ1} (4.33)

are considered as the detection, missed detection, and false alarm events, respectively.

The goal is to maximize the probability of detection (PD) or equivalently to minimize

the probability of missed detection (PMD) subject to an upper bound on the PFA. Let

Pτ1,τ2 be the probability measure when the change happens at time τ1 and disappears

at time τ2. The transient QCD problem can then be written as follows:

max
Γ

Pτ1,τ2(τ1 ≤ Γ < τ2) subject to Pτ1(Γ < τ1) ≤ α, (4.34)
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where α ∈ (0, 1) is the desired upper bound on the PFA. Notice that the detection,

missed detection, and the false alarm events are disjoint and mutually exclusive, and

hence

PD + PMD + PFA = 1.

For the transient QCD problem given in Eq. (4.34), no optimal solutions exist

except for the extreme case where only one observation is seen from f1, that is,

τ2 = τ1 + 1, for which the Shewhart algorithm is optimal in maximizing the worst-

case PD [96]. Moreover, the well-known QCD algorithms such as the CUSUM and

the SR procedures loose their optimality properties in the transient setup as they are

designed for the persistent changes.

In [46], with the goal of minimizing the worst-case PMD, a suboptimal window-

limited CUSUM algorithm is presented, where a certain transient change period K ≥

1 is assumed, that is, τ2 = τ1 + K, and the QCD procedure is designed accordingly.

Specifically, the latest K observations are used to compute the decision statistic of

the algorithm. Then, in terms of the generic QCD procedure (see Fig. 4.1), we can

express the window-limited CUSUM algorithm as follows:

st = [xt−K+1,xt−K+2, . . . ,xt],

dt = max
t−K+1≤ k≤t

t∑
i=k

log

(
f1(xi)

f0(xi)

)
,

Γ = inf {t : dt ≥ h} .

Notice that for transient changes, two consecutive transitions happen: the first

from f0 to f1 at time τ1 and the second from f1 back to f0 at time τ2. Hence,

we aim to train our network for quick detection of both the short signal of change

and also moving back to the pre-change condition. Since we prefer to use random

change-points in the training phase, as an example, we consider both change-points

as geometric random variables while generating the training data, where τ1 ∼ geo(ρ1)

and τ2 − τ1 ∼ geo(ρ2) with the parameters ρ1 = 0.001 and ρ2 = 0.002. Further,
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we assume f0 = N (0, 1) and f1 = N (1, 1). Then, we generate the training data

accordingly consisting of 3200 independent data streams, where each stream length

is 3000. In other words, the training dataset is given by

D = {(xit, d̂it), t = 1, 2, . . . , 3000, i = 1, 2, . . . , 3200},

and for the ith data stream, we have

xit ∼


f0, if t < τ1,

f1, if τ1 ≤ t < τ2,

f0, if t ≥ τ2,

where τ1 ∼ geo(0.001) and τ2 − τ1 ∼ geo(0.002). Moreover, the ground truth labels

are given by

d̂it =


0, if t < τ1,

1, if τ1 ≤ t < τ2,

0, if t ≥ τ2.

Furthermore, we use the same neural network architecture and the same training

specifications as in the previous experiments.

After the training phase, assuming that τ1 = 1000, K = 25, and τ2 = τ1 + K,

we evaluate the performance of the proposed DeepQCD algorithm and the window-

limited CUSUM algorithm. Fig. 4.8 shows the PD versus the PFA for both algorithms

in the given setup. Fig. 4.8 illustrates that although the window-based CUSUM

algorithm assumes the complete knowledge of the observed data stream including the

pre- and post-change pdfs, i.i.d. observation model, and the transient change period

K, it still performs worse than DeepQCD.

Finally, note that although the transient QCD framework mainly focuses on the

detection of the transient signal, that is, the transition from f0 to f1, the detection

of moving back to pre-change conditions, that is, the transition from f1 to f0, is also

important to infer the underlying statistical properties of the observed data stream
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Figure 4.8: PD vs. PFA curves for DeepQCD and the window-limited CUSUM

algorithm for detecting transient changes where τ1 = 1000 and τ2 = 1025.

at any given time. We argue that although the existing algorithms are not designed

accordingly, the proposed data-driven procedure is naturally adapted to detect both

transitions as it is trained with data streams containing both transitions. This can be

listed as another advantage of DeepQCD over the existing alternatives in the transient

QCD framework.

For an illustration of this additional feature, we compare DeepQCD with the

window-limited CUSUM algorithm in detecting changes from f1 back to f0. For

this purpose, we consider a short preheating period in which the internal states of

both algorithms are initialized with the observations from f1. As an example, let

the preheating period be 50 and the performance evaluation begins after this period.

Since in this experiment, we are interested in detecting the change from f1 back to

f0, we modify the stopping times of both algorithms as follows:

Γ = inf {t : dt ≤ h} ,

that is, the change from f1 to f0 is declared as soon as the decision statistic is
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Figure 4.9: ADD vs. FAP curves in detecting changes from f1 back to f0 for DeepQCD

trained under the transient change setup and the window-limited CUSUM algorithm.

sufficiently small. For the performance evaluation, firstly assuming xt ∼ f1,∀t ≥ 1,

that is, τ1 = 1 and τ2 =∞, we compute the FAP of both algorithms. Here, the false

alarm event is defined as declaring a change from f1 to f0 although the true pdf is

still f1. Next, assuming xt ∼ f0,∀t ≥ 1, that is, τ1 = τ2 = 1, we compute the ADD of

both algorithms for detecting the change from f1 to f0 (recall that in the preheating

period, the observations are from f1). Fig. 4.9 shows the corresponding performance

curve, illustrating the superior performance of DeepQCD. Hence, we demonstrate

that DeepQCD, trained under the transient change dynamics, effectively learns to

detect both the transition from f0 to f1 and the one from f1 back to f0.
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Figure 4.10: An example car accident. A bus drives on the sidewalk.

Figure 4.11: An example car accident. The white car hits the black car.

4.6 Experiments with Real-World Data

4.6.1 Online Anomaly Detection over Surveillance Videos

In [125], a real-world large-scale video surveillance dataset is provided, including nor-

mal activities and 13 different anomalies such as road accidents, burglary, and fighting,

where each video frame can be resized to 240×320 pixels, that is, xt ∈ R76800. In this

dataset, ground truth labels are provided at the video-level, that is, the videos are

labeled as either nominal or anomalous, and for anomalous videos, it is not specified

exactly where the anomaly happens. However, the training phase of our algorithm

requires the frame-level ground truth, see Eq. (4.27) and Eq. (4.28). Moreover, in

the testing phase, the ADD calculations require the knowledge of the change-point.

Hence, for a subset of the available anomalous videos, we manually label the video

frames and perform the training and the performance evaluation accordingly. In par-
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ticular, we perform the manual labeling for the road accident videos because marking

the anomalies is more clear for them and the majority of the available anomalous

videos are the road accidents. For example, see Fig. 4.10 and Fig. 4.11. Moreover, as

the nominal videos, we use the vehicle videos without any anomaly.

For DeepQCD, we use the neural network architecture shown in Fig. 4.12. For the

initial data processing, we use the Two-Stream Inflated 3D ConvNet (I3D) [14] pre-

trained over the ImageNet [27]. The I3D extracts 1024 features from the video frames.

The extracted features are first normalized (subtracting the mean and dividing by

the standard deviation of the nominal features) and then fed into the recurrent layers

of the network. Finally, three dense layers are used to estimate the decision statistic.

We use the GRU cells in the recurrent layers, where we use the dropout [123] with the

rate of 0.5. Moreover, before each dense layer, we perform the batch normalization

and before the last dense layer, we use the dropout with the rate of 0.5. For the first

two dense layers, we use the ReLu activation and for the last dense layer, we use the

sigmoid activation.

We use 320 nominal videos and 141 anomalous videos in total for the training and

the performance evaluation. We split this dataset such that 0.4:0.2:0.4 is the train-

ing:validation:test ratio. For the training of the neural network, we stitch the available

videos to obtain longer data streams. Specifically, in each training data stream, we

include both nominal and anomalous videos where we keep the nominal:anomalous

ratio approximately as 0.75:0.25. We use the mean squared error as the loss function

and the Adam as the optimizer.

As a benchmark test, we use the algorithm provided in Liu et al. [81], which pre-

dicts the future frames and evaluates the prediction errors for anomaly detection. We

use the sequential version of this algorithm, where an anomaly is declared as soon as

the prediction error exceeds a certain threshold. Fig. 4.13 shows the conditional ADD

(CADD) vs. FAP in terms of seconds for DeepQCD and the benchmark algorithm

in [81], where we define the CADD as the ADD given that the anomaly is detected
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Figure 4.12: Neural network architecture for the online anomaly detection over

surveillance videos.

before the video ends.

As an additional benchmark, we use the algorithm provided in Sultani et al. [125],

which assigns an anomaly score to each video segment. It is a batch method and

classifies the entire video as either nominal or anomalous. Although it is not possi-

ble to compute the ADD of this algorithm, we can compute the associated receiver

operating characteristic (ROC) curve, showing the true positive rate (TPR) vs. false

positive rate (FPR) as the test threshold varies. Fig. 4.14 shows the ROC curves

for DeepQCD and the benchmark algorithms provided in [125] and [81]. Note that

DeepQCD and the benchmark algorithm in [125] utilize both the nominal and anoma-

lous data in their training phases, while the benchmark algorithm in [81] utilizes the

nominal data only in its training phase.
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Figure 4.13: CADD vs. FAP curves for DeepQCD and the benchmark test in [81] in

the online anomaly detection over surveillance videos.

4.6.2 Online Detection of IoT Botnet Attacks

Network-based detection of IoT botnet attacks (N-BaIoT) dataset [91] obtained from

the UCI Machine Learning Repository [28] provides network traffic statistics for an

IoT network under nominal system operation as well as under IoT botnet attacks.

The network traffic statistics include time intervals between packet arrivals, packet

sizes and counts, and so forth such that each data point is 115-dimensional, that is,

xt ∈ R115. In case of botnet attacks, attackers inject malware to the IoT devices

and use them to perform larger scale attacks over the entire network. As an example

attack scenario, we consider that a spam attack is performed by the BASHLITE

botnet [91] and we monitor the thermostat device for online attack detection.

For DeepQCD, we use the neural network architecture shown in Fig. 4.15. For

the GRU layers, we use the dropout at the rate of 0.25. Moreover, before the dense

layers, we perform the batch normalization. For the first dense layer, we use the ReLu

activation and for the second dense layer, we use the sigmoid activation. Note that

for both training and testing phases, we normalize the data before feeding them into
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Figure 4.14: ROC curves for DeepQCD and the benchmark tests in [125] and [81] in

the online anomaly detection over surveillance videos.

the neural network. Further, we use the mean squared error as the loss function and

the Adam as the optimizer. We split the dataset for the thermostat device given in

the N-BaIoT dataset such that 0.4:0.2:0.4 is the training:validation:test ratio. In the

training phase, we uniformly sample from the nominal samples before the change-

point and from the spam attack samples after the change-point, where the stream

length is 2048 and the change-point is uniform between 128 and 1920.

