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__________________________________________________________________________26 

ABSTRACT 27 

  28 

The potential of increasing proteolysis as a means of enhancing the texture and heat-induced 29 

flow of half-fat, half-salt Cheddar cheese made with control culture (CL, Lc lactis subsp. 30 

cremoris/lactis) or adjunct culture (AC, CL + Lb. helveticus) was investigated. Proteolysis 31 

was altered by substituting bovine chymosin (BC) with camel chymosin (CC), or by a 2.5-32 

fold increase in level of BC. In cheese with CL-culture, increasing BC led to a large increase 33 

in pH and more rapid degradation of αS1-casein during maturation, and cheese that was less 34 

firm after 180 d. In contrast, substitution of BC with CC in cheeses made with CL-culture had 35 

an opposite effect. While chymosin type and level had a similar influence on αS1-casein 36 

hydrolysis in the AC-culture cheeses, it did not affect texture or flowability. Grading 37 

indicated that cheese made with AC-culture and with a higher level of BC was the most 38 

appealing.  39 

___________________________________________________________________________ 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 
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1.  Introduction 51 

 52 

Due to the association of chronic diseases (e.g., cardiovascular disease, hypertension 53 

and diabetes) with excessive consumption of saturated fat, salt and sugar, consumers are 54 

increasingly interested in products with reduced levels of these nutrients (de-Magistris & 55 

Lopéz-Galán, 2016; Ezzati & Riboli, 2013). This, in turn, has led to a renewed focus on the 56 

contribution of fat, salt and sugar to the quality of food products, and in the case of cheese a 57 

search for new approaches to counteract the negative effects on quality of reducing fat and 58 

salt.  59 

Reducing fat and salt in Cheddar cheese below critical levels (e.g., < 20% for fat and 60 

< 1.2% for salt) impairs texture and cooking properties (Guinee, Auty, & Fenelon, 2000; 61 

McCarthy, Wilkinson, Kelly, & Guinee, 2016). This is manifested in the cheese becoming 62 

excessively firm, long and rubbery,  by a loss of meltability and flow on heating, and by the 63 

flavour becoming sour and more bitter (Drake, Boylston, Spence, & Swanson, 1997; Guinee 64 

et al., 2000)  These changes are aligned with an increase in volume fraction and density of the 65 

casein network, a lower moisture-to-protein ratio, a lower rate of αS1-casein breakdown 66 

(Fenelon & Guinee, 2000; McCarthy et al., 2016) and a reduction in the lubrication and 67 

moistness otherwise afforded by fat and moisture, respectively (Guinee, 2016). Various 68 

approaches have been studied to mitigate these shortcomings: high heat treatment of milk and 69 

denaturation of whey proteins in situ to reduce the extent of para-casein aggregation (Guinee 70 

et al., 1998; Rynne, Beresford, Kelly, & Guinee, 2004); addition of fat mimetics such as 71 

microparticulated whey proteins (Schenkel, Samudrala, & Hinrichs, 2013), carbohydrate-72 

based materials such as Stellar 100X and Novagel RCN-15 (McMahon, Alleyne, Fife, & 73 

Oberg, 1996), and sucrose polyesters (Rudan, Barbano, & Kindstedt, 1998);  addition of non-74 

globular fat (melted butter) to comminuted curd prior to remoulding to achieve a critical level 75 
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of free oil on the cheese surface during heating (Wadhwani, McManus, & McMahon, 2011); 76 

the use of polysaccharide-producing cultures to increase moisture retention (Costa et al., 77 

2010); and reducing the degree of calcium cross-linking (Henneberry, Kelly, Kilcawley, 78 

Wilkinson, & Guinee, 2015). 79 

 Proteolysis in various cheese types, including Cheddar, Mozzarella, Meshanger and 80 

Iranian White, has been accelerated by increasing the quantity of coagulant added to the 81 

cheese milk (Dave, McMahon, Oberg, & Broadbent, 2003; de Jong, 1977) and the use of 82 

coagulant with a higher ratio of proteolytic-to-milk clotting activity than calf rennet or 83 

chymosin, e.g., proteases from Endothia parasitica (Yun, Barbano, & Kindstedt, 1993), 84 

Rhizomucor miehei (Soltani, Boran, & Hayaloglu, 2016) and  Rhizomucor pusillus (Sheehan, 85 

O’Sullivan, & Guinee, 2004).  A four-fold increase in the level of added chymosin resulted in 86 

a more rapid degradation of αS1- and β-caseins and a decrease in complex modulus (G*; 87 

index of firmness) of unheated directly-acidified Mozzarella cheese, and an increase in the 88 

flow of the heated cheese, to an extent dependent on the fat content (low-fat, 0.1; reduced-fat, 89 

11.0; or control, 19.5%, w/w) of the cheese (Dave et al., 2003).  Nevertheless, the firmness 90 

and flow of the reduced- and low-fat cheeses were inferior to those of the control cheese 91 

made with the regular level of added chymosin. Hence, the authors concluded that it was not 92 

possible to fully compensate for reduction in fat level solely by accelerating cheese 93 

proteolysis (Dave et al., 2003). Such a trend is consistent with the exponential increase in 94 

firmness and chewiness of hard/semi-hard cheese with protein content, which increases as fat 95 

content is reduced (Guinee, 2016). Analogously, Sheehan et al. (2004) found that substitution 96 

of chymosin with Rhizomucor pusillus protease enhanced primary and secondary proteolysis, 97 

but did not significantly affect the rheology or functionality of reduced-fat Mozzarella.  The 98 

absence of an effect of increased proteolysis on the rheological and melt properties of 99 

reduced-fat Mozzarella may be attributable to a number of factors including the relatively 100 
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high protein-to-fat ratio of Mozzarella ( ~1.2) compared with other cheeses ( ~0.8 in Cheddar 101 

cheese), the dilution and thermal inactivation of the coagulant at the relatively high 102 

temperature (58 to 62 °C) to which the curd is heated during plasticisation, and the overall 103 

low level of proteolysis during its relative short storage period.  104 

The residual chymosin activity in Cheddar cheese is three- to four-fold higher than in 105 

Mozzarella (Feeney, Fox, & Guinee, 2001). Hence, owing to its lower protein-to-fat ratio, 106 

longer maturation time and the higher retention of added coagulant, it is expected that 107 

altering the level of proteolysis would elicit a more pronounced effect on the texture and 108 

functionality of reduced-fat Cheddar compared with Mozzarella. This premise is supported 109 

by the results of studies on the effect of substitution of bovine chymosin, with camel 110 

cyhmosin, which is less proteolytic, on reduced-fat Cheddar cheese (Børsting et al., 2012; 111 

Govindasamy-Lucey, Lu, Jaeggi, Johnson, & Lucey, 2010). These studies found that the 112 

replacement of bovine chymosin with camel chymosin resulted in a higher content of intact 113 

αS1-casein, and cheese that was harder, less bitter, and less fluid on heating. However, the use 114 

of an adjunct culture (Lactobacillus delbrueckii) resulted in a significant reduction  in the 115 

concentration of bitter-tasting peptides and bitterness in reduced-fat Cheddar cheese made 116 

with bovine chymosin after maturation at 9 °C for 56 or 196 d (Børsting et al., 2012).  Based 117 

on the foregoing, it was hypothesised that increasing the level of added coagulant together 118 

with an adjunct culture could be applied advantageously to increase proteolysis and improve 119 

the rheological and functional quality of reduced-fat reduced-salt Cheddar cheese, while 120 

minimising the risk of bitter flavour in the cheese associated with a higher concentration of 121 

chymosin-produced peptides or their derivatives (Børsting et al., 2012; Lemieux and Simard, 122 

