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• Real-time forecasting of pesticide con-
centrations in soil was previously im-
practical.

• New stochastic model developed to ac-
count for rainfall variability after appli-
cation.

• Bayesian methods used to calibrate two
reaction parameters for in-field testing.
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Forecasting pesticide residues in soils in real time is essential for agronomic purposes, to manage phytotoxic ef-
fects, and in catchments tomanage surface and groundwater quality. This has not beenpossible in the past due to
bothmodelling andmeasurement constraints. Here, the analytical transient probability distribution (pdf) of pes-
ticide concentrations is derived. The pdf results from the randomways inwhich rain events occur after pesticide
application. First-order degradation kinetics and linear equilibrium sorption are assumed. The analytical pdfs
allow understanding of the relative contributions that climate (mean storm depth and mean rainfall event fre-
quency) and chemical (sorption and degradation) properties have on the variability of soil concentrations into
the future.We demonstrated the two uncertain reaction parameters can be constrained using Bayesianmethods.
An approach to a Bayesian informed forecast is then presented. With the use of new rapid tests capable of pro-
viding quantitativemeasurements of soil concentrations in thefield, real-time forecasting of future pesticide con-
centrations now looks possible for the first time. Such an approach offers newmeans to manage crops, soils and
water quality, and may be extended to other classes of pesticides for ecological risk assessment purposes.

© 2019 Published by Elsevier B.V.
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rath).
1. Introduction

The time interval between herbicide application and its dissipation
to a concentration that is non-toxic to crop growth (withholding pe-
riod) is a critical factor for agronomic management (e.g. Desaeger
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Fig. 1. Transient pdfs, px(x,t), of the residual concentration, x= ln [C(t)/C(0)], at the surface.
Numerical results (histograms), derived from 109 realizations, are compared to the
analytical solutions, Eq. (2) (solid lines). The large circles correspond the largest x value
from numerical simulations and its frequency (right axis). The black circles denote the
atom of probability from the analytical equations (right axis). Parameters include: λ =
0.3 day−1; γ= 1mm; n= 0.4; z = 25 mm; R = 3; k = 0.05 day−1.
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et al., 2008). Withholding periods are an important consideration in
crop rotations, where, for example, a herbicide used to control broadleaf
weeds in a wheat crop may have an adverse effect on the following le-
gume crop. In addition, the accumulation of herbicide residues in soil,
in which repeat application of the same chemical are more frequent
than the time required for complete degradation, can pose both an
agronomic and environmental risk. Phytotoxic effects are managed
somewhat by pre-registration studies; however, deviations in environ-
mental conditions, soil properties and agronomic practices from the
conditions tested at registration can pose a potential risk (FOCUS,
2009). With the advent of inexpensive, easy and rapid measurement
methods (Yuan et al., 2011, 2012) there is now the opportunity to de-
velop real-time forecasting tools for practical agronomic and catchment
management.

Historically there have been several impediments to real-time fore-
casts of pesticide concentrations. Numerous models of pesticide fate
and transport are available (e.g. Beulke et al., 2001; Tiktak et al.,
2004), and while useful in the hands of experts with high quality data
(Dann et al., 2006), they are not practical for every-day use. There is sig-
nificant cost and time required to collect, transport, and then analyze
soil samples in an analytical laboratory using advanced methods (e.g.
GC–MS, LC-MS). Once the pesticide concentrations have been deter-
mined there is the added complexity of the models themselves, their
uncertain parameterization, the challenge of calibration and validation
and then interpretation (Beulke et al., 2000; Dubus et al., 2003; Dann
et al., 2006; Fenner et al., 2013). Finally, once an acceptable model has
been developed, there is a need to forecast what the soil residues will
likely be in the near future, necessitating an assessment of future
weather conditions, a primary factor impacting pesticide retention in
soil and subsequent release to streams (Larsbo and Jarvis, 2005;
McGrath et al., 2008b). These challenges often push the timeframe
from data collection to forecast out to months, if not years. Clearly,
this is impractical for forecasting. Ongoing developments in measure-
ment technologies mean that many pesticides can now be rapidly, reli-
ably and cost-effectively measured in the field at environmentally
relevant concentrations by non-specialists (Lee and Kennedy, 2001;
Kennedy et al., 2013; Gee et al., 2016). To date thoughmodelling efforts
have not matched the speed and utility of the measurement
technologies.

