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Abstract 25 

Lactobacillus rhamnosus has been found in many niches, including human intestine, vagina, 26 

mouth and dairy products. To intensively investigate the genomic diversity of this species, draft 27 

genomes of 70 L. rhamnosus strains isolated from different Chinese subjects were sequenced and 28 

further investigated. The pan-genome of L. rhamnosus was open. And gene-trait matching (GTM) 29 

was done to explore the carbohydrate utilization ability and antibiotic resistance, and to establish a 30 

pattern of gene existence/absence and growth/absence. There were no significant correlations 31 

between genetic diversity of the strains and the age or region of the donors. The current results 32 

extend the understanding of L. rhamnosus, which could be used as a reference for subsequent 33 

research as well as mining and application of the species. 34 
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1. Introduction 38 

Lactobacillus is the most diverse genus of lactic acid bacteria (LAB), and is usually found in 39 

fermented foods, feeds, oral and gastrointestinal tracts (Barrons and Tassone, 2008). Lactobacillus in 40 

the gut have an important role, for example, immunity regulation, cholesterol control, and 41 

gastrointestinal function improvement, on the intestinal micro-ecological balance and health of hosts 42 

(Damodharan et al., 2016; Reuman et al., 1986). In addition, Lactobacillus have an important role in 43 

food production and processing, such as fermented dairy products (Todorov, 2010). 44 

L. rhamnosus is a Gram-positive bacterium that exists in a variety of niches, such as the human 45 

intestine and vagina (Pascual et al., 2008). L. rhamnosus GG is one of the best commercialized strain 46 

among L. rhamnosus. It has a strong resistance to gastrointestinal digestion and potential probiotic 47 

characteristics. Previous studies on L. rhamnosus focused on its functional benefits including various 48 

diarrhea treatments, immunity improvement, and respiratory infections prevention (Barbieri et al., 2017; 49 

Evans et al., 2016). Phenotype studies were carried out, such as acid tolerance, bile salt tolerance, 50 

carbohydrate utilization and adherence to epithelial cells (Ceapa et al., 2015; 2016; Succi et al., 2005; 51 

Tripathi et al., 2013). 52 

To explore the metabolism, evolution and speciation, high-throughput methods (e.g., site sequence 53 

typing (MLST) and OmniLog (Biolog) phenotyping (Di Cagno et al., 2010) have been used to analyze 54 

genotype and phenotype (Bao et al., 2016). Comparative genomic analysis is a common tool in 55 

bioinformatics (Kant et al., 2011) that is able to identify the association between strains and their 56 

origins as well as to evaluate the gene distribution of specific species (Kelleher et al., 2017). It is 57 

significant for strain characteristics such as combining phenotypic profiles with strain-specific genetic 58 

diversity allows the assignment of unknown functions to specific genetic loci and to determine 59 

interactions with the hosts (Siezen et al., 2010). It also provides a new approach to effectively assess 60 

the diversity of strains. Genetic diversity of several species among the Lactobacillus genus had been 61 

carried out, such as L. plantarum (Duar et al., 2017; Martino et al., 2016), L. casei (Broadbent, 2012), L. 62 

reuteri (Zheng et al., 2015) and L. salivarius (Raftis et al., 2011). Current research on the L. rhamnosus 63 

genome was primarily concerned with the use of carbohydrates. Ceapa et al. (2015; 2016) predicted 64 

that L. rhamnosus had a number of carbohydrate transport and utilization genes, combined with 65 

phenotypic analysis, with which the adhesion-related functional genes were predicted. To investigate 66 

the genomic diversity of L. rhamnosus, Douillard et al. (2013b) sequenced and compared the genome 67 



 

and phenotype validation of 100 L. rhamnosus strains from diffrent niches. 68 

To further learn about the genetic diversity of L. rhamnosus from Chinese subjects, 70 L. 69 

rhamnosus strains were isolated, draft-genome sequenced and analyzed with comparative genomics 70 

approaches as well as gene-trait matching analysis for both carbohydrate utilization and antibiotic 71 

resistance based on the genotype-phenotype combination. 72 

2. Methods 73 

2.1 Isolation of strains 74 

One hundred and twenty fecal samples were collected from different regions of China. The fecal 75 

samples were mixed with 30% sterile glycerin solution (China National Medicines Corp. Ltd., Beijing, 76 

China), stored temporarily at 4°C, and stored at -80°C within 48 h for a maximum of 8 wk. One g of 77 

each stool sample was blended with 9 ml sterile physiological saline (China National Medicines Corp. 78 

Ltd.) (Ingham, 1999). Serial dilution and plating were done in an anaerobic workstation (AW400TG, 79 

Electrotek Scientific Ltd., Shipley, West Yorkshire, UK). For selection of lactobacilli, 100 μl of diluent 80 

was plated on Lactobacillus selective agar (LBS) (China National Medicines Corp. Ltd.) (Ingham, 81 

1999), and 50 U/ml nystatin (Sangon Biotech Co., Ltd., Shanghai, China). Agar plates were cultured in 82 

the anaerobic workstation flushed with 80% N2, 10% CO2 and 10% H2 at 37°C for 72 h. For each 83 

sample, colonies on LBS plates were counted. Colonies were selected at random and re-streaked onto 84 

LBS agar for purity. The final pure culture was cultured in LBS at 37°C for 24 h and preserved in 30% 85 

glycerol (China National Medicines Corp. Ltd.) at -80°C (Bottacini et al., 2018).  86 

DNA was extracted from each strain using the Rapid Bacterial Genomic DNA Isolation Kit 87 

(Sangon Biotech Co., Ltd.) according to the manufacturer’s instructions. The identity of each putative 88 