1991); the likelihood of bitterness development is  increased in reduced-salt cheese owing to 123 

the lower extent of starter cell autolysis and associated peptidase activity (Wilkinson, Guinee, 124 
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& Fox, 1994). Yet, such an approach has, to our knowledge, not been used to enhance the 125 

quality of reduced-fat, reduced-salt Cheddar cheese.   126 

The primary aim of the current study was to investigate the effect of increasing the 127 

levels of primary and secondary primary proteolysis, by the combined effects of a 2.5 fold 128 

increase in added bovine chymosin and the use of an adjunct culture (Lactobacillus 129 

helveticus) on the properties of reduced-fat, reduced-salt Cheddar cheese. A secondary 130 

objective was to determine the effect of reducing primary proteolysis, by substitution of 131 

bovine chymosin with camel chymosin, while increasing secondary proteolysis by the 132 

addition of   an adjunct culture (Fenelon, Beresford, & Guinee, 2002).  133 

 134 

2.  Materials and methods 135 

 136 

2.1.  Coagulant strength 137 

 138 

Two coagulants were used in cheese manufacture, namely bovine chymosin, BC (~ 139 

200 IMCU mL-1; Chy-Max® Plus) and camel chymosin CC (~ 200 IMCU mL-1; Chy-Max® 140 

M); both were obtained from Chr. Hansen (Chr. Hansen, 10–12 Bøge Alle, DK-2970 141 

Hørsholm, Denmark). Prior to cheese manufacture, the coagulants were tested for rennet-142 

clotting strength at pH 6.55 on milk pasteurised at 72 °C and with protein, fat and lactose 143 

contents of 3.51, 3.84 and 4.63% (w/w) respectively. The coagulants, BC or CC, were added 144 

to the milk (31 °C) at regular levels of 0.18 mL L-1 milk (36 IMCU L-1) and 0.13 mL L-1 milk 145 

(26 IMCU L-1), respectively. Following a 1.5 min stirring period, a 13 g sub-sample was 146 

placed in the cell of a controlled stress rheometer (CSL2 500 Carri-Med;TA Instruments, 147 

Inc., New Castle, DE, USA) and the storage modulus, G',  was measured  as described 148 

previously Hou et al. (2017). The rennet coagulation time (RCT) was defined as the time 149 
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required for G' to attain a threshold value of 0.2 Pa. The coagulant strength in chymosin units 150 

(CU), where 1 CU was defined as the coagulant activity required to coagulate 10 mL of milk 151 

in 100 s at 31 °C, was calculated, as described by Sheehan et al. (2004).  152 

 153 

2.2. Cheese manufacture  154 

 155 

Half-fat (16%), half-salt (0.9%) Cheddar cheeses were made in triplicate using either 156 

BC or CC as coagulants; for each type of coagulant used, cheese was made with control 157 

culture (CL, Lactococcus lactis subsp. lactis and cremoris) or control culture in combination 158 

with an adjunct culture (AC, CL + Lactobacillus helveticus). For all cheeses, milk was 159 

standardised to a protein-to-fat ratio of 2.65, pasteurised at 72 °C for 15 s, cooled to 31 °C 160 

and pumped to the cheese 500-L vats. The treatments and the major differences between 161 

them are summarised in Table 1.  162 

Vats 1 to 3 were inoculated with the CL culture (F-DVS mesophilic starter; R607Y, 163 

Chr. Hansen Ireland Ltd) only, and vats 4 to 6 were inoculated with the AC culture (F-DVS 164 

R607Y + F-DVS LH-32, Chr. Hansen Ireland Ltd). Cultures were inoculated at rates 165 

recommended by the supplier (i.e., 0.01 and 0.005%, w/w, for the CL- and AC-cultures, 166 

respectively) and incubated at 31 °C for 30 min.  Following incubation, vats 1, 2, 4 and 5 167 

were inoculated with BC at the regular dosage corresponding to 36 IMCU L-1 for vats 1 and 168 

4, or 2.5 times the regular dosage corresponding to 90 IMCU L-1 for vats 2 and 5. Vats 3 and 169 

6 were inoculated with CC at the regular dosage rate of 26 IMCU L-1. As seen from Table 1, 170 

the milk clotting activity as measured (See section 2.1) and expressed as CU was similar in 171 

corresponding vats made with BC (1, 4) or CC ( 3, 6) at a regular dosage, despite the lower 172 

dosage volume of CC ( 0.13 mL L-1) compared with BC (0.18 mL L-1). Using data from 173 

preliminary experiments, the temperature of the milk at renneting was maintained at 31 °C in 174 
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vats 1, 3, 4 and 6, and adjusted to 28 °C for vats 2 and 5 so as to maintain similar gelation 175 

times (38–40 min) across all treatments (Table 1). The required quantity of coagulant for 176 

each vat was calculated from its milk clotting strength, diluted 1:10 in de-ionised water, and 177 

added to the cheese milk which was then agitated for 1.5 min to ensure uniform distribution.  178 

A milk sample (~50 mL) was taken immediately from the cheese vat, placed in an insulated 179 

glass container, and taken to an adjacent laboratory where it was assayed  for changes in 180 

storage modulus, G', over 1 h using low amplitude strain oscillation rheometry as described 181 

by Hou et al. (2017). For all cheese vats (treatments), the gel was cut when G' , an index of 182 

gel strength, reached  25 Pa. Cheeses were made using a standardised procedure, as described 183 

by McCarthy, Wilkinson, Kelly, and Guinee (2015). The pressed cheeses (~22 kg blocks) 184 

were vacuumed wrapped, stored at 4 °C for 30 d, and matured at 8 °C for 8 months.  185 

The six different cheeses were denoted as follows (Table 1): CLBC1, CL culture with 186 

regular level of bovine chymosin (vat 1); CLBC2.5, CL culture with bovine chymosin at 2.5 187 

times the standard level (vat 2); CLCC, CL culture with camel chymosin at the regular level 188 

(vat 3); and the corresponding cheeses made with the AC culture, namely ACBC1 (vat 4), 189 

ACBC2.5 (vat 5) and ACCC (vat 6). In the Results and Discussion sections, cheeses made 190 

with the CL- and AC-cultures are referred to as CL- and AC-cheeses, respectively.  191 

 192 

2.3. Sampling of cheese 193 

 194 

For each treatment, a block of cheese was sampled after various times (1, 30, 60, 120, 195 

180 and 270 d) during ripening. At each sampling time, a vertical slice (~1.5 cm thick) was 196 

removed from one of the outside faces of the block and discarded, and a slice (~2 kg) which 197 

included the freshly-cut surface, was taken for analysis. Samples were analysed within 48 h.   198 

 199 
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2.4. Composition analysis of cheese 200 