The persistence of agro-chemicals in soils is largely driven by the na-
ture of rainfall in the period after application (Kladivko et al., 2001;
McGrath et al., 2008a). It is well established that the concentration of
chemicals, like herbicides, insecticides and fungicides, in surface soils,
at the time of significant rain events, is strongly correlatedwith the con-
centration observed in drains or rivers immediately afterwards (Ahuja
et al., 1981; Kladivko et al., 2001; Nolan et al., 2008). The challenge to
forecast pesticide residue levels into the future therefore should incor-
porate the variability in the way the weather is likely to occur in the
weeks and months after pesticide application. Recent approaches have
attempted to quantify the role that rainfall variability has in the move-
ment of water and chemicals through soil (McGrath et al., 2008a,
2008b; Botter et al., 2008; Harman et al., 2011; Suweis et al., 2011),
from soils to streams (Zanardo et al., 2012; Bertuzzo et al., 2013) or as
urban wash-off (Daly et al., 2014). The strength of these stochastic ap-
proaches is the transparent understanding of how rainfall variability
propagates to retention or solute transport variability.
Table 1
Model parameters used in the mock experiment.

Parameter Values

k (day−1) 0.2
Koc (L kg−1) 60
foc (g/g) 0.01
n (cm3 cm−3) 0.4
z (cm) 5
Standard deviation of ε (−) 0.1
Here, an approach, capable of exploiting these new field-basedmea-
surement tools, is developed, providing climatological forecasts of pes-
ticide concentrations in soil. The following presents the approach and
evaluates its ability to forecast withholding period risk. First a new sto-
chastic model for pesticide persistence in soil is presented. Randomness
is considered to arise from variations in the timing and magnitude of
rainfall events in the period after pesticide application. The impacts of
the climate and reaction parameters are manifest in an analytical solu-
tion of the transient probability distribution of pesticide concentrations.
This forecast model has, as its basis, a deterministic process-based
Fig. 2. Dependence of px(x,t) on: (a) rainfall properties; and (b) chemical properties.
Parameters shown are: (a) R = 1, k = 0.05 day−1; and (b) λ = 0.3 day−1, γ = 1 mm−1

and in both (a) and (b) θ = 0.4; z = 25 mm; t = 20 days; and x(0) = 0.
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description of pesticide retention in soil. Using observed rainfall in the
period since application and field measured concentrations Bayesian
calibration of the deterministic model is demonstrated frommockmea-
surements of herbicide concentrations. Finally, updating a forecast,
using the newly estimated credible parameter range, is described. Prac-
ticalities of risk-based withholding period estimation and managing
catchment water quality are then discussed.

2. Theory

2.1. Conceptual basis for modelling

While models are necessarily simplifications of reality, some pesti-
cide persistence models have been developed to the point that their so-
phistication can account for most known solute fate and transport
processes in soils (Beulke et al., 2001). However, the data burden re-
quired to calibrate uncertain constitutive relations and to parameterize
the many processes leaves these models largely as research tools. Fur-
thermore, such models are mostly deterministic, and to estimate year
to year variabilityMonte Carlo simulations are often run using historical
climate data (Nolan et al., 2008). Various approaches have been devel-
oped to account for parameter uncertainty, climate variability, and soil
heterogeneity, but these are generally computationally expensive, and
Fig. 3. Sequence of prior and posterior fits of the model to the observed data with mean, 95%
time consuming to evaluate. Useful as they are from a research perspec-
tive, their complexity tends to make their calibration difficult and un-
certain (Dubus et al., 2003).

Reaction and transport parameters are significant sources of vari-
ability and uncertainty in modelling pesticide fate (Dubus et al., 2003;
Larsbo and Jarvis, 2005; Gassmann et al., 2015). The most sensitive pa-
rameters are related to retardation and attenuation processes, which
can exhibit significant spatial and temporal variability (Rao and
Wagenet, 1985; Müller et al., 2003). While empirical studies help to
constrain a priori estimates from the literature the effective value of pa-
rameters can change with both the measurement scale and the rate at
which processes occur in the field (Vereecken et al., 2011).

