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A B S T R A C T

Raman spectroscopy and chemometrics were investigated for the prediction of eating quality related physico-
chemical traits of Holstein-Friesian bull beef. Raman spectra were collected on the 3rd, 7th and 14th days post-
mortem. A frequency range of 1300–2800 cm−1 was used for partial least squares (PLS) modelling. PLS re-
gression (PLSR) models for the prediction of WBSF and cook loss achieved an R2CV of 0.75 with RMSECV of 6.82
N and an R2CV of 0.77 with RMSECV of 0.97%w/w respectively. For the prediction of intramuscular fat,
moisture and crude protein content, R2CV values were 0.85, 0.91 and 0.70 with RMSECV of 0.52%w/w, 0.39%
w/w and 0.38%w/w respectively. An R2CV of 0.79 was achieved for the prediction of both total collagen and
hydroxyproline content, while for collagen solubility the R2CV was 0.88. All samples (100%) from 15- and 19-
month old bulls were correctly classified using PLS discriminant analysis (PLS-DA), while 86.7% of samples from
different muscles (longissimus thoracis, semitendinosus and gluteus medius) were correctly classified. In general,
PLSR models using Raman spectra on the 3rd day post-mortem had better prediction performance than those on
the 7th and 14th days. Raman spectroscopy and chemometrics have potential to assess several beef physical and
chemical quality traits.

1. Introduction

Meat quality is a complex concept that involves intrinsic cues (i.e.
safety, shelf-life, nutritional value, eating quality) and extrinsic cues
(i.e. brand, quality label, origin, convenience of the product). Of these,
eating quality is a critical parameter to determine consumer pre-
ferences, including sensory quality (i.e. tenderness, juiciness and fla-
vour) and physico-chemical traits: technological quality (i.e. Warner-
Bratzler shear force (WBSF) and cook loss; compositional quality (i.e.
intramuscular fat (IMF), collagen and moisture content) (Prieto et al.,
2009; Troy & Kerry, 2010).

The amount and solubility of intramuscular connective tissue
(IMCT) and post-mortem proteolysis of myofibrillar proteins influence
beef tenderness predominately. Collagen, as a major component of
IMCT, is believed to contribute to the “background” toughness of beef
after prolonged ageing. It has been generally accepted that higher levels
of total collagen and particularly lower collagen solubility are asso-
ciated with reduced beef tenderness (Jeremiah et al., 2003a). IMF

produces marbling effects in beef, which is positively linked to beef
tenderness, juiciness and flavour (Scollan et al., 2006). A higher level of
moisture in beef can lead to higher cook loss and lower tenderness
(Chambaz et al., 2003). An increased cook loss has a negative effect on
beef tenderness (Silva et al., 1999).

Ageing is the most influential primary processing factor involving
complex changes in muscle metabolism in the post slaughter period.
Post-mortem proteolysis is a pronounced action during ageing, which
greatly contributes to meat tenderization (Muchenje et al., 2009).
Moreover, water mobility and biomechanical changes of IMCT in meat
during ageing are also associated with changes in quality parameters,
including juiciness and tenderness (Pearce et al., 2011; Nishimura,
2015).

Previous studies have demonstrated the potential of Raman spec-
troscopy (RS) combined with chemometric approaches to measure
WBSF and cook loss of aged meat. A regression coefficient determina-
tion of cross validation (R2CV) of 0.75 for the prediction of shear force
(SF) in roasted beef silversides was reported by Beattie et al. (2004)
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while R2CVs of 0.33–0.79 were obtained for the prediction of intact
fresh bovine gluteus medius (GM) muscles SF at the 14th day post-
mortem using a portable Raman system (Bauer et al., 2016). R2CVs of
0.79–0.86 for SF and 0.79–0.83 for cook loss were obtained for intact
frozen/thawed sheep meat after ageing for 5 days using a prototype
handheld Raman system (Schmidt et al., 2013). In contrast, a very low
R2CV of 0.06 was obtained using a handheld Raman device for SF
prediction on intact fresh lamb muscle at the 1st day post-mortem by
Fowler et al. (2014). However, none of these studies have reported on
homogenized meat samples, and previous studies only focused on one
type of muscle and one specific ageing time; the prediction ability for
different muscle types and different ageing times has not been in-
vestigated to date.

A rapid and applicable method for compositional quality assessment
would be highly appreciated by the meat industry. Near infrared
spectroscopy (NIRS) has been employed to predict chemical composi-
tion of beef with R2CVs of 0.16–0.82 for predictions of crude protein
(Alomar et al., 2003; Ripoll et al., 2008), R2CVs of 0.76–0.99 for IMF
(Rødbotten et al., 2000; De Marchi et al., 2007), R2CVs of 0.09–0.91 for
moisture (Cozzolino et al., 2002; De Marchi et al., 2007) and R2CVs of
0.18–0.44 were reported for collagen prediction (Alomar et al., 2003;
De Marchi et al., 2007). Hyperspectral imaging has been reported to be
effective for the prediction of hydroxyproline content in chicken meat
(R2CV - 0.87) (Xiong et al., 2015). Compared with NIRS, RS has been
claimed to provide more detailed information on chemical structures
and physical forms for the identification of substances by their char-
acteristic spectral patterns – ‘fingerprinting’ and for quantitative de-
tection of the amount of a substance in a sample (Smith & Dent, 2005).
However, recent studies using RS on lamb were unable to predict col-
lagen and for IMF obtained an R2CV of 0.02 (Fowler et al., 2015). The
authors of this study are not aware of any previous research in-
vestigating the use of RS to determine chemical composition of beef
particularly for collagen characteristics. Moreover, the previous studies
were mainly focused on sole physical or chemical trait of meat, while
the prediction performance of RS on a wide range of beef physical and
chemical traits has not been explored.