Lactobacillus isolate was confirmed using 16S rRNA sequence analysis. A 1.5-kb 16S rRNA gene 89 

fragment was generated using bacterial universal primers (27F: 5’-AGA GTT TGA TCC TGG CTC 90 

AG-3’and 1492R: 5’-ACG GCT ACC TTG TTA CGA CTT-3’). Each PCR mixture (25 μl) contained 91 

1.5 mM of MgCl2 (Takara, Dalian, Liaoning, China), 20 mM of Tris-HCl (Takara), 50 mM of KCl 92 

(Takara), 200 μM of each deoxynucleoside triphosphate (Takara), 25 pmol of each of the two primers, 93 

1 U of Taq DNA polymerase (Takara), and 50 ng of DNA template. Each PCR (T100TM Thermal Cycle, 94 

BioRad, Hercules, California, USA) cycling program consisted of an initial denaturation step of 10 min 95 

at 95°C, followed by amplification for 35 cycles as follows: denaturation (30 s at 95°C), annealing (40 96 

s at 58°C), and extension (1 min at 72°C). The PCR was completed with a single elongation step (5 min 97 



 

at 72°C). PCR fragments were purified using the PCR purification kit (Sangon Biotech Co., Ltd.) 98 

according to the manufacturer’s instructions and subsequently sequenced by BGI (Shenzhen, Guangdong, 99 

China). Strains were assigned to a particular species following comparison of the 16S rRNA sequences 100 

using the Genbank database (http://www.ncbi.nlm.nih.gov/BLAST/) to assign to a particular species. 101 

2.2 Sequencing and draft genome assembly 102 

Draft-genome sequencing of all the strains were done using the Illumina HiSeq PE150 platform 103 

(Beijing Novogene Bioinformatics Technology Co., Ltd., Beijing, China) and strains were sequenced to 104 

a coverage depth no less than 100 ×. A-tailed, ligated to paired-end adaptors and PCR amplified with a 105 

350 bp insert were used for the library construction. The reads were assembled using SOAPdenovo 106 

software (https://omictools.com/soapdenovo-tool), the optimal Kmer value was selected to obtain the 107 

splicing sequence (Duranti et al., 2016; Tettelin et al., 2008), and local inner gaps were filled by using 108 

the software GapCloser (https://sourceforge.net/projects/soap-denovo2/files/GapCloser/) (Luo et al., 109 

2012). 110 

2.3 Genome features prediction 111 

The G+C content and start codon of each genome were predicted with Glimmer 3.02 112 

(http://ccb.jhu.edu/software/glimmer/index.shtml) (Delcher et al., 2007). Transfer RNA (tRNA) was 113 

identified using tRNAscan-SE 2.0 (http://lowelab.ucsc.edu/tRNAscan-SE/) (Lowe and Eddy, 1997). 114 

Open Reading Frame (ORF) prediction using Glimmer3.02 and ORF were annotated using BLASTP 115 

analysis against the non-redundant protein databases created by BLASTP based on the National Center 116 

for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/) (Hyatt et al., 2010). Genemark 117 

(https://www.genemarks.com/) was used to predict the genetic structure of the spliced sequence and to 118 

generate amino acid and nucleotide sequences. The amino acids sequences were subjected to gene 119 

annotation using a Swiss-Prot (https://www.uniprot.org/), COG (https://www.ncbi.nlm.nih.gov/COG/), 120 

and NR database (https://www.ncbi.nlm.nih.gov/protein) (Lugli et al., 2017). 121 

2.4 Phylogenetic comparison 122 

Cluster analysis was done based on orthologous genes of L. rhamnosus using Orthomcl-v2.0.9 123 

software (http://orthomcl.org/common/downloads/software/v2.0/) (Kelleher et al., 2017). All the 124 

orthologous genes were extracted, then a phylogenetic tree was constructed using MAFFT alignment 125 

(https://mafft.cbrc.jp/alignment/server/) based on the orthologous genes and neighbor-joining (NJ) 126 

algorithm was used for evolutionary analysis (Mailund et al., 2006). 127 



 

2.5 Pan-genome and core-genome analysis 128 

To predict possible variation in the genome, the size of the pan-genome, core genome and unique 129 

genes were calculated. Based on the genomic sequence of all the strains, PGAP-1.2.1 130 

(https://sourceforge.net/pro-jects/pgap/files/PGAP-1.2.1) was used for pan-genome calculations (Zhao 131 

et al., 2012). The core-genome was measured using the CD-HIT cluster analysis 132 

(http://weizhongli-lab.org/cd-hit/). Amino acids had a 50% pairwise identity and 0.7 length difference 133 

cut-off threshold (Harris et al., 2017). Then the Venn diagram was drawn to show the relationships 134 

among samples. In addition, the average nucleotide identity (ANI) values of each pair of genomes were 135 

calculated using ANI Perl (https://github.com/chjp/ANI/blob/master/ANI.pl) (Goris et al., 2007). 136 

2.6 Genotype/phenotype association applied to carbohydrate metabolism 137 

All the genomes were annotated using the HMM method in HMMER-3.1 (hmmer.org), and the 138 

enzymes involved in carbohydrate metabolism were analyzed using the carbohydrate-active enzymes 139 

(CAZY) database (http://www.cazy.org/) (Besemer et al., 2001; Lombard et al., 2014). Seven different 140 

carbohydrates including xylooligosaccharides (XOS), D-galactose, sucrose, D-trehalose, L-fucose, 141 

D-lactose and D-xylose (Sangon Biotech Co., Ltd.) were further selected for carbohydrate utilization 142 

analysis. A 10% (w/v) fresh aqueous solution of those carbohydrates were prepared and filtered through 143 

a 0.22 μm sterile membrane filter (Saigon Biotech Co., Ltd.). The utilization assay medium was freshly 144 

prepared with the same content as de Man, Rogosa and Sharpe (MRS) medium (China National 145 