Although the test data is limited, for the ADD vs. PFA performance curve, we

obtain an infinite data stream by uniformly sampling from the nominal dataset and

the attack dataset for the pre- and post-change cases, respectively. For the ADD

calculations, we assume τ = 1. As the benchmark algorithms, we use the principal

component analysis (PCA)-based nonparametric CUSUM-like test in [68], QuantTree

algorithm in [11], the Information Theoretic Multivariate Change Detection (ITMCD)

algorithm in [37], and NN graph-based QCD algorithm in [18]. Fig. 4.16 shows that

DeepQCD achieves significantly smaller ADDs for the same levels of FAP compared

to the benchmark algorithms.
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4.7 Concluding Remarks

This chapter has proposed a novel easy-to-implement data-driven QCD procedure,

called DeepQCD, based on a generic neural network architecture composed of initial

data processing, recurrent, and regression layers. The neural network discovers the

change detection rule directly from the raw observations without requiring any prior

knowledge on the observed data stream or any feature engineering. Specifically, the

initial data processing layers filter out the noise and extract useful features from

data. The recurrent layers build an internal state representation that summarizes the

observation history for the QCD task. Finally, the regression layers map the internal

state into the decision statistic, defined as the posterior probability that change has

taken place given the data stream seen so far. The proposed DeepQCD algorithm

has been shown to be very powerful in many scenarios where it performs nearly the
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Figure 4.16: ADD vs. FAP curves for DeepQCD and the benchmark tests in the

online detection of IoT botnet attacks.

same or even better than the existing model-based QCD procedures. Furthermore,

experiments with real-world data have illustrated that DeepQCD outperforms the

existing alternatives over challenging applications.
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Chapter 5

Online Distributed Differentially

Private Anomaly Detection over

Networks

5.1 Introduction

5.1.1 Background

In real-time monitoring of safety-critical systems, deviations from the regular be-

havior, that is, anomalies, should be quickly identified for a timely and effective

response based on the system data obtained in real time [5, 50, 66, 145]. Moreover,

in distributed systems where each node/user/device holds privacy-sensitive data, the

data-driven statistical inference process should not violate the confidentiality of data

providers [33, 115]. Further, since the real-world data streams might have arbitrary

statistical characteristics [68], this chapter aims for an effective online distributed

privacy-preserving anomaly detection mechanism that is free of data model assump-

tions and hence applicable to a variety of practical settings. The corresponding ap-

plication cases include but are not limited to vehicular networks [35], smart grid [47],
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Internet of Things (IoT) networks [130], and the cellular networks [44]. For example,

in distribution smart grids, user electricity consumption patterns can be used to build

sensitive user profiles for malicious purposes. This chapter aims to ensure security of

such systems while effectively maintaining data privacy.

Building a data-driven mechanism comes together with the risk of violating the

privacy of data providers. Hence, usually a balance between data utilization and

data privacy needs to be sought. For instance, for the network-wide anomaly de-

tection problem, a perfectly private regime requires that nodes share no information

with respect to their data. In this case, however, the network-wide decision maker

can only have an arbitrary decision about possible anomalies. Hence, the perfectly

private regime corresponds to the worst-case scenario in terms of security. On the

other end of the spectrum, in a completely non-private regime, the decision maker

has access to all the network-wide data in its raw form, that is, the full data uti-

lization, leading, in principle, to the optimal decision about anomalies (the best se-

curity performance). These two extremes illustrate the privacy-security tradeoff in

the network-wide anomaly detection problem. This chapter aims to characterize this

tradeoff analytically to enable a system designer in choosing the system parameters

based on the desired performance levels.

Towards the objective of analyzing privacy-sensitive data while maintaining data

privacy, various techniques have been developed in the literature such as homomor-

phic encryption, secure multi-party computation, federated learning, and differential

privacy [115, 118]. Homomorphic encryption [15] transforms the data in such a way

that arithmetic operations performed over the encrypted data correspond to the same

arithmetic operations over the original data. This enables processing encrypted data

directly without having access to the data in its raw form. In a distributed setting, this

method requires a coordination among multiple parties, particularly a centralized key

management authority. Moreover, the homomorphic encryption is computationally

intensive, which might limit its practical use. Alternatively, the secure multi-party
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computation [148] enables a set of nodes to compute a desired function collabora-

tively without revealing their own sensitive data. Although promising, this method

also requires a coordination among nodes usually via peer-to-peer communication,

which might be costly in practical settings, especially over large-scale networks.

Federated learning is an iterative distributed learning procedure where a set of

nodes is coordinated by a central node with the goal of learning a common model

using the sensitive data at the nodes in a privacy-preserving manner [89, 116]. In

this scheme, the central node sends the latest model parameters to the nodes and

each node sends back an update computed through its own data. The central node

then updates the model parameters by fusing the local updates. In [89], a deep neural

network is iteratively trained where at each time the nodes compute the local gradient

signals and then the central node updates the network weights via the average of the

local gradients. In terms of privacy, the main concern is that the local update signals

can still reveal sensitive information to the central node.

Differential privacy (DP) [33] is a probabilistic framework based on the notion

of indistinguishability. In particular, observing an output of a differentially private

algorithm, one cannot infer whether any specific individual/node/device contributed

to the data. This ensures roughly the same level of privacy to each data provider.

More specifically, change/removal of the data of any single data provider does not

significantly change the output likelihood of a differentially private algorithm. In this

framework, privacy is mainly achieved by randomizing the released statistics from a

database, where the worst-case privacy risk can be quantified and calibrated with the

level of randomization. The randomization can be achieved in many manners such

as input perturbation (via additive noise), output perturbation, objective function

perturbation, and exponential selection mechanism [115].
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5.1.2 Related Work

There has been a growing research interest in differentially private machine learn-

ing and signal processing, for example, see [2, 12, 22, 26, 54, 75, 78, 115, 146]. For a

differentially private algorithm, mainly the effect of privacy constraints on the algo-

rithm performance should be analyzed, which allows the computation of achievable

performance given the data and the desired privacy level. The DP literature com-

monly presumes a single fully-trusted centralized data collector that has access to all

the system-wide data in its raw form and releases some statistics from this database

privately.

Albeit to a lesser extent, distributed DP schemes with an untrusted data aggre-

gator have also been studied. For instance, distributed implementations of privacy-

preserving databases through distributed noise generation have been studied where

each node generates a share of overall random noise [32]. This scheme requires co-

operation and coordination among nodes, which might be costly over large-scale or

dynamic networks. In [118], privacy-preserving aggregation of discrete time-series

data is studied and a differentially private stream aggregation algorithm is presented

where a group of users/nodes periodically send encrypted randomized messages to

an untrusted data aggregator. This mechanism achieves aggregator obliviousness,

that is, the aggregator is not able to obtain any unintended information about the

individual nodes other than the intended aggregate statistic over the network. Sim-

ilarly, in [76], a private stream aggregation algorithm is presented where, different

from [118], neither coordination among nodes nor a centralized key management au-

thority is required to achieve the aggregator obliviousness.

Privacy-preserving change and anomaly detection have also been studied in recent

literature. A subset of these studies claim practical privacy benefits without rigorous

privacy analysis. Such algorithms can be mainly motivated by the data processing

inequality, that is, the processed or transformed form of data carries less information

than the data in its raw form. For instance, in [57] a privacy-preserving anomaly
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detection scheme is presented where the sensitive data is firstly transformed for pri-

vacy concerns and then an anomaly detection algorithm is employed based on the

Gaussian mixture model (GMM) and the Kalman filter. Particularly, a GMM is fit

to the transformed data that is input to the Kalman filter to track its dynamics. In

addition to making strong assumptions such as the GMM and linear dynamics (and

hence the use of the Kalman filter), no theoretical privacy analysis is provided.

Another subset of studies provides provable privacy guarantees, such as DP, but

usually with restrictive assumptions such as fully-known data models or bounded log-

likelihood ratio. For instance, in [22] a window-based differentially private variant of

the cumulative sum (CUSUM) algorithm is presented in a setting where the pre-

and post-change data models are known. More particularly, the log-likelihood ratio

is perturbed to provide a private estimate of the change-point. It is a centralized

detection method as the entire data is assumed to be accessible in its row form by

the decision maker. Similarly, in [12] the differentially private hypothesis testing

problem is studied in a model-based centralized setting and a window-based private

change-point detection algorithm is provided.

In [26], differentially private hypothesis testing is studied for an i.i.d. Gaussian

sequence to decide whether the observed sequence has a given mean value. A gen-

eralized likelihood ratio test is used as a solution where the empirical mean of the

observed data is perturbed for DP and the corresponding impact on the receiver op-

erating characteristics and the decision threshold is characterized. In [38], a server is

assumed to aggregate data from local devices and then send it to the third parties

in a privacy-preserving manner (via perturbation) for an investigation about possible

anomalies. However, no entity other than its owner should access the data in its

raw form for an effective privacy protection. Further, in [42] the private stochastic

gradient framework [121] is used for online training of an anomaly detector. More-

over, selective screening and active learning are used to reduce the required number

of labeled data for the training process. In [146], a distributed intrusion detection
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scheme is proposed for vehicular networks based on distributed privacy-preserving

machine learning and the alternating direction method of multipliers in which the

vehicles collaborate via vehicle-to-vehicle communications for training of a network-

wide classifier to detect attacks or intrusions while protecting the privacy of training

data.

5.1.3 Contributions

We design and analyze a novel data-driven online anomaly detection algorithm for dis-

tributed systems based on the QCD and the private stream aggregation frameworks.

The proposed mechanism provides early and reliable anomaly detection and in the

meantime effectively protects the privacy of local sensitive data at each node. We

propose a cooperative scheme where each node contributes to network-wide anomaly

detection in a privacy-preserving manner. We list our main contributions as follows:

• We propose to extract and periodically release a minimal task-oriented univari-

ate statistic from the observed high-dimensional data stream at every node,

where the local data processing is free of data model assumptions.

• We propose a novel low-complexity differentially private network-wide anomaly

detection algorithm.

• We derive an asymptotic approximation and an asymptotic lower bound for the

average false alarm period (FAP) of the proposed algorithm.

• We derive an asymptotic approximation and an asymptotic upper bound for

the average detection delay (ADD) of the proposed algorithm in cases where

the anomaly signal can be specified. Additionally, we derive the worst-case

asymptotic upper bound on the ADD of the proposed algorithm without needing

the knowledge of the anomaly signal.
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• We show the analytical privacy-security tradeoff, particularly the tradeoff be-

tween anomaly detection performance and the DP level, where the tradeoff is

controlled via the variance of local perturbation noise.

5.1.4 Organization

The remainder of the chapter is organized as follows. Sec. 5.2 describes the problem.

Sec. 5.3 explains the solution approach. Sec. 5.4 presents an analysis of the proposed

solution scheme. Sec. 5.5 evaluates the performance of the proposed solution over

real-world data. Finally, Sec. 5.6 concludes the chapter.

