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A B S T R A C T

An analysis into the impact of milk production, stock numbers, infrastructural equipment, managerial proce-
dures and environmental conditions on dairy farm electricity and water consumption using multiple linear
regression (MLR) modelling was carried out. Electricity and water consumption data were attained through the
utilisation of a remote monitoring system installed on a study sample of 58 pasture-based, Irish commercial dairy
farms between 2014 and 2016. In total, 15 and 20 dairy farm variables were analysed on their ability to predict
monthly electricity and water consumption, respectively. The subsets of variables that had the greatest pre-
diction accuracy on unseen electricity and water consumption data were selected by applying a univariate
variable selection technique, all subsets regression and 10-fold cross validation. Overall, electricity consumption
was more accurately predicted than water consumption with relative prediction error values of 26% and 49% for
electricity and water, respectively. Milk production and the total number of dairy cows had the largest impact on
electricity consumption while milk production, automatic parlour washing and whether winter building troughs
were reported to be leaking had the largest impact on water consumption. A standardised regression analysis
found that utilising ground water for pre-cooling milk increased electricity consumption by 0.11 standard de-
viations, while increasing water consumption by 0.06 standard deviations when recycled in an open loop system.
Milk production had a large influence on model overprediction with large negative correlations of −0.90 and
−0.82 between milk production and mean percentage error for electricity and water prediction, respectively.
This suggested that overprediction was inflated when milk production was low and vice versa. Governing bodies,
farmers and/or policy makers may use the developed MLR models to calculate the impact of Irish dairy farming
on natural resources or as decision support tools to calculate potential impacts of on-farm mitigation practises.

1. Introduction

GDP (Gross Domestic Product) growth within developing countries
is fuelling a forecasted 20% increase in global consumption of milk and
dairy products by 2050 (Bruinsma and Alexandratos, 2012). In pre-
paration for the abolishment of the European Union milk quota system
in April 2015, the Irish government identified the potential for a 50%
increase in milk production by 2020 over 2007–09 levels (DAFM,
2010). With dairy products and ingredients valued at €3bn to the Irish
economy in 2014, the increased production should be sensitive to the
use of natural resources to ensure the sustainable growth of Ireland’s
dairy industry (DAFM, 2016). The related impact is twofold: (1) much
of Ireland’s dairy farm water is supplied by groundwater boreholes to
safeguard a consistent, reliable supply of adequate pressure (O’Connor
and Kean, 2014). Since 7.42 L of water per litre of milk are consumed

on average (Shine et al., 2018), the water demand will rise dramatically
in line with milk production which may cause local water shortages
during periods of little rainfall, thus placing additional pressure on the
public water supply. (2) in Ireland, a strong positive correlation exists
between milk production and electricity consumption with 38.84 watt-
hours (Wh) per litre of milk consumed on average (Shine et al., 2018).
Similarly, the electricity consumption of three Finnish dairy farms
varied between 37 and 62Wh kg−1 milk, with milk cooling and milk
harvesting being the two largest energy consuming processes
(Rajaniemi et al., 2017). Without an effective mitigation strategy, dairy
farm electricity costs per litre of milk may increase, as dairy farm in-
frastructure may not be optimally configured for the increased milk
production levels. Similarly, increased electricity consumption during
daytime or peak hours may have negative effects on national grid loads
as well as on dairy farm electricity costs in a dynamic pricing
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environment (Upton et al., 2013).
Milk price volatility and environmental constraints are forcing

farmers to produce milk at lower costs with a lower overall environ-
mental footprint. Empirically predicting overall electricity and total
dairy farm actual water consumption (leak inclusive) may allow for an
efficient and comprehensive means of calculating dairy farm electricity
and water (E&W) consumptions as metering equipment and/or large
input mathematical models are replaced by a small number of high
prediction yielding, empirically derived coefficients, allowing con-
sumption values to be easily calculated. The ability to efficiently predict
dairy farm E&W consumption supports the sustainable growth of
Ireland’s dairy farms, which is of benefit to governing bodies, policy
makers, dairy farmers and Irish dairy industry stakeholders.

Current state-of-art electricity prediction on Irish dairy farms is
mechanistic in nature (Upton et al., 2014), capable of predicting total
CO2 emissions, electricity costs and consumption, predicting the latter
to< 10%. Large scale mechanistic modelling would require an ex-
haustive data collection process to collect specific data related to plate
heat exchanger milk: water ratios, water temperatures, milking times,
installed lighting capacity etc. (Upton et al., 2014). On the other hand,
an empirical model for dairy farm electricity consumption would re-
place this large number of input variables with a small number of
highly predictive numerical coefficients. This approach was undertaken
in Southern Italy, where a MLR model was developed for predicting
annual dairy farm related electricity consumption to within 11.4%
utilising 285 dairy farms (Todde et al., 2017). Similarly, MLR models
were developed to predict the individual and combined electricity
consumption of the main electrical components (vacuum pumps, re-
frigeration compressors, water heaters, and air compressor) of a single
farm using 14 years of metered data (Edens et al., 2003). Edens et al.
(2003) were capable of explaining 62% of the variability of the com-
bined electricity consumption of the main electrical components. Con-
currently, Edens et al. (2003) concluded that quantity as opposed to the
quality of milk produced had a far greater impact on electricity con-
sumption with the number of cows milked and ambient temperatures
having lesser statistical impacts.

Research regarding dairy farm water prediction has primarily fo-
cused on developing linear regression models for daily cow drinking
water requirements within confined dairy systems (coefficient of de-
terminations ranging from 0.39 to 0.75) (Cardot et al., 2008; Meyer
et al., 2004; Murphy et al., 1983). However, linear regression functions
have been developed for predicting annual Irish dairy farm green and
blue water volumes to 11.3% and 3.4%, respectively (Murphy et al.,
2017). These studies required meticulous data collection including
concentrates fed, direct water demand (for blue water prediction), dry
matter (DM) feed intake, live weight and sodium intake. In contrast to a
meticulous data collection approach, Higham et al. (2016) utilised
variables related to milk production, stock, environmental conditions
and infrastructural equipment from 23 New Zealand pasture based
dairy farms. Using this approach, they developed a partial least square

regression model (r= 0.90) for predicting total daily water consump-
tion (drinking plus parlour).