A possible solution to these uncertainties is the integration of Bayes-
ian approaches to model development. Bayesian methods are increas-
ingly applied to model calibration. Worrall et al. (1998) were early
proponents of the use of Bayesianmethods for characterising parameter
uncertainty as part of pesticide registration. Both informal and formal
Bayesian approaches have been applied to parameter estimation
(Larsbo and Jarvis, 2005; Dusek et al., 2015; Boulange et al., 2017) and
assessment of model structure (Frey et al., 2011). The Bayesian ap-
proach provides a rational methodology to update confidence in
model predictions, model parameters, or even the models themselves
as new information becomes available.
confidence interval and range of predictions shown with mock observations from DEzs.



Fig. 4. Sequence of parameter estimates from the initial prior to the posterior distributions
at selected times from DEzs. Dashed lines denote the actual model parameters.
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2.2. A stochastic model of pesticide persistence

Forecasting the amount of pesticide remaining in soil at some point
into the future requires consideration of the variability of environmen-
tal factors that contribute to retention. These environmental factors in-
clude temperature, humidity, air pressure and rainfall. For non-volatile
chemicals with weak to moderate sorption, rainfall-driven leaching is
a primary driver of transport and dissipation (Ahuja et al., 1981; Ahuja
and Lehman, 1983). A simple model for the mass balance of a chemical
residing near the soil surface, as impacted by rainfall is the following
(McGrath, 2008a):

nz R
dC
dt

¼ −k nz C− J tð Þc ð1Þ

where mass balance is considered over a well-mixed layer near the soil
surface of depth z (cm) and effective water content n (cm3 cm−3); the
chemical undergoes first order degradation at a rate k (day−1) and lin-
ear, instantaneous and reversible sorption is parameterized by the re-
tardation factor R (i.e. R = 1 + ρ Kd/n) which depends upon the soil
dry bulk density, ρ (g cm−3), water content n, and a linear sorption co-
efficient, Kd = Koc foc (cm3 g−1) the product of the organic carbon
partitioning coefficient and the fraction organic carbon; J (cm day−1)
denotes the intensity of rain events which flush the chemical from the
surface, and t denotes time. The effective water content, n, could be ap-
proximated as being close to the field capacity, and while it varies with
rainfall its variability during a rain event, is likely to be considerably
smaller than the uncertainty in k or R. Botter et al. (2008) coupled a sim-
ilar stochastic model of soil moisture and nitrogen processes, including
uptake and leaching. While approximate and stationary pdfs were de-
rived there, our concern is with pesticide retention which is expected
to be highly transient at seasonal time scales.

The possible future sequence of dry spells and rain events can be
thought of as a sample from a stochastic process (Rodriguez-Iturbe
and Isham, 1987; Daly and Porporato, 2006; Harman et al., 2011). Rain
events are assumed to follow a marked Poisson process with a mean
rate λ (events/day) resulting in the time between events exponentially
distributed with a mean 1/λ. Rainfall depths are assumed here to be ex-
ponentially distributedwithmean depth 1/λ (mm/event). Details of the
derivation are presented in Appendix A. The resulting equation for the
transient probability distribution is:

pX x; tð Þ ¼ enzγR x−x0þkt
Rð Þ−λt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
–

λt

nzγR x−x0 þ kt
R

� �
vuuut I1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−nzγRλt x−x0 þ kt

R

� �s !
þ e−λtδ x−x0 þ kt

R

� �
ð2Þ

where x= log[C(t)/C(0)]. This new contribution provides a climatolog-
ical forecast of the probable future concentrations in soil. This pdf de-
pends upon the chemical's reaction parameters, k and R, and the
climate, through the parametersγ and λ. The impact of these controlling
factors will be briefly explored later. Two of the model parameters, γ
and λ, can be derived directly from daily rainfall data. The reaction pa-
rameters, R and kmay vary significantly depending upon the soil miner-
alogy, soil moisture and soil temperatures and thus are likely to be
uncertain, varying across soil types and even within-fields (Rao and
Wagenet, 1985; Worrall et al., 1998; Beulke et al., 2000; Wauchope
et al., 2002). Bayesian methods will be applied to their estimation.