5.2 Problem Description

Consider a distributed network consisting ofN nodes where each node n ∈ {1, 2, . . . , N}

has a high-dimensional observation xt,n ∈ Rmn at each time t, where mn � 1 de-

notes the data dimensionality at node n. At an unknown time τ , called the change-

point, an unexpected event (anomaly) happens over the network, such as a cyber-

attack, a cyber-physical attack, or a random fault, and the network deviates from

its nominal operation. Anomalies can be attributed to a change in the statisti-

cal properties of the data generating process and hence for the network-wide data

xt , [xT
t,1,x

T
t,2, . . . ,x

T
t,N ]T, we can write

xt ∼

f
x
0 , if t < τ,

fx
1 6= fx

0 , if t ≥ τ,

where fx
0 denotes the probability density function (pdf) of xt under regular conditions

and fx
1 denotes the pdf of xt after the anomaly.

Our goal is to detect network-wide anomalies timely and reliably based on the

observed data sequence, corresponding to a QCD problem [5, 65, 108]. In the QCD

framework, the Lorden’s minimax problem aims to minimize the worst-case ADD
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subject to a lower bound on the FAP [84]. In particular, letting Γ be the stopping

time at which a change is declared and J(Γ) be the worst-case ADD, given by

J(Γ) , sup
τ

ess sup
Fτ

Eτ
[
(Γ− τ)+ |Fτ

]
,

where (·)+ = max{0, ·}, Fτ denotes the set of observations up to the change-point τ ,

and ess sup denotes the essential supremum, the minimax problem can be stated as

follows [84]:

inf
Γ

J(Γ) subject to E∞[Γ] ≥ ζ, (5.1)

where E∞[Γ] denotes the FAP and ζ denotes the desired lower bound on the FAP.

In cases where the probabilistic data models fx
0 and fx

1 are known and the network-

wide data {xt}t is fully accessible to a decision maker, the CUSUM algorithm is the

optimal solution to the minimax problem in Eq. (5.1) [94]. Furthermore, if the data

models are known except for some unknown parameters, the generalized CUSUM

algorithm, making use of the estimates of unknown parameters, has asymptotic opti-

mality properties [5, Sec. 5.3]. However, for high-dimensional real-world data streams,

usually the nominal pdf fx
0 might be difficult to model or intractable to estimate.

Moreover, the anomalous pdf fx
1 might take arbitrary unknown forms depending on

the type and cause of the anomalies [64,69]. Hence, in this chapter, we assume both

fx
0 and fx

1 are unknown and hence we look for a data-driven (model-free) solution

approach.

In distributed settings where the data is privacy-sensitive to its owner, statistical

inference should be performed without violating the confidentiality of nodes. Firstly,

if the locally observed data {xt,n}t is sensitive for node n, no other entity should be

allowed to access the data in its raw form. In such cases, since the network-wide

anomaly detection is critical for the network safety, nodes may only be willing to

disclose some minimal information aligned with the anomaly detection task in an

encrypted form because of privacy concerns. Considering such a setting, let every
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Figure 5.1: A graphical description of the problem.

node n, based on its observation xt,n, share a univariate signal zt,n with the network-

wide decision maker at each time t, as illustrated in Fig. 5.1. The decision maker then

receives zt , [zt,1, zt,2, . . . , zt,N ] from all nodes and decides on the anomaly based on

the sequence of {zt}t. Using this general architecture, we aim to design an effective

solution scheme that achieves

• model-free online processing of the observed local data stream and disclosure of

minimal task-oriented information at each node,

• differentially private aggregation of the node messages at the decision maker,

and

• quick and reliable network-wide anomaly detection.

Moreover, we aim to analyze the properties of the designed solution scheme, partic-

ularly the privacy guarantees, the anomaly detection performance, and the effect of

privacy guarantees on the anomaly detection performance.
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5.3 Solution Approach

Our proposed solution consists of three functional modules: local data processing,

private stream aggregation, and online anomaly detection (see Fig. 5.2). In the first

module, sensitive data is analyzed and processed locally at the node it belongs, and

some useful information is extracted for the anomaly detection task. Then, in the

second module, for DP, instead of releasing the extracted information directly, it is

first perturbed via additive noise and then a form of cryptographic communication is

utilized between the nodes and the decision maker to ensure that the decision maker

can only decrypt an aggregate statistic over the entire network but not the individual

node information. Finally, in the third module, the decision maker performs online

statistical inference for a network-wide anomaly based on the available information.

The local data processing, perturbation, and encryption tasks are carried out at the

nodes while the decryption and online anomaly detection tasks are performed at the

decision maker. Next, we explain our solution steps in a greater detail.

5.3.1 Local Data Processing

In the proposed scheme, after observing xt,n at time t, node n computes a local

outlierness score pt,n ∈ [0, 1] corresponding to xt,n. For this purpose, nodes can use

some distance-based, neural networks-based, or subspace-based method, provided

that the method is nonparametric as the data models are unknown. In our design,

we propose a generic data processing scheme, where each node can use a different

method under this generic scheme based on the characteristics of its local data. As

such, each node can keep its local processing method secret to make it difficult to

interpret its raw data from the output of local processing. In addition, even if the

nodes use the identical method, the corresponding algorithm parameters might still

be different across the nodes.

Firstly, we assume each node n stores a historical dataset Xn , {x1,n, . . . ,xWn,n}
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Figure 5.2: An overview of the proposed solution approach.

of size Wn consisting of nominal (anomaly-free) local samples. The proposed proce-

dure at node n consists of an offline and an online phase. In the offline phase, a set of

useful univariate summary statistics is extracted from Xn and stored locally. These

statistics are used to represent the nominal behavior of node n. Then, in the online

phase, as a new sample xt,n is acquired, the online summary statistic corresponding

to xt,n, denoted with st,n, is computed and the corresponding p-value estimate pt,n is

computed as a local outlierness score based on how likely it is to observe st,n under

nominal conditions. Next, as a useful and illustrative example, we explain our local

data processing method based on the principal component analysis (PCA).

If the observed high-dimensional data stream at node n exhibits a low intrinsic

dimensionality, we can write:

xt,n = yt,n + rt,n,

where yt,n is the representation of xt,n in a lower-dimensional submanifold and rt,n is

the residual term, mostly consisting of noise. The PCA is a well-known nonparametric

method to learn linear submanifolds [8, Sec. 12.1]. Then, assuming the local nominal

data can be well represented in a linear submanifold, we use the PCA to learn a

nominal submanifold for node n using Xn. Since anomalous data is expected to

deviate from the nominal submanifold, the magnitude of the residual term, that is,

‖rt,n‖2, is expected to take higher values for anomalous data compared to the nominal

data. We can then use the magnitude of the residual term as a summary statistic to

make a distinction between anomalous and nominal data. First, in an offline phase,

we employ the PCA to determine a representative nominal submanifold and compute
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a set of residual magnitudes. From this set of nominal summary statistics, we then

form a nominal empirical distribution function (edf). In the online phase, we estimate

the p-values corresponding to online residual magnitudes based on the nominal edf,

as detailed next.

5.3.1.1 Offline Phase

We partition Xn into Xn,1 and Xn,2 with sizes Wn,1 and Wn,2, respectively. Using Xn,1
and the PCA, we learn a representative nominal submanifold and then using Xn,2, we

determine a set of nominal summary statistics.

For Xn,1, letting x̄n be its sample mean,

x̄n ,
1

Wn,1

∑
xi,n∈Xn,1

xi,n, (5.2)

and Qn be its sample data covariance matrix,

Qn ,
1

Wn,1

∑
xi,n∈Xn,1

(xi,n − x̄n)(xi,n − x̄n)T, (5.3)

we compute the eigenvalues {λi,n : i = 1, 2, . . . ,mn} and the eigenvectors {vi,n : i =

1, 2, . . . ,mn} of Qn. We then determine the dimensionality of the linear submanifold,

denoted by rn, for the desired fraction of data variance retained in the submanifold,

γn ,

∑rn
i=1 λi,n∑mn
i=1 λi,n

≤ 1, (5.4)

where the rn-dimensional subspace is spanned by the orthonormal eigenvectors v1, v2,

. . . , vrn corresponding to the largest rn eigenvalues λ1, λ2, . . . , λrn . Then, defining

Vn , [v1,v2, . . .vrn ], we compute the residual term as follows:

rt,n = (Imn − VnV
T
n )(xt,n − x̄n), (5.5)

where Imn is an mn ×mn identity matrix.

After computing x̄n and Vn as described above, we use Eq. (5.5) to compute the

residual magnitudes for the set Xn,2, that is, {‖rj,n‖2 : xj,n ∈ Xn,2}, as a set of nominal

summary statistics. We then sort the nominal summary statistics in ascending order

and store the sorted set in the local memory.
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5.3.1.2 Online Phase

For each newly observed sample xt,n, node n computes rt,n as in Eq. (5.5) and its

magnitude. The node then estimates the corresponding p-value as follows [68]:

pt,n =
1

Wn,2

∑
xj,n∈Xn,2

11{‖rj,n‖2 > ‖rt,n‖2}, (5.6)

which is simply the fraction of nominal summary statistics greater than the online

summary statistic. The output of the local data processing module of node n is pt,n

at time t.

Note that the p-value estimate given in Eq. (5.6) almost surely converges to the ac-

tual p-value as the size of the set of nominal summary statistics grows to infinity, that

is, as Wn,2 → ∞. This is because the nominal edf formed by {‖rj,n‖2 : xj,n ∈ Xn,2}

pointwise almost surely converges to the actual nominal cumulative distribution func-

tion (cdf) of the summary statistic ‖rj,n‖2 as the sample size grows, by the Glivenko-

Cantelli theorem [132]. Furthermore, under nominal conditions (no anomaly), the

p-value is a uniform random variable taking values between 0 and 1, denoted by

U [0, 1]. Our p-value estimate pt,n is hence asymptotically (as Wn,2 → ∞) uniform

under regular conditions, that is, for t < τ . Moreover, the p-value is expected to

take smaller (close to zero) values for outliers and anomalous samples, and hence we

expect smaller pt,n values for t ≥ τ .

The specified output of the local data processing module, that is, the p-value esti-

mate, while useful to infer possible anomalies, is not quite as informative to interpret

the raw local data. This is because, irrespective of the local data processing method

and the observed data, the p-value estimate is always (asymptotically) a uniform

random variable under regular conditions. Hence, in distributed anomaly detection,

on the one hand, releasing such a task-oriented statistic from the nodes can be useful

to preserve the data privacy. On the other hand, this is not considered as a per-

fect privacy solution since releasing such summary statistics may still lead to side

information leakages and reconstruction attacks [33]. Therefore, we need additional
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techniques to improve privacy. Towards this objective, we next explain our private

stream aggregation module.

5.3.2 Private Stream Aggregation

To achieve provable worst-case privacy guarantees, we aim for DP, for which we

perturb the released statistic from nodes via additive noise and moreover, we utilize a

form of cryptographic communication to ensure that the decision maker learns almost

nothing about the individual nodes [76,118] while effectively performing network-wide

anomaly detection.