 201 

Cheese samples were grated and analysed in triplicate at 14 d using standard IDF 202 

methods for fat (ISO, 2004), salt (ISO, 2006), moisture (ISO, 1985), calcium (ISO, 2007) and 203 

protein (ISO, 2014).  204 

 205 

2.5. Enumeration of viable bacteria 206 

 207 

Aseptically taken cheese samples (~ 10 g) were homogenised with ~ 90 mL of sterile 208 

trisodium citrate (20 g L-1) in a stomacher (Stomacher, Laboratory-Blender 400) for 8 min at 209 

room temperature. The resultant mixture (a 1:10 dilution) was serially diluted. Starter lactic 210 

acid bacteria (SLAB) and non-starter lactic acid bacteria (NSLAB) were enumerated as 211 

described previously by Hou et al. (2017). Lactobacillus helveticus were enumerated on MRS 212 

agar (pH 5.4) after anaerobic incubation at 45 °C for 3 d (Fenelon et al., 2002). The cheeses 213 

were analysed in duplicate at 1, 30, 120 and 180 d for all three trials.  214 

 215 

2.6. Lactose and lactate  216 

 217 

The lactose and lactic acid concentration was determined in duplicate using a 218 

Megazyme Lactose and D-Galactose (Rapid) Assay procedure and a D-/L-Lactic Acid (Rapid) 219 

Assay procedure, respectively (Megazyme International Ireland, Bray Business Park, Bray, 220 

Co. Wicklow, Ireland) as described by  Rynne, Beresford, Kelly, and Guinee (2007). The 221 

lactic acid concentration was calculated as the sum L(+) and D(–) lactic acid. 222 

 223 

2.7. Proteolysis 224 
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 225 

2.7.1. Urea-polyacrylamide gel electrophoresis 226 

Polyacrylamide gel electrophoresis (PAGE) of all cheeses, from two of the three 227 

trials, was performed at 30, 120, 180 and 270 d on a Protean II xi vertical slab gel unit 228 

(Biorad Laboratories Ltd., Watford, Herts, UK) using a separating and stacking gel according 229 

to the method of Rynne et al. (2004). Cheese (i.e., ~14 mg) was dissolved on a protein basis 230 

(4.75 mg protein) in 1 mL of sample buffer, incubated at 55 °C for 15 min, and filtered 231 

through glass wool to remove fat deposits. Similarly, sodium caseinate powder, which served 232 

as a non-hydrolysed casein control, was dissolved in protein solvent to give an equivalent 233 

concentration of protein.  The operating voltage was 280 V until the samples ran through the 234 

stacking gel and then 300 V as the samples ran through the separating gel. The resultant gels 235 

were stained (0.25%, w/v, Coomassie Blue G250 dye), de-stained (10%, v/v, acetic acid) and 236 

scanned using a dual lens Epson Perfection V700 Photo Model J221A with Epson Scan 237 

software (Epson Deutschland GmbH, Meerbusch, Germany). The area of the β-casein, αS1-238 

casein and αS1-casein (f24–199) bands were expressed as a percentage of total band area. The 239 

bands were identified according to the notation Mooney, Fox, Healy, and Leaver (2008) and 240 

McSweeney, Pochet, Fox, and Healy (1994). 241 

 242 

2.7.2. Primary proteolysis  243 

The level pH 4.6-soluble nitrogen (pH 4.6-SN) was measured in triplicate as 244 

described by Fenelon and Guinee (2000) after 30, 60, 120, 180 and 270 d.  245 

 246 

2.7.3. Secondary proteolysis 247 

The levels of individual free amino acids (FAAs) in the pH 4.6-SN extract were 248 

analysed in triplicate using high performance cation exchange column with a Jeol JLC-500V 249 
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AA analyser (Jeol Ltd., Tokyo, Japan), as described in by McCarthy, Kelly, Wilkinson, and 250 

Guinee (2017) at 30, 120, 180 and 270 d. 251 

 252 

2.8. Free fatty acids 253 

 254 

The concentrations of individual free fatty acids (FFAs) (C4:0, C6:0, C8:0, C10:0, C12:0, 255 

C14:0, C16:0, C18:0, C18:1:0, C18:2:0 and C18:3:0) at 270 d were assayed  in triplicate using gas 256 

chromatography with flame ionised detection as previously described by McCarthy et al. 257 

(2017).  258 

 259 

2.9. Rheology 260 

 261 

Six cubes (25 mm3) were cut from each of the six treatment cheeses (~ 4 °C) using a 262 

Cheese Blocker (Bos Kaasgereedschap, Bodengraven, Netherlands). The cubes were 263 

compressed to 30% original height at a cross head velocity of 1 mm s-1 on a TAHDi texture 264 

analyser (model TA-HDI, Stable Micro Systems, Godalming, UK) equipped with a 5 mm 265 

compression plate and fitted with a 100 kg load cell, using conditions described by 266 

Henneberry et al. (2015). The following rheological parameters were calculated from the 267 

resultant force/time curves: firmness (σmax) defined as the force at 70% compression; fracture 268 

stress (σf), the force per unit surface area of sample at fracture as determined from the 269 

inflection point of the force/time curve; and fracture strain, (εf), the displacement at fracture 270 

expressed as a % of original sample height.  271 

 272 

2.10. Functionality of the heated cheese 273 

 274 
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2.10.1. Flowability 275 

The flowability was assessed in quadruplicate using the modified Schreiber method as 276 

previously described in McCarthy et al. (2016). The flow during heating was defined as 277 

the % increase in mean diameter of the cheese disc.   278 

 279 

2.10.2. Work required to stretch the cheese 280 

The work required to stretch the molten cheese (~95 °C) (EW) were measured in 281 

triplicate using uniaxial extension on a TAHDi texture analyser at a velocity of 10 mm s-1, as 282 

described by McCarthy et al. (2016). The analysis was undertaken in triplicate and the work 283 

required to extend the molten cheese to 380 mm (EW) was calculated from the resultant 284 

force/time curves. 285 

 286 

2.11. Cheese grading 287 

 288 

The six treatment cheeses were assessed at 120 and 270 d by a commercial grader 289 

from Ornua (Ornua Co-operative Limited Head Office, Grattan House, Mount Street Lower, 290 

Dublin 2, Ireland). All cheeses were assigned a random code and were tasted in duplicate. 291 

The grading comments were recorded. 292 

 293 

2.12. Statistical analysis 294 

 295 

Six treatment cheeses (CLBC1, CLBC2.5, CLCC, ACBC1, ACBC2.5 and ACCC) 296 

were each manufactured on three separate occasions (trials) over a two-week period. Analysis 297 

of variance (ANOVA), using the general linear model (GLM) procedure of SAS 9.3 (SAS 298 

Institute, 2011), was applied to determine the effect of coagulant on cheese composition at 14 299 
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d. Tukey’s multiple-comparison test was used for paired comparison of treatment means with 300 

the level of significance determined at P < 0.05. A repeated measure design was used to 301 

determine the separate effects of treatment (coagulant or culture type), ripening time, and the 302 

interaction between treatment and ripening time on the cheese properties investigated over 303 

maturation. The main plot factor was coagulant or culture type and the sub-plot factor was 304 

ripening time. The PROC GLM procedure of SAS (SAS Institute, 2011), which involved 2 305 

factors (coagulant and culture type) as class variables, was used for the data analyses. The 306 

significance of correlations was determined by applying Student’s t-test to correlation 307 

coefficients, where n is the actual number of data points, and df is the degrees of freedom (n-308 