Beef quality can also be largely affected by on-farm production
factors, such as animal breed, slaughter age, sex, feeding regime,
muscle location etc. (Frylinck et al., 2013). The clear discrimination of
beef according to production factors could not just solely be used to
identify meat origin, but also as a marker to select meat cuts based on
expected quality properties. In addition to the conventional analytical
methods for muscle identification such as DNA, immunological and
chromatographic techniques, RS has been shown to be a potential tool
for rapid assessment of food adulteration and discrimination between
species and muscle groups within species (Herrero, 2008;
Damez & Clerjon, 2008).

The objectives of this study are to use RS and chemometrics to (1)
develop models for the prediction of key physico-chemical traits of
young bull beef; (2) select the most representative wavelengths for
these predictions; (3) compare prediction performance during beef
ageing; (4) discriminate beef samples from three muscle types or from
two slaughter ages.

2. Materials and methods

2.1. Source of materials

For the prediction models, Holstein-Friesian (HF) bulls (n = 49)
were slaughtered in a commercial abattoir. The longissimus thoracis (LT)
muscle samples were removed from the carcasses of 35 bulls at 48 h
post-mortem at 4 °C. LT and semitendinosus (ST) muscles were removed
from the carcasses of the remaining 14 bulls. At 72 h post-mortem,
muscle samples (n = 63) were cut into individual slices (~25 mm
thick) and vacuum-packed using five-layer (PA/tie/PE/tie/PE) coex-
truded nanocomposite films (Versatile Packaging Ltd., Ireland) and a

VG 400 ILPRA sealing machine (Vigevano, Italy). Samples for chemical
analysis and Raman spectra measurement on the 3rd day post-mortem
were immediately stored at −20 °C; while samples for Raman spectra
measurements at the 7th and 14th days post-mortem were aged for 7
and 14 days at 4 °C respectively and then stored at −20 °C.

For the discrimination models, 30 bulls were slaughtered at 15-
months (n = 15) and 19-months (n = 15) of age respectively. LT, ST
and GM muscles were collected from 10 bulls (15-months of age), and
were used for muscle type discrimination. For age discrimination, 26
muscles (LT & ST) were collected from 15-month old bulls, and 29
muscles (LT & ST) were collected from 19-month old bulls. Two in-
dividual slices were cut from each muscle and vacuum-packed after
ageing for 7 and 14 days at 4 °C respectively, and then frozen at−20 °C
prior to Raman spectra measurements.

2.2. Warner-Bratzler shear force and cook loss

Trimmed beef steaks which had been aged for 3 days (150–180 g)
were thawed in constantly circulating water at 10 to 15 °C. The steaks
were then cooked in open bags suspended in a water bath (TC120,
Grant Instruments Ltd., England) at 72 °C until the temperature in the
centre of the steak reached 70 °C. Cook loss was determined as:

((raw weight−cooked weight)/raw weight)×100%.
Steaks were immediately cooled and held overnight at 4 °C. Seven

meat cores (12.5 mm diameter) were cut parallel to the longitudinal
orientation of the muscle fibres for each sample. When the cores
reached room temperature, they were sheared using the Warner-
Bratzler (WB) shear blade attached to an Instron Universal Testing
Machine (Models 5543, Instron (UK) Ltd., High Wycombe, UK). A
500 N load cell was used with a crosshead speed 50 mm/min. The
average maximum shear force was calculated by excluding the two
extreme values from seven acquisitions.

2.3. IMF, moisture and protein

Frozen samples which had been aged for 3 days were thawed at 4 °C
for ~16 h. After all external fat was trimmed the lean beef and exudate
were homogenized together using a blender (R301 Ultra, Robot Coupe
SA, France). Moisture and IMF concentrations were measured using a
smart microwave moisture drying oven and an NMR Smart Trac rapid
Fat Analyser (CEM Corporation, USA) using AOAC official method
985.14 (AOAC, 1991). Protein concentration was determined using a
LECO FP328 (LECO Corp., MI, USA) protein analyser based on the
Dumas method according to AOAC method 992.15 (AOAC, 1992). All
composition tests were carried out as two determinations per sample
with a standard deviation between replicates below 1.00%.

2.4. Collagen content and solubility

Samples which had been aged for 3 days were freeze dried and then
milled to a fine homogenate. Approximately 4 g of muscle homogenate
was defatted using 20 mL of diethyl ether overnight and re-dried. The
heat-soluble collagen was extracted as described by Hill (1966) with
slight modifications. Briefly, 2.5 g of fat-free dry (FFD) muscle hydro-
lysate was heated in water bath for 2 h at 90 °C with 15 mL of Ringer's
solution. Sample solution was centrifuged (LYNX 6000, Thermo Sci-
entific) twice at 3990g for 10 min at room temperature. The super-
natants from the two centrifugations were combined. Then 100 μL of
final supernatant and 3 mg of FFD (total collagen) of each muscle (in
triplicate) were hydrolysed using 2 mL of 6 M HCl under nitrogen in
sealed vials at 110 °C overnight. Following hydrolysis, the vials were
cooled and centrifuged (5174C/R, Eppendorf, UK) at 18,187g for 1 min
at room temperature to remove particulate matter.

Quantitative analysis of hydroxyproline in FFD muscle hydrolysates
was carried out using LC-MS/MS with slight modifications of the
method reported by Colgrave et al. (2008). Briefly, 100 μL aliquots of
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the hydrolysates were dried under nitrogen and reconstituted in 1 mL of
0.1% formic acid. 100 μL of 0.1% formic acid was added to 100 μL of
the reconstituted sample and then 5 μL of the final reconstituted sample
was injected into a Waters Acquity UPLC system with an ACQUITY
UPLC@BEH C18 (50 mm× 2.1 mm, particle size 1.7 μm) column
coupled to tandem mass spectrometry (Waters Corp, MA, USA). The
flow rate was 0.5 mL/min using an isocratic flow of 95% solvent A
(0.1% formic acid in HPLC water) and 5% solvent B (0.1% formic acid
in Acetonitrile). Data acquisition and processing were performed using
the Target Lynx Software (Waters Corp, MA, USA).

