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ABSTRACT 

 

 

 

AN ALGEBRAIC OPPORTUNITY TO DEVELOP PROVING ABILITY 

 

 

 

Julius Romica Donisan 

 

 

Set-based reasoning and conditional language are two critical components of 

deductive argumentation and facility with proof. The purpose of this qualitative study 

was to describe the role of truth value and the solution set in supporting the development 

of the ability to reason about classes of objects and use conditional language. This study 

first examined proof schemes – how students convince themselves and persuade others – 

of Algebra I students when justifying solutions to routine and non-routine equations. 

After identifying how participants learned to use set-based reasoning and conditional 

language in the context of solving equations, the study then determined if participants 

would employ similar reasoning in a geometrical context. 

As a whole, the study endeavored to describe a possible trajectory for students to 

transition from non-deductive justifications in an algebraic context to argumentation that 

supports proof writing. First, task-based interviews elicited how participants became 



absolutely certain about solutions to equations. Next, a teaching experiment was 

completed to identify how participants who previously accepted empirical arguments as 

proof shifted to making deductive arguments. Last, additional task-based interviews in 

which participants reasoned about the relationship between Varignon Parallelograms and 

Varignon Rectangles were conducted. 

The first set of task-based interviews found that a majority of participants 

displayed ritualistic proof schemes – they viewed equations as prompts to execute 

processes and solutions as results, or “answers.” Approximately half of participants 

employed empirical proof schemes; they described convincing themselves or others using 

a range of arguments that do not constitute valid proof. One particularly noteworthy 

finding was that no participants initially used deductive justifications to reach absolute 

certainty. Participants successfully adopted set-based reasoning and learned to use 

conditional language by progressively accommodating a series of understandings. They 

later utilized their new ways of reasoning in the geometrical context. Participants 

employed the implication structure, discriminated between necessary and sufficient 

conditions, and maintained a disposition of doubt toward empirical evidence. Finally, 

implications of these findings for pedagogues and researchers, as well as future directions 

for research, are discussed.
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This chapter introduces my dissertation study. First, I describe the need for this 

study by situating it within extant literature. Second, I state the purpose of the study and 

the research questions I endeavored to answer. Third, I provide an overview of the 

procedures used to answer the research questions. 

Need for Study 

Proof serves a central role in both the creation of new mathematics and the 

learning of previously discovered mathematics (Haimo, 1995). From a mathematician’s 

viewpoint, proof is the mechanism through which new mathematics is codified. From a 

pedagogue’s perspective, proof can serve an explanatory role and has the potential to 

facilitate student understanding of mathematical concepts (Hanna, 2000; Knuth, 2002a). 

Schoenfeld (1994) argued that “proof is not a thing separable from mathematics…it is an 

essential component of doing, communicating, and recording mathematics” (p. 76). 

Despite the importance of proof in the field of mathematics and the learning 

opportunities it can facilitate in classrooms, it is well documented that students struggle 

with proof (Coe & Ruthven, 1994; Harel & Sowder, 2007; Kloosterman, 2010; Weber, 
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2001). Students have varied conceptions of proof, and there are numerous reasons why 

students struggle to produce proofs (Healy & Hoyles, 2000; Herbst & Brach, 2006; 

Knuth, Slaughter, Choppin, & Sutherland, 2002). For example, Tinto (1988) documented 

that some students believe proof only serves to verify facts already known. Even when 

students understand the nature of proof, their lack of strategic knowledge or ability to 

recall definitions may prevent them from producing proofs (Weber, 2001). However, 

previous studies report that a majority of students at all levels use empirical arguments 

when asked to provide a proof (Balacheff, 1988; Chazan, 1993; Harel & Sowder, 2007). 

An empirical argument uses an arbitrary number of specific cases to make a claim. In 

contrast, a deductive argument reasons about classes or sets; only deductive arguments 

are considered valid mathematical proofs (Weber, 2008). 

Harel and Sowder (1998, 2007) align valid mathematical proof with what they 

call an analytical proof scheme. The development of an analytical proof scheme includes 

a number of critical milestones. An analytical proof scheme requires students to use and 

interpret implication statements, be familiar with the role of quantifiers, and reason about 

a class of objects. 

Student success with proof requires the ability to use and interpret implication 

statements. Implication is crucial to proof writing because theorems are often expressed 

as conditional statements. Proofs frequently employ modus ponens, a deduction rule that 

relies on an understanding of implication (Morash, 1991; Rodd, 2000; Vellman, 2006). 

Hoyles and Küchemann (2002) report that students struggle to fundamentally understand 

implications; a large portion of students in their study failed to differentiate between a 

conditional statement and its converse. Students need conditional statements to describe 
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mathematical relationships; fluency with conditional language greatly aids the 

development of the analytical proof scheme (Epp, 2003). 

Student familiarity with the role of quantifiers is another milestone in the 

development of an analytical proof scheme. According to Durand-Guerrier (2003), 

students’ struggles with implications are due in part to the implicit quantifiers they 

contain. For example, the statement “if a quadrilateral is a square, then the quadrilateral is 

a rectangle” conveys that all squares are rectangles. Previous studies find that students 

struggle to create and decode statements involving quantifiers (Dubinsky & Yiparaki, 

2000; Selden & Selden, 1995). Epp (1999) suggested that successfully navigating the 

form and language of mathematical proof requires fluency with the quantifiers of 

predicate calculus. 

A third feature in the development of an analytical proof scheme is students’ 

abilities to reason – and express their reasoning – about a class of objects. A class of 

objects, sometimes referred to as a set of objects, is a category of objects defined by their 

shared properties. A class can consist of actual objects – rectangles, for example, are a 

class of objects because of their common, defining properties. The objects, however, can 

also be of a different nature. Critical for understanding equations, the solution set is such 

as a class. The solution set is the set of values that make an equation (or other 

mathematical statement) true when substituted into an equation. For example, {-2, 2} is 

the solution set for x2 = 4. Some sets contain an infinite number of objects; proofs are 

often concerned with the truth of a statement pertaining to an infinite set (Vellman, 

2006). In order to make an argument about an infinite set of objects, one needs to be able 

to fully understand and articulate the properties of the set. That is, understanding and 
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conveying necessary and sufficient conditions is itself a necessary condition for 

successful proof writing (Moore, 1994). 

In the United States, geometry is often considered the secondary school course 

that explicitly prepares students to write proofs (Herbst, 2002). However, students 

continue to struggle with proof after this course, and it appears the instruction students 

receive in geometry frequently is not sufficient to develop an analytical proof scheme 

(Alcock & Weber, 2005; Recio & Godino, 2001; Thompson, 1991). A geometry course 

may have limited efficacy in developing proving ability if students enter the course with 

an insufficient understanding of implication. Specifically, a student’s ability to write 

proofs at the end of a geometry course has been found to correlate with the proclivity to 

reason about classes of objects at the start of the course (Senk, 1989). To build student 

capacity for proof, it stands to reason that instruction – particularly about the nature of 

implication statements – is needed prior to geometry. The National Council for Teachers 

of Mathematics (NCTM, 2000) explicitly makes this claim: “Reasoning and proof are not 

special activities reserved for special times or special topics in the curriculum but should 

be a natural, ongoing part of classroom discussions, no matter what topic is being 

studied” (p. 342). Furthermore, the Common Core State Standards strongly advocate for 

student engagement in reasoning and proving activities across grade levels (National 

Governors Association Center for Best Practices, 2010). 

Algebra is often the course preceding geometry in the secondary school 

mathematics sequence. As such, it provides an opportunity to develop aspects of 

students’ proving and reasoning abilities immediately before they are formally required 

to write proofs in their geometry courses. Hoyles (1997) found that different curricula 



5 

 

shape students’ approaches to proof. Yet recent studies find that algebra textbooks do not 

offer sufficient opportunities for students to develop their proving abilities (Dituri, 2013; 

Thompson, Senk, & Johnson, 2012). Algebra students would benefit from opportunities 

to internalize the structure of conditional statements, part of which requires they learn to 

reason about classes or sets. 

Purpose for Study 

The purpose of this qualitative study is to describe the role of truth value and the 

solution set in supporting the development of the ability to reason about classes of objects 

and use conditional language. To support this goal, the study adopts Harel and Sowder’s 

(2007) framework to identify the proof schemes that students use when justifying 

solutions to equations. In addition, this study aims to determine whether or not students 

who reason conditionally about solution sets are also able to reason about classes of 

geometrical objects. 

Research Questions 

1. How do proof schemes differ, if at all, when students justify solutions to 

different types of algebraic equations? 

2. Can students learn to reason about classes of objects and use conditional 

language when considering the truth value of algebraic equations? If so, how? 

3. Are students who reason conditionally about solution sets also able to reason 

about classes of geometrical objects? 
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Procedures for Study 

This study used task-based interviews (Goldin, 2000) to address the first and third 

research questions. Task-based interviews are structured such that participants interact 

with a preplanned task environment. The goal of the researcher during the interview is to 

elicit a “complete, coherent verbal reason for each of the child’s responses, and a 

coherent external representation constructed by the child” (Goldin, 2000, p. 312). 

This study also used a teaching experiment methodology (Steffe & Thompson, 

2000) to address the second research question. While conducting a teaching experiment, 

one sets out to experience firsthand students’ mathematical reasoning and learning. The 

researcher builds and tests viable models of students’ mathematical thinking in order to 

explain the schemes and operations behind student behavior when solving equations. It is 

important to note the distinction between scheme and proof scheme. Scheme refers to the 

underlying structure of students’ mathematical thinking (Steffe & Thompson, 2000), 

while proof scheme refers to the type of justification provided (Harel & Sowder, 2007). 

Participants 

The study was conducted in a large suburban high school with freshmen enrolled 

in Algebra I. At the time the study was conducted, potential participants had previous 

experiences solving equations; however, they had no prior experience solving equations 

with multiple solutions or extraneous solutions. The initial pool of potential participants 

of approximately 400 students allowed for a carefully considered selection of 

participants. 
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There were multiple purposes behind the initial sampling of participants (Creswell 

& Poth, 2018). First, a basic skill assessment simplified the study by focusing the 

investigation on a homogenous set of participants. The participants were homogenous in 

the sense that all participants were able to perform a common set of algebraic procedures 

(solve two-step equations, use the distributive property, simplify algebraic expressions, 

and evaluate exponents) before the start of the study. Second, conversations with 

participants’ current algebra teachers ensured that participants would highlight what is 

typical or average. Last, the participants were identified by their teachers as being 

potentially information rich cases that manifested information “intensely but not 

extremely” (Miles & Huberman, 1994, p. 28). That is, participants who were considered 

typical by their teachers, except for their willingness to share and explain their thinking, 

were considered for the study. 

The number of participants in the study was not predetermined. After the initial 

pool of potential participants was identified, the first set of task-based interviews 

commenced. Participants were selected for the task-based interview one at a time until a 

satisfactory degree of data saturation was achieved. Consistent with Lincoln and Guba’s 

(1985) description of purposeful sampling, redundancy was the criterion for sampling – 

interviews were terminated when no new information was forthcoming. Then, a subset of 

participants was selected to participate in the teaching experiment. These participants 

were selected because they frequently employed empirical arguments during the task-

based interview. The teaching experiment set out to demonstrate these participants could 

learn not to rely on empirical arguments and instead use set-based reasoning and 

conditional language. 
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Methods 

To answer the first research question, participants were presented one equation at 

a time during a task-based interview and prompted with the question “can you tell me 

about the solution to this equation?” The equations presented progressed from familiar to 

non-routine in order to determine if the types of justifications varied. For example,        

4x + 2 = 10 is an equation a first-year algebra student will likely find routine, while 

equations with multiple solutions (e.g., x3 = 4x) and no solutions (e.g., x + 1 = x + 2) are 

likely to be non-routine and might cause students to employ different proof schemes. In 

addition to looking at justifications within tasks, participants were asked to reflect on 

their thinking across tasks. A set of equivalent equations (4x + 2 = 10, 4x + 1 = 9, and           

7x + 1 = 3(x + 3)) was presented in a single task to offer the opportunity for participants 

to reason about the relationships among equations. 

The data were analyzed using open, axial, and thematic coding (Strauss & Corbin, 

2015) to answer the first research question. The interviews were transcribed and read 

through multiple times before the process of open coding generated a set of codes for 

every statement participants made. The open codes were then constantly compared within 

a transcript and across transcripts in order to group codes together and form axial codes 

(Strauss & Corbin, 2015). This process used Harel and Sowder’s (2007) framework as a 

lens when analyzing statements that potentially offered insight into the proof scheme 

behind participants’ justification. Careful attention was paid to the level of certainty 

participants conveyed in justifications so that it was clear whether or not participants 

were absolutely certain of their claims (Weber & Mejia-Ramos, 2015). The axial codes 
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were constantly compared and distilled into themes that described any differences in 

proof schemes used while solving different types of equations. 

To answer the second research question, a teaching experiment was conducted in 

which participants were presented with a series of equations and asked if they are true or 

false. In order to build viable models of participants’ mathematical thinking, participants 

were asked follow-up questions such as “how do you know?” “is it always true?” “are 

there other values that make it true?” and “how can you be sure?” The hypothesis of the 

teaching experiment was that this line of questioning would facilitate the development of 

reasoning ability about classes of objects and use of conditional language. Participants 

engaged in tasks until there was sufficient evidence that they had developed the ability to 

reason about classes of objects and use conditional language. This was confirmed during 

a post-interview where participants specifically demonstrated that they both i) understood 

the difference between equations that are always true and sometimes true and ii) were 

able to reason conditionally about the solution set. 

The data from the teaching experiment were analyzed continuously during and in-

between the teaching sessions, and retrospectively at the conclusion of the experiment. 

The ongoing analysis during the experiment monitored the evolution of the models of 

participants’ mathematics; it guided the development of tasks and follow-up questions 

presented to participants so that the models of participants’ mathematics evolved to 

include the ability reason about classes of objects and use conditional language. The 

ongoing analysis was influenced by the aim of collecting evidence of participants’ ability 

to i) interpret equations as having a truth value or solution set, ii) distinguish between 

equations that are universally and conditionally true, iii) use the implication structure to 
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link equivalent equations, and iv) use the implication structure to relate equations where 

one solution set is a subset of another solution set. The following is an example of using 

the implication structure: 4x = 8 is open sentence that could either be true or false, yet if 

4x + 1 = 9 is true, then 4x = 8 must be true as well; if 4x + 1 = 9 is false, then 4x = 8 must 

also be false. 

 The retrospective analysis of the data included the constant comparison of 

statements within a transcript of an individual participant as well as across the transcripts 

of all participants to produce open, axial, and thematic codes (Strauss & Corbin, 2015). 

The interpretation of statements during the coding process was consistent with a 

conceptual analysis (Thompson, 2008). The retrospective analysis sought to determine 

what participants knew and comprehended in specific contexts, what ways of knowing 

were propitious or problematic for participants learning to reason about classes of objects 

and use conditional language, and whether the analyses previously performed during the 

teaching experiment, taken as a whole, afforded a coherent understanding of participants’ 

mathematics over time. 

To answer the third research question, participants were prompted to reason about 

the relationship between an arbitrary quadrilateral and its Varignon Parallelogram. A 

Varignon Parallelogram is formed by connecting the midpoints of any quadrilateral. 

Furthermore, the Varignon Parallelogram is a rectangle if and only if the original 

quadrilateral has perpendicular diagonals.  To elicit participants’ reasoning about classes 

of quadrilaterals, a reasoning task using dynamic geometry software (i.e., Geogebra) was 

adopted from Lacmy and Koichu (2014). 
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Participants were first asked to reason about the conditions sufficient for claiming 

the Varignon Parallelogram is a rectangle. Certain familiar quadrilaterals – squares, 

rhombi, and kites – have perpendicular diagonals. As a result, knowing a quadrilateral is 

one of these quadrilaterals is sufficient to claim its Varignon Parallelogram is a rectangle. 

Similar to Lacmy and Koichu’s (2014) analysis, the data analysis sought to determine if 

participants reasoned analytically (i.e., about properties) or empirically (i.e., by verifying 

an arbitrary number of cases). Participants were also prompted to reason about the 

necessary condition of perpendicular diagonals. The analysis specifically considered 

whether or not participants attended to unfamiliar, arbitrary quadrilaterals and, in doing 

so, fully described Varignon Parallelograms as a class of objects. 
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This chapter provides a review of the literature on proof. First, I discuss the role 

of proof in mathematics and its relationship to the values and norms of mathematicians. 

Second, I provide an overview of students’ conceptions of proof. In this section, I 

specifically use Harel and Sowder’s (2007) framework of proof schemes as a lens. Third, 

I provide a review of the literature on specific components of proof: conditional 

language, quantifiers, and set-based reasoning. Last, I highlight the literature detailing the 

role algebra serves in the development of proving ability. 

The Role of Proof 

According to Schoenfeld (2009), “If problem solving is the ‘heart of 

mathematics,’ then proof is its soul…This dualism of exploration and confirmation, the 

lifeblood of mathematics, is the everyday work of every mathematician” (p. xii). Given 

the importance of proof in the field of mathematics, it is not a surprise that there is “a 

general consensus on the fact that the development of a sense of proof constitutes an 

important objective of mathematics education” (Mariotti, 2006, p. 173). Proof is the focus 

of a substantial amount of research in mathematics education because of the many 

Chapter II  
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powerful purposes proof can serve. Hanna’s (2000) survey of proof literature produced 

the following list describing the various roles of proof: 

 Verification that a statement is true 

 Explanation of why a statement is true 

 Systematization of the results into an organized, deductive system of axioms, 

theorems and major concepts 

 Discovery of new results 

 Communication (or transmission) of mathematical knowledge 

 Construction of an empirical theory 

 Exploration of the meaning of a definition or consequences of an assumption 

 Incorporation of a well-known fact into a new framework allowing for a new 

perspective 

Mathematicians pursue truth; they investigate conjectures and use proofs to verify 

that results are in fact true. Whereas evidence suggests an assertion may be true, a 

mathematical proof is a robust argument that not only convinces its author, but should be 

able to convince any skeptic (Bell, 1976). In searching for a proof that verifies the truth 

of a conjecture, Mason, Burton, and Stacey (2010) offered the following advice: 

“convince yourself, convince a friend, convince an enemy” (p. 87). Proof is imbued with 

certainty, and this makes proof especially useful when encountering non-intuitive or 

doubtful results (de Villiers, 1990). 

While verification is a hallmark of proof, de Villiers (1990) adopted the view that 

verification is not necessarily the most important aspect of proof and other roles, 

especially explanation, are equally, if not more, important. Yet, Hanna (2000) remarked 
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that a proof does not necessarily serve all of the purposes in her list. While Hanna (2000) 

argued the explanation of why a statement is true is one of proof’s most important 

functions, she also stated that “some proofs by their nature are more explanatory than 

others” (p. 8). Hanna continued on to assert that explanatory proofs – proofs that reveal 

why a statement is true – make power pedagogical tools. Consider, for example, Hsu’s 

(2010) study (n = 621) that found students do better with geometric calculations after 

engaging with related proof tasks. 

Mathematicians seek to build upon the current body of mathematical knowledge, 

and proof is the primary way they discover and create new results (Hanna, 2000). 

Similarly, proving can be an activity in which students learn new mathematics. Edwards 

(2010) interviewed doctoral students about their experiences with proof and found that 

they often evoked the metaphor of proof as a journey. Continuing this metaphor, proof 

not only allows one to set out to verify and explain a particular result, proof provides 

opportunities to take detours into new, unanticipated, mathematics. Consider a typical 

proof of the quadratic formula that requires one to complete the square. Prior to that 

point, a student may not have needed to know the technique of completing the square, but 

the proof naturally engenders the need to introduce the procedure in a way that connects 

it to previously established mathematics (Hanna & Barbeau, 2008). 

The communication of mathematics is another purpose of proof – proof is the 

format in which mathematics is codified (Hanna, 2000). Yet proofs do not exist in a 

vacuum; proofs need to be written and read by mathematicians and mathematics students. 

Proof is a form of social interaction, and proof is only useful as a communication tool to 

the extent that the different parties have shared understandings (Yackel & Cobb, 1996). 
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Yackel and Cobb (1996) used the term “sociomathematical norms” to capture how the 

notion of proof is shaped by the learning community. The development of normative 

interpretations of proof and what it means to prove a conjecture are developed through 

social interactions. 

Stylianides (2007a) argued that proof in a particular mathematics community 

requires the use of: i) a common set of statements accepted without any need for further 

justification, ii) forms of reasoning that are valid and known to the community, and iii) 

modes of argument representation that are appropriate and known to the community. 

Stylianides’ (2007a) argument is supported by the proving behavior of mathematicians. 

Weber (2011) interviewed nine mathematics professors and found they present proofs 

differently based on their audience. Professors attend to explanatory details if the proof is 

pedagogical in nature, whereas certain details are assumed to be understood when writing 

for academic purposes (i.e., writing for other mathematicians). Some mathematicians also 

believe that proofs in lectures should include diagrams, whereas diagrams are often 

omitted when writing for other mathematicians (Weber, 2011).  

Mathematical Values and Norms 

 In the classroom, mathematical values and norms are developed through social 

interaction; the teacher mediates this process as a representative of the mathematics 

community (Yackel & Cobb, 1996). Dawkins and Weber (2017) offered a framework in 

which they explicated the values and norms of the mathematics community vis-à-vis 

proof. Deductive reasoning and proving, the actions one takes, represent norms of doing 

mathematics. Moreover, “one would not call someone a ‘deductive mathematician’ as it 
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would be redundant” (Dawkins & Weber, 2017, p. 128). Values influence norms, and 

proof, the product of mathematical activity, can be thought of as encapsulating the values 

of mathematicians. Dawkins and Weber (2017) submitted the following values are the 

driving force behind the mathematics community’s norms for proof: 

1. Mathematical knowledge is justified by a priori arguments. 
2. Mathematical knowledge and justifications should be a-contextual and 

specifically be independent of time and author. 
3. Mathematicians desire to increase their understanding of mathematics. 
4. Mathematicians desire a set of consistent proof standards. (p.128) 

 According to Paseau (2011), “Mathematicians prefer deductive evidence and 

actively look for it even in the presence of overwhelming inductive evidence. The reason 

for this is that they are mathematicians and as such value deduction” (p. 144). Paseau 

continued on to draw the analogy of running a marathon. If the goal was to simply get to 

the end of the course, one might consider driving the 26.2 miles. Similarly, one reason 

mathematicians write proofs is to see if they can support their claims with deductive 

evidence. 

The values and norms of a mathematics classroom – while not necessarily the 

same as the values and norms of the greater mathematics community – serve to uphold 

the values and norms of mathematicians (Dawkins & Weber, 2017). To that end, Herbst 

and Balacheff (2009) argued the practice of mathematicians (i.e., mathematicians’ 

proving activities) should inform and constrain what happens in mathematics classrooms. 

Specifically, although students may not engage with proof exactly like mathematicians 

do, students’ classroom experiences should not leave them with a distorted sense of how 

mathematicians prove. If students do not share the values of mathematicians (especially 

deduction), they may struggle to comply with norms of proof production. Dawkins and 
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Cook (2017) suggested the values and norms of students could be more like that of 

mathematicians given the right experiences with mathematics: “We anticipate that 

students are more likely to accept an epistemic aim if they experience that aim being 

achieved” (p. 138). If proofs are intended to provide convincing and explanatory 

evidence, students need to experience proofs that are convincing and explanatory. 

Conceptions of Proof 

 Harel and Sowder (2007) offered a summary of proof literature through the lens 

of one’s proof scheme. Harel and Sowder defined one’s proof scheme as how one 

ascertains (i.e., convinces oneself) and persuades (i.e., convinces others). Hammack 

(2013) wrote, “A proof of a theorem is written verification that shows that the theorem is 

definitely and unequivocally true. A proof should be understandable and convincing to 

anyone who has the requisite background and knowledge” (p. 87). This means that, 

ideally, students seek out proof and view it as the most convincing type of evidence – yet, 

this is often not the case (Stylianides, Stylianides, & Weber, 2017). 

 Proof and the act of proving mean different things to different students. The 

notion of mathematical proof is often conflated with “proving” in everyday life because 

of the multiple ways the word “proof” is used. Tall (1989) observed proof for a jury 

means “beyond a reasonable doubt,” a scientist finds “empirical proof,” and a statistician 

may view proof probabilistically. Johnson-Laird (2010) stated that everyday reasoning 

and mathematical proof are different: 

   Human reasoning is not simple, neat, and impeccable. It is not akin to a proof in 
logic. Instead, it draws no clear distinction between deduction, induction, and 
abduction, because it tends to exploit what we know. Reasoning is more a 
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simulation of the world fleshed out with all our relevant knowledge than a formal 
manipulation of the logical skeletons of sentences. (p. 18249) 

Empirical Proof Schemes 

“In an empirical proof scheme, conjectures are validated, impugned, or subverted 

by appeals to physical facts or sensory experiences” (Harel & Sowder, 1998, p. 252). The 

empirical proof scheme is important because students are often convinced by empirical or 

inductive arguments (Bell, 1976; Harel & Sowder, 2007). According to Harel and 

Sowder (1998), an inductive proof scheme – a proof scheme in which students are 

convinced by examining specific cases – is a type of empirical proof scheme. The impact 

of possessing an empirical proof scheme on one’s mathematical behavior is significant. 

When asked to produce proofs, students with an empirical proof scheme demonstrate 

they are primarily interested in verification, not uncovering the relationships that give rise 

to the conditions (e.g., Coe & Ruthven, 1994; Recio & Godino, 2001). Nevertheless, 

students more readily accept justifications that help them understand why a statement is 

true, and reasoning from examples is often explanatory for students (Bieda & Lepak, 

2014). 

Balacheff (1988) distinguished between empirical and deductive arguments using 

the terms “pragmatic proofs” and “conceptual proofs.” Balacheff’s framework delineated 

pragmatic and conceptual proofs into four types of arguments: 

 1. Naïve empiricism 

 2. The crucial experiment 

 3. The generic example 

 4. The thought experiment 
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Inductive arguments commonly fall into the category of naïve empiricism. With this type 

of reasoning, students verify an arbitrary number of cases (usually not very many). A 

critical component of Balacheff’s taxonomy is the distinction between the crucial 

experiment and the generic example. In a crucial experiment, a student picks a seemingly 

arbitrary case and “…poses explicitly the problem of generality and resolves it by staking 

all on the outcome of a particular case that she [recognizes] to be not too special” 

(Balacheff, 1988, p. 219). The crucial experiment employs the use of a prototype that 

may not be representative of the class of objects, whereas the generic example uses a 

prototype that was selected after considering the properties of the class. The transition 

between these two stages represents a shift from inductive to deductive thought 

(Balacheff, 1988). 

One might conclude the prevalence of empirical arguments in lieu of deductive 

arguments is a result of students’ inability to write proofs and think deductively. 

However, employing inductive arguments in one context does not mean one cannot 

reasoning deductively in another. As a testament to how sensitive argumentation can be 

to context, consider Lacmy and Koichu’s (2014) study that examined student reasoning 

with quadrilaterals using dynamic geometry software. The researchers documented that 

students sometimes prove a biconditional statement by proving one conditional statement 

empirically and its converse deductively. 

Even when students are able to write a proof, it is often the case that they still 

employ empirical strategies to convince themselves the statement is true. Fischbein and 

Kedem (1982) were among the first researchers to report that students verify a number of 

cases after successfully writing a correct proof. In addition, some students will try to 
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construct geometric figures that they just proved were impossible to construct 

(Schoenfeld, 1989). Many students appear to treat proof as simply evidence, whereas 

(empirical) evidence is accepted as proof (Chazan, 1993). Raman (2003) claimed these 

students may not have access to the key ideas of the proof. Key ideas are the insights that 

would allow students to bridge the gap from the empirical intuition that they find 

convincing to accepting a formal proof. 

Student struggles to navigate the mathematical legitimacy of inductive and 

deductive arguments may be due, in part, to their teachers. Pre-service teachers 

sometimes conflate deductive and inductive arguments and find empirical arguments 

convincing (Martin & Harel, 1989; Morris, 2002). Additionally, pre-service teachers also 

struggle to validate proofs. They rely on their overall feeling of whether the argument is 

plausible and focus on surface features of the proof instead of the evaluating the 

substance of the argument (Selden & Selden, 2003). Knuth (2002b) interviewed sixteen 

in-service teachers and found most did not view proof to be entirely convincing – some 

stated it was possible for a proof and a counterexample to coexist. Not only did the 

teachers Knuth (2002b) interviewed fail to appreciate the role proof plays in verifying a 

conjecture, they also failed to recognize and talk about the potential of proof to help 

develop understanding of mathematical concepts. It appears, somewhat troublingly, that 

not all teachers believe a proof is the best way to convince students something is true 

(Miyakawa & Herbst, 2007). 

On one hand, there is evidence that the production of a proof does not guarantee 

its author recognizes its role in verifying the truth of a statement (Chazan, 1993; Knuth, 

2002b). On the other hand, it appears the opposite is also true. A. Stylianides and 
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Stylianides (2009) examined how pre-service teachers constructed proofs and validated 

their own arguments. The teachers in the study produced empirical arguments, but then 

went on to acknowledge their proofs were not valid. They offered empirical arguments 

because they were unable to coordinate all the pieces required to write a proof. Weber, 

Lew, and Mejia-Ramos (2019) documented that students who submit empirical 

arguments still have doubts about the truth of the conjecture and would be further 

convinced by a proof. They did not produce a proof because they either lacked i) the 

ability or confidence to search for a deductive proof, or ii) the motivation to try to find 

one. Students who successfully produce proofs may not appreciate the nature of proof, 

but a lack of proof production does not necessarily mean one does not understand the role 

of proof. 

It may be tempting to think that mathematicians are purely deductive thinkers and 

the use of empirical arguments means one is not behaving like a mathematician. 

However, mathematicians also rely on empirical arguments to increase their confidence 

that a conjecture is true. Mathematicians accept statements within a proof if the examples 

they generate produce a high degree of certainty, especially if the overall argument seems 

plausible (Mejia-Ramos & Weber, 2014; Weber, 2008; Weber & Mejia-Ramos, 2011). 

Physicists also use empirical and deductive reasoning in combination. They work with 

mathematical models to learn about the physical world, and the physical world can 

provide insights about the mathematics (Paseau, 2015). Witten (2002) wrote that 

physicists have no trouble accepting the truth of a conjecture before seeing the 

mathematical proof: 
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   A mathematical proof that quantum Yang-Mills theory exists in four dimensions 
would be a milestone in coming to grips mathematically with twentieth century 
theoretical physics. The reaction of physicists, however, would be that…one 
already understands why this theory exists, and that mathematicians would have 
merely succeeded in supplying the ε’s and δ’s. (p. 25) 

Similarly, de Villiers (1990) remarked that one may be convinced a conjecture is true 

before a proof exists; without conviction in place, one might not be willingly to spend 

months attempting to prove the conjecture. 

Weber, Inglis, and Mejia-Ramos (2014) also argued that mathematicians use 

deductive and empirical evidence in tandem. The two sources of evidence do not need to 

be treated as though they are in opposition to each other. Similar to Paseau’s (2015) 

observation, Hanna (2000) wrote that “no physicist, for example, would accept a fact as 

true on the basis of a theoretical deduction alone” (p. 19). Muis (2008) found that 

students who strictly had empiricist views performed worse than who held a hybrid view 

concerning the role of empirical and deductive evidence. Weber et al. (2014) claimed the 

presence of empirical beliefs is not the problem, but rather the true problem is the lack of 

value placed on deductive reasoning. 

External Proof Schemes 

A number of epistemological models have a lower level where knowledge 

originates outside the self; a key development in many models is the transition to the 

point where learners consider themselves as a knower in their own right (Hofer, 2000; 

Muis 2004). Harel and Sowder (1998, 2007) defined the authoritative proof scheme as a 

type of external proof scheme – a scheme where doubt is removed by a source external to 

the learner. This is often the classroom teacher or course textbook. In fact, students often 
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trust what their teachers tell them but not their own reasoning (Yackel & Cobb, 1996). 

Harel and Sowder (1998) warned that students who rely on their teacher are unlikely to 

gain confidence in their ability to create mathematics: 

   The first and most common expression of this proof scheme is students’ 
insistence on being told the procedure to solve their homework problems, and 
when proofs are emphasized, they expect to be told the proof rather than take part 
in its construction. (p. 247) 

Muis (2007, 2008) argued epistemological beliefs can affect the types of learning 

goals students set for themselves. These learning goals in turn influence the types of 

learning strategies students adopt. Muis and Franco (2009) analyzed the performance of 

201 undergraduate students in an educational psychology course and found evidence that 

students who believe knowledge resides outside of themselves set learning goals and 

adopt learning strategies that result in lower achievement. 

According to Weber et al. (2014), the largest problem with the authoritative proof 

scheme is not that students will come to believe things that are not true; rather, they will 

miss out on the opportunity to understand why things are true. Students may come to 

view mathematics as a “collection of truths, with little or no concern and appreciation for 

the origin of these truths” (Harel & Sowder, 1998, p. 247). Deductive proof does not 

necessarily convince, and social acceptance – especially by an authority figure – 

contributes to the conviction gained from the proof (Weber et al., 2014). While this may 

not seem like mathematical behavior, mathematicians, however, also gain conviction by 

accepting results published in respected journals (Mejia-Ramos & Weber, 2014). 