5.3.2.1 Perturbation

Each node n perturbs its local p-value estimate pt,n via additive white Gaussian noise

(AWGN), i.i.d. over time and between the nodes. Denoting the perturbed signal by

p̃t,n yields

p̃t,n = pt,n + vt,n,

where vt,n ∼ N (0, σ2) denotes zero-mean AWGN with variance σ2. Higher levels of

σ2 increase uncertainty about the released statistic.

5.3.2.2 Cryptographic Communication

The purpose of cryptographic communication is such that the decision maker is able

to only decrypt the noisy mean of the local p-value estimates, defined by

yt ,
1

N

N∑
n=1

p̃t,n. (5.7)

To achieve this without any coordination between nodes in both static and dynamic

network settings,1 we make use of an auxiliary node [76], as illustrated in Fig. 5.3.

1In dynamic network settings, new nodes can join and leave over time, which is especially relevant

to the case of node failures and to networks that are dynamic in nature such as mobile networks

and vehicular networks.
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In this mechanism, each node n generates a private key kt,n > 0 at each time t and

obtains the encrypted information to be sent to the decision maker as follows:

zt,n = p̃t,n + kt,n.

The key generation process is specific to each node, kept secret, and independent

from the other nodes. Ideally, it should be difficult to track the generated key pattern

and hence to infer p̃t,n from zt,n. Moreover, the generated keys should not carry any

information relevant to the local data. As an example, nodes can obtain the keys as

realizations of time-varying random variables. The generated keys are also sent to

the auxiliary node that computes the negative average of the received keys from the

nodes:

at , −
1

N

N∑
n=1

kt,n,

and sends the result to the decision maker. The auxiliary node does not share any

other information with the decision maker or any other node.

After receiving {zt,n, n = 1, 2, . . . , N} from the nodes, and at from the auxiliary

node, the decision maker takes the average of the node messages, then sums the

average with at, and obtains yt, see Eq. (5.7):

yt = at +
1

N

N∑
n=1

zt,n = at +
1

N

N∑
n=1

(p̃t,n + kt,n)

= at +
1

N

N∑
n=1

kt,n︸ ︷︷ ︸
0

+
1

N

N∑
n=1

p̃t,n =
1

N

N∑
n=1

p̃t,n.

Remark 1: As an alternative to the presented cryptographic communication scheme,

a secret key sharing mechanism can be designed among the nodes such that the deci-

sion maker can only decrypt the sum of the individual node signals, without needing

an auxiliary node [76]. However, this mechanism requires a coordination and peer-to-

peer communication between the nodes. Furthermore, it is not robust to node failures

or dynamic network settings, as it needs to be redesigned after new nodes joining or
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Figure 5.3: A graphical illustration of the proposed solution scheme.

leaving the network. Hence, the presented scheme has advantages in terms of robust-

ness to nodes dynamically joining or leaving and it does not require coordination or

communication among the nodes, that is, each node n can generate its own key kt,n

independently from the other nodes.

5.3.3 Online Anomaly Detection

We firstly analyze the statistical properties of the information yt obtained at the de-

cision maker in both the nominal and anomalous cases and then explain the proposed

online anomaly detection algorithm. Finally, we summarize the overall anomaly de-

tection scheme and provide its time and space complexity analysis.



CHAPTER 5. ONLINE DISTRIBUTED DIFFERENTIALLY PRIVATE
ANOMALY DETECTION OVER NETWORKS 139

5.3.3.1 Distribution of yt

The information obtained at the decision maker at time t can be rewritten as

yt =
1

N

N∑
i=1

p̃t,n =
1

N

N∑
i=1

(pt,n + vt,n)

=
1

N

N∑
i=1

pt,n︸ ︷︷ ︸
p̄t

+
1

N

N∑
i=1

vt,n︸ ︷︷ ︸
v̄t

= p̄t + v̄t, (5.8)

where v̄t ∼ N (0, σ2/N). Further, recalling that pt,n ∼ U [0, 1], ∀n ∈ {1, 2, . . . , N} for

t < τ and assuming pt,n is i.i.d. over time and space,2 the central limit theorem yields,

asymptotically

p̄t ∼ N
(

0.5,
1

12N

)
, t < τ. (5.9)

Then, since p̄t and v̄t are independent, we can write

yt ∼ N
(

0.5,
σ2 + 1/12

N

)
, t < τ. (5.10)

Further, if σ2 � 1/12, it holds that approximately

yt ∼ N (0.5, σ2/N), t < τ. (5.11)

In case of an anomaly over the network, that is, for t ≥ τ , it is expected that

anomalous nodes observe outliers more frequently, correspondingly smaller p-value

estimates, leading to a decrease in the mean of yt. Hence, we can argue that the

mean of yt is 0.5 − γt for t ≥ τ , where γt ≥ 0 denotes the unknown and possibly

time-varying mean decrease. Moreover, in case of an anomaly, we no longer have

2Obtaining an i.i.d. pt,n stream can be accomplished via the local data processing, for example,

in the PCA-based method, if the linear submanifold well represents the observed data, the residual

term will mostly correspond to noise, that can be assumed i.i.d. over time and space. Furthermore,

in large-scale networks, data of any single node can be approximated nearly independent from the

vast majority of other nodes, except the immediate neighborhood of the node.
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pt,n ∼ U [0, 1]. In fact, the pdf of pt,n is unknown for t ≥ τ . Nevertheless, it is always

true that pt,n takes values between 0 and 1, that is, pt,n ∈ [0, 1], and for a random

variable taking values in this range, its variance can at most3 be 1/4. Hence, for t ≥ τ ,

each pt,n has a mean µt,n ∈ [0, 0.5] and a variance σ2
t,n ∈ [0, 1/4], n ∈ {1, 2, . . . , N}.

The central limit theorem has variants, ensuring convergence to the normal distri-

bution for non-identical and/or dependent distributions under certain conditions. In

large-scale networks (large N), we can consider pt,n as nearly independent but non-

identically distributed across the nodes for t ≥ τ . Then, we can use the Lindeberg

central limit theorem [7, p. 369] stating that given

s2
t,N ,

N∑
n=1

σ2
t,n,

if for every ε > 0, the condition

lim
N→∞

1

s2
t,N

N∑
n=1

E
[
(pt,n − µt,n)2 11{|pt,n − µt,n| > ε st,N}

]
= 0 (5.12)

is satisfied, then

1

st,N

N∑
n=1

(pt,n − µt,n)

converges to the standard normal distribution N (0, 1). Equivalently stating, under

the condition above, it asymptotically holds that

p̄t =
1

N

N∑
n=1

pt,n ∼ N

(∑N
n=1 µt,n
N

,
s2
t,N

N2

)
.

Noticing further that

0 ≤
N∑
n=1

µt,n ≤ N/2,

3For a random variable x ∈ [0, 1], its variance can be written as σ2
x , E[x2] − (E[x])2 ≤ E[x] −

(E[x])2, where the inequality is because of the fact that x2 ≤ x for x ∈ [0, 1]. Denoting m , E[x],

we have σ2
x ≤ f(m) , m −m2 where m ∈ [0, 1]. Since the maximum value of the function f(m) is

1/4 at m = 1/2, we have σ2
x ≤ 1/4.
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and

0 ≤ s2
t,N ≤ N/4,

the mean of p̄t is between 0 and 0.5 and the variance of p̄t is between 0 and 1
4N

. Then,

if σ2 � 1/4, it approximately holds that, see Eq. (5.8),

yt = p̄t + v̄t ∼ N (0.5− γt, σ2/N), t ≥ τ. (5.13)

Note that the condition in Eq. (5.12) is satisfied in our case, as the indicator in

Eq. (5.12) gets the value of 0 as N → ∞. This is because the term |pt,n − µt,n| is

bounded due to pt,n, µt,n ∈ [0, 1], whereas st,N →∞ as N →∞.

Finally, if σ2 � 1/4, we can write, see Eq. (5.11) and Eq. (5.13),

yt ∼

N (0.5, σ2/N), if t < τ,

N (0.5− γt, σ2/N), if t ≥ τ.

(5.14)

Then, the high-dimensional network-wide anomaly detection problem reduces to the

sequential detection of a mean change over a univariate Gaussian data stream. Hence,

at this point, we make a transition from the originally nonparametric setting to a

parametric setting for which we obtain an effective solution, as detailed next.

5.3.3.2 Online Detection

Denoting the nominal and anomalous pdfs of yt by f y0 and f y1 , respectively, and

defining θ , σ/
√
N , we have f y0 ∼ N (0.5, θ2) and f y1 ∼ N (0.5− γt, θ2), where f y1 has

an unknown and possibly time-varying parameter γt, see Eq. (5.14). As argued before,

for the Lorden’s minimax problem given in Eq. (5.1) with unknown parameters in the

data models, the generalized CUSUM algorithm can be used as an effective solution.

Then, we propose the following generalized CUSUM detector at the network-wide

decision maker:

Γ = inf

{
m ∈ N : max

1≤j≤m

m∑
t=j

log
supγt≥η f

y
1 (yt | γt)

f y0 (yt)︸ ︷︷ ︸
βt︸ ︷︷ ︸

gm

≥ h

}
, (5.15)
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Space Time

Offline O (m2
n +Wn,2) O (m3

n + (Wn,1 +Wn,2)m2
n +Wn,2 log(Wn,2))

Online O (mn) O (m2
n + log(Wn,2))

Table 5.1: Space and time complexity of the proposed PCA-based procedure at node

n.

where η denotes the minimum change of interest, determining the detector sensitivity,

and h denotes the test threshold. In fact, these two algorithm parameters together

control the false alarm rate of the proposed detector. Further, βt and gt denote the

generalized log-likelihood ratio (GLLR) and the decision statistic, respectively, at time

t where the decision statistic can be written in the following recursive form [5, Sec. 2.2]:

gt = (gt−1 + βt)
+. (5.16)

Moreover, the GLLR βt can be computed as follows:

βt =
1

2θ2
sup
γt≥η

(1− 2yt)γt − γ2
t

=


1

2θ2
(0.5− yt)2, if yt ≤ 0.5− η,

1
2θ2

(1− 2yt)η − η2

2θ2
, if yt > 0.5− η.

(5.17)

5.3.3.3 Summary of the Overall Scheme

We summarize the proposed procedures at node n (employing the PCA-based local

data processing method), the auxiliary node, and the network-wide decision maker

in Alg. 5.1, Alg. 5.2, and Alg. 5.3, respectively. Moreover, we provide time and

space complexity of the proposed procedures in Table 5.1, Table 5.2, and Table 5.3,

respectively. Note that both the auxiliary node and the decision maker are only

employed in the online detection phase while the nodes additionally employ an offline

phase before the online phase.