2.3. Bayesian model calibration

The above stochastic model describes the effect of climate on the
variability of future concentrations, assuming the two reaction parame-
ters are known. As discussed above these parameters are uncertain and
spatially variable. With observations of concentrations this parameter
variability can be accounted for somewhat by calibrating the determin-
istic Eq. (2). The following describes the Bayesianmethods applied to do
this.

Empirical regression methods tend to maximise the conditional
probability, p(D|θ), that the data, D, would be observed given a model,
and its parameters, θ. The Bayesian approach on the other hand asks
what the conditional probability of the model and its parameters are
given the data i.e. p(θ|D). The relationship between these is given by
Bayes formula:

p θjDð Þ ¼ p Djθð Þp θð ÞR
p Djθð Þp θð Þdθ ð3Þ

where p(θ|D) is the probability for the parameters conditioned on the
data called the posterior distribution, p(D|θ) is called the likelihood
and p(θ) is the probability distribution of the prior information about
the parameters before confronting the model with data (Hartig et al.,
2011). Given a set of data, that new information can be used to develop
a posterior estimate of model parameters.

The methodological issues in applying Bayesian inference to model
parameters are involved and are summarized extensively elsewhere
(see for example Thiemann et al., 2001; Vrugt et al., 2009; Hartig
et al., 2011). We applied Markov chain Monte Carlo (MCMC) methods
to implement Bayes' approach to calibrate Eq. (A2) (Hartig et al.,
2017). A range of k and Koc, values for atrazine, as an example, were ob-
tained from the literature (see Supplementary material Table S1). The
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mean and variance of these values were used to define truncated nor-
mal prior distributions. The truncation ensured draws from prior and
posterior distributions return samples of parameters that were non-
negative. The standard deviation (ε) of a model error term added to
Eq. (A2) was included as a model parameter. This term accounts for
measurement variance, model structural errors, and in practice other
processes not considered in the model. The log-likelihood used was
the sum of logarithms of a normal probability density at values
representing the difference between modelled and observed data.
While the construction of log-likelihood functions can be quite elabo-
rate, particularly for time series models (e.g. Frey et al., 2011) it was
found that this simple log-likelihood function sufficed to help constrain
model calibration. It is beyond the scope of this paper to evaluate log-
likelihood functions that might perform better, and this is left for future
testing on real field data across multiple sites.

Several Markov Chain Monte Carlo (MCMC) samplers were evalu-
ated (Hartig et al., 2017). Those trialed included: the Metropolis Has-
tings (MH) with prior optimization and delayed rejection (Green and
Mira, 2001); Differential Evolution (DE)MCMC (ter Braak, 2006), Differ-
ential Evolution with snooker update (DEzs) MCMC (ter Braak and
Vrugt, 2008), Differential Evolution Adaptive Metropolis (DREAM)
(Vrugt et al., 2009) and finally DREAMzs, with snooker update. Only
small differences in the results were found between each and as a result
theDEzs samplerwas chosen for its consistent ability to approach actual
model parameters.
Fig. 5. Final estimates of model parameters and the correlation between parameters by the D
combinations. (For interpretation of the references to colour in this figure legend, the reader is
An artificial time series of rainfall was used, togetherwith prescribed
model parameters and Eq. (2) (see transformed Eq. (A2)) to model
mock herbicide concentration measurements. We further simplified
the stochastic model by replacing the degradation term in Eq. (A2), i.e.
−k/Rwith−k and adjusted the transient pdf accordingly. This amounts
to assuming the degradation rate is independent of the estimated sorp-
tion coefficient, a reasonable assumption in practical cases where it can
be difficult to disentangle the effects from dissipation experiments and
evidence for little correlation between k and R in spatially heteroge-
neous fields (Ogram et al., 1985). To these log-transformed measure-
ments Gaussian noise with a standard deviation of 0.1 was added.
Table 1 summarizes the model parameter used. Rainfall consisted of
10 mm on day 3, 3 mm on day 5 and 7 mm of day 7. Data collection
was assumed to occur daily for a period of 12 days. After everymeasure-
ment Bayesian calibration was conducted and the results of prior and
posterior predictions and parameter estimates determined. Results of
this exercise are summarized in Section 3.2.