A ritualistic proof scheme is another type of external proof scheme (Harel & 

Sowder, 1998, 2007). In this proof scheme, rituals (the appearance of the argument) are 
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the basis for conviction. The rituals are a source of conviction that does not originate 

from within the learner, but from outside the learner. In a ritualistic proof scheme, 

students are concerned with form over content – the ritual of how the proof is presented is 

very important to them. For example, some students think proofs have to use symbols or 

be in a two column format, but cannot be written in a paragraph (Martin & Harel, 1989). 

With an emphasis on form instead of content, some proofs in secondary school can be 

taught and learned in a rote manner, not fulfilling any mathematical purpose (Herbst & 

Brach, 2006). This is ironic because two-column proofs were originally introduced into 

geometry classrooms to show that reasoning was being taught (Herbst, 2002). It appears 

the act of writing down statements and reasons alone is not sufficient to claim one is 

engaging with proof. As an illustration of this point, Herbst (2002) offered a comment 

from one of his undergraduate students, “‘We did proofs in school, but we never proved 

anything’” (p. 307). 

Healy and Hoyles (2000) found that students sometimes select one type of 

argument as most convincing, but when asked to select the justification that they thought 

would receive the best grade from their teacher, they selected arguments with a formal 

appearance. Other studies have also found students, including undergraduates, rely on 

surface features (the form) when validating a proof (Inglis & Alcock, 2012; Selden & 

Selden, 2003; Weber, 2010). Ritualistic arguments are particularly problematic because 

they can appear legitimate. Vinner (1997) provided the example of a student proficiently 

using the zero-product property to solve equations of the form (x – a)(x – b) = 0 and thus 

giving the impression that they reasoned mathematically. However, a student with a 

ritualistic proof scheme may adapt the ritual for (x – a)(x – b) = 2 by setting x – a = 2 and 
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x – b = 2. The interplay between rituals and actual mathematical reasoning can be subtle. 

Housman and Porter (2003) conducted a small study with high performing 

undergraduates and found students can possess more than one proof scheme. When 

students relied on rituals, they were generally unsuccessful. It appears that students resort 

to ritualistic arguments when lacking the necessary mathematical knowledge (Houseman 

& Porter, 2003; Vinner, 1997). 

A variation of the ritualistic proof scheme is the symbolic proof scheme. In the 

symbolic proof scheme, the symbols “…possess a life of their own without reference to 

their possible functional or quantitative reference” (Harel & Sower, 1998, p. 250). This 

can be problematic or powerful, as illustrated by Weber and Alcock (2004). In what the 

authors called syntactic proof production, one unwraps definitions and moves symbols 

into place. Students are able to successfully employ this strategy because they appeal to 

the structure or “flow” of a proof. This formulaic approach may be productive, but also 

may leave the writer without an understanding of the concepts in the proof (Weber & 

Alcock, 2004). Symbols, while mathematically potent, can provide an illusion of 

generality and engender a specious sense of conviction. For example, in a study involving 

fifty secondary mathematics teachers, less than half of the participants correctly 

invalidated non-general arguments that were presented symbolically (Tsamir, Tirosh, 

Dreyfus, Barkai, & Tabach, 2008). 

Analytical Proof Schemes 

Harel and Sowder (1998, 2007) aligned mathematical proof with what they call an 

analytical proof scheme. 
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   Simply stated, an analytical proof scheme is one that validates conjectures by 
means of logical deductions. By this, however, we mean much more that what is 
commonly referred to as the ‘method of mathematical demonstration’ – a 
procedure involving a sequence of statements deduced progressively by certain 
logical rules from a set of statements (i.e., a set of axioms). (1998, p. 258) 

Logic and deduction alone are not enough to qualify as analytical reasoning (Weber & 

Alcock, 2004). An analytical proof scheme requires sense making and understanding the 

mathematical content. Furthermore, Harel and Sowder (1998) stated that a critical 

attribute of an analytical proof scheme is the ability to apply goal-orientated operations to 

transform objects or images while anticipating the results (e.g., by identifying invariant 

properties). 

The development of an analytical proof scheme, and a rejection of non-analytical 

proof schemes, requires students to not only be able to reason deductively, but also value 

deductive justifications. Brown (2014) demonstrated students can develop a disposition 

of doubt of empirical evidence even though a particular set of empirical data is 

convincing. That is, students can learn to be skeptical of convincing arguments because 

of the form of the argument. There are two ways in which this can occur: i) experience 

with empirical arguments that fail and ii) exposure to culture and norms that are set by an 

authority (i.e., the teacher values deduction and does not allow empirical arguments). 

G. Stylianides and Stylianides (2009) developed a teaching sequence in which 

they attempted to lead students to distrust empirical evidence. The authors had students 

work in contexts that lent themselves to empirical arguments but would lead to false 

conclusions. For example, the expression 1 + 1141n2 (where n is a natural number) is not 

a perfect square for the natural numbers from 1 to 30,693,385,322,765,657,197,397,207. 

Those convinced by empirical evidence were surprised that the next natural number fails 
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to uphold the pattern. G. Stylianides and Stylianides (2009) used this and other similar 

contexts to have their students realize empirical evidence, even when overwhelming, 

cannot be trusted to produce absolute certainty. 

The development of an analytical proof scheme does not wait until one interacts 

with proof, and the ability to generalize is a critical skill that needs to be in place before 

students work with formal proofs (Stylianides & Stylianides, 2017). Students can learn 

how to generalize, invalidate false generalizations and explain the “why” of a 

generalization in algebraic contexts (Mata-Pereira & da Ponte, 2017). Algebra offers the 

opportunity to use and highlight the importance of deductive reasoning, a goal articulated 

in Catalyzing Change in High School Mathematics: Initiating Critical Conversations 

(NCTM, 2018). 

   Proof is essential in algebra and should not be reserved only for geometry. 
Proofs of statements in algebra rely on reasoning deductively from definitions and 
properties that are accepted as true…by a sequence of statements that justify the 
reasoning. (p. 49) 

Further, the ability to generalize in elementary grades is an important 

development so that the notion of proof does not appear to be an abrupt shift in secondary 

school (Stylianides, 2007b). Stylianides (2007b) analyzed a classroom episode originally 

documented by Ball (1993). During this episode, a third grade class investigated the 

conjecture that the sum of two odd numbers is always an even number. At least one 

student was convinced by empirical evidence, and another student argued “…the class 

cannot prove the conjecture for all pairs of odd numbers, because odd numbers and even 

numbers ‘go on forever’ and so one ‘cannot prove that all of them work’” (Stylianides, 

2007b, p. 6). However, one student, Betsy, was able to produce an analytical argument. 



28 

 

The crux of Betsy’s argument was consistent with Balacheff’s (1988) notion of a thought 

experiment since she was able to express operations on an abstract object (the class of 

odd numbers). Stylianides (2007b) argued that because the thought experiment is 

deductive in nature, Betsy’s argument both i) qualified as proof in elementary school and 

ii) was propitious for the long-term development of her proving ability. 

The Development of an Analytical Proof Scheme 

Stylianides, Bieda, and Morselli (2016) called for “...productive ways for 

assessing students’ capacities to not only engage in proof, but also to engage in processes 

that are ‘on the road’ to proof” (p. 344). The following are three categories of processes 

that are ‘on the road’ to proof: 

 The expression and interpretation of conditional language 

 The expression and interpretation of quantifiers 

 The expression and interpretation of classes of objects 

Conditional language requires the use and interpretation of the phrases “if, then” and “if 

and only if” and understanding the mathematical notion of material implication. The 

quantifiers of predicate logic entail the use and interpretation of the following words or 

phrases: all, some, none, for all, and there exists. Reasoning and expressing reasoning 

about classes of objects (i.e., sets) requires understanding necessary and sufficient 

properties and conceptualizing a large number of objects (sometimes infinite) as a single 

entity. 
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Conditional Language 

Theorems are often written as conditional statements and recognizing the logical 

form of the theorem is crucial to writing a proof (Vellman, 2006). Weber (2010) found 

that even when undergraduates were able to reject empirical arguments, they were still 

limited by the way they read proofs. The participants were seemingly unaware of the 

local links between statements within a proof. Linking together statements in a proof 

usually requires the use of modus ponens, a deduction rule that confirms the conclusion 

of a conditional statement when arguing from a true premise (Morash, 1991; Rodd, 2000; 

Vellman, 2006). Undergraduates sometimes also struggle to interpret conditional 

language when validating a proof as a whole. For example, students may check a proof 

line by line only to fail to notice that the proof does not prove the intended theorem, but 

the converse of theorem (Selden & Selden, 2003). 

Implication statements, even outside of the context of proof, are a source of great 

struggle for students (Hoyles & Küchemann, 2002; Markovits & Doyon, 2011; Yu, Chin, 

& Lin, 2004). Hoyles and Küchemann (2002) found that students commonly conflate a 

conditional statement with its converse; they interpret a conditional statement as being 

the same as a biconditional statement. It is possible to produce conclusions that appear to 

reflect correct reasoning when in fact they are based on misinterpretations of conditional 

language (Markovits & Doyon, 2011). For example, when both the premise and 

conclusion of a conditional statement are true, the entire statement is true whether or not 

one interprets the statement as a conditional or biconditional. 

Epp (2003) argued that subtle differences between mathematical and everyday 

language usage need to be explicitly addressed in the classroom and, if not attended to, 
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will result in difficulties for students. For example, the word “or” has two interpretations: 

inclusive and exclusive. In mathematics, the inclusive interpretation is generally used, 

whereas everyday language tends to use the exclusive interpretation. In mathematical 

parlance, “or” might be used inclusively to state, “negative two or positive two is a 

solution to x2 = 4.” When using “or” colloquially, one might say they are considering 

having steak or fish for dinner – this usage would be understood as exclusive. Legal 

documents avoid ambiguity by using “and/or” to communicate the inclusive or. 

 Epp (2003) went on to articulate that student struggles with implication 

statements are due, in part, to uses of conditional language in everyday language that are 

not consistent with mathematical usage. A conditional statement with a false premise is 

an instance in which interpretations of everyday language and mathematical language 

diverge. Mathematically, conditional statements with a false premise are true, yet within 

the context of everyday language, these statements are interpreted as “not applicable” 

(Braine, 1978; Inglis & Attridge, 2017). A particularly problematic difference in the 

interpretation between colloquial and mathematical language occurs when considering 

the distinction between conditional and biconditional statements. For example, a parent 

probably would not say to their child, “You can go to the movie if, and only if, you finish 

your homework” (Epp, 2003, p. 889). Rather, they might use the phrase, “If you finish 

your homework, then you can go to the movie,” and this would be interpreted as “if I 

don’t finish my homework, then I can’t go to the movie” (Epp, 2003, p. 889). This 

interpretation of the conditional statement is different from the interpretation used in 

mathematics and may partly explain the high incidence of converse error. 
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Wason’s (1968) selection task is perhaps the most used task to evaluate logical 

reasoning ability. In the original task, a rule, “If there is a D on one side of any card, then 

there is a 3 on its other side” (p. 275) is presented to a participant. Four cards are placed 

in front of the participant and each card has a letter on one side and a number on the other 

(the four cards show D, K, 3, 7). Each card corresponds to a part of the conditional rule: 

D is a true antecedent, K is a false antecedent, 3 is a true consequent, and 7 is a false 

consequent. The participant is prompted to select the cards, but only those cards, which 

would need to be turned over in order to find out whether the rule is true or false. In 

Wason’s (1968) experiment, participants generally sought out confirming evidence and 

only 10% demonstrated a response consistent with the contrapositive. This result supports 

the argument that students tend to seek out empirical verification (e.g., Coe & Ruthven, 

1994; Recio & Godino, 2001) and highlights the difficulty students have reasoning with 

the contrapositive (see also Inglis & Attridge, 2017; Stylianides, Stylianides, & 

Philippou, 2004). 

There are a number of follow-up studies to Wason’s (1968) original study because 

participants’ performance can be manipulated by changing the abstract number/letter rule 

to other contexts (e.g., Cheng & Holyoak, 1985; Cosmides & Tooby, 1992; Gigerenzer & 

Hug, 1991). Griggs and Cox (1982) famously showed participants perform significantly 

better when the rule and corresponding cards are changed to “If a person is drinking beer, 

then the person must be over [21] years of age” (p. 415). None of the participants 

produced the correct response for the original abstract task, but 73% selected the correct 

cards with the new rule. Cummins (1999) showed that, using the same rule and cards, 

performance changes given the perspective of the subject. For example, given a rule 
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concerning a business, the cards selected correlated with whether the participant adopted 

the perspective of the employee or employer. Given the variability and malleability of 

what is supposed to a logical reasoning task, it is clear that context matters (Ahn & 

Graham, 1999). The influence of context, and the difficultly students have internalizing a 

generalizable interpretation of conditional statements, can be confounding given that 

mathematics requires a consistent interpretation of conditional statements. 

Poor performance with abstract rules may be one explanation why interventions 

that attempt to improve proving ability by teaching abstract logic rules (i.e., truth tables) 

are generally ineffective (e.g., Deer, 1969; Leighton, 2006; Markovits & Doyon, 2011; 

Mueller, 1975). Dawkins and Cook (2017) conducted a series of teaching experiments in 

which students were prompted to systematically examine the use of logical connectives 

and develop generalizable heuristics to assess truth values. The authors argued: 

   We think it [reasoning about logic] constitutes a necessary direction for 
mathematics education research on proof-oriented mathematics instruction 
because students must be trained to consciously impose normative logical 
structure in their reasoning about mathematical content. For students, logic is an 
emergent structure that often requires guidance and reflection. (p. 255) 

Consistent with the results of Wason’s (1968) selection task, Dawkins and Cook (2017) 

found that most of the participants initially had inconsistent interpretations of logical 

statements that varied across contexts (i.e., their interpretation was domain specific). By 

guiding students to reflect on their language and interpretation, they were able to develop 

consistent, normative interpretations of logical connectives. 
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Quantifiers 

Understanding and using quantifiers is an integral part of verifying and writing 

proofs (Epp, 1999). For example, proofs are often concerned with proving a statement is 

true for all cases, and as a result it is imperative to distinguish between the quantifiers of 

“all” and “some” (Vellman, 2006). Epp (1999) drew attention to instances where the use 

of quantifiers can cause confusion. Similar to the confusion regarding conditional and 

biconditional statements, students tend to erroneously reverse universal statements (i.e., 

“all A are B” is interpreted as “all B are A”). Students also have difficultly negating “all” 

and “none” statements (Epp, 1999). For example, the negation of “all A are B” is “some 

A are not B,” but some students think the negation is “no A are B.” Similarly, the 

negation of “no A are B” is often thought to be “all A are B,” when in fact it is only the 

case that “some A are B.” In mathematics, “some” can mean “all”, but in everyday 

language, “some” is generally interpreted to mean “not all” (Epp, 1999). 

Durand-Guerrier (2003) made the case that student struggles with conditional 

language can be traced back, in part, to the implicit quantifiers they contain. Durand-

Guerrier contended there are two notions of implication: the propositional connective 

(one particular instance) and the generalized conditional (for a set of instances). Whether 

or not an implication statement needs to work for all cases is an underlying source of 

confusion for students. The author provided an example of an implication statement 

concerning person X.  Durand-Guerrier found students determined the truth value based 

on a single person (named X), whereas teachers interpreted the implication as a 

generalized conditional, even though X was not a variable and there was no referent 
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population. The ambiguity resulting from implicit quantifiers needs to be clarified in 

order for students to successfully use and interpret conditional statements. 

Usiskin, Peressini, Marchisotto, and Stanley (2003) drew attention to the 

significance of the existential quantifier for beginning algebra students learning to solve 

equations. To illustrate their point, they offered the following task: solve for x where       

6 + x = 6x. This task contains an implicit quantifier and is actually stating there exists an 

x such that 6 + x = 6x, identify such an x. Without making this inference, 6 + x = 6x is 

open sentence without meaning. Further, if one were to assume the statement to 

implicitly convey the universal quantifier, the statement would now be mathematically 

false and the meaning of the task completely different. 

Dubinsky and Yiparaki (2000) found undergraduate students struggle to interpret 

the existential quantifier. Specifically, students have difficultly differentiating between 

“for every x, there exists a y,” and “there exists an x such that y.” The authors also found 

that context matters – students have less difficulty when the statements are about real life 

scenarios. A subsequent study of six undergraduate illustrated that misunderstanding the 

existential quantifier can inhibit students’ ability to prove statements (Piatek-Jimenez, 

2010). 

Classes of Objects 

According to Moore (1994), the ability to reason about classes of objects (i.e., 

sets) is a critical skill that one needs to have in order to write proofs. This includes the 

ability to reason about infinite sets since proofs are generally concerned with determining 

if a statement is true for all cases (Morash, 1991). For example, the proof of the base 
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angle theorem for isosceles triangles stipulates that each pair of base angles are congruent 

for every single isosceles triangle in the infinite set of isosceles triangles. The ability to 

conceive of a set of objects as a single entity is major milestone in one’s mathematical 

development (Balacheff, 1988; Crowley, 1998; Harel & Sowder, 1998). In turn, the 

ability to reason with classes of objects greatly affects one’s ability to use and interpret 

conditional statements (Durand-Guerrier, 2003; Moore, 1994). 

Hub and Dawkins (2018) conducted a teaching experiment and illustrated how 

one student developed his notion of the generalizable truth conditional by relying on set-

based reasoning. Hub and Dawkins (2018) argued the transition to the generalizable truth 

conditional is significant because it reflects the ability to consistently interpret statements 

across contexts. 

   We use the term generalizable to acknowledge that students may or may not 
have considered whether their interpretation of a single statement would work on 
other statements…We want to help students consider whether their criteria for 
truth apply viably to other conditionals, which is why we pursue student 
development of conscious truth conditions. (p. 91) 

Hub and Dawkins (2018) documented that the transition can occur by providing a student 

multiple opportunities to: read mathematical statements and assign a truth value based on 

their understanding, make connections across tasks and representations, reframe a 

representation with a different task, and take a representation (e.g., an Euler diagram) and 

connect it to multiple tasks. In essence, the development of set-based reasoning and 

ability to relate sets to conditional statements requires multiple opportunities to reflect on 

one’s thinking and then transfer one’s knowledge to new contexts (Hub & Dawkins, 

2018). 
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Dawkins and Cook (2017) found that the development of logical reasoning ability 

is inhibited by a lack of set-based reasoning. In particular, the use of negations can be 

problematic for students. The introduction of a negation into a conditional statement 

results in an increase in non-normative interpretations because the negation effectively 

overtaxes one’s working memory (Inglis & Attridge, 2017; Politzer, 1981). Without fully 

developed set-based reasoning, some students reduce the working memory load by 

substituting the negation of a property with an affirmative property. For example, ‘not 

acute’ is interpreted as obtuse, and ‘not rectangle’ is interpreted as parallelogram 

(Dawkins, 2017). Similarly, students often reduce their working memory load by using a 

prototype as a representative member of the set; this can be problematic because students 

often fail to use prototypes that are representative of the entire set (Alcock & Simpson, 

2002; Cummins, 1995). 

Since one cannot imagine every individual element of an infinite set, reasoning 

about classes of objects requires the ability to understand, express, and reason about the 

necessary and sufficient conditions for the elements in the set. Example selection is one 

way to evaluate how students understand necessary and sufficient conditions; how 

examples or counterexamples are chosen matter can be evidence of deductive thought 

(Balacheff, 1988; Buchbinder & Zaslavsky, 2009; Marrades & Gutiérrez, 2000). Mason 

and Pimm (1984) used the notion of a “generic example” to discuss the role of specific 

examples in developing a sense of generality. Examples can seem like specific cases to 

students, yet well-chosen examples can highlight the generality of the attributes of the 

specific case presented and help develop set-based reasoning. Stylianides, Bieda, and 



37 

 

Morselli (2016) claimed that presenting a range of examples and having students generate 

their own examples are key ingredients for successful example usage. 

Counterexamples also play an important role in a student’s ability to develop set-

based reasoning. Counterexamples are powerful because a universal statement is false if a 

single counterexample is found. Teaching students to eliminate the possibility of 

counterexamples can be a viable strategy to develop proving ability (Yopp, 2017). Zazkis 

and Chernoff (2008) illustrated the notion of an exemplary counterexample. 

Counterexamples are only counterexamples to students if the instances are 

counterexamples in one’s personal example space. That is, how one conceives of the 

class – the necessary and sufficient and conditions for objects to belong to the class – 

determines whether or not a counterexample produces the necessary cognitive conflict to 

be considered a counterexample. Given an incorrect conception of a class, a typical 

counterexample may not seem like a counterexample. It is important to consider how a 

student actually conceives of the mathematical object, not the correct conception alone. 

The importance of considering how one chooses examples and counterexamples 

can compared to the importance of considering one’s concept image (Tall & Vinner, 

1981). Concept image is a widely used notion to describe one’s “cognitive structure that 

is associated with the concept, which includes all the mental pictures and associated 

properties and processes” (Tall & Vinner, 1981, p. 152). Vinner (1992) asserted that if 

one knows a student’s concept image, then the results of a task can be predicted. There is 

a strong link between students’ conceptions and their actions. Bingolbali and Monaghan 

(2008) documented that mechanical engineering students and students majoring in 

mathematics had different concept images for the concept of tangent. As a result, the two 
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groups produced different types of responses given the same task. In addition, 

Kontorovich (2018) showed the necessity of a fully formed concept image that is 

transferable between domains. A certain concept image may be sufficient in one domain, 

but problematic in another. For example, a tangent line in geometry is thought of a line 

and a circle or ellipse with exactly one point of intersection. In calculus, this image is 

problematic when considering the derivative of x3 at x = 0. 

Supporting Proof in Algebra 

Mathematical Processes as Objects 

 Using conditional language to reason about classes of objects plays a major role 

in developing an analytical proof scheme (Harel & Sowder, 1998). The use of the word 

“objects” might suggest one is reasoning about geometrical objects and thus is an activity 

reserved for geometrical contexts. Not only geometers, however, see objects while doing 

mathematics. The mathematician Henry Pollack once said in an interview (Albers & 

Alexanderson, 2008), 

   Mathematicians often argue whether mathematics is discovered or invented. I 
certainly had the feeling in that particular case that I was discovering it and not 
inventing it…We couldn’t have invented all that. We had discovered a structure 
that must have been there. At least that’s the feeling I had; it hung together too 
well. (p. 249) 

Consider, for example, the case of functions. They are not tangible, yet in many ways 

they are discussed and treated as though they are actual objects. At the same time, they 

are more than just objects. In order to “see” functions as objects, one needs to be able to 

conceive of the object as an encapsulation of a related process (i.e., a rule mapping one 

quantity to another) (Kieran, 1992). 
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 Sfard (1991) argued that mathematical concepts are both operational and 

structural, similar to physicists’ conception of the wave-particle duality. The operational 

notion is “dynamic, sequential, and detailed” whereas the structural notion is “timeless, 

instantaneous, and integrative” (Sfard, 1991, p. 4). Consider, for example, geometrical 

reflections. On one hand, a line reflection can be thought of as a process mapping one 

half of a figure onto the other half, but a structural view affords the static concept of line 

symmetry. The operational and structural duality of mathematics is captured in a number 

of conceptual frameworks (e.g., Beth & Piaget, 1966; Greeno, 1983; Steffe & Cobb, 

1988). Furthermore, the underlying notion of process/object duality can be traced back to 

Marx (1867/1992), the German philosopher and economist, and his use of the term 

Verdinglichung – which roughly translates to “making into a thing.” Marx used the 

process/object duality to critique the transformation of labor, the process of working, into 

a commodity (an entity which is bought and solid like a physical good). 

APOS theory (Dubinsky & McDonald, 2001) specifically describes how 

mathematical conceptions develop. First, one sees a mathematical idea as an action or a 

set of externally-based instructions. The action becomes a process when the action is 

internalized and one no longer needs external prompts to complete the action. At this 

point, one can mentally execute the action without actually carrying it out. The process 

transitions into an object when one realizes the process can be transformed. For example, 

a linear function can be transformed by shifting the y-intercept. Despite this 

transformation, the function still describes the same action (namely, a constant rate of 

change between two quantities). Lastly, similar to the idea of concept image (Tall & 
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Vinner, 1981), one develops a scheme when one links related processes and objects 

together and can apply them to solve problems. 

Additionally, there is an iterative nature in mathematics where lower level 

processes turn into objects, and then these mathematical objects are used in more 

sophisticated processes (Sfard, 1991). Transitions from mathematical processes to 

mathematical objects first occur in elementary school and continue through higher level 

mathematics. The concept of cardinality represents the first time in a child’s 

mathematical learning where a process (i.e., counting) is conceived of as an object (i.e., 

number) (Greenes, Ginsburg, & Balfanz, 2004). In fact, the set of objects – the counting 

numbers – is named after the process that generated them. Subsequently, the process of 

dividing two natural numbers becomes the object of rational number; the process of 

taking a square root of certain rational numbers becomes the object of irrational number 

(Sfard, 1991). Additionally, abstract algebra is highly structured and the result of 

processes conceived of as sophisticated objects: groups, rings, and fields (Sfard & 

Linchevski, 1994). 

 Sfard (1991) explicated the operational/structural duality with her theory of 

reification. The theory of reification has three stages: interiorization, condensation, and 

reification. The first stage, interiorization, is marked by the ability to perform mental 

operations instead of executing physical operations. Condensation, the second stage, 

occurs when one shortens the sequences of actions into units and thinks of the process as 

a whole without needing to delve into all the specifics. Consider how a baker might 

conceive of baking a cake not as a long sequence of specific actions, but a smaller set of 

tasks where each task represents multiple actions (e.g., making the filling, batter, and 
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frosting). Similarly, complex mathematical procedures can be conceived of as a handful 

of smaller units. The final stage in Sfard’s (1991) theory, reification, describes the 

transformation of a process into an object. Prior stages are gradual, but reification is 

instantaneous and marked by “an ontological shift – a sudden ability to see something in 

a totally new light” (p. 19). Sfard (1991) made the crucial point that the ability to see a 

process as an object allows for one to relate processes with the concept of classes and 

sets: 

   The new entity is soon detached from the process which produced it and begins 
to draw its meaning from the fact of its being a member of a certain category. At 
some point, this category rather than any kind of concrete construction becomes 
the ultimate base for claims on the new object’s existence. (p. 20) 

The critical shift to understanding an object as belonging to a set vis-à-vis its properties 

affords one the ability to reason with classes of objects and make deductive arguments 

(Balacheff, 1988; Crowley, 1998; Harel & Sowder, 1998). 

 The theory of reification can be connected to the usefulness of metaphors (Sfard, 

1994). Metaphors allow for abstract notions to come into being and have meaning. For 

example, “cognitive strain” is a metaphor that compares the mind to a container and 

allows for the mental processes one experiences to be conceived of as a meaningful 

abstract entity (Sfard, 1994). In algebra, solving equations is often taught with the 

metaphor of a balanced scale. This metaphor aids in the shift from solving equations as a 

process to a structural conception involving objects (Kieran, 1992). Functions – objects 

that represent processes that map inputs to outputs – can be described by the metaphor of 

a vending machine. A vending machine illustrates the process of mapping an input (i.e., a 
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button) with an output (e.g., a can of soda). Additionally, the metaphor also allows for the 

process to be conceived of as an object – the vending machine itself. 

Equations as Classes of Objects 

 Harel and Kaput (1991) noted that students often effectively manage symbolic 

notation by “…looking to translate from their natural language-based encoding of 

encapsulated process to algebra” (p. 90). Students can be successful so long as the 

numbers involved are positive whole numbers, although this strategy ceases to be 

effective when negative integers and rational numbers are introduced. Sfard and 

Linchevski (1994) contended that “algebraic symbols do not speak for themselves” (p. 

192) and that in the long term, one’s competence in algebra depends on “…our mind’s 

eye’s ability to envision the result of processes as permanent entities in their own right” 

(p. 194). Merging operational and structural conceptions while working with algebraic 

symbols can be difficult for students (Harel & Kaput, 1991). Cañadas, Molina, and del 

Rio (2018) conducted a study in which participants were given an algebraic statement 

and prompted to pose a problem that would match the statement. Participants struggled to 

match the syntax of the statement, and this suggested it was difficult for them to assign 

meaning to symbolic statements. Participants had less difficulty with addition prompts as 

compared to multiplication prompts. This is noteworthy because it is consistent with the 

notion that the structural conception of addition comes into place before structural 

conception of multiplication. 

 Students’ struggle to transition from verbal, process-based algebra to symbolic 

algebra can be attributed, in part, to curriculum. Nathan, Long, and Alibali (2002) 
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performed an analysis of the organization of algebra textbooks. Although the authors 

found that textbooks published after 1990 have fewer symbol-only sections compared to 

older textbooks, they also found that symbolic problems are generally presented before 

verbal problems. The placement of symbolic problems before verbal problems is contrary 

to what research suggests is conducive for student understanding, but in line with what 

teachers prefer (Nathan et al., 2002). Sherman, Walkington, and Howell (2016) set out to 

determine if the introduction of “Common Core aligned” textbooks had adjusted the 

tendency of textbooks to present symbolic problems before verbal problems in order to 

better support student learning. The authors found that the problematic presentation of 

symbolic problems before verbal problems still persisted. The reverse ordering was less 

pronounced in “reform” texts, but still evident. These findings suggest current curricula, 

especially traditional textbooks, are at odds with how students naturally come to 

understand algebraic symbols (Sherman et al., 2016). 

 The ordering of sections within algebra textbooks might lead one to believe that 

the introduction of symbols is what leads to a structural conception of equations. This is 

not the case – the introduction of symbols alone is necessary, but not sufficient, for a 

student to achieve reification (Sfard & Linchevski, 1994). Similarly, while learning to 

solve equations presents an opportunity to internalize symbolic meanings, learning to 

solve equations does not guarantee one’s operational conception will evolve into a 

structural perspective. Linsell’s (2009) study showed students use a variety of strategies 

to solve linear equations. Students sometimes solve equations without using inverse 

operations, and sometimes they partially work backwards but then guess and check. 

Linsell (2009) noted how difficult the transition to a structural view of equations can be. 
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   However, this study has confirmed just how difficult the strategy of using 
transformations [of objects] is for students. Using transformations requires seeing 
an equation as an object to be acted on (Sfard, 1991), but it is clear that most 
students see equations as processes. (p. 41) 

 The pathway from arithmetic to algebra begins in elementary school and algebra 

can only be meaningful for students if certain elementary structural conceptions are in 

place (Kieran, 1992). Possessing a relational view of the equal sign is a major milestone 

in a child’s development of structural conceptions (Kieran, 1981; Rittle-Johnson & 

Alibali, 1999). In a relational view of the equal sign, one sees the equal sign as 

comparing two quantities. Prior to this conception, students possess an operational view 

of the equal sign and view the equal sign as an operator that signals “the answer is 

coming up” (Behr, Erlwanger, & Nichols, 1980). Baroody and Ginsburg (1983) noted an 

operational conception can cause students to believe certain equations are written 

backwards (e.g., 6 = 8 – 2) and use multiple equal signs incorrectly (e.g.,                           

2 + 3 = 5 + 9 = 14). It takes time and access to multiple contexts for children to fully 

develop a relational view of the equal sign (Seo & Ginsburg, 2003). 

Ideas in mathematics are structured such that the same ideas can be viewed 

differently from different perspectives (Sfard & Linchevski, 1994). Harel and Kaput 

(1991) refer to this as the “vertical growth” of mathematics (p. 83). One way this vertical 

growth can be seen is in the way students interpret expressions and equations. Sfard and 

Linchevski (1994) described the transition from generalized arithmetic to functional 

algebra. Consider the statement x + 3. With an operational view, x + 3 is two numbers, 

and x + 3 represents the process of adding them. The perspective of generalized 

arithmetic, also known as algebra of a fixed value, views x + 3 as one quantity – the sum 
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of x and 3 – and it just happens to be unknown (Sfard & Linchevski, 1994). However, 

this notion gives way to another, more sophisticated understanding known as functional 

algebra. In functional algebra, x + 3 can also be interpreted as f(x) = x + 3 with real 

numbers as the replacement set (Sfard & Linchevski, 1994). Now, x + 3 no longer 

represents a single unknown quantity, but an infinite number of numbers. 

Dubinsky (1991) linked the transition from propositional calculus to predicate 

calculus with the concept of function. This transition introduces the notion that 

expressions and equations can be conceived of as classes of objects. The transition from  

p  q, a statement concerning two fixed (but possibly unknown) quantities, to             

P(x)  Q(x) requires that the unknown p be represented by a class; it is the function P(x) 

that maps an object from the class into the implication statement (Durand-Guerrier, 

2003). Continuing the use of x + 3 as an example, if x + 3 is a fixed value, then it is 

treated as a proposition. However, if x + 3 is viewed through the lens of functional 

algebra, it can be considered a predicate; as a result, x + 3 can be reasoned with as though 

it is a class of objects (Dubinsky, 1991). 

Functional algebra, where each expression on both sides of an equation represents 

a class of objects, allows for equations to be treated as objects themselves (Dubinsky, 

1991). To employ a familiar metaphor: an equation, like a balanced scale, is object 

containing other objects. Further, the solution set is also now an object – an object related 

to the truth value of the equation – and no longer limited to the role of “the answer.” 

