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First evidence of retained sexual capacity and 
survival in the pyrethroid resistant Sitobion avenae 
(F.) (Hemiptera: Aphididae) SA3 super-clone following 
exposure to a pyrethroid at current field-rate
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Abstract
The grain aphid Sitobion avenae is a prolific pest of cereal crops worldwide, controlled effectively with pyrethroid 
insecticides. However, the classic knock down resistance (kdr) mutation, L1014F on the S. avenae sodium channel gene, 
has been identified as the cause of the recently observed heterozygous (kdr-SR) resistance in the SA3 grain aphid super-
clone. Results indicate that the kdr-SR SA3 clone can survive pyrethroid exposure above twice the normal field rate, 
continuing to reproduce thereafter. Additionally, the SA3 clone was found to be capable of producing sexual oviparous 
morphs, able to lay eggs following pyrethroid exposure. This demonstrates that possession of the L1014F mutation does 
not preclude the capacity to produce sexual morphs. This makes the adoption of an effective resistance management 
strategy imperative, within a wider integrated pest management (IPM) approach to control grain aphid.
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Introduction

Ireland’s tillage sector focuses largely on the production of 
cereals primarily for use in animal feed, brewing and malting. 
Approximately 8% and around 300,000 ha of Ireland’s 
agricultural land is dedicated to cereal production, producing 
between 2.0 and 2.5 million tonnes of cereal annually, 
approximately 1% of the total EU production (DAFM, 2015). 
With Ireland regarded as having one of the highest yields in 
the world (Oerke, 2006), the productivity of the Irish tillage 
sector is maintained through intensive management and 
high agricultural inputs. Pests are altogether responsible for 
cereal crop losses ranging between 26% and 50% (Oerke 
and Dehne, 2004) with insecticides used as the main crop 
protection measure against aphids in Ireland (DAFM, 2012). 
Specifically, pyrethroid insecticides have been widely used 
to control cereal aphids, favoured for their rapid knock down 
effect, low cost and low environmental risk (Elliott et al., 1978). 
Aphids, as the foremost cereal pest, have been the main 
target of pyrethroid applications (Dewar et al., 2016). Cereal 
aphids affect the crop indirectly by vectoring barley yellow 
dwarf virus (BYDV) and directly through feeding damage in 
addition to the production of honeydew, which leads to the 
build-up of sooty moulds that impact photosynthetic activity 
(Dedryver et al., 2010). Research during the 1990s in Ireland 
identified the grain aphid Sitobion avenae (Fabricius) as 
Ireland’s main cereal pest and significant research led to the 
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development of chemical control strategies, mainly in the form of 
appropriately timed pyrethroid insecticide sprays, still currently 
used today, to manage this pest and its transmission of BYDV 
(Kennedy and Connery, 2005, Kennedy et al., 2010).
Indications of pyrethroid control failure were first detected in 
Ireland in 2013. The failure of pyrethroid insecticides to control 
grain aphids is linked to the possession of a knock down 
resistance (kdr) mutation, L1014F on the sodium channel gene 
in heterozygous-resistant (kdr-SR) grain aphids (Foster et  al., 
2014). Irish samples of S. avenae collected from fields with 
suspected pyrethroid control-failures in 2013 were confirmed to 
carry this same mutation (M. Gaffney, unpublished results).
Insecticide resistance alleles are also associated with other 
phenotypic characteristics and compensatory mutations. In 
natural ecosystems with multiple complex interacting factors, 
the possession of resistance genes are often associated with 
fitness costs (Scott, 2017). Such ‘reduction in fitness’ within 
a wider ecological framework can be manifested in terms of 
altered life table parameters resulting in reduced population 
growth capacity, as illustrated in the case of diamondback moth 
Plutella xylostella (Steinbach et  al., 2017) with longer larval 
development and pupal periods recorded in resistant strains. 
The consequences of resistance gene possession can be 
relatively subtle, leading to altered behavioural capacities. For 
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•	 Treatment 2 (pyrethroid above standard field rate) - vials 
prepared with λ-cyhalothrin dissolved in 500 µl of acetone 
at a concentration of 75 ng/cm2

•	 Treatment 3 (pyrethroid above twice the standard field 
rate) - vials prepared with λ-cyhalothrin dissolved in 
500 µl of acetone at a concentration of 150 ng/cm2

Following exposure, a single surviving aphid was selected 
from each vial treatment of respective heterozygote (kdr-
SR) lineages and homozygote (kdr-SS) lineages exposed 
to Treatment 1 only, as no individuals from kdr-SS lineages 
survived pyrethroid exposure unaffected beyond the initial 5 
h test period. Selected aphids transferred to a barley shoot in 
an Austin tube (Austin et al., 1991), were maintained in long 
day-length conditions and observed daily over a period of up 
to 18 days.