Medicines Corp. Ltd.) (Ingham, 1999) except glucose, and two drops of 1.6% (w/v) bromcresol purple 146 

alcoholic solution (Sangon Biotech Co., Ltd.) were added, the latter as an indicator. After autoclaving 147 

and cooling, the sterile carbohydrate was added into the medium at 1% final concentration. To test the 148 

utilization capacity of each strain, after being sub-cultured twice in MRS medium, a 1% culture was 149 

inoculated into the growth media, each of which was supplemented with a different sugar instead of 150 

glucose. The utilization was observed as a color change and measured with a microplate reader at 151 

OD600nm (Varioskan Lux, Thermo, Waltham, MA, USA) after anaerobic culture at 37°C for 24 h (Hyatt 152 

et al., 2010). The test were done in triplicate. 153 

2.7 Antibiotic resistance gene and tolerance 154 

The antibiotic-resistant genes were analyzed using the comprehensive antibiotic resistance 155 

database (CARD) (https://card.mcmaster.ca) (Jia et al., 2017), to obtain information of predicted 156 

antibiotic resistance genes encoded by each genome. 157 



 

According to ISO10932:2010 standard “Milk and Milk Products-Determination of the Minimal 158 

Inhibitory Concentration (MIC) of Antibiotics Applicable to Bifidobacteria and Non-Enterococcal 159 

Lactic Acid Bacteria (LAB)” 160 

(http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalo-gue_detail.htm?csnumber=46434)”, the MIC 161 

of 6 antibiotics (streptomycin, erythromycin, clindamycin, chloramphenicol, tetracycline, and 162 

trimethoprim), purchased from Sangon Biotech Co., Ltd., were analyzed for all the strains. Microbial 163 

dilutions were incubated in an anaerobic environment at 37°C for 48 h, measured with a microplate 164 

reader (Thermo) at OD625nm. And the threshold values for each antibiotic resistance issued by the 165 

European Food Safety Authority (EFSA) was used (FEEDAP, 2012).  166 

 167 

3. Results 168 

3.1 Isolation of strains 169 

The donors came from 18 different regions in China and their ages varied from 2 d to 102 yr (35 170 

samples of infants < 1 yr; 9 samples from 2-16 yr; 10 samples from 27-54 yr; 10 samples from 60-79 yr; 171 

7 samples from 82-102 yr). Most of donors were located in three cities (Wuhu, Anhui Province; Wuxi, 172 

Jiangsu Province; Wusu, Xinjiang Uygur Autonomous Region). A total of 600 isolates were isolated 173 

from the LBS agar, and all of them were species identified with 16S rRNA sequencing. Among them, 174 

168 isolates from 70 samples were confirmed as L. rhamnosus. Only one isolate from each sample was 175 

used for genome sequence to analyze the genetic features of the L. rhamnosus species (Table 1). 176 

3.2 General genome features 177 

The draft genome of 70 strains isolated from Chinese subjects were sequenced and compared with 178 

L. rhamnosus GG. For all strains, the genome size ranged from 2.77 Mb for FXJWS25L4 to 3.10 Mb 179 

for FAHWH35L1. The quantity of genomic ORF ranged from 2676 to 3024 with an average of 2840. 180 

And only three strains had tRNA genes <40 tRNA genes. Furthermore, the GC content differed from 181 

46.6 to 47.5% for all strains (Table 1). 182 

3.3 Phylogenetic analyses of L. rhamnosus 183 

Based on orthologous genes, a phylogenetic tree was constructed to evaluate the evolution of the 184 

species. The results showed that the species consisted of 1870 orthologous genes, which were shared 185 

among all the sequenced strains. According to the clustering relationship, all the 71 strains assessed 186 

were divided into 5 clusters. Focused on the strains isolated from different regions, there was no 187 



 

significant regional correlation in clustering, although the strains isolated from Xinjiang Uygur 188 

Autonomous Region were relatively clustered (Figure 1). In the age distribution, the strains from 189 

infants <1 yr were located in the same branch, but there was no significantly clustering relationship 190 

when the age was subdivided. Interestingly, two pairs of strains were evolutionarily in the same small 191 

branch, which were FHNFQ3L5 and FHNFQ4L1 isolated from a mother and daughter pair, and 192 

FQHXN3M6 and FQHXN4M2 isolated from the samples with a father-son relationship. The results 193 

indicated that the clustering of strains was independent of age and region of the donors and might be 194 

related to the family relationship or daily diet of people from whom the samples were obtained. 195 

3.4 Pan-genome and core genome analysis of L. rhamnosus 196 

The 71 genomes of L. rhamnosus strains were used to calculate the pan-genome, and the resultant 197 

pan-genome was 8395 (Figure 2A). The pan-genome curve showed an upward trend (Figure 2A), while 198 

the power exponent in the pan-genome formula was >0.5 (Bosi et al., 2016). These results indicated 199 

that the pan-genome would increase if more genomes were included. However, new genes gradually 200 

decreased from the initial 190 to the last group at 54.3. 201 

Based on the clusters of orthologous genes (COGS), the core-genome of L. rhamnosus was 202 

evaluated. The core genome correlation curve decreased with the addition of genomes, and was 203 

gradually stable after the 50th genome was included (Figure 2A). Ultimately the core genome of L. 204 

rhamnosus was 1835. The major role of the core genes were diverse, including energy production and 205 

amino acid metabolism (Figure 2C). In addition, the number of specific genes in the strains ranged 206 

from 5 to 146 (Figure 2B). In terms of gene content, FBJSY31L2 has the highest number of specific 207 

genes, which was highly diverse compared to the other strains. 208 

To analyze the L. rhamnosus species and potential subspecies, ANI analysis was carried out. The 209 

