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Abstract: Bifidobacteria are known to inhibit, compete with and displace the adhesion of pathogens to
human intestinal cells. Previously, we demonstrated that goat milk oligosaccharides (GMO) increased
the attachment of Bifidobacterium longum subsp. infantis ATCC 15697 to intestinal cells in vitro. In this
study, we aimed to exploit this effect as a mechanism for inhibiting pathogen association with intestinal
cells. We examined the synergistic effect of GMO-treated B. infantis on preventing the attachment of a
highly invasive strain of Campylobacter jejuni to intestinal HT-29 cells. The combination decreased the
adherence of C. jejuni to the HT-29 cells by an average of 42% compared to the control (non-GMO
treated B. infantis). Increasing the incubation time of the GMO with the Bifidobacterium strain resulted
in the strain metabolizing the GMO, correlating with a subsequent 104% increase in growth over a 24
h period when compared to the control. Metabolite analysis in the 24 h period also revealed increased
production of acetate, lactate, formate and ethanol by GMO-treated B. infantis. Statistically significant
changes in the GMO profile were also demonstrated over the 24 h period, indicating that the strain was
digesting certain structures within the pool such as lactose, lacto-N-neotetraose, lacto-N-neohexaose
3′-sialyllactose, 6′-sialyllactose, sialyllacto-N-neotetraose c and disialyllactose. It may be that early
exposure to GMO modulates the adhesion of B. infantis while carbohydrate utilisation becomes more
important after the bacteria have transiently colonised the host cells in adequate numbers. This study
builds a strong case for the use of synbiotics that incorporate oligosaccharides sourced from goat′s
milk and probiotic bifidobacteria in functional foods, particularly considering the growing popularity
of formulas based on goat milk.
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1. Introduction

Bifidobacteria are considered one of the first colonisers of the human gastrointestinal (GI) tract
and are suggested to confer positive health outcomes to the host, explaining their prevalence as
probiotics [1]. These bacteria are particularly effective at protecting against infectious diseases,
regulating immune responses and exerting effects against conditions ranging from irritable bowel
syndrome, allergic diseases, ulcerative colitis, and immunoglobulin E associated diseases, to atopic
dermatitis [2]. In terms of protecting against infection, bifidobacteria can operate through strain-specific
antagonistic means for the competitive exclusion of pathogens [3]. A strain of B. breve was found to
inhibit the growth of enterotoxigenic (ETEC) and enteropathogenic (EPEC) Escherichia coli, while other
species were found to inhibit intestinal colonisation of pathogens such as Salmonella, Shigella,
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Listeria monocytogenes, and Clostridium difficile [4–6]. Microbe-associated molecular patterns (MAMPs)
are recognized by the host′s intestinal pattern recognition receptors (PRRs), and these interactions play
key roles in the association of pathogens with the intestinal epithelia. Probiotics also express molecular
patterns which can recognize the same trans-membrane receptors as the pathogens, thus blocking the
sites for pathogenic contact by competitive exclusion and, in some cases, displacing already-attached
pathogens [7]. However, the health benefits associated with bifidobacteria are reliant on such strains
colonising the host in sufficient numbers [8]. The important step in microbial colonisation of the
intestinal epithelium is the attachment of bacterial surface lectins to intestinal sugar structures.
Recent studies have suggested that milk oligosaccharides may enhance the specific ability of
bifidobacteria to attach to the GI epithelium [9–11]. Indeed, our group investigated the ability
of goat milk oligosaccharides (GMO) to increase the attachment of Bifidobacterium longum subsp. infantis
ATCC 15697 to HT-29 cells. Exposure of the strain to the GMO resulted in an 8.3-fold increase in its
adhesion to the intestinal cells [11].

As well as aiding the colonisation of bifidobacteria, GMO can also act as a prebiotic. The prebiotic
potential of GMO recovered from whey has been identified in vitro where significant growth of
Bifidobacterium spp. was observed on isolated GMO [12]. Oligosaccharide-enriched fractions prepared
from both stage one and stage two goats′ milk-based infant formula were also recently shown to
significantly enhance the growth of bifidobacteria in vitro and reduce the adhesion of E. coli NCTC
10418 and Salmonella enterica subsp. enterica serovar Typhimurium to Caco-2 cells [13], possibly by
acting as analogues of epithelial receptors on the gut cells [14]. In vivo studies have also indicated
that ingestion of GMO by mice during gestation and lactation increased the relative abundance of
bifidobacteria in the colon of their pups at weaning [15]. These studies suggest that a combination
of both a probiotic and a prebiotic (GMO) could provide a synergistic effect and may be an effective
strategy to enhance the persistence and metabolic activity of specific beneficial bifidobacterial strains.
Therefore, the aim of the current study is to examine such a synbiotic combination in vitro and
determine if GMO have the potential to increase the competitiveness and metabolic activity of B.
infantis in the intestinal tract. The ability of the synbiotic to competitively exclude an invasive strain of
Campylobacter jejuni to intestinal cells is first examined. Fermentation of the GMO by the B. infantis strain
is then investigated through growth studies, metabolite analysis and oligosaccharide depletion assays.

