
brought to you by CORE

ARTICLE IN FRESS

Data in Brief 🛛 (■■■) ■■■-■■■

2

M. Zhao et al. / Data in Brief ■ (■■■■) ■■■-■■■

55 **Specifications Table**

F 7		
57 58	Subject area	Spectroscopy, Chemometrics
59	More specific	Performance of PLSR models developed using selected Raman shift ranges (i.e.
60	subject area	$250-3380 \text{ cm}^{-1}$, 900–1800 cm ⁻¹ and 1300–2800 cm ⁻¹)
61	Type of data	Table
62	How data was	Raman spectroscopy, Results of sensory analysis, Chemometrics
63	acquired	
64	Data format	.doc
65	Experimental	Raman spectral data were pre-treated using Savitzky Golay (S.G.) derivation with
66	factors	2nd or 5th order polynomial baseline correction.
67	Experimental	-
68	features	
69	Data source	School of Biosystems and Food Engineering, University College Dublin, Belfield,
70	location	Dublin 4, Ireland
71	Data accessibility	Data is with this article
72		

Value of the data

- To demonstrate PLSR models developed using Raman spectra in the 1300-2800 cm⁻¹ range can give best prediction performance on sensory attributes of bull beef.
- Results of this work are in agreement with a previous study by [2] that the Raman frequency range of 1300–2800 cm⁻¹ is the most suitable range for prediction of bull beef eating quality parameters.
- This data suggested other researchers to select an optimal Raman shift range for further meat science studies.

1. Data

PLSR models were developed on Raman data pre-treated using Savitzky Golay (S.G.) derivation 88 with 2nd and 5th order polynomial baseline correction. Prediction performance of models developed 89 using selected Raman shift ranges (i.e. 250-3380 cm⁻¹, 900-1800 cm⁻¹ and 1300-2800 cm⁻¹) were 90 summarized in Table 1. PLS models developed using S.G. derivation pre-treated Raman spectra in the 91 1300-2800 cm⁻¹ range performed best (R²CV values of 0.36-0.84) while spectra in the range 900-92 1800 cm^{-1} performed worst (R²CV values of 0.03–0.66). 93

96 2. Experimental design, materials and methods

98 For the prediction of beef sensory attributes, partial least squares regression (PLSR) models were developed using pre-processed Raman spectroscopic data (X data) collected on the 21st day post-99 mortem using pre-selected frequency ranges (i.e. $250-3380 \text{ cm}^{-1}$, $900-1800 \text{ cm}^{-1}$, $1300-2800 \text{ cm}^{-1}$); 100 these were selected on the basis of spectral signal intensities. Measured values of sixteen sensory 101 attributes were used as individual Y variable for PLS regression. Leave-one-out cross-validation was 102 103 performed to evaluate the performance of PLSR models using parameters such as root mean square error of calibration (RMSEC) and cross-validation (RMSECV), the coefficient of determination on 104 105 calibration (R2C) and cross-validation (R^2CV) and the bias which is calculated as the difference between the average of actual and predicted values for each data set [3]. For a satisfactory prediction 106 107 performance, the value of R^2 is expected to be close to 1 while values of RMSECV and bias are 108 expected to be close to 0.

Please cite this article as: M. Zhao, et al., Performances of full cross-validation partial least squares regression models developed using Raman spectral data for the prediction of bull beef sensory attributes, Data in Brief (2018), https://doi.org/10.1016/j.dib.2018.04.056

56

73 74

75 76 77

78

79

80

81

82

83 84 85

86 87

94 95

97

ARTICLE IN PRESS

M. Zhao et al. / Data in Brief ■ (■■■) ■■■-■■■

109 Table 1

110 Summary of full cross-validation PLSR model performances for sensory attributes prediction using all beef samples (*n* = 72).

