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Highlight 

 

 Suckler beef calves had lower passive immunity compared to dairy calves 

 20% of suckler beef and 30% of dairy calves were treated for at least one disease 

event by 6 mo. of age. 

 Calves with lower passive immunity were at greater risk of a negative health event or 

poor growth 

 Test cut-offs for failure of passive transfer risk, based on health and growth outcomes, 

varied 

 

Abstract  

The study objectives were to: 1) evaluate the diagnostic performance of passive 

immunity tests for classification of failure of passive transfer (FPT) risk, based on their 

relationships with calf health and performance, and 2) describe the epidemiology of 

morbidity and mortality in suckler beef and dairy calves under Irish conditions. A total of 

1,392 suckler beef calves (n = 111 farms) and 2,090 dairy calves (84 farms) were included in 

this observational study. Blood samples were collected by jugular venipuncture. Serum 

samples were analysed for total IgG concentration using an ELISA assay, total protein 

concentration by clinical analyser (TP – CA), globulin concentration, zinc sulphate turbidity 

(ZST) units, total solids percentage by Brix refractometer (TS – BRIX), and total protein 

concentration by digital refractometer (TP – DR). Crude and cause-specific morbidity, all-

cause mortality, and standardised 205-days body weight (BW) were determined. Generalised 

linear mixed models were used to evaluate associations between suckler beef and dairy calves 

for morbidity, mortality, growth and passive immunity. Receiver operating characteristic 

(ROC) curves were constructed to determine optimal test cut-offs for classification of health 
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and growth outcomes. Overall, 20% of suckler beef and 30% of dairy calves were treated for 

at least one disease event by 6 mo. of age. Suckler beef calves had greater odds of bovine 

respiratory disease (BRD; odds ratio (OR), 95% confidence interval (CI): 2.8, 1.2 – 6.5, P = 

0.01), navel infection (5.1, 1.9 – 13.2, P < 0.001), and joint infection/lameness (3.2, 1.3 – 7.8, 

P = 0.01) during the first 6 mo. of life than dairy calves. In addition, from birth to 6 mo. of 

age, suckler beef calves had greater rates of navel infection (incidence rate ratio (IRR), 95% 

CI: 3.3, 1.3 – 8.4, P = 0.01), but decreased rates of diarrhoea (0.9, 0.2 – 0.9, P = 0.03) 

compared to dairy calves.  Optimal test cut-offs for classification of morbidity and mortality 

outcomes in suckler beef calves ranged from 8 to 9 mg/ml ELISA, 56 to 61 g/l TP – CA, 26 

to 40 g/l globulin, 12 to 18 ZST units, 8.4% TS – BRIX, and 5.3 to 6.3 g/dl TP – DR. 

Optimal test cut-offs for classification of morbidity and growth outcomes in dairy calves 

ranged from 10 to 12 mg/ml ELISA, 57 to 60 g/l TP – CA, 29 to 34 g/l globulin, 19 ZST 

units, 7.8 to 8.4% TS – BRIX, and 5.7 to 5.9 g/dl TP – DR.       

 

Abbreviations 

AIM = Animal Identification and Movement; AUC: area under curve; BRD = bovine 

respiratory disease; BW1 = first body weight; BW2 = second body weight; CI = confidence 

interval; DAFM = Department of Agriculture, Food and the Marine; ELISA = enzyme-linked 

immunosorbent assay; FPT = failure of passive transfer; ICBF = Irish Cattle Breeding 

Federation; Ig = immunoglobulin; IgG = immunoglobulin G; IRR = incidence rate ratio; KT 

= knowledge transfer; NPV = predictive value of negative test; OR = odds ratio; PAR = 

population at risk; PPV = predictive value of positive test; Q1BW = lower quartile for 

standardised 205-day body weight; RID = radial immunodiffusion; ROC = receiver operating 

characteristic; SE = sensitivity; SP = specificity; TP = total protein; TP – CA = total protein 

concentration by clinical analyser; TP – DR = total protein concentration by digital 
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refractometer; TS – BRIX = total solids percentage by Brix refractometer; ZST= zinc 

sulphate turbidity 
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1. Introduction 

Failure of passive transfer (FPT) of immunity occurs when the calf does not absorb 

sufficient colostral immunoglobulin (Ig) in the immediate post-natal period. Testing calves 

for FPT is an important step in monitoring the successfulness of colostrum management 

programmes and resolving on-going calf health problems (Godden, 2008; McGuirk, 2008). 

Assessments of FPT are usually completed during the first week of life, and calves should be 

at least 24 hours old before blood sample collection (McGuirk, 2005; Godden, 2008). Radial 

immunodiffusion (RID) is considered the gold standard test for determining immunoglobulin 

G (IgG) concentration in calf serum; however, it is a labour-intensive and expensive test to 

perform (Tyler et al., 1996; Godden, 2008). Several other laboratory-based or on-farm tests 

are available for FPT assessment. Some of these tests directly measure IgG concentration 

(Lee et al., 2008; Elsohaby et al., 2015; Gelsinger et al., 2015; Dunn et al., 2018); whereas, 

other tests indirectly estimate IgG content by measuring protein levels, other components in 

serum, or turbidity reactions (Tyler et al., 1996; Calloway et al., 2002; Deelen et al., 2014; 

Hernandez et al., 2016; Dunn et al., 2018).  

Passive immunity test results are generally categorised for FPT using test-specific cut-

off values. Serum IgG and total protein (TP) cut-off values most commonly used to classify 

dairy calves for FPT are 10 g/l (Gay, 1983) and 5.2 g/dl (Tyler et al., 1996; Calloway et al., 

2002). Other research groups have, however, examined associations between serum IgG or 

TP concentration with health outcomes, such as BRD and mortality risk, and proposed that 

higher cut-off values for FPT in dairy calves should be adopted (Virtala et al., 1999; 

Windeyer et al., 2014; Chigerwe et al., 2015). There is less of a consensus on the cut-off 

values for FPT classification in beef calves, with multiple IgG thresholds, ranging between 8 

and 27 g/l, being applied to describe varying levels of passive immunity (Wittum and Perino, 

1995; Filteau et al., 2003; Dewell et al., 2006). Moreover, cut-offs for tests that indirectly 
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estimate IgG concentration are most often established by simply identifying the test 

equivalent for 10 g/l serum IgG (Deelen et al., 2014; Hogan et al., 2015; Hernandez et al., 

2016; Cuttance et al., 2017a). More research is needed to validate test cut-off values, based 

on their relationships with key health and performance outcome measures, such as morbidity, 

mortality and growth.  

In Ireland, the most recent large-scale study on FPT in calves was conducted more 

than 3 decades ago (Fallon and Harte, 1987). With this earlier work, a sample of 4,130 

purchased Friesian male calves were assessed for FPT using the zinc sulphate turbidity (ZST) 

test, and 52 and 34 % of calves had less than 20 and 15 ZST units, respectively. More 

recently, O’Shaughnessy et al. (2015) documented that 22% of calves on 16 Irish suckler beef 

farms had FPT, which was defined as less than 20 ZST units. In addition, the All-Island 

Animal Disease Surveillance Programme has reported that between 38 and 66.5% of calf 

serum samples submitted annually to the regional veterinary laboratories in the Republic of 

Ireland and Northern Ireland have less than 20 ZST units (Department of Agriculture, Food 

and the Marine (DAFM) and Agri-Food and Biosciences Institute, 2010-2015). These passive 

surveillance estimates on FPT may not, however, truly reflect the overall national herd status 

because they are drawn from voluntary submissions, often from clinically ill calves or 

animals from herds with recurring calf health problems. Furthermore, there is no recent 

published information on the passive immune status of calves from modern genotypes in 

commercial Irish suckler beef and dairy farms.  Hence, there is a need for updated 

information on the FPT status of Irish calves. The primary objective of this study was to 

evaluate the diagnostic performance of passive immunity tests for FPT classification by 

identifying test cut-off values associated with increased risk of calf morbidity, mortality, or 

poor growth. A secondary objective was to describe the epidemiology of morbidity and 

mortality in suckler beef and dairy calves. 
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2. Materials and methods 

2.1. Ethical approval  

Project and individual authorisations, in accordance with European Union (Protection 

of Animals used for Scientific Purposes) Regulations 2012 (S.I. No. 543 of 2012) as amended 

and Directive 2010/63/EU, were obtained (Health Products Regulatory Authority, Dublin, 

Ireland (AE19132-P006)). All study procedures were also reviewed and approved by the 

Teagasc Animal Ethics Committee (TAEC-97).   

2.2. Data source 

Data were obtained from two studies: 1) a longitudinal study on herd-level factors 

associated with the health and survival of calves on Irish farms (hereafter referred to as the 

herd-level study) and 2), a longitudinal study on individual calf-level risk factors for 

morbidity in spring-born calves (hereafter referred to as the calf-level study. The herd-level 

study was conducted between July 1, 2014   December 31, 2015 and the calf-level study 

was conducted between January 1   December 31, 2016.  

2.3. Farmer recruitment and participation  

 Recruitment of farmers for the herd-level study occurred throughout spring 2014. 

Farmers volunteered to participate after learning about the study while attending a national 

knowledge transfer (KT) event or they were contacted directly by their Teagasc KT advisors. 

At the end of the recruitment efforts, 230 suckler beef and 103 dairy farmers expressed 

interest in participating in the herd-level study. Interested suckler beef farmers were stratified 

by location and a random number sequence was used to select 150 farms, proportional to the 

provincial distribution of Irish suckler beef herds (DAFM, 2013). All dairy farmers that 

expressed interest were selected to participate. Sample size calculations were not completed 

for the herd-level study; final sample size was determined based on logistical and financial 

resources.   
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 A total of 9 suckler beef and 8 dairy farms from the herd-level study were selected to 

participate in the calf-level study. These farms were selected based on the following criteria: 

1) herd had a spring calving pattern, 2) farmers had demonstrated their willingness and ability 

to maintain accurate project records during the herd-level study, and 3) some calf morbidity 

or mortality had been reported between 2012 and 2015. Sample size calculations were 

completed for the calf-level study in Stata ® 13.0 (StataCorp, College Station, Texas, USA) 

using preliminary data from the herd-level study to determine expected differences in 

morbidity. A final sample size of 450 suckler beef calves was determined, based on the 

following assumptions: occurrence of disease was expected to be 3-times greater among 

suckler beef calves with vs. those without the risk factor (54 vs. 18%), power of 80%, 

confidence of 95%, average of 50 suckler beef calves per herd, and adjustments for within-

herd clustering (intra-class correlation) and confounding of 0.1 and 15%, respectively. A final 

sample size of 880 dairy calves was determined, based on the following assumptions: 

occurrence of disease was expected to be 3-times greater among dairy calves with vs. those 

without the risk factor (51 vs. 17%), power of 80%, confidence of 95%, average of 100 dairy 

calves per herd, and adjustments for within-herd clustering (intra-class correlation) and 

confounding of 0.1 and 15%, respectively. 