ANI value of 70 strains as well as L. rhamnosus GG was 97.2-99.9%. It was greater than the threshold 210 

of 95%, (Richter and Rossello-Mora, 2009) which proved they were the same species without any 211 

subspecies. The ANI values of the FHNFQ3L5 and FHNFQ4L1 and the FQHXN3M6 and 212 

FQHXN4M2 were > 99%, which indicated that those two pair of strains from one family, might have a 213 

closer genetic relationship. However, clustering based on ANI has no significantly correlation with age 214 

or region of the donors (Figure 3).  215 

3.5 Genotype/phenotype association applied to carbohydrate metabolism 216 

Carbohydrate-active enzymes were predicted using the CAZY database. The pan-genome of L. 217 



 

rhamnosus contained genes encoding 27 glycosyl hydrolases (GH) families, 14 glycosyl transferases 218 

(GT) families, 8 carbohydrate esterases (CE) families, 8 carbohydrate binding modules (CBM) families, 219 

two polysaccharide lyases (PL) families and two activities (AA) families (Figure 4A). The heat-map of 220 

predicted GH family genes was constructed using HemI (Figure 4A), and the number of GH1, GH13, 221 

GH109 and GH25 genes was significantly greater than that of other members of the GH families. On 222 

the other hand, the number of genes for GH15, GH23, GH43, GH88, GH115 and GH126 were less than 223 

that of other members of the GH families. According to the evolutionary tree, the 71 strains tested were 224 

divided into 5 clusters. Some genes of the GH family had clustering differences in distribution, such as 225 

the GH115 family only existed with cluster-5, and the GH43 family existed in cluster-4 and -5. 226 

The GH analysis showed the presence of the predicted α-trehalase (GH15, GH65), fucosidase 227 

(GH1, GH29, GH30), galactosidase (GH1, GH2, GH4, GH31, GH35, GH36, GH59), mannose 228 

glycosidase (GH2, GH31, GH38) and xylanase (GH3, GH31, GH39, GH43). Genotype-phenotype 229 

correlations were carried out to identify the characteristics of L. rhamnosus. Based on the prediction of 230 

metabolic related genes, the 7 types of sugars were selected for the in vitro utilization assay. All the 231 

strains could use and grow well with D-galactose, sucrose, D-trehalose and L-fucose as the sole carbon 232 

source. Whereas the utilization of the other four carbohydrates differed among the strains assessed. 233 

D-lactose as the carbon source could support the growth of 43 strains. Only four could use D-xylose, 234 

while 20 strains could use XOS (Figure 4B). 235 

Based on the genotype and phenotypic analysis, all the strains utilized D-galactose, sucrose, 236 

D-trehalose and L-fucose, indicating that the genotype was consistent with the phenotypic results. 237 

However, for some strains, the genotype and phenotype was not consistent. For instance, the gene 238 

encoding xylosidase was found in all 71 strains, but only four could utilize D-xylose, which only had a 239 

5.6% genotype-phenotype correlation. The presence of the predicted gene encoding lactase positively 240 

correlated with the glycometabolism phenotype for 43 strains (60.6% totally). Particularly, 28 strains 241 

having lactase in their genomes could not utilize D-lactose. For XOS, twenty strains could utilize 242 

D-xylose with a 28.2% genotype-phenotype correlation. There was no significant correlation between 243 

the carbohydrate utilization and the donor’s age and region in both genotypes and phenotypes. The 244 

genes involved in D-lactose and L-fucose utilization were analyzed in detail for each strain and the 245 

results showed that the strains with the utilization ability had the whole related operons (Figure 4C). 246 

3.6 Genotype/phenotype association of antibiotic resistance 247 



 

The antibiotic resistant genes were analyzed using CARD, and based on the prediction, the heat 248 

map was constructed. These results showed that there were no resistance genes for gentamicin, 249 

streptomycin and neomycin in all 71 strains, but all of them contained the resistance gene for 250 

kanamycin, erythromycin, clindamycin, chloramphenicol, tetracycline, trimethoprim, ampicillin, 251 

ciprofloxacin, amoxicillin, vancomycin and rifampicin. The number of resistant genes for erythromycin, 252 

tetracycline and ciprofloxacin were significantly higher than for the other antibiotics. However, there 253 

was no significant difference in the number of genes of the same antibiotics among the strains. In 254 

addition, there was no significant correlation between the resistance gene number and the donor’s age 255 

or region. The difference in the number of genes only reflected the differences among individual strains 256 

(Figure 5). 257 

The MIC value of each strain was compared with the drug resistance threshold reported by EFSA 258 

to determine whether the strain was resistant or sensitive (FEEDAP et al., 2012). According to the 259 

genotype, six antibiotics were selected for the susceptibility test. Among the 6 antibiotics, no 260 

streptomycin resistance gene was predicted in the 71 strains, but the other five antibiotic resistance 261 

genes could be found among all the strains. However, all 71 strains showed different resistance to those 262 

antibiotics. The MIC of streptomycin for all the strains tested differed from 1 to 32 μg/ml and mostly 263 

were 2 to 8 μg/ml (Figure 6A). According to EFSA’s guidance, all the strains were sensitive. The MIC 264 

of erythromycin for the strains ranged from 0.0625 to 8 μg/ml (Figure 6B), which indicated 69 strains 265 

were sensitive. In addition, only 4.23% of the strains were resistant to tetracycline (Figure 6C). And 266 

among the 71 strains, the resistance rate for clindamycin reached 9.8% (Figure 6D). Compared with the 267 

first four antibiotics, the overall resistance rate for chloramphenicol was 76.1% (Figure 6E). L. 268 

rhamnosus has a conserved resistance gene for trimethoprim, therefore, there was no accurate threshold. 269 

