Accepted Manuscript

Rehydration behaviour of spray-dried micellar casein concentrates produced using microfiltration of skim milk at cold or warm temperatures

Shane V. Crowley, Esther Burlot, Juliana V.C. Silva, Noel A. McCarthy, Heni B. Wijayanti, Mark A. Fenelon, Alan L. Kelly, James A. O'Mahony

PII: S0958-6946(18)30019-0

DOI: 10.1016/j.idairyj.2018.01.005

Reference: INDA 4263

To appear in: International Dairy Journal

Received Date: 31 May 2017

Revised Date: 8 November 2017

Accepted Date: 12 January 2018

Please cite this article as: Crowley, S.V., Burlot, E., Silva, J.V.C., McCarthy, N.A., Wijayanti, H.B., Fenelon, M.A., Kelly, A.L., O'Mahony, J.A., Rehydration behaviour of spray-dried micellar casein concentrates produced using microfiltration of skim milk at cold or warm temperatures, *International Dairy Journal* (2018), doi: 10.1016/j.idairyj.2018.01.005.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Rehydration behaviour of spray-dried micellar casein concentrates produced
2	using microfiltration of skim milk at cold or warm temperatures
3	
4	
5	
6	
7	Shane V. Crowley ^{a,*} , Esther Burlot ^a , Juliana V. C. Silva ^a , Noel A. McCarthy ^b , Heni
8	B. Wijayanti ^b , Mark A. Fenelon ^b , Alan L. Kelly ^a , James A. O'Mahony ^a
9	
10	
11	
12	
13	^a School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
14	^b Food Chemistry and Technology Department, Teagasc Food Research Centre,
15	Moorepark, Fermoy, Co. Cork, Ireland
16	
17	
18	
19	
20	* Corresponding author. Tel.: +353 21 4902453
21	E-mail address: shane.crowley@ucc.ie (S. V. Crowley)
22	

23

24 ABSTRACT

26	Microfiltration (MF) of skim milk, when combined with diafiltration (DF), facilitates
27	the manufacture of liquid micellar casein concentrate (MCC), which can be spray-
28	dried into high-protein (≥80% protein, dry-basis) powders. MCC powders rehydrate
29	slowly, which is typically considered a defect by end-users. This study compared the
30	impact of cold (<10 °C) or warm (50 °C) MF/DF on the rehydration characteristics
31	of MCC powders (MCC _{cold} and MCC _{warm} , respectively). The wetting properties of
32	the MCC powders, measured using optical tensiometry, were found to be equivalent.
33	Pronounced differences in dispersion characteristics were measured, and, after 90
34	min rehydration at 50 °C, liberated casein micelles accounted for only 7.5% of
35	particle volume in MCC_{warm} compared with 48% in MCC_{cold} . Due to its superior
36	dispersion characteristics, MCC_{cold} yielded 50–60% less sediment during analytical
37	centrifugation experiments. Cold MF/DF may improve the solubility of MCCs by
38	accelerating the release of casein micelles from powder particles during rehydration.
39	Q′

40 1. Introduction

41

The protein content of bovine milk is $\sim 35 \text{ g L}^{-1}$, with caseins accounting for 42 43 approximately 80% of protein and the remaining 20% consisting of whey proteins (Fox & McSweeney, 1998). This casein exists primarily as casein micelles, which 44 are large colloidal assemblies of four individual phosphoproteins, α_{s1} -, α_{s2} -, β -, and 45 κ -casein (Farrell et al., 2004), that bind ~ 69% of the calcium and ~ 46% of inorganic 46 47 phosphate in milk as colloidal calcium phosphate (Gaucheron, 2005). Casein has long been fractionated from milk and converted into powders for use in both non-48 food, e.g., paint, glue (Audic, Chaufer, & Daufin, 2003) and food-based, e.g., 49 50 analogue cheese, cream liqueur (O'Mahony & Fox, 2013) applications. Two traditional methods of purifying casein are isoelectric precipitation through 51 acidification ('acid casein') or enzymatic hydrolysis with chymosin ('rennet casein'). 52 Both of these approaches yield a solid curd, which can be mechanically disrupted 53 and dried into powders that are insoluble. Additional processing steps are required to 54 55 generate a soluble material for drying; for example, acid casein can be converted into sodium caseinate through alkalisation (Carr & Golding, 2016). 56 A more recent technology to manufacture casein in its 'native' (micellar) 57 58 form is microfiltration (MF), a pressure-driven separation process incorporating semi-permeable membranes with a pore-size of ~0.1 µm (Pierre, Fauquant, Le Graet, 59 & Maubois, 1992; Saboya & Maubois, 2000). Diafiltration (DF) with deionised 60 water during MF facilitates the production of MCCs in which the protein fraction is 61 usually 85–95% casein. MCCs are often used as ingredients in protein supplements 62 and clinical nutrition products. As these applications can require reconstitution of 63 MCCs by the manufacturer (i.e., wet mixing of dry ingredients) and/or the consumer 64

65	(i.e., reconstitution of dried blended powders for consumption), it is typically a
66	requirement that the powders rehydrate quickly and completely. For milk powders,
67	the rehydration process is characterised by multiple stages, including wetting of the
68	powder when added to the liquid and subsequent dispersion of the powder particles;
69	the duration of these stages, wetting and dispersion, have been reported to be
70	protracted for high-protein powders (Crowley, Jeantet, Schuck, Kelly, & O'Mahony,
71	2016). For MCCs, the wetting stage, and in particular the dispersion stage, are slow.
72	Poor dispersion characteristics can negatively affect powder handling in
73	manufacturing facilities, due to blockages in process lines, and impair consumer
74	acceptability of final products, due to the presence of lumps or sediment (Mitchell et
75	al., 2015). Although MCC powders are soluble, they exhibit exceptionally long
76	rehydration times in comparison with other milk-derived powders (e.g., skim milk
77	powder, whey protein concentrate, sodium caseinate); milk protein concentrate
78	powders (MPCs) have a similar challenge, although it is less pronounced than for
79	MCCs (Crowley et al., 2016) due to the higher proportion of the more soluble whey
80	proteins in the former (Mimouni, Deeth, Whittaker, Gidley, & Bhandari, 2010).
81	Various strategies have been developed to improve the rehydration of MCCs
82	and MPCs, and have typically been targeted towards improving dispersion
83	characteristics. Many successful approaches have been based on pre-treatments
84	applied to concentrated protein fractions from milk prior to drying, such as that of
85	Bhaskar, Singh, and Blazey (2001), in which calcium was removed from ultrafiltered
86	milk by ion-exchange before mixing with untreated concentrate and drying into an
87	MPC powder. Incorporation of sodium caseinate into the concentrate before the
88	drying of MCC increased its solubility (Schokker et al., 2011), while the application
89	of high-pressure treatments to the concentrate before drying of MPCs also resulted in