2.4. Classification of calving pattern  

 Herd calving pattern was classified as either autumn, spring, or split calving. Cows in 

the autumn and spring calving herds were due to calve from July to December, and January 

to June, respectively. Cows in the split calving herds were due to calve any time during the 

year, but generally within two distinct calving periods. Of the suckler beef herds enrolled in 

the herd-level study, 7 were classified as autumn calving, 83 were classified as spring 

calving, and 60 were classified as split calving. Of the dairy herds enrolled in herd-level 

study, 82 were classified as spring calving and 21 were classified as split calving. All herds 
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enrolled in the calf-level study had a spring calving pattern. Data on all animal births and 

movements that occurred on the farms during herd-level and calf-level studies were retrieved 

from the Animal Identification and Movement (AIM; DAFM, Co. Dublin, Ireland) and Irish 

Cattle Breeding Federation (ICBF; Bandon, Co. Cork, Ireland) databases to verify the calving 

pattern for each herd.  

2.5. Farm visits and blood sample collection 

Farm visits were completed over two time periods: July 1, 2014  June 30, 

2015 for the herd-level study and January 1  June 30, 2016 for the calf-level 

study (Fig. 1). Autumn and spring calving herds enrolled in the herd -level study 

were visited once between July 1  December 31, 2014 and January 1  June 30, 

2015, respectively. Split calving herds enrolled in the herd -level study were 

visited once between July 1 – December 31, 2014 and then a second visit was 

arranged between January 1 – June 30, 2015. Each farm visit for the herd-level 

study was scheduled to coincide with a time when calves would be available for 

blood sample collection. Female and male calves between 1 and 21 days of age 

were eligible for blood sampling. A maximum of 12 calves were blood  sampled 

at the farm visit. In the event that more than 12 calves within the sampling age 

range were available, the youngest calves over 24 hours of age were blood 

sampled. Herds enrolled in the calf-level study were visited every 2 weeks 

during the 2016 spring calving season. At each farm visit , any calf that was at 

least 24 hours old, and had been born since the previous visit , was blood 

sampled.  

Blood samples were collected by jugular venipuncture into 8.5 ml 

vacutainers (BD Vacutainer Serum Separator Tube II Advance 367958 no 

anticoagulant, Unitech, Dublin, Ireland) using an 18-gauge needle. Samples were 
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allowed to clot and stored at 4ºC for 24 hours. Serum was harvested following 

centrifugation (1600 × g for 10 minutes at 4ºC) and then frozen at -20ºC.   

2.6. Serum sample analyses 

Serum samples were analysed using direct and indirect tests for assessment of passive 

immunity. Total IgG concentration was directly measured in the serum samples using a 

commercial ELISA (BIO K165 test kit, BioX Diagnostics, Jemelle, Belgium), as described 

by Dunn et al.  (2018). A clinical chemistry analyser (Olympus AU400, Tokyo, Japan) and 

test reagent kits (OSR6132 and OSR6102, Beckman Coulter Ireland Inc., Lismeehan, Co. 

Clare, Ireland) were used to quantitatively determine serum total protein (TP – CA) and 

albumin concentrations, as described by Earley et al. (2015). Globulin concentration was 

calculated for each serum sample as the difference between TP – CA and albumin 

concentration. Serum samples were analysed for ZST units, as described by McEwan et al. 

(1970). An optical Brix refractometer with automatic temperature compensation (RSG-

100ATC, Grand Index Solution Enterprise Limited, Hong Kong, China) was used to 

determine total solids percentage by Brix refractometer (TS – BRIX). A digital hand held 

refractometer with automatic temperature compensation (DR-303, Index Instruments Ltd, 

Cambridgeshire, UK) was used to determine total protein concentration by digital 

refractometer (TP – DR). 

2.7. Collection of health and growth data 

 Farmers enrolled in the herd-level and calf-level studies recorded birth, disease, health 

treatment, and death information on their calves using standardised recording sheets. Case 

definitions (Table 1) were provided to the farmers to assist with the classification of disease. 

Farmers were responsible for detecting, diagnosing, and administering treatment to any calf 

exhibiting clinical signs of disease, and encouraged to consult with their veterinarian when 

making health treatment decisions. The research team contacted the farmers every 2 to 4 
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weeks and reminded them to complete the project recording sheets. Nonetheless, despite this 

regular follow-up, health data were only available for calves on 84 suckler beef and 55 dairy 

farms from the herd-level study. All farmers for the calf-level study provided health data on 

their calves. Calves enrolled in the calf-level study were weighed twice using an electronic 

scale. The first body weight (BW1) was obtained at the first farm visit after birth. The second 

body weight (BW2) was obtained during a farm visit in autumn 2016. Animals were on 

pasture during this time. All BW2 measurements for suckler beef and dairy calves were 

collected before and after weaning, respectively.    

 2.8. Data handling and statistical analyses 

All data were analysed using SAS 9.4 (SAS Institute Inc., Cary, North Carolina, 

USA). The experimental unit of interest in all analyses was the individual calf.  

2.8.1. Passive immunity test results 

Passive immunity test results were initially examined on a continuous scale. 

Descriptive statistics, including medians, minimum and maximum values, and interquartile 

range, were generated (UNIVARIATE Procedure, SAS 9.4, SAS Institute Inc., Cary, North 

Carolina, USA). Correlations between test results were assessed using Pearson correlation 

coefficients. Generalised linear mixed models were constructed to evaluate associations 

between calf type (suckler beef vs. dairy) and the passive immunity test results. These data 

were modelled with a normal distribution, an identity link function, and a random effect to 

account for within-farm correlation (MIXED Procedure, SAS 9.4, SAS Institute Inc., Cary, 

North Carolina, USA). Calf type and sampling age were included as dichotomous and 

continuous explanatory variables, respectively, in each of the passive immunity test models. 

The assumption of linearity between sampling age and test results was assessed through the 

introduction of a quadratic term. The assumption of homoscedasticity was assessed by 

visually examining scatter-plots of the residuals against predicted values. Normality was 
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assessed using histogram and normal probability plots, and checking the residuals for 

skewness and kurtosis. A natural logarithm transformation was applied to help normalize the 

distribution of residuals for the TP – CA and TS – BRIX models. A square root 

transformation was applied for the globulin model. The Bonferroni adjustment was specified 

to account for multiple comparisons.      

2.8.2. Morbidity calculations and analyses 

Crude and cause-specific morbidity were determined using the health data collected 

from the project recording sheets. All health treatment data were reviewed and the following 

criteria applied to differentiate between disease events: long-acting antibiotics administered 

more than 7 days apart, or other medications administered more than 3 days apart were 

classified as separate disease events (Windeyer et al., 2014). Crude morbidity was defined as 

calves being treated for at least one disease event, attributed to any cause, excluding injury. 

Calves treated for illnesses other than diarrhoea, BRD, navel infection, or joint 

infection/lameness were categorised as receiving treatment for other disease events.   

Cumulative incidence and incidence rate of crude and cause-specific morbidity were 

calculated for the following age categories: birth to 1 mo. of age, 1 to 3 mo. of age, 3 to 6 mo. 

of age, and birth to 6 mo. of age. Both cumulative incidence and incidence rate were 

calculated as measures of disease frequency because the blood sampled calves represented a 

relatively dynamic population, with calves being lost to follow-up (ie. sold off the home 

farm, exported from Ireland, death, etc.) throughout the study period. Cumulative incidence 

was calculated as the number of calves treated for disease within each age category, relative 

to the number of calves at risk of disease (Dohoo et al., 2009). Incidence rate was calculated 

as the number of disease events (all occurrences) treated within each age category, relative to 

the total animal-time at risk (Dohoo et al., 2009). Animal-time at risk was calculated for each 

individual calf as the number of days from birth until it was either sold off the home farm, 
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died, or the observation period ended. Birth, movement, and death dates for the animal-time 

at risk calculations were retrieved from the project recording sheets, as well as the AIM 

(DAFM, Co. Dublin, Ireland) and ICBF (Bandon, Co. Cork, Ireland) databases. Total animal-

time at risk for all calves included within each age category was determined.  

Generalised linear mixed models were constructed to evaluate associations between 

calf type and morbidity within each age category. Initially, each morbidity response was 

treated as a dichotomous outcome variable (disease occurred or not) and these data were 

modelled with a binomial distribution, a logit link function, and a random effect to account 

for within-farm correlation (GLIMMIX Procedure, SAS 9.4, SAS Institute Inc., Cary, North 

Carolina, USA). Subsequently, each morbidity response was treated as a count outcome 

variable (number of disease events) and these data were modelled with a Poisson distribution, 

a log link function, offset as the natural logarithm of animal-time at risk, and a random effect 

to account for within-farm correlation (GLIMMIX Procedure, SAS 9.4, SAS Institute Inc., 

Cary, North Carolina, USA). Calf type was included as a dichotomous explanatory variable 

in each of the morbidity models. Unadjusted means and variance of the disease counts were 

examined for overdispersion.   

2.8.3. Mortality calculations and analyses 

All-cause mortality was determined using the death information collected on the 

project recording sheets. Moreover, since every Irish farmer is required to register each 

animal that dies on their farm, death data were also retrieved from the AIM (DAFM, Co. 

Dublin, Ireland) and ICBF (Bandon, Co. Cork, Ireland) databases. Therefore, mortality data 

were available for all calves that were blood sampled, except those that were exported out of 

the country within the first 6 mo. of life. Cumulative incidence and incidence rate of 

mortality for each age category was calculated. Associations between mortality within each 
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age category and calf type were evaluated using generalised linear mixed models. Methods 

used to construct the mortality models were the same as described above for morbidity. 

2.8.4. Growth calculations and analyses 

Standardised 205-day BW was calculated for each calf using the following formula, 

which was adapted from industry guidelines for standardising weaning weights (Beef 

Improvement Federation, 2016).  

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑠𝑒𝑑 205 − 𝑑𝑎𝑦 𝐵𝑊 =  [(
(𝐵𝑊2 − 𝐵𝑊1)

(𝐴𝑔𝑒 𝑎𝑡 𝐵𝑊2 − 𝐴𝑔𝑒 𝑎𝑡 𝐵𝑊1)
) ∗ 205 𝑑𝑎𝑦𝑠 + 𝐵𝑊1] 

An adjustment factor for dam age was not included. Descriptive statistics, including medians, 

minimum and maximum values, and interquartile range, were generated (UNIVARIATE 

Procedure, SAS 9.4, SAS Institute Inc., Cary, North Carolina, USA). A generalised linear 

mixed model was constructed to evaluate associations between calf type and standardised 

205-day BW. These data were modelled with a normal distribution, an identity link function, 

and a random effect to account for within-farm correlation (MIXED Procedure, SAS 9.4, 

SAS Institute Inc., Cary, North Carolina, USA). Calf type and BW1 were included as 

dichotomous and continuous explanatory variables, respectively, in the standardised 205-day 

BW model. A quadratic term was offered into the model, but not retained, to verify the 

assumption of linearity between BW1 and standardised 205-day BW. Homoscedasticity was 

checked using a scatter-plot of the residuals against the predicted values. The distribution of 

residuals was inspected using histogram and normal probability plots; no transformation was 

applied.  