The range of MIC of trimethoprim was 8-64 μg/ml, in which 54 strains had a MIC value of 64 μg/ml 270 

(Figure 6F). These results showed that the MIC was not related to the subjects region and age, and was 271 

independent of the clustering of the strain. 272 

All 71 strains were sensitive for streptomycin, which indicated that there was a certain correlation 273 

between genotype and phenotype. The resistance gene for erythromycin was observed in all 71 strains. 274 

However, only one strain was actually resistant to erythromycin, and the genotype-phenotype 275 

correlation rate was 2.8%. Three strains were resistant for tetracycline with 4.23% genotype-phenotype 276 

correlation. The resistance genes for clindamycin were observed in all 71 strains with only 9.8% 277 



 

genotype-phenotype correlation. All the strains were resistant to trimethoprim with 100% 278 

genotype-phenotypic correlation. 279 

 280 

4. Discussion 281 

With sequencing technology improvements, more researches involving the genome of the strain. L. 282 

rhamnosus contained a 3.0 Mb genome, which was one of the largest for LAB (Lebeer et al., 2008). 283 

Several genomic sequences of L. rhamnosus have been identified to date, including human intestinal 284 

derived L. rhamnosus GG (ATCC 53103) (Hidetoshi et al., 2009), cheese-derived L. rhamnosus LC705 285 

(Prisciandaro et al., 2011) and soil derived L. rhamnosus CASL (Yu et al., 2011). In the current study, 286 

70 strains of L. rhamnosus were successfully isolated from different Chinese subjects from different 287 

regions, and their draft-genomes were sequenced to determine the genetic diversity and phylogenetic 288 

correlations within the species. The genomic characteristics of 70 Chinese L. rhamnosus strains were 289 

similar to previous literature (Kant et al., 2014). The GC content was significantly higher than that of L. 290 

salivarius and the average value of the Lactobacilli was ~42.4% (Harris et al., 2017). 291 

Phylogenetic trees of all the 71 strains (including L. rhamnosus GG) based on orthologous genes 292 

showed no significant correlation between strain clustering and age or region of the donors (Odamaki 293 

et al., 2018). Furthermore, ANI is a classic index to distinguish whether particular strains belong to the 294 

same species, usually with a threshold of 95% as the species boundary (Sun et al., 2015). The ANI 295 

value of all the strains was >97%, and the similarity of most strains was as high as 99%. The clustering 296 

of strains was similar to that of phylogenetic trees established based on orthologous genes, but there 297 

were differences, which may be the result of different algorithms and the high similarity among 298 

different strains. From the phylogenetic trees constructed using the two methods, the clustering of L. 299 

rhamnosus strains had no significant correlation with age or region of donors. FHNFQ3L5 and 300 

FHNFQ4L1, isolated from two samples with a mother-daughter relationship, living in the same family 301 

and sharing the same daily diets, were evolutionarily in the same subgroup. And similar results were 302 

observed between FQHXN3M6 and FQHXN4M2, which were isolated from a father-son pair. The 303 

reduced differences of strains derived from one family indicated that similar diets and environments 304 

would decrease the genetic diversity of strains. 305 

The pan-genome was mainly composed of core genes, accessory genes and specific genes, which 306 

represent the whole genome of a species (Borneman, 2012). The trend of the pan-genome in L. 307 



 

rhamnosus was temporarily open, which was significantly higher than that of 13 strains of L. 308 

rhamnosus reported by Kant (Kant et al., 2014). When the strains increased, the pan-genome showed 309 

an upward trend. Core genes are in charge of the basic biological functions and the main phenotypic 310 

characteristics of the species (Inglin et al., 2018). The core-gene number in the current work was 1835, 311 

less than previous report, indicating when the number of strains increases, the core genes would decline. 312 

In the Lactobacillus genus, the size of core genes of L. rhamnosus was similar to that of L. paracasei 313 

(Smokvina et al., 2013), while higher than that of L. salivarius (Harris et al., 2017). Non-essential 314 

genes and specific genes are mainly involved in secondary metabolic pathways (Mols et al., 2010), and 315 

the number of specific genes of each strain was independent of the donor’s region and age. 316 

Lactobacillus has the great ability to ferment different carbohydrates and subsequently obtain 317 

metabolic energy (Ceapa et al., 2015; 2016). To analyze the carbohydrate fermentation capacity of L. 318 

rhamnosus, the carbohydrate-utilization related genes were predicted using the CAZY database, which 319 

contained GH, GT, PL, CE, CBM and AA (Lugli et al., 2017). GH are responsible for the hydrolysis (or 320 

modification) of carbohydrate glycoside bonds, which were mainly analyzed in silico. All the strains 321 

assessed contained α-trehalase (EC 3.2.1.28), xylosidase (EC 3.2.1.37), fucosidase (EC 3.2.1.38), 322 

fructan β-(2,1)-fructosidase/1-exohydrolase (EC 3.2.1.153), fructan dfructosidase/6-exohydrolase (EC 323 

3.2.1.154), lactase (EC 3.2.1.108) and α-L-arabinofuranosidase (EC 3.2.1.55), which have important 324 

roles in sugar metabolism. The in vitro carbohydrate utilization ability of the 71 strains showed that all 325 

the strains could use D-galactose, sucrose, D-trehalose and L-fucose, while only 5.6% could use 326 

D-xylose, which were consistent with the results in Bergey's Manual of Systematics of Archaea and 327 