Reproduction after pyrethroid exposure and confirmation 
of sexual reproduction
During the post-exposure period, several aphids from both kdr-
SS and kdr-SR genotypes were observed to have produced 
viviparous nymphs or eggs in the Austin tubes. These were 
consistently removed and stored in 90% ethanol.
All surviving aphids were later viewed under the microscope 
to determine whether scent glands (pseudosensoria), 
indicative of oviparae (Favret and Miller, 2012), were present 
on their meta-tibiae. The legs of specimens were removed 
and preserved in 90% ethanol for later photography.

Confirmation of the kdr-status and the clonal identity of 
sexual specimens
A further Taqman PCR assay was used to confirm the kdr-
status of all sexual aphid morphs. Genotypes of sexual S. 
avenae specimens from the study were then examined at five 
microsatellite loci: Sm10, Sm12, Sm17, SaΣ4 and S16b using 
the published primer pair sequences (Simon et  al., 1999, 
Llewellyn et al., 2003, Wilson et al., 2004) and a published 
protocol (Malloch et al., 2016). Sequencing was carried out 
on an ABI 3730 DNA analyser at the James Hutton Institute 
with the results interpreted using GeneMapper® Applied 
Biosystems (2005).

Results

Kdr genotypes
The initial Taqman PCR assays detected the L1014F kdr 
mutation in seven of the 16 (44%) field-collected clonal 
lineages, confirming their possession of heterozygous 
pyrethroid knockdown resistance (kdr-SR). The other nine 
tested lineages (56%) were identified as fully pyrethroid-
susceptible kdr-SS genotypes.

example, a reduction in the ability of insecticide-resistant 
peach-potato aphids (Myzus persicae) to respond effectively 
to aphid alarm pheromone, and so escape from an attack by 
natural enemies (Foster et al., 2007).
As a preliminary step towards better understanding, the extent 
and likely consequences of kdr in grain aphid populations, the 
current study was undertaken to quantify the relative capacity of 
the S. avenae to survive pyrethroid exposure, and reproduce.

Materials and Methods

Aphid collection, rearing and kdr testing
Single S. avenae apterae collected from individual winter 
barley fields from Counties Carlow, Cork, Louth and 
Wexford in Ireland, were identified using Blackman’s key 
to the Aphidinae (Macrosiphini) (Blackman, 2010), and 
subsequently, maintained on spring barley plants Hordeum 
vulgare (var. Propino) in individual cages (21 x 21 x 21 cm) 
at 20 ± 1⁰C with a 16:8 h photoperiod (light:dark), to establish 
16-clonal lineages of asexually-reproducing aphids at long 
day-length conditions. The parent aphid from each lineage 
was removed and suspended in 50 µl of a 300 mM extraction 
buffer prepared as 0.3 M sucrose, 0.3 M NaCL, 60 mM Tris 
HCL pH 8, aligned to the Louis (1997) protocol for genomic 
DNA extraction, ahead of testing for the kdr mutation L1014F 
using a Taqman Polymerase Chain Reaction (PCR) assay 
(Foster et  al., 2014). Probe and primer sequences were 
provided by Rothamsted Research UK, where the analysis 
was carried out on an ABI 7900 HT RT-PCR system.
After rearing the individual clonal lineages in long day-length 
conditions for approximately 20 weeks, cages were transferred 
to an incubator at 16 ± 1⁰C with a 12:12 h photoperiod for 
a further 6-week period, before being returned to long-day 
length conditions in preparation for testing.

Pyrethroid exposure
Aphids from individual colonies were exposed to a standard 
pyrethroid insecticide (analytical standard, Lambda(λ)-
cyhalothrin PESTANAL® 31058, procured from Sigma-Aldrich) 
in 34 cm2 glass vials coated with 500 µl of a pre-prepared 
acetone solution (technical grade Acetone, procured from 
Fisher Scientific, 10162180). An average of fifteen adult and/
or late-nymphal instar apterous aphids from each of the 16 
clonal lineages were placed in pre-coated vials held vertically 
in a constant light incubator at 18 ± 1⁰C for 5 hours, while 
following the protocol of Foster et  al. (2014). Three vial 
treatments were prepared with two replicate vials for each 
combination of aphid clone x pyrethroid treatment:
•	 Treatment 1 (untreated control) - vials prepared with 

500 µl of acetone alone
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Pseudosensoria were observed on the meta-tibiae of egg-
laying aphids, with the exception of one damaged aphid, 
confirming their status as probable sexual oviparous forms.
The kdr-status of all egg-laying females was confirmed as 
matching that of their original field-lineage. Microsatellite 
genotyping indicated that all three individuals derived from 
pyrethroid-susceptible, kdr-SS, lineages were the SA27 clone. 
All kdr-SR oviparae were determined to be the SA3 clone. 
The kdr-heterozygous SA3 clone was collected from widely 
separated locations within the main cereal-growing region of 
Ireland, in Counties Carlow, Cork and Wexford (Table 2).