2.8.5. Passive immunity test cut-off analyses 

The diagnostic performance of each test for classification of FPT risk in calves, based 

on relationships with morbidity, mortality and growth outcomes, was evaluated. In each of 

the test cut-off models, the odds of a negative health event or poor growth was the outcome 
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of interest and passive immunity test results were explanatory variables. Health and growth 

outcomes were as follows: morbidity (crude, diarrhoea, BRD, and other causes), mortality 

(all-cause) and growth. Other causes morbidity included navel infection, joint 

infection/lameness, and other disease events. A new dichotomous outcome variable for 

growth was created to identify calves that were within the lower quartile for standardised 

205-day BW (Q1BW). With the test cut-off analyses, morbidity and mortality outcomes for 

the following three time periods were evaluated: birth to 1 mo., birth to 3 mo., and birth to 6 

mo. of age. Only those calves that were followed for the entire time period or lost to follow-

up because of death were included in the morbidity and mortality test cut-off analyses. Any 

calf that was sold off the home farm or exported from Ireland was excluded from the 

corresponding morbidity and mortality analyses, respectively. For example, if a calf was sold 

during the second time period and exported during the third time period then it would have 

been excluded from the following test cut-off analyses: morbidity from birth to 3 mo., 

morbidity from birth to 6 mo., mortality from birth to 6 mo. An assumption was made that the 

loss of calves to follow-up occurred randomly, independent of passive immunity or health 

status.  

Receiver operating characteristic (ROC) curves were generated for each health and 

growth outcome variable (GLIMMIX and LOGISTIC Procedures, SAS 9.4, SAS Institute 

Inc., Cary, North Carolina, USA). Test cut-off analyses were not completed for any passive 

immunity test and outcome where the 95% confidence interval (CI) for area under the curve 

(AUC) included 0.5. Passive immunity test results were subsequently dichotomised as either 

≤ cut-off or not for each of the following: ELISA cut-offs from 5 to 25 mg/ml in 1 mg/ml 

increments, TP – CA cut-offs from 50 to 70 g/l in 1 g/l increments, globulin cut-offs from 20 

to 40 g/l in 1 g/l increments, ZST cut-offs from 5 to 25 units in 1 unit increments, TS – BRIX 

cut-offs from 7 to 11 % in 0.2 % increments, and TP – DR from 5 to 7 in 0.1 g/dl increments. 
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A series of generalised linear mixed models were constructed, with each morbidity, mortality 

and Q1BW outcome variable being modelled with a binomial distribution, a logit link 

function, and a random effect to account for within-farm correlation (GLIMMIX Procedure, 

SAS 9.4, SAS Institute Inc., Cary, North Carolina, USA). Separate models were constructed 

for suckler beef and dairy calves. Optimal test cut-offs for classification of health and growth 

outcomes were determined using maximum Youden index, which is calculated as sensitivity 

(Se) + specificity (Sp) – 1 (macro %ROCPLOT, SAS Institute Inc., Cary, North Carolina, 

USA). Epidemiologic test characteristics (Se and Sp) and predictive values were calculated 

for test cut-offs (Dohoo et al., 2009). 

3. Results  

3.1. Study population  

 An overview of the herd-level and calf-level studies is presented in Fig. 1. Initially, 

150 suckler beef and 103 dairy farms were enrolled in the herd-level study; however, 34 

farmers decided at a later date to withdraw from the study. Reasons provided for withdrawing 

included lack of time to complete project recording sheets (n = 8), leaving farming or no 

longer rearing calves (n = 3), off-farm work obligations (n = 2), personal reasons (n = 2), no 

handling facilities available (n = 1), and undisclosed reasons (n = 18). A total of 111 suckler 

beef and 84 dairy farms were visited during the herd-level study and blood samples were 

collected (Fig. 1). An additional 24 farms were to be visited; however, the research team was 

unable to coordinate these visits because no calves were available within the blood sampling 

age range, lack of farmer availability, or time constraints. With the calf-level study, 9 suckler 

beef and 8 dairy farms were visited every 2 weeks throughout the spring calving season so 

that calves could be blood sampled and weighed.  

Median herd size for the suckler beef farms included the herd-level and calf-level 

studies was 33 (min. = 5, Q1 = 21, Q3 = 49, max. = 127) and 50 (min. = 16, Q1 = 31, Q3 = 
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67, max. = 95), respectively. Median herd size for the dairy farms included the herd-level and 

calf-level studies was 106 (min. = 39, Q1 = 73, Q3 = 151, max. = 370) and 138 (min. = 88, 

Q1 = 111, Q3 = 161, max. = 277), respectively. Herd size was indirectly estimated using the 

total number of calves born on the farm during each study period. Herd mortality to 6 mo. of 

age (including perinatal deaths) on the suckler beef farms ranged from 0 to 31.6% (Q1 = 0, 

median = 4.7, Q3 = 9.8) and 0 to 13.3% (Q1 = 1.7, median = 6.0, Q3 = 7.4) during the herd-

level and calf-level studies, respectively. Herd mortality to 6 mo. of age (including perinatal 

deaths) on the dairy farms ranged from 0.9 to 50.5% (Q1 = 5.8, median = 8.9, Q3 = 12.7) and 

2.1 to 9.0% (Q1 = 4.1, median = 6.7, Q3 = 7.5) during the herd-level and calf-level studies, 

respectively.    

3.2. Passive immunity test results  

 Passive immunity test results for 1,392 suckler beef and 2,090 dairy calves were 

available for analysis (Fig. 1). Overall, 56.2% (1,958/3,482) and 43.8% (1,524/3,482) of 

these samples were collected as part of the herd-level and calf-level studies, respectively. 

Median age at blood sample collection for suckler beef and dairy calves was 10 (min. = 1, Q1 

= 6, Q3 = 14, max. = 21) and 9 (min. = 1, Q1 = 5, Q3 = 13, max. = 21) days, respectively. 

Suckler beef calves tended to have lower TP – DR results than dairy calves (P = 0.07; Table 

2). On all other tests for passive immunity, suckler beef calves had significantly lower mean 

values, as compared to dairy calves (P < 0.05; Table 2). There was variation in test results, 

with large ranges between minimum and maximum values. Passive immunity tests results 

were positively correlated, with Pearson correlation coefficients ranging from 0.53 to 0.96 

(ELISA vs. TP – CA: r = 0.82, ELISA vs. globulin: r = 0.85, ELISA vs. ZST: r = 0.65, 

ELISA vs. BRIX – TS: r = 0.77, ELISA vs. TP – DR: r = 0.64, TP – CA vs. globulin: r = 

0.96, TP – CA vs. ZST: r = 0.71, TP – CA vs. BRIX – TS: r = 0.93, TP – CA vs. TP – DR: r 

= 0.77, globulin vs. ZST: r = 0.72, globulin vs. BRIX – TS: r = 0.88; globulin vs. TP – DR: r 
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= 0.73, ZST vs. BRIX – TS: r = 0.65, ZST vs. TP – DR: r = 0.53, BRIX – TS vs. TP – DR: r 

= 0.76).  

3.3. Morbidity  

Morbidity data were available on 1,192 suckler beef and 1,733 dairy calves, but only 

for the period of time that they remained on their home farm. Crude and cause-specific 

morbidity for calves’ blood sampled on 84 suckler beef and 55 dairy farms are summarised in 

Table 3. In the first 1 mo. of life, suckler beef calves had greater cumulative incidence and 

incidence rates of navel (P < 0.001 and P < 0.001, respectively) and joint infection/lameness 

(P < 0.01 and P < 0.01, respectively) compared to dairy calves. Moreover, the odds and rate 

of suckler calves being treated for BRD (P < 0.01 and P = 0.02, respectively) between 1 and 

3 mo. of age were greater than that of dairy calves. Overall, from birth to 6 mo. of age, 

suckler beef calves had greater odds of BRD (P = 0.01), navel (P < 0.001) and joint 

injection/lameness (P = 0.01), as well as increased rate of navel infections (P = 0.01), over 

dairy calves. Conversely, the incidence rate of diarrhoea among dairy calves in the first 6 mo. 

of life was greater than that of suckler beef calves (P = 0.03).  

Median age at first treatment for crude morbidity in suckler beef and dairy calves was 

14 (min. = 0, Q1 = 8, Q3 = 43, max. = 155) and 13 (min. = 0, Q1 = 7, Q3 = 20, max. = 145) 

days, respectively. Median age at first treatment for diarrhoea in suckler beef and dairy calves 

was 13 (min. = 0, Q1 = 8, Q3 = 23, max. = 83) and 12 (min. = 0, Q1 = 7, Q3 = 19, max. = 

117) days, respectively. Median age at first treatment for BRD in suckler beef and dairy 

calves was 48 (min. = 0, Q1 = 31, Q3 = 96, max. = 155) and 20 (min. = 0, Q1 = 11, Q3 = 30, 

max. = 145) days, respectively. Median age at first treatment for navel infection in suckler 

beef and dairy calves was 7 (min. = 2, Q1 = 5, Q3 = 12, max. = 30) and 18 (min. = 0, Q1 = 6, 

Q3 = 27, max. = 35) days, respectively. Median age at first treatment for joint 

infection/lameness in suckler beef and dairy calves was 24 (min. = 5, Q1 = 11, Q3 = 52, max. 
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= 174) and 37 (min. = 7, Q1 = 20, Q3 = 91, max. = 93) days, respectively. Median age at first 

treatment for other disease events in suckler beef and dairy calves was 49 (min. = 1, Q1 = 16, 

Q3 = 73, max. = 153) and 27 (min. = 0, Q1 = 12, Q3 = 88, max. = 139) days, respectively. 

3.4. Mortality  

 All calves, with the exception of 103 dairy calves that were exported from Ireland, 

were followed for mortality until 6 mo. of age (Fig. 1). All-cause mortality for calves’ blood 

sampled between July 2014 and June 2016 is presented in Table 4. The odds of mortality 

between 1 and 3 mo. of age tended to be 1.8-times greater in suckler beef vs. dairy calves (P 

= 0.09). Suckler beef and dairy calves did not differ for cumulative incidence of mortality in 

any of the other age categories (P > 0.05). Median age at death for suckler beef and dairy 

calves was 51 (min. = 9, Q1 = 30, Q3 = 74, max. = 169) and 27 (min. = 6, Q1 = 18, Q3 = 74, 

max. = 170) days, respectively. More than half of the dairy calf deaths occurred within the 

first 1mo. of life; whereas, the majority of suckler beef calves died between 1 and 3 mo. of 

age. All suckler beef calf deaths occurred on the calves’ home farm; whereas 23% (16/69) of 

dairy calf deaths occurred after they had left the home farm.  

3.5. Growth   

 Growth data were collected for 450 suckler beef and 480 dairy calves enrolled in the 

calf-level study. Median age at BW1 for suckler beef and dairy calves was 9 (min. = 0, Q1 = 

5, Q3 = 13, max. = 21) and 9 (min. = 0, Q1 = 5, Q3 = 12, max. = 21) days, respectively. 

Median age at BW2 for suckler beef and dairy calves was 193.0 (min. = 113, Q1 = 177, Q3 = 

223, max. = 318) and 233 (min. = 152, Q1 = 211, Q3 = 244, max. = 265) days, respectively. 

Suckler beef calves had standardised 205-day BW ranging from 119.1 to 396.4 kg (Q1 = 

262.4, median = 289.2, Q3 = 317.3). Dairy calves had standardised 205-day BW ranging 

from 112.4 to 316.3 kg (Q1 = 175.6, median = 194.3, Q3 = 211.4). Suckler beef calves had 

significantly greater standardised 205-day BW, after controlling for BW1 and within-farm 
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correlation, than dairy calves (LSM, 95% CI: 268.4 kg, 253.3 – 283.4 vs. 202.8 kg, 187.0 – 

218.7, P < 0.001).  

