
Accepted Manuscript

High pressure processing on microbial inactivation, quality
parameters and nutritional quality indices of mackerel fillets

María de Alba, Juan Pérez-Andrés, Sabine M. Harrison, Nigel P.
Brunton, Catherine M. Burgess, Brijesh K. Tiwari

PII: S1466-8564(18)31431-0
DOI: https://doi.org/10.1016/j.ifset.2019.05.010
Reference: INNFOO 2171

To appear in: Innovative Food Science and Emerging Technologies

Received date: 20 November 2018
Revised date: 8 March 2019
Accepted date: 17 May 2019

Please cite this article as: M. de Alba, J. Pérez-Andrés, S.M. Harrison, et al., High pressure
processing on microbial inactivation, quality parameters and nutritional quality indices
of mackerel fillets, Innovative Food Science and Emerging Technologies, https://doi.org/
10.1016/j.ifset.2019.05.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting proof before
it is published in its final form. Please note that during the production process errors may
be discovered which could affect the content, and all legal disclaimers that apply to the
journal pertain.

https://doi.org/10.1016/j.ifset.2019.05.010
https://doi.org/10.1016/j.ifset.2019.05.010
https://doi.org/10.1016/j.ifset.2019.05.010


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

1 
 

 

 

 

High pressure processing on microbial inactivation, quality 

parameters and nutritional quality indices of mackerel fillets 

 

María de Alba
1*

, Juan Pérez-Andrés
1
, Sabine M. Harrison

2
, Nigel P Brunton

2
, 

Catherine M. Burgess
3
 and Brijesh K. Tiwari

1
 

 

1
Food Chemistry and Technology, Teagasc

 
Food Research Centre, Ashtown, Dublin 15, 

Ireland 

2
UCD Institute of Food and Health, University College Dublin, Ireland 

3
Food Safety, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland 

 

 

 

*Corresponding author: Teagasc
 
Food Research Centre, Ashtown, Dublin 15, Ireland. 

Tel.: +353 18059910; Email address: Maria.Ortega@teagasc.ie 

 

 

Running title: High pressure processing on microbial inactivation, quality parameters 

and nutritional quality indices of mackerel  

 

 

 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

2 
 

 

Abstract 

 

The objective of this study was to investigate the effect of high pressure 

processing (HPP) (100, 300 or 500 MPa for 2 or 5 min) on microbial inactivation, 

quality parameters and nutritional quality indices of mackerel fillets. A significant 

reduction in TVC and H2S-producing bacteria was detected at 300 MPa for 5 min and 

500 MPa for 2 or 5 min. Lightness (L*) increased and redness (a*) decreased at the 

highest treatment intensities. Hardness, chewiness and springiness increased with the 

most intense treatments but neither cohesiveness nor TBARS values were affected by 

pressurization. HPP significantly decreased levels of EPA, PUFAs, HUFAs, DHA, 

CLAs and increased MUFAs and SFAs. TI significantly increased at the highest 

pressurization intensities and AI was affected when HPP was held for 5 min. However, 

the ratio PUFA/SFA above 0.45 in pressurized mackerel fillets indicated that HPP did 

not compromise the nutritional value of this pelagic fish. 

 

Industrial relevance: The potential of HPP to inhibit spoilage and increase the shelf-life 

of mackerel fillets, while maintaining its quality and healthy attributes, could help the 

fish processing industry to ensure better quality raw material for further processing, 

thereby enabling the development of new, value-added products with extended shelf- 

life. The reduction in the processing time with the subsequent saving of energy 

compared to conventional thermal methods makes HPP a relatively energy efficient and 

suitable preservation treatment for the fish industry. 
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1. Introduction 

There is a growing demand among consumers for healthier and safer products with a 

longer shelf-life. Pelagic fish species, such as mackerel (Scomber spp.) with a high 

nutritional value due to their high omega-3 polyunsaturated fatty acids (PUFAs) levels, 

constitute a valuable food resource in a healthy diet and are often perceived by 

consumers as beneficial for human health (Ruxton, Calder, Reed, & Simpson, 2005). 

Raw fish is highly perishable due to its pH close to neutral, high water activity (aw), as 

well as high amounts of unsaturated fatty acids and free amino acids. In addition, a high 

content of autolytic enzymes makes it an ideal substrate for microbial and oxidative 

degradation (Lougovois & Kyrana, 2005), with subsequent detrimental effects on 

sensory quality and shelf-life. The microbiota present on fish and shellfish depends on 

different factors, such as the environment, the species of fish, their eating habits and the 

mode of capture, and the conditions during storage which will determine which bacteria 

are responsible for spoilage (Chen, 1995). According to Svanevik and Lunestad (2011), 

the bacterial profile of Atlantic mackerel is dominated by Gram-negative bacteria i.e. 

Psychrobacter sp., P. immobilis, P. marincola, P. cibarius, P. faecalis, Proteus sp., P. 

vulgaris, Photobacterium sp., P. phosphoreum, Vibrio sp., V. kanaloae, V. splendidus, 

V. pomeroyi, Shewanella sp., S. putrefaciens, Oceanisphaera sp., Flavobacteriaceae, 

Bizonia sp., B. paragorgiae, Pseudoalteromonas sp., P. tetradonis, Synechococcus sp. 

and γ-proteobacteria. Among them, P. phosphoreum, S. putrefaciens or Proteus sp. are 

H2S producing Specific Spoilage Bacteria (SSB) which give rise to off-flavours 
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associated with spoilage and can be used to predict remaining product shelf-life because 

their numbers correlate closely with sensory rejection (Gram & Dalgaard, 2002). Due to 

the fact that fish is devoid of carbohydrates (<0.5%) and only a small amount of lactic 

acid is produced post-mortem, the high final pH (usually >6) allows low pH sensitive 

spoilage bacteria such as S. putrefaciens to grow (Gram & Huss, 1996). 