90	solubility enhancement (Udabage, Puvanenthiran, Yoo, Versteeg, & Augustin,
91	2012). Bouvier, Collado, Gardiner, Scott, and Schuck, (2013) investigated an
92	alternative drying technology, extrusion-porosification, which was found to produce
93	a more soluble powder than spray drying. Others have developed strategies that can
94	be applied during powder reconstitution itself, with various researchers reporting that
95	high-shear and ultrasonication technologies were effective when applied during
96	reconstitution of MCCs and MPCs (Augustin, Sanguansri, Williams, & Andrews,
97	2012; Chandrapala, Martin, Kentish, & Ashokumarr, 2014a; McCarthy, Kelly,
98	Maher, & Fenelon, 2013). Increasing either temperature or the number of stirrer
99	revolutions during rehydration improved the rehydration properties of an MCC
100	(Jeantet, Schuck, Six, Andre, & Delaplace, 2010). An elevated reconstitution
101	temperature, combined with the addition of monovalent salts (KCl), was more
102	effective in promoting the dispersion of MPCs than either method alone (Crowley et
103	al., 2015).

There is a lack of options available for processors who wish to improve the 104 rehydration performance of MCCs without potentially: (i) incurring significant 105 capital expenditure (to procure solubility-enhancing equipment); (ii) modifying 106 107 ingredient techno-functionality (by replacing or dissociating micellar casein); or (iii) altering ingredient listings (through the use of additives). It is perhaps surprising 108 109 therefore that the temperature at which MF is carried out during MCC manufacture 110 has not received more attention. MF in the dairy industry has traditionally been performed at ~50 °C, which is optimal for high permeate flux and efficient removal 111 112 of whey proteins (Hurt, Adams, & Barbano, 2015); however, MF (and also ultrafiltration) at temperatures <15 °C is becoming more common in the dairy 113 industry (Lawrence, Kentish, O'Connor, Barber, & Stevens, 2008), and studies have 114

115	shown that this may facilitate operation with lower fouling (Luo, Ramchandran, &
116	Vasiljevic, 2015), and enrichment of β -case in the whey protein stream (Coppola,
117	Molitor, Rankin, & Lucey, 2014; O'Mahony, Smith, & Lucey, 2014). Modifications
118	in the functional properties of MCCs, such as gelation and melting, due to β -casein
119	depletion during cold MF have also been reported (O'Mahony, McSweeney, &
120	Lucey, 2008, 2009). However, the influence of MF temperature on the rehydration
121	characteristics of MCC powders has not been evaluated in detail and this study aims
122	to address this gap in current knowledge. Depletion of calcium (Bhaskar et al., 2001)
123	and increased levels of whey protein (Richard et al., 2013) have been shown to
124	improve the dispersibility of casein-dominant powders; as cold filtration of milk can
125	cause both effects (Karasu et al., 2010; Luo et al., 2015; O'Mahony et al., 2014) it is
126	possible that this process also improves powder solubility.
127	Two spray-dried retentate (casein) streams were analysed, one generated
128	using traditional warm MF (50 °C, MCC _{warm}) and another using cold MF (<10 °C,
129	MCC_{cold}). The rehydration characteristics of these powders were compared using a
130	range of analytical techniques to understand the impact of MF temperature on
131	rehydration characteristics of MCC powders. The present study builds on previous
132	work (McCarthy, Wijayanti, Crowley, O'Mahony, & Fenelon, 2017) that focused
133	primarily on the impact of different temperatures on filtration performance and
134	protein and mineral composition of the permeate (whey) stream generated during MF
135	of milk. McCarthy et al. (2017) demonstrated that MF of milk at low temperatures
136	decreased the calcium content of the micellar casein (MF retentate) fraction, which
137	was consistent with the results of Luo et al. (2015), who demonstrated a similar
138	effect for ultrafiltered milk. It has also been shown that the use of cold filtration
139	temperatures results in a higher whey protein:casein ratio in MF retentates (Karasu et

al., 2010; O'Mahony et al., 2014). This study investigates whether such alterations to
the protein and mineral profile of the retentate during cold MF result in modified
powder solubility after spray drying.

143

- 144 2. Materials and methods
- 145
- 146 2.1. Manufacture of micellar casein concentrate powders
- 147

The MCC powders used in the present study were two of several produced in 148 a previous study; detailed descriptions of the processes used can be found in that 149 150 report (McCarthy et al., 2017). The processes can be briefly summarised as follows; 151 skim milk was batch-diafiltered 1:2 with reverse osmosis (RO) water and held overnight at ~4 °C, before holding at <10 °C or 50 °C prior to membrane filtration. 152 MF/DF of the milk was performed with 0.14 µm Tami Isoflux[®] ceramic membranes 153 (Tami Industries, Nyons Cedex, France) on a GEA Model F filtration unit (GEA 154 Process Engineering A/S, Skanderbog, Denmark) operated in retentate recirculation 155 mode. The temperature throughout processing was maintained at <10 °C or 50 °C 156 157 using an in-line heat exchanger. MF was performed until the volume of the milk/RO water was reduced by a factor of 9. Liquid MCCs were then evaporated using a Tetra 158 Scheffers[®] falling-film single-stage evaporator (Tetra Pak, Gorredijk, The 159 Netherlands) and spray drying was carried out using a pilot-scale Anhydro Lab 3 160 spray dryer (SPX Flow Technology A/S, Soeborg, Denmark) with a wheel atomiser 161 operating with inlet and outlet temperatures of 178 °C and 88 °C, respectively. The 162 total solids levels of the liquid feeds for the drier were $15.6 \pm 1.2\%$ and $14.8 \pm 2.1\%$, 163 respectively, for MCCs generated using warm and cold MF. The MCC powders 164