Rat tail (α-1 (1) chain) (Enzo Life Sciences, Farmingdale, NY, EEUU)
was used as the quality control collagen standard for validation. An
aliquot of 100 μL of rat tail solution was hydrolysed and reconstituted
using the same procedure with samples, then diluted with 0.1% formic
acid in order to obtain three different standards in the high, medium
and low levels of hydroxyproline. The concentration of hydroxyproline
(nmol/L) was determined from integration of the area under the curve
against a standard curve with a linear range from 100 to 5000 nmol/L
(r2 = 0.99). The conversion of this data to mass of collagen was as
previously described (Colgrave et al., 2008). Percentage solubility was
calculated as soluble hydroxyproline divided by total hydroxyproline
multiplied by 100. All collagen properties were determined in triplicate
for each sample and averaged.

2.5. Sample preparation and Raman measurements

Raman spectroscopic data were collected from scanning aged beef
samples on the 3rd, 7th and 14th days post-mortem. Before measure-
ments, frozen steaks were removed from−20 °C storage and allowed to
thaw at 4 °C for ∼16 h. Each sample was homogenized using a Robot
Coupe R301 ultra (Vincennes, France) for 1 min. Approximately 10 g of
homogenized beef sample was wrapped in PVC clingfilm to form a ball.
Raman spectra were collected on a DXR SmartRaman spectrometer
(ThermoFisher Scientific UK Ltd., Loughborough, UK) equipped with a
diode laser operating at 780 nm to minimize sample fluorescence issues
and a charge coupled device (CCD) detector operating at −50 °C. A
smooth side of the wrapped sample was then placed over the aperture
(50 μm slit) of the universal platform sampling (UPS) accessory. All
spectra of each sample were accumulated for 5 min (i.e. 15 s exposure
time × 20 exposures) using a 150 mW laser power. Samples were
scanned in random order at ambient temperature (∼20 °C). Raman
intensity counts per second (cps) were recorded over the wavelength
range 250–3380 cm−1 at 2 cm−1 intervals. Cosmic spikes were re-
moved automatically by the supplied software. Instrument control,
spectral acquisition, and file conversion were performed using the
supplied OMNIC software v 9.2.98 (Thermo Fisher Scientific Inc., USA).
Each sample was scanned twice, once each at two different scan sites on
the sample ball; the mean of these replicate spectra was used in sub-
sequent chemometric operations.

2.6. Spectral data processing

Raw Raman spectra were exported from OMNIC software as
JCAMP.DX files and imported into Matlab 2014a (The Mathworks,
Natick, MA, USA), the mean spectrum of each sample was calculated
and also imported into The Unscrambler v.10.3 (Camo, Trondheim,
Norway) for different data-pretreatments and chemometric operations.

Baseline correction of Raman data was carried out using the
Savitzky-Golay (S.G.) derivation. First derivatives were calculated using
a fifth-degree polynomial and 7 smoothing points; second derivatives
were calculated using a fifth-degree polynomial and 9 smoothing
points. Multiplicative effects of the spectroscopic data were removed
using unit vector normalisation. In order to find the optimal data pre-
processing method for partial least squares model development, other
baseline correction methods such as polyfit using a fifth-degree poly-
nomial were also employed.

2.7. Chemometric analysis

For the prediction of beef quality traits, partial least squares re-
gression (PLSR) models were developed using pre-processed Raman
spectroscopic data collected on the 3rd, 7th or 14th days post-mortem
using selected frequency ranges (i.e. 250–3380 cm−1, 900–1800 cm−1,
1300–2800 cm−1) respectively combined with the reference values of
the physico-chemical traits measured on the 3rd day. Full cross-vali-
dation PLSR models were developed using 63 samples to predict WBSF,
cook loss, IMF, moisture and protein content and 36 samples for the
prediction of total collagen (TC), hydroxyproline (HYP) and collagen
solubility (CSol). It was assumed that prediction performance of these
PLSR models developed using Raman spectral data collected after a
longer post-mortem duration would have lower accuracy as the re-
ference data was obtained from the 3rd post mortem day. Evaluation of
PLSR model prediction performance was carried out using the statistics
parameters such as root mean square error of calibration (RMSEC) and
cross-validation (RMSECV) and the coefficient of determination on
calibration (R2C) and cross-validation (R2CV). For a satisfactory pre-
diction performance, the value of R2 is expected to be close to 1 while
values of RMSE and bias are expected to be close to 0.

Partial least squares discriminant analysis (PLS-DA) models were
developed using pre-processed Raman spectroscopic data of 55 and 30
beef samples (aged for both 7 and 14 days) in the frequency range of
1300–2800 cm−1 for the classification of slaughter age (15- and 19-
month old) and muscles (LT, ST and GM), respectively. For the PLS-DA
models developed for the detection of bull age, dummy y values of 1
and 2 were assigned to samples (1 for beef from 15-month old bulls, 2
for beef from 19-month old bulls); the threshold selected for classifi-
cation was set empirically at 1.5. Likewise, for muscle determination,
the dummy y values of 1, 2 and 3 were given to samples of LT, ST and
GM muscles respectively with the empirical thresholds of 1.5 for the
classification of LT and ST and 2.5 for the classification of ST and GM.
To evaluate the performance of PLS-DA models, confusion matrices
were developed for the classification of slaughter age and muscle based
on the explanatory matrices (Table 1a & b). The correct classification
(CC) used to evaluate PLS-DA models was expressed as percentage:

=
+

+ + +

CC TP TN
TP FP FN TN (1)

In the current study, all PLS models were calibrated using the
nonlinear iterative partial least squares (NIPALS) algorithm.
Improvements in performance of PLS models were attempted using a
reduced number of Raman spectral variables. The Martens' uncertainty
test was applied to select spectral variables based on the variability of
their regression coefficients during cross-validation of model develop-
ment (Martens &Martens, 2000). Other informative variable selection
algorithms such as variable importance on projection (VIP)
(Chong & Jun, 2005) and significance multivariate correlation (sMC)
(Tran et al., 2014) were also explored.