	Data type	Wavelength range(cm-1)	Spectral variables	PLS loadings	R^2C	RMSEC	R ² CV	RMSECV	Bia
	S.G. 2nd der. Using 2nd polynomial								
Aroma	with 9 smoothing points	1300-2800	83	2	0.85	3.92	0.76	5.01	-0.00
		900-1800	45	1	0.64	6.06	0.43	7.73	-0.0
		250-3580	150	4	0.88	3.46	0.66	6.02	0.03
	S.G. 1st der. Using 5th polynomial with 7 smoothing points +nor.u.v.	1300-2800	81	3	0.82	4.26	0.64	6.18	-0.0
	with 7 shiotuning points (nor.u.v.	900-1800	36	1	0.32	7.25	0.41	7.86	-0.0
		250-3580	176	6	0.48	3.21	0.66	6	0.04
	S.G. 2nd der. Using 2nd polynomial	250-5580	170	0	0.9	5.21	0.00	0	0.04
Tenderness	with 9 smoothing points	1300-2800	41	1	0.54	8.84	0.45	9.83	0.08
		900-1800	44	1	0.57	8.58	0.46	9.74	-0.1
		250-3580	33	2	0.39	10.18	0.26	11.36	0.00
	S.G. 1st der. Using 5th polynomial	1300-2800	45	1	0.63	7.91	0.55		0.00
	with 7 smoothing points +nor.u.v.	900-1800	45	2	0.63	7.91	0.55 0.49	8.9 9.42	0.00
		250-3580	40 69	3	0.67	7.79	0.49	9.42	-0.0
	C.C. 2nd day Heine 2nd asheered it	230-3380	69	3	0.64	1.19	0.41	10.19	-0.00
Juciness	S.G. 2nd der. Using 2nd polynomial with 9 smoothing points	1300-2800	121	2	0.69	5.41	0.47	7.1	0
		900-1800	87	1	0.43	7.28	0.32	8.06	-0.0
		250-3580	298	6	0.96	2	0.61	6.07	0.10
	S.G. 1st der. Using 5th polynomial					-			
	with 7 smoothing points +nor.u.v.	1300-2800	109	2	0.74	4.95	0.55	6.55	-0.0
		900-1800	95	2	0.73	5	0.48	7.07	-0.0
		250-3580	90	4	0.8	4.37	0.63	5.92	-0.0
Cohensiveness	S.G. 2nd der. Using 2nd polynomial with 9 smoothing points	1300-2800	85	2	0.72	5.15	0.61	6.12	-0.0
Contensi reness	winit's enteening penile	900-1800	32	2	0.46	7.11	0.22	8.71	0.30
		250-3580	104	2	0.42	7.4	0.25	8.52	0.01
	S.G. 1st der. Using 5th polynomial								
	with 7 smoothing points +nor.u.v.	1300-2800	93	2	0.76	4.74	0.64	5.93	-0.0
		900-1800	84	2	0.69	5.41	0.45	7.32	0.03
		250-3580	150	5	0.88	3.4	0.64	5.93	0.03
E.D.	S.G. 2nd der. Using 2nd polynomial with 9 smoothing points	1300-2800	40	2	0.55	8.49	0.39	9.98	-0.00
E.D.		900-1800	52	-	0.49	9.77	0.41	10.63	0.12
		250-3580	86	7	0.8	5.58	0.26	10.05	0.05
	S.G. 1st der. Using 5th polynomial	200 5500		,		0.00			0.00
	with 7 smoothing points +nor.u.v.	1300-2800	59	2	0.66	7.4	0.5	9.07	-0.0
		900 - 1800	49	1	0.55	8.44	0.46	9.37	-0.09
		250 - 3580	94	3	0.56	8.32	0.33	10.45	0.01
Chewiness	S.G. 2nd der. Using 2nd polynomial	1300-2800	51	2	0.68	7.79	0.55	9.33	0.03

- 160 161
- 162

4

216

ARTICLE IN PRESS

M. Zhao et al. / Data in Brief ■ (■■■) ■■■-■■■

163 **Table 1** (continued)