165	contained 4.4–4.7% moisture across repeat process trials (McCarthy et al., 2017).
166	The powders were stored in air-tight bags in the dark at 20 $^{\circ}$ C prior to analysis. All
167	subsequent analyses and experiments (Sections 2.2-2.6) on the two MCC powders
168	were performed in at least duplicate, with results presented as the means of at least
169	two independent measurements on freshly prepared samples.
170	
171	2.2. Composition of powders and colloidal properties of reconstitutes solutions
172	
173	Protein content of the MCC powders was measured by the Kjeldahl method
174	using a nitrogen-to-protein conversion factor of 6.38 (IDF, 2001). Mineral profiling
175	was carried out using inductively-coupled plasma mass spectrometry (Herwig,
176	Stephan, Panne, Pritzkow, & Vogl, 2011). The size and charge of casein micelles in
177	reconstituted solutions was assessed using a Zetasizer Nano ZS (Malvern
178	Instruments, Malvern, UK) according to McCarthy, Kelly, O'Mahony, and Fenelon
179	(2014). Protein profile was determined by reversed phase-high performance liquid
180	chromatography (RP-HPLC), as detailed by McCarthy et al. (2017).
181	
182	2.3. Distribution of protein and fat in powder particles
183	
184	The distribution of protein and fat in MCC powder particles was determined
185	using a Leica TCS SP5 confocal laser scanning microscope (CLSM; Leica
186	Microsystems CMS GmbH, Wetzlar, Germany). Dual labelling using Nile Red
187	(0.1%, w/v, in propanediol) and Fast Green FCF (0.01%, w/v, in water) was carried
188	out to visualise the protein and fat phases, respectively, in the powder particles. The
189	dye solutions were mixed in a ratio that allowed diffusion of the dyes into the

190	powder particles whilst preventing their solubilisation, as proposed by Maher, Auty,
191	Roos, Zychowski, and Fenelon (2015). The observations were performed using $63 \times$
192	oil immersion objective (numerical aperture = 1.4) at excitation wavelengths of 488
193	nm and 633 nm provided by Ar and He/Ne lasers. Images of 512×512 pixels were
194	acquired using zoom factor of 3. At least three specimens of each sample were
195	examined to obtain representative images.
196	
197	2.4. Wetting behaviour: Optical tensiometry
198	
199	Measurements of contact angle were carried out as described by Silva and
200	O'Mahony (2017) using an optical tensiometer (Attension Theta, Biolin Scientific
201	Ltd., Espoo, Finland). Contact angles were measured at 20 °C after a droplet of
202	deionised water (5 $\mu L)$ was placed on discs (d \approx 13 mm, h \approx 1.5 mm) of MCC
203	powders prepared by compression using a Specac [®] manual hydraulic press (Perkin
204	Elmer, Buckinghamshire, UK).
205	
206	2.5. Ion release: Conductimetry and calcium-ion concentration
207	
208	Monitoring of ion release during the rehydration of MCC powders was
209	carried out using a Titrando autotitrator and accompanying Tiamo v2.3 software
210	equipped with either a five-ring conductivity measuring cell or a calcium (Ca)-ion-
211	selective electrode (Metrohm Ireland Ltd, Athy Road, Co. Carlow, Ireland). The
212	probes were calibrated at 25 $^\circ C$ or 50 $^\circ C$ (depending on the rehydration experiment
213	temperature) with buffer solutions of known conductivity and Ca-ion concentration
214	(where applicable). A period of 1 min was allowed to elapse for establishment of a

215	baseline before the powder was added, over a period of 2 min, with continuous
216	measurement throughout. For monitoring the release of ions during rehydration,
217	powders were added to beakers containing deionised water to attain 1.5% protein
218	suspensions. Beakers were placed in water baths equilibrated at 25 or 50 °C and the
219	contents mixed using overhead stirrers with four impeller blades. If some wetted
220	powder adhered to the vessel wall, it was removed by gentle washing with a Pasteur
221	pipette filled with a small volume of the solution studied.
222	
223	2.6. Dispersion: Particle size distribution and analytical centrifugation
224	
225	A Malvern Mastersizer 3000 (Malvern Instruments Ltd., Malvern, UK) was
226	used to measure the particle size distribution (PSD) in MCC suspensions after
227	rehydration for 90 min. Analysis of PSD was performed using a particle refractive
228	index of 1.46, absorption of 0.1 and dispersant refractive index of 1.33. MCC
229	suspensions were introduced into the dispersing unit of the instrument with deionised
230	water as dispersant until a laser obscuration of $12.5 \pm 1\%$ was achieved. Data are
231	presented as volume-based PSDs.
232	To measure the sedimentation behaviour in MCC suspensions rehydrated for
233	90 min, an analytical centrifuge (LUMISizer [®] , L.U.M. GmbH, Berlin, Germany)
234	was used according to the method of Crowley et al. (2015), in which the intensity of
235	transmitted NIR light (880 nm) was measured as a function of time and position over
236	the length of a polycarbonate cell held horizontally over the light path during
237	centrifugation. The height of initial sediments formed after centrifugation at $36 \times g$
238	for 10 min, and the compressed sediments formed during subsequent centrifugation
239	at $168 \times g$ for 10 min, were measured by subtracting the position of the

240	supernatant/sediment boundary from the position of the cell bottom. Mean
241	transmission values were also calculated for the region above the (compressed)
242	sediment and below the meniscus (114–124 mm, common for all experimental runs).
243	For the PSD and sedimentation analyses, powders were added to beakers containing
244	deionised water to attain 1.5% protein suspensions. Beakers were placed in water
245	baths equilibrated at 25 or 50 °C and the contents mixed using overhead stirrers with
246	four impeller blades.
247	
248	3. Results
249	
250	3.1. Composition and physicochemical properties of powders
251	
252	Operation of the MF/DF process at <10 °C or 50 °C resulted in several
253	differences between the MCC_{cold} and MCC_{warm} powders. The proportion of whey
254	protein was higher in the former (indicated by lower casein content), the β -casein: α -
255	casein ratio was lower, and there was a decrease in the level of both calcium and
256	phosphorus (Table 1). Levels of the monovalent ions measured were, however,
257	relatively unchanged. The influence of processing temperature on colloidal
258	properties of reconstituted MCCs was also comparatively minor, but the size and net
259	negative charge of the case n micelles was slightly higher for the MCC_{cold} (Table 1).
260	
261	3.2. Component distribution in MCC powder particles
262	
263	Representative CLSM images of the MCC powders are shown in Fig. 1. The
264	particles in both MCC powders were characterised by large protein-dense regions