3. Results and discussion

3.1. Meat quality results

WBSF of samples ranged from 25.1–86.6 N (Table 2), with 4 sam-
ples below 31.36 N, which was categorized into a ‘very tender’ group; 4
and 9 samples ranged from 31.36–38.22 N and 38.22–45.08 N, be-
longing to ‘tender’ and ‘intermediate tender’ categories, respectively.
The WBSF of the other 46 samples was above 45.08 N, considered as a
‘tough’ group (Shackelford et al., 1991). In the current study, cook loss
ranged between 26.6%w/w and 36.7%w/w, which was in accordance
with previous work (Jeremiah et al., 2003b).

IMF content in the current study ranged from 0.05–5.81%w/w, and
most samples were within the range of 0.76%–6.00%w/w reported for
beef in previous studies (Jeremiah et al., 2003b; Muchenje et al., 2008).
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Generally, 3–7%w/w of IMF is considered as an ideal range to ensure
palatability while not being detrimental to human health (Miller,
2002). Moisture, the most abundant component in beef, varied from
71.6–77.5%w/w with a standard deviation of 1.27%w/w. Total protein
content varied from 21.2 to 24.3%w/w with a low standard deviation
of 0.69%w/w and a mean value of 22.7%w/w, which is in agreement
with the reported range for beef chemical composition values
(Muchenje et al., 2009). The mean value of total collagen (3.27 mg/g)
or collagen solubility (18.0%) was in agreement with studies by other
authors (Archile-Contreras et al., 2010; Christensen et al., 2011). The
wide range of collagen values used in this study was due to the different
muscles selected as inter muscle comparisons is considered as an im-
portant reason for samples obtaining large variation in collagen con-
tent, which consequently leads to the strong relationship between col-
lagen characteristics and cooked meat tenderness (Dransfield, 1977).

3.2. Raman spectra

Raw Raman spectra (250–3380 cm−1) of all bull beef samples
(n = 189, the sum of samples of all ageing times) including the back-
ground fluorescence are shown in Fig. 1a. All sample spectra have very
similar spectral profiles. Averaged spectra derived from the raw spectra

(n = 63) of each ageing time are shown in Fig. 1b. The spectra of the
3rd and 7th days almost overlap each other, while the spectrum of the
14th day is separated from them in the frequency range of
250–2800 cm−1. In Fig. 1c, fluorescence effects and multiplicative ef-
fects have been removed; detailed Raman signals are shown for the
mean spectrum of all bull beef samples in the frequency range of
500–2800 cm−1. The Raman spectral signal around 670 cm−1 is re-
lated to methionine and disulphide SeS stretching vibration (Beattie
et al., 2004). Signals of myoglobin in meat are shown at 714, 755, 855,
1125, 1340 and 1540 cm−1; signals of tyrosine (aromatic amino acid
side chains) are shown at 825 and 855 cm−1 (Bauer et al., 2016). The
spectral regions of 890–1060 and 1645–1685 cm−1 assigned to the
amide I bands involve CeC stretching vibrations, C]O stretching and
NeH in-plane bending of peptide bonds; the region of
1200–1350 cm−1 assigned to amide III bands mainly involve CeN
stretching and NeH in-plane bending vibrations of the peptide groups
(Herrero et al., 2008). Peaks at 1270 and 1336 cm−1 have been related
to the secondary and tertiary structures of proteins, i.e., amide III
bands. A peak at 1650 cm−1 is probably due to α-helical structures,
while those at 1270 and 1300 cm−1 have been attributed to α globular-
and α fibrous-helix formations of amide III (Beattie et al., 2004). Phe-
nylalanine is a strong scatter at 1003 cm−1, tryptophan shows specific
peaks at 1353 and 1550 cm−1, which are another two typical signals
attributed to the aromatic amino acid side chains. Peaks at
1439–1447 cm−1 have been attributed to a CH2 scissoring vibration in
proteins (Beattie et al., 2004). Raman spectral peaks at frequencies of
1744, 1653, 1439, 1300, 1270, 1125, and 920 cm−1 have also been
assigned to the C]O, C]C stretching bonds, CH2 scissoring or twisting
bonds, and CeH in-plane deformation bonds of aliphatic chains in li-
pids (Li-Chan, 1996). The peak shown at 2327 cm−1 is most likely
related to C^N stretching bonds of aliphatic nitriles (Socrates, 2001).

3.3. Prediction of physico-chemical traits based on PLS regression models

Performance of PLS models developed on pre-treated Raman data
using Savitzky Golay (S.G.) derivation or polyfit with 5th baseline
correction methods were examined; models developed in selected
ranges (i.e. 250–3380 cm−1, 900–1800 cm−1 and 1300–2800 cm−1)
were also explored. Results showed that PLS models developed using
S.G. derivation pre-treated Raman spectra over 1300–2800 cm−1

Table 1
Confusion matrix for the classification of samples.

a. At the age of 15-month (defining as and 19-month defining as true or false – positive and true or false – negative).

Measured bull age

15-Month 19-Month

Predicted bull age 15-Month True positive (TP) False positive (FP)
19-Month False negative (FN) True negative

(TN)

b. From beef cuts of LT, ST and GM muscles (defining as true or false – positive and true or false negative).