Consider the equation x + 3 = 4x. The equation represents two infinite classes: x + 3 is 

one set of numbers, and 4x is one set of numbers. The solution set, {1}, is the set that 

identifies two equivalent subsets in x + 3 and 4x. With this notion, equivalent equations 
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(e.g., x + 3 = 4x and x + 4 = 4x + 1) are defined by their common solution set (Steinberg, 

Sleeman, & Ktorza, 1991). 

Reasoning Conditionally with Equations 

 A structural conception of equations not only allows one to efficiently solve 

equations; it is necessary in order to proficiently solve certain types of equations, 

especially quadratic equations. Tall, de Lima, and Healy (2014) found that students 

struggle to solve quadratic equations. In particular, the participants were limited by their 

operational conceptions of solving linear equations that did not transfer into the new 

context of solving quadratic equations. Senk and Thompson (2006) asked second-year 

algebra students to compare y = 4(x + 3)2 + and y = 4x2 + 24x. The majority of 

participants set the equations equal to zero and attempted to find solutions in order to 

make a comparison. This demonstrated that students had an operational view of equations 

– the equations were prompts for the solving process (Senk & Thompson, 2006). 

Students with a structural conception used more efficient methods to make a comparison 

(e.g., examined the graphs or multiplied the binomial). The use of additional strategies to 

ascertain equivalence is a significant step in the development of student understanding of 

equations and the solution set (Knuth, Stephens, McNeil, & Alibali, 2006; Steinberg et 

al., 1991). 

 In order to improve student understanding of quadratic equations, Tall et al. 

(2014) argued there needs to be “…a growing awareness of the crystalline structure of 

mathematical concepts that enable them to be grasped and manipulated as mental entities 

with flexible meaningful links between them” (p. 12). Proficiently solving quadratic 
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equations requires the use of the zero-product property (ZPP), a property that is structural 

in nature and is expressed with conditional language (Cook, 2018; Tall et al., 2014). The 

ZPP – the conditional statement, “if ab = 0, then a = 0 or b = 0” – makes up half of the 

biconditional statement, for all real numbers, ab = 0 if and only if a = 0 or b = 0. The ZPP 

allows quadratic equations (e.g., (x + 2)(x + 3) = 0) to be solved by setting each factor 

equal to zero to obtain the solution set. However, many students do not proficiently use 

the ZPP. For example, given a quadratic equation in factored form, some students will 

inefficiently multiply the binomials together and then use the quadratic formula 

(Ochoviet & Oktaç, 2009; Vaiyavutjamai & Clements, 2006). 

 Even when students appear to use to the ZPP when solving quadratic equations, 

students may in fact only have a pseudo-analytical understanding (Vinner, 1997). For 

example, when solving the equation (x + 2)(x + 3) = 0, students may set each factor to 

zero and appear to have a structural understanding. Yet, when asked to justify this step, 

students will sometimes cite the converse of the ZPP – namely, if the factors are zero, 

then the product is zero (Cook, 2018; Ochoviet & Oktaç, 2009). Because the ZPP is part 

of a biconditional statement, this reasoning error may seem inconsequential or go 

unnoticed. However, it is evidence of an understanding – of both solving quadratic 

equations and conditional language – that is not fully developed. 

Cook (2018) reported on a teaching experiment that supports the following 

claims: i) conditional language provides the opportunity to highlight the structural nature 

of the solution set, and ii) solving equations is a viable context to internalize conditional 

language. The author specifically examined how one student came to develop an 

understanding of solving quadratic equations by attending to the use of conditional 
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language. Cook’s (2018) intervention made use of the fact that although the ZPP is true 

for the set of real numbers, it does not hold in the group Z12 (the set of integers from 0 to 

11, inclusive). When employing modular arithmetic in the group Z12, a product of zero 

does not necessarily imply one of the factors is zero (e.g., 3*4 = 0). This property of the 

group has the potential to create cognitive conflict and can draw attention to the 

conditional nature of the ZPP. For example, when solving 3(x – 2) = 0, Cook’s (2018) 

participant identified two as a solution, verified the solution by substituting into the 

original equation, and then erroneously claimed that two is the solution set. Because    

3*4 = 0 and 3*8 = 0 in Z12, six and ten are also solutions. After careful, guided reflection, 

the participant corrected his error by attending to the conditional relationship between 

equations. 
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This chapter provides an account of the methods and procedures used to collect 

and analyze data for the study. I begin with a restatement of the purpose of the study and 

the research questions I set out to answer, followed by the methods I used to answer the 

research questions. I then describe the research setting and participants. Last, I provide a 

detailed description of the methods and techniques used to collect and analyze data at 

each stage of the study in order to answer each research question. 

Research Questions 

The purpose of this qualitative study was to describe the role of truth value and 

the solution set in supporting the development of the ability to reason about classes of 

objects and use conditional language. To support this goal, the study adopted Harel and 

Sowder’s (2007) framework to identify the proof schemes that students use when 

justifying solutions to equations. In addition, this study aimed to determine whether or 

not students who reason conditionally about solution sets are also able to reason about 

classes of geometrical objects. 

Chapter III  

METHODOLOGY 
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1. How do proof schemes differ, if at all, when students justify solutions to 

different types of algebraic equations? 

2. Can students learn to reason about classes of objects and use conditional 

language when considering the truth value of algebraic equations? If so, how? 

3. Are students who reason conditionally about solution sets also able to reason 

about classes of geometrical objects? 

Research Approach 

This study used a combination of technology-based methods and qualitative 

methods to answer the research questions. I selected technology-based methods – a 

Livescribe Smartpen and Geogebra dynamic geometry software – to completely capture 

participants’ verbal reasoning in conjunction with their visual work simultaneously in 

real time. I selected qualitative methods because I wanted to generate a rich, in-depth 

description of student reasoning (Creswell & Poth, 2018). In particular, qualitative 

approaches afforded insights into how student reasoning could be developed to support 

their future interactions with proof. 

I first used task-based interviews (Goldin, 2000) to uncover the proof schemes 

participants initially used when reasoning about a variety of equations. Second, I 

conducted a teaching experiment (Steffe & Thompson, 2000) to document how some 

participants developed set-based reasoning to make claims while solving equations. The 

qualitative nature of a teaching experiment provided insights not only into changes in 

student reasoning, but the circumstances that precipitated those changes. Last, I 

conducted additional task-based interviews (Goldin, 2000) to determine if participants, 
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after the completion of the teaching experiment, attempted to develop an analytical proof 

scheme in a geometrical context. I again used a qualitative approach to describe how each 

participant weighed evidence in their attempts to make mathematical claims with 

certainty. 

Research Setting and Participants 

Research Setting 

The study was conducted in a natural setting (Creswell & Poth, 2018) in the sense 

that students often experience making sense of mathematics during class or in other 

school environments. This study took place over the course of five months (Table 1). 

 

Table 1. Timeline for Research Activities 

Research Activity Date 

Recruit participants September 2018 

Task-Based Interview #1 September – October 2018 

Teaching Experiment November – December 2018 

Task-Based Interview #2 January 2019 

 

I conducted approximately two task-based interviews per week during the first 

stage of the study. I then conducted a teaching experiment with three participants, 

meeting with each participant individually once a week for five weeks. I concluded the 

study by conducting a second task-based interview with each participant who completed 

the teaching experiment. 

This study took place in a large, suburban, and diverse high school with a student 

body that is approximately 45% Hispanic, 25% African-American, 25% White, and 5% 
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Asian-American. Approximately 55% of students qualify for free or reduced-price lunch. 

Both the size and diversity of the high school made it an attractive research site because it 

afforded a robust pool of prospective participants. 

The high school offers four tracked mathematics courses for incoming freshmen: 

Geometry, Geometry Honors, Algebra I, or Sheltered Algebra. The majority of ninth 

grade students take Algebra I, while a small percentage enroll in Sheltered Algebra. 

Sheltered Algebra is a two-year algebra course designed to meet the needs of students 

whose first language is not English. A fixed number of seats are made available for 

students to enroll in Geometry Honors every year. In order to qualify for this course, 

students must meet the following criteria: have been selected by their teachers to take 

accelerated mathematics in middle school, successfully completed Algebra I in eighth 

grade, and have a final course average that places them in the top 120 students. Students 

who study algebra in eighth grade but do not qualify for Geometry Honors enroll in 

Geometry. The tracking of students at the research site is noteworthy because it signifies 

a traditional mathematics program that in many ways can be considered typical for a high 

school in the United States. 

Participant Selection 

The tracking of students at the research site resulted in a preliminary de facto 

selection of participants. High achieving students selected to take algebra in middle 

school were not part of the pool of potential participants because I was only interested in 

recruiting students enrolled in Algebra I at the high school. After taking this into account, 

I selected participants for this study in two stages. Twelve participants, herein referred to 
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as “Group A participants,” were selected to participate in the first task-based interview 

examining student proof schemes for solving equations. Three “Group B participants,” 

selected from the set of Group A participants, continued on to subsequent parts of the 

study. In other words, only a subset of Group A participants was selected to participate in 

the teaching experiment and final task-based interview. 

Group A participants. This first set of participants was recruited from Algebra I 

classes. At the time of the study, students had previous experience solving equations, but 

limited or no experience solving equations with multiple or extraneous solutions. There 

were multiple purposes (Creswell & Poth, 2018) when considering prospective 

participants for Group A. The first purpose was to simplify the study by identifying a 

homogenous set of participants. The participants were homogenous in the sense they 

were all able to perform a common set of algebraic procedures (solve two-step equations, 

use the distributive property, simplify algebraic expressions, and evaluate exponents) 

before the study commenced. Second, participants’ current algebra teachers were 

consulted with the intention of identifying participants that teachers thought would 

highlight what is typical or average. Last, prospective participants were identified by their 

teachers as being potentially information rich cases that manifested information 

“intensely but not extremely” (Miles & Huberman, 1994, p. 28). That is, I set out to 

recruit participants willing to share and explain their thinking. 

The number of Group A participants was not predetermined. After prospective 

participants were identified, I invited these students to participate in the study by having 

their Algebra I teacher hand them a flyer and parental consent form in class. Students 

who wished to participate had one week to return the parental consent form. Flyers were 
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distributed to all students on the same day, and as a result there was a uniform deadline 

for returning consent forms. Considering only students who met this deadline, I listed 

students alphabetically by their last name. I conducted task-based interviews according to 

the order of my list and continued conducting interviews until a satisfactory degree of 

data saturation was achieved. Consistent with Lincoln and Guba’s (1985) description of 

purposeful sampling, redundancy was the criterion for sampling – I terminated task-based 

interviews when no new information was forthcoming. As a result, I conducted twelve 

task-based interviews and did not interview every student who wished to participate. 

Group B participants. This second set of participants was identified after the 

conclusion of the task-based interviews with Group A participants. The purpose of the 

task-based interviews was to identify the proof schemes of students for solving a variety 

of equations. Participants who consistently and strongly exhibited empirical proof 

schemes during the task-based interview were selected as Group B participants. This 

resulted in the selection of four participants, one of whom declined to further participate 

in the study due to scheduling conflicts. Collectively, the three Group B participants 

formed an instrumental case (Creswell & Poth, 2018) that illustrated how students can 

adopt set-based reasoning to make claims while solving equations. In other words, Group 

B participants illustrated how students can learn to reach absolute certainty with 

deductive justifications despite their initial predilection for empirical evidence. 

Methods of Data Collection and Analysis 

The overarching goal of this study was to document that solving equations is a 

viable context to develop ways of reasoning that support proof. As such, I wanted to see 
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if students could both: i) use conditional language to develop a set-based, analytical 

conception of the solution set, and ii) seek out analytical ways of reasoning in a 

geometrical context by adopting a set-based perspective. The primary data source for this 

study was transcripts of audio recordings from each task-based interview and teaching 

experiment session. The interviews and teaching sessions took place immediately after 

the end of regular school hours in a classroom at the research site. This allowed for a 

seamless transition where participants continued their school day. During the teaching 

experiment, I did not instruct participants or impose ways of thinking. Rather, the goal 

was for participants to spontaneously, through insights afforded by the tasks and 

questions posed, make accommodations to their mathematics so that their reasoning 

could support future interactions with proof. 

The audio recordings for the first task-based interview and teaching experiment 

sessions were made using a Livescribe Smartpen. A Smartpen writes like a regular pen, 

but it has two additional features: it makes an audio recording, and it captures what 

participants write in digital format. Participants’ written work from reasoning about 

equations was saved so that I could refer back to exactly what they wrote instead of 

having to recall by memory. In addition, the contemporaneous audio recording and 

digitized handwriting were linked together. This allowed me to go back and examine 

what participants wrote as they were speaking as a congruous set of data. 

Participants did not write on paper for the second task-based interview. Instead, 

they used dynamic geometry software (i.e., Geogebra) on a computer. To record the data, 

a screencast was made while participants used the software. A screencast records mouse 

movement on the computer screen while simultaneously recording audio. Similar to the 
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use of a Smartpen, a screencast allowed me to examine what participants did and said at 

the same time. 

In addition, memos (i.e., my notes) were another source of data in this study. 

Immediately after each interview or teaching session, I would reflect and write down my 

initial thoughts and impressions of participants’ reasoning as well as any significant 

interactions I wanted to revisit and examine further. I specifically made sure to include 

any decisions I made as a result of unexpected responses. I also wrote memos when 

analyzing the audio recordings. These memos were used document my understanding of 

participants’ reasoning about solutions at a given point in time. 

Stage 1: Task-Based Interview #1 

The first set of data was collected and analyzed to answer the first research 

question: How do proof schemes differ, if at all, when students justify solutions to 

different types of algebraic equations? 

Task-based interviews are structured such that participants interact with a 

preplanned task environment. For this study, the task consisted of presenting a sequence 

of equations, one equation at a time, and prompting each participant to describe the 

solution for each equation and their process for arriving at the solution. The goal of the 

interview was to elicit the proof scheme(s) each participant relied on when justifying 

solutions. Specifically, using Harel and Sowder’s (2007) framework as a lens, I gathered 

evidence that participants relied on external, empirical, and/or analytical schemes to 

convince themselves that their solution was correct. In addition, the size of the solution 
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set was varied to determine if a participant’s proof scheme changed depending on the 

nature of the equation. 

Interview procedures. The data from the first round of task-based interviews 

(Goldin, 2000) consisted of three parts: the solutions participants provided for equations, 

the justification for their solutions, and their level of certainty in their solution. To elicit 

solutions, I prompted participants to “tell me about the solution for this equation.” I 

avoided the phrases “find x” and “solve for x” because these phrases overtly ask for a 

process, whereas I was interested in uncovering a structural conception of the solution 

set. To elicit justifications, I asked, “How do you know?” after participants provided a 

solution and I prompted them to show and explain their thinking in as much detail as 

possible. To elicit participants’ level of certainty, I asked them to rate how certain they 

were on a scale from one to five. If participants expressed doubt, I asked them what 

further information they would require to be fully convinced. If participants were 

completely certain of their solution, I asked them why they were absolutely sure and what 

they would say to a classmate who was not fully convinced. 

Participants were prompted to describe solutions to a variety of equations. They 

were first presented with equations I expected participants to find routine: 4x + 2 = 10,  

4x + 1 = 9, 7x + 1 = 3(x + 3). I verified this was true by asking, “Is this a type of equation 

you are familiar with?” After describing the solutions, providing justifications, and 

conveying their level of certainty for the three aforementioned equations, I presented the 

equations side by side and asked, “Why do you think these three equations have the same 

solution?” The goal of this question was to elicit whether or not students were able to 

identify equivalent equations. 
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Additional data were collected by presenting participants with equations I 

anticipated they would find non-routine. I verified they were non-routine by asking if 

they remembered similar equations from past experience. The first non-routine equation I 

presented was x = 2. Solving this equation is trivial and as a result I thought it unlikely 

participants were previously asked to reason about the solution to an equation of this 

form. I then presented participants with an equation with no solution (x + 1 = x + 2), an 

equation that might be mistaken as having no solution (1x = 2x), and an equation with an 

infinite number of solutions (2(x + 1) – 2 = 2x). Next, I presented participants with 

equations with multiple solutions: x2 = 4 and x3 = 4x. While participants may have 

previously encountered x2 = 4, I included it before presenting x3 = 4x in order to activate 

any prior knowledge about the possibility of multiple solutions. In addition, I wanted to 

provide an opportunity for participants to relate non-equivalent equations that share 

some, but not all, solutions (in this case, -2 and 2). 

The task-based interview concluded by explicitly seeking evidence of set-based 

reasoning and the use of conditional language. The previously presented equation          

4x + 1 = 9 was again presented to participants, and this time I simply asked, “True or 

false?” I followed up by asking if it was always true (or false), how confident they were, 

and how they would convince somebody who disagreed with them. For participants who 

claimed that the equation was always true because x had to equal two, I asked if and why 

they were sure and how they would respond to a classmate who claimed x could equal a 

different value. 

Data analysis. I analyzed the data using open, axial, and thematic coding (Strauss 

& Corbin, 2015) to answer the first research question. After concluding each interview, I 
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transcribed the interview and reread the transcript multiple times before generating a set 

of open codes. Open codes consist of a single word or phrase that characterize a segment 

of a participant’s statements (Strauss & Corbin, 2015). For example, whenever I 

interpreted a participant making a statement that conveyed why they believed their 

response was correct, the statement or set of statements was coded as “justification.” 

Similarly, instances in which participants communicated whether or not they were 

familiar with a given equation were coded as “familiar” or “unfamiliar.” Additionally, I 

coded occurrences as “relate” every time participants attempted to relate, compare, or 

contrast equations and solution sets. 

The open codes were then constantly compared within a transcript, grouped 

together or separated, and used to form axial codes (Strauss & Corbin, 2015). For 

example, all the instances of “justification” codes from a single transcript were analyzed 

as a whole to identify any similarities or differences among the instances. This process 

used Harel and Sowder’s (2007) framework as a lens to differentiate justifications. When 

participants selected examples as their justification, I referred to Balacheff’s (1988) 

taxonomy to determine whether the justification was empirical or deductive in nature. 

To continue the example of “justification codes,” open codes that captured 

instances of participants using rituals to justify a statement were grouped together under 

the axial code of “ritualistic argument.” Likewise, the justification codes were also 

partitioned into the axial codes of “ascertain” and “persuade” depending on whether 

participants were describing why they were absolutely convinced or how they would lead 

a classmate to absolute certainty. Finally, instances identified with the open code of 

“relate” were separated into the axial codes of “implication” or “undeveloped conditional 
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language” depending on whether or not participants’ language was consistent with the 

notion of mathematical implication. 

Instances coded as the expression of conviction were analyzed to determine 

whether or not participants were absolutely certain of their responses.  Weber and Mejia-

Ramos (2015) differentiated absolute conviction from relative conviction: 

   An individual who has absolute conviction in a claim has a stable psychological 
feeling of indubitability about that claim…[whereas] an individual has relative 
conviction if the subjective level of probability that one attributes to that claim 
being true exceeds a certain threshold to provide a warrant for some future 
actions. (p. 16) 

Harel and Sowder’s (1998, 2007) proof scheme framework relies upon absolute certainty. 

As per the recommendation of Weber and Mejia-Ramos (2015), the analysis pertaining to 

proof schemes and conviction attended to phrases that conveyed participants’ level of 

conviction. Specifically, I flagged phrases such as “I know” and “I am sure,” while taking 

care not to conflate relative conviction with absolute conviction when participants used 

phrases such as “I think” and “I believe.” I always checked with participants in any 

ambiguous instance to clarify their level of certainty. 

I also constantly compared open and axial codes across transcripts to develop 

thematic codes (Strauss & Corbin, 2015). This allowed for my previous analysis to 

inform my analysis going forward and, in addition, the opportunity to return to previously 

coded transcripts and make revisions. Specifically, after each interview I first generated 

open and axial codes by examining the transcript in isolation. I then returned to previous 

transcripts and adjusted my codes for the current and previous transcript so that, taken 

together, the codes were consistent and coherent. This allowed me to continuously refine 

my codes as I conducted subsequent interviews and identify themes as they emerged. As 
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I previously mentioned when describing participant selection, this process eventually 

yielded no new information (Lincoln & Guba, 1985). I reached the end of the coding 

process once I identified themes that coherently accounted for the data from all the 

participants. At this point, I discontinued the selection of participants and ceased 

conducting interviews. 

Stage 2: The Teaching Experiment 

 The second set of data was collected and analyzed to answer the second research 

question: Can students learn to reason about classes of objects and use conditional 

language when considering the truth value of algebraic equations? If so, how? 

I conducted a teaching experiment (Steffe & Thompson, 2000) with three 

participants who consistently relied on non-analytical proof schemes. In particular, they 

relied on empirical and ritualistic proof schemes to reach conviction; they demonstrated 

empirical proof schemes more frequently than ritualistic proof schemes during the first 

task-based interview. I attempted to develop participants’ reasoning supportive of an 

analytical proof scheme – namely, reasoning about classes of objects that used 

conditional language. 

Data description. According to Steffe and Thompson (2000), an essential part of 

a teaching experiment is looking behind what students say and do to identify rational 

grounds for their mathematical reality. In addition, a teaching experiment allows the 

researcher to build and test viable models of students’ mathematical schemes and 

operations in order to explain the thinking behind their behavior. Scheme refers to the 

underlying structure of students’ mathematical thinking; I set out to build models 
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explaining participants’ initial behavior while solving routine and non-routine equations. 

The participants selected for the teaching experiment did not employ analytical proof 

schemes when solving equations during the first task-based interview. As such, I built 

and refined models of student thinking that would explain participants’ reasoning about 

solution sets while accounting for their non-analytical proof schemes. I specifically made 

sure to probe beyond correct solutions in order to ensure the reasoning participants’ used 

to arrive at correct solutions was consistent with an analytical proof scheme. 

A teaching experiment consists of teaching episodes (Steffe & Thompson, 2000) 

in which the teacher-researcher guides participants to make accommodations to their 

mathematics. That is, once I could describe a model explaining a participant’s behavior, I 

introduced tasks and asked questions so that the participant would make accommodations 

to their schemes and operations. Changes in participants’ conceptions of solutions 

resulted in changes in behavior, and I aimed to notice and understand these changes so 

that I could adjust my models accordingly. The ultimate goal of the series of teaching 

episodes was for participants’ schemes and operations – and my models describing them 

– to evolve over time to include reasoning about classes of objects and the use of 

conditional language. While conducting a teaching experiment, one sets out to experience 

firsthand students’ mathematical reasoning and learning (Steffe & Thompson, 2000).  

I chose to conduct a teaching experiment because I wanted to discover and 

document how students learn to reason about classes of objects and use conditional 

language in the context of solving equations. I did not know ahead of time how the 

teaching experiment would unfold. However, my review of the literature and experience 
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teaching Algebra I allowed me to develop a hypothetical learning trajectory (HLT) 

(Simon, 1995) that described my prediction as to how participant learning might proceed. 

According to Simon (1995), a HLT includes “the learning goal that defines the 

direction, the learning activities, and the hypothetical learning process – a prediction of 

how the students’ thinking and understanding will evolve in the context of the learning 

activities” (p. 136). My initial HLT envisioned participants would come to use set-based 

reasoning and conditional language while solving equations by progressively developing 

the following understandings: the equals sign is a relational symbol (Kieran, 1981), 

implicit quantifiers determine truth value (Durand-Guerrier, 2003; Usiskin et al., 2003), 

the truth value of conditional statements should be determined with a generalizable 

heuristic (Hub & Dawkins, 2018), and equivalent equations are defined by their common 

solution set (Knuth et al., 2006). After the teaching experiment commenced, this 

trajectory was refined to match my models describing participant thinking. 

Identifying and understanding participants’ mistakes is a central component to 

model building and participant learning during a teaching experiment. Specifically, Steffe 

and Thompson (2000) articulated the need to identify essential mistakes – mistakes that 

persist despite the researcher’s efforts to eliminate them. These mistakes are a result of 

the participants’ failure to adapt their knowledge to new circumstances. However, 

rather than believing that a student is absolutely wrong or that the student’s 
knowledge is immature or irrational, the teacher-researcher must attempt to 
understand what the student can do; that is, the teacher-research must construct a 
frame of reference in which what the student can do seems rational. (Steffe & 
Thompson, 2000, p. 277) 

I aimed to identify persistent errors when participants attempted to reason about solutions 

or relate equivalent (or non-equivalent) equations. I used my HLT as a guide to formulate 
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tasks and questions that would guide participants away from their errors and toward an 

analytical conception of equations. I continuously probed participants’ thinking to ensure 

their errors were actually corrected. When my plan to develop participants’ thinking did 

not result in the adoption of the ways of thinking I intended, I adjusted my anticipated 

learning trajectory to account for participants’ reactions (or lack thereof).  

The models I developed were never intended to be one-to-one representations of 

participants’ thinking. My mathematical understandings, the lens I adopted for the study 

(i.e., proof schemes), and my learning goals (i.e., conditional language and set-based 

reasoning) influenced my models (Steffe & Thompson, 2000). Although the models 

developed during a teaching experiment may not precisely reflect the mathematical 

reality of participants, my models were tested and refined until I thought I could 

adequately explain participants’ behavior while reasoning about solutions. I considered 

the models viable in the sense that Steffe and Thompson (2000) describe: “Because the 

models that we formulate are grounded in our interactions with students, we fully expect 

that the models will be useful to us as we engage in further interactive mathematical 

communication with other students” (p. 295). By grounding my models of participants’ 

thinking in what they said and did in a variety of situations, I ensured that the models 

would be useful in other contexts despite being shaped by my perspective as the 

researcher. 

Data analysis. There are two major phases of analysis during a teaching 

experiment: during the experiment and after the conclusion of the experiment. During the 

teaching experiment, I conducted ongoing analysis (Cobb, 2000). Ongoing analysis 

included analysis conducted while interacting with participants as well as in between 
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sessions. After the teaching experiment concluded, I conducted retrospective analysis 

(Steffe & Thompson, 2000). I developed and refined models of participants’ thinking 

through my ongoing and retrospective analysis. In addition, the analysis allowed me to 

document how participants’ understandings of equations evolved into ways of thinking 

that included reasoning about classes of objects and using conditional language. 

Ongoing analysis. I conducted ongoing analysis throughout the teaching 

experiment. Specifically, there were three phases of ongoing analysis: during sessions 

with participants, processing the audio recordings and written work immediately after 

each session, and preparing for a subsequent teaching session. 

A central component of ongoing analysis is building and testing a model of 

participant’s thinking in real time. My model building was consistent with Thompson’s 

(2008) conceptual analysis in that I intended to describe “what students actually know at 

some specific time and what they comprehend in specific situations” (p. 45). I 

accomplished this by evaluating responses and asking follow-up questions to confirm my 

interpretations of participants’ behavior. In addition, I adopted the goal of continuously 

identifying questions or prompts that might evoke responses contradicting my current 

model of participants’ thinking. In other words, I did not just attempt to confirm what I 

thought; I also played the role of devil’s advocate to test the strength of my model. 

A significant portion of ongoing analysis happens “on the fly” while interacting 

with participants (Steffe & Thompson, 2000). While I prepared tasks and questions for 

participants ahead of time, I did not know exactly how they would response (if I did, I 

would not need to ask in the first place). Although I had a sense of how participants 

might respond, inevitably there were responses that I did not anticipate. In order to 
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proceed, I analyzed the response and decided in the moment how to respond in order to 

continue building and testing a model of the participant’s thinking. 

The second phase of data analysis occurred immediately after each session when I 

wrote memos that documented my initial impressions of the session. The point of these 

memos was to capture my working models of participants’ thinking. The memos served 

as a starting point – an encapsulation of my perspective before delving deeper into the 

data. I then transcribed the audio recording. By transcribing the audio recording myself, I 

gained familiarly with the data and further developed my impression of what transpired 

during the session. I revisited my original memos and appended any additional thoughts 

about the session. 

The third and final phase of ongoing analysis occurred after the transcription of 

the audio recording of a session, but before the next session took place. I collectively 

analyzed the transcript, participant’s work, and my memos. This allowed me to take stock 

of my current model of participant’s thinking, consider ways I might test it further, and 

compare the participant’s current conceptions of equations with the end goal of using set-

based reasoning and conditional language. In particular, I evaluated the extent to which 

my model of the participant’s thinking matched my initial hypothetical learning 

trajectory. This process allowed me to plan the next teaching session and anticipate ways 

in which the participant might respond. 

Retrospective analysis. After the conclusion of the teaching experiment, I 

conducted retrospective analysis (Steffe & Thompson, 2000). I started this process by 

rereading the transcripts of each participant from start to finish. I then revisited my 

memos and each participant’s written work. The retrospective analysis was similar to the 
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ongoing analysis, with the key distinction that I now had a different perspective because I 

had completed the entire experiment. Steffe and Thompson described this new 

perspective as both retrospective and prospective – prospective in the sense that, unlike 

the ongoing analysis, I knew what participants would say and do next. 

My retrospective analysis, consistent with Thompson’s (2008) conceptual 

analysis, allowed me to describe the ways participants learned to reason about classes of 

objects and use conditional language. I identified instances that could be used to describe 

“ways of knowing that might be propitious for students’ mathematical learning, 

and…ways of knowing that be deleterious to students’ understanding of important ideas 

and…ways of knowing that might be problematic in specific situations” (Thompson, 

2008, p. 45). To perform this analysis, I read the transcripts of a participant’s sessions 

and highlighted instances that seemed significant. Specifically, I identified instances that 

captured ways of knowing that I thought facilitated or prevented the participant from 

developing understandings about classes of objects and conditional language. While 

performing this analysis, I adopted a broad view of each participant’s understandings by 

constantly comparing (Strauss & Corbin, 2015) the participant’s ways knowing 

throughout the entire experiment. Once I completed this analysis for each individual 

participant, I also constantly compared all noteworthy instances across participants in 

order to strengthen my analysis. 
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Stage 3: Task-Based Interview #2 

The third set of set of data was collected to answer the third research question: 

Are students who reason conditionally about solution sets also able to reason about 

classes of geometrical objects? 

After the conclusion of the teaching experiment, I conducted a second task-based 

interview (Goldin, 2000) with each participant who, as a result of the teaching 

experiment, demonstrated they could reason about classes of objects and use conditional 

language. The purpose of this second task-based interview was to determine if 

participants who successfully developed set-based reasoning and used conditional 

language to solve and relate equations would also seek out analytical justifications in a 

geometrical context. In other words, did participants continue to exhibit behaviors 

consistent with an analytical proof scheme?  It would be significant if participants 

approached geometrical objects with the perspective of relating individual objects to a 

broader class of objects (regardless of whether or not they could properly articulate the 

class) (Crowley, 1998). My goal was not necessarily to have participants exhibit an 

analytical proof scheme – this is unlikely when students first interact with new contexts 

(Weber & Mejia-Ramos, 2015). Rather, I aimed to determine whether or not participants 

maintained a disposition of doubt toward empirical evidence and sought out analytical 

ways of reasoning. 

Interview procedures. The task-based interview consisted of a task adopted from 

Lacmy and Koichu (2014) and required participants to reason about the relationship 

between an arbitrary quadrilateral and its Varignon Parallelogram. A Varignon 

Parallelogram is formed by connecting the four midpoints of the sides of any 
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quadrilateral. Furthermore, a Varignon Parallelogram is a rectangle if and only if the 

external quadrilateral has perpendicular diagonals. 

 First, participants were prompted to consider an arbitrary quadrilateral and its 

Varignon Parallelogram and then asked, “Which external quadrilaterals have a rectangle 

as their internal quadrilateral?” Certain familiar quadrilaterals – squares, rhombi, and 

kites – have perpendicular diagonals. As a result, knowing a quadrilateral is a square, 

rhombus, or kite is sufficient to claim its Varignon Parallelogram is a rectangle. 

I used a line of questioning similar to what I described for the first task-based 

interview. I asked participants how sure they were and what additional evidence, if any, 

they would like to consider. I specifically asked participants, “Do you think you always 

get an internal rectangle when you connect the four midpoints of the sides of any 

square?” My goal was to both i) elicit reasoning that conveyed squares are a class of 

objects, and ii) confirm that participants did not employ an empirical proof scheme in this 

context. To ensure I understood participants’ responses, I rephrased the question and 

asked, “Do all squares have an internal rectangle when you connect the four midpoints?” 

Next, participants considered the condition necessary for a Varignon 

Parallelogram to be a rectangle: an external quadrilateral with perpendicular diagonals. 

To do this, I prompted participants to consider an arbitrary quadrilateral and its Varignon 

Parallelogram and said, “We are given that an internal quadrilateral of some external 

quadrilateral is a rectangle. What, if anything, do you know for sure about the external 

quadrilateral?” While the sufficient conditions (the external shape is a square, rhombus, 

or kite) guarantee an internal rectangle, they are not necessary. 
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In order to determine if participants would consider unfamiliar quadrilaterals and 

adopt a broader view beyond special cases, I used a tracing feature of the dynamic 

geometry software. When turned on, the feature visually recorded each position a 

participant moved the vertices to. This not only kept track of each attempt to identify a 

Varignon Rectangle, it also generated the perpendicular diagonals once participants were 

able to move the vertices while preserving the Varignon Rectangle. In other words, the 

tracing feature highlighted the invariant property of perpendicular diagonals as 

participants considered multiple quadrilaterals with Varignon Rectangles. 