MLR modelling has also been applied within the agricultural do-
main for forecasting milk production with accuracies ranging from 9%
to 26% (Murphy et al., 2014; Sharma et al., 2006; Zhang et al., 2016).
MLR models utilising data related to milk production, stock, farm in-
frastructure, managerial processes and environmental conditions for
dairy farm E&W prediction can provide; (1) a decision support tool for
dairy farmers and/or policy makers to calculate the impact of potential
on-farm mitigation practises. (2) governing bodies with the ability to
conduct macro level E&W analysis or water risk assessments as vari-
ables may be gathered on a large scale without the requirement of
specialised equipment. (3) governing bodies and state agencies such as
the Department of Agriculture, Food and the Marine (DAFM) and Bord
Bia with the means of calculating the impact of Irish dairy farming on
natural resources for sustainability reporting and marketing Irish dairy
products abroad (DAFM, 2016).

This work utilised E&W consumption data collected from 58 Irish
commercial dairy farms and corresponding data related to milk pro-
duction, stock, farm infrastructure, managerial processes and environ-
mental conditions. Utilising this data, the objectives of this work were
to: (1) develop MLR models for both electricity and water (leak in-
clusive) consumption from an initial selection of variables, by em-
ploying a range of data mining techniques to extract variable subsets
which offer the greatest prediction accuracy on unseen consumption
data. (2) analyse the impact of the optimum variables on E&W con-
sumption through a standardised regression analysis. (3) analyse the
monthly prediction bias of each MLR model to determine factors, which
may influence model performance.

2. Materials & methods

In this study, data were acquired via both automated and manual
recording of E&W consumption through Teagasc, Moorepark (Cork,
Ireland). In total, 58 Irish pasture based dairy farms were monitored
throughout the period 1st Jan 2014 – 31st May 2016. Electricity con-
sumption was monitored on 56 farms (autonomous= 55, manual= 1)
while total water consumption was monitored on 51 farms (autono-
mous=20, manual= 31). Farms that had part of total consumption
acquired through manual reporting were classified as manually re-
corded dairy farms. The dairy farms used in this study had a mean herd
size of 116 cows and annual milk production of 621,702 litres in 2015
as described by Shine et al. (2018). Data utilised for MLR model de-
velopment are summarised in Table 1 below. This data includes milk
production, cow numbers, E&W consumption data and related key
performance indicators, at a monthly resolution. On average, 51,421 L
of milk was produced per month, which resulted in a consumption of
2094 kWh of electricity and 361m3 of water on average. Regarding
dairy farm infrastructure, 47 (84%) of the dairy farms utilised for de-
veloping the electricity MLR model employed a direct expansion bulk

Table 1
Population descriptions for monthly electricity and water consumption, milk production, dairy cows and related key performance indicators.

Variable Unit Min Mean Median Max IQR SD SEM

Milk yield Litre 213 51,421 48,016 204,756 42,407 32,452 863
Dairy cows n 28 114 102 300 50 41 1
Electricity kWh 199 2,094 1,818 7,786 1,350 1,094 31

Wh Lm−1 8.10 73.19 39.82 3,314.64 31.68 164.97 4.70
kWh Cow−1 1.98 18.35 18.14 45.36 7.78 6.02 0.17

Water m3 51 361 308 1575 217 218 7
Lw Lm−1 1.67 13.42 6.63 542.22 6.82 34.18 1.14
m3 Cow−1 0.51 3.29 2.95 23.50 1.83 1.90 0.06

IQR= Inter-quartile range, SD= Standard deviation, SEM=Standard error of the mean.
Wh Lm−1=Watt-hours per litre of milk. kWh Cow−1=Kilowatt-hours per dairy cow.
Lw Lm−1= Litres of water per litre of milk. m3 Cow−1=Cubic meter of water per dairy cow.
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tank with the remaining nine (16%) employing an ice bank milk cooling
system. Concurrently, 46 of the 51 farms (90%) utilised for the devel-
opment of the water MLR model pre-cooled milk through a plate cooler,
either through ground water or ice-cold water (through employing an
ice chiller). Of these 46 dairy farms, plate cooler water was recycled
throughout the farmyard in an open loop system on 40 farms while a
further three farms recycled plate cooler water (either ground or ice
cold water) through a closed loop. A further three farms did not recycle
plate cooler water.

Data were considered to have noise present due to the inherent
nature of data recording where there are many exogenous factors af-
fecting consumption readings. The water consumption data in parti-
cular were susceptible to noise due to: (1) over 60% of farms manually
reporting consumption on a monthly basis, which prevents adjustment
in the event of a leak and (2) some exogenous factors that affect cow
drinking water on pasture based dairy farms were outside the scope of
this research. Factors such as live weight and sodium intake affecting
cow drinking water as well as soil type, altitude and stocking rates af-
fecting the dry matter (DM) intake of a cow’s diet and thus cow
drinking water (Hanrahan et al., 2017) were not considered.

The methodology flow from the initial variables considered
(Table 2) to the performance calculation of each variable
subset allowing the optimum variable subset to be selected is outlined
in Fig. 1. The process may be categorised into three sub-sections: (1) a
variable selection section where initial variables considered are pre-
sented with the methodology employed to extract those, which yield
high predictive power (Section 2.1). (2) a section discussing All Subsets
Regression (ASR) where MLR models were developed for all possible
subsets of those selected variables (Section 2.2). (3) a section describing
methods utilised for MLR validation and performance accuracy calcu-
lations (Section 2.3). All statistical processes were carried out using
MATLAB 2016b.