	with 9 smoothing points								
	с	900-1800	52	1	0.49	9.77	0.41	10.63	0.126
		250-3580	61	2	0.37	10.82	0.22	12.25	0.02
	S.G. 1st der. Using 5th polynomial								
	with 7 smoothing points +nor.u.v.	1300-2800	69	2	0.81	5.99	0.63	8.48	0.18
		900-1800	44	1	0.56	9.04	0.48	9.98	0.03
		250-3580	80	2	0.53	9.39	0.36	11.08	0.12
Fattiness	S.G. 2nd der. Using 2nd polynomial with 9 smoothing points	1300-2800	38	2	0.67	2.68	0.48	3.38	0.03
		900-1800	19	3	0.39	3.63	0.17	4.28	-0.04
		250-3580	59	4	0.67	2.66	0.43	3.57	0.03
	S.G. 1st der. Using 5th polynomial with 7 smoothing points +nor.u.v.	1300-2800	55	2	0.79	2.13	0.62	2.88	0.02
		900 - 1800	61	2	0.71	2.5	0.48	3.39	0.04
		250-3580	50	3	0.55	3.1	0.41	3.6	0.10
a. :	S.G. 2nd der. Using 2nd polynomial	1200 2000	70		0.70	2.07	0.52	2.27	0.00
Stringy	with 9 smoothing points	1300-2800 900-1800	79	3 2	0.78	2.27	0.52	3.37	-0.05 -0.03
			48 144		0.59	3.08	0.38 0.47	3.85	-0.0
	C.C. 1st day Union 6th as how savid	250-3580	144	3	0.68	2.7	0.47	3.54	0.00
	S.G. 1st der. Using 5th polynomial with 7 smoothing points +nor.u.v.	1300-2800	81	1	0.7	2.63	0.63	2.98	0.00
		900-1800	26	1	0.37	3.81	0.29	4.12	-0.0
		250-3580	140	6	0.87	1.75	0.55	3.27	0.07
	S.G. 2nd der. Using 2nd polynomial								
Astringent	with 9 smoothing points	1300-2800	61	2	0.63	2.66	0.52	3.37	-0.03
		900-1800	69	1	0.69	2.44	0.61	2.76	0.04
		250-3580	92	5	0.78	2.04	0.51	3.09	0.03
	S.G. 1st der. Using 5th polynomial with 7 smoothing points +nor.u.v.	1300-2800	90	3	0.89	1.44	0.76	2.16	-0.00
		900 - 1800	50	1	0.71	2.32	0.66	2.57	0.02
		250-3580	128	6	0.85	1.67	0.63	2.68	0.01
	S.G. 2nd der. Using 2nd polynomial								
Beef flavour	with 9 smoothing points	1300-2800	100	3	0.91	3.01	0.8	4.65	0.12
		900-1800	85	2	0.67	5.82	0.46	7.57	-0.04
		250-3580	364	4	0.88	3.46	0.53	7.05	0.03
	S.G. 1st der. Using 5th polynomial with 7 smoothing points +nor.u.v.	1300-2800	126	3	0.88	3.46	0.77	4.98	0.04
		900 - 1800	96	2	0.71	5.47	0.51	7.21	0.03
		250-3580	323	6	0.96	2.05	0.66	6	0.18
	S.G. 2nd der. Using 2nd polynomial								
Metallic	with 9 smoothing points	1300-2800	64	2	0.55	2.47	0.36	3.01	-0.0
		900-1800	48	2	0.49	2.63	0.36	3.01	-0.01
		250-3580	125	4	0.64	2.23	0.27	3.2	-0.00
		1300-2800	67	2	0.72	1.95	0.54	2.55	-0.0