Although conventional food processing methods may be very efficient in 

generating safe products with an acceptable shelf-life, some changes in nutritional, 

chemical/biochemical and sensorial properties of food that compromise their acceptance 

by consumers may occur (Barba, Koubaa, do Prado-Silva, Orlien, & de Souza 

Sant’Ana, 2017). To address these disadvantages, non-thermal or mild processing 

technologies (<40°C) constitute useful alternatives to thermal inactivation methods for 

the food industry in order to preserve thermolabile nutrients, sensory attributes and 

functional properties of foods, while ensuring their safety and extending their shelf-

lives. Reductions in processing times, with subsequent saving in energy consumption 

make non-thermal technologies beneficial for the industry (Misra et al., 2017).High 

pressure processing (HPP), applied at refrigeration, ambient or moderate heating offers 

many advantages to food processors compared to traditional thermal methods. It allows 

inactivation of pathogenic and spoilage bacteria with fewer changes in colour, texture 

and flavour (Barba, Esteve, & Frigola, 2012; Knorr, 1993). The principles, historical 

developments and HPP market in the 21
st
 century have been reviewed by Misra et al. 

(2017). Basically, the energy consumption is lower (Farr, 1990), the process is not 

dependent on the shape or size of the food (Knorr, 1999) unlike thermal treatment and 

as the food is already in its final packaging when treated, post-processing contamination 

after pressurization is prevented.  
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The rationale for the use of HPP for fish and fish products is based on its ability 

to inactivate pathogenic and spoilage microorganisms and autolytic enzymes, resulting 

in an increased shelf-life (Alves de Oliveira, Neto, Rodrigues dos Santos, Rocha 

Ferreira, & Rosenthal, 2017) and also, an increased yield of the shucking process of 

bivalves and crustaceans (Patterson, 2014). However, HPP has been reported to increase 

discolouration, cooked appearance or lipid oxidation which could limit its use for raw 

fish products (Truong, Buckow, Stathopoulos, & Nguyen, 2015). Hence, optimisation 

of treatment conditions such as pressurization intensities, temperature and holding time 

is required for each specific food matrix. According to Patterson (2014), treatment 

temperature can affect the microbial inactivation achieved. Due to adiabatic heating 

during compression of HPP treatments, shifts in temperature that occur seem to be 

important in terms of microbial inactivation. There is an increase in temperature during 

processing, which in water-based systems equates to approximately 2 °C per 100 MPa, 

with the heat quickly dissipated once the pressure is released. The main effects of 

temperature on microbial inactivation seem to be associated with an increase of 

permeability and fluidity of microbial membranes which decreases their physical 

stability (Jayaram, Castle, & Margaritis, 1992).  

The aim of this study was to investigate the effect of high pressure treatments of 

100, 300 or 500 MPa for 2 and 5 min on mackerel fillets and to evaluate the changes in 

total viable counts (TVC), H2S-producing bacteria, colour, texture, lipid oxidation, fatty 

acid profile and nutritional quality indices of the product. 

 

2. Materials and methods 
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2.1. Sample origin 

Mackerel (Scomber spp.) caught in the North Sea off Scotland (East Atlantic 

Ocean-FAO n° 27) in winter (October-November) were purchased beheaded, 

eviscerated and opened in butterfly fillets, on three different occasions (three different 

batches) in a local supermarket in Dublin (Ireland). Prior to and after treatment, samples 

were kept on ice at 0.5 ± 0.5 °C. 

2.2. High pressure processing (HPP) 

 Butterfly mackerel fillets were 21.3 ± 0.6 cm in length and they weighed 174.8 

± 11.2 g. They were aseptically cut into halves giving rise to fillets which weighed 87.1 

± 8.1 g. They were individually vacuum packaged and pressurized in a high pressure 

machine (Stansted Fluid Power Ltd., Essex, UK) with 600 MPa as maximum working 

pressure; a mixture of oil-water (10:90) was used as the pressure transmitting fluid. The 

HPP unit was cooled to 10°C-12°C before treatments with a cooler unit. Treatments at 

100, 300 or 500 MPa for 2 and 5 min were applied. Come up times were approximately 

43 s, 84 s and 130 s for 100, 300 and 500 MPa, respectively and the pressure release 

was 17 s, 22 s and 25 s, respectively. The sample temperature at the starting of 

compression was 0.5 ± 0.5°C. The temperature rise in the pressurization fluid during 

compression was around 2°C per 100 MPa. The temperature of the sample and the 

medium during the isobaric holding period was around 13.4°C, 17°C, 22.3°C at 100 

MPa, 300 MPa and 500 MPa for 2 min, respectively, and 14.5°C, 18°C and 21°C were 

at 100 MPa, 300 MPa and 500 MPa for 5 min, respectively.  The duration of treatment 

did not include the come up time. Samples were prepared in duplicate and kept on ice 

prior to and after pressurization treatments. Three independent trials were performed on 

three different days. 
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2.3. Microbiological analysis 

Samples (10 g) were homogenized in 90 mL of Maximum Recovery Diluent 

(MRD, Oxoid Ltd., Basingstoke, England) using a IUL Stomacher for 90 s. Decimal 

dilutions of the homogenate were prepared in MRD. Total Viable Counts (TVC) were 

determined on duplicate plates of Plate Count Agar (PCA) (Oxoid Ltd., Basingstoke, 

England) and incubated at 30°C for 48 h. H2S-producing bacteria, as black colonies, 

were determined on duplicate plates of Iron Agar supplemented with 0.8% L-cysteine 

and incubated at 25°C for 72 h. The detection limit was 10 cfu/g.  