2. Materials and Methods

2.1. Oligosaccharides Standards

The oligosaccharide standards; 2′-Fucosyllactose (2′FL), Lacto-N-tetraose (LNT), 3′-Sialyllactose
(3′SL), 6′-Sialyllactose (6′SL), Disialyllactose (DSL), Lacto-N-hexaose (LNH), N-Acetylneuraminic
acid (Sialic Acid), LS-tetrasaccharide c (LSTc), Lacto-N-neotetraose (LNnT) and Lacto-N-neohexaose
(LNnH) were purchased from Carbosynth Ltd. (Berkshire, UK) and lactose was obtained from VWR
(Dublin, Ireland).

2.2. Isolation of Goat Milk Oligosaccharides

Goat milk oligosaccharides (GMO) were isolated and characterized as previously described [11].
In brief, mature milk from goats was kindly donated by Ardsallagh Goat Farm (Carrigtwohill, Co.
Cork) and stored at −80 ◦C on arrival. To generate low molecular weight fractions, the milk was initially
defatted and de-caseinated as per Quinn et al. [11]. Large peptides and whey proteins were removed
by ultrafiltration and the permeates were freeze-dried as previously described [11]. To separate lactose
from the oligosaccharides, a BioGel P2 size exclusion column (Bio-rad, Deeside, UK) was employed
and the fractions collected were analysed for lactose, 3-SL and 6-SL using high pH anion exchange
chromatography with pulsed amperometric detection (HPAEC-PAD) as detailed below, and the
protein/peptide concentration was determined by the Bradford assay [16]. Peptide-free and low-trace
lactose (<80 mg/L) fractions were pooled and freeze-dried to give an oligosaccharide-enriched fraction.
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2.3. Milk Oligosaccharide Analysis

Oligosaccharide analysis of the pooled GMO was performed as previously described [11].
Oligosaccharide-enriched fractions were diluted in water and analysed in order to quantify levels of
lactose, 2′FL, LNT, 3′SL, 6′SL, DSL, LNH, Sialic Acid, LSTc, LNnT and LNnH using a Dionex ICS-3000
Series system (Dionex Corporation, Sunnyvale, CA, USA) equipped with an electrochemical detector.

2.4. Bifidobacterium longum subsp. infantis Culture Conditions

Bifidobacterium longum subsp. infantis ATCC® 15697™ (B. infantis) was obtained from the American
Type Culture Collection (ATCC, Middlesex, UK). Bacterial cultures were maintained as previously
described [10,11] The strain was stored in deMan Rogosa Sharpe (MRS) (Difco, Sparks, MD,, USA) broth
containing 50% glycerol at −80 ◦C. The strain was cultured twice in MRS media supplemented with
L-cysteine (0.05% w/v) (Merck, Dannstadt, Germany) prior to use, and was routinely grown overnight
at 37 ◦C under anaerobic conditions generated using an Anaerocult A system (Merck).

2.5. Campylobacter jejuni Culture Conditions

Campylobacter jejuni 81–176 (C. jejuni) is a well-characterized, mobile flagellated invasive strain
which has been used in many previous studies [17,18]. The pathogen was stored in Mueller–Hinton
broth (Oxoid, Ireland c/o Fannin Healthcare, Dublin, Ireland) containing 50% glycerol at −80 ◦C and
cultured directly from storage onto Mueller–Hinton agar plates. The pathogen was grown under
microaerophilic conditions generated using CampyGen gas packs (Oxoid), for 48 h at 37 ◦C. Prior to
pathogen inhibition assays, C. jejuni 81–176 was grown on Mueller–Hinton agar and then transferred to
biphasic media in 25 cm2 tissue culture flasks (Corning, NY, USA) consisting of Mueller–Hinton agar
supplemented with Campylobacter selective supplement (Skirrow), (Oxoid) and 6 mL of McCoy′s 5A
media (Merck) supplemented with 2% FBS. The flask was then incubated for 24 h under microaerophilic
conditions at 37 ◦C.