Measured muscle type

LT ST GM

PLS-DA modelling for LT determination Predicted muscle type LT True positive (TP) False negative (FN) False negative (FN)
ST False positive (FP) True negative (TN) True negative (TN)
GM False positive (FP) True negative (TN) True negative (TN)

PLS-DA modelling for ST determination Predicted muscle type LT False negative (FN) False positive (FP) False negative (FN)
ST True negative (TN) True positive (TP) True negative (TN)
GM True negative (TN) False positive (FP) True negative (TN)

PLS-DA modelling for GM determination Predicted muscle type LT True negative (TN) True negative (TN) False positive (FP)
ST True negative (TN) True negative (TN) False positive (FP)
GM False negative (FN) False negative (FN) True positive (TP)

Table 2
Reference values of meat quality traits of young dairy bull beef on the 3rd day post-
mortem.

n Mean Min Max SD

Physical traits
WBSF (N) 63 53.0 25.1 86.6 13.4
Cook loss (%w/w) 63 32.7 26.7 36.7 2.03

Chemical traits
IMF (%w/w) 63 1.69 0.05 5.81 1.31
Protein (%w/w) 63 22.7 21.2 24.3 0.69
Moisture (%w/w) 63 74.7 71.6 77.5 1.27
Total collagen (mg/g) 36 3.27 1.51 6.02 1.19
Total hydroxyproline (mg/g) 36 0.44 0.20 0.81 0.16
Collagen solubility (%) 36 18.0 6.95 30.6 5.73

WBSF, Warner-Bratzler shear force; IMF, intramuscular fat; n, numbers of samples; SD,
standard deviation.
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Fig. 1. a) Raw Raman spectra (250–3380 cm−1) of all bull beef
samples (n = 189); b) averaged raw Raman spectra
(250–3380 cm−1) of bull beef samples (n = 63) from the 3rd, 7th
and 14th day post-mortem, respectively; c) Averaged Raman spectra
(500–2800 cm−1) of all bull beef samples (n = 189) pre-treated by
the Savitzky Golay second derivative using a fifth-degree of poly-
nomial and 7 smoothing points and normalisation.

Table 3
Summary of PLSR model performances (Raman shift 1300–2800 cm−1) for WBSF and cook loss prediction in bull beef.

Sample Raman data pre-treatment with the Martens' uncertainty
test

Numbers of spectral variables
retained

# PLS loadings R2C RMSEC R2CV RMSECV

WBSF Day 3 (n = 63) S.G. 1st der. using 5th polynomial with 7 smooth
points + nor.u.v.

130 2 0.88 4.70 0.75 6.82

S.G. 2nd der. using 2th polynomial with 9 smooth points 60 2 0.70 7.22 0.45 9.98
Day 7 (n = 63) S.G. 1st der. using 5th polynomial with 7 smooth points

+ nor.u.v.
107 2 0.84 5.12 0.70 7.22

S.G. 2nd der. using 2th polynomial with 9 smooth points 87 2 0.86 4.86 0.73 6.98
Day 14 (n = 63) S.G. 1st der. using 5th polynomial with 7 smooth points

+ nor.u.v.
56 1 0.76 6.29 0.70 7.26

S.G. 2nd der. using 2th polynomial with 9 smooth points 62 1 0.72 6.91 0.63 7.97
Cook loss Day 3 (n = 63) S.G. 1st der. using 5th polynomial with 7 smooth

points + nor.u.v.
97 1 0.83 0.82 0.77 0.97

S.G. 2nd der. using 2th polynomial with 9 smooth points 73 2 0.71 1.08 0.54 1.39
Day 7 (n = 63) S.G. 1st der. using 5th polynomial with 7 smooth points

+ nor.u.v.
78 2 0.76 0.98 0.55 1.36

S.G. 2nd der. using 2th polynomial with 9 smooth points 56 2 0.61 1.24 0.45 1.51
Day 14 (n = 63) S.G. 1st der. using 5th polynomial with 7 smooth points

+ nor.u.v.
60 2 0.81 0.85 0.62 1.21

S.G. 2nd der. using 2th polynomial with 9 smooth points 60 1 0.58 1.26 0.48 1.41

PLSR, partial least squares regression models; WBSF, Warner-Bratzler shear force; S.G., Savitzky Golay; der., derivatives; nor.u.v., normalisation on unit vectors; # PLS loadings, number
of PLS loadings; R2C, coefficient determination of calibration; RMSEC, root mean square error of calibration; R2CV, correlation coefficient of determination in cross-validation; RMSECV,
root mean square error of cross-validation; Day 3, the 3rd day post-mortem; Day 7, the 7th day post-mortem; Day 14, the 14th day post-mortem; n, numbers of samples.
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performed best for both prediction and discrimination purposes; espe-
cially for the prediction of TC, HYP and CSol. In the current study, the
Martens' uncertainty test was demonstrated to be the most effective
method to select the informative Raman spectral variables for enhan-
cing the PLS model performance. Therefore, all models were developed
using retained Raman spectral variables in the Raman shifts of
1300–2800 cm−1 after the Martens' uncertainty test, and results de-
rived from 900–1800 cm−1, 250–3380 cm−1 and from other in-
formative spectral variable selection algorithms (i.e. VIP and sMC) are
not discussed in this paper.

3.3.1. Prediction of WBSF and cook loss
Summary statistic results of the PLSR models developed for the

predictions of WBSF and cook loss are shown in Table 3. Generally, one
or two latent variables were required to attain RMSECV values of
6.82–9.98 N for WBSF and 0.97–1.51%w/w for cook loss. The models
developed using Raman spectra which were collected on the 3rd day
post-mortem had a higher prediction performance than those collected
on the 7th and 14th days. For the prediction of WBSF, the best pre-
diction results achieved an R2C of 0.88, R2CV of 0.75, RMSEC of 4.7 N
and RMSECV of 6.82 N (Fig. 2a). For the prediction of cook loss, an R2C
of 0.83 with RMSEC of 0.82%w/w and R2CV of 0.77 with RMSECV of
0.97%w/w were obtained (Fig. 2b). The results show the changes in
beef tenderness during ageing.