 

2.4. Colour and Texture profile analyses (TPA) 

L* (lightness, intensity of white colour), a* (+a, red;-a, green) and b* (+b, 

yellow; -b, blue) values were measured with a HunterLab UltraScan Pro (Hunter 

Associates Laboratory, Inc., Reston, VA). Measurements were made with the D65 

standard illuminant and ten-degree observer angle. Three independent measurements 

were taken in separate locations in mackerel fillets and the average of these three 

measurements per sample was expressed as the final value. From these values, the total 

colour change (∆E*) was calculated according to equation (Eq. (1)): 

(1)           
          

          
    

Where L0
*
, a0

*
, and b0

*
 are the lightness, redness, and yellowness values of the 

control (non-pressurized) samples.  

The texture profile of samples cut into cylinders (13 mm diameter, 18 mm 

height) was determined at room temperature using an Instron 5543 equipped with a load 
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cell of 500 N and a 35 mm diameter cylindrical aluminium probe (P/35). Five cylinders 

were taken from each fillet and compressed to 60% of the original height at a 60 

mm/min compression speed to estimate hardness (N), chewiness (N mm), cohesiveness 

(dimensionless) and springiness (mm), giving five measurements from each fillet.  

 

2.5. Lipid oxidation  

Secondary lipid oxidation products were estimated as TBARS (Thiobarbituric 

acid reactive substances) as described by Botsoglou et al. (1994). Calibration was 

performed using a standard curve of 1,1,3,3-tetraethoxypropane (TEP) (Fisher Scientific 

Ireland, Ltd.). Results were calculated from four independent samples and expressed as 

µmol malondialdehyde (MDA)/g sample.  

 

2.6. Fatty acid profile 

 

2.6.1. Microwave-assisted preparation of fatty acid methyl esters (FAMEs) 

Microwave assisted FAME preparation was carried out using a MARS 6 Express 

40 position Microwave Reaction System (CEM Corporation, Matthews, NC, USA) 

according to Brunton, Mason, & Collins (2015).  

 

2.6.2. Gas chromatography-flame ionisation detector (GC-FID) analysis  

Gas chromatography was carried out using a Clarus 580 Gas Chromatograph 

fitted with a flame ionisation detector. A CP-Sil 88 capillary column (Agilent, Santa 
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Clara, California, USA) with a length of 100 m x 0.25 mm ID and 0.2 µm film was used 

for the separation. The injection volume was 0.5 µL, at a temperature of 250 °C. The 

oven was set to 80 °C with an initial temperature ramp of 6.2 °C/min to 220 °C which 

was held for 3.2 min. A second temperature ramp of 6.3 °C/min to 240 °C followed and 

was held for 6.5 min (runtime 35 min). The carrier gas was hydrogen at a constant flow 

of 1.25 mL/min, and the split ratio was set at 10:1. The FID was set at 270 °C. 

Compounds were identified by comparing their retention times with those of authentic 

standards FAMEs from the Supelco 37 FAME mix. The content of each fatty acid was 

calculated using following equation (Eq. (2)):  

(2)             
               

               
 

            

              
                          

 

Where, FA content is the amount of a given fatty acid in the sample (mg/g), 10 

is the dilution factor and 0.96 is the conversion factor for the internal standard.  

 

2.7. Nutritional quality indices 

Nutritional quality indices of mackerel samples were analyzed from fatty acids 

composition data. The indices of thrombogenicity (TI) and atherogenicity (AI) were 

calculated as proposed by Ulbricht and Southgate (1991). TI and AI indices were 

calculated using Eqs. (3) and (4), respectively. Other nutritional quality indices namely 

PUFA/SFA and Saturation Index (SI) (Eq. 5) were also determined.  
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(3)       
                   

                              
   

   
  
 

 

(4)       
                         

              
 

 

(5)  SI   
                   

              
 

 

2.8. Statistical analyses 

Data were subjected to an analysis of variance (ANOVA) using SAS proc 

ANOVA procedure (SAS Version 9.1.3, statistical Analysis Systems) with treatment as 

the main effect. Tukey´s multiple comparison was used to compare treatment means 

with a confidence interval of 95%. 

 

3. Results and discussion 

 

3.1. Effect of HPP on microbial counts 

Initial mean total viable counts (TVC) and H2S-producing bacteria counts are 

shown in Table 1. The initial TVC in the non-treated mackerel fillets were 4.17 

logcfu/g, in agreement with Albertos et al. (2017), who reported counts of 4.1 log cfu/g 

in initial total aerobic mesophilic bacteria in Atlantic mackerel. Neither treatment at 100 
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MPa or 300 MPa for 2 min nor 100 MPa for 5 min significantly affected TVC levels 

immediately after HPP. However, the treatment at 300 MPa for 5 min significantly 

(P<0.05) reduced the TVC by 0.80 log cfu/g to 3.37 log cfu/g. In addition, HPP at 500 

MPa for 2 or 5 min reduced significantly (P<0.05) TVC levels and reductions of 1.66 

and 2.48 log cfu/g, respectively were achieved. This is in contrast to the results reported 

by Rode and Hovda (2016), who found undetectable levels of aerobic bacteria in 

mackerel and cod treated at 500 MPa for 2 min at 8-9 °C, immediately after treatment. 

Karim et al. (2011) reported a reduction of initial aerobic counts in herring treated at 

200, 250 or 300 MPa for 1 or 3 min and significantly (P<0.001) lower levels were 

observed during the first 6 days on ice at 2 ºC, as compared to the controls. According 

to these authors, the initial level of psychrotrophic microorganisms (P<0.001) was also 

reduced resulting in the highest decrease at the higher pressures and longer holding 

times. As the predominant microbiota at the early stages of conservation of mackerel 

fillets has been reported as mesophilic (Otero, Pérez-Mateos, Holgado, Márquez-Ruiz, 

& López-Caballero, 2019), these were focused on in this study. Nonetheless may be 

considered in future studies.  