2.6. Exposure of B. infantis to Goat Milk Oligosaccharides

Exposure of the bacteria to GMO was performed as previously described [11]. A final concentration
of 5 mg/mL of GMO was used reflecting the concentration of oligosaccharides present in mature human
milk [11,19–27]. Bacterial suspensions were then incubated for 1 h at 37 ◦C under anaerobic conditions.
Following this, bacteria were harvested by centrifugation (3850× g, 5 min), the supernatants removed,
and pellets were washed three times in phosphate-buffered saline (PBS) and then re-suspended in
non-supplemented McCoy′s media prior to use in the adhesion assays.

2.7. Mammalian Cell Culture Conditions

HT-29 cells were grown as previously described [11] and maintained in McCoy′s 5A modified
medium (Merck) supplemented with 10% fetal bovine serum (FBS) using 75 cm2 tissue culture flasks
incubated at 37 ◦C in 5% CO2 in a humidified atmosphere. Once the cells were nearing confluency
(approximately 80%–90%), they were passaged into 48 well tissue culture plates (Sarstedt Ltd., Wexford,
Ireland) at a density of 1 × 105 cells/mL between passages 15–21. The cells were then used once
fully confluent (approximately 2 × 106 cells/well). The media was changed every other day and
supplemented with 2% FBS 24 h prior to use.

2.8. Adhesion Assays with B. infantis

Adhesion assays with B. infantis were performed as previously described [11]. HT-29 cells were
washed twice with PBS, and 250 µL of the bacteria and media suspensions were added to the wells,
corresponding to approximately 40 bacterial cells per human cell. Bacterial cells were incubated with
the HT-29 cells after which they were washed with PBS to remove non-adherent bacteria. HT-29 cells
were then lysed and the lysates were serially diluted and enumerated by spot-plating on MRS plates
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to enumerate bacterial colony forming units (CFU). The adhesion of the bacteria was determined
as the percentage of original inoculum that attached, thus accounting for variations in the starting
inoculum. Percentage adhesion = (CFU/mL of recovered adherent bacteria/CFU/mL of inoculum) ×
100. Experiments were performed in triplicate on three separate occasions.

2.9. Anti-Infective Assays and Exclusion Assay

Anti-infective assays were performed as previously described [18] with minor modifications.
In brief, C. jejuni was incubated in the absence and presence of GMO (5 mg/mL) at a final OD600nm

of 0.3 (approximately 5.14 × 108 CFU/mL) in McCoys′s media and incubated under microaerophilic
conditions for 1 h at 37 ◦C; 250 µL of the mix was then applied to three wells containing HT-29
cells, and allowed to incubate for 3 h, after which the eukaryotic cells were washed five times with
PBS, lysed with 250 µL 0.1% Triton X-100 (Merck) in PBS and spread plated onto Mueller–Hinton
agar plates and incubated under microaerophilic conditions for 72 h at 37 ◦C to enumerate CFU.
For exclusion assays, exposure of B. infantis to 5 mg/mL GMO was performed as described above,
and this suspension was subsequently incubated with the HT-29 cells for 2 h. A non-supplemented
control was also included. Non-adherent bacteria were removed from the cells as described above,
after which the cell line was challenged with C. jejuni. To do this, the pathogen was harvested from
the biphasic medium, washed twice in non-supplemented McCoy′s, and diluted to an OD600nm of 0.3.
From this suspension, 250 µL was then added to each well, and cells were incubated under anaerobic
conditions for 3 h at 37 ◦C. Cells were then washed five times with PBS, lysed with 0.1% Triton
X-100 (Merck) in PBS and plated onto supplemented Mueller–Hinton agar. Mueller–Hinton plates
were incubated under microaerophilic conditions for 72 h at 37 ◦C, after which bacterial CFU were
enumerated. The assays were performed in triplicate on three separate occasions. The exclusion of C.
jejuni was determined as the average CFU/mL of recovered adherent bacteria. The percentage decrease
in C. jejuni adhesion was calculated as the difference in C. jejuni CFU/mL between non-supplemented
and GMO-supplemented bifidobacteria.

2.10. Effect of GMO on the Growth of B. infantis

B. infantis was grown in the absence and presence of 5 mg/mL GMO over a 72 h period under
adhesion assay conditions. Aliquots of 150 µL of the bacterial suspensions were added to the individual
wells of a 96 well microtiter plate. Other controls included a control containing no bacteria, and bacteria
grown in deMan Rogosa Sharpe (MRS) (Difco, Sparks, MD, USA) broth supplemented with L-cysteine
(0.05% w/v) (Merck). These experiments were performed in a concept 400 anaerobic chamber (Baker, ME,
USA) and bacterial growth was monitored by determining OD600nm using a Synergy-HT multidetector
microplate reader driven by Gen5 reader control and data analysis software (BioTek Instruments Inc.
Bedfordshire UK) at 0, 12, 24, 48 and 72 h. The microtitre plate was automatically shaken for 30 s prior
to each measurement to achieve a homogenous suspension. The results are represented as the average
OD600nm of triplicate experiments performed on three separate occasions. The percentage increase
in growth of B. infantis was calculated as the difference in OD600nm between non-supplemented and
GMO-supplemented bifidobacteria.