265	inters	persed with a minor proportion of fat globules, which surrounded internal air
266	vacuo	les (black regions). The main difference observed between the two MCC
267	powd	ers in CLSM profiles appeared to be the size of the fat globules, which were
268	larger in the MCC _{warm} .	
269		
270	3.3.	Wetting behaviour of MCC powders

271

Wetting behaviour was analysed by measuring the contact angle formed 272 273 between a droplet of water and a compressed disc of each MCC powder. Assuming 274 that interference from topological differences was negligible, a high value for contact 275 angle indicates that a powder is less wettable (i.e., more hydrophobic), while a 276 reduction in contact angle over time is caused by spreading at the surface (Mitchell et al., 2015). The data from these experiments showed that there were no apparent 277 278 differences in the initial wetting behaviour of the powders on initial contact with the 279 droplet or over time (Fig. 2).

280

281 3.4. Ion release from MCC powders during rehydration

282

Conductivity was measured continuously during the rehydration of the MCC powders. There was an initial sharp increase in conductivity as ions were released from the powder on introduction to water, and an eventual steady-state condition was reached as the release of ions was completed (Fig. 3A). For both powders, rehydrated to 1.5% protein, the time to reach steady-state was ~3000 s (Fig. 3A). Rehydration at 50 °C resulted in a higher conductivity reading throughout the experiment compared with rehydration at 25 °C, due to increased

diffusion/dissociation of ions at the higher temperature; however, no trends for the
effect of rehydration temperature on the time to reach steady-state conductivity were
observed.

The final conductivity was directly proportional to the amount of powder added to the water (data not shown). More pronounced differences in ion release were detected when ionic Ca was measured in isolation (Fig. 3B). The MCC_{cold} powder exhibited a faster release of Ca, a quicker return to steady-state, and a higher total Ca level throughout.

298

299 3.5. Dispersion behaviour of MCC powders

300

301 The progression of dispersion for a casein-dominant powder such as MCC can be tracked by measuring the PSD after a period of rehydration (Crowley et al., 302 2015). The dispersion process of a MCC powder can be considered as comprising 303 304 primarily of the disappearance of micron-sized primary powder particles (after wetting and submersion) and the release of nanometer-sized casein micelles; when 305 306 this process is complete, the powder can be considered dissolved. In Fig. 4A, it can be seen that primary particles dominated the PSD after 90 min rehydration at 25 °C; 307 308 this does not necessarily mean that case in micelles have not been released, but only 309 that they are contributing little to the overall particle volume. Under these conditions, the particles in the MCC_{warm} were notably larger, indicating that dispersion was less 310 advanced. When dispersion was promoted by increasing temperature of 311 312 reconstitution to 50 °C, a casein micelle population was apparent for both powders (Fig. 4B). The MCC_{cold}, however, contained a much higher proportion of casein 313 micelles after 90 min rehydration at 50 °C compared with the MCC_{warm}, indicating 314

315	that the former powder had far better dispersion characteristics; from Table 2, it can
316	be seen that these rehydration conditions led to almost 50% of the particle volume in
317	the MCC _{cold} being comprised of casein micelles (<1 μ m), while this proportion was
318	only $<10\%$ for the MCC _{mark}

To investigate the influence of these differences in dispersion state (Fig. 4, 319 Table 2) on the sedimentation behaviour of the MCC suspensions on rehydration, an 320 321 analytical centrifuge was used. In Fig. 5, representative sedimentation profiles are shown for each MCC after rehydration at 25 or 50 °C, indicating the transmission 322 323 (T%) through the length of the sample cell during centrifugation. Reading from left to right, these profiles represent an increasing distance from the rotor of the 324 325 centrifuge, and can be characterised by an initial high T% region (air), a boundary 326 region (meniscus), and an extended low T% region (suspension) leading finally to a 327 sharp reduction in T% (sediment). The low T% in the region above the meniscus for MCCs rehydrated at 50 °C, which was also observed in a previous study on MPCs 328 329 (Crowley et al., 2015), is noted, and is likely due to condensation effects. In addition, it was observed that T% data in the suspension region were noisier for the initial 330 profiles, which was attributed to the presence of a non-uniformly dispersed 331 population of wetted powder particles in suspension prior to their sedimentation. 332 333 A larger sediment was observed for the MCC_{cold} compared with the MCC_{warm} 334 on rehydration at 25 °C, both of which became compressed at the second (higher) centrifugation speed. Increasing rehydration temperature to 50 °C appeared to reduce 335 336 the amount of sediment formed (Fig. 5). These profiles were used to calculate 337 sediment heights and mean T% values for the MCC powders rehydrated at different temperatures (Fig. 6). After 10 min at $36 \times g$, the height of sediments formed from 338 MCC_{cold} suspensions were 53–56% smaller than sediments from the MCC_{warm}. The 339

340	dispersion of both MCCs was promoted by the higher rehydration temperature (i.e.,
341	reduced sediment height), although the reduction in sediment height associated with
342	an increase in rehydration temperature from 25 to 50 $^\circ C$ was greater for the MCC_{warm}
343	(20% reduction) than the MCC_{cold} (14% reduction). The larger sediments formed in
344	the MCC_{warm} were also more susceptible to compression when subjected to a second
345	centrifugation step at $168 \times g$ for 10 min. Based on the data in Fig. 6, MCC _{warm}
346	sediments compressed by 22 and 33% after rehydration at 25 and 50 °C,
347	respectively, while the equivalent values for MCC_{cold} sediments were 16 and 14%.
348	
349	4. Discussion
350	