2). 309 

 310 

3.  Results  311 

 312 

3.1. Composition 313 

 314 

Analysis of the data of the three replicate trials indicated that coagulant or adjunct 315 

culture did not significantly affect composition (Table 2), an outcome consistent with the 316 

standardisation of key cheesemaking parameters (e.g., pH at different stages, firmness of gel 317 

at cutting).  318 

 319 

3.2. Enumeration of viable bacteria 320 

 321 

Starter lactococci decreased significantly in all cheeses during maturation from ~ 109 322 

cfu g-1 at 1 d to ~107.2 cfu g-1 at 270 d (data not shown). Lb. helveticus populations decreased 323 

significantly in the AC-cheeses from 106.6 cfu g-1 at 1 d to ~101 cfu g-1 at 180 d, with the 324 
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decrease being most pronounced in the period 1 to 30 d; as expected, Lb. helveticus was not 325 

detected in cheeses made with the CL culture. Concomitantly, the population of NSLAB 326 

increased in all cheeses over ripening from ~102.3 cfu g-1 at 1 d to ~107.2 cfu g-1 at 270 d. 327 

Neither starter culture nor NSLAB populations were significantly affected by coagulant 328 

(Table 3).    329 

 330 

3.3. Changes in lactose and lactic acid 331 

 332 

Lactose was present at very low levels in all cheeses initially (< 0.06% at 1 d) and 333 

was non-detectable after 180 d (data not shown); it was unaffected by coagulant (Table 3) or 334 

adjunct culture. The concentration of total lactate increased in all cheeses over ripening from 335 

~1.45% at 1 d to ~1.7% at 270 d. While the mean concentration of total lactate over the 270-336 

day ripening period was not affected by treatment (Table 3),  the level in the CLBC2.5 or 337 

ACBC2.5 at times ≥ 120 d was significantly higher than that in the corresponding CLBC1, 338 

CLCC,  ACBC1 and ACCC cheeses.  339 

 340 

3.4. pH 341 

 342 

There was an interaction between ripening time and coagulant on the pH of CL- and 343 

AC- cheeses (Fig. 1, Table 3). The pH of  CLBC1 and CLCC remained constant at ~5.25, 344 

while that of CLBC2.5 increased significantly during ripening from ~5.2 at 1 d to 5.7 at 270 d 345 

(Fig. 1; Table 3).  The pH of all the AC-cheeses  increased significantly during ripening, from 346 

~5.20 at 1 d to atypically-high pH values at 270 d, i.e.,  ~5.80 in ACCC or ~6.0 in ACBC1 347 

and ACBC2.5.  348 

 349 
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3.4. Proteolysis 350 

 351 

3.4.1. Urea-PAGE 352 

The gel electrophoretograms for the six cheeses at 30, 120, 180 and 270 d from trial 1 353 

are shown in Fig. 2; similar profiles were obtained for cheeses in trial 2. Both αS1- and β-354 

caseins decreased significantly in all cheeses during maturation (Table 4), to an extent 355 

dependent on coagulant and ripening time (Table 5).  For both the CL- and AC-cheeses, αS1-356 

casein was hydrolysed to the fractions f24–199, f102–199, and f33-*, and β-casein to the 357 

fractions f29–209 (γ1), f106–209 (γ2) and f108–209 (γ3). Simultaneously, the concentrations 358 

of intact αS1- and β-caseins (as % of total casein) decreased from ~10–21% and 14–16% at 30 359 

d, to ~ 4–13% and 6–11% at 270 d (Fig. 2; Table 5).   360 

 Coagulant had a significant effect on the rate of αS1-casein hydrolysis (Fig. 2; Table 361 

4), which was slowest in CLCC and most rapid in CLBC2.5, where it was almost completely 362 

degraded after 180 d. Hence, the concentration of intact αS1-casein was highest in CLCC at 363 

times ≥ 120 d and lowest in CLBC2.5 at ≥ 30 d. The level of proteolysis of αS1-casein in BC1 364 

was intermediate between that of BC2.5 and CC for both the CL- and AC-cheeses. Despite its 365 

influence on level of hydrolysis, coagulant did not influence the profile αS1-casein-derived 366 

peptides. 367 

 Coagulant  did not affect the mean level of  β-casein degradation over the 270-day 368 

ripening period or pattern of breakdown products in the CL- and AC-cheeses; a similar trend 369 

was observed at all ripening times, apart from 270 d where the proportion of intact β-casein 370 

in the CLBC2.5 and ACBC2.5 cheeses was slightly, but significantly, lower than that of the 371 

corresponding CLBC1 or CLCC, and ACBC1 or ACCC cheeses. 372 

 373 

3.4.2. pH 4.6-soluble N formation 374 
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Casein hydrolysis was paralleled by a significant increase in pH 4.6-SN during 375 

ripening (Fig. 3a,b), from ~7.5 to 25% TN in the cheeses made with CL-culture and ~10 to 376 

28% TN in the cheeses made with AC-culture.  377 

 Coagulant significantly affected pH 4.6-SN in both the CL- and AC-cheeses, for 378 

which the mean level in CLBC2.5 and ACBC2.5 was higher than that of the corresponding 379 

CLBC1 or CLCC, and ACBC1 or ACCC cheeses, respectively. The mean concentration of 380 

pH 4.6-SN in the cheeses made with CC was lower than that of cheeses made with the regular 381 

level of BC (BC1) when using the CL-culture, but similar when using the AC-culture (Fig. 382 

3a,b).  383 

The addition of commercial adjunct culture increased the level of primary proteolysis 384 

(as measured by the increase in pH 4.6-SN) in all cheeses; the effect was significant only in 385 

ACBC1 and ACCC. 386 

 387 

3.4.3. Free amino acids 388 

FAAs increased significantly in all cheese during maturation, with the mean 389 

concentration being affected by coagulant and adjunct culture (Fig. 3c,d; Table 4). 390 

When using the CL-culture, the level of FAAs in CLBC2.5 was significantly higher 391 

than that in CLBC1 or CLCC, with the difference becoming more pronounced with ripening 392 

time. After 270 d, the concentration in CLBC2.5 was ~3.2–3.6-fold higher than that in 393 

CLBC1 or CLCC. In contrast, coagulant did not significantly affect the level of FAAs in the 394 

AC-cheeses for which the mean levels in ACBC1 and ACCC were significantly higher than 395 

those in the corresponding CLBC1 and CLCC cheeses. The FAA concentration in ACBC1, 396 

ACBC2.5 and ACCC were similar to that in CLBC2.5; hence, the use of adjunct increased 397 

the FAA levels in cheeses made using the regular level of BC (BC1) or CC but not in cheese 398 
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where an increased level of BC (BC2.5) was used. The principal FAAs in all cheeses were 399 

glutamate, leucine, phenylalanine, lysine, valine and proline.  400 

 401 

3.5. Free fatty acids 402 

 403 

The concentrations of total and individual FFAs were measured at 270 d (data not 404 

shown). The principal FFAs in all six cheeses in descending order were C16:0, C18:1:0, C18:0, 405 

C14:0 and C12:0. In the cheeses made using CL-culture, CLCC had a significantly higher level 406 

of total FFAs compared with CLBC1 and CLBC2.5, e.g., 439 mg kg-1 versus 343 and 360 mg 407 

kg-1, respectively. In general, CLCC had greater concentrations of C14:0, C16:0, C18:0, C18:1:0 408 

and C18:2:0 than CLBC1 and/or CLBC2.5 (data not shown). A similar trend was found in the 409 

AC-cheeses, for which the concentration of total FFA in ACCC at 270 d were significantly 410 

higher than that in ACBC1 and ACBC2.5.  411 

   412 

 3.6. Fracture properties 413 

 414 

Fracture stress (σf) and firmness (σmax) decreased significantly in all cheeses over 415 

maturation (Fig. 4a–d), from ~692 to 330–530 kPa, and 460 to 220–330 (N), respectively.  416 