2.11. GMO Consumption by B. infantis

B. infantis was grown overnight under the optimal conditions outlined above and then re-suspended
in McCoy′s media at an OD600nm of 0.25 with a final oligosaccharide concentration of 5 mg/mL. A one
milli-litre aliquot of this cell suspension was then dispensed into a sterile Eppendorf (Merck) after 0
h and 24 h of growth. A negative control containing no bacteria was also included. These solutions
were then centrifuged for 5 min (3850× g) and the supernatants collected. The process was repeated
a total of three times to ensure bacteria were not present in the supernatant. The sample was also
treated with ultraviolet light for 30 min in a laminar flow hood to ensure no further metabolic activity
occurred., 2′FL, LNT, 3′SL, 6′SL, DSL, LNH, Sialic Acid, LSTc, LNnT, and LNnH were quantified using
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HPAEC-PAD analyses to quantify oligosaccharide levels before and after 24 h of fermentation using
a Dionex ICS-3000 Series system (Dionex Corporation). Reductions in the areas of the peaks after
immediate exposure and over the 24 h period were calculated through comparative analysis as per
Lane et al. [28]. These experiments were performed on three separate occasions.

2.12. B. infantis Metabolite Analysis

Supernatants collected for HPAEC-PAD analysis at 0 and 24 h were also assessed for changes in
metabolite production using high-pressure liquid chromatography. Metabolic end products, lactate,
acetate, formate and ethanol were measured using an Agilent 1200 HPLC system (Agilent Technologies,
Santa Clara, CA, USA) with a refractive index detector. Metabolite peaks and concentrations were
identified and calculated based on known metabolite retention times and standard solutions at known
concentrations. A negative control of non-supplemented media was also included. A REZEX 8 m 8%H,
organic acid column (300 × 7.8 mM Phenomenex, CA, USA) was used and the elution was performed
for 25 min with a 0.01 M H2SO4 solution at a constant flow rate of 0.6 mL/min and a temperature of
65 ◦C. The standard solutions were prepared as per Table 1. These experiments were performed in
triplicate. The ratios of acetate to lactate, acetate to formate, and lactate to ethanol were also calculated.

Table 1. Volumes of standards used for metabolite analysis.

HPLC Standard Per 100 mL Molecular Weights

10 mM Lactic acid 0.09 g 90.08
10 mM Acetic acid 57 µL 60.05

10 mM Formic Acid 38 µL 46.03
10 mM Ethanol (99%) 58 µL 46.07

2.13. Statistical Analysis

Graphs were drawn using Microsoft Excel. The results are presented as the mean ± standard
deviations of replicate experiments, and the unpaired Student t-test was used to determine statistically
significant results. For all experiments, p < 0.05 was considered significant.

3. Results and Discussion

3.1. Characterisation of the Goat Milk Oligosaccharides

The batch of goat′s milk used in this study was previously characterised in terms of its
oligosaccharide content [29]. Forty-one oligosaccharide structures were identified including both
neutral and acidic structures, of which 64% of the acidic fraction were Neu5Gc linked [29]. In this
study, we isolated oligosaccharide from the same batch of goats milk and quantified some of the
major structures, which included LNnT, LNnH, 3′-SL, 6′-SL, LSTc and DSL (Table 2). In terms of the
difference between human and animal milk composition, type I oligosaccharides predominate in human
milk [27], while type II oligosaccharides are either exclusive or predominate over type I structures
in animal milk. Regarding human milk oligosaccharide (HMO) structures, 70% are fucosylated,
with lacto-N-biose (type I) structures (Gal(b1–3)GlcNAc) predominating over structures containing the
N-acetyllactosamine (type II) (Gal(b1–4)GlcNAc) [29]. In contrast, animal-derived oligosaccharides are
predominantly sialylated, containing N-acetylneuraminic acid (Neu5Ac) and/or N-glycolylneuraminic
acid (Neu5Gc) [30,31]. However, it is important to note that the oligosaccharide yield obtained from
animal milk is much lower than that of human milk. While changes in GMO composition occur
across lactation [24], previous studies have indicated that a number of oligosaccharides, such as 3′

and 6′ sialylactose, β3′-galactosyllactose, β6′-galactosyllactose, 2′-fucosyllactose, Lactose-N-hexaose,
6′-N-acetylneuraminyllactose and 3′-N-acetylneuraminyllactose are present in both human and goat
milk [32–35]. In addition, a recent study by Leong et al. 2019 [13] investigated the presence of naturally
occurring oligosaccharides in commercial goats′ milk-based stage one and stage two infant formulas
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and their prebiotic properties. Fourteen quantifiable oligosaccharides in goats′ milk-based infant
formula were detectable by LC/MS, indicating that, structurally, GMO may represent an alternative to
the human milk derivatives where breastfeeding is not possible. In addition, high purity and recovery
of GMO consisting of 67.6% acidic and 34.4% neutral oligosaccharides have been demonstrated [36],
indicating that potentially viable commercial production methods may be available in the not too
distant future.