Remark 2: The proposed detection scheme provides network-wide anomaly de-

tection. An alternative to this scheme could be that each node locally employs a
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Algorithm 5.1 Proposed PCA-based procedure at node n

Offline Phase
1: Partition Xn into Xn,1 and Xn,2 with sizes Wn,1 and Wn,2, respectively.
2: Compute x̄n and Qn over Xn,1 using Eq. (5.2) and Eq. (5.3), respectively.
3: Compute the eigenvalues {λi,n : i = 1, 2, . . . ,mn} and the eigenvectors {vi,n : i =

1, 2, . . . ,mn} of Qn.

4: Based on a desired level of γn, see Eq. (5.4), determine rn and form the matrix Vn ,
[v1,v2, . . .vrn ].

5: for j : xj,n ∈ Xn,2 do
6: rj,n = (Imn − VnV

T
n )(xj,n − x̄n).

7: Compute ‖rj,n‖2.
8: end for
9: Sort the nominal summary statistics {‖rj,n‖2 : xj,n ∈ Xn,2} in ascending order and

store.
Online Phase
1: Initialization: t← 0
2: while t < Γ do
3: t← t+ 1
4: Obtain the new sample xt,n.
5: rt,n = (Imn − VnV

T
n )(xt,n − x̄n) and compute ‖rt,n‖2.

6: pt,n = 1
Wn,2

∑
xj,n∈Xn,2 11{‖rj,n‖2 > ‖rt,n‖2}.

7: p̃t,n = pt,n + vt,n.
8: zt,n = p̃t,n + kt,n.
9: Send zt,n to the decision maker and kt,n to the auxiliary node.

10: end while

Space Time

Online O (1) O (N)

Table 5.2: Space and time complexity of the proposed procedure at the auxiliary

node.

separate detector for its own data. However, in many anomaly cases, especially small

deviations from the regular operation such as stealthily designed attacks [67], while

single nodes might seem normal, the network as a whole could be anomalous. In

such cases, statistical evidence collected over the network enables quicker and more

reliable anomaly detection.

Remark 3: The proposed detector is cooperative where each node is assumed to

be regular and trusted. In the case of misbehaving (hacked or faulty) nodes, the

post-change model for yt can be arbitrarily different from Eq. (5.13). Particularly,

nodes with a malicious intent may perform stealthy attacks to bypass the proposed
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Algorithm 5.2 Proposed procedure at the auxiliary node

1: Initialization: t← 0
2: while t < Γ do
3: t← t+ 1
4: Receive {kt,n, n = 1, 2, . . . , N} from the nodes.

5: at = − 1
N

∑N
n=1 kt,n

6: Send at to the decision maker.
7: end while

Algorithm 5.3 Proposed procedure at the decision maker

1: Initialization: t← 0, g0 ← 0
2: while gt < h do
3: t← t+ 1
4: Receive {zt,n, n = 1, 2, . . . , N} from the nodes, and at from the auxiliary node.

5: yt = at + 1
N

∑N
n=1 zt,n

6: Compute the GLLR βt using Eq. (5.17).
7: gt ← (gt−1 + βt)

+

8: end while
9: Γ← t, declare a network-wide anomaly.

detection mechanism, for example, by reporting high p-values (close to 1) to inten-

tionally increase the mean of yt and accordingly to hide the network-wide anomaly

from the proposed generalized CUSUM detector. Another anomaly case that does not

comply with the given post-change model is a cyber-attack against the network com-

munication channels between nodes and the decision maker or the auxiliary node.

In this case, the decision maker cannot successfully decrypt the intended message

yt. For such cases, as a countermeasure, we can monitor deviations from the nomi-

nal case by evaluating whether the observed yt sequence fits well to the pre-change

model in Eq. (5.10). We can accomplish this via a nonparametric sliding-window

goodness-of-fit test, see for example [67]. In this case, any deviation from the regular

network operation can be detected since no model is assumed for the post-change

case. However, it usually leads to larger detection delays since the post-change model

is unknown and more samples are required for a reliable decision. For completeness,

we briefly explain the nonparametric sliding-window chi-squared test in Sec. 5.5 and

also use it as a benchmark detector.
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Space Time

Online O (1) O (N)

Table 5.3: Space and time complexity of the proposed procedure at the decision

maker.

5.4 Analysis

In this section, we firstly analyze the theoretical privacy guarantees, particularly the

DP of the proposed scheme. We then analyze the anomaly detection performance, in

particular the FAP and the ADD of the proposed scheme. Finally, we characterize

the effect of privacy guarantees on the anomaly detection performance, showing the

analytical privacy-security tradeoff.

5.4.1 Differential Privacy

Firstly, we state the definition of (ε, δ)-DP.

Definition: Let ε > 0, δ < 1, and φ(·) be a randomized function taking a dataset

as its input. Moreover, let im(φ) denote the image of φ, that is, the set of all output

values it can take. The function φ(·) is (ε, δ)-differentially private if

P(φ(D1) ∈ S) ≤ eε P(φ(D2) ∈ S) + δ

for all datasets D1 and D2 differing in only a single entry and over all subsets S of

im(φ).

The definition above mainly says that the outcome of a differentially private func-

tion does not vary significantly if any single entry in the database is changed, where

the amount of significance is captured with the ε and δ parameters. Here, ε and

δ represent the worst-case privacy loss where lower values of them implies stronger

privacy guarantees. Furthermore, if δ = 0, it is called ε-DP.

Next, we state the definition of sensitivity of a function to changes in the database.

Definition: Let D be a collection of datasets and d be a positive integer. The
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sensitivity of a function φ : D → Rd is defined by

∆φ , max
dist(D1,D2)=1

‖φ(D1)− φ(D2)‖1,

over all datasets D1 and D2 in D differing in a single entry, denoted by dist(D1, D2) =

1.

Computing the sensitivity of a function enables easy calibration of the level of ran-

domization to achieve the desired privacy level. A common randomization technique

is perturbation via additive noise. Particularly, the Gaussian mechanism achieves the

DP by adding Gaussian noise to the output of a function operating on a database.

The following lemma is useful to calibrate the amount of Gaussian perturbation noise

to obtain (ε, δ)-DP [33]:

Lemma 5.1: Let the information released from a database D be

φ̃(D) = φ(D) + ωt,

where ωt is the perturbation noise. If

ωt ∼ N
(

0,
∆2φ 2 log (1.25/δ)

ε2

)
,

then (ε, δ)-DP is achieved.

As we observe through Lemma 5.1, stronger privacy level, equivalently lower ε

and/or δ, requires higher level of perturbation noise. This is intuitive since the noise

variance increases uncertainty about the released information from the database and

hence improves privacy. The following theorem specifies the variance of the local

perturbation noise so that the proposed online distributed anomaly detection scheme

achieves (ε, δ)-DP.

Theorem 5.1: If at each node n ∈ {1, 2, . . . , N}, the variance of the perturbation

noise vt,n is set as

σ2 =
2 log (1.25/δ)

Nε2
, (5.18)

then the proposed anomaly detection scheme is (ε, δ)-differentially private.
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Proof. See Appendix 5.7.1.

Theorem 5.1 shows the amount of local perturbation noise necessary to achieve the

desired DP level. It further shows the relationship between the network size N and

the required noise level. Particularly, for a smaller network (smaller N), to achieve the

same level of DP, we need to add higher level of noise (higher σ2). This is also intuitive

because for a network consisting of a few nodes, it is usually more difficult to mask

individual node information via an aggregate statistic over the network, compared

to masking individual nodes over large-scale networks. Finally, since the desired DP

level can be achieved by calibrating σ2, we hereafter refer to σ2 (equivalently θ2) as

the DP parameter.

Remark 4: In addition to being a minimal task-oriented statistic as discussed in

Sec. 5.3.1, another advantage of using the p-value estimates in the proposed solution

scheme is that even if the observed data stream xt might be unbounded, the p-value

estimates are always bounded in the range of [0, 1]. We use this boundedness property

to show the DP of the proposed scheme (see Appendix 5.7.1).

5.4.2 Anomaly Detection Performance

The average run length (ARL), denoted by Eτ [Γ], is the first time, on average, the

decision statistic gt exceeds the decision threshold h of the proposed detector. The

ARL can be used for both FAP and ADD computations. In particular, if there is no

change or anomaly at all (τ =∞), the ARL corresponds to the FAP, that is, E∞[Γ].

Furthermore, setting τ = 1, the ARL corresponds to the worst-case ADD, E1[Γ]. This

is because the proposed detector is a CUSUM-type detector for which the decision

statistic being zero just before the change-point essentially describes the worst-case

scenario in terms of detection delays. In other words, for any z ≥ 0 with gτ−1 = z, and

expressing the ADD as a function of z, we have ADD(z) ≤ ADD(0) for the proposed

detector. Note that for τ = 1, we always have gτ−1 = 0 since g0 = 0. In the following,

we derive the Wald’s approximations for both the FAP and the worst-case ADD of the
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proposed detector as well as some performance bounds, particularly a lower bound

on the FAP and an upper bound on the ADD to obtain performance guarantees.

Note that our approximations and bounds are asymptotic as we use both the central

limit theorems and the Glivenko-Cantelli theorem to asymptotically characterize the

statistical properties of the information obtained at the decision maker, that is, {yt}t,

(see Sec. 5.3.3.1).

5.4.2.1 Average False Alarm Period

For a reliable anomaly detection, false alarm events should be infrequent, or equiv-

alently, the FAP should be large. The following theorem states the Wald’s approx-

imation for the FAP of the proposed detector. This approximation can be useful to

adjust the system and algorithm parameters to control the false alarm rate of the

proposed detector.

Theorem 5.2: Let ρ , η/θ. If ρ > 0.61, then the Wald’s approximation to the

FAP is given by

E∞[Γ] ≈ 2h+ 2(e−w0h − 1)/w0

Q(ρ)− ρ2Q(−ρ)

where Q(·) denotes the Q-function, that is, Q(x) , 1√
2π

∫∞
x
e−u

2/2 du, and −1 < w0 <

0 is the unique solution to

f(w0) ,
1√

w0 + 1
Q(ρ) +Q(−ρ) e0.5 ρ2(w0+w2

0) = 1. (5.19)

Proof. See Appendix 5.7.2.

In Theorem 5.2, w0 is computed by solving Eq. (5.19) numerically, which is simple

since we look for a unique w0 in the range of (−1, 0) for which f(w0) = 1. The solution

can be obtained by searching among a set of linearly spaced w0 values in this range.

Next, the following theorem provides a lower bound on the FAP of the proposed

detector.

Theorem 5.3: If ρ > 0.61, a lower bound for the FAP is given by

E∞[Γ] ≥ e−w0h,
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Figure 5.4: The FAP of the proposed detector, the theoretical lower bound on the

FAP, and the Wald’s approximation to the FAP for various levels of test threshold h.

where w0 is as given in Eq. (5.19).

Proof. See Appendix 5.7.3.