ARTICLE IN PRESS

M. Zhao et al. / Data in Brief ■ (■■■) ■■■-■■■

217 Table 1 (continued)

270

	with 7 smoothing points +nor.u.v.								
		900-1800	62	2	0.61	2.31	0.38	2.96	0
		250-3580	178	7	0.92	1.04	0.53	2.58	-(
Rancid	S.G. 2nd der. Using 2nd polynomial with 9 smoothing points	1300-2800	84	2	0.61	1.17	0.45	1.41	-(
Tuileid	with 5 shooting points	900-1800	24	2	0.35	1.51	0.2	1.7	(
		250-3580	207	4	0.77	0.89	0.4	1.48	(
	S.G. 1st der. Using 5th polynomial			÷					<u> </u>
	with 7 smoothing points +nor.u.v.	1300-2800	98	2	0.64	1.13	0.52	1.31	C
		900-1800	38	2	0.43	1.42	0.25	1.65	-
		250-3580	206	5	0.84	0.76	0.55	1.27	C
Flavour length	S.G. 2nd der. Using 2nd polynomial with 9 smoothing points	1300-2800	99	3	0.94	2.66	0.84	4.21	C
		900-1800	69	2	0.65	6.22	0.42	8.14	-(
		250-3580	372	3	0.78	4.97	0.5	7.5	C
	S.G. 1st der. Using 5th polynomial with 7 smoothing points +nor.u.v.	1300-2800	122	3	0.87	3.81	0.64	6.35	-(
	with 7 shielding points shortart.	900-1800	83	2	0.68	5.95	0.46	7.83	
		250-3580	325	2	0.66	6.12	0.49	7.58	(
	S.G. 2nd der. Using 2nd polynomial	200 0000	540	-	0.00	0.12	0.15	7.50	
Res-metalic	with 9 smoothing points	1300-2800	77	2	0.66	2.12	0.49	2.64	-(
		900-1800	25	1	0.11	3.43	0.03	3.63	-
		250-3580	89	4	0.72	1.92	0.43	2.79	c
	S.G. 1st der. Using 5th polynomial with 7 smoothing points +nor.u.v.	1300-2800	76	2	0.83	1.49	0.61	2.31	
	with 7 shooting points (norta.v.	900-1800	36	2	0.52	2.52	0.28	3.12	-((
		250-3580	136	6	0.86	1.38	0.28	2.38	-
	S.G. 2nd der. Using 2nd polynomial	230-3380	150	0	0.00	1.50	0.50	2.50	
Res-fattiness	with 9 smoothing points	1300-2800	99	3	0.71	1.89	0.51	2.48	-(
		900-1800	49	1	0.48	2.53	0.39	2.77	-1
		250-3580	199	4	0.82	1.48	0.51	2.48	C
	S.G. 1st der. Using 5th polynomial with 7 smoothing points +nor.u.v.	1300-2800	70	2	0.66	2.05	0.54	2.42	
	start contenang penne menant	900-1800	63	2	0.75	1.77	0.54	2.42	-(
		250-3580	141	7	0.9	1.08	0.59	2.29	(
	S.G. 2nd der. Using 2nd polynomial								
Dryness	with 9 smoothing points	1300-2800	137	2	0.67	2.54	0.48	3.25	-1
		900-1800	76	2	0.49	3.17	0.35	3.63	(
		250-3580	282	4	0.81	1.95	0.49	3.2	-1
	S.G. 1st der. Using 5th polynomial with 7 smoothing points +nor.u.v.	1300-2800	101	3	0.79	2.04	0.59	2.89	
		900-1800	53	2	0.63	2.79	0.41	3.44	(
		250-3580	231	6	0.9	1.41	0.45	3.34	(

6

271

277

279

282 283 284 ARTICLE IN PRESS

M. Zhao et al. / Data in Brief ∎ (∎∎∎∎) ∎∎∎–∎∎∎

PLSR, partial least squares regression models; S.G., Savitzky Golay; der., derivatives; nor.u.v., normalisation on unit vectors; #
 PLS loadings, number of PLS loadings; R²C, coefficient determination of calibration; RMSEC, root mean square error of calibration; R²CV, correlation coefficient of determination in cross-validation; RMSECV, root mean square error of cross-validation;
 IT, Initial Tenderness; ED, Ease of Disintegration; Res-, Residual (after effects); n, numbers of samples. (Note: The best performed PLS models developed in the Raman shifts of 1300–2800 cm⁻¹ were highlighted in yellow).

278 Acknowledgments

280The authors wish to thank Carol Griffin and Carmel Farrell (Teagasc Ashtown) for training of the281beef sensory panel.

285 Funding sources

286

This work was funded by the Teagasc Walsh Fellowship Scheme. We wish to acknowledge Teagasc
Johnstown Castle Research Centre for rearing the dairy bulls and Dawn Meats for slaughtering the
dairy bulls.

290

291

293

296

292 Transparency document. Supplementary material

294 Q5Transparency data associated with this article can be found in the online version at https://doi.org/29510.1016/j.dib.2018.04.056.

297 298 **References**

299

- 300 Q6 [1] M. Zhao, Y. Nian, P. Allen, G. Downey, J.P. Kerry, C.P. O'Donnell, Application of Raman spectroscopy and chemometric techniques to assess sensory characteristics of young dairy bull beef (In press), Food Res. Int. (2018), http://dx.doi.org/ 10.1016/j.foodres.2018.02.007.
 302 (2) Y. Di and C. Di and
- (2) Y. Nian, M. Zhao, C.P. O'Donnell, G. Downey, J.P. Kerry, P. Allen, Assessment of physico-chemical traits related to eating quality of young dairy bull beef at different ageing times using Raman spectroscopy and chemometrics, Food Res. Int. 99 (2017) 778–789.
- 305 [3] T. Næs, T. Isaksson, T. Fearn, T. Davis, A User-friendly Guide to Multivariate Calibration and Classification. Chapter 13. Validation, NIR Publications, UK (2002) 163–167.