351 In this study, the influence of MF temperature on the rehydration performance of MCC powders was investigated. Cold MF was found to have a 352 positive impact on the rehydration characteristics of MCC, due to modifications in 353 354 the composition, and, perhaps, the colloidal properties of the reconstituted powder (Table 1). Milk-derived powders which contain >70% protein, of which 80–95% is 355 356 micellar casein, are known to have poor rehydration properties; in particular, the release of discrete casein micelles from powder particles in MCCs and MPCs is slow 357 358 due to the poor dispersion characteristics of the powder particles (Crowley et al., 359 2015; Gaiani, Schuck, Scher, Desobry, & Banon, 2007), which has been linked with inhibited transfer of water into the powder (Richard et al., 2012; Vos et al., 2016). 360 Some of the changes in MCC composition caused by the lower MF 361 362 temperature (<10 °C) compared with the higher MF temperature (50 °C), including a higher proportion of whey proteins and a reduction in Ca content (Table 1), have 363 364 been demonstrated by previous researchers to improve the rehydration of casein-

365	dominant powders. Indeed, Richard et al. (2013) showed that increasing the level of
366	whey proteins in MCC powders improved their dispersibility, while Bhaskar et al.
367	(2001) developed a method of improving the dispersion of MPCs based on removal
368	of Ca. The lower case in: whey protein ratio in the MCC_{cold} was due to a reduced
369	efficiency of whey protein removal at lower filtration temperatures (Karasu et al.,
370	2010; O'Mahony et al., 2014), while the lower Ca level was caused by dissolution of
371	calcium phosphate from the micellar phase at the low temperature (Luo et al., 2015).
372	It is possible that other modifications to the casein fraction caused by the lower MF
373	temperature, such as the reduced β : α -casein ratio and the increased zeta-potential of
374	the casein micelles (Table 1), may have influenced the rehydration characteristics of
375	the MCCs. β -Casein is the most hydrophobic of the caseins, and its cold-induced
376	dissociation from micelles and removal in the MF permeate (McCarthy et al., 2017)
377	may make the MCC_{cold} better at absorbing water; however, this is not supported by
378	contact angle data (Fig. 2) and the differences in β : α -casein ratio are small.
379	Alternatively, the tendency for casein micelles to become inter-linked, resulting in
380	the formation of a poorly-dispersible 'skin' (Crowley et al., 2016), may be inhibited
381	by alterations in micellar structure (due to decreased β -casein: α -casein ratio) or
382	increased electrostatic repulsion (caused by increased zeta-potential). It is, however,
383	difficult to ascertain the influence of these factors compared with factors such as
384	mineral and whey protein, which are known to strongly affect milk protein powder
385	rehydration.

Gaiani et al. (2009) has previously shown that fat migration to the surface of powder particles during storage is an important factor influencing the rehydration behaviour of MCCs, in particular the wetting behaviour. In this study, there were apparent differences in the size of fat globules in the powders (Fig. 1), although this

390	did not influence the wetting behaviour of the MCCs, which were equivalent (Fig.
391	2). Trends in conductivity during the rehydration of the MCC powders were also
392	essentially the same for the two MCC powders (Fig. 3A), likely due to domination of
393	conductivity changes by ions such as Na^+ and K^+ which are released quickly during
394	rehydration (Mimouni et al., 2010). However, the release of ionic Ca was faster and
395	progressed to a greater degree during the rehydration of MCC_{cold} compared with
396	MCC _{warm} (Fig. 3B). As a large proportion of Ca is associated with casein micelles in
397	casein-dominant powders, a delay in its ionisation may be due to a slow release of
398	micelles during rehydration, which would reduce the rate at which Ca re-equilibrates
399	from the micellar to the serum phase (Mimouni et al., 2010).
400	Measurement of particle size after 90 min rehydration confirmed that the
401	dispersibility of the two MCC powders was different (Fig. 4). Dispersion of primary
402	powder particles was far more advanced in the MCC_{cold} powder after this period of
403	rehydration, which resulted in a greater proportion of discrete casein micelles being
404	released, most notably after rehydration at 50 $^{\circ}$ C (Table 2). Increasing rehydration
405	temperature above ambient is commonly used to promote the dispersion of these
406	powders (Jeantet et al., 2010), and these results indicate that MCC_{cold} is more
407	susceptible to the positive influence of this approach compared with MCC_{warm} . The
408	dispersion tests (PSD, sedimentation) applied in this study were applied only after a
409	90 min rehydration time and the observed effects may be more pronounced after
410	shorter rehydration times.
411	As a result of the lower levels of primary powder particles in suspension after
412	rehydration (Fig. 4), MCC_{cold} yielded approximately half of the sediment that

- 413 MCC_{warm} produced during centrifugation (Figs. 5 and 6). The turbidity of the
- 414 supernatant after sedimentation was higher for MCC_{cold} (Fig. 6), as more casein

415	micelles had been released into a stable suspension and were capable of scattering
416	light. The highest turbidity and lowest sediment were measured in the MCC_{cold}
417	rehydrated at 50 °C, indicating it had the fastest and most complete dispersion
418	properties. In addition to a greater degree of sedimentation, the sediment yielded
419	during centrifugation of MCC_{warm} was more compressible (Fig. 6). Although the
420	higher rehydration temperature (50 $^{\circ}$ C) reduced the sediment generated by both
421	MCC suspensions, the compressibility of the MCC_{warm} sediments was higher
422	compared with those formed at 25 $^{\circ}$ C. This higher compressibility of sediment may
423	be due to a greater degree of water transfer into the powder particles at the higher
424	temperature, which was not sufficient to disperse the sedimentable particles, but
425	resulted in a material that was more mechanically pliable. Thus, the strategy of
426	increasing mixing temperature to promote dispersion of these powders may create a
427	sedimentable phase in MCC_{warm} that is more susceptible to consolidation during
428	storage, which may in turn make it more difficult to re-suspend this material by
429	actions such as shaking and stirring.