2.1. Variable selection

In total, 15 potential variables were analysed for electricity pre-
diction modelling while 20 variables were analysed for water prediction
modelling as presented in Table 2. These variables were related to; milk
production and stock (variable IDs: 1–3), infrastructural equipment (4,
5, 9:21 and 24:27), managerial procedures (6 and 23) and environ-
mental data (7, 8 and 22). Milk production data throughout the analysis
period was recorded (litres) by the milk processors. Herd size (total on-
farm dry and lactating dairy cows) data were attained for each farm
through the Irish Cattle Breeding Federation (ICBF, 2016). Monthly
mean minimum temperature (°C), mean maximum temperature (°C)
and precipitation levels (mm) were obtained from Met Éireann (Met
Éireann, 2017) for five metering stations with data from the nearest

neighbouring station used for each farm. A Teagasc technician com-
pleted a survey on each farm to acquire data related to on-farm infra-
structural equipment and managerial processes. The frequency of hot
washing milk lines (HzHW) was normalised to the number of hot wa-
shes per month based upon a 30 daymonth.

ASR was employed to determine the subset of variables, which best
predict E&W consumption, as described by Elliot et al. (2016). ASR
calculated the prediction accuracy of all possible subsets of variables,
and selected the subset which resulted in the greatest accuracy through
k-fold cross validation (discussed in Section 2.3) based upon a pre-de-
termined criterion. However, it was too computationally expensive to
analyse all possible subsets of 15 and 20 variables for E&W, respec-
tively. Thus, all initial variables underwent a univariate selection pro-
cess before model development to reduce the variable space by ex-
cluding variables which add little predictive power. It was then feasible
to carry out ASR to extract the most accurate variable subset.

2.1.1. Univariate variable selection
A univariate variable selection approach was undertaken to identify

highly correlated variables for linear prediction. For categorical vari-
ables (such as whether an ice bank or direct expansion milk cooling
tank was used), a difference in monthly consumption per dairy cow
(minimum effect size= 0.1) and maximum P value of 0.001 was re-
quired between categories for selection. The effect size measured
strength of the standardised difference between population means, ex-
pressing the difference in units of standard deviations (Daly and Cohen,
1988). Concurrently, a test for a relationship between monthly E&W
consumption and continuous variables such as milk production was
carried out with a maximum p value limit of 0.001 employed alongside
a minimum correlation coefficient (r) of 0.4 required. This method
extracts highly correlated variables for MLR development as established
and discussed in previous research (Shine et al., 2018).

Multicollinearity (Elliot et al., 2016) is a correlation existing be-
tween the predictive variables whereby models developed from colli-
near data may lead to erroneous system analysis (Akhil and Kang,
2013). To analyse the presence of multicollinearity within the set of
variables, collinear variables were removed through stepwise iterative
Variance Inflation Factor (VIF) (Eq. (1)) analysis as in previous litera-
ture in this research space (Todde et al., 2017).

=

−

VIF
R

1
1j

j
2

(1)

where the VIFj is the VIF value for the jth variable. VIF was calculated
from the reciprocal of the inverse of R2 from the regression equation
developed from all other variables. The VIF for all included variables
was calculated and variables with the largest VIF above the threshold of

Table 2
List of initial dairy farm variables for model development.

Variable ID Variable description No. of farms Variable ID Variable description No. of farms

Electricity Water Electricity Water

1 Number of dairy cows 56 51 15 Total number of scrapers 56 –
2 Number of lactating cows 56 51 16 Supply water flow rate – 44
3 Milk production 56 51 17 Automatic parlour washing – 51
4 Number of parlour units 56 51 18 Rain water collection – 51
5 Total water heater volume 54 50 19 Plate cooler water for recycled in open loop – 51
6 Frequency of hot Washing 56 51 20 Winter building troughs leaking – 51
7 Mean minimum ambient temperature 56 51 21 Field troughs ballcock high or low flow – 49
8 Mean maximum ambient temperature 56 51 22 Precipitation – 51
9 Ice cold water utilised for pre-cooling 56 – 23 Time spent parlour washing daily – 42
10 Ice bank or direct expansion bulk tank 56 – 24 Field trough pipe diameter – 46
11 Ground water utilised for pre-cooling 56 – 25 Wash pump hose type – 51
12 Total bulk tank volume 56 – 26 Field troughs average volume – 49
13 Number of Air Compressors 56 – 27 Wash down tank capacity – 43
14 Number of vacuum pumps 56 –
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5 removed (Herrig et al., 2015). This process was repeated until the VIF
value for all variables were below the threshold of five.

2.2. All subset regression

Once the univariate variable selection process was performed, ASR
was carried out to allow for the selection of optimum variable subsets.
ASR is an exhaustive approach, creating separate MLR models for all
possible subsets of variables without repeats. The number of possible
variable subsets to be analysed (Eq. (2)) doubles with every additional
variable considered.

= −C 2 1n (2)

where, C represents the total number of possible subsets of n predictor
variables.

2.2.1. Data pre-processing
No pre-processing methods were employed to replace missing data

points. Hence, all missing data iterations (dependent or predictor
variables) were removed, resulting in a clean dataset for variable se-
lection. Concurrently, non-milking months (data points with zero milk
production) were excluded in the model development to reduce the
coefficient of variation of milk production and thus inherent noise
within the E&W datasets. Prior to model development, data from the jth
subset (illustrated in Fig. 1) were pre-processed to remove erroneous
data points (outliers), which may have had a negative effect on coef-
ficient calculations and thus on model accuracy. The presence of out-
liers can be attributed to a range of factors such as meter faults, leakage,
human error, etc. For each subset of variables, data related to each
variable was standardised to a mean value of zero and standard de-
viation of one before the dataset was checked for outliers using the
Density Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm (Ester et al., 2010).

DBSCAN marks three types of points: core (z), border (y) and out-
liers (x) in a multidimensional space (Fig. 2 presents these concepts in
two-dimensional space). A core data point has at least a specified

number (MinPts) of neighbouring points within a fixed radius ε. A
border data point has less than MinPts neighbouring data points but lies
within ε radius of a core data point. Outliers are neither core nor border
points, which lie alone in low-density regions in the geometrical space.
The DBSCAN algorithm selects a core data point and begins to form a
cluster by identifying all other core and border data points that are
reachable from it.