The mean initial population of H2S-producing bacteria was 2.53 log cfu/g. The 

lowest pressurization level, 100 MPa applied for 2 or 5 min, did not significantly affect 

(P<0.05) H2S-producing bacteria counts. However, HPP at 300 MPa or 500 MPa for 2 

or 5 min reduced H2S-producing bacteria counts to undetectable levels (<1 log cfu/g). 

Similarly, according to Rode and Hovda (2016), H2S-producing bacteria levels were not 

detected on mackerel, cod or salmon treated at 500 MPa for 2 min at 8-9 ºC and Cruz-

Romero, Kerry and Kelly (2008) found H2S-producing bacteria levels below the 

detection limit in oysters treated at 400 or 600 MPa for 5 min at 20 ºC, immediately 

after pressurization.  
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The interaction of pressure level, process temperature and holding time affect 

the response of microorganisms to HPP, with all of them key factors for microbial 

inactivation. Factors such as food composition, bacterial growth phase and bacterial 

strain (variation between different strains of the same species has been noted) can also 

have an influence on the microbial inactivation achieved (Patterson, 2014), with Gram-

negative bacteria reported, in general, to be relatively pressure sensitive due to the 

complexity of cell membranes (Shigehisa, Ohmori, Saito, Taji, & Hayashi, 1991; Styles, 

Hoover & Farkas, 1991). In this regard, it is important to highlight that the microbiota 

of mackerel (Scomber scombrus) is dominated by Gram-negative bacteria, such as 

Vibrio sp., Shewanella sp., Proteus sp. or Photobacterium sp., as well as by members of 

Gram-positive bacteria, such as Bacillus sp., Staphylococcus sp. or Clostridia spp. 

(Svanevik & Lunestad, 2011) which would influence the impact of the combination of 

pressure, temperature and holding time applied. 

  

3.2. Effect of HPP on colour and texture properties 

The effect of pressurization treatments on colour attributes (L*, a* and b*) is 

shown in Table 2. Lightness (L*) increased significantly (P<0.05) in mackerel fillets 

treated at 300 MPa or 500 MPa for 2 or 5 min causing a brighter and less translucent 

appearance of the muscle, while redness (a*) values decreased significantly (P<0.05) 

under the same treatment conditions. These results are in accordance with Christensen, 

Hovda and Rode (2017), who detected an increase of L* and a decrease of a* in 

mackerel treated at 500 MPa for 2 min. However, in contrast to the results obtained in 

the present work, the magnitude of the increase in L* values shown by those authors 

was found to be lower when non-pressurized samples were compared to mackerel 
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treated at 500 MPa for 2 min. In general, a very light cooking appearance in fish muscle 

treated below 300 MPa and up to 30 min holding time has been reported. An increase in 

L* values has been attributed to sarcoplasmic and myofibrillar denaturation but depends 

on pressure level, holding time and fish species (Matser, Stegeman, Kals, & Bartels, 

2000). On the other hand, the decrease in redness values may be related to conversion of 

oxymyoglobin or deoxymyoglobin to metmyoglobin, as a result of pressure (Carlez, 

Veciana-Nogues, & Cheftel, 1995).  

The total colour difference (∆E
*
) indicates the magnitude of colour difference 

between processed and unprocessed food or before/after storage (Barba et al., 2012). 

Those values are considered to be no perceptible (0.0-0.2), very small (0.2-0.5), small 

(0.5-1.5), distinct (1.5-3.0), very distinct (3.0-6.0), great (6.0-12.0) and very great 

(>12.0) (Drlange, 1994; Silva & Silva, 1999). According to this scale, colour 

differences detected in the present work between non-pressurized and mackerel fillets 

treated at 300 MPa for 2 min or 5 min (∆E* 15.19 or ∆E* 14.56, respectively) or 

between non-pressurized samples and those treated at 500 MPa for 2 or 5 min (∆E* 

20.16 or ∆E* 19.49, respectively) would be very great and perceptible by consumers. 

When non-pressurized mackerel fillets were compared to those treated at 100 MPa for 2 

or 5 min, colour differences would be very distinct (∆E* 3.79 or ∆E* 5.85, 

respectively). Total colour differences higher than 6 and perceptible to the naked eye 

were detected by Otero et al. (2019) in Atlantic mackerel fillets treated at 50 MPa and 

stored at 5°C for 12 days. According to them, those samples would be perceived by 

consumers as lighter and more yellowish than controls before storage.  

TPA values for treated and untreated mackerel fillets are illustrated in Table 3.  

Pressurization treatments at 100 or 300 MPa for 2 or 5 min did not significantly 

(P>0.05) affect hardness and chewiness of mackerel. However, a significant (P<0.05) 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

14 
 

increase in both parameters was detected at 500 MPa for 2 or 5 min. Pressurization 

treatments did not significantly (P>0.05) affect cohesiveness. Springiness increased 

significantly (P<0.05) in samples treated at 300 or 500 MPa for 2 or 5 min, whereas it 

was not significantly affected (P>0.05) by 100 MPa for 2 or 5 min. The results 

presented here are in accordance with Christensen et al. (2017), who reported an 

increase in hardness with increasing pressure, but that increase was only significant 

(P<0.05) in cod treated at 200 or 500 MPa for 2 min but not in mackerel or salmon, 

immediately after pressurization. According to Aubourg, Torres, Saraiva, Guerra-

Rodriguez and Vázquez (2013), hardness of Atlantic mackerel was highly affected by 

pressure level and pressure holding time, resulting in the highest values of hardness at 

450 MPa for 5 min. These authors observed that chewiness increased with HPP when 

high levels of pressure and long pressure holding times were applied. According to 

them, cohesiveness of mackerel was highly affected by pressure level and also pressure 

holding time. However, they also reported that springiness was affected mainly by 

frozen storage and less by pressure level and pressure holding time. 