Coagulant had a significant effect on σf and σmax in the cheeses made with the CL 417 

culture (Table 4) but not in cheeses made using the AC-culture. In the former, σf and σmax 418 

were significantly higher in CLCC at times ≥ 120 d. Hence, the mean σf and σmax over the 419 

270 d ripening period was higher in CLCC compared with CLBC1 and CLBC2.5. Moreover, 420 

the effect of coagulant was interactive with ripening time with the difference between CLCC 421 

and CLBC1 or CLBC2.5 increasing as ripening progressed. In contrast, the fracture strain (εf) 422 

was unaffected by coagulant and the interaction between coagulant and ripening time.  423 
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 Conversely, coagulant did not significantly affect the σf, σmax, or εf in the cheeses 424 

made using adjunct culture (Table 4, Fig. 4a–d).; nevertheless, ACBC2.5 had a significantly 425 

lower εf at 270 d compared with ACBC1 or ACCC for which εf values were similar i.e., 0.34 426 

versus 0.53 or 0.53, respectively.   427 

 428 

3.7. Functionality of the heated cheese 429 

 430 

3.7.1. Extent of flow 431 

The flowability of the heated cheeses increased significantly during maturation (Fig. 432 

4e,f). Although the cheese made with CC had the lowest extent of flow when compared with 433 

the BC1 or BC2.5 cheese on heating, the effect of coagulant was not significant in the CL- or 434 

AC-cheeses (Table 4).  435 

 436 

3.7.2. Work required to stretch the cheese 437 

The work required to extend the molten cheese mass decreased for all cheeses during 438 

maturation, from ~770 mJ at 30 d to ~300 mJ at 270 d. Despite the fact that EW for cheeses 439 

made using CC (CLCC, ACCC) was the highest at most ripening times, the mean values over 440 

ripening for the different coagulant treatments did not differ significantly for the CL- or AC-441 

cheeses (Table 4). 442 

 443 

3.8. Cheese grading 444 

 445 

After 120 d, the grader noted that all cheeses had a curdy texture. The CL-cheeses 446 

lacked an acceptable finish and contained bitter notes. CLBC1 lacked a salty taste; CLBC2.5 447 

and CLCC tasted saltier (like a standard Cheddar cheese) and were considered to have a 448 
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better taste and less bitter finish (compared with CLBC1). The AC-cheeses were 449 

characterised as having subtle sweet flavour notes and were considered less savoury than the 450 

CL-cheeses. While the ACBC1-cheese was perceived as lacking the typical ‘salty’ taste of 451 

Cheddar towards the end of mastication, the ACCC or ACBC2.5 were found to be 452 

characteristically salty. At this stage of ripening, the grader considered the ACCC cheese to 453 

be the best tasting (Table 6). 454 

Following evaluation at 270 d, the grader noted that the lack of fat was very obvious 455 

in CLBC1 and CLCC cheeses but not in CLBC2.5 cheese. Although the CL-cheeses had 456 

sweet notes, the cheeses lacked a good finish which was attributed to the lack of ‘saltiness’. 457 

Overall, the ACBC2.5 and ACCC cheeses were considered the most acceptable and as being 458 

suitable for sale as a ‘sweet’-style Cheddar cheese, a variant of Cheddar which is becoming 459 

increasingly popular in the Irish and UK markets. Despite both  sharing  ‘sweetish’ flavour 460 

notes, the taste profiles of the latter cheeses were nonetheless quite different, with the 461 

ACBC2.5 cheese perceived as having had a smooth texture and strong sweet flavour notes, 462 

and the ACCC cheese as having had a steady texture and a taste that was initially sweet but 463 

finished slightly sharp. Although ACBC1 tasted sweet, it was perceived as lacking in 464 

‘saltiness’ (Table 6). 465 

 466 

4.  Discussion 467 

 468 

The current study investigated the effects of altering coagulant, type and level, as a 469 

means of improving the properties of half-salt, half-fat Cheddar-style cheeses made using 470 

control culture, CL (consisting of a blend of Lc. lactis subsp. lactis, Lc. lactis subsp. 471 

cremoris) or adjunct-containing culture, AC (consisting of the CL-culture with added  Lb. 472 

helveticus). The coagulant treatments, used with both the CL- and AC-cultures, included BC 473 
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at the regular level (CLBC1 and ACBC1), BC at 2.5 times the regular level (CLBC2.5 and 474 

ACBC2.5), and CC at the regular level (CLCC and ACCC). Coagulant had no effect on gross 475 

composition, concentrations of lactose and total lactate, or the populations of starter or 476 

NSLAB in the CL- or AC-cheeses. 477 

The pH in all cheeses ex-press (~5.2 at 1 d) was similar, as   expected because of the 478 

equal levels of lactic acid and pH-buffering substances (calcium, phosphate, protein).   479 

However, coagulant had a notable effect on the extent of pH change during maturation, 480 

whereby the pH increased by ~0.1–0.2 pH units in CLBC1 and CLCC, and ~0.5–0.75 units in 481 

CLBC2.5, ACBC1, ACBC2.5 and ACCC. A similar trend was noted for FAAs, i.e., for 482 

which the increase during maturation in the CLBC1 and CLCC was notably lower than that 483 

in CLB2.5, ACBC1, ACBC2.5 or ACCC. Hence, linear regression analysis indicated a 484 

positive correlation between pH and total FAA concentration in both the CL- (r = 0.97, df = 485 

22) and AC- (r = 0.89, df = 22) cheeses.  The level of pH change during cheese maturation is 486 

controlled by the balance of factors that reduce pH (i.e., lactic acid concentration), buffer pH 487 

(i.e., buffering capacity which is controlled inter alia by the concentration of calcium 488 

phosphate and the protein side-chains of glutamate and aspartate residues), and/or increase 489 

pH (production of FAAs) (Salaün, Mietton, & Gaucheron, 2005; Upreti and Metzger, 2006, 490 

2007). The amino groups of FAAs have dissociation constants (pKa > ~ 9.0) well in excess of 491 

the initial cheese pH (5.0 to 5.35) and are, thus, likely to become protonated in the cheese 492 

environment. Hence, the gradual increase in cheese pH is concomitant with the progressive 493 

decrease in hydrogen ion activity as FAA accumulate during maturation; such an effect 494 

would be most pronounced in cheeses with higher FAAs, i.e.,  CLBC2.5, ACBC1, ACBC2.5 495 

and ACCC.  496 

The hydrolysis of αS1-casein was greatly accelerated by increasing the level of BC, as 497 

evidenced by the lower content of intact αS1-casein and higher level of pH 4.6-SN in 498 
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CLBC2.5 and ACBC2.5, compared with CLBC1 and ACBC1, at all ripening times (Fig. 2, 499 

3a, b, Table 5). The increase in primary proteolysis with dosage level of BC is well 500 

documented for cheeses such as Meshanger (de Jong, 1977), Cheddar (Creamer, Iyer, & 501 

Lelievre, 1987) and Mozzarella (Dave et al., 2003). In contrast, cheese made with CC 502 

(CLCC, ACCC) had a significantly higher content of intact αS1-casein than cheeses made 503 

with BC (CLBC1, ACBC1) at most ripening times. A similar finding by Bansal et al. (2009) 504 

was attributed to the low level of added CC (~30% reduction in the level of added enzyme 505 

milk clotting units compared with BC) and its relatively low unspecific proteolytic activity 506 