Next, to illustrate our theoretical results, we assume yt ∼ N (0.5, θ2) and plot

the actual FAP of the proposed detector as well as the given lower bound and the

Wald’s approximation in Fig. 5.4, as the test threshold h varies. In this experiment,

we choose η = 0.06 and θ = 0.08. We observe through the figure that the Wald’s

approximation underestimates the FAP. This is because the Wald’s approximation

ignores the excess over the boundary for the random walk driven by the GLLR βt,

see Eq. (5.16), and in the pre-change case usually the lower threshold 0 is exceeded

frequently during the random walk. Nevertheless, the derived approximation can still

be useful, at least to achieve a performance guarantee (a lower bound on the FAP)

in most cases.
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5.4.2.2 Average Detection Delay

For a quick anomaly detection, detection delays should be as low as possible. Hence,

the ADD analysis is useful to evaluate the expected performance of a detector. How-

ever, since anomalies can happen due to many reasons, it is usually difficult to fully

specify the anomaly signal. In particular, for our proposed detector, it is difficult to

characterize the mean decrease γt for t ≥ τ . But, in a special case where the mean

decrease is constant after the change-point, that is,

γt = γ, t ≥ τ,

we can provide an analysis for the worst-case ADD of the proposed detector. Partic-

ularly, the following theorem states the Wald’s approximation to the worst-case ADD

of the proposed detector under this special condition.

Theorem 5.4: The Wald’s approximation to the worst-case ADD is given by

E1[Γ] ≈
h+ e−w1h−1

w1

γ2+θ2

2θ2
Q
(
η−γ
θ

)
+ 2ηγ−η2

2θ2
Q
(
γ−η
θ

) ,
where w1 > 0 is the unique solution to

g(w1) , Q

(
η − γ
θ

)
e
−w1γ

2

2θ2(w1+1)

√
w1 + 1

+Q

(
γ − η
θ

)
e

(γ2−2γη)w1+γ
2w2

1
2θ2 = 1. (5.20)

Proof. See Appendix 5.7.4.

As before, we can compute w1 by solving Eq. (5.20) numerically. Particularly, in

the range of w1 > 0, for a set of linearly spaced w1 values, we look for the unique

intersection point between the curves g(w1) and ϑ(w1) = 1.

Next, the following theorem provides an upper bound on the ADD.

Theorem 5.5: An upper bound on ADD is given by

E1[Γ] ≤
h+Q

(
η−γ
θ

)
γ2+θ2

2θ2
+Q

(
γ−η
θ

)
ψ(a, b)

γ2+θ2

2θ2
Q
(
η−γ
θ

)
+ 2ηγ−η2

2θ2
Q
(
γ−η
θ

) ,
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where

ψ(a, b) , a+

√
b e
−a2
2b

√
2π Q(−a/

√
b)
,

a , (2γη − η2)/(2θ2), and b , η2/θ2.

Proof. See Appendix 5.7.5.

Recall that our derivation for the theoretical upper bound on the ADD is based on

the assumption that the post-change mean decrease satisfies γt = γ for t ≥ τ . Using

the result in Theorem 5.5, we can actually derive the worst possible upper bound

on the ADD without needing this assumption. Particularly, we can use the fact

that the Kullback-Leibler (KL) divergence is a measure of separability between the

pre- and post-change data distributions and hence a measure of detectability in the

QCD theory such that as the KL divergence between the pre- and post-change pdfs

decreases, then the ADD increases. Hence, if γt, t ≥ τ takes values minimizing the

KL divergence between the pre- and post-change pdfs, then the ADD is maximized.

Given that our generalized CUSUM detector is designed with the detector sensitivity

parameter η such that γt ≥ η, t ≥ τ , see Eq. (5.15), γt = η, t ≥ τ , minimizes the KL

divergence between pre- and post-change pdfs, see Eq. (5.14), and hence maximizes

the ADD of our detector. Then, we derive the worst-case upper bound on the ADD

irrespective of the unknown and time-varying γt values by replacing γ in Theorem

5.5 with η, as presented in the Corollary 5.1 below.

Corollary 5.1: The worst-case upper bound on ADD is given by

E1[Γ] ≤ 2h+ a∗ + 0.5 + ψ(a∗, b∗)

b∗ + 0.5
,

where a∗ , η2/(2θ2), and b∗ , η2/θ2.

To illustrate our results, we assume τ = 1, yt ∼ N (0.5− γ, θ2), γ = 0.1, θ = 0.08,

and η = 0.06, and we plot in Fig. 5.5 the ADD of the proposed detector as well as the

presented upper bounds and the approximation for the ADD, as the test threshold h

varies. As we observe through the figure, the Wald’s approximation well approximates
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Figure 5.5: The worst-case ADD of the proposed detector, the Wald’s approximation

to the ADD, the theoretical upper bound on the ADD, and the worst-case upper

bound on the ADD for various levels of test threshold h.

the ADD as the excess over the lower boundary 0 does not frequently happen in the

post-change regime, unlike the pre-change regime leading to an underestimation of

the FAP, as discussed in the previous subsection.

Finally, note that there is tradeoff between the ADD and the FAP and it is con-

trolled by the decision threshold h and the detector sensitivity parameter η. Partic-

ularly, increasing h and/or η leads to a larger FAP (lower false alarm rate) but also

a larger ADD, and vice versa.

5.4.3 Analytical Privacy-Security Tradeoff

We next show the analytical tradeoff between the DP level and the anomaly detection

performance. If the proposed anomaly detection algorithm is employed in security

applications such as cyber-attack detection or fraud detection over safety-critical sys-

tems, this tradeoff can also be termed as the privacy-security tradeoff. We obtain the
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Figure 5.6: The Wald’s approximation to the worst-case ADD vs. the Wald’s ap-

proximation to the FAP of the proposed detector as the test threshold h varies, for

various DP levels.

analytical privacy-security tradeoff based on the results derived in Sec. 5.4.2.

Considering a simple example where

yt ∼

N (0.5, θ2), if t < τ,

N (0.5− γ, θ2), if t ≥ τ,

γ = 0.2, and η = 0.08, we plot in Fig. 5.6 the Wald’s approximations to the ADD

and the FAP, as the test threshold h varies and for various DP levels. We assume

N = 300 and for a linearly spaced set of θ values in the range of [0.07, 0.13], we obtain

various DP levels as ε ≈ 1/(100 θ) assuming δ = 0.0139 and recalling that θ = σ/
√
N ,

see Eq. (5.18). The figure illustrates that at the same levels of FAP, we obtain larger

ADDs as ε decreases. That means that the anomaly detection performance degrades

for stronger privacy guarantees, clearly showing the privacy-security tradeoff.
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5.5 Performance Evaluation

In this section, we evaluate the performance of the proposed anomaly detection

scheme against IoT botnet attacks over a real IoT network consisting of nine devices,

namely a thermostat, a baby monitor, a webcam, two doorbells, and four security

cameras. Particularly, we use the network-based detection of IoT botnet attacks (N-

BaIoT) dataset [91] obtained from the UCI Machine Learning Repository [28], where

the data dimensionality at each node n is 115, that is, xt,n ∈ R115. The data represent

the network traffic statistics specific to each node, particularly, the number of data

packets received and sent, time intervals between packet arrivals, packet sizes, and

so forth. The dataset contains both nominal data obtained under nominal conditions

and anomalous data obtained under several attack conditions. We use the PCA-based

local data processing method (see Alg. 5.1) at each node since the nominal data can

be well represented in a linear submanifold. Particularly, we observe that almost all

the data variance can be retained in the 5-dimensional principal subspace, that is

rn = 5, for the nominal data of each node n.

We consider two attack cases, specifically, the UDP flooding attacks and the spam

attacks by the BASHLITE botnet against the IoT network [91]. As the performance

metrics, we use the worst-case ADD, E1

[
(Γ − τ)+

]
, the FAP, E∞[Γ], and the false

alarm rate (FAR), which is simply the reciprocal of the FAP:

FAR ,
1

E∞[Γ]
.

We present the ADD vs. FAR curves of the proposed detector for various levels of

the DP to illustrate the privacy-security tradeoff in this setup. Moreover, we compare

the theoretical lower bound and the approximation to the FAP with the actual FAP

of the proposed detector obtained with real-world data. Furthermore, we compare

the theoretical worst-case upper bound on the ADD with the actual ADD of the

proposed detector. Here, note that we compare the ADD only with the worst-case

upper bound since in this experiment, γt, t ≥ τ are unknown and possibly time-
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varying. Finally, we present the nonparametric sliding-window chi-squared test as a

benchmark detector and compare its performance with the proposed CUSUM-based

detector. In our experiments, since we set the DP parameter σ2 to values comparable

to 1/12, we use θ2 = (σ2 + 1/12)/N , that is, we do not ignore the 1/12 term here.

This is mainly because of the small network size (N = 9) in this setup. Moreover,

although the maximum variance of each of the pt,n is 1/4 in the post-change regime

as argued before, their actual variance can be much smaller than the maximum value,

and hence we consider the same variance (i.e., θ2 = (σ2 + 1/12)/N) for both the pre-

and post-change cases in our experiments.

We choose the detector sensitivity parameter as η = 0.08. For the reliability of

the proposed detector as well as the presented FAP lower bound/approximation to

be valid, we need ρ > 0.61 (see Theorem 5.2), or equivalently, 0.1311 > θ and

0.13112 >
σ2 + 1/12

N
,

that finally leads to σ2 < 0.0715. Hence, we vary σ2 in this range to obtain several

different DP levels. Notice that the range of possible σ2 values is, in fact, comparable

to 1/12.

First, Fig. 5.7 shows the histogram of the average local p-value estimates, that

is, p̄t, in the nominal case (t < τ) and the pdf of the assumed nominal model in

Eq. (5.9). Fig. 5.7 illustrates that our nominal model can be well justified over the

N-BaIoT dataset even with a relatively small network size (N = 9) although the

central limit theorem holds asymptotically as N gets large.

Next, we plot in Fig. 5.8 the FAP of the proposed network-wide anomaly detection

scheme as well as the presented lower bound and the approximation. Here, we set the

DP parameter as σ2 = 1/81. Then, in case of the spam and the UDP flooding attacks

over the network, we present ADD vs. FAR curves for various DP levels in Fig. 5.9

and Fig. 5.10, respectively. Particularly, we choose the local noise variance σ2 from

the set {0, 1/81, 1/36, 1/24, 1/16, 1/12, 1/9}. Then, assuming δ = 0.0139, we obtain

various DP levels as ε ≈ 1/σ, see Eq. (5.18). The figures illustrate that for the same
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Figure 5.7: Histogram of p̄t, t < τ , obtained over the N-BaIoT dataset and the pdf of

the assumed nominal model in Eq. (5.9).

level of FARs, the ADDs are larger for stronger DP levels (lower ε). The implication

is that stronger privacy guarantees worsen the anomaly detection performance, in

compliance with the theoretical results in Sec. 5.4.3. Furthermore, in case of a spam

attack and with the chosen DP parameter σ2 = 1/16, we compare in Fig. 5.11 the

ADD of the proposed generalized CUSUM detector with its theoretical worst-case

upper bound presented in Corollary 5.1, as the test threshold h varies. The figure

validates that even if the anomaly signal cannot be specified in this experiment, we

are still able to provide a performance guarantee in terms of ADD of the proposed

detector.