Data analysis. My analysis for the second task-based interview was similar to my 

analysis for the first task-based interview. First, I transcribed the interview and reread the 

transcript multiple times before generating a set of open codes (Strauss & Corbin, 2015). 

Reasoning about a conditional statement and its converse afforded participants the 

opportunity to articulate the necessary and sufficient conditions that demarcated set-based 

reasoning, conditional language, and behaviors consistent with an analytical proof 

scheme. I constantly compared my open codes to develop axial codes (Strauss & Corbin, 

2015) that grouped together instances that supported or refuted the claim that participants 

used set-based reasoning and conditional language. 

Similar to my analysis of the first task-based interview, I identified phrases or 

statements that conveyed absolute certainty (Weber & Mejia-Ramos, 2015). I was 

especially careful when participants considered empirical evidence. Dynamic geometry 

software allows for the easy creation of many cases and presents the temptation to rely on 

empirical evidence. Participants’ consideration of empirical evidence, however, does not 

necessarily mean they employed an empirical proof scheme. I sought to determine if 
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participants were convinced by empirical evidence (i.e., had an empirical proof scheme), 

or if they merely considered it alongside other forms of evidence. 

To this end, I constantly compared (Strauss & Corbin, 2015) the axial codes for 

participants’ level of certainty and the axial codes describing participants’ reasoning and 

language. This allowed me to develop thematic codes and determine whether or not 

participants employed a non-analytical proof scheme to make claims about Varignon 

Parallelograms. If they were not absolutely sure of their conjectures (i.e., had no proof 

scheme), I identified the ways they attempted to gain certainty and whether or not their 

behaviors were consistent with an analytical proof scheme. 
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This chapter describes the results from the task-based interviews and teaching 

experiment used to answer the research questions. First, I provide details from the first set 

of task-based interviews and answer the first research question. Next, I describe the 

results of the teaching experiment and answer the second research question. Last, I 

provide results of the geometrical task-based interviews and answer the third research 

question. In all three sections, I include excerpts of dialogue that notably convey 

participants’ thinking. I bold key phrases and responses to alert the reader to significant 

moments that capture participants’ sense making and shifts in their understandings. 

Stage 1: Task-Based Interview #1 

In this section, I first describe the proof schemes participants exhibited and the 

contexts that gave rise to those proof schemes. Participants often exhibited multiple proof 

schemes, and I use primary and secondary proof schemes to categorize and describe each 

participant’s justifications over the course of the entire interview. Last, I answer the first 

research question and specifically describe the similarities and differences among 

participants when justifying solutions for particular types of equations. 

Chapter IV  

RESULTS 
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Proof Schemes for Equations 

As a whole, participants exhibited three proof schemes: empirical, ritualistic, and 

authoritative. Each participant, however, only exhibited one or two proof schemes over 

the course of the first task-based interview. In this next section, I describe salient 

instances of each proof scheme. 

Empirical proof scheme. Participants employed an empirical proof scheme in a 

variety of contexts. The predominant display of an empirical proof scheme for some 

participants was to verify a solution obtained from a solving process. This was commonly 

referred to as “the check” or “plugging in.” In addition, some participants used an 

empirical proof scheme to identify solutions to equations that were unfamiliar. In these 

instances they did not know of the applicable solving procedures; they instead used an 

empirical proof scheme in which they searched for and verified potential solutions. 

Importance of the check. A key characteristic of an empirical proof scheme is 

achieving absolute certainty (i.e., ascertaining) through verification. Participants were 

able to identify correct solutions while solving familiar equations (e.g., 4x + 2 = 10 and 

7x + 1 = 3(x + 3)). However, participants reported being absolutely sure only after 

completing the check. The following exchanges demonstrates how Harry ascertained two 

is a solution for 7x + 1 = 3(x + 3). His accompanying work is shown in Figure 1. 
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Figure 1. Harry ascertained only after the check 

 

Julius: How sure are you, on a scale of one to five?  
Harry: Four.  
Julius: Okay, so why aren’t you all the way sure?  
Harry: I mean, because this one looks a little bit harder than that one, so I’m not 

sure if I did it right.  
Julius: Okay, so is there anything you could do to be sure? 
Harry: You can check it.  
Julius: Okay.  
Harry: So that equals the same, 15 and 15. So if you get the right answer, if they 

match, that’s how you know it's correct.  
Julius: Okay, so on a scale of one to five? 
Harry: Five now. 
 

In a very similar fashion, the exchange with Isabel also conveys the role of the check:  

Julius: I guess I’m going to ask specifically, on a scale of one to five, how sure 
are you right now that x equals two?  

Isabel: Four.  
Julius: Four. Okay, so what do you have to do to be absolutely sure?  
Isabel: You can plug it back into the original equation.  
Julius: Okay.  
Isabel: I have 15 equals 15. 
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Julius: Okay, so now you’re 100% sure?  
Isabel: Yeah. 
 

I later asked Isabel, “Just to be clear, are you sure before you check or only after?” She 

replied, “I’m sure before I check, but not 100 percent.” Julia made a similar comment: 

“So I’m not really [emphasis] sure if that’s the answer, so I would check.” These 

statements captured the role of empirical evidence – it enabled participants to achieve 

absolute certainty. Additionally, the check was not always written down, but its role 

remained the same. Edgar, for example, said he was convinced “if I do the check step in 

my mind.” 

The importance of verification and the check step was also evident when 

participants described how they would persuade a classmate. Isabel’s work solving        

4x + 2 = 10 is shown in Figure 2. The subsequent exchange demonstrates the role of the 

check step in persuading a classmate. 

 

 

Figure 2. Isabel used the check to persuade 

Julius: Alright, so on a scale of one to five, when five is absolutely 100% sure 
and one is not sure at all, how sure are you that you’re right?  

Isabel: Five.  
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Julius: Five, okay. If one of your classmates didn’t believe you, how would you 
convince them that you’re right? 

Isabel: I would do the check, and then like I would show them that I plugged 
in the number I got and it works.  

Julius: When you say it works, what do you mean by it works?  
Isabel: I plugged in the two, and because I plugged in the two, I got eight plus 

two equals ten, and then ten equals ten. 

Edgar described persuading in a very similar way: “I would tell them to do the check 

step.” When I asked Julia what she would do to persuade a classmate, she said, “I would 

prove it [emphasis added] to them from checking my solution.” Julia’s use of “prove” is 

significant because it illustrates the check is central to her proof scheme. In addition, I 

wanted to clarify that participants were not simply using a check to persuade because it 

was convenient, but because they found it most convincing.  I asked Harry, “How would 

you convince them that it was two for this equation?” He responded, “I don’t know 

anything else besides plugging in the answer I got.” 

Searching for evidence. Instead of verifying a solution obtained from a solving 

procedure, some participants used an empirical proof scheme to search for and verify 

potential solutions when they did not know the applicable solving procedure. 

Specifically, some participants identified two as a solution to the equations x2 = 4 and    

x3 = 4x without using inverse operations to isolate x. Denise’s work in Figure 3 

demonstrates the focus on verifying the solution for x2 = 4 without any attempt 

manipulate x2 = 4 and isolate x. 

 

 

Figure 3. Denise verified two is a solution 
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The following exchange illustrates that this constituted ascertaining and persuading: 

Julius:   What can you tell me about the solution to this equation? 
Denise: It’s going to be with…an exponent is basically the number times itself, so  

it’d be a number times a number equals four. 
Julius: Okay. Can you tell me anything else about the solution? 
Denise: The solution would be two. 
Julius:   Okay, how do you know? 
Denise: Because two times two is four.  
Julius:  Okay. And on a scale of one to five, how sure are you? 
Denise: Five. 
Julius:   One of your classmates wasn’t convinced that it was two. What would    

you do? 
Denise: Well, I’d explain what an exponent is to them and write out blank times 

blank is four. Then give them options. So it would be two times two is 
four.  

Denise’s use of the phrase “give them options” is noteworthy. This phrase conveys the 

focus on verification and highlights the potential to fail to identify additional solutions – 

the identification of all solutions is dependent on the set of potential values initially 

identified. Indeed, she did not identify negative two as a solution. 

As was the case with Denise, I asked Edgar if there was a way to be sure of the 

solution without knowing the solving procedure. He said, “Yes, yes, check step. I replace 

the x with two, and two to the second power equals four.” Luis articulated a similar 

justification when reasoning about x3 = 4x. 

Julius: How sure are you that x equals two? 
Luis: I would go with a five. Because since I proved in my head by plugging 

in a number, so I know in my head that with the number two it works. If 
it works with the number two, and we also tried it with the number five, 
and the five doesn’t work. Since I tried the two, and I know that it does 
work, that’s the one solution that I can stick to and say, “Hey, this is the 
solution to this equation.” 

Julius: Okay, so one of your classmates, they say, “Okay I believe you, two is the 
solution. I believe that it equals eight, but I found a different number.” 

Luis: Okay. I would ask them to test it, and maybe give me the numbers so 
that I can test it myself, like a peer review, if you will. And see if the 
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answers are the same. I’m doing it just to make sure. Because, I don’t 
want to say something’s not true until I actually try it. 

Luis is convinced through verification (“I proved in my head by plugging in…”). 

Moreover, his strategy is intended to identify a single solution and does not eliminate the 

possibility of additional solutions. His comment, “I don’t want to say something’s not 

true until I actually try it,” conveys his reliance on verification to determine whether or 

not additional values are in fact solutions. 

 Similar to the empirical strategy of searching for and verifying values to identify a 

solution, Harry employed a similar strategy to rule out of the possibility of a 

counterexample. Figure 4 shows Harry’s work to identify a solution to an equation that is 

always true.  

 

 

Figure 4. Harry’s attempt to solve 2(x + 1) – 2 = 2x 

 

As was the case when Harry solved other equations, his written work suggests that he 

identified the solution set through his algebraic manipulation (i.e., identifying x = x to 

determine the equation is an identity). However, his empirical proof scheme is 

highlighted in the following exchange: 
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Julius: And will it work for any number?  
Harry: Yeah.  
Julius: What did you just do in your head before you answered that?  
Harry: I was trying to think of a number that wouldn’t work. 
Julius: And you couldn’t find any? 
Harry: No. 
Julius: Okay. How sure are you right now?  
Harry: Around four.  
Julius: Four. So how could you get to five? What would you want to do to be 

absolutely sure that it works for any number?  
Harry: I mean, the numbers have to be the same, that’s the only thing I can think 

of right now. The numbers have to be the same or else it won’t work, 
because if you have different numbers they’re not going to equal to each 
other.  

Julius: Okay. But if they’re going to be the same numbers, will it work for any 
number?  

Harry: Yeah.  
Julius: Okay, and how sure are you about that?  
Harry: Five now.  
Julius: And what changed? Do you know what changed, or it just makes sense?  
Harry: I couldn’t find any number. 
Julius: Okay, and if I gave you, so you looked for other, can you say that again?  
Harry: I was looking for other numbers that wouldn’t work, but I couldn’t 

think of any.  
Julius: You think or you know that any other numbers wouldn’t work? 
Harry: I know no other numbers won’t work.  
 

While Harry does not initially reach absolute certainty by verifying values, he eventually 

does. After some arbitrary number of attempts (“I was looking for other numbers…”), he 

determines that the equation will be satisfied by any value (“I know no other numbers 

won’t work.”). 

 Another instance of an empirical proof scheme was Harry’s use of a crucial 

experiment (Balacheff, 1988) to incorrectly assert 1x = 2x is never true. Harry verifies 

arbitrary values and claims that the results of those values are representative of all values. 

Julius: You said there’s no solution? Okay, on a scale of one to five, you’re sure 
there’s no solution?  

Harry: Yeah, five.  
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Julius: And so one of your classmates doesn’t believe you. They say, “There’s 
supposed to be an answer. I think there’s an answer. I don’t believe you.” 
How do you convince them that there’s no solution?  

Harry: Well, you can tell them no matter what number you put, you can put a 
number that replaces the X and it will equal the same, because even if you 
do one, one times one is one, and then two times one is two, so you won’t 
get the same number ever, no matter what number you do.  

Julius: Okay, so you just put in one, right? Any special reason one, or just- 
Harry: It’s just a simple number you can use. But if you want to use 10, 10 

times 1 is 10 and then 10 times 2 is 20, so it’s not the same number no 
matter what number you put.  

Julius: Okay. Did you test other numbers, or one and 10 is sort of enough to let 
you know?  

Harry: I mean, besides zero, because they both [sides] give you, if you use zero, 
two times zero is zero and then one times zero is zero as well. So that’s 
the only number that works.  

Julius: So before you said there’s no number that works, and then all of a sudden 
you said zero works.  

Harry: Oh, so zero’s the only number that works, but the answer’s always 
going to be zero. Any number besides zero does not fit.  

Harry’s use of the phrase, “a simple number,” conveys that he chose to verify the values 

of one and ten as representatives of other numbers that would be onerous to verify. 

Although Harry eventually identifies zero as the solution, he initially stated he was 

absolutely sure there was no solution. Even when he correctly identified zero, it is not the 

result of relating equations with inverse operations, but by verifying additional values 

(“…if you use zero…”). Ashley also used a very similar line of reasoning but used five as 

her test value: “If you were to do one times five equals to two times five, which would be 

hypothetically [emphasis added] saying if that would be what the x equals to, five equals 

to ten.” Ashley use of “hypothetically” conveys that five is an arbitrary value she chose to 

conduct her crucial experiment; her hypothesis is that if five fails to satisfy the equation, 

no values will satisfy the 1x = 2x. As a result, she erroneously concluded there is no 

solution to the equation. 
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Summary. Participants exhibited empirical proof schemes in four ways. First, 

they ascertained and persuaded by completing a check to verify a value obtained from a 

solving procedure. Second, when participants did not know the solving procedures for 

quadratic and cubic equations, they searched for and verified potential solutions. This 

often resulted in a failure to completely identify the solution set. Third, Harry argued an 

equation has infinite solutions by searching for and failing to identify a counterexample. 

Fourth, some participants concluded there was no solution for a particular equation 

because they did not identify a solution after verifying values. Specifically, they 

conducted a crucial experiment in which arbitrarily selected test values were used as 

representative values for all potential solutions. 

Ritualistic proof scheme. With a ritualistic proof scheme, participants achieved 

absolute certainty because they executed a familiar procedure to identify a solution. 

However, they did not appear to attach mathematical meaning to their actions; there was 

no evidence that participants reached conviction because of deduction. Instead, their 

conviction stemmed from the familiarity of the context – the previously ingrained ritual 

of solving. Participants also expected that the form of a solution conform to the result of 

the application of their solving ritual. It was often the case that they either reached an 

erroneous conclusion or failed to achieve absolute certainty when the form of a solution 

differed from what was expected. 

A prescription for conviction. Participants used a ritualistic proof scheme to 

ascertain by comparing the solving process at hand to a familiar recipe previously 

established. In the following exchange, Kim describes why she is certain two is the 

solution for 7x + 1 = 3(x + 3). 
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Julius: Okay, same question, how do you know that’s the solution? 
Kim: Because the right side, it’s three times x plus three, which are in 

parentheses. So, to get rid of the parentheses you need to distribute three 
to x, and positive three. With that you get three x plus nine. You put down 
the seven x plus one, same side on the left, and then since there’s variables 
on both sides, you should ... What I did first is that since it was the 
smallest number, and since it was probably the easiest to move over, I did 
minus one. Since positive one minus one is zero – that cancels out by 
itself. Nine minus one is eight. You bring down three x, and on the left 
side, seven x alone, because you got rid of the one. 

Julius: Mm-hmm.  
Kim: So then you have seven x equals three x plus eight, so then since the next 

smallest number to that variable is three x, you subtract it. Since positive 
three x minus three x cancels out by itself, you just get rid of that. So, 
seven x minus three x, is four x. Then you bring down the eight and now 
it’s four x equals eight. Since the opposite of multiplication is divide, you 
divide four, by four x. The four just cancels out by itself but you still 
have the x. So, eight divided by four is two, now you have the answer, x 
equals two. 

Kim’s assertions that “you need to” and “you should” stand out because they 

communicate a prescription to obtain the solution. Although there are numerous ways to 

solve an equation, Kim’s conviction stems from solving the equation with a procedure 

she can reference. In addition, Kim’s use of certain phrases illustrate that the steps of her 

solving process are rooted in a ritual to obtain “the answer” and not necessarily 

predicated on relevant mathematical properties. For example, she uses the phrase “got rid 

of” to describe the use of the distributive property. She also uses “cancels out” as well as 

“get rid of” to describe the use of additive and multiplicative inverses. These phrases do 

not serve to link equivalent equations through deductive justifications, but instead reveal 

a process that yields “the answer.” In turn, Kim was certain, not because she attended to 

the truth value of each equation, but because a familiar process – her ritual for solving – 

linked the original equation and her result. 
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 Since participants viewed the solution as the end result of a ritual, their 

conviction, or lack thereof, corresponded to recognizing a familiar solving procedure. If 

the equation was unfamiliar and they could not identify an applicable procedure, they did 

not achieve conviction. They did not verify a potential solution to increase certainty or 

obtain absolute certainty. Instead, they described the need to see the process that yielded 

the solution. 

Julius: And then, how would they convince you that it’s actually the solution? 
Gaby: By just doing it, like, so I could see it. 
Julius: See it, okay. 
Gaby: See the steps. 

In describing what she would require to ascertain, Gaby associated the equation with a 

process. Her remark, “see the steps,” demonstrates that she sought a relevant ritual to 

identify a solution. Similarly, when I asked Isabel how she could be convinced, she 

replied, “I would want to see them go through the steps that they did to get where they 

are.” Like Gaby, Isabel expressed the need to see the process used to obtain the solution. 

In particular, the phrase “get where they are” conveys that the solution is a destination or 

a result, instead of an object that encapsulates the truth value of the equation. 

 Just as ascertaining in a ritualistic proof scheme is about recognizing a familiar 

process, persuading is about demonstrating the execution of a familiar prescription. 

Participants specifically described convincing classmates by being clear about the steps 

taken to obtain a solution. In the following exchange, Luis conveys that he would 

persuade by showing the process to isolate the variable. 

Julius: Okay, and one of your classmates doesn’t believe you. What do you do? 
Luis: Well, I would ask them what they think the answer is, and find a way to 

prove it incorrect or prove a way that they could understand it better. 
Julius: Can you tell me a little more what you mean by prove that it’s incorrect? 
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Luis: Say they think it stops at four x is equal to eight. I can explain to them 
how that’s not correct because if you’re trying to get x by itself you can’t 
have another, I believe it’s a coefficient with it. Just try to show them how 
that’s not where you need to be for the…say if you’re trying to simplify 
it to x is equal to something instead of a coefficient with the x. Just 
proving to them how you need to take it all the way to the simplest it 
can be. 

Luis’ use of the phrase “the answer” in conjunction with his comment, “…show them 

how that’s not where you need to be…,” illustrates his view in this instance that the 

solution to an equation requires the execution of a process. To that end, he would 

persuade by completing his solving ritual and obtaining a result. 

  In Luis’ ritualistic proof scheme, he would not persuade by demonstrating a non-

solution fails to satisfy an equation. Instead, he articulated the need for the solving 

procedure to match his ritual for solving equations. He said, “You figure out where they 

went wrong, and then you try to explain to them, ‘Hey, this is where you went wrong, 

and this is how to properly [emphasis] do it.’” Luis’ emphasis on properly executing a 

procedure is another reference to his ritual for solving equations. Other participants made 

similar comments. For example, when I asked Fernando how he would convince a 

classmate of a solution, he said, “Do the same steps all over again.” In a ritualistic proof 

scheme, the solving ritual – not deductive justifications or empirical evidence – are the 

basis to persuade others. 

Obtaining a result of x equals a constant was part and parcel of participants’ 

ritualistic proof schemes. Since the “answer” was a result of a ritual and not deductive 

justifications, participants did not recognize that equations with the same solution were 

equivalent. Instead, they merely considered it a coincidence that equations shared a 
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solution. For example, the following exchange captures Catherine’s reasoning about      

4x + 2 = 10, 4x + 1 = 9, and 7x + 1 = 3(x + 3). 

Julius: When you looked at these last three equations, the ones we just 
did, did you notice anything? 

Catherine: Same answer.  
Julius:  The same answer. What do you mean by same answer? 
Catherine: x = 2 
Julius: Okay, so you noticed the answer for all of these is x = 2. Why do 

you think that is? You’re shrugging your shoulders.  
Catherine: I guess that’s how the equations go. I don’t know.  

Catherine’s remark that the equations have the “same answer” conveys her view that a 

solution is the result of a process. Aside from the comparison of her results, Catherine did 

not compare the equations in any other way or identify them as equivalent. This is despite 

creating equivalent equations while solving. Her work for to identify a solution to          

7x + 1 = 3(x + 3) is shown in Figure 5. 

 

 

Figure 5. Catherine created 4x + 1 = 9 while solving 
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Even though Catherine generated 4x + 1 = 9 during her solving process, she did not 

identify 7x + 1 = 3(x + 3) and 4x + 1 = 9 as equivalent. Moreover, she generated 4x = 8 

while solving 4x + 2 = 10, 4x + 1 = 9, and 7x + 1 = 3(x + 3), yet she only related the 

equations by comparing the result of x = 2. This highlights that the focus of a ritualistic 

proof scheme is the result of the solving ritual and not the preservation of the solution set 

throughout the solving process. 

Focus on form. In a ritualistic proof scheme, the form of a solution is critical for 

conviction. Participants were convinced by the familiarity of the solving process, and part 

of the process involved obtaining a result with an anticipated appearance. Specifically, 

participants expected the result of their solving ritual to be in the form of x equals a 

constant. When I presented the equation x = 2 on its own and asked about the solution, 

Denise said, “It’s already solved…there’s nothing else to do to it.” Her response 

indicated that she identified x = 2 as the solution not because two is equal to itself, but 

because the form of the equation matched what her solving ritual required (“there’s 

nothing else to do”). Similarly, Fernando immediately identified x = 2 as the solution 

because “x is by itself.” 

Some participants identified the entire equation of x = 2, not the value of two, as 

the solution because of their view that the form of the solution matches the result of a 

solving process. Other participants claimed x = 2 has no solution because there was no 

process to execute. For example, Ashley said, “It can’t be solved because there’s only 

[emphasis added] x is equal to two,” and Brittany said, “This one I’m confused on 

because normally you would have a problem to go with this.” For both Ashley and 

Brittany, their rituals for solving equations required the execution of a process to obtain a 
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result. They reasoned that since x = 2 does not afford a process to carry out, there is no 

result to obtain and therefore no solution. 

Gaby, too, initially made a similar claim: “Well, it’s just x equals two, so there’s 

really no solution to that.” However, when I asked her to justify her response she changed 

her mind and concluded x = 2 is the solution. Her reasoning is shown in her work in 

Figure 6. 

 

 

Figure 6. Gaby rewrote x = 2 as 1x = 2 

 

Gaby’s ritualistic proof scheme required the application of her solving ritual. In order to 

make x = 2 conform to her ritual, she rewrote x = 2 as 1x = 2. This afforded her an action 

to execute in order to obtain a result. Gaby concluded with absolute certainty that x = 2 is 

the solution only after carrying out the step of dividing both sides of the equation by one. 

 In a ritualistic proof scheme, participants relied on the form of the solution. This 

resulted in erroreneous reasoning and incorrect conclusions for certain equations. For 

example, some participants declared that 1x = 2x has no solution because their solving 

process did not yield the expected result of x equals a constant. Kim’s work is shown in 

Figure 7. 
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Figure 7. Kim “canceled” the x 

 

The absence of a deductive justification and Kim’s reliance on her ritual of “canceling” 

left her with a result in a form inconsistent with her expectation. She explained in the 

following exchange. 

Kim: So you can’t divide it, x divided by x would be nothing. So it would be 
no solution.  

Julius: Okay, so x divided by x disappears and so because there’s no x- 
Kim: Yeah, there’s no solution. 
Julius: On a scale of one to five, how sure are you? 
Kim: Sure. Five.  

Luis arrived at the same conclusion with very similar reasoning. After writing x = 2x, he 

said, “It just doesn’t work out at all since we’re trying to isolate x and find a numerical 

answer.” A ritualistic proof scheme requires a result of an expected form. The absence of 

a conforming result led Kim and Luis to speciously conclude there is no solution. 

 Participants also falsely asserted that an equation with an infinite number of 

solutions had no solution. Participants argued that without a result in the form of x equals 

a constant, there is no solution for 2(x + 1) – 2 = 2x. Ashely’s work is shown in Figure 8. 
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Figure 8. Ashley claimed there is no solution 

 

Ashely’s written work does not reveal her errorenous reasoning. When I asked Ashley 

what she could say about the solution, she replied, “There’s no variable, and there’s no 

answer.” Similarly, Brittany said, “You can’t just find x by itself…you won’t get the 

right answer.” Brittany’s reference to “the right answer” signals that she expected a result 

of a certain form. To that point, Kim wrote x = x and asserted, “You can’t have a 

solution…you need a number on at least one of the sides.” Participants based their 

conclusions on the lack of a result in a familiar form. Participants did not account for the 

truth value of each equation or the deductive reasons that linked equivalent equations. 

Instead, their reliance on their ritualistic proof scheme to obtain an “answer” left them 

unable to recongize that 2(x + 1) – 2 = 2x is an identity and has an infinite number of 

solutions. 

 The focus on the form of a result also led some participants to reach true 

conclusions based on flawed reasoning rooted in ritualistic justifications. Edgar declared 
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that x + 1 = x + 2 has no solution, but the following exchange demonstrates his ritualsitic 

proof scheme. 

Julius: What can you tell me about the solution to this equation? 
Edgar: It has no solution. 
Julius: So what do you mean by it has no solution? 
Edgar: Because I did minus x on both sides and then took out the x 

completely and one equals the two so that would be no solution. 
Julius: So one equals two. When you see one equals two, you say no solution? So 

why does that mean no solution to you? 
Edgar: It doesn’t show what x is. 
Julius: Okay. So how do you know what you just said, that there is no solution, 

there is no x equal to. How do you know that? 
Edgar: Like I said, I did minus x on both sides and that just completely takes 

out x. 
 
Edgar’s remark, “It doesn’t show what x is,” illustrates the need for a result in an 

expected form. Similarly, Kim asserted there is no solution because, “There’s no x, and 

with a problem like this [emphasis added] you need to find it, you need to have an x.” 

Edgar and Kim sought to employ a ritual in order to obtain an expected result of x equals 

a constant. Their true conclusion that there is no solution was based, not on a deductive 

justification, but on the failure of their solving process to yield a result that conformed to 

their solving ritual. 

Summary. Participants used ritualistic proof schemes to ascertain and persuade. 

Moreover, they viewed equations as prompts to execute a familar process. They were 

convinced by using their solving ritual – a familiar prescription of steps to isolate x. 

While participants’ written work gave the apperarnce of deduction, participants’ 

conviction was predicated upon the familiarity of the context and their ability to use a 

process to obtain a result in the form of x equals a constant. Participants’ expectation that 

their solving rituals would produce results of a certain form proved problematic. 
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Specifically, some participants claimed an identity (i.e., an equation with an infinite 

number of solutions) had no solution. They also correctly identified an equation that is 

never true as having no solution, but by employing a spurious argument. 

Authoritative proof scheme. Participants demonstrated an authoritative proof 

scheme as a contingency proof scheme when their ritualistic proof scheme was 

insufficient for certain equations. That is, when unsure of a solving ritual, participants 

described the need for an authority to provide clarity on the appropriate process that 

would lead to a legitimate result. They only described an authortiatve proof scheme as the 

way they could be absolutely sure after failing to achieve conviciton on their own, not a 

way they actually achieved conviction during the interview. Both teachers and other 

students were identified as authority figures that could be called upon to achieve absolute 

conviction. 

 Participants demonstrated an authoriative proof scheme because they failed to 

reach absolute certainty on their own and described the need for an authority to certify 

their solution as correct. In the following exchange, Catherine is not sure of the solution 

and describes the need to check with an authority – namely, her teacher. 

Julius: Okay, what are you out of five in terms of being sure? 
Catherine: I’m probably like a three. 
Julius: And even though we just went through all the steps and we 

checked all your steps, you’re still not sure? 
Catherine: I just like to check it with my teacher.  
Julius: So you want a teacher. Okay. And do you always want check in 

with your teacher or is there something about this equation in 
particular that makes you want to go ask? 

Catherine: When I get my answer, I normally raise my hand and check 
with the teacher. I just like double checking. 

Julius:  With a teacher, right? 
Catherine: Yeah. 
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Julius: When you check with a teacher, then are you always a five after 
you check in with your teacher? 

Catherine: Yeah. Because I’m sure of what I’m doing. 
Julius:  After the teacher? 
Catherine: Yeah. 

Catherine’s lack of absolute certainty in this specific instance was rooted in her 

classroom behavior. Her comment, “Because I’m sure of what I’m doing [after asking the 

teacher],” demonstrates that an authority’s approval can be the basis for absolute 

conviction. Similarly, when I asked Gaby what would be required to be absolutely sure, 

she replied, “If somebody else were to do it…a teacher or somebody like that.”  

 As was previously the case, participants’ proof schemes were not necessarily 

evident from their written work. Catherine correctly identified two as the solution for    

7x + 1 = 3(x + 3). Her written work is shown in Figure 9. 

 

 

Figure 9. Catherine identified the solution for 7x + 1 = 3(x + 3) 
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Catherine, however, again reported not be absolutely sure. When I asked her how she 

could be absolutely sure, she replied, “Well, because sometimes I know I mess up, so I 

need somebody else [emphasis added]…I’ll ask somebody what did you get? And if we 

get the same answer, then I know I’ll be good.” I followed up by asking if it mattered 

who she asked and she replied, “Well, somebody who shows that they’re smarter than the 

rest of the class.” Her description of the classmate conveys that a person’s past record of 

success is the basis of their authority and, consequently, her certainty. Even though 

Catherine executed a written solving process to correctly identify the solution, she did not 

reach absolute conviction. Instead, she described absolute certainty based externally in 

the form of an authority’s approval. 

Summary. Participants described authoritative proof schemes when unable to 

reach absolute conviction on their own. They described an authority’s approval as the 

way they could be absolutely sure. They specifically called upon an authority to either 

certify their solution as correct or to validate their solving process. In other words, there 

were instances in which participants had no other means to achieve absolute conviction 

besides calling upon an authority. While participants often named a teacher as the 

authoritative source to obtain absolute conviction, other students were also identified as 

potential authoritative sources. 

Primary and Secondary Proof Schemes 

Participants often exhibited more than one proof scheme, although they typically 

relied on a predominate proof scheme. I determined which proof scheme was primary and 

secondary based on the number of instances a participant employed each proof scheme 



94 

 

during the interview. In this next section, I describe how participants switched between 

proof schemes depending on a number of different factors. First, participants sometimes 

used a certain proof scheme to reason about a particular equation, but then used a 

different proof scheme when reasoning about another equation. Second, participants 

sometimes used one proof scheme to ascertain, but when asked how they would persuade 

a classmate, they described a different proof scheme. Third, participants did not always 

reach absolute conviction. When they did not, they described additional evidence that 

could lead them to absolute conviction – the desired proof scheme they described was not 

always the same as the proof scheme they previously demonstrated. 

Ten of twelve participants demonstrated multiple proof schemes (see Table 2). 

When participants only employed one proof scheme, I categorized the single proof 

scheme as both the primary and secondary proof scheme.  

 

Table 2. Primary and Secondary Proof Scheme of Each Participant 

Participant Primary Proof Scheme Secondary Proof Scheme 

Ashley Ritualistic Empirical 

Brittany Ritualistic Ritualistic 

Catherine Ritualistic Authoritative 

Denise Ritualistic Empirical 

Edgar Empirical Ritualistic 

Fernando Ritualistic Ritualistic 

Gaby Ritualistic Authoritative 

Harry Empirical Ritualistic 

Isabel Empirical Ritualistic 

Julia Empirical Ritualistic 

Kim Ritualistic Authoritative 

Luis Ritualistic Empirical 
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Ritualistic-Ritualistic. Brittany and Fernando exclusively relied on ritualistic 

proof schemes to ascertain and persuade. They consistently described equations as 

processes that need to be executed or demonstrated. Their processes always served to 

isolate x; an equation of the form x equals a constant was the expected result. Brittany 

and Fernando referred to their resulting equation as “the answer.” Their ritualistic proof 

schemes were very limiting because they often did not identify a solution when presented 

with unfamiliar equations. In addition, they did not evaluate to determine whether or not 

a potential solution satisfied a given equation (i.e., consider empirical evidence). They 

frequently did not achieve absolute certainty because of their reliance on referencing a 

ritual and the absence of additional strategies to increase conviction. 

Brittany and Fernando consistently described a solving ritual as their basis to 

ascertain and persuade. The solution to a familiar equation was portrayed solely as a 

process. For example, when I asked Fernando about the solution to 7x + 1 = 3(x + 3), he 

said, 

   I had to distribute, and three times x equals 3x, and three times three equals 
nine. 7x plus one equals 3x plus nine. You have to subtract 3x from 3x and from 
7x and you’ll get 4x equals eight. Divide by two and you get x equals two. 