Table 2. Levels of different oligosaccharides present in goat milk ogliosaccharides (GMO) pool.

Oligosaccharide Structures µg/mL

Lacto-N-neotetraose (LNnT) 3.4
Lacto-N-neohexaose (LNnH) 3

3′-Sialyllactose (3′SL) 32.83
6′-Sialyllactose (6′SL) 33.05
LS-tetrasaccharide c 0.94
Disialyllactose (DSL) 33.46

3.2. Combined Effect of GMO and B. infantis on C. jejuni Adhesion

Probiotic bacteria, such as Lactobacillus acidophilus UO 001 and Lactobacillus gasseri UO 002,
are known to inhibit the growth of Campylobacter without interfering with the normal microbiota
of the gastrointestinal tract, suggesting other probiotic bacteria may have similar effects [37,38].
Murine fecal microbiota transplantation treatment was shown to alleviate intestinal and systemic
immune responses in C. jejuni-infected mice harbouring a human gut microbiota. These with mice
displayed higher numbers of lactobacilli and bifidobacteria, further suggesting the beneficial effects of
probiotics against pathogen colonisation [39]. However, a prerequisite for survival in the intestinal tract
is the ability of probiotic strains to transiently adhere efficiently to the intestinal mucosa. Probiotic and
pathogenic strains have been suggested to share similarities in terms of their surface adhesins and, thus,
may compete for adhesion sites [3,40]. Previously, we demonstrated an increase in B. infantis adherence
to HT-29 cells after pre-exposure to GMO [11]. The HT-29 cells are extensively used as a model of
the gastrointestinal tract, particularly as in vitro intestinal models of bacterial colonisation [41,42].
These cells exhibit classical characteristics that model small intestinal absorptive epithelial cells
upon reaching confluence [43] and are a useful indicator of the structural landscape of the intestinal
epithelium [44]. In the current study, we also employed HT-29 cells and hypothesised that the increase
in B. infantis adhesion following GMO treatment may provide a protective effect against C. jejuni
colonisation of HT-29 cells. We pre-treated B. infantis with GMO and observed an average increase
in adhesion of 4.4 fold, demonstrating a clear increase in adhesion potential over three biological
replicate experiments performed in triplicate (Figure S1). Following this, anti-infective assays were
conducted to investigate if GMO alone could prevent C. jejuni colonisation. Overall, an average
inoculum of 5.14 × 108 CFU/mL was applied to the HT-29 cells, of which 1.35 × 106 CFU/mL of C.
jejuni were demonstrated to adhere. The percentage of C. jejuni from the original inoculum which
adhered to the HT-29 cells was 0.26% ± 0.05. Notably, both GMO alone and B. infantis alone had no
protective effects against C. jejuni colonisation (p-value: > 0.5) (Figure 1). Exclusion assays assessed the
ability of B. infantis alone and pre-treated with GMO to prevent attachment and invasion of C. jejuni
to HT-29 cells. The assays revealed a prophylactic protective effect following prior treatment of B.
infantis with GMO (Figure 1) with an average significant decrease ranging from 42%–46% in C. jejuni
adherence observed over triplicate experiments performed on three separate occasions. Interestingly,
the non-supplemented B. infantis control demonstrated no protective effect against C. jejuni colonisation.
This may suggest that a critical population level of attached bifidobacteria is required to result in the
competitive exclusion of a pathogen. In contrast to the results demonstrated here, a previous study
in mice with L. johnsonii indicated no reduction in lower intestinal C. jejuni colonisation; however,
a suppressed intestinal and systemic pro-inflammatory and enhanced anti-inflammatory immune
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response were both observed, indicating other potential benefits of the use of probiotics on C. jejuni
infection [45]. Notably, no statistically significant increase in C. jejuni growth in the presence of GMO
was observed under anti-infective and exclusion assay conditions.
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the 1 h exposure.  