The effect of HPP on the texture of fish has been reviewed by Alves de Oliveira 

et al. (2017) who report that changes in texture following HPP may be related to protein 

denaturation and aggregation, changes in actin-myosin interaction, α-actinin release 

(Chevalier, Le Bail, & Ghoul, 2001; Guyon, Meynier, & Lamballerie, 2016; Yagiz, 

Kristinsson, Balaban, & Marshall, 2007) and tissue compression (Jantakoson, 

Kijroongrojana, & Benjakul, 2012) that may be due to reduction of the sarcomere 

length, and a possible softening effect related to fragmentation of myofibrils structures 

can also be observed after HP processing (Ashie & Simpson, 1996). The effect of HPP 

on springiness, gumminess, chewiness, resilience, fracturability, and adhesiveness using 

TPA has been reported by several authors (Briones-Labarca, Perez-Won, Zamarca, 
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Aguilera-Radic, & Tabilo-Munizaga, 2012; Chéret, Chapleau, Delbarre-Ladrat, & 

Verrez-Bagnis, 2005; Perez-Won, Tabilo-Munizaga, & Barbosa-Canovas, 2005; Yagiz 

et al., 2007, 2009; Yi et al., 2013). However, to date, no consistent data to support a 

clear effect of HPP have been reported. Differences in process parameters, fish species 

and methodology used in these studies are probably the main cause. Nevertheless, an 

increase in hardness has been reported in a wide range of fish and seafood such as tuna 

treated by HPP (Ramirez-Suarez & Morrisey, 2006), salmon, cod and trout (Schubring, 

Meyer, Schlüter, Boguslawski, & Knorr, 2003) or white prawn (Bindu, Ginson, 

Kamalakanth, Asha, & Srinivasa Gopal, 2013). However, there seem not to be a clear 

trend about the effect of HPP on cohesiveness of fish and seafood products. A decrease 

in this textural property, as well as in adhesiveness and gumminess, reported in 

pressurized cod samples was suggested to be due to the loss of myosin structure 

(Angsupanich & Ledward, 1998). However, an increase in cohesiveness has been 

reported in salmon treated at 150 MPa for 15 min at room temperature (Yagiz, et al., 

2009) and in Atlantic mackerel (Scomber scombrus) treated by HPP as pre-treatment 

before freezing and frozen storage (Aubourg et al., 2013). However, similar to the 

present study, no significant effect on cohesiveness was found in barramundi (Lates 

calcarifer) muscle after pressurisation (Truong, Buckow, Nguyen & Stathopoulos, 

2016), or  in hake subjected to HPP as pre-treatment and subsequent frozen storage 

(Pita-Calvo, Guerra-Rodríguez, Saraiva, Aubourg, & Vázquez, 2018). 

 

3.3. Effect of HPP on lipid oxidation 

No significant differences (P>0.05) in TBARS values were observed in HPP 

treated mackerel as compared to non-treated samples (Figure 1) immediately after 
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processing. These results are in accordance with those obtained by Erkan et al. (2011), 

who observed no changes in TBARS values between HPP-treated mackerel at 220, 250 

or 330 MPa for 5 or 10 min, respectively at 7ºC and non-pressurized samples. However, 

significant differences (P<0.05) in TBARS values were detected by Yagiz et al. (2009) 

in salmon pressurized at 150 MPa for 15 min as compared to non-treated samples, but 

no significant differences (P>0.05) were reported at 300 MPa, immediately after 

pressurization. A significant (P<0.05) increase in TBARS values in pressurized carp 

fillets compared to untreated samples has been reported by Sequeira-Muñoz, Chevalier, 

Le Bail, Ramaswamy, and Simpson (2006), immediately after pressurization treatments, 

except at 100 MPa for 15 min. Chevalier, Le Bail, and Ghoul (2001) detected a 

significant (P<0.05) increase in TBARS values in turbot pressurized at 100, 140, 180 or 

200 MPa for 15 or 30 min compared to non-pressurized samples. Fish species, type of 

muscle, pressure level and holding time seem to exert a big influence on the effect of 

high pressure on lipid stability (Medina-Meza et al., 2014; Truong et al., 2015).  

In the case of foods of marine origin, the high levels of PUFAs promote the 

initiation of radical mechanisms which accelerate oxidation in subsequent storage 

periods (Medina-Meza et al., 2014), affecting the quality of seafood products. For this 

reason, to evaluate lipid oxidation of non-pressurized and pressurized mackerel during 

chilled storage merits investigation.  

 

3.4. Effect of HPP on Fatty acid profiling 

Thirty seven fatty acids were identified and quantified in non-pressurized 

mackerel fillets and mackerel fillets treated at 100, 300 or 500 MPa for 2 or 5 min. Non-

pressurized mackerel samples showed a high level of PUFAs (35.34%), followed by 
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MUFAs (monounsaturated fatty acids) (33.82%), SFAs (saturated fatty acid) (30.84%) 

and HUFAs (highly unsaturated fatty acids) (26.90%) (Table 4). The high proportion of 

polyunsaturated fatty acids present in mackerel, makes it a highly recommendable food 

from a nutritional point of view. Among PUFAs, eicosapentaenoic acid (EPA, C20:5n3) 

and docosahexaenoic acid (DHA, C22:6n3) were the most abundant fatty acids 

quantified in mackerel samples. Reported health benefits of the n-3 PUFAs EPA and 

DHA include reduction of the risk of cardiovascular disease, hypertension, or general 

inflammation (Calder & Yaqoob, 2009). The quantity of fat and the fatty acid profile of 

fish depend on factors such as season and water temperature. The increasing degree of 

unsaturation of fish lipids with cold temperatures is a known strategy used by aquatic 

organisms to adapt the fluidity and permeability of their cell membranes to the 

temperature fluctuations of water (Henderson & Tocher, 1987). No significant 

degradation on fatty acid profile could be expected in the present work because the 

processing temperature was <25°C for all the treatments. Further, no effect of HPP on 

fatty acid profile has been reported at room temperature in seafood products, such as 

salmon or oysters (Cruz-Romero et al., 2008, Yagiz et al., 2009).  