We next present the sliding-window chi-squared test as a benchmark. For this test,

we firstly obtain a nominal statistic that is independent of the system and algorithm

parameters so as to use exactly the same procedure regardless of the values of such

parameters. By inspecting the pre-change model of yt given in Eq. (5.10), we can
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Figure 5.8: The FAP of the proposed network-wide anomaly detection scheme over

the N-BaIoT dataset, the analytical lower bound and the approximation for the FAP.

write

qt ,
(yt − 0.5)2

σ2+1/12
N

∼ χ(1), t < τ, (5.21)

where χ(1) denotes a chi-squared random variable with 1 degree of freedom. No-

tice that qt ∼ χ(1) is true irrespective of the network size and the DP param-

eter. Then, using Eq. (5.21), we can evaluate whether the observed sequence of

{qt, t = 1, 2, . . . } fits to its nominal model. For this purpose, goodness-of-fit tests such

as the Kolmogorov-Smirnov test and the Anderson-Darling test can be used [124]. We

propose to use an online version of the Pearson’s chi-squared test, as in [67]. Par-

ticularly, we divide the range [0,∞) of qt into L disjoint and mutually exclusive

intervals I1, I2, . . . , IL, and based on the density of χ(1), we compute the probabili-

ties p1 = P(qt ∈ I1), p2 = P(qt ∈ I2), . . . , pL = P(qt ∈ IL), where
∑L

i=1 pi = 1. Let

Wt , [qt−K+1, qt−K+2, . . . , qt] be the online sliding window of size K. The expected

number of window entries in each interval is then Kp1, Kp2, . . . , KpL, respectively.

Hence, we have a multinomial distribution with the expected number of samples in
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Figure 5.9: ADD vs. FAR of the proposed network-wide anomaly detection scheme

in case of a spam attack over the network, for various DP levels.

the disjoint intervals as Kp1, Kp2, . . . , KpL. For the observed sliding window Wt

at time t, we then count how many of its entries reside in each interval. Let the

number of entries of Wt residing in each interval be N1,t, N2,t, . . . , NL,t at time t.

The Pearson’s chi-squared test is then given as follows:

Γ = inf

{
t : dt ,

L∑
i=1

(Ni,t −Kpi)2

Kpi
≥ ϕ

}
,

where ϕ is the test threshold that controls the false alarm rate. Here, the decision

statistic dt is asymptotically (as K → ∞) a chi-squared random variable with L −

1 degrees of freedom under the null hypothesis (no anomaly). Then, the decision

threshold ϕ can be determined using the cdf of the chi-squared random variable with

L− 1 degrees of freedom in order to achieve the desired false alarm rate.

Finally, Fig. 5.12 compares the proposed generalized CUSUM detector with the

sliding-window chi-squared test in case of a spam attack where the DP parameter is

chosen as σ2 = 1/16. For the chi-squared test, we choose L = 8, p1 = p2 = · · · =
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Figure 5.10: ADD vs. FAR of the proposed network-wide anomaly detection scheme

in case of a UDP flooding attack over the network, for various DP levels.

p8 = 1/8, and the window size as K = 96. Fig. 5.12 illustrates that the proposed

detector outperforms the chi-squared test by achieving quicker attack detection (lower

ADD) at the same levels of FAR. We obtain the tradeoff curves by varying the test

thresholds of the detectors, particularly, h for the CUSUM-based detector and ϕ for

the chi-squared test.

5.6 Concluding Remarks

In this chapter, we have studied the online data-driven anomaly detection over dis-

tributed systems while maintaining the privacy of local sensitive data. We have

utilized the QCD framework for early and reliable anomaly detection. Moreover,

we have combined practical privacy benefits with theoretical privacy guarantees for

an effective privacy protection. In particular, our proposed approach consists of a

differentially private generalized CUSUM-based distributed detection scheme that in-
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Figure 5.11: The ADD of the proposed network-wide anomaly detection scheme over

the N-BaIoT dataset in case of a spam attack and the theoretical worst-case upper

bound on the ADD.

fers network-wide anomalies based on the perturbed and encrypted statistics received

from nodes. We have analyzed the anomaly detection performance of the proposed

scheme in terms of system and algorithm parameters including the differential privacy

parameter. In particular, we have derived a lower bound and an approximation for the

average false alarm period (FAP) as well as an upper bound and an approximation for

the average detection delay (ADD) of the proposed detector. Furthermore, we have

used the derived FAP and ADD approximations to illustrate the analytical privacy-

security tradeoff in the network-wide anomaly detection problem. Experiments over

a real-world IoT dataset support our theoretical findings.
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Figure 5.12: ADD vs. FAR of the proposed generalized CUSUM detector and the

sliding-window chi-squared test in case of a spam attack over the network.

5.7 Appendix to Chapter 5

5.7.1 Proof of Theorem 5.1

Proof. In the proposed procedure, information released to the decision maker at time

t can be written by, see Eq. (5.8),

yt =
1

N

N∑
i=1

pt,n + v̄t,

where v̄t ∼ N (0, σ2/N) corresponds to the average perturbation noise over nodes.

Defining a mean function

φ({pt,n}n) ,
1

N

N∑
i=1

pt,n,

we have

yt = φ({pt,n}n) + v̄t.
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Recalling that the p-value estimate pt,n takes values in the range of [0, 1] irrespective

of the nominal or anomalous cases, any single node n can change φ(·) by at most 1/N ,

for example, considering the change from pt,n = 0 to pt,n = 1. Hence, the sensitivity

of the function φ(·) is

∆φ =
1

N
.

Since v̄t is zero-mean AWGN, we can then use Lemma 5.1 to decide the required noise

variance for v̄t to achieve (ε, δ)-DP at time t, as follows:

σ2

N
=

2 log (1.25/δ)

N2ε2
,

and hence

σ2 =
2 log (1.25/δ)

Nε2
.

If every node perturbs its local output via zero-mean AWGN with the given vari-

ance of σ2 above, we obtain (ε, δ)-differentially private aggregation at time t. More-

over, since we process a data stream, at each time t, the newly incoming data {pt,n}n
is used, and then never used again. This, in fact, corresponds to a scheme where at

each time, a disjoint subset of the dataset is used, considering that the data obtained

over all nodes and at all times form our database. The parallel composition rule

of the DP [90] states that if εi-differentially private mechanisms are employed over

disjoint subsets of a database, then the overall mechanism achieves maxi εi-DP. Then,

by invoking the parallel composition property and since at each time t we employ a

(ε, δ)-differentially private mechanism over a disjoint subset of the entire database,

the overall stream aggregation process achieves the (ε, δ)-DP.

The decision maker then employs the generalized CUSUM algorithm over the pri-

vately aggregated stream of {yt}t. The post-processing invariance rule of the DP [115]

states that for an output v of an (ε, δ)-differentially private algorithm, any non-private

function ψ(v) of the output also achieves (ε, δ)-DP, as long as the post-processing

does not use the original data. Then, since the generalized CUSUM algorithm can be
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considered as a non-private function, overall the proposed online anomaly detection

scheme is (ε, δ)-differentially private.

5.7.2 Proof of Theorem 5.2

Proof. For the CUSUM-type detectors in the form of

Γ = inf{t : gt ≥ h},

gt = (gt−1 + βt)
+, (5.22)

where g0 = 0, the Wald’s approximation to the ARL is given by [5, Sec. 5.2.2]:

Eτ [Γ] ≈ 1

E[βt]

(
h+

e−w0h − 1

w0

)
, (5.23)

where the equation

E[e−w0βt ] = 1 (5.24)

has only one nonzero root w0 such thatw0 > 0, if E[βt] > 0,

w0 < 0, if E[βt] < 0.

The proposed generalized CUSUM detector can be expressed in the form of

Eq. (5.22), see Eq. (5.15) and Eq. (5.16). Then, to derive the Wald’s approxima-

tion for the ARL, we need to compute E[βt] and also w0 from Eq. (5.24). To this

end, we first compute the pdf of βt for the pre-change case (t < τ) since in the FAP

computations, the assumption is that no change happens at all, that is, τ =∞.

Let E1 , {yt ≤ 0.5 − η} and E2 , {yt > 0.5 − η} be two complementary events.

For t < τ , we have, see Eq. (5.14),

P(E1) = P(yt − 0.5 ≤ −η)

= P
(
yt − 0.5

θ
≤ −η

θ

)
= Q(η/θ)
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and hence P(E2) = Q(−η/θ). Moreover, if E1 is true, we have, see Eq. (5.17),

βt =
1

2

(
y − 0.5

θ

)2

∼ 1

2
χ(1),

where χ(1) denotes the chi-squared random variable with 1 degrees of freedom. Fur-

thermore, if E2 is true, we have, see Eq. (5.17),

βt =
−η
θ

(
y − 0.5

θ

)
− η2

2θ2

∼ N
(
− η2

2θ2
,
η2

θ2

)
.

In summary, for t < τ , we have

βt ∼

χ(1)/2, w.p. Q(η/θ)

N
(
− η2

2θ2
, η

2

θ2

)
, w.p. Q(−η/θ),

(5.25)

where w.p. denotes “with probability”. Then, using the linearity of the expectation,

we can write

E[βt] =
1

2
Q(η/θ)− η2

2θ2
Q(−η/θ). (5.26)

The Wald’s approximation to the FAP requires E[βt] < 0, equivalently, after

defining ρ , η/θ, we need, see Eq. (5.26),

g(ρ) , Q(ρ)− ρ2Q(−ρ) < 0.

Notice that since the Q-function is monotonically decreasing, the function g(ρ) is

monotonically decreasing in ρ and it takes the value of zero when ρ ≈ 0.61. Hence,

for ρ > 0.61, we have E[βt] < 0.

Next, we solve Eq. (5.24) to find w0. Firstly, from Eq. (5.25), under E1, βt ∼

χ(1)/2 and hence the pdf of βt in this case can be written as follows:

f(β) =
1√
πβ

e−β, β ≥ 0. (5.27)
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Then, using Eq. (5.25) and Eq. (5.27), we can rewrite Eq. (5.24) as

Q(ρ)

∫ ∞
0

e−w0β
1√
πβ

e−βdβ︸ ︷︷ ︸
A1

+Q(−ρ)

∫ ∞
−∞

e−w0β
1√
2πρ2

e
− 1

2ρ2
(β+0.5 ρ2)2

dβ︸ ︷︷ ︸
A2

= 1, (5.28)

where

A1 ,
∫ ∞

0

e−w0β
1√
πβ

e−βdβ

=

∫ ∞
0

1√
πβ

e−(w0+1)βdβ

and letting x , (w0 + 1)β, we can write

A1 =
1√

w0 + 1

∫ ∞
0

1√
πx
e−xdx︸ ︷︷ ︸

1

=
1√

w0 + 1
, (5.29)

provided that w0 + 1 > 0, or equivalently w0 > −1. In the equation above, we use

the fact that 1√
πx
e−x, x ≥ 0 represents a pdf (particularly, the pdf of χ(1)/2).