It is well established that ageing can be used to reduce WBSF values
during post-mortem storage due to the proteolysis of myofibrillar pro-
teins (Muchenje et al., 2009). Cook loss also changed considerably
during ageing. It also has been reported that cook loss generally in-
creases with ageing in beef GM and LL muscles (Colle et al., 2015). Most
of the water loss during cooking is from the juice expelled by heating-
induced shrinkage which occurs in the myofibrillar matrix due to pro-
tein denaturation (Hughes et al., 2014). During ageing, myofibrillar
strain is reduced by proteolysis contributing to an inflow of extra-
myofibrillar water to the intra-myofibrillar space. The swelling of the
intra-myofibrillar space appears to increase water storage before
heating (Pearce et al., 2011). Also protein denaturation (myofibrillar
shrinkage) during heating can be accelerated by the destabilisation of
the structure of myosin and actin after ageing. Therefore, the weakened
protein structure in aged meat is unable to retain or trap as much water
during cooking (Hughes et al., 2014). Accordingly, changes in the
WBSF and cook loss in beef at the 7th and 14th days post-mortem
would not be expected to be reflected in the Raman spectral informa-
tion of the 3rd day, hence reducing the potential of spectra on the 7th
and 14th days to predict WBSF and cook loss measured on the 3rd day.

3.3.2. Prediction of IMF, moisture and protein
A performance summary of PLSR models for predicting IMF,

moisture and protein in each independent sample group is shown in
Table 4. R2C values (0.74–0.92) of the calibration were generally higher
than their R2CV values (0.63–0.85) of the leave-one-out cross-valida-
tion for IMF prediction. R2C values of 0.73–0.97 with RMSEC of
0.22–0.65%w/w and R2CV values of 0.61–0.91 with RMSECV of
0.39–0.82%w/w were obtained for moisture prediction. While for the
protein content prediction, the obtained R2C and R2CV values are in the
ranges of 0.75–0.82 and 0.61–0.70 with RMSEC and RMSECV values in
the ranges of 0.28–0.32%w/w and 0.37–0.43%w/w respectively. The
best performing models were developed using the Raman spectra pre-
treated by Savitzky Golay 2nd derivative using 2nd polynomial with 9
smoothing points. Most informative spectral variables were enhanced
using the 2nd derivative. Therefore, a reduced number of spectral
variables were retained for developing PLSR prediction models after the
Martens' uncertainty tests (Table 4). Models developed using Raman
spectra collected on the 3rd day post-mortem had a better prediction for
IMF and moisture than those collected on the 7th and 14th days, while
there was no significant difference for protein prediction. Calibration
and cross-validation results of the best performing PLSR models areTa
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shown in Fig. 2 c, d & e. This phenomenon reflects the qualitative or
quantitative changes of moisture and IMF during ageing.

Changes of IMF during ageing are mainly due to lipid oxidation,
which is responsible for quality deterioration of meat during storage.
Lipid peroxidation occurs mostly in phospholipid fraction, and parti-
cularly high degree of polyunsaturated fatty acids are more prone to be
oxidation, which leads to off-flavour formation (rancidity), colour
changes, drip loss, etc. (Wood et al., 2003). Although low temperature
and vacuum packaging can prevent the rapid development of lipid
oxidation, the process may continue due to a small amount of residual
air in the package or the oxygen transmission through the packaging
film. There is no change in IMF content during ageing while any che-
mical structure change may influence the prediction accuracy.

Moisture loss increases with ageing (Colle et al., 2015). Proteolysis
of cytoskeletal proteins during ageing will affect water distribution. The
larger water channels are mainly due to the extra-myofibrillar water in
meat, which is related to integrin degradation as integrin attaches the
cytoskeleton to the extracellular matrix. Moreover, the water channels
could also be due to water resulting from the degradation of water-
binding proteins during the process of ageing (Pearce et al., 2011).

Changes of protein structure occur during the ageing process. A
series of endogenous enzymatic systems have been demonstrated to
contribute to softening of the myofibrillar structure and improved
tenderness; the degraded proteins mainly include myosin, actin and
cytoskeletal proteins (Longergan et al., 2010). Although the total
amount of amino acid within muscle doesn't change during proteolysis,
the location of individual amino acid may change or be split off to form
free amino acids (Beattie et al., 2008). However, the results in the
current study showed no significant difference in prediction perfor-
mance of protein between the 3rd and 14th days probably due to the
limitation of sample size.

3.3.3. Prediction of total collagen, hydroxyproline and collagen solubility
Results of PLSR models for the prediction of TC, HYP and CSol are

summarised in Table 5. Models developed using the Raman spectra of
the 3rd day post-mortem show a more satisfactory performance for the
prediction of TC and HYP while for CSol, the best prediction perfor-
mance was obtained on the 14th day. In particular, the models devel-
oped using S.G. 1st derivative and unit vector normalisation pre-treated

Raman data achieved an R2C of 0.97 and R2CV of 0.79 with RMSEC of
0.19%w/w and RMSECV of 0.56%w/w for the prediction of TC
(Fig. 2f); with RMSEC of 0.03%w/w and RMSECV of 0.07%w/w for the
prediction of HYP (Fig. 2g); and an R2C of 0.95, R2CV of 0.88, RMSEC
of 1.30%w/w, RMSECV of 2.15%w/w for the prediction of CSol
(Fig. 2h). The slightly lower prediction ability of PLSR models for TC
and HYP based on Raman spectra of the 7th and 14th days post-mortem
compared to the 3rd day can be explained by the ultrastructural and
quantitative changes of collagen during ageing.