The effect of HPP on the proportion (% FA) of SFAs, MUFAs, PUFAs, HUFAs, 

EPA, DHA and CLAs (conjugated linoleic acids) in non-pressurized mackerel fillets 

and in those pressurized at 100, 300 and 500 MPa for 2 or 5 min is shown in Table 4. In 

the present work, a significant decrease (P<0.05) in PUFAs (%) and HUFAs (%) was 

detected with all pressurization treatments applied, with the lowest proportions (29.53 

and 22.43 %, respectively) being detected at 500 MPa for 5 min. However, non-

significant differences (P>0.05) in PUFAs (%) and HUFAs (%) were observed between 

non-pressurized samples and those treated at 100 MPa for 2 min.  
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An increase (P<0.05) of MUFAs (%) was observed at 300 or 500 MPa for 2 min 

and also, at 500 MPa for 5 min. The proportion of SFAs (%) increased significantly 

(P<0.05) when pressure was held for 5 min, except at 500 MPa where no significant 

differences (P>0.05) among non-pressurized and HPP treated mackerel for 5 min were 

detected. Non-significant differences (P>0.05) in the fatty acid profile have been  

reported in salmon treated at 150 MPa or 300 MPa for 15 min at 20 ºC compared to 

non-pressurized samples (Yagiz et al., 2009), in turbot treated at 100, 140, 180 or 200 

MPa for 15 or 30 min at 4 ºC (Chevalier at al., 2001) or in oyster treated at 260 MPa for 

3 min, 500 MPa for 5 min or 800 MPa for 5 min at 20 ºC (Cruz-Romero et al., 2008). 

Changes in fatty acid profile of lipid extracted from shrimp cephalothorax treated by 

HPP have been detected by Gomez-Estaca, Montero, Fernandez-Martin, Calvo, and 

Gomez-Guillen (2016). Similar to this study, these authors observed an increase of 

SFAs at 200, 400 or 600 MPa for 15 min or at 200 or 600 MPa for three consecutive 

cycles of 5 min each without waiting time between cycles. The highest amounts of 

MUFAs were detected at 200 or 400 MPa for 15 min or at 200 MPa for three 

consecutive cycles of 5 min each. These authors observed that the amount of PUFAs 

increased with the least intense treatments whereas decreased at 600 MPa for 15 min or 

for three consecutive cycles of 5 min each. The reported variations in seafood used for 

HPP treatments, temperatures at which the treatments were performed, as well as the 

large variability in pressures and duration, make it difficult to compare results and draw 

clear conclusions as to which processing conditions are the main factors that will 

influence the effect of HPP on fatty acid profiles. 

As can be seen in Table 4, a high proportion of EPA and DHA was detected in 

non-pressurized mackerel samples (9.81 and 16.52%, respectively). In the present work, 

a significant decrease (P<0.05) in the proportion of CLAs was detected at 500 MPa for 
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2 or 5 min and also, at 300 MPa for 2 min. However, a significant increase (P<0.05) 

was observed in samples treated at 100 MPa or 300 MPa for 5 min. On the other hand, 

EPA decreased significantly (P<0.05) with pressurization treatments while significant 

decreases (P<0.05) in DHA were only detected at the highest pressurization levels, at 

500 MPa for 2 or 5 min and also at 300 MPa for 2 min. Yagiz et al. (2009) reported no 

significant differences (P>0.05) in pressurized salmon at 150 or 300 MPa for 15 min 

compared to non-treated samples.  

The effect of HPP on fatty acid profile observed in the present work could be 

due to changes in lipid membranes caused by the possible disruption of the cell 

membranes at the highest pressure applied on the mackerel fillets.  

 

3.5. Effect of HPP on nutritional quality indices  

Nutritional quality indices (PUFA/SFA, SI, AI and TI) are illustrated in Table 5.  

To the author’s knowledge, this is the first time that these indices have been calculated 

for HPP treated mackerel. According to Ulbricht and Southgate (1991), AI and TI are a 

measure of influence of diet on coronary heart disease. AI relates the risk of 

atherosclerosis and is based on fatty acids which can increase (C12:0, C14:0 and C16:0) 

or decrease (∑MUFA, ∑PUFA) the level of blood cholesterol. C12:0, C14:0 and C16:0 

are considered pro-atherogenic and MUFAs and PUFAs, anti-atherogenic (Ulbricht & 

Southgate, 1991). TI values relate to the tendency to form clots in the blood vessels, 

defined as the relationship between the pro-thrombogenic (saturated) and the anti-

thrombogenic fatty acids (MUFAs, n-6 PUFAs and n-3 PUFAs) (Ulbricht & Southgate, 

1991). In the present study, AI was affected significantly (P<0.05) when pressurization 

treatments were held for 5 min, showing an increase of this index at 100 MPa or 300 
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MPa and a decrease at 500 MPa. The AI values varied from 0.58 to 0.90 in pressurized 

mackerel, and non-pressurized samples had an AI value of 0.71. The TI values 

significantly increased (P<0.05) at the highest pressurization intensities, at 300 and 500 

MPa for 2 or 5 min. However, non-significant differences (P>0.05) in this nutritional 

quality index were observed between non-pressurized samples and those treated at 100 

MPa for 2 or 5 min. The TI values ranged from 0.25 to 0.29 in mackerel samples treated 

by HPP and was 0.25 in non-pressurized samples. Very low values for AI and TI are 

recommended, indicating positive health benefits derived from the product (Ulbricht & 

Southgate, 1991). According to these authors, AI or TI values would be the highest for 

the most atherogenic or thrombogenic dietary components, respectively. In this regard, 

coconut oil was reported to be a highly atherogenic food with an AI value of 13.63. 