Bacteria (Hammes and Hertel, 2015). Invertase (EC 3.2.1.26), also known as sucrase or 328 

fructofuranosidase, is an important enzyme for the irreversible hydrolysis of sucrose to glucose and 329 

fructose (Yu et al., 2017). This enzyme and the corresponding PTS system were present in all the 330 

strains indicating that all of them could utilize sucrose. Lactose is hydrolyzed by β-galactosidase (EC 331 

3.2.1.23) to give α-D-glucose and D-galactose, which are utilized by the corresponding PTS pathways. 332 

Another pathway for lactose hydration is catalyzed by lactose phosphotransferase (EC 2.7.1.207) and 333 

6-phospho-beta-galactosidase (EC 3.2.1.85) with lactose-6-phosphate, galactose-6-phosphate, 334 

following the tagatose-6-phosphate pathway to further catabolism (Kankainen et al., 2009). All of the 335 

71 strains tested contained galactosidase, of which 28 strains were not able to metabolize D-lactose, 336 

including the reference strain LGG, and the results were consistent with the previous literature 337 



 

(Kankainen et al., 2009). All 71 strains had the genes for the lactose PTS pathway (lacFEG) and 338 

tagatose-6-phosphate pathway (lacABCD), while further analysis indicated that antiterminator (lacT) 339 

and 6-phospho-β-galactosidase (lacG) genes were altered in some of those strains, resulting in the loss 340 

of lactose utilization capacity (Douillard et al., 2013a; Kankainen et al., 2009). All the strains in 341 

cluster-4 and -5 (Figure 4B) could use lactose and were far away from LGG in their evolutionary 342 

relationship, indicating that there was a certain relationship between gene expression and strain 343 

clustering. Another typical example is L-fucose, all 71 strains including LGG could use L-fucose. 344 

When the L-fucose operon was analyzed it showed that the whole L-fucose catabolic pathway 345 

consisting of α-L-fucosidase (fucA, EC 3.2.1.51), fucU, fucI and fucS was present similar to that in 346 

LGG (Becerra et al., 2015; Douillard et al., 2013a). Carbohydrate metabolism is not only related to the 347 

related hydrolases, but to the corresponding metabolic pathways and transport proteins. For example, 348 

the metabolism of xylose is related to the intracellular pentose phosphate pathway (PPP) as well as 349 

β-xylosidase. Xylose isomerase could directly convert xylose to xylulose, which could be further 350 

phosphorylated by xylulose kinase to form 5-oxokinose-5-phosphate, which eventually enters the 351 

glycolysis pathway to produce alcohol by the intermediates 6-phosphate glucose and 3-phosphate 352 

glyceraldehyde (Yu et al., 2017). The genetic prediction results showed that the lack of xylose 353 

isomerase and xylulose kinase might result in no xylose entering the cell to participate in the PPP, 354 

consequently the strain could not metabolize xylose. It was confirmed that only four strains could use 355 

D-xylose in vitro, which might result from potential horizontal transfer of genes and was consistent 356 

with previous results that few strains could use D-xylose (Douillard et al., 2013b). XOS is a functional 357 

polymeric sugar composed of 2-7 xylose molecules bound by β-1,4 glycosidic bonds, usually requiring 358 

the ABC transport system to transfer to the intracellular space for hydrolysis. During the metabolism, 359 

α-L-arabinofuranosidase (EC 3.2.1.55) hydrolyzes the arabinose side chain in the XOS component, and 360 

hyxylosidase acts on the end of the XOS to release xylose (Andersen et al., 2013; Arboleya et al., 361 

2018). All of the strains had an α-arabinofuranosidase and a xylosidase, possibly lacking the 362 

corresponding transport system. Therefore, 51 strains were unable to use XOS. In addition, the gene 363 

involved in glucose metabolism had no correlation with the age and regional origin of the donors, and a 364 

similar conclusion was reached for sugar fermentation in vitro. Instead, they were consistent with the 365 

phylogenetic tree classification. 366 

Antibiotic resistance could be divided into natural resistance and acquired resistance. The innate 367 



 

resistance gene inherent to the genus or species could be inherited (Campedelli et al., 2019; Karapetkov 368 

et al., 2011;). The 71 strains were innately resistant to vancomycin (data not shown) and had a related 369 

resistance gene, consistent with the results of Korhonen et al. (2010). D-alanine residues at the 370 

pentapeptide end of the cell wall of L. rhamnosus were replaced by D-lactic acid, which prevented the 371 

binding of vancomycin. Thus, the strains were resistant to vancomycin, and same resistance was 372 

observed in L. casei, L. plantarum and L. acidophilus (Hamilton-Miller and Shah, 1998; Korhonen et 373 

al., 2010). The resistance gene of trimethoprim is dfr, a dihydrofolate reductase encoded by the 374 

integron originally found in Vibrio cholera, which inhibited the synthesis of tetrahydrofolate and 375 

exerted antibacterial activity. A congenital resistance gene to trimethoprim was observed consistent 376 

with previous results in L. casei and L. plantarum (Roberts et al., 1981). Most of the strains were 377 

sensitive to macrolide antibiotics (erythromycin and tetracycline), and only two strains (FAHWH5L1, 378 