430

431 **5.** Conclusions

432

This study demonstrated that the dispersion characteristics of MCCs are improved when the MF/DF step is operated at a cold temperature. From this study, the improvement in rehydration performance by the use of cold MF/DF cannot be attributed to a single factor, but it is proposed that partial, limited demineralisation of the micellar phase and/or the presence of a higher proportion of whey proteins in the final MCC are responsible. Cold membrane filtration of milk is increasingly practiced due to associated benefits including reduced membrane fouling, better

440	microbial control and possibilities for β -case in enrichment; based on the results of
441	this study, increased solubility of MCC may be an additional benefit of this approach
442	to membrane filtration. In addition, cold MF/DF may present an alternative to
443	methods for solubility-enhancement that necessitate extra equipment or additive use.
444	A study on the rehydration of MCCs prepared using MF/DF at a broader range of
445	temperatures between 0–50 $^{\circ}$ C would provide further insights into the influence of
446	MF temperature on powder rehydration. In addition, the compositional changes in
447	MCC caused by cold MF may affect functional properties other than solubility (e.g.,
448	gelation, heat stability, foaming) and this will need to be considered in future
449	evaluation of the potential of cold MF in MCC production.
450	
451	Acknowledgements
452	
453	The authors would like to acknowledge the financial support of the Food
454	Institutional Research Measure (FIRM) initiative of the Irish Department of
455	Agriculture, Food and the Marine, funded under the National Development Plan
456	2007-2013, for the project of Dr. Shane Crowley. The authors also gratefully
457	acknowledge Enterprise Ireland (IP 2014 0253; Innovation Partnership Grant
458	Agreement 2014) for funding the work of Dr. Juliana Valle Costa Silva.
459	
460	References
461	
462	Audic, JL., Chaufer, B., & Daufin, G. (2003). Non-food applications of milk
463	components and dairy co-products: A review. Lait, 83, 417-438.

464	Augustin, M. A., Sanguansri, P., Williams, R., & Andrews, H. (2012). High shear
465	treatment of concentrates and drying conditions influence the solubility of
466	milk protein concentrate powders. Journal of Dairy Research, 79, 459-468.
467	Bhaskar, G. V., Singh, H., & Blazey, N. D. (2001). Milk protein products and
468	process. International Patent Specification WO 2001/41578.
469	Bouvier, JM., Collado, M., Gardiner, D., Scott, M., & Schuck, P. (2013). Physical
470	and rehydration properties of milk protein concentrates: comparison of spray-
471	dried and extrusion-porosified powders. Dairy Science and Technology, 93,
472	387–399.
473	Carr, A., & Golding, M. (2016). Functional milk proteins production and utilisation:
474	casein-based ingredients. In P. L. H. McSweeney, & J. A. O'Mahony (Eds.),
475	Advanced dairy chemistry. Vol. 1. Part B, Proteins. Applied aspects (pp. 35–
476	66), New York, NY, USA: Springer.
477	Chandrapala, J., Martin, G. J. O., Kentish, S. E., & Ashokumarr, M. (2014a).
478	Dissolution and reconstitution of casein micelle containing dairy powders by
479	high shear using ultrasonic and physical methods. Ultrasonic Sonochemistry,
480	<i>21</i> , 1658–1665.
481	Coppola, L. E., Molitor, M. S., Rankin, S. A., & Lucey, J. A. (2014). Comparison of
482	milk-derived whey protein concentrates containing various levels of casein.
483	International Journal of Dairy Technology, 67, 467–473.
484	Crowley, S. V., Desautel, B., Gazi, I., Kelly, A. L., Huppertz, T., & O'Mahony, J. A.
485	(2015). Rehydration characteristics of milk protein concentrate powders.
486	Journal of Food Engineering, 149, 105–113.
487	Crowley, S. V., Jeantet, R., Schuck, P., Kelly, A. L., & O'Mahony, J. A. (2016).
488	Rehydration and solubility characteristics of high-protein dairy powders. In

489	P. L. H. McSweeney, & J. A. O'Mahony (Eds.), Advanced dairy chemistry:
490	Vol. 1. Part B. Proteins (pp 99–131). New York, NY, USA: Springer.
491	Farrell, Jr., H. M., Jimenez-Flores, R., Bleck, G. T. Brown, E. M., Butler, J. E.,
492	Creamer, L. K., et al. (2004). Nomenclature of the proteins of cows' milk -
493	Sixth revision. Journal of Dairy Science, 87, 1641–1674.
494	Fox, P. F., & McSweeney, P. L. H. (1998). Dairy chemistry and biochemistry.
495	London, UK: Blackie Academic & Professional.
496	Gaiani, C., Schuck, P., Scher, J., Desobry, S., & Banon, S. (2007). Dairy powder
497	rehydration: influence of protein state, incorporation mode, and
498	agglomeration. Journal of Dairy Science, 90, 570–581.
499	Gaiani, C., Schuck, P., Scher, J., Ehrhardt, J. J., Arab-Tehrany, E., Jacquot, M., et al.
500	(2009). Native phosphocaseinate powder during storage: lipids released onto
501	the surface. Journal of Food Engineering, 94, 130–134.
502	Gaucheron, F. (2005). The minerals of milk. Reproduction Nutrition Development,
503	45, 473–483.
504	Herwig, N., Stephan, K., Panne, U., Pritzkow, W., & Vogl, J. (2011). Multi-element
505	screening in milk and feed by SF-ICP-MS. Food Chemistry, 124, 1233–1230.
506	Hurt, E. E., Adams, M. C., & Barbano, D. M. (2015). Microfiltration of skim milk
507	and modified skim milk using a 0.1- μ m ceramic uniform transmembrane
508	pressure system at temperatures of 50, 55, 60, and 65 °C. Journal of Dairy
509	Science, 98, 765–780.
510	IDF. (2001). Milk. Determination of nitrogen content, ISO 8969-2. IDF standard 20-
511	2. Brussels, Belgium: International Dairy Federation.