Figure 1. Anti-infective assays (A) demonstrating Campylobacter jejuni 81–176 adhesion in the absence
and presence of GMO, and (B) competitive exclusion assays demonstrating Campylobacter jejuni 81–176
adhesion to HT-29 cells following pre-treatment of the HT-29 cells with Bifidobacterium longum subsp.
infantis 15697 (yellow) and Bifidobacterium longum subsp. infantis 15697 pre-treated with GMO (orange).
Results demonstrate the average colony forming units (CFU)/mL of adherent Campylobacter jejuni
81–176 of one representative triplicate experiment, with error bars representing standard deviation.
The unpaired non-parametric t-test was used, *: p-value: < 0.05, n.s: not significant.

The results presented here are particularly significant as Campylobacter is one of four key global
causes of diarrhoeal diseases and is considered to be the most common bacterial cause of human
gastroenteritis in the world [46] C. jejuni, in particular, poses a great risk worldwide due to its associated
diarrhoeal disease and the risk of development of severe secondary diseases, such as irritable bowel
syndrome and Guillain–Barré syndrome post-infection [17,47]. A number of studies have suggested
that probiotic bacteria may inhibit pathogens through competitive exclusion to pathogen adhesion sites
and nutrients [48]. Commercial broiler chickens are a major reservoir for C. jejuni and consumption can
lead to human infection [49]. However, swine and cattle can also act as zoonotic vectors in addition
to ingestion of contaminated surface waters [50,51]. Notably, strains such as Lactobacillus spp., i.e.,
acidophilus, casei, crispatus, gasseri, helveticus, pentosus, plantarum, rhamnosus, and salivarius have been
suggested to exhibit anti-Campylobacter activities in vitro and in vivo [49]. In addition, Dec et al. [52],
in screening Lactobacillus isolates for anti-Campylobacter activity, selected seven Lactobacillus isolates with
potential applications in reducing Campylobacter spp. in chickens, which may have potential to prevent
infections in both birds and humans [52]. In vivo studies in poultry using synbiotic combinations
of Bifidobacterium longum PCB 133 and galactooligosaccharides in animal feed have been shown to
reduce C. jejuni infection, demonstrating the potential to reduce transmission along the food chain,
which is of fundamental importance for the safety of poultry meat consumers [53]. Microencapsulated
Bifidobacterium longum PCB133 and xylooligosaccharides (XOS), when combined, have also been
shown to have a synbiotic effect on improving the safety of poultry meat by protecting against C.
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jejuni infection (p-value: < 0.01) at the beginning of life, while the microbiota is still developing [54].
Additionally, in vivo studies in chicks have demonstrated the ability of three chicken commensal
isolates to induce a 1–2 log reduction in Campylobacter numbers. However, isolates were only capable of
reducing Campylobacter levels in one out of three trials. Notably, follow–up experiments demonstrated
Lactobacillus salivarius subsp. salicinius, in combination with 0.04% mannan oligosaccharides resulted in
a 3-log decrease of cecal Campylobacter suggesting that, similar to the current study, the use of synbiotic
combinations may be more effective at preventing Campylobacter colonisation when compared to a
commercial strain alone [55]. The cumulative prebiotic and colonisation-promoting effect of the GMO
on the B. infantis strain in the current study further supports the use of such synbiotics in foods aimed
at preventing infection.

3.3. Prebiotic Effects of GMO

The ability of GMO to stimulate the growth of B. infantis was determined using growth curves
(Figure 2). When GMO was incubated with B. infantis following the pre-treatment period, an average
increase in growth of 104% was observed in the presence of GMO at 24 h. No significant increases in
the growth of B. infantis occurred during earlier incubation periods (≤12 h). Thus, it is unlikely that
this growth contributed to the observed increase in bifidobacterial adhesion to the HT-29 cells after the
1 h exposure.Foods 2020  9 of 16 
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Figure 2. Growth of B. longum subsp. infantis in McCoy′s media supplemented with GMO over 72
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non-parametric t-test was used, *: p-value: < 0.05, ** p-value: < 0.005, n.s: not significant.

Previous studies have demonstrated statistically significant increases in Bifidobacterium and
Bacteroides growth following incubation with GMO [12]. Similarly, GMO has also been shown to
increase levels of bifidobacteria using in vitro fermentation models and in in vivo mouse trials [15,39].
The prebiotic effect observed here is not surprising given that B. infantis ATCC 15697 is particularly
adept at the utilising human milk glycans due to the presence of a 43 kb gene cluster responsible for
their transport and utilization [56–64]. Indeed, Bifidobacterium longum subsp. infantis has been described
as the “champion colonizer of the infant gut” and is unique among gut bacteria in its prodigious
capacity to digest and consume milk oligosaccharide structures [58–60]. Moreover, a number of
bifidobacterial strains have the ability to utilize milk oligosaccharides as substrates for growth [65].
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In vitro fermentation of human milk oligosaccharides by different bifidobacterial strains including B.
longum subsp. infantis ATCC 15697, B. longum ATCC 15707, B. breve ATCC 27539, B. adolescentis ATCC
15703 and B. bifidum ATCC 29521 has been previously demonstrated [66].