At each forecast there is a contribution to uncertainty from the reac-
tion parameters. It is possible to include this uncertainty into the fore-
cast model using the Bayesian calibration These pdfs were calculated
by averaging the marginal distributions of the forecast concentration
over the joint distribution of the uncertain parameters, k and Koc i.e.:

pX xð Þ ¼
Z ∞

0−

Z ∞

0−
pX xjk;Kocð Þ pk;Koc

k;Kocð ÞdkdKoc ð4Þ
Ezs algorithm. The colour scale in the correlation plots reflects the density of parameter
referred to the web version of this article.)
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In Eq. (4) pX(x|k,Koc) is calculated by Eq. (2), using values of k and
Koc sampled from their joint pdf, pk, Koc

(k,Koc), which is provided by
the Bayesian calibration. In practice Eq. (2) was evaluated discretely
by calculating pX(x) over 1000 x values in the range 0 to −20, using
jointly sampled values of k and Koc. These were derived from the prior
or posterior distributions for 10,000 parameter combinations. The
resulting pdf at each x value was then averaged and the pdf rescaled
to ensure its discrete integral equaled one. The Bayesian modelling
was conducted using the software R and the code is documented in
the Supplementary material (R Core Team, 2018).

3. Results

3.1. Climate and chemical controls on the transient residue distribution

The pdf of the residual concentration (Eq. (2)) starts as a discrete,
delta distribution (Fig. 1) at t = 0. This is the applied concentration.
With time a discrete probability remains though shifting to lower con-
centrations equal to C(0) exp(−k t). The discreteness represents the
diminishing probability that no rainfall events have occurred in the
time since application. The continuous part of the pdf stems from all
the possibleways inwhich rainfall was likely to have occurred in thepe-
riod following application. Analytical expressions for the moments of
the first passage time to reach threshold concentrations have been pre-
viously derived (McGrath et al., 2008b). It was demonstrated that the
pdf of concentration tended toward a normal distribution, which can
be approximated by those moments. The solution to the pdf here, how-
ever, provides a more exact expression for the pdf.

The spread of concentrations and the location of the mode are con-
trolled by a number of factors (Fig. 2). Increasing the rain event fre-
quency increases the variance and lowers the mean log-concentration.
Increasing the mean storm depth has a similar effect (Fig. 2a). The deg-
radation rate, k, does not change the shape of the pdf, rather it controls
the speed with which the pdf shifts along the x = ln [C(t)/C(0)] axis
with time (Fig. 2b). Sorption on the other hand impacts the shape of
Fig. 6. Changing climatological forecasts for the concentration at 10 d, 20 d and 30d following ap
to (a) The day 10 concentration (x(10)) forecast at day 2 (F(2)) prior (pink) and after (blue) th
(6); (f) x(30) – F(2); (g) observed value at day 10; (h) x(20) – F(10); (i) x(30) – F(10). (For inte
version of this article.)
the pdf significantly. More strongly sorbing solutes tend to have a
narrower pdf at comparable times than those with weaker sorption
due to the lessened ability of rainfall to drive leaching losses below
the surface.

Given a phytotoxic threshold concentration, the transient pdf can be
used to inform an agronomist of the potential risks of crop damage a
withholding period of 20 days would be as compared to 30 days, for ex-
ample. As it is an analytical expression it offers a rapid forecasting tool
with very few calibration parameters, i.e. k and R, that can be derived
from the soil texture, or other pedotransfer function (i.e. n), or from
the measurement or the depth relevant to seeding (i.e. z), and empiri-
cally from readily available daily rainfall data. As future rainfall is not
known themodel uses the known statistics of historical rainfall to quan-
tify the impact of all possible stochastic realizations. Without knowl-
edge of the reaction parameters a priori, estimates of, k and Kd from
the literature could be used for predictions. However, when coupled
with inexpensive and rapid bioassay measurements that are able to re-
turn concentration estimates within minutes, these prior parameter es-
timates can be refined quickly using Bayesian updating offering the
potential for real-time forecast in the field.