512	Jeantet, R., Schuck, P., Six, T., Andre, C., & Delaplace, G. (2010). The influence of
513	stirring speed, temperature and solid concentration on the rehydration time of
514	micellar casein powder. Dairy Science and Technology, 90, 225–236.
515	Karasu, K., Glennon, N., Lawrence, N. D., Stevens, G. W., O'Connor, A. J., Barber,
516	A. R., et al. (2010). A comparison between ceramic and polymeric membrane
517	systems for casein concentrate manufacture. International Journal of Dairy
518	Technology, 63, 284–289.
519	Lawrence, N. D., Kentish, S. E., O'Connor, A. J., Barber, A. R., & Stevens, G. W.
520	(2008). Microfiltration of skim milk using polymeric membranes for casein
521	concentrate manufacture. Separation and Purification Technology, 60, 237-
522	244.
523	Luo, X., Ramchandran, L., & Vasiljevic, T. (2015). Lower ultrafiltration temperature
524	improves membrane performance and emulsifying properties of milk protein
525	concentrates. Dairy Science and Technology, 95, 15–31.
526	Maher, P. G., Auty, M. A. E., Roos, Y. H., Zychowski, L. M., & Fenelon, M. A.
527	(2015). Microstructure and lactose crystallisation properties in spray dried
528	nanoemulsions. Food Structure, 3, 1–11.
529	McCarthy, N. A., Kelly, P. M., Maher, P. G., & Fenelon, M. A. (2013). Dissolution
530	of milk protein concentrate (MPC) powders by ultrasonication. Journal of
531	Food Engineering, 126, 142–148.
532	McCarthy, N. A., Kelly, A. L., O'Mahony, J. A., & Fenelon, M. A. (2014).
533	Sensitivity of emulsions stabilised by bovine β -casein and lactoferrin to heat
534	and CaCl ₂ . <i>Food Hydrocolloids</i> , <i>35</i> , 420–428.
535	McCarthy, N. A., Wijayanti, H. B., Crowley, S. V., O'Mahony, J. A., & Fenelon, M.
536	A. (2017). Pilot-scale ceramic membrane filtration of skim milk for the

537	production of a protein base ingredient for use in infant milk formula.
538	International Dairy Journal, 73, 57–62.
539	Mimouni, A., Deeth, H. C., Whittaker, A. K., Gidley, M. J., & Bhandari, B. R.
540	(2010). Rehydration of high-protein-containing dairy powder: slow- and fast-
541	dissolving components and storage effects. Dairy Science and Technology,
542	90, 335–344.
543	Mitchell, W. R., Forny, L., Althaus, T. O., Niederreiter, G., Palzar, S., Hounslow, M.
544	J., et al. (2015). Mapping the rate-limiting regimes of food powder
545	reconstitution in a standard mixing vessel. Powder Technology, 270, 520-
546	527.
547	O'Mahony, J. A., & Fox, P. F. (2013). Milk proteins: introduction and historical
548	aspects. In P. L. H. McSweeney & P. F. Fox (Eds.), Advanced dairy
549	chemistry. Vol. 1A. Proteins: Basic aspects (4th edn., pp. 43-85). New York,
550	NY, USA: Springer.
551	O'Mahony, J. A., McSweeney, P. L. H., & Lucey, J. A. (2008). Observations on the
552	rheological and functional properties of model cheeses made using milk
553	protein concentrate solutions with different ratios of α_{S1} -: β -casein.
554	Milchwissenschaft, 63, 145–148.
555	O'Mahony, J. A., McSweeney, P. L. H., & Lucey, J. A. (2009). Rheological
556	properties of rennet-induced skim milk gels made from milk protein
557	concentrate solutions with different ratios of α_s -: β -casein. <i>Milchwissenschaft</i> ,
558	64, 135–138.
559	O'Mahony, J. A., Smith, K. E., & Lucey, J. A. (2014). Purification of beta casein
560	from milk. Patent 11/272,331 (US 2014/8889208 B2).

561	Pierre, A., Fauquant, J., Le Graet, Y., & Maubois, J. L. (1992). Préparation de
562	phosphocaséinate natif par microfiltration sur membrane. Lait, 72, 461–474.
563	Richard, B., Le Page, J. F., Schuck, P., Andre, C., Jeantet, R., & Delaplace, G.
564	(2013). Towards a better control of dairy powder rehydration processes.
565	International Dairy Journal, 31, 18–28.
566	Richard, B., Toubal, M., Le Page, JF., Nassar, G., Radziszewski, E., Nongaillard,
567	B., et al. (2012). Ultrasound tests in a stirred vessel to evaluate the
568	reconstitution ability of dairy powders. Innovative Food Science and
569	Emerging Technologies, 16, 233–242.
570	Saboya, L. V., & Maubois, JL. (2000). Current developments of microfiltration
571	technology in the dairy industry. Lait, 80, 541–553.
572	Schokker, E. P., Church, J. S., Mata, J. P., Gilbert, E. P., Puvanenthiran, A., &
573	Udabage, P. (2011). Reconstitution properties of micellar casein powder:
574	Effects of composition and storage. International Dairy Journal, 11, 877-
575	886.
576	Silva, J. V. C., & O'Mahony, J. A. (2017). Flowability and wetting behaviour of
577	milk protein ingredients as influenced by powder composition, particle size
578	and microstructure. International Journal of Dairy Technology, 70, 277–286.
579	Udabage, P., Puvanenthiran, A., Yoo, J. A., Versteeg, C., & Augustin, M. A. (2012).
580	Modified water solubility of milk protein concentrate powders through the
581	application of static high pressure treatment. Journal of Dairy Research, 79,
582	76–83.
583	Vos, B., Crowley, S. V., O'Sullivan, J., Evans-Hurson, J., McSweeney, S., Krüse, J.,
584	et al. (2016). New insights into the mechanism of rehydration of milk protein

585 concentrate powders determined by Broadband Acoustic Resonance
586 Dissolution Spectroscopy (BARDS). *Food Hydrocolloids*, *61*, 933–945.

1 Figure legends

2

Fig. 1. Representative confocal laser scanning microscopy images of micellar casein
concentrate (MCC) powders manufactured by microfiltration at <10 °C (A) or 50 °C
(B), followed by evaporation and spray drying. Green indicates fat and red indicates
protein, while black regions within particles are air vacuoles.

7

Fig. 2. Contact angle values over time for a droplet of deionised water deposited on
compressed discs of micellar casein concentrate (MCC) powder manufactured by
microfiltration at <10 °C (□) or 50 °C (■) followed by evaporation and spray
drying. Results are the means ± standard deviations of data from triplicate
experiments.

13

Fig. 3. Conductivity (A) and calcium-ion concentration (B) over time during the
rehydration of micellar casein concentrate (MCC) manufactured by microfiltration at
<10 °C (○, ●) or 50 °C (□, ■); open and closed symbols represent powders
rehydrated at 25 and 50 °C, respectively. Data points are the means ± standard
deviations of data from duplicate experiments.