Fernando was not simply describing what he wrote, but justifying why he was absolutely 

certain of the solution. Brittany often said she was sure because she “did the math.” The 

execution of the familiar process itself served as their justification. They described 

persuading classmates similarly. Brittany said, “I would tell how I did it and really show 

them how I really did it,” and Fernando stated, “I would do the same steps all over 

again.” The demonstration of the process – the steps of the solving ritual – constituted 

sufficient evidence to persuade a classmate. 
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The use of a ritualistic proof scheme required the application of a known ritual, 

and this was only possible if participants recognized that they had previously solved a 

similar equation. In other words, participants’ ritualistic proof schemes were used in 

familiar contexts. When they encountered unfamiliar equations, however, Brittany and 

Fernando did not identify a potential solution and rarely reached absolute conviction. 

Their ritualistic proof schemes were limiting because when they did not recall an 

applicable solving process they had no other ways to reason about the equation. In 

following exchange, Brittany describes how she would want to be shown the solving 

procedure for 2(x + 1) – 2 = 2x. 

Brittany: You can’t do two x divided by two x, and then you won’t get the 
right answer. 

Julius: Okay. And on a scale of one to five, how sure are you? 
Brittany: Probably a two or three. 
Julius: So you’re not sure? Okay. 
Brittany: No. 
Julius: Is there something else you’d want to see? 
Brittany: I don’t really know. 
Julius: How could I, so if I said I really want you to be more sure. What 

would you want me to show you? Or your math teacher, or your 
friend? 

Brittany: I want them to show me how they get an answer this question, 
to this problem. 

Julius: Right, they would explain… 
Brittany: Like explain how they planned it out. Like how they did it. 

Brittany transformed the equation into 2x = 2x, but at that point her solving ritual was no 

longer applicable because it would not result in an equation of the form x equals a 

constant. She went on to describe the need to be shown the process used to solve the 

equation. Fernando reasoned about the equation similarly and was unable to describe a 

solution. He said, “I’m getting stuck,” when I asked him if there was anything else he 

could try or want to know in order to identify the solution. Participants’ ritualistic proof 
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schemes not only lacked deductive justifications – they left participants unable to identify 

a solution or reach conviction for unfamiliar equations. 

Ritualistic-Authoritative. Catherine, Gaby, and Kim frequently cited the need 

for a ritual or an authority to be absolutely sure of a solution. They primarily employed 

ritualistic proof schemes; their reasoning was comparable to Brittany’s and Fernando’s. 

Catherine, Gaby, and Kim, however, also conveyed an authoritative proof scheme when 

describing how they could reach absolute conviction. The authoritative proof scheme 

served as a contingency proof scheme – participants described the need for an authority 

when their ritualistic proof schemes were insufficient. Specifically, the role of the 

authority was to provide or validate a solving ritual. Like participants who exclusively 

used a ritualistic proof scheme, participants who demonstrated both ritualistic and 

authoritative proof schemes were limited because they both: i) often failed to achieve 

absolute conviction, and ii) struggled to correctly identify solutions to unfamiliar 

equations. 

When reasoning about familiar equations, Catherine, Gaby, and Kim ascertained 

and persuaded by referencing the steps and result of their solving ritual. They also cited 

the need for an authority’s affirmation. The following exchange illustrates both 

Catherine’s ritualistic and authoritative proof schemes. 

Julius:  Okay, so how sure are you? 
Catherine: Like 4.5.  
Julius: So not all the way. So why not? What else do you want to see 

here? What could…how would you get to being a five [absolutely 
sure]? 

Catherine: Well, because sometimes I know I mess…when I have equations 
like that I mess up. So I need somebody else to…I’ll ask 
somebody what did you get? And if we get the same answer, then 
I know I’ll be good.  
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Julius: So if you’re at home studying by yourself, there would be no way 
for you to be sure? 

Catherine: I’d just redo it.  
Julius: Redo it, right? But that wouldn’t…so if you redid it though, you 

might be a little more sure, but would you be a five? Would you be 
absolutely sure if you redid it?  

Catherine: I mean, if I get the same answer, then yeah.  
Julius:  So if you got the same answer a second time, you would be sure? 
Catherine: Yeah, or I’ll just review my steps. 

Catherine describes absolute conviction based on the steps of her solving ritual. Her 

ritualistic proof scheme is evident from her comments, “the same answer,” “I’d just redo 

it,” and “review my steps.” Catherine viewed solving equations as a process and the 

solution as a result. She also described persuading a classmate in a similar manner: 

“What I normally do is I see what they wrote, and then I show them my work, and we 

compare.” On the other hand, her authoritative proof scheme manifested in her remark, “I 

need somebody else…if we get the same answer, then I’ll know I’ll be good.” Absolute 

conviction, in this instance, was predicated upon somebody else’s affirmation. 

 Participants executed a ritual to isolate x and did not reach absolute conviction 

because of deductive justifications. They did not recognize that certain equations were 

equivalent even though they shared a common solution of x = 2. Gaby described            

4x + 2 = 10, 4x + 1 = 9, and 7x + 1 = 3(x + 3) as “different problems, but the solution is 

the same.” Catherine thought it was a coincidence that “the answer” was the same for all 

three equations. Kim noted that the solving process for all three equations generated      

4x = 8. However, when I asked her if she needed to do all the steps to be sure the solution 

is the same, she replied, “If you want to be 100% sure that you’re correct then yeah, you 

should.” Completing a process is central to the ritual – absolute certainty is firmly 

established in obtaining a result from a procedure. 
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Ritualistic proof schemes often proved inadequate when participants were 

unfamiliar with an equation. In unfamiliar contexts, they could not apply a solving 

procedure and therefore could not obtain a result or achieve certainty. In the following 

exchange, Gaby is uncertain about the solution to 1x = 2x because her solving ritual was 

not sufficient to isolate x. 

Gaby: I’m trying to do something, and I’m kind of getting stuck.  
Julius: Show me what it is that you’re doing. 
Gaby: I’m trying to do, like, division and stuff, but it’s not working out. 
Julius: If one of your friends said they did it, would they have to do something in 

order for you to believe them? Or, you just wouldn’t be sure? 
Gaby: They would have to, like, show their work in order for me to believe 

them. 
Julius: Okay, so when a friend says, ‘I found a solution,’ what it would take for 

you to believe them would be clearly showing the work? 
Gaby: Yes. 
Julius: And is there another way they could convince you? Or that’s how you 

would be convinced? 
Gaby: No, that’s how I’d be convinced. 

The visible execution of a procedure – the steps of the solving ritual – are critical for 

Gaby to reach absolute certainty. When I later asked how she would persuade a 

classmate, she said, “I’d just show my work.” Likewise, Kim said she would convince a 

classmate by “showing them how I did the problem.” Any consideration of empirical 

evidence was completely absent; participants did not describe substituting values to 

verify solutions. The steps of the solving procedure in and of themselves were the basis 

for conviction for Catherine, Gaby, and Kim. 

In addition, participants displayed an authoritative proof scheme by describing the 

need for an authority to affirm or provide a relevant ritual for an unfamiliar equation. 

Kim believed, with relative certainty, that x3 = 4x had no solution because she could not 
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obtain a result in the form x equals a constant. She conspicuously stated an authority is 

required for absolute conviction. 

Kim: I’m not entirely sure but I think it would be a no solution.  
Julius: Tell me why you think – it’s totally fine that you’re not sure, but you think 

it would be no solution. What’s making you say that? 
Kim: I just don’t think you’d be able to divide x cubed. I don’t think you’d be 

able to do x cubed divided by x because you don’t know what the 
number is. 

Julius: Okay. So you don’t think there’s a step we can do here? 
Kim: No.  
Julius: So there’s no solution?  
Kim: Yes.  
Julius: Okay. What would it take, what would you like to see, what could 

somebody do or show you, so that you’d be sure there’s no solution? How 
could somebody convince you there’s no solution? 

Kim: Be a teacher. Because even the best students in math class could make a 
mistake, so I would definitely trust someone who’s done this multiple 
years or a teacher.  

There are two noteworthy parts of this exchange. First, Kim’s uncertainty is rooted in the 

lack of an applicable procedure. This is illustrated by her comment, “I don’t think you’d 

be able to do [emphasis added] x cubed divided by x.” Second, Kim stated that she could 

be convinced by “someone who’s done this multiple years or a teacher.” For Kim, her 

classmates do not have the necessary authority to persuade her, but the authority of 

somebody with experience or that of a teacher would be sufficient for her to be absolutely 

certain. Gaby similarly remarked she could be convinced “if someone else were to do 

it…a teacher or somebody like that.” Catherine, too, alluded to the authority of the 

teacher when not absolutely sure of a solution: “I just like to check in with my teacher…I 

normally raise my hand and check with the teacher.” When confronted with unfamiliar 

equations, participants’ unsatisfied need of an authority’s affirmation frequently resulted 

in a lack of absolute conviction. 
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Ritualistic-Empirical. Ashley, Denise, and Luis used ritualistic proof schemes to 

reason about familiar equations. Their justifications were comparable to those of other 

participants with ritualistic proof schemes. For unfamiliar equations, however, they 

employed a variety of empirical proof schemes. In addition, participants employed 

empirical proof schemes to varying degrees. Denise and Luis used empirical proof 

schemes multiple times, but Ashley only demonstrated an empirical proof scheme once. 

Participants demonstrated that they understood the key idea that a solution makes both 

sides of an equation equal. Yet for familiar equations, they generally did not use this 

reasoning. This was a testament to the strength of their ritualistic proof schemes. 

Ashley, Denise, and Luis viewed equations they were familiar with as processes 

to be executed. Their certainty was rooted in the familiarity of the solving process. When 

explaining why she was certain about the solution to 4x + 1 = 9, Ashely said, “Because if 

you do the math, you’d subtract one from both sides. You would subtract one – nine 

minus one, which is eight. You’re left with 4x. You divide eight by four, you get two. 

The answer is two.” When I asked Denise and Luis how they could be certain of a 

solution, Denise said, “You’re going to need to find the value of x,” and Luis replied, 

“We’re trying to isolate x, to find a numerical answer.” As was the case for other 

participants with ritualistic proof schemes, Ashley, Denise, and Luis relied on the 

familiarity of the procedure, not deductive justifications, to achieve absolute conviction. 

They did not consider empirical evidence by substituting a solution to verify it satisfied 

an equation. 

Participants also persuaded by referencing their solving rituals. Denise, for 

example, said she would convince a classmate by “Just trying to show them how, the 
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steps I took more clearly.” Luis similarly said, “Just try to show them….proving to them 

you need to take it [the equation] all the way to the simplest it can be.” These comments 

reflect that participants viewed the demonstration of a procedure as sufficient evidence to 

persuade – Luis even used the phrase “proving to them.” Luis also remarked that 

persuading is about figuring out “where they went wrong.” Ashley similarly commented, 

“I would tell them that’s the wrong answer,” and, “They did the math wrong.” Their 

references to being “wrong” illustrate their view that a solving ritual was not properly 

applied, rather than the concept that a non-solution fails to satisfy an equation. Denise, 

however, adopted an empirical proof scheme to persuade. Although she ascertained with 

a ritualistic proof scheme (e.g., “I solved it.”), when I asked her how she would convince 

a classmate, she said, “You’d have to try it [the solution] out.” This comment conveys 

that Denise viewed verification as sufficient evidence to persuade. 

Participants’ responses when describing the solution for x = 2 provided further 

evidence that they employed ritualistic proof schemes, and not deductive justifications, to 

achieve absolute certainty. When participants were prompted to reason about x = 2 as a 

standalone equation, they brought to bear their process-based view of equations. For 

example, Denise stated x = 2 is the solution because “there is nothing else to do it.” 

Likewise, Luis said x = 2 is the solution because “it’s as simple as it can be, you can’t 

really do anything – you can’t manipulate it in any way to get a different answer.” For 

Denise and Luis, x = 2 was the solution not because two satisfied the equation, but 

because x = 2 represented the result of a solving ritual. Ashley, on the other hand, said    

x = 2 “can’t be solved.” Although her conclusion was different, her reasoning was similar 
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because she also viewed equations as processes. Ashley argued that since x = 2 does not 

afford a process to execute, there is no result and thus no solution. 

Although Ashley, Denise, and Luis primarily employed ritualistic proof schemes, 

they also demonstrated empirical proof schemes when reasoning about solutions to 

equations they were unfamiliar with. The equations were unfamiliar in the sense that 

participants could not employ a solving process to identify a solution. Denise and Luis 

described achieving absolute conviction as a result of searching for and verifying 

potential solutions. For example, Luis said, “I proved in my head by plugging in a 

number,” to explain why he was absolutely sure two was the solution for x3 = 4x. His 

strategy resulted in him failing to identify zero and negative two as solutions. 

After using an empirical proof scheme to identify two as the solution for x2 = 4, 

Denise also used an empirical strategy, albeit unsuccessfully, to reason about the solution 

for x3 = 4x (Figure 10). 

 

 

Figure 10. Denise’s empirical strategy to identify a solution 

 

Denise describes her reasoning behind her work in the following exchange. 

Julius:  So what do the blanks mean? 
Denise: It’s the possibilities of numbers. So then I’d go for which one would 

make sense. 
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Julius:  And when you say make sense, what do you mean make sense? 
Denise: I’d try out the possibilities. 
Julius:  And the numbers that go in these blanks… 
Denise: Are x.  
Julius:  x. So can they be different? 
Denise: No.  
Julius:  So you’re using the same number in every blank? 
Denise: Yes. 

Denise conveys a relational understanding of the equals sign as she endeavors to find the 

possibility that “makes sense.” She later searched for and failed to identify any solutions. 

She declared, with relative certainty, that there was no solution. When I asked her what 

she would require to be absolutely sure, she replied, “If they would give me options of 

what numbers I would be able to use, and then I’ll figure it out from there.” This 

description is consistent with an empirical proof scheme: Denise would reach absolute 

conviction through verification. 

Luis and Ashley described a crucial experiment (Balacheff, 1988) to be absolutely 

certain of solutions. Luis initially was relatively certain 2(x + 1) – 2 = 2x has infinite 

solutions. In following exchange, he achieves absolute conviction by verifying a 

seemingly arbitrary value (x = 4). 

Julius: So what can you tell me about the solution to this equation? 
Luis: I believe it’s infinite solutions. Wait. Yeah, because really any number 

could fill in for x, and it’d still be true. 
Julius: Okay. 
Luis: No matter what. 
Julius: So you don’t sound sure. Are you sure that it’s any number? On a scale of 

one to five? 
Luis: About four, I’m fairly certain. 
Julius: So you’re fairly certain that any number would work right? 
Luis: Yeah. 
Julius: Okay. What would you need to see to be 100% sure? What could 

somebody show you or tell you for you to be absolutely sure? 
Luis: If I just plugged in say, four is equal to x. I would get eight, I would get 

the four plus one is equal to five. Then you’d distribute the two into it, 
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which would get you 10 minus two, that would be eight. Then you just 
multiply the two by the four, that’s eight, so eight equals eight. That 
proves the rationale. 

Julius: So you said proves. So are you convinced now? 
Luis: It does prove. Yes. 
Julius: So you’re now a five [absolutely sure]? 
Luis: Yes. 
Julius: So you plug in four, you saw that eight equals eight, and now you are 

100% convinced? 
Luis: Yeah. 

This episode constituted a crucial experiment because Luis verified x = 4 as a 

representative for all potential values. However, he did not consider deductive 

justifications (e.g., state 2(x – 1) – 2x simplifies to 2x) and so his strategy constituted an 

empirical proof scheme. This particularly evident from his remark, “that proves the 

rationale.” Ashley employed a similar argument to conclude 1x = 2x has no solution. She 

verified five was not a solution and erroneously concluded no value satisfied the 

equation. 

 To summarize, Ashley, Denise, and Luis employed ritualistic proof schemes 

when they were familiar with an equation and switched to empirical proof schemes to 

reach conclusions about unfamiliar equations. Except for instances where Denise 

ascertained with a solving ritual and persuaded through verification (i.e., a check), there 

was generally little overlap between participants’ ritualistic and empirical proof schemes. 

The empirical proof schemes illustrated participants’ relational view of the equals sign 

and their understanding that a solution satisfies an equation. However, this reasoning was 

reserved for equations without a known solving procedure. To ascertain in familiar 

contexts, participants’ ritualistic proof schemes took precedent and they did not verify 

solutions. 
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Empirical-Ritualistic. Edgar, Harry, Isabel, and Julia displayed both empirical 

and ritualistic proof schemes. Unlike Ashley, Denise, and Luis, these four participants 

employed empirical proof schemes more often than they did ritualistic proof schemes. 

The check step served a central role to ascertain and persuade and was primarily used 

when participants reasoned about familiar equations. However, they described empirical 

proof schemes to varying extents in other contexts as well. The ritualistic proof scheme 

was secondary because it appeared less often. It typically occurred when participants 

confronted unfamiliar equations. Edgar, Harry, Isabel, and Julia demonstrated ritualistic 

proof schemes in one of two ways: i) ascertaining by referencing the form of the solution, 

and ii) when not absolutely sure, stating the need to be told a ritual in order to achieve 

absolute certainty. In addition, when participants did not achieve absolute conviction, 

they sometimes described the need for both a ritual and empirical evidence. 

 Verification of a solution with a check was the primary way participants 

demonstrated an empirical proof scheme. For example, Julia said, “Since I’m not sure if x 

is the answer, I would check.” For familiar equations, participants executed a solving 

procedure and then reached absolute conviction after completing a check. When I asked 

Harry what he would need to do to be sure, he replied, “You have to plug in two [the 

solution] instead of x…and if the answer matches, then it’s correct.” Participants 

persuaded in a similar manner. Isabel, for example, said in order to convince a classmate, 

“I would go over the check.” Likewise, Edgar said, “I would tell them to do the check 

step.” 

Julia, too, conveyed that a check could be used to persuade, but also indicated the 

steps of her solving ritual would suffice: “[I would check] or I would talk them through 
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what I did.” In addition to illustrating Julia’s use of verification to persuade, her use of 

the phrase, “what I did,” indicates a process-based view of equations in which absolute 

certainty is also rooted in a previously ingrained solving ritual. Still, participants 

primarily conveyed empirical proof schemes overall because of the number of times they 

verified solutions with a check. 

Participants usually did not employ empirical proof schemes for equations they 

were unfamiliar with. Specifically, some participants reached or described reaching 

absolute conviction with ritualistic proof schemes for 1x = 2x, x + 1 = x + 2,                 

2(x + 1) – 2 = 2x, and x3 = 4x. Isabel was relatively certain there was no solution for     

1x = 2x, and when I asked what she would require to be absolutely sure, she replied, “I 

would want to them go through the steps that they did to get where they are.” Similarly, 

in order to reach absolute certainty for x3 = 4x, she said. “I would want to see how they 

get the x to the third into just x.” Although Isabel previously ascertained and persuaded 

through verification, she did not describe substituting potential solutions to reach 

conviction. Instead, she stated the need to see a ritual, a solving procedure used to    

isolate x. 

Unlike Isabel, Edgar was absolutely certain x + 1 = x + 2, 1x = 2x, and               

2(x + 1) – 2 = 2x have no solution. However, he also described a ritualistic proof scheme. 

In particular, he relied on the form of the result obtained from his solving procedure. He 

stated x + 1 = x + 2 has no solution, not because it is impossible for a value of x to satisfy 

the equation, but because his solving procedure “doesn’t show what x is.” Since Edgar’s 

solving ritual required a solution in the form of x equals a constant, he concluded there is 

no solution when this solving process did not generate a result in the expected form. He 
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employed a similar argument to state 1x = 2x and 2(x + 1) – 2 = 2x have no solution as 

well: “I’m used to seeing x equals to a number and I’m not used to seeing this [x =2x or  

x = x].” 

Harry had an especially predominant empirical proof scheme and it extended to 

some equations he was unfamiliar with. Whereas Edgar and Isabel described ritualistic 

proof schemes for 1x = 2x and 2(x + 1) – 2 = 2x, Harry used empirical strategies to 

identify solutions with absolute certainty. For 1x = 2x, he conducted a crucial experiment 

(Balacheff, 1988) to initially determine there was no solution. He verified values of one 

and ten as representatives of all numbers; he argued that since these values do not satisfy 

the equation, no values do. However, while explaining his strategy of using “simple 

numbers” to test if the equation was ever true, he accidentally discovered that zero is a 

solution. He also used an empirical proof scheme to argue that 2(x + 1) – 2 = 2x has 

infinite solutions: “I was looking for other numbers that wouldn’t work, but I couldn’t 

think of any.” 

 Harry demonstrated a ritualistic proof scheme on one occasion.  Similar to Edgar, 

he resorted to justifying the solution to x = 2 based on form. Harry did not consider 

empirical evidence but stated x = 2 was the solution because “you can’t do anything to it 

because it tells you the answer…it’s already simplified.” Isabel similarly said, “You have 

to isolate x to get the solution, and x is already isolated.” These instances demonstrated 

ritualistic proof schemes because the form of the equation invoked the result of a process, 

the ritual typically used to generate a solution. 

Julia failed to reach absolute conviction while attempting to identify solutions to 

unfamiliar equations. Just as she used both ritualistic and empirical proof schemes to 
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persuade classmates about solutions to familiar equations, Julia described the need to see 

both ritualistic and empirical evidence to be absolutely certain about solutions for 

unfamiliar equations. For x + 1 = x + 2, 1x = 2x, and 2(x + 1) – 2 = 2x, she stated she 

could be convinced “if they showed me the steps and they also checked.” Although Julia 

demonstrated an empirical proof scheme more frequently than she employed a ritualistic 

proof scheme, she considered empirical and ritualistic evidence almost equally. 

Answer to First Research Question 

How do proof schemes differ, if at all, when students justify solutions to different 

types of algebraic equations? 

Most participants displayed more than one proof scheme. All participants 

employed ritualistic proof schemes to some extent; roughly half demonstrated empirical 

proof schemes. No participants displayed an analytical proof scheme – deductive 

justifications were not the basis for absolute conviction. Participants’ proof schemes 

largely depended on their familiarity with an equation. 

For each equation, participants reported whether or not they recalled prior 

experiences solving similar equations. Participants recognized 4x + 2 = 10, 4x + 1 = 9, 

and 7x + 1 = 3(x + 3) as familiar and routine. They reported being less familiar or 

completely unfamiliar with equations that have no solution (x + 1 = x + 2), multiple 

solutions (x2 = 4 and x3 = 4x), and infinite solutions (2(x + 1) – 2 = 2x). They also viewed 

x = 2 as unfamiliar because it did not require the execution of a solving process. 

The majority of participants demonstrated a ritualistic proof scheme for familiar 

equations. These participants conveyed a processed-based view of equations and viewed 
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the solution as a result. They often referred to the solution as “the answer.” Their 

conviction was rooted in the familiarity of the context and the execution of a previously 

ingrained solving procedure. When participants confronted unfamiliar equations, they 

either: i) failed to reach absolute certainty and stated the need to be told a solving 

procedure, ii) reached absolute conviction with a ritualistic proof scheme based on the 

form of the solution, or iii) implemented empirical proof schemes. 

For unfamiliar equations, participants were limited in their ability to reach 

conclusions because their solving rituals were no longer applicable. Instead, they 

articulated the need for a new solving procedure (i.e., a series of steps that would 

constitute a new ritual). In this vein, some participants described an authoritative proof 

scheme as their contingency proof scheme. They required somebody else – typically a 

reliable classmate or a teacher – to be absolutely sure. 

Some participants attempted to transfer their ritualistic proof scheme to unfamiliar 

equations. They specifically relied on the form of the solution to reach conclusions. 

These conclusions were often incorrect. In particular, they expected the form of the 

solution to match the anticipated result of their solving rituals: an equation in the form of 

x equals a constant. When their solving process did not yield a result in the expected 

form, participants declared there was no solution. 

Three participants demonstrated empirical proof schemes instead of ritualistic 

proof schemes to reason about unfamiliar equations. These participants previously did not 

consider empirical evidence; they did not verify solutions through the use of a check. 

Their reasoning in familiar contexts did not reveal that they necessarily had a relational 

view of the equals sign. However, their empirical strategies to reach conclusions about 



111 

 

unfamiliar equations unveiled a more sophisticated understanding of equations than their 

responses in familiar contexts suggested. 

Four participants displayed robust empirical proof schemes to reason about 

familiar equations. In order to reach absolute conviction, these participants consistently 

verified solutions with a check. When these participants encountered unfamiliar 

equations, the range of outcomes was consistent with the strategies of other participants 

described earlier. Even though they demonstrated a relational view of the equals sign and 

understood that a solution satisfies an equation, they did not consider the truth value of 

each equation generated during the solving process. In other words, unfamiliar equations 

illuminated that participants did not use deductive justifications to link equivalent 

equations and preserve the solution set throughout the solving process. 

Stage 2: The Teaching Experiment 

In this section, I first restate the goal of the teaching experiment and summarize 

the participants’ initial ways of reasoning described in the first task-based interviews. 

Second, I provide an overview of the phases of the teaching experiment. Third, I 

provided a detailed description of the data collected in each phase of the teaching 

experiment. Last, I answer the second research question. 

Overview 

Purpose. The purpose of the teaching experiment was to determine how students 

can come to reason about classes of objects and use conditional language when 

considering the truth value of algebraic equations. In particular, the teaching experiment 
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set out to document how participants moved away from the view of the solution to an 

equation as representing “the answer” and instead adopted a set-based perspective in 

which a solution describes the truth value of an equation. The development of a set-based 

perspective also required participants to relate the equations generated during the solving 

process to the preservation of, or any changes in, the solution set. 

The first task-based interview served as the pre-interview for the teaching 

experiment. As I described in the previous section, the three participants chosen for the 

teaching experiment did not describe solutions as a class of objects during their first task-

based interview. Furthermore, they did not discuss the truth value of equations or use 

conditional language to relate equations. The participants instead relied on a combination 

of empirical and ritualistic strategies to generate solutions. While participants’ non-

analytical strategies sometimes generated correct solutions, participants were often 

limited by these strategies. The teaching experiment allowed participants to develop 

reasoning that supported an analytical conception of equations and solutions. 

Phases of the teaching experiment. The teaching experiment unfolded in four 

phases. In the first phase, participants came to discriminate equations that are always true 

from equations that are sometimes true. During the second phase, participants used 

conditional language to relate non-equivalent equations. In doing so, they differentiated 

between a conditional statement and its converse. In the third phase, participants linked 

solving processes with the solution set in order to identify equivalent equations. The final 

phase consisted of a post-interview similar to the first task-based interview in order to 

confirm changes in participants’ ways of reasoning. 



113 

 

The number of sessions in each phase was determined by the progress participants 

made (Table 3). When the tasks and questioning used in a session did not sufficiently 

develop a participant’s understandings, I used my models of their understandings to 

adjust the tasks and attempted again to develop their ways of reasoning. Once I made 

adjustments for one participant, I used my revised tasks and questions with the other 

participants in subsequent sessions. 

 

Table 3. Number of Sessions in Each Phase of Teaching Experiment 

Session Phase Participant 
Sufficient Evidence to 
Move to Next Phase? 

1 I Edgar No 
2 I Isabel Yes 
3 I Edgar Yes 
4 I Harry Yes 
5 II Isabel Yes 
6 II Harry Yes 
7 II Edgar Yes 
8 III Harry No 
9 III Edgar Yes 
10 III Isabel Yes 
11 III Harry Yes 
12 IV Edgar Yes 
13 IV Isabel Yes 
14 IV Harry Yes 

 

Phase I: Distinguishing Between Universal and Conditional Statements 

The purpose of the first phase was to understand how participants describe 

equations as true or false, and while doing so, start to develop their sense of when 

equations are true (i.e., the solution set). In order for this to happen, participants needed 
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to differentiate between equations that are always true (i.e., universally) and equations are 

sometimes true (i.e., conditionally). In this section, I describe how Edgar and Brianna 

initially struggled with this idea and the intervention I used to develop their 

understanding. I also describe how Harry was initially able to identify equations as 

sometimes true but still struggled to connect the solving process to the ideas of truth 

value and the solution set. His struggles helped shape the subsequent phase of the 

teaching experiment. 

Edgar (Session 1). Equations similar to 4x + 1 = 9 are only true when x is the 

value of the solution obtained from the solving process. If x is a value different from the 

solution, then the statement is false. In other words, equations of this form are not always 

true, but only true when x takes on the value of the solution. However, Edgar initially 

described the equation as always true and never false. When asked for his reasoning, he 

stated “x equals to two, so I plugged in the two where the x was. Four times two equals 

eight, plus one equals nine. So nine would equal to nine.” His assertion appeared to be 

based on both: i) his ritual of obtaining a solution from his solving process, and ii) his 

validation that both sides of the equation are the equal when the value is substituted for x. 

To probe Edgar’s thinking, I prompted him with similar equations and asked if 

they were true or false. Anticipating a response of “always true,” my initial plan was to 

challenge him by asking, “what if x equals a different value?” For example, when asked 

if 4x + 2 = 22 is true, he provided a ritualistic explanation by explaining the steps he took 

to obtain the solution. I asked Edgar, “What if x is four?” He responded that it would not 

be true, but goes on to say x cannot be four. When asked why x cannot be four, he 

provided a circular argument that x is not four because it makes the statement false. 
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Edgar clearly recognized that a value other than five makes the equation is false, 

and in the following discussion I attempted to have him acknowledge the statement is not 

always true because there are values that make the statement false. 

Julius: Okay, so what would it take for this not to be true? 
Edgar: Let’s say, take x equals five out of the picture, saying x is equal to six or 

four or three. 
Julius: So, if x is something besides five you would say this is false? 
Edgar: Yes.  
Julius: Okay. And if you say x is five then you would say this is true? 
Edgar: Mm-hmm. 
Julius: Okay. Maybe I asked you, sorry. Is this always true now? 
Edgar: Yes. Wait. Yes and no. 
Julius: So yes and no. So tell me what you mean yes and no. 
Edgar: Like you were saying, what if it was something else, probably be wrong, 

but here, it is right. Because x is equal to five. 
Julius: So if x equals to five this true, right? 
Edgar: Yeah. 
Julius: But I said, always true, right? 
Edgar: Then yeah, it’s always true. 
Julius: It’s always true, because x is always equal to five? 
Edgar: Mm-hmm. 
Julius: Even though you just said x is equal to six sometimes? 
Edgar: Then, it’s always right, but not wrong. 
Julius: What do you mean always right but not wrong? 
Edgar: Like I said before, if x is equal to six then, let’s forget all about that, 

because it’s always right. Because x always equals the five either way. 
Julius: Okay, so it’s always right because it’s absolutely equal to five and we’re 

just going to pretend like x can’t be six? 
Edgar: Mm-hmm. 
 

This exchange revealed that although Edgar understood values other than five make the 

equation false, he has eliminated the possibility of those values because they are “wrong” 

and the equation is “always right.” He aligned his response to his ritual for solving, and 

values that do not match his ritual are wrong and therefore not allowed. 

My next step during this session was to better understand Edgar’s insistence that 

equations are always true. I prompted him to consider whether 11 = 3x – 1 is true or false. 
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He again claimed the equation is always true and repeated a similar argument that relied 

on the ritual of the solving process. Anticipating a similar response, I asked if 11 = 3? – 1 

is true or false. However, he responded, “I don’t know if it’s true or false…because it’s a 

mystery number.” I probed this remark by asking if x is different from question mark. He 

responded, “No, it’s not different. Because you don’t know what x is, and they’re both 

mystery numbers until you solve it. But then again it’s different because the question 

mark is not a variable.” There are three insights from this response. First, Edgar’s view of 

solving equations was consistent with the notion of generalized arithmetic – that is, 

solving an equation reveals the unknown (single) value of x. Second, Edgar associated 

‘x’ with his solving ritual but did not attempt to isolate ‘?’ in a similar manner. Third, 

Edgar’s use of the word “variable” was inconsistent with his actions. Even though he 

called x a variable, he treated it like an unknown (i.e., a single value); further, he said the 

question mark was not a variable, but treated it as such (i.e., question mark could be 

multiple values). 

In attempt to have Edgar consider the possibility of multiple values when solving 

equations, I had him consider the equations 2x = 6 and 2x = 2x side by side. He once 

again repeated the fallacious argument that 2x = 6 is always true because x is always the 

result from solving and other values are not allowed because they are “wrong.” When 

asked why 2x = 2x is always true, he responded that any value of x would make the 

statement true. I prompted Edgar to consider if both equations were “always true” in the 

same way, and in regard to 2x = 2x, he responded “I learned about this…it’s an infinite 

solution.” Yet, he was not able to explain what he meant by infinite solution. Although 

Edgar was able to conceive of the different solution sets for the two equations, he still 
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claimed both equations were always true. My attempt to have Edgar identify an equation 

as sometimes true was not successful. 

Next, I prompted Edgar to consider whether 2 + x = 2x was true or false. My 

intention was for the difference in operations (addition versus multiplication) to help him 

realize the equation is not always true. He initially declared that the equation is false, but 

without prompting, wrote down the equation and isolated x. He then changed his 

response to “always true…because x is always equal to two.” When I challenged him to 

consider that the equation is not always true because one side of the equation is addition 

and the other side is multiplication, he acknowledged the operations were different. Yet, 

his solving ritual took precedent in his reasoning and he once again claimed that although 

other values of x make the equation false, they are not allowed because they are wrong. 