(on bonds other than Phe105–Met106 of κ-casein), which has been found to be only ~20% of 507 

that of BC on bovine milk (Kappeler et al., 2006). The lower unspecific proteolytic activity of 508 

CC was confirmed by Møller, Rattray, and Ardö (2012), who found  that although CC and 509 

BC shared similar modes of proteolytic action on dilute solutions (1%) of bovine αS1-casein 510 

(at pH 6.5) and β-casein (at pH 6.5 and 5.2), CC was markedly less proteolytic.  511 

Compared with αS1-casein, β-casein underwent a much lower degree of proteolysis 512 

during maturation, with the levels at 270 d corresponding to ~45 and 60% of those at 30 d. 513 

This resistance of β-casein to hydrolysis by BC in Cheddar cheese has been attributed to a 514 

concentration-induced aggregation (at concentrations ≥20 g 100 g-1 in aqueous dispersion) 515 

which limits the access of the enzyme (Phelan, Guiney, & Fox, 1973).  β-Casein hydrolysis 516 

was not affected by increasing the level of BC or by the substitution of BC with CC, as seen 517 

from the similar concentrations of intact β-casein in all cheeses at most ripening times, apart 518 

from 270 d (Fig. 2, Table 5). In corollary, the results of studies investigating the effect of 519 

reducing coagulant or BC also suggest little, or no, effect of incrementally reducing the level 520 

of added calf rennet from 100 to 20% of normal on β-casein in Cheddar cheese (Creamer et 521 

al., 1987). The similar degradation rates of β-casein hydrolysis in cheeses made with BC1 522 

and CC is consistent with results of Børsting et al. (2012) for reduced-fat Cheddar. However, 523 
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it contrasts with the results of Møller et al. (2012), which showed that the β-casein hydrolysis 524 

in reduced-salt Cheddar cheese (0.85%, w/w) made with CC proceeded more slowly than that 525 

in cheese made with BC during ripening, but concurs with those of Bansal et al. (2009), who 526 

reported no difference in the level of degradation of β-casein in Cheddar cheeses made with 527 

BC or CC. The discrepancy with the results of Møller et al. (2012) may relate to inter-study 528 

differences in cheese pH, fat content of cheese and/or β-casein concentration (Phelan et al., 529 

1973), which is higher in half-fat Cheddar (current study) than full-fat Cheddar (Møller et al., 530 

2012).  531 

The levels of FAAs in CLBC2.5 were markedly higher than that in CLBC1 or CLCC. 532 

Considering that bacterial counts were similar in all cheeses, this result suggests that the 533 

higher level in CLBC2.5 is due to the higher level of added chymosin. The potential 534 

contribution of coagulant to FAA development in cheese has been demonstrated by early 535 

studies on aseptic model cheeses made with or without starter culture or calf rennet (Visser, 536 

1977), and more recently in Cheddar cheeses with different levels of residual chymosin 537 

activity, as varied by the addition of different levels of the chymosin inhibitor, pepstatin 538 

(O’Mahony, Lucey, & McSweeney, 2005). The concentration of chymosin-derived peptides, 539 

which are degraded to peptides of lower molecular weight and FAAs by starter culture 540 

peptidases (McSweeney, 2004), is likely to vary according to the level of residual chymosin 541 

activity which in turn is affected by the dosage of added coagulant. The significant 542 

contribution of adjunct culture to the development of FAAs is exemplified by the 543 

significantly higher levels of FAAs in the each of the AC-cheeses compared with the 544 

matching CL-cheeses at times ≥ 120 d. The higher, but similar concentrations of FAA in the 545 

AC-cheeses, despite their differences in extent of αS1-casein hydrolysis, suggests that the rate 546 

of degradation of chymosin-derived peptides by starter culture/adjunct peptidases rather than 547 

the concentration of chymosin-derived peptides per se, is the rate-limiting step affecting the 548 
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development of FAA in regular Cheddar cheese without adjunct culture. The accelerating 549 

effect of adjunct Lactobacillus on FFA development is consistent with previous studies on 550 

full-fat and reduced-fat Cheddar cheeses (Børsting et al., 2012; Fenelon et al., 2002). 551 

Fracture stress (σf) and firmness (σmax) correlated positively with intact αS1-casein (r = 552 

0.86, df = 22) and inversely with pH 4.6-SN (r = 0.80, df = 22) in the CL-cheeses. Hence, the 553 

CLCC cheese was firmest while the CLBC2.5 was softest. The effects of coagulant on the 554 

fracture properties concur with those from previous studies comparing CC with BC in 555 

Cheddar (Bansal et al., 2009; Govindasamy-Lucey et al., 2010), reduced-fat Cheddar 556 

(Børsting et al., 2012), and the effect of increasing level of added BC in Meshanger (de Jong, 557 

1977) or Mozzarella (Dave et al., 2003). Such effects are consistent with an attenuation of the 558 

calcium-phosphate para-casein network of cheese commensurate with the hydrolysis of αS1-559 

casein (Guinee, 2016). Creamer, Zoerb, Olson, and Richardson (1982) concluded that the 560 

sequence of residues f14-24 of αS1-casein is strongly hydrophobic and contributes to 561 

extensive interaction of para-casein molecules within the network; hence, its cleavage by 562 

chymosin leads to an  overall weakening of the cheese matrix, making it more prone to 563 

deformation on compression.  Nevertheless, O’Mahony et al. (2005) concluded that the 564 

softening of Cheddar cheese during early ripening (21 days post manufacture) was essentially 565 

independent of the hydrolysis of αS1-casein at Phe23–Phe24 and was instead correlated more 566 

closely to the partial solubilisation of the colloidal calcium phosphate cross-linking of the 567 

casein constituting the para-casein network of the curd.   568 

Surprisingly, coagulant did not alter the fracture properties of the AC-cheeses, despite 569 

having had a similar effect on αS1-casein degradation in both CL- and AC-cheeses.  This 570 

prompts the question why cheeses having similar composition and levels of primary 571 

proteolysis αS1-casein degradation) behaved so differently during large strain deformation? 572 

The difference may reside on how the effects of proteolysis are influenced by pH.  The values 573 
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of σf and σmax in cheese increase with pH in the range 5.0 to 6.0 (Visser, 1991; Watkinson et 574 

al., 2001), an effect most likely associated with the deposition of serum calcium and 575 

phosphate as insoluble calcium phosphate (Guinee et al., 2000) that binds to, and enhances, 576 

the cross-linking of the casein molecules. It is probable that the effect of pH, which increased 577 

in all AC-cheeses from 5.2 to ~5.8–6.0 during ripening, is dominant, negating the influence 578 

of the difference in the concentration of intact αS1-casein between the ACCC, ACBC1 and 579 

ACBC2.5 cheeses. Of course, validation of such a hypothesis would require a study of the 580 

interactive effects of pH and proteolysis in model cheese systems where calcium content and 581 

residual chymosin are maintained constant.  582 

Apart from the above, other effects associated with altering coagulant and adding 583 

adjunct culture included changes in the concentration of total FFAs. The addition of the 584 

adjunct starter culture and increasing the level of added BC improved grading comments, as 585 

confirmed by the 270 day-old ACBC2.5 receiving the most favourable comments. 586 

Descriptions assigned to the latter cheese included ‘smooth’ texture and ‘sweet’ flavour 587 

notes. The positive effects of adding a Lb. helveticus adjunct on the flavour of reduced-fat 588 