3.6. Passive immunity test cut-offs  

 Optimal test cut-offs for suckler beef and dairy calves, associations with health and 

growth, and diagnostic performance measures are presented in Tables 5 and 6. Test cut-off 

analyses for all time points and outcomes are summarised in Supplementary Tables 1 and 2. 

Overall, Se and Sp of the passive immunity tests for classification of calves for health and 

growth performance varied, depending on the outcome of interest (Tables 5 and 6). Predictive 

values of positive tests (PPV) were relatively poor, ranging from 2.5 to 28.6% in suckler beef 

calves and 3.9 to 40.5% in dairy calves. Predictive values of negative tests (NPV) were 

generally good, ranging from 82.2 to 99.7% in suckler beef calves and 62.8 to 98.6% in dairy 

calves. Moreover, three-quarters of the optimal test cut-offs were associated with a PPV < 

10% and half had a NVP > 90%.  

3.6.1. ELISA cut-offs 

The ELISA cut-off values that optimised classification of suckler beef calves for 

subsequent morbidity and mortality were 8 and 9 mg/ml, respectively (Table 5). Suckler beef 

calves with ELISA ≤ 8 mg/ml had 4.5-times greater odds of BRD (P = 0.01) and 1.8-times 

greater odds of other causes morbidity (P = 0.05) in the first 1 mo. of life, as well as two-fold 

the odds of being treated for at least 1 disease event by 3 mo. of age (P < 0.001), as compared 

to those with ELISA > 8 mg/ml (Table 5). Moreover, the odds of suckler beef calves dying 

by 6 mo. of age were 2.8-times greater for those with ELISA ≤ 9 mg/ml vs. those above this 

threshold (P < 0.01; Table 5).  

 Dairy calves with ELISA ≤ 10 mg/ml had more than two-fold the odds of Q1BW than 

dairy calves with ELISA > 10 mg/ml (OR = 2.2, P < 0.01; Table 6). Dairy calves with ELISA 

≤ 11 mg/ml, as compared to those with a test result above this cut-off, had more than 
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threefold the odds of being treated for other causes morbidity by 1 mo. of age (OR = 3.3, P < 

0.01; Table 6). The odds of BRD treatment in the first 6 mo. of life were 2.4-times greater for 

dairy calves with ELISA ≤ 12 mg/ml vs. ELISA > 12 mg/ml (P < 0.01; Table 6). Conversely, 

dairy calves with ELISA ≤ 13 mg/ml had lower odds of diarrhoea between birth and 6 mo. of 

age than dairy calves with ELISA > 13 mg/ml (OR = 0.6, P < 0.01; Table 6).  

3.6.2. TP – CA cut-offs   

Optimal TP – CA cut-offs for classification of health and growth performance in 

suckler beef calves ranged from 56 to 61 mg/ml (Table 5). Suckler beef calves with TP – CA 

≤ 56 g/l had more than 6-times greater odds of BRD by 1 mo. of age compared to those with 

TP – CA above this cut-off (OR = 6.2, P < 0.01; Table 5). The odds of mortality between 

birth and 6 mo. of age for suckler beef calves with TP – CA ≤ 60 g/l was 4.3-times greater 

than that of calves with TP – CA > 60 g/l (P < 0.01; Table 5). In addition, suckler beef calves 

with TP – CA ≤ 61 g/l had 1.5-times greater odds of crude morbidity within 3 mo. of birth (P 

= 0.03) and 2.1-times greater odds of other causes morbidity by 6 mo. of age (P < 0.01) 

compared to suckler beef calves with TP – CA > 61 g/l (Table 5).  

Dairy calves with TP – CA ≤ 57 g/l, relative to those with > 57 g/l, had almost two-

fold the odds of Q1BW (OR = 1.9, P < 0.01) and threefold the odds of other causes morbidity 

(OR = 2.9, P < 0.01) by 1 mo. of age (Table 6). Moreover, dairy calves with TP-CA ≤ 60 g/l 

had 2.1-times greater odds of being treated for BRD within the first 6 mo. of life than those 

with TP – CA > 60 g/l (P = 0.02; Table 6). The odds of diarrhoea between birth and 6 mo. of 

age were 30% lower in dairy calves with TP – CA ≤ 66 g/l vs. TP – CA > 66 g/l (OR = 0.7, P 

= 0.04; Table 6).  

3.6.3. Globulin cut-offs 

 Globulin cut-offs that optimally categorised suckler beef calves for morbidity and 

mortality risk included 26, 32 and 40 g/l (Table 5). Suckler beef calves with globulin ≤ 26 g/l 
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had 1.6-times greater odds of crude morbidity by 3 mo. of age, as compared to those with 

globulin > 26 g/l (P = 0.02; Table 5). Globulin ≤ 32 g/l was associated with 6.3-times greater 

odds of BRD in the first 1 mo. of life (P = 0.02) and 3.4-times greater odds of dying by 6 mo. 

of age (P < 0.01) in suckler beef calves (Table 5). The odds of other causes morbidity by 1 

mo. of age were 3.1-times greater in suckler beef calves with globulin ≤ 40 g/l vs. those with 

greater concentrations of globulin (P = 0.02; Table 5). 

The odds of Q1BW in dairy calves with globulin ≤ 29 g/l were more than two-fold 

that of dairy calves with globulin > 29 g/l (OR = 2.2, P < 0.01; Table 6). Dairy calves with 

globulin ≤ 31 g/l, compared to those with globulin concentrations above this threshold, had 

2.8-times greater odds of other causes morbidity within 1 mo. of birth (P < 0.01; Table 6). In 

addition, dairy calves with globulin ≤ 34 g/l had 2.2-times greater odds of receiving BRD 

treatment by 6 mo. of age than dairy calves with globulin > 34 g/l (P = 0.02; Table 6). 

Furthermore, globulin ≤ 36 g/l was associated with lower odds of diarrhoea in dairy calves 

from birth to 6 mo. of age (OR = 0.6, P = 0.01; Table 6).   

3.6.4. ZST cut-offs  

 The odds of suckler beef calves with ZST ≤ 12 units being treated for at least 1 

disease event by 3 mo. of age were almost two-fold that of calves with > 12 ZST units (OR = 

1.8, P < 0.01; Table 5). Suckler beef calves with ≤ 14 ZST units had 11.2 and 3.4-times 

greater odds of BRD by 1 mo. of age (P < 0.01) and dying within 6 mo. of birth (P < 0.01), 

respectively, relative to those with ZST > 14 units (Table 5). Moreover, ZST ≤ 18 units was 

associated with 2.2-times greater odds of other causes morbidity in suckler beef calves up to 

1 mo. of age (P = 0.02; Table 5). 

 Dairy calves with ZST ≤ 19 units had almost threefold the odds of being treated for 

BRD in the first 6 mo. of life compared to dairy calves with > 19 ZST units (OR = 2.8, P < 

0.01; Table 6). In contrast, dairy calves with ZST ≤ 23 units had significantly lower odds of 
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diarrhoea from birth to 6 mo. of age than dairy calves with greater ZST (OR 0.6, P = 0.02; 

Table 6). 

3.6.5. TS – BRIX cut-offs 

 The optimal TS – BRIX cut-off for classifying the health status of suckler beef calves 

was 8.4% (Table 5). Suckler beef calves with TS – BRIX ≤ 8.4% had 7.2-times greater odds 

of BRD in the first 1 mo. of life (P < 0.01), and at least 1.5-times greater odds of crude 

morbidity (OR = 1.5, P = 0.02) and other causes morbidity (OR = 1.7, P = 0.03) by 6 mo. of 

age, as compared to suckler beef calves with a TS – BRIX > 8.4% (Table 5). The odds of 

suckler beef calves with TS – BRIX ≤ 8.4% dying within 6 mo. of birth were almost 

threefold that of suckler beef calves with TS – BRIX > 8.4% (OR = 2.8, P < 0.01; Table 5 

 Dairy calves with TS – BRIX ≤ 7.8% had almost 5-times greater odds of other causes 

morbidity in the first 1 mo. of life than those with TS – BRIX > 7.8% (OR = 4.7, P < 0.001, 

Table 6). The odds of dairy calves with TS – BRIX ≤ 8.4% being treated for BRD by 6 mo. 

of age (OR = 1.9, P = 0.05) or being classified as Q1BW (OR = 2.3, P < 0.01) were 

approximately twice that of calves with TS – BRIX > 8.4% (Table 6). In addition, TS – 

BRIX ≤ 9.4% was associated with 40% lower odds of diarrhoea in dairy calves between birth 

and 6 mo. of age (OR = 0.6, P = 0.03; Table 6).  

3.6.6. TP – DR cut-offs 

The TP – DR cut-off values that optimised classification of suckler beef calves for 

morbidity and mortality ranged from 5.3 to 6.3 g/dl (Table 5). Suckler beef calves with TP – 

DR ≤ 5.3 g/dl had almost 4-times greater odds of death by 6 mo. of age than calves with TP – 

DR > 5.3 g/dl (OR = 3.9, P < 0.01; Table 5). Suckler beef calves with TP – DR ≤ 5.8 g/dl, as 

compared to those with test results above this threshold, had 1.6-times greater odds of crude 

morbidity (P < 0.01) and 2.3-times greater odds of BRD (P = 0.01) in the first 6 mo. of life 

(Table 5). The odds of other causes morbidity by 3 mo. of age were also 2.5-times greater 
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among suckler beef calves with TP – DR ≤ 6.3 g/dl compared to those with > 6.3 g/dl (P = 

0.02; Table 5). 

Dairy calves with TP – DR ≤ 5.7 g/dl, relative to those with test results above this cut-

off, had 2.5-times greater odds of other causes morbidity in the first 1 mo. of life (P = 0.01; 

Table 6). The odds of dairy calves with TP – DR ≤ 5.9 g/dl being treated for BRD within 3 

mo. of birth (OR = 1.9, P = 0.04; Table 6) or exhibiting poor growth performance during the 

first 6 to 7 mo. of life (OR = 1.6, P < 0.01; Table 6) were almost twice that of dairy calves 

with TP –DR > 5.9 g/dl. Meanwhile, dairy calves with TP – DR ≤ 6.7 g/dl had 50% lower 

odds of being treated for diarrhoea by 6 mo. of age than those with TP – DR > 6.7 g/dl (OR = 

0.5, P = 0.01; Table 6). 

 

4. Discussion 

4.1. Passive immunity and test cut-offs 

 Overall, results of this study provide further evidence that calves with lower passive 

immunity test results are at greater risk of experiencing a negative health event or poor 

growth performance. This is in agreement with several other studies on passive immunity in 

suckler beef (Wittum and Perino, 1995; Dewell et al., 2006; Waldner and Rosengren, 2009; 

Homerosky et al., 2017) and dairy calves (Robison et al., 1988; Donovan et al., 1998; Virtala 

et al., 1999; Pithua and Aly, 2013; Windeyer et al., 2014).  