The selection of appropriate values for ε and MinPts parameter va-
lues is an important consideration when using DBSCAN. Increasing the
value of ε typically leads to an increase in the number of data points in
each cluster. On the other hand, the greater the value ofMinPts required
to form a cluster, the greater the proportion of data identified as out-
liers. The desired ε parameter value was calculated using a k-dist
method (Ester et al., 2010). Firstly, a MinPts parameter value of four
was prescribed for all subsets, as k-dist graphs for k values above four
have been found to not significantly differ and require considerably
greater computational power (Ester et al., 2010; Malathi and
Rajarajeswari, 2014). The k-dist method calculated the distance from
each data point to its MinPts nearest neighbour. Distances were sorted
(smallest to largest), curve plotted and a line calculated from maximum
to minimum distance points. The knee point (where a valley occurs
along the k-dist curve) corresponded to the desired ε value. The knee
point was defined as the point with the maximum perpendicular dis-
tance between the line and the graph (Satopää et al., 2011).

2.2.2. MLR development
MLR models describe the linear relationship between multiple

predictor variables for the prediction of a single dependent variable, as
is in Eq. (3). MLR equations were developed for each month and de-
scribed the best fit line which minimised the sum of the squared error of
the vertical deviations from each observed data point to the line.

= + + + …+Y ε α X α X α Xi i i i i i ni ni1 1 2 2 (3)

where Yi is electricity or water consumption for month i, εi is the cor-
responding intercept term, …a a a, , ,i i ni1 2 are the prediction coefficients
and …X X X, , ,i i ni1 2 are the predictor variable values for the ith month for
the nth variable. Linear coefficients were calculated on a monthly basis
coinciding with the availability of monthly milk production and stock
data.

An important criterion for MLR model coefficients is the normality
of standardised model residuals about zero (Ngo, 2012). Non-normal
residuals are common when coefficients are derived from non-normal
data. Similarly, a small number of data points may push or pull the best
fit line in a particular direction, skewing prediction values. Thus, if
residuals failed a one-sample Kolmogorov-Smirnov test against a
normal distribution (p < 0.001), values outside three standard devia-
tions of the mean were excluded, coefficients re-calculated and re-
siduals re-analysed. If residuals remained non-normal, the standard
deviation limit for excluding outliers decreased in 0.25 increments
thereafter until residual normality was found. This ensured the nor-
mality of standardised model residuals about zero.

Univariate
Variable
Selection

Dependent
Variable
(Electricity
or Water)

All possible
combinations
of selected
variables

Variable
Subset j

Outliers
Removed
(DBScan)

MLR
development
using 10-fold
cross validation

Subset j
performance
= mean across
k folds

j = 1, 2, …2n - 1

All Subsets Regression & Variable Subset Performance CalculationVariable Selection

Fig. 1. Schematic of methodology flow from raw data to model validation and performance calculation.

Fig. 2. Determining outliers using DBSCAN in a 2-dimensional space.
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2.3. MLR validation and performance

The prediction accuracy of each variable subset was calculated
through a stratified k-fold cross validation (k=10) approach, as de-
picted in Fig. 3. Data were split into k sections or ‘folds’ of approxi-
mately equal size, where each fold contained an equal number of
readings for each month. Cross fold validation is an iterative processes
whereby the model performance is evaluated for each fold. For the ith
iteration (i=1: k), MLR coefficients were calculated on a training da-
taset consisting of data from k-1 folds (full dataset excluding the ith fold)
while prediction accuracy was assessed on a test set consisting of the
remaining fold (test set of unseen data (ith fold)). This process was re-
peated k times, until the prediction accuracy was calculated on each of
the k folds. Overall model prediction performance criteria (E) was
calculated as the mean value across all folds. Conducting k-fold cross
validation for each variable subset allowed for the variable subset,
which offered the greatest accuracy in predicting unseen electricity
consumption to be selected.

Model bias was evaluated according to mean percentage error (MPE
(%)) and mean square prediction error (MSPE) (decomposed into mean
bias (MB), line bias (LB) and unexplained random variation (RV) per-
centage according to their proportion contribution to MSPE) (Bibby and
Toutenburg, 1977). Model precision was evaluated according to root
mean squared error (RMSE) (square root of MSPE) (Bibby and
Toutenburg, 1977), relative prediction error (RPE (%)) (RMSE ex-
pressed as a percentage of the mean actual electricity or water value)
(Rook and Gill, 1990) and concordance correlation coefficient (CCC)
(Lin, 2016). These criteria were employed in cognate studies analysing
model prediction in agricultural applications (Baudracco et al., 2013;
Hanrahan et al., 2017; Todde et al., 2017; Upton et al., 2014). RPE
computes the ratio of the absolute error with respect the mean actual
value while CCC measures the strength of agreement between actual
and predicted values. Models with RPE values greater than 20% are
considered to have poor prediction capability, values between 10% and
20% suggest acceptable prediction and values lower than 10% indicate
satisfactory prediction performance (Fuentes-Pila et al., 1996). CCC
values greater than 0.90 suggest the strength of agreement between
actual and predicted values is excellent, values between 0.80 and 0.90

considered substantial, while values between 0.65 and 0.80 are con-
sidered moderate and poor if lower than 0.65 (McBride et al., 2005).
Model selection was based upon the subset of variables which offered
the greatest accuracy with respect to RPE.

The results section may be divided into three sub-sections: (1) de-
scriptive statistics for the most accurate variable subsets for E&W
consumption. (2) a standardised regression analysis to determine the
effect of each input variable on E&W consumption prediction. (3) MPE
is presented according to each month with respect to mean and stan-
dard deviation of milk production. MPE values for each month were
normalised according to the mean monthly E&W consumption values as
large percentage error values during months of low consumption may
have low impacts regarding annualised consumption prediction errors.