Cheddar cheese have also been found by others (Børsting et al., 2012; Fenelon et al., 2002) 589 

for reduced-fat Cheddar cheese and  Møller, Rattray, & Ardö (2013) for reduced-salt Cheddar 590 

made with camel chymosin, where it reduced the concentration of bitter peptides at 280 d.   591 

 592 

5.  Conclusion 593 

 594 

The effect of coagulant type (bovine chymosin, BC; camel chymosin, CC) or level (at 595 

regular or increased levels for BC, i.e., BC1 or BC2.5) on the texture and functionality of 596 

half-fat, half-salt Cheddar-style cheese made using a control culture, CL, or an adjunct-597 

containing starter culture, AC, was investigated. The results showed coagulant type and level 598 
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affected the levels of intact αS1-casein, pH 4.6-SN, FAAs, pH and fracture properties to an 599 

extent depending on the culture type used. Notably, the texture (reduction in fracture stress 600 

and firmness) was improved on lowering the content of intact αS1-casein in cheese made 601 

using the CL culture by increasing the level of added BC; an opposite effect occurred on 602 

replacing BC with CC. These effects were not observed in cheese made with the AC culture, 603 

perhaps of their relatively high pH. Nevertheless, cheeses made using the AC culture had 604 

higher levels of pH 4.6-SN, lower firmness and fracture stress, and higher heat-induced 605 

flowability than the corresponding cheeses made using the CL culture.  Moreover, the adjunct 606 

culture in combination with a higher dosage of BC resulted in the 270 day-old cheese having 607 

a ‘sweet flavour’ and being generally more ‘pleasant’.  Hence, the use BC at an elevated level 608 

in combination with an adjunct culture (Lb. helveticus) provides a means of improving the 609 

quality of reduced-fat, reduced-salt Cheddar cheese.  610 
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Figure legends 1 

 2 

Fig. 1. Changes in pH of half-fat, half-salt Cheddar-style cheeses made with control culture, 3 

CL (closed symbols) or adjunct culture, AC (open symbols)  and using different coagulant 4 

treatments: bovine chymosin at the regular level, BC1 (�,) or at 2.5 fold the regular level, 5 

BC2.5 (�,�), or camel chymosin at the regular level, CC (�,�). Values are the means of 6 

three replicate trials; error bars represent standard deviations of the mean. 7 

 8 

Fig. 2. Urea-polyacrylamide gel electrophoretograms of half-fat, half-salt Cheddar-style 9 

cheeses after for 30, 120, 180 or 270 d at 8 °C. The cheeses were made with control starter 10 

culture, CL (lanes 1–3) or adjunct culture, AC (lanes 4–6) and using different coagulant 11 

treatments: bovine chymosin at the regular level, BC1 (lanes 1, 4) or at 2.5-fold the regular 12 

level, BC2.5 (lanes 2, 5); or camel chymosin at the regular level, CC (lanes 3, 6). Sodium 13 

caseinate (lane NaCn), loaded at an equivalent weight of protein (4.25 mg per lane) was 14 

included as an unhydrolysed casein control. In each panel, the cheeses, defined in Table 2, 15 

are: CLBC1, lane 1; CLBC2.5, lane 2; CLCC, lane 3; ACBC1, lane 4; ACBC2.5, lane 5; 16 

ACCC, lane 6. Protein bands were identified according to Mooney et al. (1998) and 17 

McSweeney et al. (1994): 1, β-casein(f106–209) (γ2); 2, β-casein(f29–209) (γ1); 3, β-18 

casein(f108–209) (γ3); 4, β-casein; 5, β-casein(f1–192); 6, αS1-casein; 7, αS1-casein(f102–19 

199); 8, αS1-casein(f24–199); 9, αS1-casein(f121–199); 10, αS1-casein(f33–*).  20 

 21 

Fig. 3. Changes in levels of pH 4.6 soluble-nitrogen (pH 4.6-SN; a,b) and free amino acids 22 

(FAA; c,d) of half-fat, half-salt Cheddar-style cheeses made with control culture, CL (closed 23 

symbols) or adjunct culture, AC (open symbols)  and using different coagulant treatments: 24 

bovine chymosin at the regular level, BC1 (�,) or at 2.5 fold the regular level, BC2.5 25 
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(�,�), or camel chymosin at the regular level, CC (�,�). Presented values are the means of 26 

three replicate trials; error bars represent standard deviations of the mean. 27 

 28 

Fig. 4. Changes in fracture stress (a,b), firmness (c,d) and extent of flow on heating (e,f) of 29 

half-fat, half-salt Cheddar-style cheeses made with control culture, CL (closed symbols) or 30 

adjunct culture, AC (open symbols)  and using different coagulant treatments: bovine 31 

chymosin at the regular level, BC1 (�,) or at 2.5 fold the regular level, BC2.5 (�,�), or 32 

camel chymosin at the regular level, CC (�,�). Presented values are the means of three 33 

replicate trials; error bars represent standard deviations of the mean. 34 

 35 

 36 

 37 
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Treatments and manufacturing details of experimental half-fat, half-salt Cheddar-style 

cheese. a 

Cheesmaking Control culture 
(CL) 

 Adjunct culture (AC) 

 CLBC1 CLBC2.5  CLCC ACBC1 ACBC2.
5 

ACC
C 

Details of cheesemaking steps        
Starter culture  CL CL  CL CL CL CL 
Adjunct culture  - -  - AC AC AC 
Chymosin type/level BC1 BC2.5  CC BC1 BC2.5 CC 
Chymosin added as:        

mL L-1 0.18 0.45  0.13 0.18 0.45 0.13 
IMCU L -1 36 90  26 36 90 26 
CU L-1 milk 7.4 18.5  7.3 7.4 18.5 7.3 

Temperature at set (°C) 31 28  31 31 28 31 
pH at set 6.52 6.53  6.52 6.54 6.53 6.53 
Gel firmness at cut (Pa) 25 25  25 25 25 25 

        
Time of cheesemaking stages (mins)       

Curd residence (from cut to whey drainage) 168 169  165 182 195 175 
Cheddaring (from whey drainage to milling) 113 125  108 105 123 110 
Total make time (from starter addition to 
milling) 

354 270  343 380 375 358 

 

a Abbreviations are: CL, control starter culture, consisting of Lactococcus lactis subsp. lactis and 

Lactococcus lactis subsp. cremoris; AC, adjunct culture consisting of CL plus Lactobacillus 

helveticus as adjunct; IMCU, international milk clotting units, as stated on the label supplied with 

coagulant; CU, chymosin units, as measured experimentally and defined in the Materials and 

Methods. Cheese codes are: CLBC1, CLBC2.5 and CLCC refer to the cheeses made using CL 

culture with bovine chymosin at the regular level (CLBC1) or at 2.5-fold the regular level 

(CLBC2.5), or with camel chymosin (CLCC) at the regular level; the matching variants made the 

AC culture are similarly denoted.  
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Table 2 