From the ultrastructure point of view, proteoglycan is degraded,
thus the linkage between collagen fibrils is weakened. The disintegrated
total collagen networks appear to decrease the mechanical strength of
IMCT and lead to an improvement of tenderness in uncooked meat
(Nishimura, 2015). Furthermore, the perimysium and epimysium also
undergo damage as a result of proteolytic attack. Within the collagen
fibrils of muscle, collagenases or Zn2+ metalloproteinases are able to
break down matrix components and cleave the triple collagen helix
(Woessner, 1991). After helix cutting, the single α-helix can be hy-
drolysed by cathepsins, thus peptides and free-amino-acids can be re-
leased in lysosomes (Feidt et al., 1996). For the quantity aspect, total
free hydroxyproline in LD of bovine increased from 3%w/w at the 3rd
day post-mortem to 11%w/w at the 14th day (Feidt et al., 1996).

Dutson & Lawrie (1974) reported that soluble collagen increased
from 1 h to 14 days post-mortem expressed as more hydroxyproline
after hydrolysis due to the size of collagen fragments decreasing during
storage. Similarly, a weak but significantly increased solubility of col-
lagen fractions was observed in bovine muscles after ageing for 14 days
(Stanton & Light, 1987). In the current study, the solubility (CSol)
prediction showed an increased trend during ageing.

3.3.4. Regression coefficients of the prediction equations
The relevant regression coefficient plots of the best performing

models are shown in Fig. 3. Regression coefficient plots show multiple
maxima and minima of intensities, which consistently happened in the
1300–2800 cm−1 range for the prediction of WBSF, cook loss, moisture
and IMF (Fig. 3 a, b, c, e). Fig. 3 f & g show regression coefficient in-
tensities at similar Raman frequencies for the prediction of total col-
lagen and hydroxyproline, which shows the strong correlation between
them. Theoretically, collagen is the only molecule in muscle which

Table 5
Summary of PLSR model performances (Raman shift 1300–2800 cm−1) for TC, HYP and CSol prediction in bull beef.

Sample Raman data pre-treatment with the Martens' uncertainty test Numbers of spectral variables
retained

# PLS loadings R2C RMSEC R2CV RMSECV

TC Day 3 S.G. 1st der. using 5th polynomial with 7 smooth points
+ nor.u.v.

131 3 0.97 0.19 0.79 0.56

(n = 36) S.G. 2nd der. using 2th polynomial with 9 smooth points 21 1 0.82 0.49 0.78 0.56
Day 7 S.G. 1st der. using 5th polynomial with 7 smooth points + nor.u.v. 121 1 0.74 0.59 0.67 0.69
(n = 36) S.G. 2nd der. using 2th polynomial with 9 smooth points 106 2 0.80 0.51 0.59 0.77
Day 14 S.G. 1st der. using 5th polynomial with 7 smooth points + nor.u.v. 53 1 0.66 0.67 0.58 0.76
(n = 36) S.G. 2nd der. using 2th polynomial with 9 smooth points 49 1 0.62 0.72 0.52 0.82

HYP Day 3 S.G. 1st der. using 5th polynomial with 7 smooth points
+ nor.u.v.

112 3 0.97 0.03 0.79 0.07

(n = 36) S.G. 2nd der. using 2th polynomial with 9 smooth points 21 1 0.82 0.07 0.78 0.08
Day 7 S.G. 1st der. using 5th polynomial with 7 smooth points + nor.u.v. 121 1 0.74 0.08 0.67 0.09
(n = 36) S.G. 2nd der. using 2th polynomial with 9 smooth points 106 2 0.80 0.07 0.59 0.10
Day 14 S.G. 1st der. using 5th polynomial with 7 smooth points + nor.u.v. 81 2 0.80 0.07 0.62 0.10
(n = 36) S.G. 2nd der. using 2th polynomial with 9 smooth points 59 2 0.70 0.09 0.54 0.11

CSol Day 3 S.G. 1st der. using 5th polynomial with 7 smooth points + nor.u.v. 68 2 0.88 1.96 0.66 3.38
(n = 36) S.G. 2nd der. using 2th polynomial with 9 smooth points 58 1 0.73 2.94 0.65 3.45
Day 7 S.G. 1st der. using 5th polynomial with 7 smooth points + nor.u.v. 61 2 0.87 2.20 0.72 3.34
(n = 36) S.G. 2nd der. using 2th polynomial with 9 smooth points 58 1 0.80 2.75 0.73 3.29
Day 14 S.G. 1st der. using 5th polynomial with 7 smooth points + nor.u.v. 74 1 0.92 1.72 0.79 2.84
(n = 36) S.G. 2nd der. using 2th polynomial with 9 smooth points 102 2 0.95 1.30 0.88 2.15

PLSR, partial least squares regression models; TC, total collagen; HYP, hydroxyproline; CSol, collagen solubility; S.G., Savitzky Golay; der., derivatives; nor.u.v., normalisation on unit
vectors; # PLS loadings, number of PLS loadings; R2C, coefficient determination of calibration; RMSEC, root mean square error of calibration; R2CV, correlation coefficient of de-
termination in cross-validation; RMSECV, root mean square error of cross-validation; Day 3, the 3rd day post-mortem; Day 7, the 7th day post-mortem; Day 14, the 14th day post-mortem;
n, numbers of samples.
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contains hydroxyproline, a type of pro-collagen which accounts for 14%
of collagen. (Bailey & Light, 1989). For the prediction of protein con-
tent, intensity changes specifically occurred around 1300–1339 cm−1

which is likely related to cis form secondary amides (amide III group);
1609–1655 cm−1 correlates with arginine, phenylalanine, tryptophan
in the region of amide I group (Beattie et al., 2004); 2252–2256,
2459–2728 cm−1 may relate to the carbonyl group of proteins
(Smith & Dent, 2005). For collagen solubility prediction, regression
coefficient intensity shifts happened at 1444–1490 cm−1 which have
been assigned to C]O stretching, C]C stretching, CH2 scissoring and
CeH bonds of aliphatic chains of lipids (Smith & Dent, 2005);
1525–1557 cm−1 have been assigned to C]N stretching bonds or
tryptophan (amide II); 1857–1860 cm−1 have been assigned to CeH
and SeH stretching bonds and 2430–2746 cm−1 may be assigned to
PeH stretching bonds of phosphines or SeH stretching bonds of mer-
captans, aliphatic thiols and thiophenols (Socrates, 2001). Other pos-
sibly related function groups of chemical compounds and Raman shifts
are listed in Supplementary materials. However, compared with the
fingerprint range (900–1800 cm−1) of Raman shifts, the related che-
mical bonds in the range of 1300–2800 cm−1 are not widely reported

for meat studies.