3. Results and discussion

3.1. MLR models

3.1.1. Electricity
The univariate variable selection method reduced the variable space

from 15 to ten highly correlated variables. Although highly correlated
with electricity consumption, the VIF analysis identified the number of
milking cows to be collinear (VIF > 5) with the remaining variables
and was thus excluded from further analysis. Although both the utili-
sation of ice-cold water for milk pre-cooling and the number of parlour
units were found to impact electricity consumption, these variables
were not included in the variable subset which optimised the prediction
of unseen electricity consumption. The most accurate MLR model
configuration for electricity consumption prediction contained seven
variables, as shown in Table 3a. This subset comprised of the total
number of dairy cows, milk production, the total water heater volume,
HzHW, whether an ice bank (IB) or direct expansion (DX) bulk tank was
employed, whether ground water (gW) was utilised for pre-cooling and
the number or air compressors. This combination of variables shows
similarities to research carried out by Edens et al. (2003) as both
models found milk production to be a key input variable. However, the
number of cows milked and the monthly max temperature were input
variables in Edens et al. (2003) and were excluded in the optimum MLR

Fig. 3. Overview of k-fold cross validation method.

Table 3
Electricity and Water MLR prediction accuracy.

Variable IDs RPE CCC MPE r RMSE MSPE MB LB RV n Outliers removed

(a) Electricity
1,3,5,6,10,11,13 26.1% 0.84 −8.4% 0.85 543 kWh 295,605 1% 0% 99% 1155 2.3%

(b) Water
1,3,4,17,19,20 49.4% 0.47 −18.1% 0.52 175m3 30,839 1% 0% 99% 892 0.9%
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in this study. The optimum MLR model in this study resulted in a RMSE
value of 543 kWh, capable of predicting monthly electricity consump-
tion to within 26.1% (RPE) with an CCC value of 0.85 and MPE value of
-8.4%, as shown in Table 3a. Consequently, this model was above the
20% accuracy threshold to be considered having acceptable prediction
capability with regard its RPE. However, the strength of agreement
(CCC) between actual and predicted values was considered substantial.
Good model correlation with poor absolute error suggests that: (1)
prediction may be overly sensitive to certain variable coefficients
causing over and/or under shooting and (2) steady state error effects
(consistent under/overprediction with good response) may be the root
cause of the poor absolute prediction capabilities of the MLR model.
This may be explained by the coarse nature of some input variables
such as whether ground water is used for pre-cooling (yes|no) as op-
posed to an exact water to milk ratio. In comparison to cognate studies,
the electricity model (RPE=26.1%) was found to be far less accurate
than that developed by Todde et al. (2017) (RPE=11.4%), however,
this discrepancy may be explained by the different prediction resolu-
tions, validation methodology and incorporation of a cubed term.
Concurrently, the electricity model (r= 0.84) was found to be more
accurate than that developed by Edens et al. (2003) (r= 0.79), even
with this study calculating accuracies on unseen data.

The calculated MLR coefficients for the developed electricity model
can be found in Table 4 below.

3.1.2. Water
The univariate variable selection method reduced the variable space

from 20 to seven highly correlated variables. No variable was excluded
due to multicollinearity. However, although the number of milking
cows was highly correlated with water consumption, this variable was
not included in the variable subset, which optimised the prediction of
unseen water consumption. The addition of the number of milking
cows, to the optimum subset of variables may have resulted in an
overfitting model, thus reducing its predictive accuracy on unseen data.
The most accurate MLR model configuration for water consumption
prediction contained six variables: the total number of dairy cows, milk
production, the number of parlour units, automatic parlour washing,
whether gW was utilised for pre-cooling in an open loop system and
whether water troughs were reported to contain leaks, as shown in
Table 3b. The main difference between the water model developed in
this study and that of Higham et al. (2016) is the lack of any meteor-
ological variable inputs in the model developed in this study. The model
developed by Higham et al. (2016) included: maximum daily tem-
perature, evapotranspiration, solar radiation, milk solids, milk volume
and the milking parlour type. Although mean minimum and maximum
ambient temperature and precipitation were considered, no meteor-
ological variable resulted in a univariate correlation above the required
threshold to be considered for further analysis. Concurrently, both

models found milk production to be a key input variable. The optimum
MLR water model in this study resulted in a RMSE value of 175m3,
capable of predicting monthly water consumption to within 49.4%
(RPE) with an CCC value of 0.52 and MPE value of −18.1%. Conse-
quently, this MLR model exhibits poor predictive capability with regard
to the RPE (RPE > 20%) and CCC (CCC < 0.65) precision scales. In
comparison to Higham et al. this water model predicted total water
consumption less accurately; however, this may be due to differences in
resolution and/or Higham et al. adjusting for water leakage as a pre-
processing step.

The calculated MLR coefficients for predicting water consumption
on dairy farms can be found in Table 5 below.

3.2. Regression analysis

Standard regression coefficients (Fig. 4) were calculated by trans-
forming each variable vector to a mean value of zero and standard
deviation of one, thus eliminating units. The standardised regression
coefficients were calculated for the entire dataset to analyse the aver-
aged impact of each variable throughout the year as opposed to the
impact on a monthly basis. Standardised coefficients measure how
many standard deviations E&W will change per standard deviation
change of the predictor variable. This allows for comparisons to be
made on the impact of each variable on E&W consumption (Schroeder
et al., 1996). A variable with a positive standard regression coefficient
represents a subsequent increase in consumption with an increase in the
value of the variable input and vice versa. Note: for categorical vari-
ables, the binary input of each category (0 or 1) impacts the sign of the
regression coefficient.

3.2.1. Electricity
As shown in Fig. 4a, the total number of dairy cows has the largest

effect on electricity consumption with one standard deviation change
resulting in 0.42 standard deviation change in electricity consumption.
Milk production had the second largest effect with one standard de-
viation change resulting in 0.29 standard deviation change in electricity
consumption. These results reflect recent findings whereby variances in
electricity consumption outside of milking processes are best explained
by stock numbers and milk production volumes (Shine et al., 2018).
Similarly, milk harvesting and cooling are two of the largest energy
consuming processes on dairy farms (Murgia et al., 2013; Rajaniemi
et al., 2017). The remaining five variables had the following effect on
electricity consumption (in decreasing order of impact): the HzHW
(0.15), the number of air compressors (0.13), whether ground water
(gW) was utilised (Yes= 0, No=1) for pre-cooling (0.11), whether an
IB or DX milk tank (DX=0, IB=1) was employed (0.09) and the water
heater volume (0.08). Whether gW was utilised for pre-cooling and
whether an IB or DX milk tank was employed for milk cooling were

Table 4
MLR model coefficients for predicting monthly electricity consumption on dairy farms.