In the present study, when interpreted on a continuous scale, passive immunity test 

results for suckler beef calves were significantly lower than that of dairy calves. This 

response was unexpected, yet consistent across each test except TP – DR. Suckler beef cows 

generally produce higher quality colostrum, containing as much as 2.5-times more IgG/l, 

compared to dairy cows (Guy et al., 1994; Dunn et al., 2018). In addition, results from 

comparative studies have shown that beef calves typically achieve greater transfer of passive 
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immunity, with mean serum IgG concentration approximately two-fold that of dairy calves 

(Earley et al., 2000; Suh et al., 2003). These comparative studies were, however, conducted 

in research centres, where recommended best practices are likely to be adopted, and this may 

not reflect management conditions on some commercial farms. Pre-calving and colostrum 

management practices implemented on commercial farms vary, as well as there is large 

variation in colostrum quality between individual cows and by farm (Gulliksen et al., 2008; 

Morrill et al., 2012a; Cummins et al., 2016; Dunn et al., 2017). Several management practices 

and animal factors, including the timing and amount of colostrum fed, colostrum feeding 

method, time spent in the maternity area, breed, twin birth, dystocia, dam parity and health 

status, and herd size are known to be associated with the acquisition of passive immunity in 

calves (Perino et al., 1995; Trotz-Williams et al., 2008; Beam et al., 2009; Waldner and 

Rosengren, 2009; Vogels et al., 2013; Cuttance et al., 2017b). A risk factor analysis needs to 

be conducted to investigate which animal and herd-level factors potentially contributed to the 

observed differences in passive immunity between suckler beef and dairy calves in the 

present study.  

  The most commonly used cut-off for classifying dairy calves for FPT is 10 mg/ml 

serum IgG (Gay, 1983). Surprisingly, despite widespread adoption of this threshold, it was 

not derived empirically, but rather, based on field experience and a review of published 

literature. Similarly, McGuire and Adams (1982) reviewed the literature and subsequently 

proposed the following classification, which is often adopted to characterise the passive 

immune status of suckler beef calves: FPT < 8 mg/ml serum IgG1, partial FPT ≥ 8 to 16 

mg/ml serum IgG1, and normal > 16 mg/ml serum IgG1. These FPT definitions have been 

useful in guiding interpretation of passive immunity test results; however, in recent years, 

growing evidence has suggested that test cut-offs for FPT may need to be reviewed, with 

more emphasis on deriving thresholds based on associations with calf health and performance 
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outcomes (Virtala et al., 1999; Waldner and Rosengren, 2009; Windeyer et al., 2014; 

Chigerwe et al., 2015).   

Several test cut-offs were identified in the present study that optimised the 

classification of suckler beef and dairy calves for subsequent health and growth performance. 

Optimal test cut-offs were selected as the value that minimised the number of 

misclassification errors. Test cut-offs associated with diarrhoea have to be disregarded 

because some calves may have received metaphylactic treatment for diarrhoea. The Se, Sp, 

PPV, NPV estimates reported in the present study are in line with what one would expect 

based on results from other studies (Virtala et al., 1999; Courtney et al., 2000; Windeyer et 

al., 2014). Overall, even though the optimal test cut-offs were significantly associated with 

health and performance outcomes, the PPV were low. This highlights that many factors, 

besides FPT, contribute to health and performance responses, and suggests that the tests are 

not particularly useful as individual animal diagnostic tools. As such, it is most often 

recommended that these tests be used as part of a herd or group-based testing approach for 

FPT (McGuirk, 2005; Godden, 2008). Predictive values are known to be primarily influenced 

by disease frequency and test characteristics (Dohoo et al., 2009), suggesting that these tests 

may be more or ptentially less predictive in other populations depending on prevalence.    

ELISA cut-offs of ≤ 8 and ≤ 9 mg/ml were associated with greater odds of morbidity 

and mortality in suckler calves, respectively. Dairy calves with ELISA test results ranging 

from ≤ 10 to ≤ 12 mg/ml had greater odds of BRD, other causes morbidity or poor growth 

compared to those with greater test results. Thus, if FPT was defined based on the optimal 

ELISA cut-offs, upwards of 31% of suckler beef and 36% of dairy calves would have been 

classified as having FPT. Beef calves with serum IgG concentrations ≤ 24 mg/ml have been 

shown to be more likely to require health treatment or die before weaning compared to calves 

with higher concentrations (Dewell et al., 2006; Waldner and Rosengren, 2009). Moreover, 

ACCEPTED M
ANUSCRIP

T



27 
 

beef calves with serum IgG1 ≤ 27 mg/ml weighed on average 3.4 kg less at 205 days of age 

than calves with greater IgG1 (Dewell et al., 2006). Virtala et al. (1999) reported that 12 

mg/ml IgG optimally classified dairy calves for BRD, with calves below this threshold 

having more than two-fold the odds of BRD than those with higher IgG concentrations, 

which is in agreement with the results of the present study. More recently, Chigerwe et al. 

(2015) recommended that serum IgG test values between 20 and 25 mg/ml, which favoured 

the absence of mortality, should be used to indicate adequate passive transfer in dairy calves.  

Serum TP – CA and TP – DR test cut-offs that optimally classified suckler beef 

calves for health outcomes ranged from 56 to 61 g/l and 5.3 to 6.3 g/dl, respectively. Serum 

TP – CA and TP – DR test cut-offs that optimally classified dairy calves for health and 

growth outcomes ranged from 57 to 66 g/l and 5.7 to 6.7 g/dl, respectively. Thus, if FPT was 

defined based on the optimal TP – CA cut-offs, upwards of 53% of suckler beef and 39% of 

dairy calves would have been classified as having FPT. In addition, if FPT was defined based 

on the optimal TP – DR cut-offs, upwards of 68% of suckler beef and 40% of dairy calves 

would have been classified as having FPT. The TP – CA and TP – DR cut-offs identified in 

the present study are greater than the widely used serum TP threshold of ≤5.2 g/dl (Tyler et 

al., 1996; Calloway et al., 2002), but this is not the first study to propose the adoption of 

greater serum TP cut-offs. Serum TP has been validated against RID and 5.2 g/dl was 

determined to be equivalent to 10 g/l of IgG (Tyler et al., 1996). The diagnostic performance 

of TP thresholds from 5.0 to 5.5 g/dl for detection of FPT, based on 10 g/l serum IgG, have 

been shown to be good (Tyler et al., 1996; Calloway et al., 2002; Cuttance et al., 2017a). In a 

large cohort of almost 3,500 calves at a contract heifer rearing facility in Washington State, 

USA, the lowest risk of mortality was observed among calves with serum TP > 5.5 g/dl; 

whereas, calves with TP concentration < 5.0 g/dl were more than twice as likely to die in the 

first 4 mo. of life (Tyler et al., 1998). At three beef research centres in South Dakota, USA, 
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calves with serum TP < 5.5 g/dl were identified as having FPT because they were more than 

3-times as likely to be treated for morbidity prior to weaning than calves with serum TP 

concentration of at least 5.5 g/dl (Courtney et al., 2000). Windeyer et al. (2014) reported that 

a serum TP cut-off of < 5.2 g/dl could be used to optimally classify pre-weaned dairy calves 

for mortality risk. This research group also documented that a higher serum TP cut-off of < 

5.7 g/dl needed to be applied to identify calves at increased risk of BRD by 5 weeks of age. 

Moreover, Chigerwe et al. (2015) reported that calves with serum TP concentrations of 5.8 to 

6.3 g/dl were less likely to die by 4 mo. of age than calves with lower serum TP.    

Globulin cut-offs that optimally classified suckler beef and dairy calves for the 

outcomes of interest ranged from 26 to 40 g/l and 29 to 36 g/l, respectively. Thus, if FPT was 

defined based on the optimal globulin cut-offs, upwards of 78% of suckler beef and 49% of 

dairy calves would have been classified as having FPT. Serum globulin concentrations have 

not been widely used to detect FPT in calves.  

Optimal ZST units for classification of health outcomes in suckler beef and dairy 

calves ranged from 12 to 18 units and 19 units, respectively. Thus, if FPT was defined based 

on the optimal ZST cut-offs, upwards of 64% of suckler beef and 65% of dairy calves would 

have been classified as having FPT. The ZST test is the most frequently used test in Ireland, 

with serum samples submitted to the regional veterinary laboratories being analysed using 

this test. The most commonly applied cut-off for diagnosing FPT in calves is 20 ZST units 

(McEwan et al., 1970; Radostits et al., 2000). White and Andrews (1986) reported that the 

morbidity and mortality risks for calves with < 20 vs. ≥ 20 ZST units were 35 and 12%, 

respectively, vs. 22 and 3.5%, respectively. Hogan et al. (2015) recently documented that the 

ZST threshold of 20 units is likely too high. In a comparison against IgG ≤ 10 mg/ml using 

RID, this research group proposed a cut-off of 11 ZST units, which resulted in improved Sp 

for the test. Results of the present study also suggest that a lower ZST cut-off is warranted. 
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Fallon and Harte (1987) estimated that 52 and 34% of Irish Friesian male calves purchased 

over a 9 year period had less than 20 and 15 ZST units, respectively. In the present study, 74 

and 46% of suckler beef and 68 and 54% of dairy calves had less than 20 and 15 ZST units, 

respectively. Thus, it is evident that there are still opportunities for improvement in colostrum 

management on Irish farms.  

Optimal test cut-offs for TS – BRIX was 8.4% for suckler beef calves and between 

7.8 to 8.4% for dairy calves. Thus, if FPT was defined based on the optimal TS – BRIX cut-

offs, upwards of 39% of suckler beef and 30% of dairy calves would have been classified as 

having FPT. The diagnostic performance of Brix refractometry has previously been evaluated 

against the RID in dairy calves (Deelen et al., 2014; Elsohaby et al., 2016; Hernandez et al., 

2016; Cuttance et al., 2017a). Correlation between Brix results and serum IgG measured by 

RID has generally been very good, ranging from 0.71 to 0.93 (Deelen et al., 2014; Thornhill 

et al., 2015). Brix cut-offs for detecting IgG ≤ 10 mg/ml based on RID in dairy calves have 

included 7.8% (Morrill et al., 2012b), 8.3% (Elsohaby et al., 2016), 8.4% (Deelen et al., 

2014), 8.5% (Hernandez et al., 2016), 8.8% (Cuttance et al., 2017a), and 10% (Thornhill et 

al., 2015). The TS – BRIX cut-offs determined in the present study are in line with these 

other reports. This is the first study to evaluate associations between TS – BRIX cut-offs and 

health and performance parameters in calves, as well to use the Brix refractometer to assess 

FPT in suckler beef calves.  

4.2. Morbidity and mortality  

This is the first observational study to characterise the epidemiology of morbidity and 

postnatal mortality in calves, from modern genotypes, reared on commercial suckler beef and 

dairy farms in Ireland. Overall, 20% of suckler beef calves and 30% of dairy calves exhibited 

clinical signs of disease and were treated for at least one disease event by 6 mo. of age. 

Incidence rates of crude morbidity for suckler beef and dairy calves from birth to 6 mo. of 
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age were 4.1 and 8.7 disease events per 100 calf-mo. at risk, respectively. In total, 2.7% of 

suckler beef and 3.3% of dairy calves died in the first 6 mo. of life. Incidence rates of 

mortality from birth to 6 mo. of age were 0.5 and 0.6 deaths per 100 calf-mo. at risk for 

suckler beef and dairy calves, respectively. The highest risk period for disease in the present 

study was between birth and 1 mo. of age, with approximately two-thirds of all disease events 

occurring during this time period. The first 1 mo. of life, generally referred to as the neonatal 

period in calves, is known to be associated with high levels of morbidity and mortality 

(Wittum and Perino, 1995; Sivula et al., 1996; Slavík et al., 2009; Windeyer et al., 2014). 