3.4. Discrimination between production systems

3.4.1. Slaughter age discrimination
For the discrimination of beef from 15- or 19-month old bulls, 100%

correct sample identification was achieved by PLS-DA models devel-
oped using Raman spectral data collected at the 7th day post-mortem
and pre-treated by S.G. 1st derivative using 5th polynomial with 7
smoothing points with normalisation on unit vector. After spectral
variable selection, 282 of the spectral variables (n = 1557) were re-
tained for the model development. A 94.5% correct sample identifica-
tion was achieved by PLS-DA models developed using Raman spectral
data collected at the 14th day post-mortem using 161 retained spectral
variables (Table 6). It has been reported that 19-month old bulls pro-
duced tougher beef than that from 15-month old bulls (Renand et al.,
2001). Collagen characteristics were greatly influenced by slaughter
age, with older animals having a higher proportion of heat-stable cross-
links, which contributed to the lower collagen solubility (Bailey, 1985).
The best performing PLS-DA model for the determination of beef

Table 6
Summary of PLS-DA performances (Raman shift 1300–2800 cm−1) for the detection of samples from 15- and 19-month old bulls.

Classification results of cross-validation

Sample Data type Numbers of spectral
variables retained

No. of PLS
loadings

TP (true
positive)

TN (true
negative)

FP (false
positive)

FN (false
negative)

% correct
classification (CC)

Day 7 (n = 55) S.G. 1st der. using 5th
polynomial with 7 smooth
points + nor.u.v.

1557 2 26 29 0 0 100
282 1 26 29 0 0 100

Day 14
(n = 55)

S.G. 1st der. using 5th
polynomial with 7 smooth
points + nor.u.v.

1557 1 19 22 7 7 74.5
161 1 25 27 1 2 94.5

n, numbers of samples.

Fig. 4. Score plots of a) sample groups of 15-month and 19-month old, d) sample groups of LT, GM and ST muscles; regression coefficient plots of b) sample groups of 15-month and 19-
month old, e) sample groups of LT, GM and ST muscles; example of PLS-DA results of c) predicted Y values of sample groups of 15-month and 19-month old, f) predicted Y values of
sample groups of LT, GM and ST muscles.
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samples from two age groups is shown in Fig. 4c; these two sample
groups can be completely defined by the arbitrary cut-off line at 1.5 on
the y-axis. The score plot of samples (Fig. 4a) shows that components
(PC1 & 2) explain 23% of the x-variance and 99% of the y-variance.
Fig. 4b shows the relevant regression coefficients of spectral variables
in the 1300–2800 cm−1 range for the best performing PLS-DA models
developed.

3.4.2. Muscle discrimination
Beef samples from three different muscles (LT, ST and GM) were

discriminated with 70.0–86.7% correct classification using PLS-DA
models (Table 7). Results showed PLS-DA models developed using 53 to
72 similar spectral variables after data pre-treatments by S.G. 1st de-
rivative using 5th polynomial with 7 smooth points (with normalisation
on unit vectors) or S.G. 2nd derivative using 2nd polynomial with 9
smooth points. The best performing model was developed using 72
retained spectral variables collected at the 7th day post-mortem with
86.7% correct classification. In Fig. 4f, 4 samples were misclassified,
including two samples of the LT group which are above the arbitrary
cut-off line at 1.5 on the y-axis, one of the ST group was above the line
at 2.5 on the y-axis and one of the GM group was under the line at 2.5.
The relevant regression coefficient plot is shown in Fig. 4e. The score
plot show that samples of these three muscle groups can be explained
using components (PC1 & 2) with 8% of x-variance and 100% of y-
variance explained (Fig. 4d). In this score plot, the cluster of GM was
located in the middle between the other two muscle clusters; this cor-
responds to the difference in eating quality of three muscle types. It has
been noted that ST had higher WBSF than LT while WBSF of GM took
an intermediate position between ST and LT (Belew et al., 2003). In
contrast, the IMF content was higher in LT than ST, and GM also took an
intermediate position. ST and GM had higher total collagen content
than LT, and collagen solubility was greater in LT and GM than ST
(Jeremiah et al., 2003b).

Generally, PLS-DA modelling based on Raman spectra of the 7th day
post-mortem showed similar discrimination results to those based on
the spectra of the 14th day.

4. Conclusions

This study demonstrated the potential of Raman spectroscopy to
assess eating quality related physico-chemical characteristics in young
dairy bull beef aged for different times. PLSR models based on the
1300–2800 cm−1 wavelength range yielded the best results for both
prediction and discrimination purposes. The prediction ability of PLSR

models developed using spectra of the 7th or 14th day post-mortem was
lower (except for collagen solubility and protein prediction) than those
at the 3rd day, reflecting the ultrastructural changes in beef with
ageing. Improved prediction performance can be achieved using mul-
tiple muscle types. PLS-DA modelling showed that Raman spectroscopy
has potential to discriminate beef characteristics such as age and muscle
type and results were not greatly influenced by post-mortem ageing.
Future work should investigate the application of Raman spectroscopy
for on-line assessment of meat eating quality related physico-chemical
traits. Furthermore, the Raman frequency range of 1300–2800 cm−1

still merits further investigation for meat sensory analysis.
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