Equation input No. of dairy cows Milk yield Cooling system Milk pre-cooling No. of air compressors HzHW Total water heater volume Constant
n m3 DX=0, IB=1 Yes= 0, No=1 n Hot washes/month L –

Jan 9.73 26.30 −664.67 −17.21 −79.28 24.82 −0.54 251.36
Feb 13.34 9.66 70.02 110.83 69.72 28.20 −0.61 −69.41
Mar 12.21 9.64 302.18 240.52 273.16 17.48 0.23 5.22
Apr 10.01 8.27 409.51 184.04 316.18 10.52 1.18 −94.57
May 11.05 4.76 421.59 391.02 401.69 8.85 1.93 −187.64
Jun 9.61 7.88 429.57 427.05 366.19 8.16 1.60 −289.57
Jul 13.82 2.27 288.78 467.28 349.60 8.08 1.72 −341.83
Aug 8.58 11.30 187.61 439.87 343.01 13.11 1.14 −340.06
Sep 5.55 15.31 205.52 410.73 292.61 9.11 1.55 −294.28
Oct 6.98 14.30 124.08 335.28 267.98 9.21 1.68 −253.44
Nov 6.06 30.47 30.84 246.73 191.45 13.22 0.38 −192.87
Dec 4.94 27.40 −207.29 233.63 171.06 20.66 1.03 −90.16

MLR coefficients for each input variable, for each month are presented above. Note input variable units below each input heading.
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categorical variables and thus required binary inputs. The binary input
associated with each category (e.g. DX=0, IB= 1) determined whe-
ther a positive or negative standard coefficient was calculated. How-
ever, the absolute impact remained constant. A large correlation coef-
ficient (r= 0.51, p < 0.001) has previously been reported between
dairy farm electricity consumption and HzHW, hence its predictive
impact on consumption (Shine et al., 2018). Milk cooling was the
highest electricity consuming process responsible for 29% of overall
demand (Shine et al., 2018). Thus, data related to milk cooling (whe-
ther an IB or DX bulk tank was employed on farm and whether gW is
utilised for milk pre-cooling) was seen to impact electricity consump-
tion. These results suggest that IB milk cooling systems consume greater
amounts of electricity than DX systems as a positive standard coefficient
was calculated for the binary input of one for IB systems. This may also
be interpreted as dairy farms with DX milk cooling systems consumed
0.09 standard deviations less electricity than their IB counterparts. This
result was reflective of recent findings where Ice bank systems have
been found to consume 32% more electricity for milk cooling than
standard DX systems due to the high energy demand of its refrigeration
unit (Shine et al., 2018). Concurrently, farms that did not pre-cool milk
with water consumed a greater magnitude of electricity than farms
without pre-cooling systems as a positive standard coefficient was cal-
culated for the binary input of one for farms which did not pre-cool
milk. This finding was reflective of recent findings where farms which
employ gW for pre-cooling milk can reduce milk cooling electricity
consumption by 21% (Shine et al., 2018). Air compressors may be used
on farms for a variety of reasons including: powering milking machines,

cleaning equipment and piping systems and powering pneumatic tools.
However, previous studies have reported the contribution of air com-
pressors to overall consumption to be much lower (< 3%) than the
quantified impact on consumption found in this study (Shine et al.,
2018; Upton et al., 2013). Thus, the impact of air compressors on
electricity in this regression analysis may be inflated. Water heating is
responsible for 20% of total electricity consumption on Irish dairy farms
(Shine et al., 2018). Electricity consumption attributed to water heating
may be influenced by factors such as water tank volume and ambient
temperature. In this study, variances in water heating electricity con-
sumption were explained by water heater tank volume as naturally,
greater tank volumes require a greater magnitude of electricity to heat
to a specific temperature.

3.2.2. Water
As shown in Fig. 4b, milk production had the largest impact on

water consumption with one standard deviation change resulting in a
0.25 standard deviation change in water. This may be explained by
dairy cows requiring large volumes of drinking water during lactation
for milk production (Cardot et al., 2008). As mentioned in Section
3.1.2, milk production was also found to be a key input variable in the
MLR model developed by Higham et al. (2016). Automatic parlour
washing (No=0, Yes= 1) had the second largest effect with one
standard deviation change resulting in 0.24 standard deviation change
in water consumption. Automatic parlour washing systems are labour
efficient; however, these results suggest a significant increase in water
consumption as a result.

Table 5
MLR model coefficients for predicting monthly water consumption on dairy farms.

Equation input No. of dairy cows Milk yield No. of parlour units Auto parlour washing Open loop milk pre-cooling system Troughs leaking Constant
n m3 n No=0, Yes= 1 Yes=0, No=1 No=0, Yes=1 –

Jan −1.86 8.50 34.08 −79.97 58.96 158.67 −77.92
Feb −1.46 4.96 13.33 125.01 −16.51 183.65 123.33
Mar −0.34 0.47 13.07 142.20 −38.30 200.30 173.63
Apr 1.96 −0.83 9.29 97.35 −41.96 187.38 71.23
May 1.14 1.11 2.43 64.07 −51.74 220.80 112.08
Jun −0.05 0.77 11.99 77.30 −68.01 112.93 156.48
Jul 0.26 1.02 13.19 44.74 −48.02 18.96 104.87
Aug 0.59 0.21 7.23 77.64 −69.98 71.61 163.51
Sep 2.73 −2.32 −1.55 57.82 −71.18 39.82 170.33
Oct −0.16 4.32 −1.09 0.59 −79.88 −4.70 161.24
Nov −0.56 4.59 2.93 136.13 6.40 149.39 133.16
Dec −2.03 6.43 11.52 174.57 −42.20 0.41 210.99

MLR coefficients for each input variable, for each month are presented above. Please note input variable units below each input heading.