FHeNJZ4L2) were resistant to erythromycin. Among the 71 strains, the ATP-binding cassette (ABC) 379 

antibiotic efflux pump for multi-drugs was observed to prevent the resistance for macrolides and 380 

tetracyclines (Comunian et al., 2010). A reasonable explanation for FAHWH5L1 and FHeNJZ4L2 381 

erythromycin resistance was that an A-to-G conversion point mutation on the 23S rRNA resulted in the 382 

binding of ribosomes to erythromycin or the A to G transition resulted in a lack of binding to the 383 

ribosome, making L. rhamnosus resistant to macrolide antibiotics (Begovic et al., 2009). All 71 strains 384 

of L. rhamnosus had the ABC-F ATP binding cassette ribosome protective protein and ABC antibiotic 385 

efflux pump involving chloramphenicol (Schwarz et al., 2004). Antibiotics are transported out of cells 386 

by efflux, which reduces intracellular antibiotic concentration and improves the drug resistance of the 387 

strains. Therefore, 76.1% of the strains were resistant to chloramphenicol. No target sites for the action 388 

of streptomycin antibiotics and drug efflux pumps were observed. In the streptomycin resistance test, 389 

none of the 71 strains were resistant, i.e., the genotype and phenotype were consistent. The genotype 390 

and phenotype were combined to analyze the resistance of the strain, and it was observed that the 391 

number of genes had no obvious relationship with the phenotypic results. In addition, genotypes and 392 

phenotypes were independent of the source of the strain, reflecting individual differences in the strain. 393 

 394 

5. Conclusion 395 

Seventy strains of L. rhamnosus were isolated from Chinese infants and adults and their 396 

draft-genome sequenced. Combined with LGG, the genome and biological properties of all the strains 397 



 

were analyzed. The results showed that the pan-genome of L. rhamnosus was 8395 and core genome 398 

was 1835. All the strains could utilize D-galactose, sucrose, D-trehalose and L-fucose and only a few 399 

strains could use XOS and D-xylose, consistent with their genotype. For antibiotics resistance, most 400 

genotypic results of L. rhamnosus were consistent with phenotypic results. This study increased the 401 

genomic information and phenotypic study of L. rhamnosus, and provided reference value for future 402 

research on L. rhamnosus. The results will provide information on the meanings of the genetic diversity 403 

observed in this species, especially the carbohydrate utilization capabilities and antibiotic resistance, 404 

and can be applied to the further application of characterization of strains for probiotic additives. 405 
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Table 1 L. rhamnosus genomes sequenced and analyzed in this study. 624 
Strains Age Region Accession Size (Mb) ORF tRNA GC% 

LGG (Kankainen et al., 2009) <1 yr North Carolina ASM2650v1 3.01  2985 57 46.7  

FAHWH26L1 6d Anhui PRJNA558200 2.88  2734 51 46.8  

FAHWH30L1 7d Anhui PRJNA558202 2.90  2902 52 46.7  

FAHWH2L1 93yr Anhui PRJNA558204 2.94  2856 57 47.3  

FAHWH5L1 90yr Anhui PRJNA558208 2.91  2874 30 47.3  

FAHWHD30L7 86yr Anhui PRJNA558583 2.89  2806 56 47.5  

FAHWH35L1 70yr Anhui PRJNA558584 3.10  3024 53 47.4  

FAHWH38L5 77yr  Anhui PRJNA558585 2.92  2866 54 47.4  

FBJCY2L1 9m Beijing PRJNA558586 2.93  2818 47 46.6  

FBJCY3L1 11m Beijing PRJNA558587 2.86  2738 39 46.7  

FBJSY7L3 62yr Beijing PRJNA558588 3.02  2986 56 47.2  

FBJSY31L2 54yr Beijing PRJNA558589 2.94  2914 50 46.7  

FBJSY60L1 64yr Beijing PRJNA558590 2.95  2833 58 47.3  

FBJSY66L1 60yr Beijing PRJNA558592 2.90  2829 54 47.4  

FFJND15L1 6m Fujian PRJNA558593 2.92  2795 52 46.7  

FFJLY7L1 11yr Fujian PRJNA558594 2.94  2876 56 47.3  

FGSZY12L6 84yr Gansu PRJNA558595 2.94  2865 54 47.3  

FHeNJZ4L2 <1yr Henan PRJNA558596 2.95  2857 52 46.8  

FHeNJZ7L1 6m Henan PRJNA558597 2.90  2801 38 46.8  

FHeNJZ8L1 7m Henan PRJNA558599 2.91  2758 48 46.8  

FHNFQ3L5 27yrs Henan PRJNA558600 2.95  2914 56 47.4  

FHNFQ4L1 8m Henan PRJNA558601 2.96  2923 56 47.4  

FHNFQ14L7 61yr Henan PRJNA558602 3.00  2970 55 47.3  

FH28-1 102yr Hubei PRJNA558603 2.86  2743 40 46.7  

FNMGEL5-1 7m Inner Mongolia PRJNA558604 2.90  2700 50 46.8  

FNMGHLBE6L3 29yr Inner Mongolia PRJNA558605 3.02  2990 58 47.3  

FNMGHLBE18L5 70yr Inner Mongolia PRJNA558606 2.95  2830 58 47.3  

FJSWX1L3 6m Jiangsu PRJNA558607 3.02  2980 56 47.3  

FJSWX2L6 4m Jiangsu PRJNA558608 2.94  2869 54 47.3 

FJSWX3-L2 6m Jiangsu PRJNA558609 3.00  2926 50 46.6 

FJSWX9L1 9m Jiangsu PRJNA558610 2.82  2739 54 47.4 

FJSWX22-4 10m Jiangsu PRJNA558611 2.93  2815 51 46.6 

FJSWX24-1 6m Jiangsu PRJNA558613 2.92  2789 43 46.7 

FJSWX28L2 11m Jiangsu PRJNA558614 2.89  2787 54 47.4 

FWXBH7L3 79yr Jiangsu PRJNA558615 2.94  2830 58 47.3 

FJSYC1-5 <1yr Jiangsu PRJNA558616 2.81  2681 50 46.8 

FJSYC4-1 <1yr Jiangsu PRJNA558617 2.90  2765 52 46.7 

FJSNJ1-1-M2 1yr Jiangsu PRJNA558618 2.86  2732 40 46.7 

FJSSZ2L1 <1yr Jiangsu PRJNA558620 2.94  2829 53 46.6 

FJSZJ2-1 11m Jiangsu PRJNA558621 2.90  2762 61 46.7 

FJXSRPYH4L2 72yr Jiangxi PRJNA558622 2.95  2829 59 47.3 

FNXYCHL9M3 82yr Ningxia PRJNA558623 3.02  2977 55 47.2 



 