The ability of B. infantis ATCC 15697 to use multiple specific carbohydrate structures (2′FL, LNT,
3′SL, 6′SL, DSL, LNH, Sialic Acid, LSTc, LNnT and LNnH) within the pool was also investigated by
generating HPAEC-PAD profiles of the oligosaccharides in the media before and after 24 h of bacterial
growth (Figure 3). Notably, before the incubation period, a total of 24 peaks were detected in the GMO
by the method used, of which six (3′SL, 6′SL, DSL, LSTc, LNnT and LNnH) were identified. Following
24 h incubation with B. infantis, 19 peaks were detected, of which 11 unidentified peaks were found in
trace amounts that were not detected in the starting material. 2′FL, LNT, LNH, and free sialic acid
were not detected at either time point. Overall, our results demonstrated that the strain was capable of
utilizing multiple structures. For instance, 3′ and 6′ SL were depleted by 94% and 71% respectively,
while LNnT and LNnH, were 100% utilised. LSTc was depleted by 94%, DSL was depleted by 43.1%,
and lactose was depleted by 52%. This may be expected as B. longum subsp. longum has been shown to
utilize free LNnT, one of the dominant components of HMOs, [66,67]. In addition, B. longum subsp.
infantis BRS8-2 and TPY1201 are known to degrade 2′FL, 3FL, 3′SL and LNnT, while B. longum subsp.
infantis DSM 20088 has been shown to utilise 2′FL, 3FL, and LNnT [68]. Therefore, it is likely that the
prebiotic effect associated with GMOs may extend to other strains.

The presence of bifidobacteria in the gut are known to influence the production of formate, acetate,
ethanol and lactate [69] and gut homeostasis is achieved through their production [70]. The inhibition
of gram-negative bacteria through the production of metabolites has been shown [71]. Acetate is the
most prominent short chain fatty acids (SCFA) [72] and accounts for over half the total SCFA content
in stools [73,74]. Acetate has been shown to improve protection against pathogen colonisation as it
modulates the gut epithelium and induces anti-inflammatory and anti-apoptotic effects [75].

In this study, HPLC was implemented to determine the production of metabolites such as
acetate, lactate, formate and ethanol by B. infantis, following growth on GMO (Table 3). The results
indicated that GMO resulted in a 12-fold (p-value = 0.0009) higher concentration of acetic acid at 24 h in
comparison to the non-supplemented control. Indeed, the concentration of lactic acid was 15-fold higher
(p-value = 0.0019), while the concentration of formic acid was 8-fold (p-value = 0.0001) higher than the
non-supplemented control at 24 h. Notably, ethanol was only detected in the GMO-supplemented
sample at a concentration of 8mM at 24 h (Table 3). Notably, bifidobacterial strains can catabolize 2
moles of hexose resulting in the production of 2 moles of lactic acid and 3 moles of acetic acid using
the fructose-6-phosphate phosphoketolase pathway, resulting in a theoretical yield of acetate:lactate
ratio of 1.5:1 in hexose [76]. However, this ratio is rarely obtained and varies depending on the growth
substrate and/or culture conditions [77]. For example, growth on substrates LNT, LNnT, inulin-type
fructans and 2FL has been demonstrated to result in higher ratios of acetate to lactate [76,78,79].
Similarly, in this study, the acetate to lactate ratio of acetate to lactate produced by B. infantis was
3.3:1 following 24 h growth on GMO. Increased acetate production has been reported to occur in
log-phase cells and relates to the phosphorolytic splitting of pyruvate derived from carbons four,
five, and six of hexose and this could account for the additional levels of acetate we observed in this
study [80]. The high ratio of acetate to lactate in substrated LNT and LNnT has been suggested to be in
part a result of the deacetylation of the GlcNAc [76] and this, too, may have contributed the results
found here. Notably, some bifidobacteria convert pyruvic acid into formic acid and ethanol rather
than into lactic acid, thereby yielding an extra ATP [77]. In this study, we detected concentrations of
ethanol (8.004 mM), formic acid (8.57 mM) and lactate acid (9.04 mM) after 24 h fermentation in GMO,
which also may explain the lower than expected ratio of lactate to acetate. While bifidobacteria are
incapable of producing butyrate, within the host, the production of acetate and lactate can be converted
to butyrate through cross-feeding pathways via indigenous colonic species, such as Faecalibacterium
prausnitzii (clostridial cluster IV) and Anaerostipes, Eubacterium and Roseburia species (clostridial cluster
XIVa) [70,81–84] and, thus, in vivo, may have additional beneficial effects.