Almost 90% of calves enrolled in the present study were born between January and May. 

This is consistent with seasonal calving pasture-based production systems in Ireland, where 

most animals would be housed for the winter and then calve during the spring months 

(DAFM, 2013). Thus, many of the calves in the present study would have been born and 

spent at least the first 1 mo. of life indoors, most often managed in group housing systems, 

and potentially sharing air space with older animals, which are risk factors for calf morbidity 

(Gulliksen et al., 2009a; Gulliksen et al., 2009c; Bartels et al., 2010; Klein-Jöbstl et al., 

2014).  

Suckler beef calves in the present study were more frequently treated for BRD in the 

first 6 mo. of life, relative to dairy calves. Cumulative incidence and incidence rate of BRD in 

suckler beef calves were greatest between 1 and 3 mo. of age, which would have likely 

coincided with autumn born calves being moved indoors to winter housing and spring born 

calves being turned out to pasture. Cumulative incidence and incidence rate of BRD in dairy 

calves was greatest during the neonatal period, which would have likely coincided with 

calves being introduced to group housing during the indoor milk feeding period. Navel 

infection and joint infection/lameness occurred more frequently in suckler beef calves than 

dairy calves. The odds and incidence rate of navel infection or joint infection/lameness in 
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suckler beef calves during the neonatal period were approximately 5-times greater than that 

of dairy calves. Only a few cases of navel infection occurred after the neonatal period; 

whereas, almost half of the cases of joint infection/lameness were diagnosed and treated in 

calves older than 1 mo. of age. These results suggest that navel care practices, and perhaps 

the frequency of disinfection could have differed between suckler beef and dairy calves, but 

this needs to be investigated further. The incidence rate of diarrhoea from birth to 6 mo. of 

age in dairy calves was greater than that of suckler calves, with 6.7 and 1.9 disease events per 

100 calf-mo. at risk, respectively. A review of the health records, however, suggested that 

these incidence estimates may be unreliable because they likely include calves that were 

treated in response to clinical signs, as well as some calves that received metaphylactic 

treatment for diarrhoea.    

4.3. Validity of results  

The present study allowed for a large sample of calves to be followed from birth until 

6 mo. of age, and relationships between passive immunity, morbidity, mortality and growth 

to be explored. This is also one of the first studies where the passive immune status and 

health of both suckler beef and dairy calves have been evaluated. The authors, however, 

acknowledge that there were some limitations with the design and execution of this 

observational study. The methods used to recruit farmers may have introduced a selection 

bias, which could limit the generalisability of the results. Farmers were primarily recruited 

through KT activities and participation in the study was voluntary. One can speculate that 

individuals who attend KT events and engage advisory services may be more progressive 

farmers and more likely to implement best management practices. In addition, farmers that 

enrolled in the study had to commit to recording birth and health information, which may 

have dissuaded some farmers from participating. Moreover, farmers included in the calf-level 

study were purposively selected based on their recording abilities. These farmers had herds 
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that were on average, larger than those enrolled in the herd-level study. Herd mortality to 6 

mo. of age varied widely, suggesting that calves on the study farms were likely exposed to a 

range of calf health management practices and environmental conditions. Herd sizes for the 

study farms reflect the distribution of the national herd relatively well (DAFM, 2013).  

Right censoring, resulting from non-response of farmers and loss to follow-up of 

calves, may have led to selection bias. Even though farmers were regularly contacted about 

completing and submitting their project recordings sheets, 56 farmers from the herd-level 

study did not provide birth and health information for their calves. This non-response resulted 

in 200 suckler beef and 357 dairy calves being excluded from the morbidity analyses. 

Moreover, 99 suckler beef and 821 dairy calves were sold off their home farm or lost for 

other reasons. Calves that were lost to follow-up were excluded from those morbidity test 

cut-off analyses where they were not observed for the entire time period. In addition, 103 

dairy calves were exported from Ireland before 3 mo. of age and subsequently excluded from 

the mortality test cut-off analyses. In the end, 78.5 and 99.8% of suckler beef calves were 

included in the birth to 6 mo. test cut-off analyses for morbidity and mortality, respectively. 

Conversely, only 43.6 and 95.0% of dairy calves were included in the birth to 6 mo. test cut-

off analyses for morbidity and mortality, respectively. To address this right censoring, the 

authors attempted to analyse these data using survival analyses and generate time-dependent 

ROC curves. This approach was subsequently abandoned because the time-dependent ROC 

curves did not account for clustering by farm.  

 The opportunity for misclassification bias must also be considered. Farmers had an 

integral role in this study, and the research team was reliant on each farmer to detect and 

diagnosis all disease events in their calves. Case definitions were provided at the outset of the 

study; however, misclassification of disease status could have occurred for some calves. 

Unexpectedly, approximately 43% of calves that died on the home farm had no record of 

ACCEPTED M
ANUSCRIP

T



33 
 

receiving health treatment prior to death. Some of these deaths may have occurred very 

suddenly and the calf died before treatment could be initiated. Alternatively, farmers may 

have either failed to observe clinical signs of disease and morbidity was not detected, or 

treatment was administered but this health information was not recorded on the project 

recording sheets. Obtaining accurate calf health information based on farmer diagnoses and 

recording is a challenge. Gulliksen et al. (2009b) evaluated the quality of calf health data 

retrieved from a Norwegian health recording system for dairy cattle using three different 

methods of validation, and estimated that approximately 40% of calf disease events were not 

recorded by farmers into the system. Therefore, in an attempt to increase the likelihood of 

good quality data collection by farmers, the approach recommended by Busato et al. (1997) 

was taken in the present study, which included persistent follow-up through a combination of 

in person farm visits and telephone contact, as well as SMS and postal reminders.  

 Finally, the age of calves at blood sample collection may be a potential concern. In 

most on-farm observational studies, calves between 1 and 7 (McGuirk, 2005; Trotz-Williams 

et al., 2008; Beam et al., 2009; Vogels et al., 2013; Windeyer et al., 2014) or 2 and 8 days 

(Donovan et al., 1998; Waldner and Rosengren, 2009; Cuttance et al., 2017a) of age are 

blood sampled for passive immunity assessment. In the present study, however, the upper age 

limit for blood sampling was extended to 21 days of age because on many farms in Ireland, 

especially suckler beef farms, only a small number of calves are born within a 1 week period. 

Serum Ig reach peak concentrations at approximately 24 hours after birth and then as a result 

of catabolism, will progressively decline with time (Logan, 1972; Logan et al., 1974; Suh et 

al., 2003). The half-life of colostral IgG has been estimated at 28.5 days in calves, and the 

majority of Ig present in the serum of calves up to 30 days of age would be derived from 

colostrum (Murphy et al., 2014). Further research is needed to determine if, and how, the 

extended blood sampling age range may have affected the study results. It is likely, however, 
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that the extended sampling age range may have resulted in the passive immunity test results 

for some of the older calves at blood sample collection being under-estimated. 

 

5. Conclusion 

Results of this study provide insight into the relationships between passive immunity, 

morbidity, mortality and growth of suckler beef and dairy calves under field conditions in 

Ireland. Overall, 20% of suckler beef calves and 30% of dairy calves were treated for at least 

one disease event by 6 mo. of age. Suckler beef calves had greater odds of BRD, navel 

infection, and joint infection/lameness, as well as increased rate of navel infections during the 

first 6 mo. of life compared to dairy calves. Only 2.7% of suckler beef and 3.3% of dairy 

calves died within the first 6 mo. of life. Test cut-offs that optimally classified suckler beef 

calves for health outcomes ranged from 8 to 9 mg/ml ELISA, 56 to 61 g/l TP – CA, 26 to 40 

g/l globulin, 12 to 18 ZST units, 8.4% Brix, and 5.3 to 6.3 g/dl TP – DR. Test cut-offs that 

optimally classified dairy calves for health and growth outcomes ranged from 10 to 12 mg/ml 

ELISA, 57 to 60 g/l TP – CA, 29 to 34 g/l globulin, 19 ZST units, 7.8 to 8.4% Brix, and 5.7 

to 5.9 g/dl TP – DR. 
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Figure legend 

 

Fig. 1. Overview of the herd-level and calf-level studies, including herds selected and withdrawals, 

blood sample collection, exclusions, and analyses completed 
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Table 

 

Table 1. Case definitions1 provided to the farmers to assist with classification of disease 

events 

Disease Definition 

Diarrhoea  Repeated passing of loose (soup-like) or watery faeces, of normal or abnormal colour, with or 

without blood content   

Bovine respiratory disease 

(BRD) 

One or a combination of the following clinical signs: increased respiratory effort (including 

increased respiratory rate, laboured breathing, or open mouth breathing), nasal discharge / 

snotty nose (a considerable amount of cloudy or pus-like discharge), or repeated coughing 

Navel infection Warm enlargement of, with or without foul smelling discharge from umbilical structures 

Joint infection / lameness One or more swollen joints, resulting in lameness, with or without fever 

Bloat Swollen abdomen and exhibited signs of discomfort and / or respiratory distress 

Dull Signs of depression, with or without decreased appetite or fever 

Fever Temperature of greater than 39.5 ºC / 103 ºF 

Grass tetany Combination of the following clinical signs: staggering gait, twitching muscles, collapse, 

trashing, head thrown back, with or without severe paddling convulsions, and diagnosis 

preferentially confirmed by veterinarian 

Meningitis  Combination of the following clinical signs: lack of suckle reflex, head pressing, extended 

head and neck, star gazing, blindness, over-reactive to stimuli, and / or seizures, and diagnosis 

preferentially confirmed by veterinarian   

Mineral / vitamin deficiency Combination of the following clinical signs: lack of thrive, weight loss, awkward gait, change 

in hair coat colour, etc., and diagnosis preferentially confirmed by a blood test and / or 

veterinarian   

Injury Physical damage or hurt due to a slip, fall, bump, etc. 