Discussion

These data provide the first evidence that the widely occurring 
kdr-heterozygote SA3 clone can survive pyrethroid contact, 
and is able to continue reproducing parthenogenetically under 
laboratory conditions at a comparable rate to the unexposed 
individuals of the susceptible (kdr-SS) SA27 clone, potentially 
explaining observations of increasing insecticide failure in the 

Survival and reproduction following the pyrethroid bioas-
say
Grain aphid survival was high in the kdr-SR group immediately 
following the λ-cyhalothrin bioassay with 204 out of 212 (96%) 
surviving the untreated control, 116 out of 200 (58%) surviving 
the 75 ng/cm2 concentration, and 47 out of 204 (23%) 
surviving the 150 ng/cm2 concentration. A summary of aphid 
survival and subsequent reproduction by observed individuals 
is provided in Table 1. In total, 29-adult apterous aphids 
were individually observed in tubes following the pyrethroid 
bioassay. Twenty of these individuals were representative of 
all the seven confirmed kdr-SR clones and nine aphids were 
from the confirmed kdr-SS lineages that had survived the 
untreated (acetone only) treatment. Eleven of the observed 
aphids (38%) were viviparae, eight (28%) were oviparae and 
observed to produce eggs with five of these being kdr-SR 
individuals, whilst 10 (34%) were not observed to reproduce 
during the experiment. Two of the observed aphids shed their 
exoskeleton to become alates during the observational period. 
Only one of these alate aphids was observed subsequently to 
reproduce, producing live nymphs.

Table 1. Survival of observed aphids (in days) and their reproduction over a period of 14-days following exposure 
 to the 𝜆 -cyhalothrin bioassay treatments

Kdr-genotype x
pyrethroid treatment (n)

Survival (days) Nymphs produced Eggs produced

mean median mode (n)* total rate** (n)* total rate**

kdr-SS x
Acetone Control (0 ng/cm2)

9 9 13 14 4 57 1.02 3 9 0.21

kdr-SR x
Acetone Control (0 ng/cm2)

7 14 14 14 4 34 0.61 2 4 0.14

kdr-SR x
𝜆-cyhalothrin (75 ng/cm2)

6 6 12 14 1 16 1.14 2 3 0.11

kdr-SR x
𝜆-cyhalothrin (150 ng/cm2) 7 8 11 14 2 10 0.36  1^ 0 0.00

*observed aphids that produced either asexual nymphs or eggs, respectively.
**rate of reproduction calculated as the number of progeny per individual, per 14-days.
^reproduction occurred outside of the 14-day period.

Table 2. Field origin, genetic identities and treatment history of all S. avenae individuals with observed capacity  
to produce sexual forms and lay eggs following the pyrethroid bioassay

Field Location Kdr Genotype Oviparous capacity (following bioassay treatment) Confirmed clonal genotype

Co. Carlow kdr-SS Yes (untreated control) SA 27

Co. Cork kdr-SR Yes (untreated control) SA3

Co. Cork kdr-SR Yes (b150 ng/cm2) SA3

Co. Carlow kdr-SR Yes (untreated control) SA3

Co. Carlow kdr-SR Yes (a75 ng/cm2) SA3

Co. Carlow kdr-SS Yes (untreated control) SA 27

Co. Louth kdr-SS Yes (untreated control) SA 27

Co. Wexford kdr-SR Yes (a75 ng/cm2) SA3

aabove standard field rate; babove twice standard field rate.
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reason that kdr-heterozygotes are found to be resistant in 
aphids is unclear, but may be connected to the unusual two-
subunit structure of the sodium channel gene in aphids (Amey 
et al., 2015).
Our observations on the survival, reproduction and retained 
sexual capacity in the SA3 clone, have major relevance to 
future strategies for controlling BYDV incidence, which is the 
driver of insecticide application to cereal crops. They suggest 
that a continued over-reliance on pyrethroid insecticides 
is likely to exacerbate existing resistance, possibly even 
provide further selection pressure for additional forms of 
pyrethroid resistance, such as super-kdr or metabolic-based 
mechanisms, and potentially generate homozygous kdr 
genotypes through sexual crossing between kdr-heterozygote 
males, if produced under autumn conditions, and oviparous 
females.
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