FQHXN3M6 36yr Qinghai PRJNA558624 2.94  2827 56 47.3 

FQHXN4M2 7yr Qinghai PRJNA558626 2.94  2830 56 47.3 

FSHMX1-2 7m Shanghai PRJNA558627 2.92  2817 51 46.6 

FSHMX3-1 3m Shanghai PRJNA558628 2.93  2817 48 46.6 

FSDLZ7M12 85yr Shandong PRJNA558639 2.83  2676 52 46.7 

FPAL5 <1yr Shanxi PRJNA558640 2.86  2730 51 46.7 

FTJDG4G3 3d Tianjin PRJNA558641 2.93  2807 51 46.6 

FTJDG9L1 4d Tianjin PRJNA558642 2.97  2842 44 46.7 

FTJDG10L2 2d Tianjin PRJNA558643 2.96  2844 52 46.7 

FTJDG11L1 2d Tianjin PRJNA558644 2.96  2864 60 46.7 

FSCYA1L2 8m Sichuan PRJNA558646 2.87  2732 49 46.8 

FXJWS2M1 43yr Xinjiang PRJNA558647 3.01  2970 55 47.2 

FXJWS3M4 5m Xinjiang PRJNA558648 2.89  2786 54 47.4 

FXJWS10M1 6m Xinjiang PRJNA558649 2.95  2833 58 47.3 

FXJWS12L6 7yr Xinjiang PRJNA558650 2.95  2832 56 47.3 

FXJWS13L6 16yr Xinjiang PRJNA558651 2.95  2832 56 47.3 

FXJWS19L2 10yr Xinjiang PRJNA558652 2.96  2904 57 47.4 

FXJWS25L4 40yr Xinjiang PRJNA558654 2.77  2730 47 47.2 

FXJWS27L1 10yr Xinjiang PRJNA558655 2.95  2830 57 47.3 

FXJWS37M4 40yr Xinjiang PRJNA558656 2.92  2868 54 47.2 

FXJWS38L2 28yr Xinjiang PRJNA558657 2.95  2828 56 47.3 

FXJWS44-L2 38yr Xinjiang PRJNA558658 2.95  2831 58 47.3 

FXJSW6-1 31yr Xinjiang PRJNA558659 2.94  2828 58 47.3 

FXJSW24M2 2yr Xinjiang PRJNA558661 2.96  2841 57 47.3 

FZJHZ4L6 <1yr Zhejiang PRJNA558662 2.94  2824 58 47.3 

FZJHZD11L1 10yr Zhejiang PRJNA558663 2.95  2830 56 47.3 

FZJHZ14L3 8d Zhejiang PRJNA558664 2.94  2877 54 47.3 

FZJJH6L2 4m Zhejiang PRJNA558665 2.86  2791 56 47.4 

FZJTZ46L6 67yr Zhejiang PRJNA558666 3.04  3017 54 47.2 

  625 



 

Figure legends 626 

Fig. 1 Phylogenetic analysis of L. rhamnosus.  627 

The triangle indicated donor’s age with color-coded as follows: yellow for yr 0-1, grey for yr 2-16, 628 

orange for yr 27-54, pink for yr 60-79, light-blue for yr 82-102. The star indicated the region of sample 629 

collected, and the same area was represented by one color. Less than two samples in a region are 630 

represented in white. Red for Anhui, green for Beijing, blue for Henan, pink for Jiangsu, purple for 631 

Inner Mongolia, light green for Qinghai, light blue for Fujian, orange for Shanghai, grey for Xinjiang, 632 

yellow for Zhejiang, dark red for Tianjin. The strip divided the cluster into 5 large clusters, which are 633 

cluster 1 (blue), cluster 2 (green), cluster 3 (yellow), cluster 4 (orange), and cluster 5 (red). 634 

 635 

Fig. 2 Pan- and core genes of L. rhamnosus.  636 

(A) Pan-genome and core genome. The equation for calculating the pan-genome and core genome is 637 

y=317.5*x0.677+2706 and y=573.3*e(-0.07*x)+1830, respectively, in which x is the genome number of L. 638 

rhamnosus assayed. 639 

(B) Venn diagram displaying the unique and core genes. 640 

(C) Functional assignment of the core genome based on the COG database. 641 

 642 

Fig. 3 Pairwise average nucleotide identity (ANI) analysis of L. rhamnosus. 643 

The darker the color, the greater the similarity. 644 

 645 

Fig. 4 Evaluation of carbohydrate utilization in L. rhamnosus.  646 

(A) The predicted glycometabolism gene. A gradation of color from blue to white to red represents an 647 

increasing number of genes.  648 

(B) The growth performance of the strains on different carbon sources. The red indicated growth, while 649 

the blue represented no growth. 650 

(C) Gene cluster for D-lactose and L-fucose utilization. 651 

 652 
Fig. 5 Antibiotic resistance gene prediction in L. rhamnosus.  653 

The darker the color, the more the antibiotic resistance gene. 654 

 655 



 

Fig. 6 Microbiological cut-off threshold values. 656 

Distribution of cut-off threshold values for streptomycin (A), erythromycin (B), tetracycline (C), 657 

clindamycin (D), chloramphenicol (E), and trimethoprim (F) in all strains. The red dotted line 658 

represented the cut-off threshold value of EFSA.  659 
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