This exchange provided further evidence that Edgar viewed the equations as generalized 

arithmetic. In his view, the statement 2 + x = 2x does not claim that any number plus two 

is equal to any number times two, but rather only concerns the specific value of two. Yet, 

he maintained the equation is always true. 

In summary, the first session with Edgar was not successful because he continued 

to state that equations are always true and failed to identify certain equations as only 

sometimes true. His progress was inhibited by two factors: his reliance on his solving 

ritual, and his view of equations as generalized arithmetic. He understood that replacing x 

with a non-solution would make the equation false. However, he believed that doing so is 

“wrong” and “not allowed.” In order for Edgar to identify equations are sometimes true, 

his conception of equations needed to develop so that both solutions and non-solutions 

can be substituted into the equation. 
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Isabel (Session 2). I started my first session with Isabel as I did with Edgar. I 

asked her if 4x + 1 = 9 is true or false and she, too, stated that it is always true because, 

“if you solve it, then you would get x equals two, and it’s true, because if you plug two 

back in, it would equal nine.” Also, similar to Edgar, she treated 11 = 3x – 1 and            

11 = 3? – 1 differently. For Isabel, the equation with x evoked a conception of 

generalized arithmetic and as a result she said the equation was always true. The question 

mark, however, was treated as a variable and consequently she stated the equation was 

sometimes true. 

Julius: Okay. And then eleven equals three times some mystery number minus 
one. Is that true or false? 

Isabel: It depends on what the number is. 
Julius: So tell me what you mean, it depends on what the number is. 
Isabel: If you put 167, then no, it’s not going to be true. But if you put in four 

like before, then it would be true. 
Julius: So you would say this equation as always true? 
Isabel: No. 
Julius: Sometimes true? 
Isabel: Yeah. 
Julius: Okay. So now it’s 11 = 3x - 1. Would you say this equation is true or 

false? 
Isabel: Well...it’s true. 
Julius: Is it always true? 
Isabel: Yeah. 
Julius: Okay. So when you look at the question mark and you look at the x, here 

you told me that it’s sometimes true, it depends, but here now it has to be 
four. 

Isabel: Yeah, because x represents a number and the question mark could 
represent anything. 

Julius: Okay. So x doesn’t represent anything, it represents one specific number? 
Isabel: Yeah. 
Julius: Okay. And if one of your classmates said, ‘But I thought x was a variable. 

It could be whatever you want.’ 
Isabel: Well, no, because when it’s in that equation, x is equal to the number, 

because when you solve it, x is only equal to one thing. 
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Isabel employed the notion of a generic example (“If you put in 167…”) to explain that 

the equation with a question mark is not always true. However, for a typical equation 

with an x, she changed her response to always true. Isabel, like Edgar, was constrained by 

her solving ritual and view of equations as generalized arithmetic. 

To have Isabel reason about equations with an x in the same manner she reasoned 

about equations with a question mark, I introduced a task with the goal of having her treat 

expressions with x as functions that generate multiple values. Specifically, I presented the 

expression “2x” and asked, “How many numbers do you see?” Isabel stated that there are 

two numbers, and “after you solve it,” there is only one number. She misused the word 

“solve” and instead described the process of multiplying the two numbers to yield the 

product. When asked if she knew which number the product is, Isabel stated, “No, 

because it’s not an equation, it’s just by itself.” Additionally, she provided a few 

examples of what the product could potentially be, and, crucially, indicated the list of 

possibilities was infinite (e.g., “It could be any number.”). 

Now that Isabel demonstrated her ability to treat an expression with x as a 

function that generates multiple values, I set out to have her adopt this perspective while 

reasoning about equations. I used the expressions x – 4 and 5x and, by asking how many 

numbers she saw, elicited that each expression could be considered either two numbers 

(i.e., the process of subtraction or multiplication), one number (i.e., the difference or 

product), or an infinite number of numbers (i.e., the set of numbers generated by treating 

each expression as a function). After Isabel indicated that each expression could represent 

an infinite number of numbers, I asked, “I have x – 4 and 5x, and I want to know if this 

number [x – 4] and this number [5x] can represent different numbers.” Isabel stated that 
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they can be different and provided the example of x = 10 to show the expressions can 

have different values. 

Next, I provided the expressions x – 4 and 5x side by side and asked Isabel if she 

thought the expressions could ever represent the same number. She responded, “No, I 

don’t think so.” More importantly, after being given time to think, she did not realize that 

setting up and solving the equation x – 4 = 5x would provide an answer to the question. 

The disconnect between the process of solving equations and finding the value of x that 

makes two expressions equal suggested her understanding of the solution set was still 

developing.  I then prompted her to consider negative one for the value of x, and she 

proceeded to evaluate both expressions. Upon seeing that the two expressions have the 

same value, she stated that the two expressions are, “Sometimes the same and 

[sometimes] different.” 

  With the goal of having Isabel connect the solving process to the truth value of 

an equation, I inserted an equals sign in between the expressions x – 4 and 5x to produce 

the equation x – 4 = 5x. Isabel, without any prompting, immediately began to solve to 

equation. Seeing the equation was a prompt for her to execute the procedure of isolating 

x, even though I did not ask a question. Furthermore, after obtaining x = -1, she appeared 

surprised and said, “It’s the same…oh wait, x is negative one, but x was negative one in 

this one, too.” She went on to articulate that x – 4 = 5x is sometimes true because, 

“They’re [both sides] are equal to each other.” This marked a shift in Isabel’s behavior 

from the beginning of the session where she described 4x + 1 = 9 and 11 = 3x – 1 as 

always true. Additionally, Isabel stated the equation is sometimes false because, 

“Everything except negative one would be wrong.” I clarified that wrong and false meant 
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the same thing to her. Her use of “wrong” to describe non-solutions was similar to 

Edgar’s description of why equations are always true. 

For both Edgar and Isabel, their rituals of solving equations influenced the way 

they determined the truth value of equations. Isabel, however, moved toward a 

perspective in which certain equations are sometimes true. The intervention of asking 

Isabel how many numbers she saw when looking at an expression allowed Isabel to adopt 

a functional view of algebra (as opposed to the view of generalized arithmetic) and state 

that some equations are sometimes true. 

To ensure Isabel’s conception had evolved from seeing certain equations as 

always true to only sometimes true, I prompted her with a few follow-up tasks. First, for 

3x – 2 = 2x, she stated the equation was sometimes false because, “They’re not the same 

when you plug in 10.” She also stated that the equation was sometimes true and in order 

to find out when she would “have to solve this without plugging in the ten.” Her decision 

to solve the equation indicated she saw the solving process as connected to the task of 

determining when the equation was true. Second, I returned to the task of determining if 

4x – 1 = 9 is true or false. In our exchange below, Isabel offered a response different from 

her original interpretation. 

Julius: Okay. So let’s go back to where we started. So I’ll ask you again, when I 
say true or false? 

Isabel: Oh, yeah. True when x is two. 
Julius: Okay. 
Isabel: But sometimes false. 
Julius: When? 
Isabel: When x isn’t two. 

Third, I prompted Isabel to determine whether 2 + x = 2x is true or false. She initially 

indicated the equation is false, but given time to determine if she was certain, offered that 
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solving the equation would produce a value that makes the equation sometimes true. Last, 

I asked Isabel to create a true equation, and she created 2x = 2. When asked if her 

equation is always true, she responded, “I didn’t make one that was always true,” and 

went on to create 6 = 6 as an example of an equation that is always true. 

Edgar (Session 3). During Edgar’s first session, he continued to state that 

equations similar to 4x – 1 = 9 are always true because the solution is the only value that 

is allowed to be substituted for x. During the previous session with Isabel, she also 

initially stated equations are always true using a similar argument. However, Isabel was 

able to move past her initial conception of equations as rituals and generalized arithmetic 

and instead adopt the view of functional algebra when determining if equations are true 

or false. By prompting Isabel to consider that an expression can be viewed as a function 

that generates an infinite number of values, she stated that certain equations are 

sometimes (not always) true at the conclusion of the session. The goal of the third session 

was to determine if a similar approach would develop Edgar’s understanding as well. 

I started the session with Edgar by confirming my previous model of his 

understanding – a reliance on his solving ritual and a view of equations as generalized 

arithmetic. I again asked if 11 = 3x – 1 and 11 = 3? – 1 were true or false. 11 = 3x – 1 is 

always true, he said, “Because I solved the equation and x would be equal to four.” He 

viewed 11 = 3? – 1, however, as neither true nor false “…because I don’t know what the 

number is.” Edgar treated the question mark like a variable that can be replaced by any 

number, and as a result said it was not possible for the equation to be always true or 

always false. In addition, he offered the unsolicited comment that 11 = 3x – 1 was not the 

way he was taught and preferred 3x – 1 = 11. However, he said that the way it was 
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written did not change his view that each equation is always true. This remark offered 

further evidence of the role of his solving ritual (“I wasn’t taught that way.”). In addition, 

this comment suggested, at least in this instance, an operational view of the equals sign in 

which 11 represents the result. This view was consistent with my understanding that he 

viewed equations as generalized arithmetic – that is, a process on a single, unknown 

number that produced a result of 11. 

After confirming that Edgar’s reasoning matched his responses from the first 

session, I introduced the tasks I used with Isabel to have him understand that equations of 

the form 3x – 1 = 11 are sometimes, and not always, true. I first asked him how many 

numbers he saw in the expression “2x.” He initially responded that x is not a number, but 

“it’s soon turned into a number – depends on the equation.” This comment again 

supported my understanding that Edgar viewed expressions and equations as generalized 

arithmetic. To develop his view into one that allowed for expressions to be treated as 

functions, I prompted him to start a list of all the ways he can multiply two by another 

number (i.e., the two times table). This allowed him to see that the product – a single 

value – results from the process of multiplying two values. Furthermore, he stated that 

this list of possibilities is infinite and that 2x represented this set of possibilities. To 

confirm this view, I repeated the process with the expression “x + 5” and he once again 

considered the expression either two numbers (i.e., the process of addition), one number 

(i.e., the sum), or an infinite number of numbers (i.e., the set of numbers generated by 

treating the expression as a function). 

Next, I prompted Edgar to separately consider the expressions “x – 4” and “5x.” 

For each expression, he again stated the expression was, “…two numbers, [and] you 
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combine those two numbers it would turn into one number,” as well as an infinite list of 

possibilities. With this understanding in place, I prompted Edgar to consider if the two 

expressions could ever have different values. He offered ten as an example to show the 

expressions are not necessarily the same. In the discussion below, Edgar considered if the 

two expressions can ever be the same. 

Julius: Okay. Do you think they ever are the same? 
Edgar: No. 
Julius: No. So what are you doing in your head just then? 
Edgar: Because I was trying to replace a number to see if they would both be 

the same. 
Julius: How many numbers did you try? Or what numbers were you trying in 

your head? 
Edgar: I was trying five, I was trying one, but none of them seemed to match up. 
Julius: Okay. So you tried a couple numbers and are you sure that there’s no 

number or you just sort of gave up? 
Edgar: I sort of gave up. 
Julius: Okay. So the reason I’m asking you is because on a scale of one to five, 

are you absolutely sure there’s no number? Or it’s just your instinct? 
Edgar: My instinct. 
Julius: Okay. And so you don’t think there are any time they’re the same but 

you’re not sure? 
Edgar: Yeah, I’m not sure. 
Julius: Okay. And there’s no way that’s coming to your mind of how you could 

figure this out or you could be sure? 
Edgar: Wait. Well, yeah. I could figure out one way. If I’d make that into an 

equation. 
Julius: Okay, show me what you mean. 
Edgar: It’d be negative one. Wait. Yeah. It would be negative one…because like I 

would replace this with negative one, it’d be negative five, then ... Yeah. 
Yeah. It’d be negative one. 

 
There are two noteworthy events during this exchange. First, Edgar’s initial decision to 

search for the value that makes the expressions equal and his resulting skepticism when 

he did not easily find the value he searched for. While he did not gain absolute certainty 

and therefore did not employ an empirical proof scheme, the instance still illustrated the 

use of an empirical strategy. Second, he spontaneously – without my prompting – 
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realized that solving the associated equation would determine when the two expressions 

have the same value. 

As was the case for Isabel, linking the solving process to the task of determining 

when two expressions have the same value allowed Edgar to state x – 4 = 5x is 

sometimes true and sometimes false. Additionally, this task marked a shift in Edgar’s 

language when talking about equations. First, when asked about the significance of x 

equals negative one, he said, “That there is some [emphasis] number that makes them 

similar [the same].” The use of the quantifier, “some,” was further evidence that Edgar 

now saw the equations as sometimes true. In addition, he used conditional language for 

the first time when he said, “Well, what I’m trying to say is that if [emphasis] x doesn’t 

equal to negative one, then it would be false. But if [emphasis] x is equal to negative one, 

yeah, it would be true.” To confirm this shift in reasoning and language, I asked Edgar if 

three more equations were true or false: 3x + 2 = 2x, 4x + 1 = 9, and 2 + x = 2x. He again 

stated they are sometimes true and sometimes false and responded in a similar manner 

(e.g., “It depends if x doesn’t equal two.”). 

Harry (Session 4). The purpose of Harry’s first session was to determine his 

conception of the solution set and, in particular, how he related it to the solving process. 

Linking the solving process to the solution set and truth value of an equation requires 

recognizing that certain equations are sometimes, and not always, true. Harry, unlike 

Edgar and Isabel, stated from the outset that 4x + 1 = 9 is sometimes true and sometimes 

false. As a result, there were three goals for this session. First, confirm Harry’s view that 

equations similar to 4x + 1 = 9 are sometimes, and not always, true. Second, determine if 

he recognized equations that are always true and differentiated them from equations that 
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are sometimes true. Third, build a model of Harry’s conception of the solution set that 

took into account his ability to discriminate equations that are always true from equations 

that are sometimes true. 

 I started the session with the goal of confirming Harry’s view that certain 

equations are sometimes true and sometimes false. The following exchange highlights his 

understanding: 

Julius: 11 = 3x – 1. Would you say this is true or false? 
Harry: It’d be true. The answer is four. 
Julius: Okay. Is it always true? 
Harry: Only when four is plugged in as x. 
Julius: Okay. So, if I said this is always true, how would you evaluate my claim 

that this is always true? 
Harry: Then you’d have to plug in any number and it would have to work 

every time, if it’s always true. 
Julius: And is that the case? 
Harry: No. 

Harry was able to state that the equation is sometimes true and explain it is not always 

true because it would need to “work every time.” In addition, he referred to the solution 

as “the answer.” This suggested that, although he understood the equation is sometimes 

true, his notion of solution is still connected to his solving ritual. Harry made similar 

comments (e.g., “You have to subtract the one to get your answer.”) when justifying 

other equations were also sometimes true. 

 Given Harry’s ability to recognize certain equations are not always true, I 

proceeded to determine if he could recognize equations that are always true. When 

prompted to consider if 2x = 2x is true or false, he said it was always true because, “If 

you plug in, the numbers have to be the same for them to be true. So, if you plug into 2x, 

x equals four for both sides, and then they both equal eight.” I followed up and asked 
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why x equals four and he replied, “No, it’s just a random number…every number works.” 

His use of four to show the equation is always true is consistent with the notion of a 

generic example – four is a representative for all the possible values that could be 

substituted in. 

 At this point in the session, Harry had demonstrated that certain equations are 

conditionally true and 2x = 2x is universally true. I wanted to see if he would also 

describe an equation as universally false. I asked him what it meant for an equation to be 

false and he said, “Both sides are different. They’re not the same.” I followed up and 

asked what it meant for an equation to always be false, and he replied, “No number will 

ever work. It will always [emphasis added] be a different value on each side.” Next, I 

prompted Harry to create equations that are true and he offered 6x – 2 = 10 as 

“sometimes true, not always,” and 10x = 10x as “always true because no matter what 

number you put in [for x]…it’s the same number [on each side].” 

 I aimed to further understand Harry’s conception of the solution set and the extent 

to which he related the solving process to the truth value of equations. I prompted him to 

consider whether 2 + x = 2x is true or false. Even though Harry previously differentiated 

between equations that are sometimes true and always false, the following discussion 

illustrates that his reasoning was not always connected to the solving process. 

Harry: It’s not true. 
Julius: Is it ever true? 
Harry: No. Because the different operations, you’re going to get a different value 

every time. 
Julius: So you would say this is always false? 
Harry: Yeah. 
Julius: Because there’s different operations? 
Harry: Different operations. So you get a different kind of value every time you 

put in a number. 
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Julius: And so you’re saying always, for all these numbers? Let me ask you this. 
How sure are you on a scale of one to five that there’s no other number? 

Harry: Five. 
Julius: So you’re sure? 
Harry: Yeah. 
Julius: But why are you so sure? What have you done to be sure? 
Harry: Because simple numbers are always a good example to use, like five, 

two, ten. 
Julius: So when those don’t work, you don’t feel the need to test other ones 

because they don’t work? 
Harry: Yeah. 
Julius: Okay. And do you usually do that, test those simple numbers? 
Harry: Yeah, I usually test those simple numbers that would make the 

equation work. 
Julius: So, you’re a hundred percent sure there’s no other number? 
Harry: Yeah. 
 

Although Harry understood what it meant for an equation to be sometimes or always true, 

this exchange critically captured that he employed, at least on some occasions, an 

empirical proof scheme – and not the solving process – to determine whether the equation 

was sometimes true. To support my model of his understanding, I prompted him with    

2x = 6x. Again, he did not solve the equation but instead used an empirical strategy to 

determine the equation was sometimes true. 

 To summarize this session, Harry initially could discriminate equations that are 

sometimes true from equations that are always true. While he connected the ideas of 

solution and the truth value, he did not appear to completely connect the solving process 

to the task of determining if an equation is sometimes true. Harry sometimes used an 

empirical proof scheme in which he searched for values that made an equation true. 

When he failed to find a value, he erroneously claimed the equation was never true. At 

this point, Harry’s conception of truth value and his solving ritual were somewhat 

disparate ideas. 
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Summary of Phase I. The objective of the first phase was to determine how 

participants related the solving process to the ideas of solution and truth value. Whether 

or not participants could discriminate equations that are always true from equations that 

are sometimes true was of particular interest. Edgar and Isabel initially used a spurious 

argument to claim equations are always true because x can only take on the value of the 

solution produced by the solving ritual. A functional view of expressions allowed Edgar 

and Isabel to understand equations with a single solution are sometimes, and not always, 

true. Harry initially understood that certain equations are sometimes true but did not 

necessarily connect his solving process to the truth value of equations. At the end of the 

first phase, all three participants were able to differentiate between the notions of always 

true and sometimes true. However, their conceptions of truth value and solution did not 

extend to equations generated during the solving process; they did not use the solution as 

an object to relate equations. 

Phase II: Using the Implication Structure to Relate Equations 

All three participants responded similarly to the tasks I used during this phase. For 

the convenience of the reader, I present the aggregate results of this phase. That is, even 

though the three sessions of this phase were conducted with each participant individually, 

I describe the results of their progress together. All three participants reasoned about the 

same five equations (Table 4). 
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Table 4. Prompts for Phase II of Teaching Experiment 

Task Equation 

#1 x2 = 4 

#2 2x = 4 

#3 x2 = 2x 

#4 x3 = 4x 

#5 4x + 2 = 6 

 

A solution set for every equation. When asked to reason about the solution for 

x2 = 4, each participant immediately stated two was the solution. Further, their solution 

only took the form of the value of two, and none of the participants said or wrote the 

equation x = 2. When prompted to write down the equation x = 2, Edgar asked, “Are we 

doing a separate equation?” In the previous phase and at the start of this phase, it 

appeared that participants did not naturally consider the truth value of more than one 

equation at a time. 

To have participants consider the truth value of multiple equations, I had 

participants write out their solution as another equation under each initial equation (e.g.,  

x = 2 under x2 = 4). I then proceeded to phrase questions in the form of conditional 

statements. For example, I asked, “If x = 2 is true, is x2 = 4?” I always followed up by 

rephrasing the question as the converse of my original question (e.g., if x2 = 4 is true, is   

x = 2?). When participants failed to identify all the solutions in a solution set, I prompted 

them to consider the missing solution(s). For example, after it became clear that each of 

the participants did not see negative two as a solution to x2 = 4, I said, “What if x is 

negative two?” After they acknowledged the missing solution, I repeated my questions 

phrased as conditional statements. This led participants to keep track of the different 



131 

 

solution sets for each equation. I encouraged participants to write down their thought 

process and show their work; they started to list the solutions next to each equation. As 

an example, Edgar’s work for x2 = 2x is displayed in Figure 11. 

 

 

Figure 11. Edgar wrote out each solution set in Task 3 

 

I repeated this process for each task, and when a task produced intermediate equations, I 

asked participants to relate those as well. For example, I prompted participants to relate 

x3 = 4x to x2 = 4, and they again made use of the solution set in response to my questions 

regarding the truth value of the equations. Isabel’s work is displayed in Figure 12. 

 

 

Figure 12. Isabel wrote out each solution set in Task 4 

 

My line of questioning allowed participants not only to recognize that each equation has a 

solution set, but solution sets can be compared and contrasted. 

Fluency with conditional language. In order to adopt the implication structure 

when relating equations, participants needed to interpret and use conditional language. I 
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was initially unsure if they would be able to do this; I was particularly wary of their 

ability to distinguish a conditional statement from its converse. To my surprise, all three 

participants were generally able to interpret and use conditional language when relating 

equations. The following exchange with Harry illustrates the ease with which participants 

used conditional language. 

Julius: I’m saying this is true, x3 equals 4x is true, if this is true, can you say that 
x2 equals 4? 

Harry: Not anymore. 
Julius: Why not? 
Harry: If 0 was the value, it wouldn’t work. 
Julius: If I walk in the room and I say x3 equals 4x is true, you wouldn’t say that 

x2 equals 4? 
Harry: No, I wouldn’t, because it could be 0. 
Julius: If I walk in the room and say x2 equals 4 is true, if I say this [pointing to  

x2 = 4] is the thing that’s true, would you feel comfortable saying A        
[x3 = 4x] is definitely true? 

Harry: Yeah. 
Julius: Why? 
Harry: Because 2 and -2 would work for both, and they’d both be true. 
 

This exchange demonstrates that Harry’s ability to distinguish between a conditional 

statement and its converse. Additionally, Edgar created his own terminology and began to 

refer to this distinction as “the reverse.” 

 Implication statements are only considered false if the premise of the statement is 

true and the conclusion of the statement is false. Statements with a false premise are 

considered true, regardless of whether or not the conclusion of the statement is true or 

false. On two occasions, I observed participants conflate a false statement and a true 

statement with a false conclusion. For example, I asked Edgar, “If x2 = 4 is true, is it 

possible that x is anything else besides two?” He offered that x could be five. Similarly, 

on one occasion, Harry offered a value that was not a counterexample, but rather, made 
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both equations false. When this occurred, I asked Edgar and Harry if the equation in the 

premise was true, and this allowed them to change course. Specifically, Harry modified 

his response to include the phrase “in this instance” to signal that his conclusion was 

based on the truth value of another equation. 

Empirical strategies. Participants used conditional language to correctly relate 

two solution sets they had described. However, participants sometimes articulated a 

solution set that did not match the actual solution set for a particular equation; it was 

often the case that they reasoned with incomplete solution sets. This was a consequence 

of their reliance on empirical strategies whereby they would search for solutions and, 

after a certain number of attempts, declare there were no more solutions. These strategies 

often resulted in participants failing to identify one or more solutions. Even when 

participants had successfully identified all solutions, they would often continue to test 

additional values before deciding the solution set was complete. 

Edgar articulated his modus operandi for constructing a solution set while 

working on Task 4 (Figure 13). He said, “I would usually do a range from zero to ten and 

if none of the numbers work except for one or two, then yeah, those numbers are the only 

ones that can make it true.” He went on to add that this is sufficient information for him 

to be convinced. 
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Figure 13. Edgar’s empirically-constructed solution sets for Task 4 

 

Edgar’s strategy limited him to non-negative solutions and he failed to identify negative 

two as a solution as a result. However, it is important to note that his conditional 

reasoning was correct. While reasoning about Task 4, Edgar stated if x2 = 4 is true, then 

x3 = 4x is also true. Even though he failed to completely identify the solution sets, his 

reasoning was correct given the solution sets he constructed in Figure 13. 

Harry and Isabel were also limited by the empirical strategies they employed and 

as a result often reached erroneous conclusions as well. For example, Harry only 

identified zero as the solution for x3 = 4x. When I asked him why he was sure zero was 

the only member of the solution set, he responded, “I couldn’t come up with any other 

numbers that work for this.” Similarly, Isabel did not identify zero as a solution when 

reasoning about x2 = 2x. When I asked how she knew two was the solution set, she 

responded, “I plugged two back in and it works.” As was the case for Edgar, Harry and 

Isabel arrived at incorrect conclusions, not based on faulty logic, but because of their 

incomplete, empirically-constructed solution sets. 

It occurred to me that participants’ reliance on empirical strategies might be a 

result of their unfamiliarity with quadratic and cubic equations. To see if this was the 

case, I prompted them reason with two equations they certainly were familiar with:        



135 

 

2x = 4 and 4x + 2 = 6. While participants were able to identify the correct solution sets 

for these routine equations, it was a result of empirical strategies. For example, all three 

participants verified negative two was not a solution to 2x = 4 before claiming they were 

certain that 2x = 4 implied x = 2. For 4x + 2 = 6, the last task, Harry verified that none of 

the previous solutions to other equations were also solutions. Despite his reliance on 

verifying many solutions, his conditional reasoning was still correct. He articulated that 

4x + 2 = 6 and x = 1 implied each other and observed that “they’re true together.” 

 It is important to note that participants did not necessarily employ an empirical 

proof scheme every time they employed an empirical strategy. While it was often the 

case that participants were absolutely convinced by their empirical verification of 

potential solutions, there were occasions they were skeptical that they had identified the 

complete solution set. Generally, Edgar and Harry proceeded to verify additional values 

in order to reach absolute conviction (i.e., used an empirical proof scheme in the end). At 

a certain point, however, it became clear Isabel realized that empirically searching for 

and verifying potential solutions was not sufficient to guarantee a complete solution set. 

She described this strategy as unreliable and said, “You don’t know how long you would 

have to keep going,” and added she would have to keep searching because there might be 

additional solutions. This appeared to be a promising development. However, when 

determining whether 4x + 2 = 6 implies x = 1, Isabel stated there might an additional 

solution and extended her skepticism to familiar, single-solution equations. This reveled 

that, at least in this instance, Isabel had no method to identify the complete solution set 

with absolute certainty. 
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Summary of Phase II. During this phase, participants extended their developing 

notion of the solution set to the group of related equations generated during the solving 

process. To relate equations, all three participants adopted the implication structure and 

used conditional language (e.g., if x = 2, then x2 = 4). While participants fluently related 

two equations by relating two sets, they often used incorrect sets in their reasoning. All 

three participants often reached erroneous conclusions, not because of their logic, but 

because they relied on empirical methods – not solving operations – to construct their 

image of a solution set. 

Phase III: Linking Process and Object 

The third phase consisted of four sessions, and I present the results of this phase 

in three sections. First, I describe Session 8. During this session, Harry continued to rely 

on empirical strategies when reasoning about the solution set. In the second section, I 

describe my new tasks and questions in an attempt to adapt to Harry’s responses. In the 

third section, I describe the aggregated results from using my new tasks with all three 

participants. Just as was the case in the previous phase, all sessions were conducted 

individually, but I present the results from the three sessions (9, 10, and 11) together 

because all three participants reasoned about the same tasks and responded similarly. 

Harry (Session 8). In Harry’s previous session, he used the implication structure 

to relate two equations vis-à-vis their solution sets. However, he often reached incorrect 

conclusions because he reasoned with incomplete sets – sets not obtained through solving 

operations, but by searching for and verifying solutions. My main objective in this 

session was to elicit evidence Harry could anticipate changes in, or the preservation of, 
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the solution set by relating the solution set to solving operations. In the event I could not 

to do this, I intended to further develop my model of Harry’s understandings to describe 

why he relied on empirical evidence and not solving operations when constructing 

solution sets. 

Preservation of the solution set. In earlier sessions, Edgar and Isabel responded 

differently when I presented them equations with a question mark instead of an x. At the 

start of this session with Harry, I decided to do the same in an attempt to elicit a different 

response from him. Further, I replaced some of the expressions in the equations with a 

figure of a box and an oval. The purpose was to allow Harry to relate the truth value of 

two equations without substituting a value into the equations. Harry’s related work with 

the equation 4x + 1 = 9 from Session 4 is shown in Figure 14. The first two tasks I used 

with Harry in this session are shown in Figure 15 and Figure 16. 

 

 

Figure 14. Harry’s work solving 4x + 1 = 9 from Session 4 
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Figure 15. Task 6 from Session 8 

 

 

Figure 16. Task 7 from Session 8 

 

I presented the two similar tasks for two reasons. First, I wanted to gather additional 

evidence that Harry could distinguish a conditional statement from its converse. Second, I 

was interested to see if Harry would use different operations to relate two equations. For 

example, if he were to read down, equation A and equation B in Task 6 are related by 

multiplication, whereas those same equations, reading down, are related by division in 

Task 7. I thought these tasks might give Harry the opportunity to connect reversible 

operations with the fact that two equations could be linked by a true conditional statement 

and a true converse (i.e., a true biconditional statement). 

 While reasoning about the truth value of the equations in the two tasks, Harry 

attended to the direction of his implication statements (i.e., avoided conflating a 

conditional statement with its converse). More significantly, he linked each pair of 
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equations with two conditional statements in both tasks. For example, he said, “If four 

[times] question mark is eight, then the question mark will always be two. If the question 

mark is two, then four times question mark equals eight, then that will always be true.” 

However, Harry’s responses from Task 6 and Task 7 did not conclusively support my 

second objective. One hand, his responses suggested that he could link equations and the 

preservation of the solution set to the solving operations. On the other hand, it appeared 

the he employed an empirical strategy and continued to verify solutions. 

 Harry made a number of comments where he related the truth value of two 

equations through operations and did not substitute values. When relating equations A 

and B in Task 7, he said the oval is not always nine, but it is “if you’d find a box in the 

oval and the box is equal to eight, and…[also] a value of one, so eight plus one, that 

would make nine.” I specifically asked him if he needed to know the value of the 

question mark in order to be sure, and he replied that he did not because “eight is the only 

number that adds with one that equals nine.” He provided a similar response after 

rewriting Task 7 (Figure 17). 

 

 

Figure 17. Harry’s work for Task 7 
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I asked Harry to relate 4? + 1 = 9 and 4? = 8 and he said, “Even if you don’t know the 

value [of ?], if you know that 4? is eight… that’s the only number you would add by one 

to get nine.” He reversed his argument to correctly describe the converse: “4? = 8 does 

not have the plus one, it has to be one less [than 4? + 1 = 9].” Taken together, these 

comments provided some evidence that Harry could use operations to relate the truth 

value of equations. 

 Despite Harry’s comments that suggested he could reason about a solution set by 

relating one equation to another, he made a number of additional comments that 

suggested he still used an empirical strategy to identify a solution set. The following 

exchange highlights two comments that made me question whether or not he was in fact 

still relying on a strategy of searching for and verifying solutions. 

Julius:  Tell me how, if 4? + 1 = 9 is true, why are you sure the other things are 
true? 

Harry:  If you figure out the value [of question mark], it all really depends on the 
value of question mark. 

Julius: And if one [equation] is false, why are you sure that the rest would have to 
be false? 

Harry: Let’s say question mark is actually equal to three…they’d all be false. 
Julius:  Is there any reason you chose three? 
Harry: It’s just a random number. 
Julius:  So you could have chosen any other number?  
Harry: Yeah. 
 

This exchange alone was not sufficient to conclude Harry used an empirical strategy. His 

comment that “it all really depends on the value [of question mark]” could simply 

indicate his understanding that the solution is what makes a statement true. Similarly, 

when he substituted in a value of three, it could be that three is a generic example (i.e., a 

representative of the set of non-solutions). However, there were other instances 
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throughout the course of the session when his justifications seemed to include an 

empirical strategy (e.g., “They’re both true if you plug in two.”). 

Changes in the solution set. During the second half of this session, I set out to 

determine if Harry could relate the truth value of two non-equivalent equations without 

substituting a value into the equations. I was specifically interested in his ability to 

identify whether a solution of zero was gained or lost while transforming one equation 

into another through the multiplication or division of both sides of an equation by x. To 

accomplish this, I asked Harry to reason about x2 = 5x (Task 9) and the equations in Task 

10 (Figure 18). 

 

 

Figure 18. Task 10 from Session 8 

 

For this session, my objective in using these tasks was to elicit evidence that Harry could 

use solving operations, and not an empirical strategy, to identify changes in the solution 

set.  

Before using Tasks 9 and 10 with Harry, I attempted to have him connect changes 

in the solution set with the multiplication of both sides of an equation by zero. In Task 8, 
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I prompted him to multiply both sides of a true equation (2 = 2) as well as a false 

equation (1 = 2). He first multiplied both sides by a number of his choosing, and then I 

prompted him to multiply both sides by zero. His resulting equations are shown in Figure 

19. 