Furthermore, we have

A2 =

∫ ∞
−∞

e−w0β
1√
2πρ2

e
− 1

2ρ2
(β+0.5 ρ2)2

dβ

=

∫ ∞
−∞

1√
2πρ2

e
− 1

2ρ2
(β2+2(0.5 ρ2+ρ2w0)β+ρ4/4)

dβ

= e0.5 ρ2(w0+w2
0)

∫ ∞
−∞

1√
2πρ2

e
− 1

2ρ2
(β−(−0.5 ρ2−ρ2w0))2

dβ︸ ︷︷ ︸
1

= e0.5 ρ2(w0+w2
0), (5.30)

where by completing the square, we obtain a Gaussian pdf, whose under area curve

is equal to 1.

Hence, we can rewrite Eq. (5.24) based on Eq. (5.28), Eq. (5.29), and Eq. (5.30)

as follows:

f(w0) , Q(ρ)
1√

w0 + 1
+Q(−ρ) e0.5 ρ2(w0+w2

0) = 1, (5.31)
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where there exists a unique −1 < w0 < 0 solving the equation above.

5.7.3 Proof of Theorem 5.3

Proof. For the CUSUM-type detectors given in Eq. (5.22) and if E[βt] < 0, we have

the following lower bound on the ARL [5, Sec. 5.2.2]:

E∞[Γ] ≥ e−w0h,

where w0 < 0 is obtained from Eq. (5.24) and hence from Eq. (5.31).

5.7.4 Proof of Theorem 5.4

Proof. We can use the Wald’s approximation to the ARL given in Eq. (5.23) to derive

an approximation for the worst-case ADD of the proposed algorithm provided that

E[βt] > 0. For this approximation, similar to Appendix 5.7.2, we need to compute

E[βt] and w1 (for the ADD calculations, we use w1 instead of w0). To this end, we

next determine the pdf of βt for the post-change case, that is, for t ≥ τ .

Firstly, using the same event definitions E1 and E2 in Appendix 5.7.2 and assuming

γt = γ for t ≥ τ , we have, see Eq. (5.14),

P(E1) = P(yt − 0.5 + γ ≤ γ − η)

= P
(
yt − 0.5 + γ

θ
≤ γ − η

θ

)
= Q

(
η − γ
θ

)
and hence P(E2) = Q(γ−η

θ
). Moreover, if E1 is true, we have, see Eq. (5.17),

βt =
1

2

(
y − 0.5

θ

)2

=
1

2
x2,
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where x ∼ N (−γ/θ, 1). Further, if E2 is true, we have, see Eq. (5.17),

βt =
−(y − 0.5)η

θ2
− η2

2θ2

=
−η
θ

(
y − 0.5 + γ

θ

)
+

2ηγ − η2

2θ2

∼ N
(

2ηγ − η2

2θ2
,
η2

θ2

)
In summary, for t ≥ τ , we can write

βt ∼


1
2

(N (−γ/θ, 1))2 , w.p. Q
(
η−γ
θ

)
N
(

2ηγ−η2
2θ2

, η
2

θ2

)
, w.p. Q

(
γ−η
θ

)
.

(5.32)

Then, we have

E[βt] =
γ2 + θ2

2θ2
Q

(
η − γ
θ

)
+

2ηγ − η2

2θ2
Q

(
γ − η
θ

)
. (5.33)

To use the Wald’s approximation for the ADD, we need E[βt] > 0, for which a

sufficient condition is

2ηγ − η2 > 0,

equivalently γ > η/2. This is because all the other terms in Eq. (5.33) are nonnegative.

Moreover, since γ ≥ η by the definition of the proposed detector, see Eq. (5.15), the

sufficient condition is satisfied.

Next, we solve Eq. (5.24) to determine w1. We write Eq. (5.24) based on Eq. (5.32)

as follows:

Q

(
η − γ
θ

)∫ ∞
−∞

e−w1x2/2
1√
2π
e−(x+γ/θ)2/2dx︸ ︷︷ ︸

B1

+Q

(
γ − η
θ

)∫ ∞
−∞

e−w1β
1√

2πη2/θ2
e
− 1

2η2/θ2

(
β− 2γη−η2

2θ2

)2

dβ︸ ︷︷ ︸
B2

= 1, (5.34)
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where for the first term in the summation, we use β = x2/2 where x ∼ N (−γ/θ, 1).

Then, we have

B1 ,
∫ ∞
−∞

e−w1x2/2
1√
2π
e−(x+γ/θ)2/2dx

= e
− w1γ

2

2θ2(w1+1)

∫ ∞
−∞

1√
2π
e
− 1

2

(√
w1+1x+ γ

θ
√
w1+1

)2

dx

=
1√

w1 + 1
e
− w1γ

2

2θ2(w1+1)

∫ ∞
−∞

1√
2π
e
− 1

2

(
y+ γ√

w1+1

)2

dy︸ ︷︷ ︸
1

=
1√

w1 + 1
e
−w1γ

2

2θ2(w1+1) , (5.35)

where we again use the method of completing the square and y ,
√
w1 + 1x. Further,

we have

B2 ,
∫ ∞
−∞

e−w1β
1√

2πη2/θ2
e
− 1

2η2/θ2

(
β− 2γη−η2

2θ2

)2

dβ.

We determine B2 by following the same methodology to find the A2 in Appendix 5.7.2,

that is, completing the square. Then, we obtain

B2 = e
(γ2−2γη)w1+γ

2w2
1

2θ2 (5.36)

Finally, based on Eq. (5.34), Eq. (5.35), and Eq. (5.36), we have

g(w1) , Q

(
η − γ
θ

)
e
−w1γ

2

2θ2(w1+1)

√
w1 + 1

+Q

(
γ − η
θ

)
e

(γ2−2γη)w1+γ
2w2

1
2θ2 = 1,

where there exists a unique w1 > 0 satisfying the equation.

5.7.5 Proof of Theorem 5.5

Proof. For the CUSUM-type detectors given in the general form of Eq. (5.22), if

E[βt] > 0 and the observation sequence is normally distributed, we have the following

upper bound on the ARL [5, Sec. 5.2.2]:

E1[Γ] ≤ 1

E[βt]
(h+ E[βt|βt > 0]) . (5.37)
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Since the proposed detector fits to Eq. (5.22) and the observations yt are normally

distributed at the decision maker, we can derive an upper bound on the worst-case

ADD of the proposed detector using Eq. (5.37). To this end, we next compute

E[βt|βt > 0]. Notice that E[βt] is already computed and given in Eq. (5.33).

Firstly, based on Eq. (5.32), under E1, since βt ≥ 0 is always true, we can easily

compute

E[βt|βt > 0,E1] =
γ2 + θ2

2θ2

Further, under E2, we have βt ∼ N (a, b) where a , 2ηγ−η2
2θ2

and b , η2

θ2
. Then,

E[βt|βt > 0,E2] =
E[βt, βt > 0|E2]

P(βt > 0|E2)

=
E[βt, βt > 0|E2]

Q(−a/
√
b)

,

where

E[βt, βt > 0|E2] =

∫ ∞
0

β
1√
2πb

e−
1
2b

(β−a)2dβ

=

∫ ∞
0

(β − a)
1√
2πb

e−
1
2b

(β−a)2dβ︸ ︷︷ ︸
C1

+

∫ ∞
0

a
1√
2πb

e−
1
2b

(β−a)2dβ︸ ︷︷ ︸
C2

Let u , (β − a)2. Then,

C1 ,
∫ ∞

0

(β − a)
1√
2πb

e−
1
2b

(β−a)2dβ

=

∫ ∞
a2

1

2
√

2πb
e−

u
2bdu

=

√
b√

2π
e−

a2

2b .

Moreover, letting y , (x− a)/
√
b, we have

C2 ,
∫ ∞

0

a
1√
2πb

e−
1
2b

(β−a)2dβ

= a

∫ ∞
− a√

b

1√
2π
e−

1
2
y2dy

= aQ

(
− a√

b

)
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Then, we obtain the following:

E[βt|βt > 0,E2] =

√
b√

2π
e−

a2

2b + aQ
(
− a√

b

)
Q(−a/

√
b)

= a+

√
b e−

a2

2b

√
2π Q(−a/

√
b)

, ψ(a, b)

Finally, we have

E[βt|βt > 0] = P(E1)E[βt|βt > 0,E1] + P(E2)E[βt|βt > 0,E2]

= Q

(
η − γ
θ

)
γ2 + θ2

2θ2
+Q

(
γ − η
θ

)
ψ(a, b) (5.38)

Then, in Eq. (5.37), by replacing E[βt] and E[βt|βt > 0] with Eq. (5.33) and Eq. (5.38),

respectively, we obtain an upper bound on the ADD.
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Chapter 6

Conclusions and Future Work

This thesis has studied the data-driven quickest change detection (QCD). Effective

and scalable QCD algorithms have been proposed for high-dimensional, complex, and

temporally correlated real-world data streams with unknown statistical properties.

The solution approaches include novel techniques from sequential analysis, reinforce-

ment learning (RL), deep learning, and distributed privacy-preserving inference. The

proposed algorithms have been evaluated through several real-world applications such

as online cyber-attack detection over smart grids and online anomaly detection over

Internet of Things (IoT) networks and surveillance videos. The following research

directions can be considered as the future works:

• The RL-based QCD algorithm proposed in Chapter 2 can be further improved

using more advanced methods. In particular, (i) compared to the finite-size

sliding window approach, more sophisticated memory techniques can be devel-

oped, (ii) compared to discretizing the continuous observation space and using a

tabular approach to compute the Q values, function approximation techniques

(e.g., neural networks) can be used to compute the Q values, and (iii) deep RL

algorithms can be useful to improve the QCD performance.

• In Chapter 2, a single-agent RL setting has been considered with the aim of
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optimizing the policy of the defender, where the attacking strategies, such as

attack types, magnitudes, set of attacked sensors, and so forth, do not alter the

best policy of the defender. That is, once an attack is launched, the defender’s

best policy is stop and declare an attack. Moreover, in the considered setup, the

attacker does not learn. As a future work, the current setup can be extended

to a multi-agent RL setting where there is an underlying partially observable

stochastic game with multiple states in which the payoffs and state transitions

depend on joint actions taken by the attacker and the defender. In this setting,

both agents aim to learn and adapt to the environment and also to each other’s

policies in order to maximize their payoffs.

• In Chapter 3, stationary big data streams have been studied. In practice, sta-

tistical properties of the observed data streams might also be nonstationary. In

such cases, a common approach is assuming a slowly time-varying submanifold

underlying the observed data stream [52,139,151]. The results of Chapter 3 can

be extended for nonstationary big data streams by employing a subspace track-

ing algorithm [103] that dynamically estimates the underlying submanifold.

• In Chapter 4, the training dataset is assumed to contain both pre- and post-

change samples. As a future work, robust deep QCD algorithms can be in-

vestigated where there is only a set of pre-change samples but no samples are

available from the post-change, which is generally the case in online attack or

anomaly detection problems.

• In Chapter 5, existence of a global decision maker is assumed for network-wide

anomaly detection. As a future work, fully-distributed privacy-preserving online

anomaly detection can be studied.
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