Fig. 4. Variable standardised coefficients for electricity and water models. Explanations of variable IDs are presented in Table 2.
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The remaining four variables had the following effect on water
consumption (in decreasing order of impact): whether winter building
troughs were reported to contain leaks (No= 0, Yes= 1) (0.20), the
number of parlour units (0.10), whether gW was utilised for pre-cooling
in an open loop system (Yes= 0, No=1) (−0.06) and the total
number of dairy cows (0.03). Winter building troughs which contain
leaks will clearly consume greater volumes of water as water is lost on a
consistent basis. A moderate correlation between water consumption
and the number of parlour units (r= 0.38, p < 0.001) has previously
been reported (Shine et al., 2018). Increasing the number of parlour
units will require a greater volume of water for washing of piping
systems and for washing an increased parlour floor area. Not utilising
gW for milk pre-cooling in an open loop system (recycling via external
wash down tank after milking) resulted in decreased water consump-
tion. This is reflective of recent literature reporting that farms which
recycled plate cooler water in open loop systems consumed 41% greater
volumes of water within the milking parlour than farms which do not
pre-cool (Shine et al., 2018). This was due to farms that recycle plate
cooler water in open loop systems consuming 119% more wash water
then those farms without pre-cooling facilities. Although a moderate
correlation existed between dairy cow numbers and water consump-
tion, a correlation also existed between the number of dairy cows and
milk production. As milk production had the largest impact on water
consumption, it is likely that variances due to the number of dairy cows
was contained in the milk production data and the low standard coef-
ficient presented here is due to non-lactating dairy cows consuming
water.

3.3. Monthly prediction performance

The overprediction tendencies of the E&WMLR models per month is
shown in Fig. 5 with associated mean and standard deviations of milk
production across the training datasets. For ease of reading, the right
side y-axis (MPE) has been inverted. Prediction tendency is represented
by MPE where negative values represent overprediction, the absolute
value of which represents the scale of over or under prediction. Both the
mean and standard deviation are presented to show the relative dis-
parity of the data for each month. Both values allow for the coefficient
of variation (ratio of standard deviation to the mean) to be calculated
(Brown, 1998). The greater the standard deviation to mean milk pro-
duction ratio, the greater disparity in the data.

The electricity model overpredicted consumption by 8.4%
(MPE=−8.4%) on average (Table 3a). Overprediction bias was am-
plified during the winter months, with January (−22%) and February
(−17%) the two least accurate months whereas June (−3%) and July
(−4%) were the two most accurate months, as shown in Fig. 5. The

water model overpredicted consumption by 18.1% on average
(Table 3b). Overprediction bias was amplified in January (−50%) and
December (−29%) the two least accurate months whereas August
(−8%) and July (−10%) were the two most accurate months (Fig. 5).

Regarding electricity, overprediction bias in months January,
February, November and December was amplified to a mean MPE value
of −14.5%. However, this value was improved by 62% (62% closer to
zero) during the primary milking months (March – October) to a MPE
value of −5.6%. Similarly for water, overprediction bias in months
January, February, November and December was amplified to a mean
MPE value of −25.6%, improving by 44% during the primary milking
months to a MPE value of −14.3%. Regarding the prediction of elec-
tricity consumption, a Pearson’s correlation coefficient value of −0.90
was calculated between milk production and MPE. Similarly, a
Pearson’s correlation of−0.82 was calculated between milk production
and MPE regarding water consumption prediction. These negative
correlations suggest that model overprediction was inflated when milk
production was low. During the March to October period, the standard
deviation of milk production was equal to 39% of mean milk produc-
tion (coefficient of variation), on average. During this period, most
farms are producing milk at close to maximum capacity, thus de-
creasing the coefficient of variation. In contrast, for the January,
February, November and December period, the coefficient of variation
was equal to 93% of mean milk production as some farms produced
little milk and some still produced large volumes. This may be attrib-
uted to a phase shift between farms where some milk all year round,
some dry off earlier/later than others and some farms begin milking
earlier/later. This resulted in increased electricity and water con-
sumption variance between farms, which in turn lead to an increase in
the overprediction percentage error of farms with low milk production.

3.4. Discussion overview

The electricity consumption model was 47% more accurate
(RPE= 26%) than water the consumption model (RPE=49%).
Electricity is a more deterministic type of consumption where con-
sumption may only take place when demanded from an electrical load.
On the other hand, water demand may be affected by leakage of water
pipelines or by exposure to irradiance and wind shear, increasing the
rate of water evaporation from field troughs. For pasture-based systems,
the availability of pasture for dairy cow feed affects the DM intake of a
cow’s diet and thus cow drinking water. In Ireland, the production of
fresh pasture is dependent upon a wide range of factors such as soil
type, altitude, local climatic conditions and stocking rates (Hanrahan
et al., 2017). As the DM feed intake, live weight and sodium intake
influences cow drinking water intake, it is feasible that this, along with
individual farm effects (leaks, location of water troughs etc.) con-
tributed to the poor prediction accuracy of dairy farm water con-
sumption.

A relationship between electricity and water consumption was
found through milk production, the number of total dairy cows and the
utilisation of ground water for pre-cooling milk. Increasing milk pro-
duction and dairy cow numbers resulted in increased electricity and
water consumption. Concurrently, utilising gW for pre-cooling milk
decreased electricity consumption by 0.11 standard deviations while
increasing total water consumption by 0.06 standard deviations when
recycled in an open loop system. This result was concurrent with pre-
vious research finding that farms which recycled plate cooler water in
an open loop system consumed 41% greater magnitudes of un-
warranted water within the milking parlour compared to farms which
had no pre-cooling (Shine et al., 2018).