 

 

Figure 19. Harry’s work from Task 8 

 

For each pair of equations, I asked Harry to describe the truth value of each equation. I 

then asked him if any pair seemed different than the others. He identified 1 = 2 and 0 = 0 

and explained that the false equation (1 = 2) became a true equation (0 = 0). When I 

asked him why he thought that was the case, he responded, “Well zero is kind of a special 

number. If you multiply anything by zero, you would always get zero equals zero.” Next, 

I proceeded to have Harry reason about the equations in Tasks 9 and 10. 

 Similar to Harry’s responses earlier in the session, Tasks 9 and 10 elicited some 

evidence that Harry could indeed relate the solution sets of two equations to the operation 

that linked the respective equations. The following exchange describes Harry’s reasoning 

about x2 = 5x and x = 5 in Task 9. 
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Julius: You said you’re sure, and why are you sure? 
Harry: If x equals zero on Equation A [x2 = 5x], then that makes B [x = 5] false. 

If you plug in x to A [x2 = 5x], zero squared is zero and five times zero is 
zero. Then for B [x = 5], if you plug in zero instead of x, zero does not 
equal to five. 

Julius: Okay. Where do you think the zero comes from? 
Harry: Since anything that’s multiplied by zero is going to be zero, A has 

multiplication involved in it, and B does not. 
Julius: Say again, what’s the connection here between A and B? 
Harry: A involved multiplication and B does not. 
 

This exchange captured three noteworthy moments: i) Harry identified zero as a solution 

to one equation but not the other, ii) Harry correctly articulated the relationship between 

the equations using the implication structure, and iii) Harry appeared to identify a 

solution of zero as a result of relating the equations with multiplication. While Harry’s 

responses to this task gave me the impression he had constructed his solution set through 

analytical – not empirical – reasoning, I wanted to confirm my new model of Harry’s 

understandings with another task. 

 I prompted Harry to reason about the three equations in Task 10. By providing the 

statement x = -3, 3, I started the construction of the solution set for him and intended to 

see if he would consider other solutions or simply verify the two solutions presented to 

him. Instead of relating the equations with operations, as he did in the previous task, he 

resorted to an empirical strategy and simply verified the two solutions. As a result, he did 

not identify zero as a solution to x3 = 9x. The following exchange conveys how his 

empirical strategy led him to his incorrect conclusion: 

Julius: Okay. If one of these equations is true, are the other equations true? 
Harry: Yes. 
Julius: How do you know? 
Harry: Because well, if you use B [x2 = 9] for example. If x is either three or 

negative three, that makes the equation nine. If that’s right, it would work 
for A [x3 = 9x] and C [x = -3, 3]. 
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Julius: Yeah, so when you said ‘right,’ I think you meant if x2 = 9 is true, you 
would say A is true, right? 

Harry: Yeah. 
Julius: Okay, so if B [x2 = 9] is true then A [x3 = 9x] is true. How did you know if 

B [x2 = 9] is true then A [x3 = 9x] is true? 
Harry: Because if you plug in negative three or three for A [x3 = 9x], it will 

always equal 27, which is what it’s equal to. 
Julius: Okay. What if A is true? 
Harry: That makes B true. And C. 
Julius: Always? 
Harry: Always. 
Julius: Okay. Again, how do you know that A [x3 = 9x] makes the other ones 

[equations] true? 
Harry: Because, they both, the value of x both works for either equation. 

 
The task did not provide additional evidence supporting my model of Harry’s ability to 

relate equations and solution sets through operations. Instead, the exchange revealed that 

Harry’s reliance on the verification of solutions prevented him from identifying the 

complete solution set for x3 = 9x. In addition, I prompted Harry to consider zero as a 

solution once he conveyed he was convinced there were no additional solutions. Upon 

realizing he missed a solution, Harry tested other values to ensure there were no 

additional solutions. 

 In summary, Harry sometimes articulated reasoning that suggested he could relate 

equations and their respective solution sets with operations. However, he did not 

consistently reason in this manner and instead resorted to the empirical verification of 

solutions. This led him to produce incomplete solution sets and reach incorrect 

conclusions. At the end of the session, my new model of Harry’s understanding was that 

although he sometimes linked equations with operations, the appeal of empirical 

verification often took precedent in his reasoning. 
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Revised tasks. In this next section, I describe the sequence of three tasks that I 

developed in response to Harry’s reliance on empirical verification when relating 

equations. The tasks still had the primary objective of eliciting evidence that participants 

could anticipate the preservation of, or any changes in, the solution set by relating the 

solution set to solving operations. I hypothesized that I could elicit evidence of analytical 

reasoning by providing pairs of equivalent equations that had two features: i) an easily 

identifiable scale factor between the two equations (e.g., 2x = 5 and 4x = 10), and ii) a 

non-integer solution that would be onerous to verify with substitution (participants did 

not have access to a calculator during the tasks). In Session 8, even when it appeared 

Harry related equations analytically, he often resorted to empirical verification. The 

purpose of using equations with solutions that would be difficult to verify was to isolate 

participants’ ability to reason with non-empirical strategies. 

Task 11. This new task centered on the equation 11x = 50. First, I asked 

participants if the equation was true or false. The solution to this equation is an unfamiliar 

fraction and a repeating decimal. I hypothesized participants would not attempt to 

substitute this value into the original equation to verify the solution. Second, I presented 

the equations 11x = 50 and 22x = 100 together and asked if they were true or false. The 

two equations are equivalent and share a common solution. My intention was for 

participants to recognize that one equation implies the other – by stating that 11x = 50 

and 22x = 100 are related by multiplication – and not by substituting the common 

solution into the equations. 

For the next part of the task, I presented a set of equations equivalent to 11x = 50 

(Figure 20) and again asked if they were true or false. 
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Figure 20. A set of equivalent equations used in Task 11 

 

The purpose of presenting the set of equations together was to see if participants would 

reason that equivalent equations can be related by factors other than two. In addition, I 

thought the equations would allow participants to relate equations to each other, not just 

to 11x = 50. For example, 110x = 500 is not only equivalent to 11x = 50, but to            

55x = 250 as well. As was the case with only 11x = 50 and 22x = 100, the intention was 

to elicit reasoning that conveyed these equations had the same solution, not because a 

value was substituted and verified, but because the equations can be related with 

multiplication or division. 

For the last part of Task 11, I aimed to see if participants would correctly 

generalize that 11x = 50 can be multiplied by any non-zero factor to generate an 

equivalent equation. To accomplish this, I presented 11x = 50 and 11x2 = 50x together 
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and asked if they were true or false. I specifically sought evidence that participants saw 

11x2 = 50x as related to 11x = 50 through the multiplication of both sides by x. In 

addition, I was interested in determining if participants would anticipate 11x2 = 50x 

gaining a solution of zero. In other words, although 11x = 50 implies 11x2 = 50x, I 

intended to determine if participants recognized that 11x2 = 50x does not necessarily 

imply 11x = 50. Critically, I wanted to see if participants attributed the change in the 

solution set to the multiplication of both sides of 11x = 50 by x, or if they again resorted 

to an empirical strategy of verifying zero. 

Task 12. The purpose of Task 12 was twofold. First, I aimed to gather additional 

evidence that participants could relate equations and their respective solution sets through 

operations and without verifying solutions. Second, I wanted to see if participants would 

recognize that multiplying both sides of an equation by x does not necessarily result in a 

change in the solution set. Figure 21 shows the set of equations I used for this task. 

 

 

Figure 21. Equations related to 2x = 5 used in Task 12 
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The equivalent equations 2x2 = 5x and 2x3 = 5x2 can be related through 

multiplication. The intention behind these equations was to determine if participants 

could reason that multiplying 2x2 = 5x by x preserves the solution set (unlike 2x = 5). 

The two columns labeled “True” and “False” were included in this task to prompt 

participants to keep track of the sets of solutions and non-solutions. I thought this would 

result in participants attending to changes in the solution set as each equation was 

transformed into another. 

As was the case in the previous task, I simply asked if the equations presented 

were true or false and how participants knew. I hypothesized that this would allow 

participants to use the implication structure to relate equations. Initially, I did not present 

the entire set of equations shown in Figure 21. I first presented 2x = 5 and 4x = 10 and 

the two columns for participants to keep track of the solution and non-solution sets. 

Subsequently, I included one additional equation at a time until I generated the entire list 

of equations shown in Figure 21. By introducing one new equation at a time, I thought it 

would be more likely that participants would successfully reason about any changes in 

the solution set. 

Task 13. In order to gather additional evidence that would support my findings 

from the previous two tasks, I developed one additional task similar to the previous two. 

Figure 22 shows the set of equations used in Task 13. 
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Figure 22. Set of equations used in Task 13 

 

The three equations were presented together, and the two columns used to assist 

participants keep track of solutions in the previous task were not included. Similar to the 

previous task, the equations in Task 13 prompted participants to reason about the 

preservation of, or changes in, the solution set when relating equations by multiplication 

or division by x. Unlike the previous task, this task did not offer equations related by an 

integer scale factor. In other words, this task offered only an abstract opportunity to relate 

equations and solution sets. 

My approach and questions for this task were similar to that of the previous tasks. 

I asked if the equations were true or false and how participants knew. I anticipated 

participants would use the implication structure to relate equations and solution sets. I 

was interested to see if participants would relate equations and their respective solution 

sets without resorting to the verification of solutions. Although 10x = 5 has a solution 

that can be easily verified, 10x2 = 5x and 10x3 = 5x2 do not allow for the easy verification 

of the shared solution. Consequently, I thought this task would allow participants to 

demonstrate they could relate the truth value of equations, not through empirical 
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verification, but by linking solution sets to the operations that related the equations (i.e., 

with analytical reasoning). 

Results (Sessions 9-11). In this next section, I present the aggregated results 

using the three new tasks. I conducted the sessions individually with Edgar, Isabel, and 

Harry, and each participant reasoned about all three tasks in a single session. I present the 

results together because all three participants responded similarly. 

Task 11. This task prompted participants to determine when 11x = 50 and other 

equivalent equations were true or false. The goal was not for participants to identify a 

solution; the aim was for participants to recognize that an equation implies an equivalent 

equation. Harry had previously resorted to substituting values into equations to be certain 

equations are equivalent. I used 11x = 50 because I thought the non-integer solution 

would be onerous to verify. All three participants were able to identify equations as 

sharing a solution by reasoning analytically and not empirically. That is, they were able 

to identify equivalent equations by relating pairs of equations through multiplication and 

division to reason the solution set was persevered. They did not resort to substituting 

values in order to verify solutions. However, participants failed to anticipate zero as a 

solution when relating 11x = 50 and 11x2 = 50x. 

All three participants identified 11x = 50 and 22x = 100 as statements that are 

sometimes true and share a common solution. The following exchange with Harry 

represents typical reasoning defending this assertion. 

Julius: If you look at these equations together, 22x = 100, and 11x = 50. Are these 
true or false? 

Harry: They’re sometimes true. 
Julius: Okay, they’re both sometimes true. Do you know anything else about that 

sometimes? 
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Harry: I figured the number would always be the same, x for 11 and 22. 
Julius: So, the first equation and second equation? 
Harry: X would be the same value because the numbers are getting doubled 

on each side. 
Julius: Mm-hmm. So the numbers are getting doubled on each side. So you said 

these are sometimes true, right? 
Harry: Yeah. When x is the same it’s going to be equal to 50 for 11x. And for 

22x, if x is the same as 11x, it would become 100. 
Julius: And you know this even though you don’t know the number, right? 
Harry: Yeah. 
Julius: Okay. You’re sure that it would be the same, right? 
Harry: Mm-hmm. 
Julius: If one of these is false, what would the other one be? 
Harry: It’d be false as well. 
Julius: Why is that? 
Harry: Because, if the number is the same for both equations and you use a 

different number for both equations, it wouldn’t be true because there’s 
only one number that makes the equation true. 

 
Harry identified the equations as sharing a common solution without verifying, or even 

identifying, a value. In a similar manner, Isabel said the equations are true when “x 

equals the same thing.” Edgar, too, said, “The x would always be the same.” All three 

participants articulated that knowing 11x = 50 or 22x = 100 is false implies that the other 

equation is false. All three participants also identified other equations in the task (e.g., 

33x = 150) as equivalent by articulating that knowing one equation is true implies the 

other is true because the solution has to remain the same. 

Throughout the task, Edgar, Isabel, and Harry repeatedly made the argument that 

pairs of equations were equivalent and shared a common solution by relating two 

equations with multiplication and division. Harry, for example, said, “The numbers that 

are multiplied by x are getting bigger every time. On the other side as well.” Importantly, 

participants were able to reverse their reasoning and state that a particular equation can be 

related to another through division. For example, when I asked Harry how he knew that 
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44x = 200 meant 22x = 100 is true, he replied, “The half of 44x = 200 equals 22x = 100.” 

Isabel and Edgar made similar comments to argue one equation being true meant another 

is true. When I asked Edgar if there was another instance that would imply 11x = 50 is 

true, he described dividing both sides of 110x = 500 by ten to reason that the solution for 

110x = 500 is also the solution for 11x = 50. It is significant that participants related 

equations through both multiplication and division because it highlighted their ability to 

distinguish a conditional statement from its converse while maintaining that both 

statements are true. 

 One notable development during this task was that participants began explicitly 

referring to equivalent equations as the same. When I asked Edgar if knowing that        

11x = 50 is true meant that 22x = 100 had to be true, he responded, “Well, yeah, because 

it’s simply the same thing. You just multiply it by two.” When I asked him a similar 

question later in the task, he again responded, “Because they’re the same, but in different 

numbers. You’re just multiplying it by two, three, [and] four.” Similarly, Isabel stated 

that if one equation is true, others must be true because “they’re all the same equation.” 

These comments marked a shift in which participants identified an equation not by 

coefficients, but its solution set; equivalent equations were identified through their 

common solution set. These comments were consistent with an object-based (rather than 

process-based) view of equations. The fact that participants were convinced by this 

object-based view supported my conclusion that they reasoned analytically – not 

empirically or ritualistically. 

 In the final part of the task, I included 11x2 = 50x alongside the equations 

equivalent to 11x = 50. This equation was included in the task to see if participants would 
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recognize that multiplying both sides of an equation by x results in a different a solution 

set (multiplying 11x = 50 by x generates zero as an additional solution). All three 

participants did not anticipate the change in the solution set. Instead, they again argued 

that 11x2 = 50x is equivalent to 11x = 50 because it was related by multiplication. I 

directly sought evidence of this misconception and asked if there was another solution 

that might make 11x2 = 50x true but not 11x = 50. All three failed to identify zero as a 

value. I rephrased the question and asked, “Is there is ever a time when one of them    

[11x = 50 or 11x2 = 50x] is true but the other one isn’t?” Again, all three participants said 

that both equations are either simultaneously true or false, and they failed to identify zero 

as the additional solution to 11x2 = 50x. 

 Participants’ failure to identify the correct solution set for 11x2 = 50x was not the 

result of a failed empirical strategy – there was no evidence that participants substituted 

and verified potential solutions. Rather, participants overgeneralized their strategy of 

using multiplication and division to identify equivalent equations. I ended the task by 

suggesting zero was a solution to 11x2 = 50x and all participants changed their responses 

to indicate that 11x2 = 50x was not equivalent to the other equations. 

This task successfully elicited evidence that participants could reason about 

equivalent equations without resorting to an empirical strategy. In particular, participants 

began referring to equivalent equations as “the same.” However, their inability to 

anticipate a change in the solution set when multiplying an equation by x suggested their 

understanding was not yet fully developed. I ended this task knowing that participants 

may or may not repeat this error in the next task. 
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Task 12. Similar to the previous task, this task prompted participants to reason 

about equations that shared a solution (but not necessarily a solution set) with 2x = 5. 

This task successfully elicited additional evidence that all three participants could reason 

about solution sets by relating equations with multiplication and division and without 

employing a verification strategy. Isabel and Harry were able to identify that zero was 

introduced to the solution set when reasoning about 2x2 = 5x and 2x3 = 5x2. Edgar 

recognized that this task was similar to the previous task, but again did not identify zero 

as an additional solution. In addition, this task generated significant evidence that 

participants had fully adopted conditional language to fluently relate equations. 

Although 2.5 is a value that can be substituted into many of the equations, 

participants did not verify this solution. Instead, they related equations as equivalent by 

recognizing that one equation was a multiple of another. Edgar solved 2x = 5 and 

identified 2.5 as the solution for each of the equations. When asked how he knew, he said 

he solved the “easiest one” and the others “must be true…because I just multiplied.” 

Isabel and Harry did not identify 2.5 as a solution, but they still identified the set of 

equations as sharing a common solution. Isabel said, “Even though I don’t know what x 

is, x is going to be the same in all of them.” She went on to articulate that she knew this 

because of the multiplication between equations. Harry said, “There’s going to be a 

decimal for the value of x here,” while pointing to the entire set of equations. He went on 

to say, “Because you can just divide [an equation] to get the same number,” when asked 

how he knew they shared a solution. In order to facilitate the conversation, I told Isabel 

and Harry that 2.5 was the shared solution. All three participants indicated that 2.5 was a 
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common solution for 2x = 5, 4x = 10, and 40x = 100. In addition, they stated that all three 

equations were false when x was a value other than 2.5. 

Although 2x2 = 5x shares a solution with 2x = 5, the equations are not equivalent 

because the solution set for 2x2 = 5x includes zero while 2x = 5 does not. However,      

2x3 = 5x2 is equivalent to 2x2 = 5x. 2x3 = 5x2 was included to ensure participants reasoned 

correctly about the effect of multiplying an equation by x – multiplication by x does not 

necessarily modify a solution set. Isabel and Harry reasoned analytically to identify 

correct solution sets. Isabel and Harry recognized 2x2 = 5x as sharing a solution with     

2x = 5. When I asked Isabel how she knew this, she said, “You multiply them both [sides 

of 2x = 5] by x.” Isabel and Harry also recognized that the solution set of 2x2 = 5x also 

contained zero. When I asked Harry how he knew, he said, “Because you have to 

multiply both sides by x, and if x is equal to zero, you would get zero for both of them 

[each side of the equation].” Isabel reasoned about the solution set for 2x3 = 5x2 by 

identifying it as 2x = 5 multiplied by x2. Harry recognized 2x3 = 5x2 as 2x2 = 5x 

multiplied by x again. Edgar failed to identify zero as a solution to 2x2 = 5x and           

2x3 = 5x2. He recognized the equations are not equivalent to 2x = 5, but when I asked him 

why, he said, “Because when we were discussing this one [the previous task], we both 

said that if this one’s [pointing to 2x2 = 5x] true, this [2x = 5] could be false.” He realized 

the set of equations in this task were similar to the previous task, but, unlike Isabel and 

Harry, was not able to attribute that change to the multiplication by x. 

This task provided significant additional evidence that all participants fluently 

related multiple equations with conditional language. Isabel’s work (Figure 23) shows 

how all three participants kept track of solutions and non-solutions. 



156 

 

 

Figure 23. Isabel kept track of solutions and non-solutions 

 

Edgar and Harry made similar charts. The following exchange shows how Isabel’s chart 

allowed her to easily relate pairs of equations using the implication structure.  

Julius: Okay, so if the other equations are true, any of them, A, B, C, or D, is this 
last equation [E] definitely true? 

Isabel: Yeah if any of those are true then this one is true. 
Julius: Even if we’re talking about D. If I tell you D is true, you’re sure E is true? 
Isabel: Yeah 
Julius: A hundred percent sure? 
Isabel: Yeah 
Julius: Okay and then what about if E is true, the last one. Are the others true? 
Isabel: D is always going to be true in this one because it has the same 

solutions as E, but C, B, and A, they would only be true if it’s two point 
five. 

Julius: Which is always or not always? 
Isabel: Not always. 
Julius: And you used the word solutions, what did you mean by that? 
Isabel: What x is equal to. 
Julius: But I thought x could be lots of things? Like x can be seven. 
Isabel: Well, when x works. 
 

This exchange highlights Isabel’s ability to employ the implication structure. She is able 

to state that equations A, B, and C imply equation E, but that the converse is not true. She 

specifically uses “always” to differentiate equation D from equations A, B, and C. In 

addition, Isabel previously stated equation D is sometimes true and included values in 
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both the true and false columns. However, she said, “D is always going to be true in this 

one [emphasis added].” Isabel indicated that equation D is always true when the premise 

of my conditional question is true (i.e., when equation E is true). This further suggested 

her full adoption of the implication structure when relating equations. 

Harry and Edgar also displayed their ability to use the implication structure while 

relating equations. In particular, even though Edgar failed to identify the correct solution 

set for 2x2 = 5x and 2x3 = 5x2 on his own, he was still able to fluently relate equations. 

After I prompted him to include zero in his chart, his responses to my questions matched 

those of Isabel and Harry. When I asked him if 2x2 = 5x implies 2x = 5, 4x = 10, and    

40x = 100, he replied, “No. Not necessarily. Sometimes.” I asked him what he could say 

about 2x3 = 5x2 and he stated that the equation is the same “as this equation [2x2 = 5x], 

and this equation only [emphasis].” 

 In conclusion, this task generated additional evidence that all three participants 

could reason about solution sets by relating equations with multiplication and division 

and without employing a verification strategy. Isabel and Harry, but not Edgar, were able 

to identify a change in the solution set and attribute that change to the multiplication of 

2x = 5 by x on both sides. Also, this task allowed all three participants demonstrated their 

ability to employ the implication structure to fluently relate equations using conditional 

language. 

Task 13. This task had two goals: generate additional evidence supporting 

conclusions reached in the previous tasks, and allow Edgar the opportunity to anticipate 

the change in the solution set when multiplying an equation by x. This task was 

successful in achieving both goals. I was able to elicit additional evidence that all three 
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participants reasoned about the truth value of equations without verifying solutions and 

instead related equations with multiplication and division. Edgar successfully anticipated 

the change in the solution set when relating 10x = 5 and 10x2 =5x. 

All three participants identified .5 as the common solution for all three equations 

by solving 10x = 5. Importantly, none of the participants verified by substitution into 

10x2 = 5x and10x3 = 5x2. They instead argued that the two equations generated by 

multiplying an equation by x must share the solution of .5. Isabel even made this 

assertion before identifying .5 as the common solution. When describing why 10x2 = 5x 

and 10x3 = 5x2 are equivalent, Isabel said, “They’re the same equation, but multiplied.” 

Similarly, Harry argued, “They’re the same equation, just different variations. You just 

multiply the equation or divide to get different versions of the equation.” 

Edgar successfully, on his own, identified 10x2 = 5x and10x3 = 5x2 as gaining zero 

as a solution. His work is shown in Figure 24. 

 

 

Figure 24. Edgar’s work for Task 13 

 

Unlike the previous two tasks, Edgar spontaneously, without my prompting, included 

zero in the solution sets for 10x2 = 5x and10x3 = 5x2. He explained his reasoning in the 

following exchange: 
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Julius: So, if one of them is true, are the others true? If one of them is false is the 
other false? What’s going through your mind? How are you trying to 
figure it out? 

Edgar: What I’m trying to do is solving the equation for C, and x would be .5. 
Julius: Okay. That’s equation C. What about equation A and B? 
Edgar: They’d be also .5, but then they’d also be zero. 
Julius: You don’t have a calculator. Tell me how you know they’re also .5. 
Edgar: Because you’re just multiplying B by x and then again for A. 
Julius: Okay. That’s how you did it, and that’s how you know the .5 is there. How 

do you know the zero is there now? Where did that come from? 
Edgar: I mean they’ll always be equal to zero, so both sides would be zero. 
Julius: Are you sure that it’s zero? Do you believe that it’s zero? 
Edgar: Yeah. 
Julius: Because I told you before or because you’re plugging in? 
Edgar: I’m plugging it in. 
Julius: Okay. Does it make sense that it’s zero, that all of a sudden there’s a zero? 

Can you explain why there’s a zero for these, but not this one? 
Edgar: Because if you plug in a zero for equation C, zero wouldn’t be equal to 

five. But if you plugged in for A and B, then both sides would be equal 
to zero. 

Julius: Is that a coincidence about this problem or is there something about what 
we did in this problem? Or you’re not sure? 

Edgar: It’s something we did with this problem. 
 
During this exchange, Edgar related the equations through multiplication. He argued that 

.5 is a common solution for all three equations. He recognized that both sides of         

10x2 = 5x and10x3 = 5x2, but not 10x = 5, are zero when x is zero. This allowed him to 

identify a change in the solution set for 10x2 = 5x and10x3 = 5x2. 

 Isabel articulated reasoning similar to Edgar’s. The following exchange shows 

how her reasoning was consistent with her reasoning from the previous tasks:  

Julius: And why are you so sure about what we were just saying? 
Isabel: Because I know that when you multiplied zero for these [10x2 = 5x and 

10x3 = 5x2] it’s still going to be zero equals zero, but if you put zero in 
here [10x = 5] it’s not going to work, and then one half works for all of 
them all the time. 

Julius: Okay, and then last question. If one of them is false, are the other ones 
false? 

Isabel: Yeah. Well no, because C [10x = 5] can be false, but zero for…so these 
two [10x2 = 5x and 10x3 = 5x2] might be true, but this [10x = 5] is false, 
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but if these [10x2 = 5x and 10x3 = 5x2] are false then this [10x = 5] is 
always false. 

Julius: C [10x = 5] would always be false? 
Isabel: Yeah. 

 
This exchanged further supported my previous conclusions that Isabel could anticipate a 

change in the solution set and employ the implication structure to relate equations. Harry 

similarly related the three equations. I asked him what he could conclude if 10x3 = 5x2 

was true. He replied, “B [10x2 = 5x] will always be true but C [10x = 5] will sometimes 

be true…because zero works on A and B [10x3 = 5x2 and 10x2 = 5x] but doesn’t work on 

C [10x = 5]. 

 In summary, this task gave participants the opportunity to reason about the truth 

value of equations analytically (through multiplication and division) without resorting to 

a verification strategy. Edgar benefited from a third opportunity to anticipate a change in 

the solution set; he was able to anticipate and justify the change on his own. In addition, 

all three participants continued to demonstrate their ability to employ the implication 

structure and fluently relate equations with conditional language. 

Summary of Phase III. The tasks used in Session 8 did not yield conclusive 

evidence supporting Harry’s ability to relate equations analytically. He often resorted to a 

verification strategy in which he substituted values into equations. As a result, I 

developed a new set of tasks to move participants away from a verification strategy and 

toward analytical arguments. These tasks specifically used sets of equations with two key 

features: an easily identifiable multiplicative scale factor between equations, and 

solutions that are onerous to verify without a calculator. All three participants were able 

to produce analytical arguments using the new tasks; a shift in language occurred in 
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which participants began explicitly referring to equivalent equations as the same. 

However, participants initially overgeneralized their argument to incorrectly reason that 

the multiplication of an equation by x produced an equivalent equation. Participants 

subsequently avoided this error when presented with a similar follow-up task. 

Phase IV: Post-Interview 

The fourth and final phase replicated the initial task-based interview in order to 

document changes in participants’ reasoning as a result of the teaching interventions. 

Taken together, four major shifts constituted participants’ new ability to reason about 

classes of objects and use conditional language when considering the truth value of 

algebraic equations. First, participants began describing a solution as a value that satisfies 

an equation instead of a result of a process. Second, instead of verifying solutions by 

substituting values, participants justified solutions by relating the truth value of equations 

generated from the solving process. This shift was particularly evident when participants 

described equations with no solution and infinite solutions. Third, participants adopted 

conditional language to describe the truth value of equations; they employed the 

implication structure to relate equations. Last, participants shifted away from searching 

for and verifying solutions (i.e., empirical strategies). Instead, they relied on deductive 

justifications – namely, operations that link equations – to reason about the preservation 

of, or changes in, the solution set. 

 The first shift occurred when participants moved away from referring to a solution 

as a result and instead started describing it as a value that makes an equation true. When I 

asked Harry about the solution for 4x + 1 = 9 during the initial task-based interview, he 
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said, “the answer is two.” Edgar similarly said, “I did it in my mind and got x equals 

two…four x equals eight and you divide both sides by four and what you end up with 

[emphasis added] is x equals two.” Participants’ initial responses did not consider truth 

value. When I prompted Edgar and Isabel to consider the truth value, they viewed 

equations with a single solution as always true. For example, Edgar said, “It’s always true 

because the x always equals two.” Harry specifically said, “You know it’s correct,” – not, 

the statement is true – when verifying a solution. Their initial view that equations are 

always true was tied to their process-based view of equations that required a correct, 

invariant result. 

 During the post-interview, I asked participants about the solution to 11 = 3x – 1. 

In addition to describing the solution as a value that satisfies the equation, participants 

also articulated that non-solutions do not. In other words, participants began to view 

equations in terms of truth value instead of prompts to obtain a result. This was evident 

from Edgar’s response describing the solution. He said, “It’s sometimes true…because if 

it’s four, then yeah, it’d be true, but if it’s another number other than four, then it’s false, 

so it’s sometimes true.” In a similar manner, Harry responded, “Only when x is four. 

Sometimes true, sometimes false.” These comments indicate participants came to view 

equations as statements with truth value and solutions as values that satisfy equations. 

 The second shift was marked by a change in how participants sought to increase 

certainty. They initially verified solutions by substitution into the original equation (i.e., 

the check step) and did not attend to the truth value of the intermediate equations 

generated from the solving process. For example, Isabel said, “Well, you can check it. 

You plug back into the [original] equation.” Harry similarly said, “Because if you plug in 
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the answer you got instead of x and you do the equation [evaluate]…you know it’s 

correct.” These comments demonstrate that participants viewed solutions as values that 

make the original equation true. However, they did not relate the preservation of the 

solution to their solving process. Participants only verified that the solution satisfied the 

original equation and made no mention that each equation generated from the solving 

process was also satisfied. 

During the post-interview, however, participants recognized that each equivalent 

equation resulting from the solving process was satisfied by the solution. Harry’s 

justification for the solution to 11 = 3x – 1 saliently illustrates this point. 

Julius: How do you know? 
Harry: Because if you plug into any of the other equations, it would make it true 

as well. 
Julius: How do you know that’s the case here that if one true, the others are true? 
Harry: Because, they’re both the same equation, they’re just in different numbers. 

Harry’s responses includes two critical choice of words. First, his use of the phrase 

“make it true” instead of “correct” demarcates the first shift previously described. 

Second, he verified by substituting into “any of the other equations,” not just the original. 

His phrase, “the same equation,” alludes to the fact that the solving process generated 

equivalent equations (i.e., persevered the solution set). This exchange highlights the 

second shift: the notion that all equations have truth value, not just the original equation 

presented. 

 The shift to assigning a truth value to all equations generated from a solving 

process was particularly evident when participants reasoned about equations that were 

always false or always true. During the initial task-based interview, Edgar made an 

argument based on the form of the equation: “Because I did minus x on both sides and 
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then took out the x completely and one equals the two so that would be no solution.” In 

other words, Edgar argued that since there was no x in the resulting equation, there was 

no solution. During the post-interview, Edgar made an argument relating the truth value 

of equations to conclude x + 2 = x + 3 has no solution (Figure 25). 

 

 

Figure 25. Edgar related the truth value of equations 

 

Julius: Now, x plus two equals x plus three, what can you tell me about the 
solution to that equation? 

Edgar: Yeah. So zero equals one. 
Julius: So what can you tell me about the solution? 
Edgar: It’s false. 
Julius: It’s false. So what’s false? 
Edgar: Zero is not equal to one. 
Julius: Okay. And what about the original equation, x plus two equals x plus 

three? 
Edgar: It’d be false, because if this is false, the other one is. 
Julius: You just pointed to something. I asked you if x plus two equals x plus 

three, and then you said? 
Edgar: If this one’s false [0 = 1], then this one [x + 2 = x + 3] has to be false, 

because zero isn’t equal to one. 

Edgar’s argument that there is no solution not only includes a reference to truth value, the 

truth value of an equation (x + 2 = x + 3) is now predicated upon the truth value of 

another equation (0 = 1) generated from his solving process. 
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Isabel also shifted her argument to similarly relate the truth value of equations. 

She initially made an empirical argument to argue x + 1 = x + 2 is always false: “Because 

I can tell them to try to plug in a number and I can show them that there’s no way that it 

would work. No matter what number they tried, it would still come out to no solution.” In 

the post-interview, Isabel said, “There’s no solution…because after you solve it you get 

zero equals one, and that’s not true.” Harry similarly said, “It’s false for any value of 

x…it goes for both [equations].” In a change from their responses to the initial task of     

x + 1 = x + 2, all three participants argued during the post-interview that x + 2 = x + 3 has 

no solution because a related equation is always false. 

Participants also shifted their justifications to include the truth value of related 

equations during the post-interview when they argued that 3x = x + x + x is always true. 

Previously, Harry used an empirical strategy and verified potential counterexamples 

when he argued that 2(x + 1) – 2 = 2x has infinite solutions. He said, “I was trying to 

think of a number that it wouldn’t work for.” During the post-interview, Harry based his 

argument in the truth value of a related equation: “It’s always true because 0 = 0.” Edgar, 

too, shifted his justification to include the truth value of a related equation. In the initial 

task-based interview, similar to his argument for x + 1 = x + 2, he argued                      

2(x + 1) – 2 = 2x has no solution because a resulting equation did not include x. Edgar 

said there was no solution because “I’m used to seeing x equals a number.” During the 

post-interview, he connected his solving procedure to the truth value of the equivalent 

equations: “Let me just solve it. And then you take away 3x on both sides. Zero would be 

equal to zero. When you solve this, x could be anything.” 
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The shift to considering the truth value of related equations engender another 

shift: the adoption of conditional language and the implication structure. Conditional 

language first appeared when participants described solutions and non-solutions in terms 

of truth value. For example, Edgar said, “This can be sometimes true, because it [x] can 

be four-fifths, but if [emphasis] it’s zero, then it would be false.” Likewise, Isabel said, 

   If you plug four over five back into any of these [equations] it would work, and 
if you plug zero into [equations] A or B, then that would work, too. But for 
[equations] C and D, if you plugged in zero, then it wouldn’t work. 
 