Effect of coagulant on the composition and pH of 14 day-old half-fat, half-salt Cheddar-style cheeses made 

using control or adjunct culture. a 

Compositional factors Control culture (CL)  Adjunct culture (AC) 
 CLBC1 CLBC2.5 CLCC  ACBC1 ACBC2.5 ACCC 
Moisture (g 100 g-1)  43.6 43.5 43.5  43.5 43.5 43.7 
Protein (g 100 g-1) 33.8 33.8 33.7  33.6 33.5 33.5 
Fat (g 100 g-1) 15.8 15.7 15.5  15.7 15.6 15.7 
MNFS (g 100 g-1) 51.8 51.6 51.5  51.6 51.6 51.8 
FDM (g 100 g-1) 28.0 27.7 27.4  27.9 27.7 27.8 
NaCl (g 100 g-1) 0.94 0.93 0.92  0.96 0.91 0.93 
S/M (g 100 g-1) 2.2 2.1 2.1  2.2 2.1 2.1 
Lactose (g 100 g-1) 0.05 0.06 0.05  0.04 0.05 0.04 
Total lactate (g 100 g-1) 1.5 1.5 1.5  1.5 1.5 1.5 
Ca (mg 100 g-1) 1108 1091 1104  1113 1116 1116 
P (mg 100 g-1)  523 546 563  573 574 612 
pH 5.20 5.23 5.21  5.20 5.21 5.18 
 

a Abbreviations are: MNFS, moisture-in-non-fat-substances; FDM, fat-in-dry-matter; S/M, salt-in-moisture; 

Ca, calcium; P, phosphorous. Cheese codes are: CLBC1, CLBC2.5 and CLCC refer to the cheeses made 

using CL culture (Lactococcus lactis subsp. lactis and cremoris) with bovine chymosin at the regular level 

(CLBC1) or at 2.5-fold the regular level (CLBC2.5), or with camel chymosin (CLCC) at the regular level; 

the matching variants made the AC culture  (CL + Lactobacillus helveticus) are similarly denoted. Data are 

the mean values of three replicate trials; values within a row  did not significantly differ (P < 0.05) for any 

of the measured factors.  
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Table 3 

Statistical significances (P-values) for effects of coagulant and ripening time on microbiology, 

lactose metabolism and pH in half-fat, half-salt Cheddar-style cheeses made using control- (CL) or 

adjunct- (AC) culture. a 

 

Factor Starter NSLAB Lb. 
helveticus 

Lactose Total 
lactate 

pH 

CL culture       
Main plot       

Coagulant (C) - -  - - ** 
Sub-plot       

Ripening time (RT) *** ***  *** *** *** 
Interaction (C × RT) - -  - - *** 
       
AC culture       
Main plot       

Coagulant (C) - - - - - * 
Sub-plot       

Ripening time (RT) *** *** *** *** *** *** 
Interaction (C × RT) - - - - - *** 
 

a Abbreviation: NSLAB, non-starter lactic acid bacteria. Degrees of freedom (df): 2 for coagulant; 3 

for ripening time except in the case of pH where there were 5; 6 for interaction of coagulant and 

ripening time except in the case of pH where there were 10. Significance levels: *, P < 0.05; **, P < 

0.01; ***, P < 0.001.  
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Table 4 

Statistical significances (P-values) for effects of coagulant and ripening time on primary and 

secondary proteolysis, and fracture and cooking properties in half-fat, half-salt Cheddar-style 

cheeses made using control- (CL) or adjunct- (AC) culture. a  

Factor αS1-casein β-casein pH 4.6-SN FAAs Fracture 
stress 

Firmness Fracture 
strain 

Flow EW 

CL culture          
Main plot          

Coagulant (C) *** - * ** * * - - - 
Sub-plot          

Ripening time (RT) *** * *** *** *** *** *** *** ** * 

Interaction (C × RT) * - * * - * - - - 
          
AC culture          
Main plot          

Coagulant (C) *** - - - - - - - - 
Sub-plot          

Ripening time (RT) *** * *** *** *** *** ** *** ***  
Interaction (C × RT) ** - - - - - - - - 
 

zAbbreviations are: pH 4.6-SN, pH 4.6 soluble nitrogen; FAA, free amino acids; EW, work 

required to stretch the heated cheese to 380 mm. Degrees of freedom (df) 2 for coagulant; 4 for 

ripening time; 8 for interaction of coagulant and ripening time. Significance levels: *, P < 0.05; 

**, P < 0.01; ***, P < 0.001.  
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Table 5 

Changes in percentage of intact αS1- and β-casein in half-fat, half-salt Cheddar-style cheeses made 

using control or adjunct culture. a 

Casein Control culture (CL)    Adjunct culture (AC) 
 CLBC1 CLBC2.5 CLCC  ACBC1 ACBC2.5 ACCC 

30 day-old cheese        
Intact β-casein 13.9a 15.9a 14.9a  14.3a 14.7a 15.6a 
Intact αS1-casein 14.0a 10.0b 18.8a  15.5b 11.4b 21.2a 
αS1-casein (f24-199) 11.7a 13.3a 6.6b  11.2b 14.9a 4.1c 

120 day-old cheese        
Intact β-casein 14.8a 14.4a 13.8a  13.5a 13.3a 13.7a 
Intact αS1-casein 9.3b 7.0b 15.0a  8.3b 7.6b 18.9a 
αS1-casein (f24-199) 14.1a 11.8a 10.6a  12.7a 11.0a 12.4a 

180 day-old cheese        
Intact β-casein 9.1a 9.3a 10.1a  12.4a 11.0a 10.9a 
Intact αS1-casein 7.2b 4.4c 11.5a  8.2b 7.1b 15.0a 
αS1-casein (f24-199) 9.4a 7.1b 9.8a  11.8a 10.9a 12.7a 

270 day-old cheese        
Intact β-casein 8.2a 6.3b 8.8a  8.8a 7.5b 10.9a 
Intact αS1-casein 6.4b 3.5c 11.2a  7.8b 6.8b 12.9a 
αS1-casein (f24-199) 8.6a 6.7b 9.6a  11.8a 10.2b 11.4a 

 

a Cheese codes are: CLBC1, CLBC2.5 and CLCC refer to the cheeses made using CL culture with 
bovine chymosin at the regular level (CLBC1) or at 2.5-fold the regular level (CLBC2.5), or with 
camel chymosin (CLCC) at the regular level; the matching variants made the AC culture are 
similarly denoted. Data are the mean values of three replicate trials; values within a row relating to 
CL-cheeses or to AC-cheeses and not sharing a common lower-case superscript differ 
significantly (P < 0.05). 
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Table 6 

Grading assessment of 120 and 270 day-old half-fat, half-salt Cheddar-style cheeses made using 

control or adjunct culture. a 

Cheese  
code 

Grading comments 

120-day old cheese  270-day old cheese 

CLBC1 Good texture, hint of 
bitterness, low-salt 

 Steady texture, slightly dry, 
tastes like a young cheese 

CLCB2.5 Good cheese, smooth texture, 
poor finish  

 Smooth texture, good body, 
subtle sweet notes  

CLCC Slight curdy texture, good 
flavour, salty finish 

 Dry mouth-feel, clean flavour, 
low-fat 

ACBC1 Good cheese, sweet flavour 
notes, low-salt 

 Steady texture, sweet flavour 
notes, low-fat 

ACBC2.5 Smooth texture, sweet flavour 
notes, rounded flavour 

 Very good cheese, smooth 
texture, sweet flavour notes  

ACCC Curdy texture, plain cheese, 
not Cheddar-like 

 Steady texture, slightly dry 
mouth-feel, pleasant sweet 
flavour with sharp finish 

 

a Cheese codes are: CLBC1, CLBC2.5 and CLCC refer to the cheeses made using CL culture with bovine 

chymosin at the regular level (CLBC1) or at 2.5-fold the regular level (CLBC2.5), or with camel chymosin 

(CLCC) at the regular level; the matching variants made the AC culture are similarly denoted. 
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