3.2. Bayesian model calibration

An example of Bayesianmodel calibration (BMC) is presented below
to demonstrate the potential for just a few concentrationmeasurements
to constrain estimates of the model parameters k and Koc as well as the
standard deviation of the measurement noise ε (Figs. 3 and 4). When
BMC is performed on the first two measurements there is a significant
shift in the mode of the estimated k toward the actual value (Fig. 4).
There is no change between the prior and posterior for Koc as there is
no rainfall in the first two days. However, when the next BMCwas con-
ducted on the data up to and including day 6, a 10 mm of rainfall event
had occurred on day 3, and a second 3 mm rain event on day 5, giving
increases in the rate of atrazine dissipation (Fig. 3). This BMC is then
able to provide an update to estimated Koc toward the true value of
plication utilising prior and posterior parameter estimates fromBMC. Forecasts correspond
emeasurement on day 2; (b) x(20) – F(2); (c) x(30) – F(2); (d) x(10) – F(6); (e) x(20) – F
rpretation of the references to colour in this figure legend, the reader is referred to theweb
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60 L kg−1. As there is a strong correlation between the two estimates of
the parameters (Fig. 5) a bias in over-estimating k leads to a similar bias
in underestimating Koc which becomes less severe as more data and
more rainfall events enter the data set later (Fig. 4). This correlation
may not necessarily hold in soil but is a result of the model structure
and the goodness of fit measure (Ogram et al., 1985). The model error
also tends toward the value of standard deviation of normally distrib-
uted noisewe added to the ‘measurements’. Based on these results it ap-
pears the sorption term is best estimated by sampling just prior to and
shortly following rain events.

3.3. Forecasting with BMC

Combining the parameter uncertainty (i.e. the Bayesian calibration)
with the variability due to climate (i.e. Eq. (3)) is demonstrated next.
Forecasts at days 2, 6 and 10 are made for days 10, 20 and 30 following
application.Wemake forecasts using the prior information only as well
as updated forecasts, informed by the measurements (Fig. 6). The
spread of the forecasts made on day two after a single measurement
do not constrain the predictions much (Fig. 6a–c). However, after
some rainfall (days 3 and 5) the forecast made on day 6 for days 20
and 30 after the measurement are considerably constrained as com-
pared those made using the initial uniformed prior (Fig. 6d–e). The
modes of these informed distributions are much closer to subsequent
predictionsmade on day 10 for corresponding times (Fig. 6d–i). The ini-
tial parameter estimates tended to have slower degradation rates and
stronger sorption than the improved estimates provided by the BMC.
As a result the forecast concentrations tend to shift to lower concentra-
tions and the uncertainty reduces as new data are collected. A different
combination of initial priors may have led to forecast concentrations in-
creasing with additional measurements.

4. Discussion

The stochasticmodel presented here is thefirst analytical solution to
a transient probability distribution that can be applied to forecast pesti-
cide concentrations in soil. Previous modelling approaches rely on sig-
nificant computational power; long simulation times of complex
models as well as large data requirements and often extensive calibra-
tion. This stochastic model can be calculated easily allowing Bayesian
model calibration and forecasting to be completed rapidly. With the
ability to quantify concentrations in the field the time between mea-
surement and a forecast can be reduced to minutes. Regionalised cli-
mate parameters that may vary seasonally, could be easily be
determined from geo-location services to allow prediction from hand-
held devices in the field.

The new stochastic model, which permits an analytical solution,
however may need to be adapted to better describe nonlinear dissipa-
tion kinetics (FOCUS, 2006). Had the dissipation rate slowed down the
model would constantly forecast more rapid dissipation than might ac-
tually occur. Nevertheless, the Bayesian calibrationwould adjust the lin-
ear degradation rate as new data becomes available. Providing data
from a moving time window may mitigate this effect but would not
eliminate it entirely. Simple equations for nonlinear kinetics are com-
mon and therefore instead of considering stochastic variations in rain-
fall, perhaps other factors that are more significant for dissipation in
some soils, such as temperature, may be considered (FOCUS, 2006;
Daly et al., 2014). These could be easily implemented in a rapid numer-
ical calculation, suitable for Bayesian model selection or model averag-
ing from which a forecast could be made (Johnson and Omland, 2004;
Raferty et al., 2005). Analytical expressions for transient pdfs may
even be available should the climatic forcing be reasonably approxi-
mated by standard noise models (e.g. Daly and Porporato, 2006).