19

Fig. 4. Particle size distributions for micellar casein concentrate (MCC) powder
manufactured by microfiltration at <10 °C (○) or 50 °C (□), followed by
evaporation and spray drying, and rehydrated at 25 °C (A) or 50 °C (B) for 90 min.
Results are the means ± standard deviations of data from triplicate experiments.

24

25	Fig. 5. Sediment formation and compression during the centrifugation of suspensions
26	of micellar casein concentrate (MCC) manufactured by microfiltration at $<10^{\circ}C$
27	(MCC _{cold}) or 50 $^{\circ}\text{C}$ (MCC _{warm}), followed by evaporation and spray drying, and
28	rehydrated at different temperatures for 90 min. (A1) MCC _{warm} rehydrated at 25 °C,
29	(A2) MCC _{cold} rehydrated at 25 °C, (B1) MCC _{warm} rehydrated at 50 °C and (B2)
30	MCC_{cold} rehydrated at 50 °C. Three profiles are shown for each: the first profile
31	(black line), the profile after the first centrifugation step of $36 \times g$ for 10 min (broken
32	black line) and the profile after the second centrifugation step of $168 \times g$ for 10 min
33	(white line). The cell bottom (129.5 mm) is indicated by a vertical black line to guide
34	the eye.
35	
35 36	Fig. 6. Height of sediment (bars) and transmission of near-infrared light above the
35 36 37	Fig. 6. Height of sediment (bars) and transmission of near-infrared light above the sediment (closed markers) during analytical centrifugation of micellar casein
35 36 37 38	Fig. 6. Height of sediment (bars) and transmission of near-infrared light above the sediment (closed markers) during analytical centrifugation of micellar casein concentrate (MCC) manufactured by microfiltration at <10 °C (MCC _{cold}) or 50 °C
35 36 37 38 39	Fig. 6. Height of sediment (bars) and transmission of near-infrared light above the sediment (closed markers) during analytical centrifugation of micellar casein concentrate (MCC) manufactured by microfiltration at <10 °C (MCC _{cold}) or 50 °C (MCC _{warm}). Rehydration was performed at 25 or 50 °C. White bars indicate the
35 36 37 38 39 40	Fig. 6. Height of sediment (bars) and transmission of near-infrared light above the sediment (closed markers) during analytical centrifugation of micellar casein concentrate (MCC) manufactured by microfiltration at <10 °C (MCC _{cold}) or 50 °C (MCC _{warm}). Rehydration was performed at 25 or 50 °C. White bars indicate the initial height of sediment after 10 min at $36 \times g$ and grey bars represent compressed
 35 36 37 38 39 40 41 	Fig. 6. Height of sediment (bars) and transmission of near-infrared light above the sediment (closed markers) during analytical centrifugation of micellar casein concentrate (MCC) manufactured by microfiltration at <10 °C (MCC _{cold}) or 50 °C (MCC _{warm}). Rehydration was performed at 25 or 50 °C. White bars indicate the initial height of sediment after 10 min at $36 \times g$ and grey bars represent compressed sediments after an additional 10 min at $168 \times g$. Transmission values (\bullet) were taken
 35 36 37 38 39 40 41 42 	Fig. 6. Height of sediment (bars) and transmission of near-infrared light above the sediment (closed markers) during analytical centrifugation of micellar casein concentrate (MCC) manufactured by microfiltration at <10 °C (MCC _{cold}) or 50 °C (MCC _{warm}). Rehydration was performed at 25 or 50 °C. White bars indicate the initial height of sediment after 10 min at $36 \times g$ and grey bars represent compressed sediments after an additional 10 min at $168 \times g$. Transmission values (•) were taken for each MCC at both rehydration temperatures in the region of the sample above the
 35 36 37 38 39 40 41 42 43 	Fig. 6. Height of sediment (bars) and transmission of near-infrared light above the sediment (closed markers) during analytical centrifugation of micellar casein concentrate (MCC) manufactured by microfiltration at <10 °C (MCC _{cold}) or 50 °C (MCC _{warm}). Rehydration was performed at 25 or 50 °C. White bars indicate the initial height of sediment after 10 min at $36 \times g$ and grey bars represent compressed sediments after an additional 10 min at $168 \times g$. Transmission values (•) were taken for each MCC at both rehydration temperatures in the region of the sample above the sediment after the full 20 min centrifugation cycle. Results are the means ± standard

Table 1

Composition of micellar casein concentrate (MCC) powders, and colloidal properties of reconstituted MCCs, manufactured using microfiltration at 50 °C (warm) or < 10 °C (cold).^a

Property	MCC		
	Warm	Cold	
Protein			
Total (%, w/w)	75.3 ± 0.8	75.0 ± 0.9	
Casein (% protein)	91.0 ± 0.35	86.2 ± 1.02	
β-CN:α-CN ratio	1.0:1.0	0.9:1.0	
Minerals (mg g^{-1})			
Sodium	2.33 ± 0.11	2.13 ± 0.16	
Potassium	8.17 ± 0.49	8.71 ± 1.01	
Calcium	28.8 ± 1.89	25.0 ± 1.43	
Phosphorus	19.1 ± 0.96	17.7 ± 1.62)
Micellar phase			
Size (nm)	147 ± 2	153 ± 3	
Zeta potential (mV)	-25.5 ± 0.5	-26.9 ± 0.5	

^a Results are the means \pm standard deviations of data from experiments performed in at least duplicate.

Table 2

Proportion of particles in specific size classes after rehydration of micellar casein concentrate (MCC) powders at 25 or 50 $^{\circ}$ C for 90 min. ^a

Size class	Rehydration temperature			
(um)	25 °C		50 °C	
(μ)	MCC _{warm}	MCC _{cold}	MCC _{warm}	MCC _{cold}
0–1	0.00	0.00	7.50	48.2
1–10	0.24	0.07	2.50	0.91
10–50	26.1	49.8	58.3	25.5
50-100	43.8	38.5	23.3	22.7
100-1000	29.8	11.7	8.33	2.73

^a Data (% of total particle volume) for all size classes were calculated using the means of data from triplicate particle size experiments on each MCC.

/

Fig. 2.