1 Adapted from Windeyer et al., (2014) 
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Table 2: Comparison of passive immunity test results for calves’ blood sampled between July 2014 and June 2016 on 111 suckler beef and 84 dairy farms   

Test1  
Suckler beef calves (n = 1,392)  Dairy calves (n = 2,090) P-value 

Mean2 ± SD Min Q1 Median Q3 Max  Mean ± SD Min Q1 Median Q3 Max  

ELISA, mg/ml 12.0 ± 5.5 1.5 8.4 11.6 15.4 47.5  14.0 ± 5.9 1.5 10.3 13.9 17.6 55.5 < 0.001 

TP – CA, g/l 60.3 ± 8.2 36.7 55.0 59.9 65.7 87.7  62.7 ± 8.3 39.8 57.1 62.6 67.9 93.0 < 0.001 

Globulin, g/l 33.1 ± 9.0 12.4 26.7 32.4 39.0 67.1  35.2 ± 9.0 13.9 29.1 34.6 41.0 68.5  0.01 

ZST, units 15.9 ± 7.0 0.3 11.0 15.6 20.1 52.0  17.5 ± 6.9 0.5 13.2 17.0 21.5 51.4 < 0.01 

TS – BRIX, % 8.8 ± 0.9 6.0 8.2 8.8 9.4 13.6  9.0 ± 1.0 6.0 8.4 9.0 9.6 13.2 < 0.01 

TP – DR, g/dl 5.9 ± 0.9 1.5 5.4 5.9 6.5 8.7  6.2 ± 0.9 3.2 5.5 6.2 6.7 9.6 0.07 

1 Serum samples analysed using the following: commercial ELISA assay, total protein concentration by clinical analyser (TP – CA), globulin 

concentration by clinical analyser, zinc sulphate turbidity (ZST) test, total solids percentage by Brix refractometer (TS – BRIX), and total protein 

concentration by digital refractometer (TP – DR); 2 Unadjusted mean presented.
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Table 3. Comparison of crude and cause-specific morbidity in the first 6 mo. of life for calves’ blood sampled between July 2014 and June 2016 

on 84 suckler beef and 55 dairy farms 

Morbidity outcome 

Suckler beef calves (n = 1,192)  Dairy calves (n = 1,733) 
OR3,4 

(95% CI) 

IRR4,5 

(95% CI) 

P-value 

Calves 

treated, # 

Disease 

events, # 

Cumulative 

incidence1 

Incidence 

rate2 
 

Calves 

treated, # 

Disease 

events, # 

Cumulative 

incidence  

Incidence 

rate  
a6 b7 

Birth to 1 mo. of age8              

     Crude9 171 178 14.3 15.0   478 496 27.6 30.6 1.0 (0.5, 1.8) 1.0 (0.6, 1.6) 0.90 0.88 

     Diarrhoea  98 103 8.2 8.7  403 413 23.3  25.5 0.6 (0.3, 1.8) 0.6 (0.3, 1.2) 0.17 0.18 

     BRD10 16 16 1.3 1.3  47 50  2.7 3.1 0.9 (0.3, 2.4) 0.8 (0.3, 2.1) 0.85 0.69 

     Navel infection 40 40 3.4 3.4  20 20 1.2 1.2 5.3 (2.1, 13.9) 4.7 (1.9, 11.9) < 0.001 < 0.001 

     Joint infection / 

lameness 
14 15 1.2 1.3 

 
4 4 0.2 0.2 

5.0 (1.6, 15.7) 4.8 (1.5, 15.5) < 0.01 < 0.01 

     Other disease events11 9 9 0.8 0.8  17 17 1.0 1.1 1.0 (0.4, 2.4) 0.9 (0.4, 2.2) 0.91 0.78 

1 mo. to 3 mo. of age12              

     Crude  68 69 6.0 3.1  46 51 3.5 2.3 1.7 (0.8, 3.5) 1.2 (0.6, 2.2) 0.16 0.60 

     Diarrhoea  20 20 1.8 0.9  18 19 1.4 0.9 0.9 (0.3, 2.6) 0.6 (0.2, 1.9) 0.79 0.39 

     BRD  34 35 3.0 1.6  14 14 1.1 0.6 4.0 (1.4, 11.4) 3.2 (1.2, 8.7) < 0.01 0.02 

     Navel infection13 0 0 0 0  4 4 0.3 0.2 - - - - 

     Joint infection / 

lameness 
7 7 0.6 0.3 

 
3 5 0.2 0.2 

1.2 (0.1, 22.5) 0.9 (0.2, 4.7) 0.91 0.89 

     Other disease events 8 8 0.7 0.4  9 10 0.7 0.5 1.0 (0.3, 3.1) 0.7 (0.2, 2.3) 0.94 0.60 

3 mo. to 6 mo. of age14              

     Crude  23 23 2.1 0.7  11 11 1.2 0.4 1.2 (0.3, 4.1) 1.1 (0.3, 3.4) 0.79 0.90 

     Diarrhoea13  0 0 0 0  2 2 0.2 0.1 - - - - 

     BRD  16 16 1.5 0.5  1 1 0.1 0.04 8.1 (0.5, 137.8) 7.0 (0.5, 92.1) 0.15 0.14 

     Navel infection13 0 0 0 0  0 0 0 0 - - - - 

     Joint infection / 

lameness 
3 3 0.3 0.1 

 
3 3 0.3 0.1 

1.1 (0.02, 71.6) 1.1 (0.02, 62.1) 0.97 0.98 

     Other disease events 4 4 0.4 0.1  5 5 0.5 0.2 0.7 (0.02, 27.7) 0.7 (0.02, 24.2) 0.85 0.84 

Birth to 6 mo. of age15               

     Crude  242 270 20.3 4.1  521 558 30.1 8.6 1.2 (0.6, 2.2) 0.9 (0.5, 1.4) 0.59 0.57 

     Diarrhoea  112 123 9.4 1.9  421 434 24.3 6.7 0.6 (0.3, 1.2) 0.9 (0.2, 0.9) 0.16 0.03 

     BRD  67 67 5.6 1.0  60 55 3.5 0.9 2.8 (1.2, 6.5) 1.9 (0.8, 4.1) 0.01 0.12 

     Navel infection 40 40 3.4 0.6  24 24 1.4 0.4 5.1 (1.9, 13.2) 3.3 (1.3, 8.4) < 0.001 0.01 

     Joint infection / 24 25 2.0 0.4  9 12 0.5 0.2 3.2 (1.3, 7.8) 1.7 (0.7, 4.3) 0.01 0.24 
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lameness 

     Other disease events 21 21 1.8 0.3  29 32 1.7 0.5 1.1 (0.5, 2.3) 0.7 (0.3, 1.3) 0.81 0.26 

1 Cumulative incidence: calves treated for disease within age category / population at risk (PAR), no. per 100 calves; 2 Incidence rate: disease 

events (all-occurrences) treated within age category / total animal-time at risk, no. per 100 calf-mo. at risk; 3 Odds ratio (95% confidence interval 

(CI)), adjusted for within-farm correlation using a random effect; 4 Wald CI computed using Taylor-series techniques; 5 Incidence rate ratio (95% 

CI), adjusted for within-farm correlation using a random effect; 6 P-value for cumulative incidence in suckler beef vs. dairy calves; 7 P-value for 

incidence rate in suckler beef vs. dairy calves; 8 PAR of disease from birth to 1 mo. of age: 1,192 suckler beef calves (35,659 calf-days / 1,189 

calf-mo.) and 1,733 dairy calves (48,529 calf-days / 1,618 calf-mo.); 9 Crude morbidity: calves treated for at least one disease event, attributed to 

any cause, excluding injury; 10 Bovine respiratory disease (BRD); 11 Other disease events: calves treated for illness other than diarrhoea, 

respiratory disease, navel infection, or joint infection / lameness (eg. bloat, eye infection, abscess, etc.); 12 PAR of disease from 1 mo. to 3 mo. of 

age: 1,126 suckler beef calves (66,894 calf-days / 2,230 calf-mo.) and 1,319 dairy calves (65,378 calf-days / 2,179 calf-mo.); 13 OR, IRR and P-

value not estimable; 14 PAR of disease from 3 mo. to 6 mo. of age: 1,074 suckler beef calves (96,392 calf-days / 3,213 calf-mo.) and 910 dairy 

calves (79,771 calf-days / 2,659 calf-mo.); 15 PAR of disease from birth to 6 mo. of age: 1,192 suckler beef calves (198,945 calf-days / 6,632 

calf-mo.) and 1,733 dairy calves (193,678 calf-days / 6,456 calf-mo.).  
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Table 4. Comparison of all-cause mortality in the first 6 mo. of life for calves’ blood sampled between July 2014 and June 2016 on 111 suckler 

beef and 84 dairy farms 

Mortality outcome 

Suckler beef calves (n = 1,392)  Dairy calves (n = 2,090) 
OR3,4 

(95% CI) 

P-value 

 
Deaths, 

# 

Cumulative 

incidence1 

Incidence 

rate2 
 

Deaths, 

# 

Cumulative 

incidence  

Incidence 

rate  

Birth to 1 mo. of age5  10 0.7 0.7  35 1.7 1.7 0.6 (0.2, 1.5) 0.25 

1 mo. to 3 mo. of age6 22 1.6 0.8  18 0.9 0.5 1.8 (0.9, 3.7) 0.09 

3 mo. to 6 mo. of age7 6 0.4 0.1  16 0.8 0.3 0.6 (0.2, 1.4) 0.23 

Birth to 6 mo. of age8 38 2.7 0.5  69 3.3 0.6 1.0 (0.6, 1.5) 0.83 

1 Cumulative incidence: deaths in age category / population at risk (PAR), no. per 100 calves; 2 Incidence rate: deaths in age category / total 

animal-time at risk, no. per 100 calf-mo. at risk; 3 Odds ratio (95% confidence interval (CI)), adjusted for within-farm correlation using a random 

effect; 4 Wald CI computed using Taylor-series techniques; 5 PAR of death from birth to 1 mo. of age: 1,392 suckler beef (41,650 calf-days / 

1,388 calf-mo.) and 2,090 dairy calves (61,833 calf-days / 2,061 calf-mo.); 6 PAR of death from 1 mo. to 3 mo. of age: 1,382 suckler beef calves 

(82,070 calf-days / 2,736 calf-mo.) and 2,000 dairy calves (116,616 calf-days / 3,887 calf-mo.); 7 PAR of death from 3 mo. to 6 mo. of age: 

1,360 suckler beef calves (122,400 calf-days / 4,080 calf-mo.) and 1,934 dairy calves (174,060 calf-days / 5,802 calf-mo.); 8 PAR of death from 

birth to 6 mo. of age: 1,392 suckler beef calves (246,120 calf-days / 8,204 calf-mo.) and 2,090 dairy calves (352,509 calf-days /11,750 calf-mo.)
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Table 5: Associations between passive immunity test results and the health of suckler beef calves in the first 6 months of life.    

Test1 Time period AUC2,3,4         

(95% CI) 

Optimal 

cut-off5 

≤ Optimal  

cut-off, % 

OR3,4,6,7            

(95% CI) 

P-value7 Se3,4,8 

(95% CI) 

Sp3,4,9 

(95% CI) 

ELISA, mg/ml         

     Crude10  Birth to 3 mo. 0.57 (0.53, 0.61) 8 22.0  2.0 (1.3, 2.9) < 0.001 34.6 (28.1, 41.6) 80.8 (78.1, 41.6) 

     BRD11 Birth to 1 mo. 0.71 (0.58, 0.84) 8 22.7 4.5 (1.4, 14.5) 0.01 56.3 (29.9, 80.3) 77.8 (75.3, 80.1) 

     Other causes12  Birth to 1 mo. 0.58 (0.51, 0.64) 8 22.7 1.8 (1.0, 3.1) 0.05 36.1 (24.2, 49.4) 78.0 (77.5, 80.4) 

     Mortality  Birth to 6 mo. 0.64 (0.55, 0.73) 9 31.3 2.8 (1.4, 5.8) < 0.01 54.3 (36.7, 71.2) 69.4 (66.8, 71.8) 

TP – CA, g/l         

     Crude   Birth to 3 mo. 0.58 (0.54, 0.63) 61 52.8 1.5 (1.1, 2.2) 0.03 63.4 (56.4, 70.0) 49.5 (46.2, 52.8) 

     BRD Birth to 1 mo. 0.74 (0.62, 0.85) 56 28.4 6.2 (1.7, 22.6) < 0.01 68.8 (41.3, 89.0) 72.2 (69.5, 74.7) 

     Other causes Birth to 6 mo. 0.60 (0.54, 0.67) 61 52.6 2.1 (1.2, 3.7) < 0.01 69.3 (57.6, 79.5) 48.6 (45.5, 51.7) 