Foods 2020, 9, 348 10 of 15Foods 2020  10 of 16 

 

(A)  

(B) 

Figure 3. GMO profile of (A) high molecular weight oligosaccharides and (B) low molecular weight 

oligosaccharides after 0 h (blue) and 24 h (red) incubation with B. infantis. 

The presence of bifidobacteria in the gut are known to influence the production of formate, 

acetate, ethanol and lactate [69] and gut homeostasis is achieved through their production [70]. The 

inhibition of gram-negative bacteria through the production of metabolites has been shown [71]. 

Acetate is the most prominent short chain fatty acids (SCFA) [72] and accounts for over half the total 

SCFA content in stools [73,74]. Acetate has been shown to improve protection against pathogen 

colonisation as it modulates the gut epithelium and induces anti-inflammatory and anti-apoptotic 

effects [75].  

In this study, HPLC was implemented to determine the production of metabolites such as 

acetate, lactate, formate and ethanol by B. infantis, following growth on GMO (Table 3). The results 

indicated that GMO resulted in a 12-fold (p-value = 0.0009) higher concentration of acetic acid at 24 h 

in comparison to the non-supplemented control. Indeed, the concentration of lactic acid was 15-fold 

higher (p-value = 0.0019), while the concentration of formic acid was 8-fold (p-value = 0.0001) higher 

than the non-supplemented control at 24 h. Notably, ethanol was only detected in the 

GMO-supplemented sample at a concentration of 8mM at 24 h (Table 3). Notably, bifidobacterial 

strains can catabolize 2 moles of hexose resulting in the production of 2 moles of lactic acid and 3 

moles of acetic acid using the fructose-6-phosphate phosphoketolase pathway, resulting in a 

theoretical yield of acetate:lactate ratio of 1.5:1 in hexose [76]. However, this ratio is rarely obtained 

and varies depending on the growth substrate and/or culture conditions [77]. For example, growth 

Figure 3. GMO profile of (A) high molecular weight oligosaccharides and (B) low molecular weight
oligosaccharides after 0 h (blue) and 24 h (red) incubation with B. infantis.

Table 3. Production of metabolites by B. longum subsp infantis American Type Culture Collection
(ATCC) 15697 after 0 and 24 h incubation with GMO.

Control GMO

Concentration mM 0 h 24 h 0 h 24 h

Acetate ND 2.42 a 0.07 30.14 a,b

Lactate ND 0.62 n.s ND 9.04 a,b

Formate 0.81 1.13 a 0.79 b 8.57 a,b

Ethanol ND ND ND 8.00 a,b

a indicates significance in comparison to time 0 and 24 h within the one group, and b indicates significance in
comparison to the non-supplemented control. n.s indicates not significant.

4. Conclusions

Initial exposure of bifidobacteria to GMO resulted in increased attachment to HT-29 cells and,
in turn, had a prophylactic effect against C. jejuni attachment and invasion of intestinal cells in vitro.
Protection against pathogen colonisation through competitive exclusion is a key benefit of the
increasing bifidobacterial colonisation and could be exploited in order to deal with the rising numbers
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of Campylobacter infections. While other pathogens were not assessed in this study, there is potential
that GMO treatment could provide overall resistance to pathogenic colonisation if used prophylactically
as a synbiotic with bifidobacteria. Longer exposures of B. infantis to GMO increased the growth of
the strain, highlighting its ability to adapt to environmental factors and promote its overall survival
and colonisation in the GI tract, further highlighting the benefits of using synbiotic combinations.
Overall, this study highlights the potential benefits in combining oligosaccharides from goat milk
with select probiotic strains for promoting a healthy gut ecosystem, whilst protecting the host against
pathogenic disease. Moreover, the use of such synbiotics is not limited to gastro-intestinal disorders, as
low numbers of bifidobacteria have been associated with many other disorders. Such disorders include
periodontal disease, rheumatoid arthritis, atherosclerosis, allergy, multi-organ failure, asthma and
allergic diseases in addition to inflammatory bowel diseases, such as Crohn′s disease, irritable bowel
syndrome and ulcerative colitis [85,86]. Synbiotics may, therefore, be more effective than either
probiotics or prebiotics when used alone in the treatment and management of human health.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/3/348/s1,
Figure S1: Adhesion of B. longum subsp. infantis ATCC 15697 to HT-29 cells following incubation with goat
milk oligosaccharides.
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