However, raw mackerel, olive and sunflower oil were reported to be low atherogenic 

foods whose AI values were 0.28, 0.14 and 0.07, respectively. Raw mackerel, as well, 

was reported to be highly antithrombogenic with a TI value of 0.16, followed by olive 

and sunflower oil (0.32 and 0.28, respectively). The range of the expected values for AI 

and TI indices has been reported to be up to 1 and 0.5, respectively (Fernandes et al., 

2014). These authors indicated AI values of 0.60 and 0.48 for sardines and mackerel, 

respectively, and TI values of 0.20 and 0.24 for those fish. According to those authors, 

AI and TI values detected in the present work would be within the expected range both 

in non-pressurized and pressurized mackerel fillets. The PUFA/SFA ratio is a good 

indicator of the nutritional value of dietary fat. According to nutritional 

recommendations (British Department of Health, 1994), the PUFA/SFA ratio in the 

human diet should be above 0.45. Lower PUFA/SFA ratios that indicate higher levels of 

dietary saturated fatty acids have been considered as major risk factors for 

cardiovascular disease (Dieter & Tuttle, 2017). In the present work, the PUFA/SFA 
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ratio decreased significantly (P<0.05) in mackerel samples treated by HPP, except at 

100 MPa for 2 min, with no significant differences compared to non-pressurized 

samples. However, the ratio varied from 0.99 to 1.14 in pressurized mackerel and was 

1.15 in non-treated samples. According to the nutritional recommendations (British 

Department of Health, 1994), mackerel would be considered a healthy food because the 

ratio PUFA/SFA was above 0.45 and pressurization treatments did not decrease the 

ratio below the recommended value. SI indicates the relationship between the sum of 

saturated fatty acids (C14:0, C16:0 and C18:0) (pro-thrombogenic) and unsaturated fatty 

acids (anti-thrombogenic). It has been reported that myristic acid (C14:0), palmitic acid 

(C16:0) and stearic acid (C18:0) are associated with an increased risk of coronary heart 

disease (Zong et al., 2016). Although to author’s knowledge, there is no numerical 

values assigned to SI, a food with lower values of these SFA compared to unsaturated 

fatty acids would be considered a healthier food. In the present work, SI values ranged 

from 0.41 to 0.46 in pressurized mackerel and 0.42 in non-pressurized samples. Non-

significant (P>0.05) differences were detected between pressurized and non-pressurized 

mackerel, except for treatments at 100 MPa or 300 MPa for 5 min which significantly 

increased (P<0.05) SI values compared to non-pressurized samples. A significant 

increase (P<0.05) in SFA proportion was also detected for the same treatments but 

among them, only myristic acid (C14:0), palmitic acid (C16:0) and stearic acid (C18:0) 

contributed to the calculation of the saturation index. 

 

4. Conclusions 

Our results show that HPP at 500 MPa for 2 min and 300 MPa or 500 MPa for 5 min 

were the most effective treatments to increase microbial inactivation in mackerel 
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without compromising the nutritional value of this pelagic fish. However, the present 

work only evaluated the effect of HPP in mackerel quality immediately after processing, 

showing some changes in texture and colour but no effect on lipid oxidation. It is 

possible that some of the quality indices measured here may be detrimentally affected 

during the shelf-life of the fillets. Therefore, a study on the effect of HPP on these 

indices in addition to texture, colour, lipid oxidation and microbiological quality during 

chilled storage would be warranted.  
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Table 1 

Total viable and H2S-producing bacteria counts (log cfu/g) in mackerel fillets 

pressurized at 100, 300 and 500 MPa for 2 or 5 min. 

 

 TVC  H2S-producing bacteria  

Non-pressurized 4.17±0.99
ab

 2.53±1.43
a
 

100 MPa/ 2 min 4.10±1.01
ab

 1.98±1.58
a
 

300 MPa/ 2 min 3.64±0.73
bc

 <1.00
b
 

500 MPa/ 2 min 2.51±0.75
d
 <1.00

b
 

100 MPa/ 5 min 4.27±1.05
a
 1.96±1.57

a
 

300 MPa/ 5 min 3.37±0.73
c
 <1.00

b
 

500 MPa/ 5 min 1.69±0.65
e
 <1.00

b
 

Means within the same column with different superscripts differ significantly at P<0.05. 

 

Table 2 

Colour parameters in mackerel fillets pressurized at 100, 300 and 500 MPa for 2 or 5 

min. 

 

Means within the same column with different superscripts differ significantly at P<0.05.

 
L* a* b* 

∆E* 

Non-pressurized 53.60±1.91
b
 5.84±3.22

a
 12.86±1.84

a
 _ 

100 MPa / 2 min 54.45±6.44
b
 4.96±3.10

ab
 13.02±2.80

a
 3.79±1.30

c
 

300 MPa /2 min 68.47±1.71
a
 3.01±1.22

bc
 14.47±1.53

a
 15.19±1.91

b
 

500 MPa / 2 min 73.61±2.33
a
 1.90±0.85

c
 13.61±1.45

a
 20.16±2.61

a
 

100 MPa / 5 min 55.83±5.42
b
 5.00±2.29

ab
 14.40±3.68

a
 5.85±0.45

c
 

300 MPa / 5 min 68.49±2.45
a
 2.38±0.93

c
 14.42±1.15

a
 14.56±1.60

b
 

500 MPa / 5 min 72.73±2.15
a
 1.68±0.56

c
 13.18±0.50

a
 19.49±2.46

a
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Table 3 

Texture properties of mackerel fillets pressurized at 100, 300 and 500 MPa for 2 or 5 

min.  