New, rapid and field based measurement methods for many pesti-
cides offer the potential to provide real time forecasting for managing
unintended impacts (Pomes et al., 1996; Yuan et al., 2011). The
regulation of pesticides in Europe has relied on standardised modelling
scenarios to assess exposure and subsequently potential risk to ecolog-
ical systems and drinking water sources (FOCUS, 2009). Label recom-
mendations for the use of pesticides, developed from field trials and
lab experimentation, may not always be appropriate for a specific
area. The approach described here provides ameans to develop site spe-
cific risk measures for water quality and in real-time, permitting more
active management of the risks at catchment scales (Bertuzzo et al.,
2013).

The presented real-time forecasting approach is a suitable manage-
ment support tool to optimize pesticide spreading for reaching dual ag-
ronomic and environmental goals. There is a potential to further couple
themodel to output from Soil Moisture Deficit (SMD)models of various
drainage classes to estimate risks of off-site migration via surface runoff
(Schulte et al., 2005, 2015). We have assumed that, like the Quicktest®
for atrazine (Lee and Kennedy, 2001; Kennedy et al., 2013), a field based
reader can quantify concentrations under field conditions (Fig. 1). Alter-
natively, the Bayesian approach might be adjusted to use presence or
absence data from simple uncalibrated tests that can target concentra-
tion ranges (Trullols et al., 2004).

5. Conclusions

The stochastic approach developed here offers the potential to rap-
idly forecast withholding or “plant-back” periods for herbicides in
real-time, which, to our knowledge, has not yet been possible. With
the establishment of phytotoxic thresholds for particular crops the
withholding period may now be managed more actively than before.
In addition, the approach offers the potential for managing water qual-
ity in catchments through monitoring and forecasting residual pesti-
cide concentrations in soil. Ongoing improvements in analytical
methodologies, including a growing range of analytes that can be rap-
idly and inexpensively measured in the field, will likely see increased
utility of approaches which can integrate monitoring and modelling
efforts.
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Appendix A

Eq. (1) can be thought of as a stochastic differential equation with
multiplicative noise, however given the rain “noise” is of a short dura-
tion and intermittent, we can apply the Stratonovic interpretation and
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use the normal rules of calculus to transform Eq. (1), via x= log[C/C(0)]
into one with just additive noise (Suweis et al., 2011):

dx
dt

¼ −
k
R
−

i tð Þ
nz R

ðA1Þ

If the rain event duration is short, relative to the time between rain
events, then we can instead consider the work done by the event
depth, f (mm), and the stochastic equation becomes, after integration:

x tð Þ ¼ x 0ð Þ−kt=R− nz Rð Þ−1
X
t

f ðA2Þ

where x(0)is the initial log-transformed concentration, −k/R defines a
constant drift due to degradation and the last term is a stochastic drift
depending upon the cumulative rainfall up till time t. Here we assume
rainfall is reasonably described as a compound Poisson process with ex-
ponentially distributed times between rainfall events and exponentially
distributed rainfall depths (Rodriguez-Iturbe and Isham, 1987). For the
same rainfall process Daly and Porporato (2006) derived the pdf for the
cumulative rainfall, FðtÞ ¼

X
t

f (mm), up until time t as:

pF F; tð Þ ¼ e−Fγ−λt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λtγ=F

p
I1 2

ffiffiffiffiffiffiffiffiffiffi
λγtF

p� �
þ δ Fð Þ

� �
ðA3Þ

where, γ is the inverse of themean storm depth (mm−1), λ is themean
storm arrival rate (day−1), and I1(.) is the modified Bessel function of
the first kind of order 1. The δ denotes the Dirac delta function and
thus exp(−λ t) represents the discrete probability that no rainfall oc-
curred in the interval [0, t).

FromEq. (A3) the transient pdf of the concentration, px(x,t), can then
be derived via a change of variables, i.e.

pX x; tð Þ ¼ pF g−1 x; tð Þ� � ∂g−1 xð Þ
∂x

				
				 ðA4Þ

where the function g relates how x depends upon F, which is given by
Eq. (A2). The solution is presented as Eq. (2).

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2019.01.401.
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