After participants adopted conditional language to relate a value (i.e., a solution or non-

solution) to the truth value of an equation, they proceeded to adopt the implication 

structure to relate equations. Harry, for example, said, “If [equation] A is true, then 

[equation] B is true, and [equation] C is always false.” Edgar and Isabel responded with 

similar language when relating equations. Importantly, all three participants differentiated 

between a conditional statement and its converse. 

 The final shift occurred when participants related equations with absolute 

certainty as a result of deductive, not empirical, justifications. Even though participants 

related equations by comparing solution sets, they initially were not certain they reasoned 

with the correct sets. For example, I asked Isabel if she was sure that 4x + 2 = 6 did not 

have a second solution. She replied, “There probably isn’t. There might be.” In the post-

interview, uncertainty was eliminated as a result of participants’ ability to use deductive 

justifications to link equations and corresponding solution sets. Edgar’s work (Figure 26) 

shows his deductive construction of the solution sets. 
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Figure 26. Edgar related equations with multiplication 

 

In the following exchange, Edgar explains that he certain four-fifths is a solution to all 

equations because they are linked with multiplication. 

Julius: When we talk about the solution to the original equation [5x3 = 4x2], is 
there another solution besides zero? 

Edgar: Yeah, four-fifths. 
Julius: So tell me why you say that or how you know. 
Edgar: Because it’s the same thing, you’re just multiplying it [the equation] by x. 

Isabel similarly said, “Because I got it down to this equation. When I solved it I got x 

equals four over five. These [equations] are just times x.” Although participants 

previously compared solutions sets to relate equations, these episodes illustrate the final 

shift of relating equations and corresponding solution sets with operations. The 

construction of solution sets through deductive, not empirical, justifications allowed 

participants to relate equations and reason about solution sets with certainty. 
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Answer to Second Research Question 

Can students learn to reason about classes of objects and use conditional language 

when considering the truth value of algebraic equations? If so, how? 

Yes. During the teaching experiment, participants came to reason about classes of 

objects and use conditional language by progressively adopting four key understandings. 

First, equations are mathematical sentences that have truth value; the solution describes 

when an equation is true. Second, equations are either universally true (always true), 

universally false (never true), or conditionally true (sometimes true). Third, equations 

generated during a solving process, not just the original equation, have truth value – any 

pair of equations can be related using the implication structure. Last, the operations 

between equations determine whether or not the solution set is preserved. 

First, participants came to understand that equations are mathematical sentences 

with a truth value. This required a shift from process-based to object-based view 

(Dubinsky & McDonald, 2001; Sfard, 1991). In a process-based view, equations are 

prompts to execute procedures, and solutions are results or answers. As a mathematical 

objects, equations convey information about the solution set without necessarily invoking 

a process. To facilitate this shift, rather than asking participants to solve for x or find the 

solution, I instead simply asked, “True or false?” This brought the relational nature of the 

equals sign into focus. The solution became the object that determines truth value. 

Second, participants developed the understanding that equations are always, 

sometimes, or never true. This required a shift from generalized arithmetic to functional 

algebra (Sfard & Linchevski, 1994). With a functional view of algebra, participants came 

to see expressions as generators of infinite sets instead of a representation of a specific, 
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unknown number. When participants used all real numbers as the replacement set, they 

recognized an equation was always true when the equation was an identity. Participants 

were then able to identify conditionally true equations (i.e., equations with a finite 

solution set) as sometimes, not always, true. 

To shift participants to a functional view of algebra, I presented an expression and 

asked, “How many numbers do you see?” I started with an expression that can be used to 

generate a times table (e.g., 5x) before using other expressions (e.g., x – 4). If participants 

did not immediately identify the expression as a generator of an infinite set, I elicited a 

functional view of algebra by asking if they thought a classmate might answer differently. 

5x can either represent two numbers (the process of multiplying), one number (the 

product), or an infinite number of numbers (the infinite set of numbers generated by 

multiplying any real number by 5). Recognizing 5x as a representation of an infinite set is 

contingent upon a functional view of algebra. With a functional view of algebra in place, 

I then elicited the distinction between equations that are universally and conditionally 

true. When participants claimed an equation was always true, I verified this 

understanding by asking, “Always?” and, “Are there any values that make it false?” 

Third, participants eventually understood that every equation generated during a 

solving process, not just the original, has truth value. Further, they used the implication 

structure to relate equations. With their functional view of algebra, participants 

differentiated between propositional and predicate calculus and expressed their reasoning 

about necessary and sufficient conditions (Dubinsky, 1991; Durand-Guerrier, 2003). For 

example, the statement, “if x3 = 4x, then x2 = 4” is true as a proposition when x = 2. With 
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a predicate view, however, the statement is false (x3 = 4x does not imply x2 = 4 because if 

x3 = 4x is true, x2 = 4 is not necessarily true). 

To engender this shift, I presented multiple equations and asked, “If this equation 

is true, then is this equation true or false?” I followed-up by asking, “Always?” to ensure 

a predicate, not propositional, interpretation of implication statements. I also followed-up 

by rephrasing question in the form of the converse. I used pairs of equations with 

identical solution sets as well pairs where one solution set was a subset of the other. This 

allowed participants to internalize the nature of the converse. 

Last, participants learned that the preservation of a solution set depends on the 

operations that link equations. This is consistent with an analytical proof scheme (Harel 

& Sowder, 1998) because participants learned to transform equations with goal-oriented 

operations while anticipating the result. In other words, participants were certain the 

solution set was or was not preserved without having to verifying solutions. 

To move participants away from the empirical construction of a solution set to an 

analytical approach, I prompted participants with sets of equations that had an easily 

identifiable multiplicative scale factor but solutions that were onerous to verify without a 

calculator. For example, 11x = 50 and 22x = 100 are equivalent because they share a 

common solution. Instead of solving each equation and comparing solutions, participants 

relied on the deductive justification that 11x = 50 and 22x = 100 must have the same 

solution set because one equation can be transformed into the other. I included instances 

where an operation does not preserve the solution set. In particular, I used equations 

related by a multiple of x (e.g., x = 2 and x2 = 2x) to elicit that the solution set is not 

always preserved because zero can be gained or lost as a solution. 
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Stage 3: Task-Based Interview #2 

The following results concern the relationship between an arbitrary quadrilateral 

and the internal quadrilateral (namely, a Varignon Parallelogram) formed by connecting 

the midpoints of the initial quadrilateral. Participants used dynamic geometry software 

(i.e., Geogebra) to explore this relationship; I include images of participants’ work that 

illustrate their reasoning. In this next section, I report the relevant results in three 

subsections. First, I describe participants’ reasoning for the first part of the Varignon 

Parallelogram task in which they attempted to determine which external quadrilaterals 

form a Varignon Rectangle. Next, I describe how participants reasoned about the 

converse of the first task (i.e., given a Varignon Rectangle, what is necessarily true about 

the external quadrilateral?). Last, I answer the third research question. 

Similar Shapes as a Class of Objects 

During the first part of the task, participants were asked to identify quadrilaterals 

that form a Varignon Rectangle. In their responses, all three participants recognized 

similar shapes as a class of objects. They specifically articulated similar shapes would 

share the property of forming a Varignon Rectangle. For example, Isabel said, “If you 

made it bigger or smaller, it’s the same thing…everything would be the same, there’d still 

be a rectangle.” Harry similarly said, “It does the same thing as this one because you can 

just make this [the external quadrilateral] bigger and it’ll still be a square.” Harry’s use of 

the phase, “it does the same thing,” communicates his view of invariant properties – 

including the preservation of the Varignon Rectangle inside the square. Edgar made 

similar comments and specifically mentioned an invariant property when reasoning about 
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similar shapes. When I asked Edgar why he thought different size squares would still 

produce a Varignon Rectangle, he responded, “Because all sides of the [external 

quadrilateral] are the same, so since all sides are the same, the internal would be the same 

thing.” 

Participants did not identify all possible quadrilaterals that form a Varignon 

Rectangle. In addition to squares, kites and rhombuses form Varignon Rectangles 

because they also have perpendicular diagonals. None of the participants identified kites 

or rhombuses. Furthermore, non-special quadrilaterals with perpendicular diagonals also 

form Varignon Rectangles. Only Harry identified a non-special quadrilateral as 

containing a Varignon Rectangle (Figure 27). 

 

 

Figure 27. Harry’s non-special quadrilateral containing a Varignon Rectangle 

 

Describing a New Class of Objects 

Participants identified a sufficient condition (the external quadrilateral is a square) 

for Varignon Rectangles without identifying the necessary condition (perpendicular 

diagonals). The second part of the task was designed to elicit participants’ reasoning 
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about this distinction. Since Edgar and Isabel initially only identified a square as 

containing a Varignon Rectangle, asking them if a Varignon Rectangle requires an 

external square enabled me to evaluate their understanding of the implication structure 

and ability to avoid a converse error. Even though Harry identified a non-special 

quadrilateral as containing a Varignon Rectangle, he did not identify the underlying 

property of perpendicular diagonals. The second part of the task allowed him to identify 

additional non-special quadrilaterals and describe them as a set. 

 All three participants identified the class of objects that form a Varignon 

Rectangle: quadrilaterals with perpendicular diagonals. Participants, however, did not 

explicitly articulate this property. Rather, they used empirical evidence and inductive 

reasoning to construct the set. This is illustrated in the following exchange with Isabel. 

Julius: Do you notice anything else?  
Isabel: It makes a line. If you pull these [vertices] all out the same way you pull 

those out, it’d keep working. 
Julius: You say you pull those out. What are you pulling out the same way? 
Isabel: You see, I’m keeping it [the vertex] on this line, so I did that same line 

with these two. 
Julius: With points B and D, right? 
Isabel: Yeah, if I tried to drag that one out, it would still work. Any of these, if I 

dragged them in or out and I kept them on the line, it would work. 

Isabel noticed that the vertices trace out a line along the diagonals when the Varignon 

Rectangle is persevered. Her construction of the class of objects was based on verifying 

multiple cases and is shown in Figure 28. 
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Figure 28. Isabel moved vertices to empirically identify a class of objects 

 

Edgar was also able to empirically construct the class of quadrilaterals. In Figure 

29, he moves a vertex along the diagonal to identify external quadrilaterals containing a 

Varignon Rectangle. 

 

 

Figure 29. Edgar tested multiple cases to identify the class of objects 
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Edgar experimented with a number of quadrilaterals before discovering that those along 

the diagonal produce Varignon Rectangles. Even though Edgar did not verbalize this 

class of objects, he immediately used this property to identify additional quadrilaterals 

when moving another vertex (Figure 30). 

 

 

Figure 30. Edgar immediately moved vertex B along the diagonal 

 

The fact that Edgar moved vertex B directly along the diagonal demonstrates that he 

realized the necessary location of a vertex in order to maintain a Varignon Rectangle. 

 Harry also identified the class of quadrilaterals that produce a Varignon 

Rectangle. Figure 31 shows that Harry tested a number of instances before discovering 

the set of quadrilaterals along the diagonals. 



176 

 

 

Figure 31. Harry eventually identified the quadrilaterals along the diagonals 

 

Harry was able to describe the class of quadrilaterals: “Well, they [the vertices] end up on 

like specific points on the line [diagonal].” Harry’s set of quadrilaterals, like Edgar’s and 

Isabel’s, was constructed empirically. Harry, however, explicitly acknowledged the 

empirical nature of his set. He said, “Well, just like the pattern was working, so I kept 

going.” 

Even though participants empirically constructed the class of objects, it did not 

constitute an empirical proof scheme. Participants maintained a disposition of doubt and 

did not reach absolute certainty. For example, even though Harry explicitly used a 

pattern, he did not reach absolute conviction: “I’m not really sure [emphasis added] if the 

pattern [along the diagonal] would always [emphasis original] work.” Isabel was 

similarly not absolutely certain she had found all possibilities and said, “I don’t know 

how to find it but there probably is more shapes that have an internal rectangle.” I asked 

Edgar if he would believe a classmate who claimed there were no additional 

quadrilaterals. He replied, 
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   Well, since I already see here that there can be multiple shapes, I’d try to 
discuss with them saying that oh, we’ve already tried this, there is multiple 
shapes. Yes, maybe yours may work, but there’s still other shapes that may work 
[emphasis added] as well. 
 

Edgar, too, was not absolutely certain that his empirically constructed class of objects 

included all possibilities. 

In addition, participants did not demonstrate empirical proof schemes because 

they sought to identify properties that would explain the patterns. When I asked Isabel 

why she thought the diagonal produced Varignon Rectangles, she said, “There is a reason 

for it. I don’t know what. Maybe certain angles on the pink one [external quadrilateral] 

could make the 90 degrees angles on the inside [quadrilateral].” Edgar made a similar 

attempt to explain the relationship and said, “The big one [external quadrilateral] might 

have to be in a specific angle.” Harry specifically articulated that the external 

quadrilateral did not need to be a special quadrilateral: “Well, it’s not a specific shape 

[emphasis added], but like, it can be any shape that works to make a blue [interior] 

rectangle.” 

Answer to Third Research Question 

Are students who reason conditionally about solution sets also able to reason 

about classes of geometrical objects? 

Yes. Participants articulated similar figures as a class of objects and used 

similarity to justify their claims. They identified quadrilaterals with perpendicular 

diagonals as a class that forms Varignon Rectangles. In doing so, participants 

distinguished between necessary and sufficient conditions. This allowed participants to 
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correctly employ the implication structure; they successfully discriminated a conditional 

statement from its converse. 

 Although participants constructed the set of quadrilaterals with perpendicular 

diagonals empirically, they were aware of the limitation of their reasoning and did not 

reach absolute certainty. They sought out analytical reasons but were limited by their lack 

of geometrical knowledge. Participants were inclined to reason about individual shapes 

vis-à-vis their membership in a class of objects. Consistent with a deductive argument, 

they specifically described the need for the construction of the set to be based on 

properties. 
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In this final chapter I draw conclusions from the study. First, I summarize the 

study and its principal findings. Then, I discuss the implications of these findings for both 

pedagogues and researchers. Next, I acknowledge the limitations of the study. Finally, I 

suggest a few directions for future research. 

Summary 

The purpose of this qualitative study was to describe the role of truth value and 

the solution set in supporting the development of the ability to reason about classes of 

objects and use conditional language. To support this goal, the study adopted Harel and 

Sowder’s (2007) framework to identify the proof schemes that students use when 

justifying solutions to equations. I specifically aimed to answer the following research 

questions: 

1. How do proof schemes differ, if at all, when students justify solutions to 

different types of algebraic equations? 

2. Can students learn to reason about classes of objects and use conditional 

language when considering the truth value of algebraic equations? If so, how? 

Chapter V  

CONCLUSIONS 
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3. Are students who reason conditionally about solution sets also able to reason 

about classes of geometrical objects? 

I conducted a series of task-based interviews (Goldin, 2000) to answer the first 

research question. To do so, I first identified a pool of prospective participants at a large, 

suburban high school. Only freshmen enrolled in Algebra I were considered (i.e., I 

excluded accelerated students). I then culled a homogenous set of potential participants in 

the sense that they could all solve two-step equations, use the distributive property, 

simplify algebraic expressions, and evaluate exponents. Drawing from the pool of 

potential participants, I conducted interviews with one participant at a time until data 

saturation was reached (Lincoln & Guba, 1985). To uncover participants’ proof schemes, 

I determined how participants ascertained (convinced themselves) and persuaded (would 

convince their classmates) when justifying solutions to equations (Harel & Sowder, 2007; 

Weber & Mejia-Ramos, 2015). During the interview, I presented a range of equations, 

one at time, to determine proof schemes. The prompts progressed from familiar equations 

with one solution to equations participants were less familiar with (equations with 

multiple solutions, infinite solutions, and no solution). 

Next, I carried out a teaching experiment (Steffe & Thompson, 2000) to answer 

the second research question. After conducting the first set of task-based interviews, I 

selected three participants to also participate in the teaching experiment. The participants 

were selected because they primarily relied on empirical proof schemes when justifying 

solutions during their task-based interview. Empirical proof schemes are problematic 

because even though students often adopt empirical arguments, they do not constitute 

valid mathematical proof (Harel & Sowder, 2007; Weber, 2008). The purpose of the 
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teaching experiment was to determine how students can adopt set-based reasoning and 

conditional language when considering the truth value of equations – that is, how 

students can move away from empirical arguments and toward deductive justifications. 

Last, I conducted an additional set of task-based interviews to answer the third 

research question. These task-based interviews were conducted with the three participants 

who completed the teaching experiment. I aimed to determine if they would continue to 

seek out deductive justifications and maintain a disposition of doubt toward empirical 

evidence in a geometrical context. The task prompted participants to reason about the 

relationship between Varignon Parallelograms (see Figure 32) and Varignon Rectangles 

(see Figure 33). 

 

 

Figure 32. A Varignon Parallelogram 

 

A Varignon Parallelogram is formed by connecting the midpoints of the four sides of any 

quadrilateral. A Varignon Rectangle is formed when the external quadrilateral has 

perpendicular diagonals. Since certain classes of quadrilaterals (i.e., squares, rhombi, and 

kites) form Varignon Rectangles, the task provided participants the opportunity to 
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demonstrate set-based reasoning while distinguishing between a conditional statement 

and its converse. 

 

 

Figure 33. A Varignon Rectangle 

 

Additionally, the task was presented using dynamic geometry software to provide the 

temptation for participants to consider many cases and adopt empirical arguments. 

Results 

I conducted twelve task-based interviews to address the first research question. 

Almost all participants displayed more than one proof scheme. A majority displayed 

ritualistic proof schemes and about half displayed empirical proof schemes. Participants 

did not employ deductive justifications to reach absolute certainty. Proof schemes varied 

depending on whether or not participants were familiar with the equation. They 

recognized 4x + 2 = 10, 4x + 1 = 9, and 7x + 1 = 3(x + 3) as routine. They were less 

familiar or completely unfamiliar with equations with no solution (x + 1 = x + 2), 
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multiple solutions (x2 = 4 and x3 = 4x) and infinite solutions (2(x + 1) – 2 = 2x). Also, 

participants were generally unfamiliar with x = 2 and 1x = 2x and struggled to identify 

correct solutions. 

The majority of participants used ritualistic proof schemes when reasoning about 

solutions to familiar equations. Participants who predominately used ritualistic proof 

schemes viewed equations as prompts to execute processes and solutions as results, or 

“answers.” Their certainty was rooted in the familiarity of the process; the expected form 

of the solution, x equals a constant, was critical to achieve absolute certainty. Although 

some of these participants displayed empirical proof schemes when confronted with 

unfamiliar equations, most participants were limited by their reliance on rituals and either 

failed to achieve absolute certainty or were absolutely certain about an incorrect 

conclusion. A few participants displayed authoritative proof schemes when they asserted 

that a teacher or trusted classmate was necessary to be absolutely sure. 

Some participants relied on an empirical proof scheme – verification through 

substituting values – to achieve absolute certainty for familiar equations. When 

participants considered empirical evidence, they were only concerned with the truth value 

of the original equation presented. Moreover, they did not consider the truth value of each 

equation generated by their solving process, and as a result, did not use deductive 

justifications to link equivalent equations or examine the preservation of the solution set. 

Some participants also displayed empirical proof schemes for unfamiliar equations. 

When reasoning about equations with no solution or an infinite number of solutions, 

some participants searched for a counterexample by verifying an arbitrary number of 

values. They reached absolute certainty after failing to identify a counterexample. On a 
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few occasions, participants also verified an arbitrary value with a crucial experiment 

(Balacheff, 1988). The value verified, although not actually representative of all 

possibilities, was viewed as such by participants. 

When addressing the second research question, I found that participants learned to 

reason about classes of objects and use conditional language by progressively adopting 

four key understandings. First, instead of simply seeing equations as prompts to execute 

procedures and obtain a result, participants came to see equations as mathematical 

sentences that have truth value. That is, participants began to transition from a process-

based view to an object-based view of equations (Dubinsky & McDonald, 2001). I 

facilitated this shift by bringing the relational nature of the equals sign into focus – I 

asked, “True or false?” and followed up with “Always?” 

Second, participants’ view of equations transitioned from generalized arithmetic 

to functional algebra (Sfard & Linchevski, 1994). With their initial view of generalized 

arithmetic, participants were prevented from reasoning conditionally because they 

insisted that x only represents a single value and as a result equations (e.g., 4x = 8) are 

always true. Participants accommodated the view of functional algebra after I prompted 

them with expressions (e.g., 5x) and asked, “How many numbers do you see?” This 

allowed them to see expressions as both representations of a single, unknown quantity as 

well as functions that generate an infinite set of values. As result, they could discriminate 

between equations that are always true and conditionally true. 

Third, participants began to use the implication structure to relate the truth value 

of one equation to another. Once participants saw equations as statements that can be 

sometimes true, they were able to relate an instance in which one equation is true to the 
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truth value of another equation. In order to have participants adopt the implication 

structure, I specifically asked, “If this equation is true, then is this equation true or false?” 

I always followed up by asking if it was always true (or false) and by reformulating the 

question in terms of its converse. This line of questioning afforded participants the 

understanding that all equations generated during the solving process have a truth value 

and can be related using conditional language. Their success at this stage was also 

marked by correctly identifying equations with no solution or an infinite number of 

solutions. 

Last, participants realized that the preservation of the solution set is dependent on 

the operations that link equations. When initially relating the truth value of equations 

using the implication structure, participants constructed their solution sets empirically. As 

a result, the form of their reasoning was correct, but since they relied on a “search and 

verify” strategy, they often reasoned with incomplete sets and reached erroneous 

conclusions. In order to have participants adopt an analytical approach that included all 

possibilities, I presented pairs of equations that had an easily identifiable multiplicative 

scale factor (e.g., 11x = 50 and 22x = 100) but solutions that were onerous to verify 

without a calculator. In the end, participants transformed equations with goal-orientated 

operations while anticipating the result. In other words, consistent with an analytical 

proof scheme (Harel & Sowder, 1998), they employed deductive justifications to achieve 

absolute certainty. 

In addressing the third research question, I found that participants demonstrated 

set-based reasoning and used conditional language in a geometrical context. They 

identified similar figures as a class of objects and used similarity to justify claims. They 
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also identified quadrilaterals with perpendicular diagonals as a class of objects that form 

Varignon Rectangles. While recognizing that certain special quadrilaterals and arbitrary 

quadrilaterals with perpendicular diagonals form Varignon Rectangles, participants 

differentiated between necessary and sufficient conditions. Participants efficaciously 

employed the implication structure to communicate the relationship between the set of 

quadrilaterals with perpendicular diagonals and the subset of special cases. They 

specifically discriminated between a conditional statement and its converse. 

However, using the multitude of cases produced by the dynamic geometry 

software, participants constructed the set of quadrilaterals with perpendicular diagonals 

empirically. They seemed to lack the necessary geometrical knowledge to produce 

deductive justifications. Nonetheless, they acknowledged the limitations of their 

reasoning and did not reach absolute conviction – they did not use empirical proof 

schemes. Participants identified and reasoned about individual objects through their 

membership in a class of objects. Akin to a deductive argument and analytical proof 

scheme, they specifically cited the need for membership in the class to be predicated on 

shared properties. 

Implications for Pedagogues 

This study has several implications for teaching, particularly the teaching of 

secondary algebra and geometry. First, the data show that students develop conceptions 

of proof in algebra before learning to formally write proofs in geometry. Even though 

participants were not asked to prove statements or write proofs, they did reach absolute 

conviction on numerous occasions. It was clear they considered their ritualistic, 
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authoritative, and empirical arguments – arguments that are not mathematically valid – to 

constitute proof. This is significant for the teaching of formal proof, especially in a 

secondary geometry class where proof is typically first introduced. If students do not 

have experience with or see the need for deductive arguments, they will likely struggle to 

adopt the aim of writing formal proofs to demonstrate deductive justifications (Dawkins 

& Weber, 2017). 

In addition, the large portion of participants demonstrating ritualistic or 

authoritative proof schemes suggests that many students will arrive in their geometry 

classes with the expectation of being told how to write proofs, rather than learning to 

construct arguments on their own (Harel & Sowder, 1998). Secondary geometry teachers 

would be well served to acknowledge students’ previous experiences ascertaining or 

persuading with non-deductive arguments. Before setting out to have students write 

formal proofs, teachers should plan interventions in which students reach absolute 

certainty through deductive justifications and come to embrace the role of deduction in 

mathematical argumentation. 

A second implication of the study is that solving equations is a viable context to 

develop students’ sense of proof. This is noteworthy because this occurs in algebra, 

typically prior to any formal proof experiences. Developing student ability to employ 

deductive justifications before writing formal proofs would likely increase their success 

writing proofs (Senk, 1989). The teaching experiment illustrates a possible trajectory to 

support the development of deductive arguments while solving equations. In particular, 

the development of a functional algebra understanding was a critical piece of the 

instructional sequence. This study provides further evidence that the development of a 
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functional algebra view does not require the teaching of functions in the traditional sense. 

In fact, it can be developed as early as elementary school (Chimoni, Pitta-Pantazi, & 

Christou, 2018). Teachers should approach expressions, equations, and germane pre-

algebra content with this in mind and seek out opportunities to have students see 

expressions as more than just generalized arithmetic. 

A third implication of this study is that “How certain are you?” and “True or 

false?” are valuable questions to build models of student understanding. These questions 

can reveal misconceptions that might otherwise go unnoticed. For example, some 

participants correctly claimed x + 1 = x + 2 had no solution. It was only because I 

followed by asking whether or not they were certain did they reveal their erroneous 

reasoning (e.g., the equation has no solution because there is no x). Asking “True or 

false?” can also uncover pertinent understandings that could be leveraged to further 

student knowledge (e.g., a relational view of the equal sign or a functional view of 

algebra).  

Epp (2003) asserted that students need experience with logic prior to formal proof 

writing. Another indication of this study is that students can gain useful experience with 

the implication structure without using truth tables and prior to writing proofs in 

geometry. Moreover, solving equations provides an opportunity to develop conditional 

language that is already part of most, if not all, algebra curricula. Students can internalize 

logical structures when the mathematics motivates the careful consideration of the 

meaning of the logical words we use (Dawkins & Cook, 2016). Algebra teachers would 

make a significant impact on student readiness to read and write proofs by highlighting 

the implication structure as students learn to solve equations. This is especially true for 



189 

 

solving procedures that generate extraneous solutions or “lose” solutions because they 

illustrate the distinction between conditional and biconditional statements. 

Implications for Researchers 

There are three significant implications of this study for the research community. 

First, the teaching experiment addresses the call for research “on the road to proof” 

(Stylianides, Bieda, & Morselli, 2016). It provides an example of a type of study that 

could be conducted to identify other instructional tasks that also advance the call for 

research in this domain. In addition, the study illustrates that research on the foundation 

of proving ability is twofold: articulating the knowledge needed prior to formal proof 

instruction, and identifying propitious mathematical content to situate the learning of this 

knowledge. This study addresses the latter. Students can internalize the implication 

structure in algebraic contexts and without explicit instruction in logic and truth tables. 

Additional content could be examined to identify further opportunities to increase student 

familiarity with logical structures prior to their formal proof experiences. 

Second, this study bolsters the case of Weber and Mejia-Ramos (2015): 

Researchers investigating proof schemes should attend to participants’ level of 

conviction. My data illustrate that the distinction between absolute and relative 

conviction is relevant in ascertaining proof schemes. The study also supports the idea that 

students may consider one type of evidence to increase their conviction but rely on 

another type of evidence to reach absolute conviction. Moreover, their consideration of 

non-analytical evidence might not engender absolute certainty – students who employ 

empirical justifications do not necessarily use empirical proof schemes. Future research 
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on mathematical argumentation should bear in mind that the use of empirical evidence 

does not always constitute a misconstrued sense of proof. 

Third, this dissertation illustrates that studies take place in the context of ongoing 

conversations within the research community. In particular, I learned that these 

conversations do not pause while one collects data and processes results. From the time I 

reviewed literature to the time I synthesized my results, a number of articles related to 

proof were published. A few of these, were they published earlier, would have altered my 

perspective during my study. For example, Czocher and Weber (2020) offered a new 

paradigm to conceive of proof: proof as a cluster category, instead of a classical category. 

Their framework, while not directly at odds with Harel and Sowder’s (2007) 

classification structure, would have influenced my approach delineating components of 

participants’ arguments. Another recent publication drew attention to the role of 

representation systems in demarcating convincing arguments from explanatory arguments 

(Lockwood, Caughman, & Weber, 2020). With this in mind, I would have identified 

whether participants’ arguments varied given opportunities to use different 

representations. These recent developments highlight the need for researchers to forge 

relationships with their colleagues in order to remain abreast of research underway and 

the current direction of their field. 

Limitations of the Study 

One should consider the findings of this study with its limitations in mind. The 

first limitation of this study is that my interpretations as a researcher influenced both the 

collection and analysis of the data. My 14 years of experience as an educator in 
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secondary classrooms impacted my perspective when constructing tasks, considering 

potential responses, evaluating responses to create models of participants’ 

understandings, and effecting the development those understandings. Another researcher 

with a different set of experiences would likely approach the situation differently – the 

study provides only one example of how to ascertain the proof schemes of algebra 

students. Likewise, the teaching experiment is just one possible example of how students 

can learn to reason about classes of objects and use conditional language; it is possible 

another researcher with a different lens could develop another possible learning 

trajectory. Nonetheless, my experiences shaped the data analysis only to a point. It is 

reasonable to assume another researcher with experiences similar to mine would arrive at 

similar conclusions from my data because my analysis was constrained by the coding 

process (Strauss & Corbin, 2015). 

The second limitation of this study is that the population of participants did not 

include accelerated students. I endeavored to increase knowledge about typical Algebra I 

students and excluded students who completed Algebra I in middle school. It is possible 

that accelerated students employ proof schemes differently. In particular, they might use 

deductive justifications to reach absolute certainty or rely on ritualistic or authoritative 

proof schemes less often. Additionally, the learning progression identified in answering 

the second research question applies specifically to the three participants who completed 

the teaching experiment. One cannot assume that other students would necessarily 

respond in the same way. The teaching experiment simply identified one example of 

students adopting set-based reasoning and employing conditional language; it is intended 

to serve as a model when identifying other possible learning trajectories. 
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The third limitation of this study is that the geometry task used to answer the third 

research question did not require a written proof. An underlying aim of the study was to 

improve participants’ set-based reasoning in order to better support their facility with 

proof. Although the task elicited participants’ ability to reason about classes of 

geometrical objects and highlighted their adroitness with conditional language, it did not 

require a written argument similar to what students might be asked to produce or evaluate 

in a classroom setting. Additionally, participants benefited from the multitude of cases 

generated by the dynamic geometry software. Their ability to recognize and describe the 

class of Varignon Rectangles might not necessarily be the same in a classroom that does 

not utilize similar software. 

Future Directions 

This study naturally engenders a number of directions for additional research. 

First, another study should attempt to replicate the answer to the first research question at 

another research site. In many ways, the site in the study is a typical high school; one 

would expect similar results at similar sites. Likewise, future research at dissimilar sites 

could address whether certain factors (e.g., demographic makeup, curriculum enacted, 

etc.) lead to different results. Additionally, it would be of particular interest to conduct 

the study with a population of accelerated students. Students are purportedly accelerated 

because of their mastery of previous content and advanced understanding. One could 

compare accelerated students to their non-accelerated peers to determine the extent to 

which accelerated students use deductive justifications to reach absolute conviction – are 

they less reliant on ritualistic, authoritative, or empirical proof schemes? 
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A second direction for future research is to conduct additional teaching 

experiments that identify other contexts in which students can learn to reason about 

classes of objects and employ conditional language. Solving equations is just one context 

where students can internalize the implication structure; students would benefit from 

multiple opportunities across a variety of content to build fluency with conditional 

language. Furthermore, future research should investigate the feasibility of implementing 

the results of the teaching experiment on a larger scale. The answer to the second 

research question outlined a learning progression that allowed participants in this study to 

adopt set-based reasoning and use conditional language. Since a classroom is different 

from the environment of this study, testing out the learning progression in a typical 

instructional setting would be an appropriate next step. 

Third, another study should examine whether or not students transfer their 

analytical proof scheme for algebra content to tasks typical of a geometry class. The task 

used to answer the third research question only examined participants’ ability to reason 

about classes of objects and use conditional language; it did not require the construction 

of a written proof. Future study should specifically examine student ability to apply their 

familiarity with set-based reasoning and knowledge of the implication structure when 

reading and writing proofs in their geometry classes. In other words, do students maintain 

their disposition of doubt toward empirical evidence and continue to seek out deductive 

justifications when asked to read and write proofs typical for a secondary geometry class? 
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