 Hardness 

(N) 

Chewiness 

(N mm) 

Cohesiveness 

(F2/F1) (ratio) 

Springiness 

(mm) 

Non-pressurized 7.55±3.48
b
 46.77±24.46

c
 1.98±0.45

a
 4.27±0.25

d
 

100 MPa/ 2 min 6.88±2.24
b
 42.96±12.13

c
 2.24±0.45

a
 4.25±0.33

d
 

300 MPa/ 2 min 6.67±2.21
b
 46.22±22.50

c
 2.07±0.36

a
 4.84±0.92

c
 

500 MPa/ 2 min 17.25±4.57
a
 154.18±39.60

a
 2.18±0.46

a
 7.04±0.96

a
 

100 MPa/ 5 min 7.48±1.52
b
 50.33±20.20

c
 2.11±0.77

a
 4.64±0.27

cd
 

300 MPa/ 5 min 8.61±1.16
b
 62.75±24.75

c
 2.24±0.47

a
 5.04±0.32

bc
 

500 MPa/ 5 min 14.43±4.51
a
 115.08±39.50

b
 2.30±0.30

a
 5.42±0.48

b
 

Means within the same column with different superscripts differ significantly at P<0.05. 
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Table 4 

Proportion (% FA) of SFAs, MUFAs, PUFAs, HUFAs, EPA, DHA and CLAs in mackerel fillets pressurized at 100, 300 and 500 MPa for 2 or 5 

min. 

 
SFAs MUFAs PUFAs HUFAs EPA DHA CLAs 

Non-pressurized 30.84±0.32
cd

 33.82±0.35
c
 35.34±0.40

a
 26.90±0.42

a
 9.81±0.13

a
 16.52±0.32

a
 4.43±0.04

b
 

100 MPa / 2 min 30.74±0.74
cd

 34.23±0.34
c
 35.03±0.55

a
 26.75±0.57

a
 9.37±0.08

b
 16.78±0.52

a
 4.32±0.06

bc
 

300 MPa / 2 min 31.02±0.49
c
 37.27±0.23

b
 31.72±0.33

cd
 23.77±0.41

cd
 8.67±0.13

c
 14.51±0.34

b
 4.20±0.10

cd
 

500 MPa / 2 min 31.10±0.15
bc

 37.81±0.52
b
 31.10±0.62

d
 23.36±0.51

de
 8.22±0.21

de
 14.53±0.27

b
 4.11±0.05

d
 

100 MPa / 5 min 32.03±0.39
ab

 34.57±0.88
c
 33.40±0.72

b
 24.96±0.81

b
 8.39±0.08

d
 16.00±0.89

a
 4.80±0.11

a
 

300 MPa / 5 min 32.64±0.41
a
 34.54±0.39

c
 32.82±0.24

bc
 24.63±0.21

bc
 8.03±0.03

e
 15.99±0.20

a
 4.71±0.02

a
 

500 MPa / 5 min 29.96±0.18
d
 40.51±0.38

a
 29.53±0.49

e
 22.43±0.43

e
 8.37±0.09

d
 13.40±0.35

c
 3.56±0.04

e
 

Means within the same column with different superscripts differ significantly at P<0.05. 

SFAs: Saturated fatty acids 

MUFAs: Monounsaturated fatty acids 

PUFAs: Polyunsaturated fatty acids 

HUFAs: Highly unsaturated fatty acids 

EPA: Eicosapentaenoic acid 

DHA: Docosahexaenoic acid 

CLAs: Conjugated linoleic acids 
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Table 5 

Nutritional values of mackerel fillets treated at 100, 300 and 500 MPa for 2 or 5 min. 

 PUFA/SFA SI AI TI 

Non-pressurized 1.15±0.02
a
 0.42±0.01

cd
 0.71±0.01

b
 0.25±0.01

bc
 

100 MPa / 2 min 1.14±0.04
a
 0.42±0.01

cd
 0.69±0.03

b
 0.25±0.01

c
 

300 MPa / 2 min 1.02±0.03
b
 0.43±0.01

bc
 0.69±0.02

b
 0.28±0.01

a
 

500 MPa / 2 min 1.00±0.02
b
 0.43±0.00

bc
 0.68±0.01

b
 0.28±0.00

a
 

100 MPa / 5 min 1.04±0.02
b
 0.44±0.01

ab
 0.86±0.02

a
 0.27±0.01

ab
 

300 MPa / 5 min 1.01±0.02
b
 0.46±0.01

a
 0.90±0.02

a
 0.29±0.01

a
 

500 MPa / 5 min 0.99±0.02
b
 0.41±0.00

d
 0.58±0.01

c
 0.28±0.01

a
 

Means within the same column with different superscripts differ significantly at P<0.05. 

PUFA/SFA: Polyunsaturated fatty acids/Saturated Fatty acids 

SI: Saturation index 

AI: Index of atherogenicity 

TI: Index of thrombogenicity 
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 Figure 1  

TBARS values (µmol MDA/g sample) of mackerel fillets treated at 100, 300 and 500 

MPa for 2 or 5 min.  

    

Different superscripts differ significantly at P<0.05. 
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Highlights 

 High pressure processing did not compromise the nutritional value of mackerel. 

 The most effective treatments were 300 MPa for 5 min, 500 MPa for 2 or 5 min.  

 Some changes in colour and texture were detected in pressurized mackerel 

fillets. 

 No significant effect on TBARS values were found in pressurized mackerel 

fillets. 
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