The resulting electricity model may be differentiated from that de-
veloped by Todde et al. (2017) as: (1) their MLR model predicted an-
nual electricity consumption while this study focused on the prediction
of monthly consumption to allow for usage trends throughout the year
to be developed. (2) their MLR model included the number of lactatingFig. 5. Electricity and water MLR model bias and accuracy according to month.
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cows as the only input variable. Although this model was found to
predict dairy farm electricity consumption to within 11.4% (leave one
out cross validation), this model is unable to offer decision support for
farmers wishing to optimise their dairy farming infrastructure due to its
single variable input. I.e. the only variable which may be optimised is
the number of lactating cows.

Water footprinting is a popular method for attributing water con-
sumption to specific processes in the milk production cycle (Murphy
et al., 2016; Palhares and Pezzopane, 2015; Ridoutt and Pfister, 2010;
Zonderland-Thomassen and Ledgard, 2012). From an Irish perspective,
Murphy et al. (2016) utilised 24 dairy farms to calculate a volumetric
water footprint of 690 Lw kg−1 fat and protein corrected milk. To
perform this water footprint analysis, as well as to predict the blue
water proportion of freshwater demand (Murphy et al., 2017), the
physical metering of on-farm direct water consumption was required.
The metering of on-farm water consumption from a borehole or public
water supply can be expensive, requiring metering and network
equipment to be installed and maintained on each study farm. Thus,
this may limit the feasibility of large-scale water footprint analysis.
Water footprinting studies such as Ridoutt and Hodges (2017) (75
Australian dairy farms) and Zonderland-Thomassen and Ledgard
(2012) (167 New Zealand dairy farms) calculated stock drinking and
milking shed water requirements based upon averaged values calcu-
lated in benchmark studies (Stewart and Rout, 2007; Victorian
Government, 2010). However, an empirical water model for total dairy
farm (leak inclusive) water consumption, such as the one developed in
this study, may facilitate larger scale water footprinting to be carried
out, providing water consumption estimates specific to a particular
dairy farm’s size and infrastructure.

The water model was developed using a similar variable input ap-
proach as Higham et al. (2016). That is, developing the MLR model
using ‘easily attainable’ variables related to milk production, stock,
environmental conditions and infrastructural equipment (with this
study including inputs related to managerial processes). The benefit of
this approach is that MLR input variables can be gathered on a large
scale without specialised equipment. However, this study and that of
Higham et al. (2016) differs on three levels: (1) Higham et al. predicted
daily dairy farm water consumption. Due to the availability of milk
production figures and dairy cow numbers on a monthly basis, a
monthly prediction of dairy farm electricity and water was carried out
in this study. (2) Higham et al. adjusted water consumption using a
minimum night flow leak estimation method (Cheung et al., 2010;
Tabesh et al., 2005) whereby 26% of stock drinking water was classified
as leakage (highly variable between farms). Over 60% of farms in this
study manually reported water consumption on a monthly basis, which
prevented any adjustment for leaks to be carried out. This may explain
the improved prediction results of Higham et al.’s water model
(r= 0.90) compared to this study (r= 0.52).

Both Todde et al. (2017) and Higham et al. (2016) selected input
variables based upon their correlation with seen consumption data.
More specifically, Todde et al. (2017) selected variables that were
significantly (p value < 0.001) associated with electricity consump-
tion for inclusion in the final MLR model. Although a valid metho-
dology, for the final model, their method selected variables that ex-
plained the variability of seen data as opposed to unseen data. Thus,
their model inputs may not be the optimum model configuration for
future unseen data predictions. Similarly, Higham et al. (2016) selected
model input variables based upon their ability to explain variability of
seen data. Model development was carried out by firstly utilising 31
variables resulting in a model with 38 inputs, made up of continuous,
categorical (binary) and squared terms. Variables with the lowest in-
fluence (lowest standardised regression coefficient) on total water
consumption were iteratively removed to produce a model with a si-
milar R2 value to the original but with considerably less input variables.
Model accuracy was then carried out on unseen data using a leave-one-
out cross validation. Albeit a valid methodology, the optimum subset of

variables to predict unseen data may not have been selected. In com-
parison, the methodology presented in this study firstly incorporated a
univariate correlation analysis on the E&W datasets to extract high
predictive yielding variables similar to Todde et al. (2017) and Higham
et al. (2016). However, variables were selected for input to the final
MLR models based upon their ability to explain the variability of unseen
data. This was carried out through ASR with an embedded k-fold cross
validation, whereby the prediction accuracy was calculated through k-
fold cross validation for all possible subsets of high predictive yielding
variables. This method increased the probability that the optimum
variables were selected to calculate MLR coefficients for future pre-
dictions of unseen E&W data.

4. Conclusion

This paper presents results from the multiple linear regression
(MLR) modelling of Irish dairy farm electricity and water consumption
utilising data related to milk production, stock numbers, infrastructural
equipment, managerial processes and environmental conditions. The
prediction of electricity consumption, based on relative prediction error
(RPE), was found to be 47% more accurate than that of water con-
sumption, with RPE values of 26% and 49% for electricity and water,
respectively. Milk production, the number of total dairy cows and the
utilisation of ground water for pre-cooling milk were found to influence
both electricity and water consumption on dairy farms. Increasing milk
production and dairy cow numbers resulted in increased electricity and
water consumption while utilising ground water for pre-cooling milk
decreased electricity consumption by 0.11 standard deviations and in-
creasing total water consumption by 0.06 standard deviations when
recycled in an open loop system. Compared to the January, February,
November and December period, the electricity model offered a 62%
reduced overprediction of electricity consumption between months
March and October. Similarly, the water model offered a reduction of
44% in the overprediction during the March–October period when
compared to the January, February, November and December period.
During the January, February, November and December period, milk
production variance between farms increased, which lead to an increase
in the variance of electricity and water consumption between farms.
The developed MLR models may be used by governing bodies to cal-
culate the impact of Irish dairy farming on resource consumption for
international comparisons, marketing Irish dairy products abroad and/
or as decision support tools for farmers and/or policy makers to cal-
culate potential impacts of on-farm mitigation practises. Further work
will entail the development and analysis of the ability of various ma-
chine-learning algorithms to improve the prediction capabilities of
dairy farm electricity and water consumption.
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