     Mortality  Birth to 6 mo. 0.69 (0.61, 0.77) 60 50.4 4.3 (1.8, 10.1) <0.01 80.0 (63.1, 91.6) 50.4 (47.7, 53.1) 

Globulin, g/l         

     Crude    Birth to 3 mo. 0.56 (0.52, 0.59) 26 21.1 1.6 (1.1, 2.4) 0.02 30.2 (24.0, 37.0) 80.9 (78.3, 83.4) 

     BRD Birth to 1 mo. 0.74 (0.63, 0.84) 32 47.7 6.3 (1.3, 29.8) 0.02 87.5 (61.7, 98.5) 52.8 (49.9, 55.7) 

     Other causes Birth to 1 mo. 0.61 (0.54, 0.67) 40 78.2 3.1 (1.2, 8.0) 0.02 91.8 (81.9, 97.3) 22.5 (20.1, 25.1) 

     Mortality  Birth to 6 mo. 0.66 (0.57, 0.75) 32 48.3 3.4 (1.5, 7.5) < 0.01 74.3 (56.7, 87.5) 52.4 (49.7, 55.1) 

ZST, units         

     Crude   Birth to 3 mo. 0.57 (0.53, 0.61) 12 29.3 1.8 (1.3, 2.6) < 0.01 39.5 (32.8, 46.6) 73.0 (70.0, 75.9) 

     BRD Birth to 1 mo. 0.76 (0.67, 0.85) 14 39.1 11.2 (2.1, 60.4) < 0.01 87.5 (61.7, 98.5) 61.6 (58.7, 64.4) 

     Other causes Birth to 1 mo. 0.61 (0.54, 0.68) 18 63.5 2.2 (1.1, 4.3) 0.02 78.7 (66.3, 88.1) 37.3 (34.5, 40.2) 

     Mortality  Birth to 6 mo. 0.69 (0.61, 0.78) 14 40.3 3.4 (1.6, 7.0) < 0.01 68.6 (50.7, 83.2) 60.4 (57.8, 63.0) 

TS – BRIX, %         

     Crude    Birth to 6 mo. 0.55 (0.52, 0.59) 8.4 36.7 1.5 (1.1, 2.2) 0.02 44.8 (38.2, 51.6) 65.4 (62.1, 68.6) 

     BRD Birth to 1 mo. 0.75 (0.67, 0.83) 8.4 36.7 7.2 (1.8, 30.0) < 0.01 81.3 (54.4, 96.0) 62.9 (60.0, 65.6) 

     Other causes  Birth to 6 mo. 0.58 (0.52, 0.65) 8.4 36.7 1.7 (1.1, 2.9) 0.03 50.7 (38.9, 62.4) 64.3 (61.3, 67.3) 

     Mortality Birth to 6 mo. 0.66 (0.57, 0.74) 8.4 39.2 2.8 (1.4, 5.6) < 0.01 62.9 (44.9, 78.5) 61.5 (58.8, 64.1) 

TP – DR, g/dl         

     Crude Birth to 6 mo. 0.58 (0.54, 0.62) 5.8 43.8 1.6 (1.1, 2.3) < 0.01 55.6 (48.8, 62.2) 59.2 (55.9, 62.5) 

     BRD Birth to 6 mo. 0.60 (0.53, 0.67) 5.8 43.8 2.3 (1.2, 4.3) 0.01 61.7 (48.2, 73.9) 57.2 (54.1, 60.3) 

     Other causes  Birth to 3 mo. 0.62 (0.54, 0.69) 6.3 67.6 2.5 (1.2, 5.3) 0.02 83.9 (71.7, 92.4) 33.3 (30.5, 36.2) 

     Mortality Birth to 6 mo. 0.69 (0.60, 0.77) 5.3 24.6 3.9 (2.0, 7.7) < 0.01 54.3 (36.7, 71.2) 76.1 (73.8, 78.4) 
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1 Serum samples analysed using the following: commercial ELISA assay, total protein concentration by clinical analyser (TP – CA), globulin concentration by clinical 

analyser, zinc sulphate turbidity (ZST) test, total solids percentage by Brix refractometer (TS – BRIX), and total protein concentration by digital refractometer (TP – DR); 2 

Area under the curve (AUC) for the receiver operating characteristic (ROC) curve; 3 Estimate (95% confidence interval (CI)); 4 Wald CI computed using Taylor-series 

techniques; 5 Optimal test cut-offs were identified as the test values with maximum Youden index on ROC curves. Only those calves that were observed for the entire period 

at risk or died before the end of the observation period were included in the test cut-off analyses for morbidity. Only those calves that were observed for the entire period at 

risk were included in the test cut-off analyses for mortality; 6 Odds ratio; 7 From logistic regression model, adjusted for within-farm correlation using a random effect; 8 

Sensitivity (Se): Probability that calves with the outcome of interest had a test result ≤ cut-off value; 9 Specificity (Sp): Probability that calves without the outcome of interest 

had a test result > cut-off value; 10 Crude morbidity: calves treated for at least one disease event, attributed to any cause, excluding injury; 11 Bovine respiratory disease 

(BRD); 12 Other causes morbidity: calves treated for navel infection, joint infection/lameness, or other disease events. 
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Table 6: Associations between passive immunity test results and the health and growth of dairy calves in the first 6 months of life.    

Test1 Time period AUC2,3,4         

(95% CI) 

Optimal 

cut-off5 

≤ Optimal  

cut-off, % 

OR3,4,6,7            

(95% CI) 

P-value7 Se3,4,8 

(95% CI) 

Sp3,4,9 

(95% CI) 

ELISA, mg/ml         

     Diarrhoea Birth to 6 mo. 0.58 (0.54, 0.62) 13 43.0 0.6 (0.4, 0.9) < 0.01 33.2 (27.1, 39.7) 53.7 (49.9, 57.5) 

     BRD10 Birth to 6 mo. 0.63 (0.55, 0.71) 12 36.3 2.4 (1.3, 4.4) < 0.01 59.6 (44.3, 73.6) 65.0 (61.7, 68.2) 

     Other causes11  Birth to 1 mo. 0.67 (0.56, 0.77) 11 28.4 3.3 (1.6, 6.8) < 0.01 59.4 (40.6, 76.3) 72.4 (69.9, 74.8) 

     Q1BW12 N / A 0.59 (0.54, 0.65) 10 24.2  2.2 (1.3, 3.8) < 0.01 39.2 (30.4, 48.5) 80.8 (76.4, 84.8) 

TP – CA, g/l         

     Diarrhoea Birth to 6 mo. 0.55 (0.51, 0.59) 66 67.5 0.7 (0.4, 1.0) 0.04 61.6 (54.9, 67.9) 30.5 (27.0, 34.1) 

     BRD Birth to 6 mo. 0.64 (0.56, 0.72) 60 38.8 2.1 (1.1, 3.9) 0.02 61.7 (46.4, 75.5) 62.4 (59.1, 65.7) 

     Other causes Birth to 1 mo. 0.67 (0.57, 0.77) 57 25.4 2.9 (1.4, 6.1) < 0.01 53.1 (34.7, 70.9) 75.3 (72.9, 77.5) 

     Q1BW N / A 0.68 (0.63, 0.74) 57 26.7  1.9 (1.4, 2.5) < 0.01 40.8 (32.0, 50.2) 78.1 (73.4, 82.2) 

Globulin, g/l         

     Diarrhoea Birth to 6 mo. 0.57 (0.53, 0.62) 36 56.7 0.6 (0.4, 0.9) 0.01 48.5 (41.8, 55.2) 40.6 (36.9, 44.4) 

     BRD Birth to 6 mo. 0.62 (0.55, 0.70) 34 48.6 2.2 (1.2, 4.3) 0.02 70.2 (55.1, 82.7) 52.6 (49.2, 56.0) 

     Other causes Birth to 1 mo. 0.64 (0.54, 0.74) 31 33.4 2.8 (1.4, 5.9) < 0.01 59.4 (40.6, 76.3) 67.2 (64.7, 69.7) 

     Q1BW N / A 0.68 (0.63, 0.74) 29 24.8 2.2 (1.3, 3.8) < 0.01 35.8 (27.3, 45.1) 78.9 (74.3, 83.0) 

ZST, units         

     Diarrhoea Birth to 6 mo. 0.57 (0.53, 0.61) 23 83.0 0.6 (0.4, 0.9) 0.02 79.9 (74.1, 84.9) 16.0 (13.3, 18.9) 

     BRD Birth to 6 mo. 0.63 (0.55, 0.71) 19 64.5 2.8 (1.3, 6.3) < 0.01 83.0 (69.2, 92.4)  36.5 (33.3, 39.8) 

TS – BRIX, %         

     Diarrhoea Birth to 6 mo. 0.57 (0.51, 0.60) 9.4 69.3 0.6 (0.4, 1.0) 0.03 61.1 (54.5, 67.5) 28.0 (24.6, 31.5) 

     BRD Birth to 6 mo. 0.62 (0.55, 0.70) 8.4 30.3 1.9 (1.0, 3.4) 0.05 51.1 (36.1, 65.9) 70.9 (67.7, 73.9) 

     Other causes  Birth to 1 mo. 0.66 (0.56, 0.76) 7.8 10.4 4.7 (2.2, 10.2) < 0.001 37.5 (21.1, 56.3) 90.3 (88.6, 91.8) 

     Q1BW N / A 0.68 (0.63, 0.74) 8.4 30.2 2.3 (1.3, 3.9) < 0.01 42.5 (33.5, 51.9) 73.9 (69.0, 78.4) 

TP – DR, g/dl         

     Diarrhoea Birth to 6 mo. 0.57 (0.53, 0.60) 6.7 85.0 0.5 (0.3, 0.9) 0.01 77.7 (71.8, 83.0) 12.6 (10.2, 15.3) 

     BRD Birth to 3 mo. 0.61 (0.53, 0.69) 5.9 40.1 1.9 (1.0, 3.5) 0.04 56.3 (41.2, 70.5) 60.7 (57.5 ,63.9) 

     Other causes  Birth to 1 mo. 0.65 (0.56, 0.75) 5.7 31.8 2.5 (1.2, 5.2) 0.01 53.1 (34.7, 70.9) 68.7 (66.2, 17.2) 

     Q1BW N / A 0.68 (0.62, 0.73) 5.9  32.3 1.6 (1.2, 2.0) < 0.01 44.2 (35.1, 53.5) 71.7 (66.7, 76.3) 

1 Serum samples analysed using the following: commercial ELISA assay, total protein concentration by clinical analyser (TP – CA), globulin concentration by clinical 

analyser, zinc sulphate turbidity (ZST) test, total solids percentage by Brix refractometer (TS – BRIX), and total protein concentration by digital refractometer (TP – DR); 2 
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Area under the curve (AUC) for the receiver operating characteristic (ROC) curve; 3 Estimate (95% confidence interval (CI)); 4 Wald CI computed using Taylor-series 

techniques; 5 Optimal test cut-offs were identified as the test values with maximum Youden index on ROC curves. Only those calves that were observed for the entire period 

at risk or died before the end of the observation period were included in the test cut-off analyses for morbidity. Only those calves that were observed for the entire period at 

risk were included in the test cut-off analyses for mortality; 6 Odds ratio; 7 From logistic regression model, adjusted for within-farm correlation using a random effect; 8 

Sensitivity (Se): Probability that calves with the outcome of interest had a test result ≤ cut-off value; 9 Specificity (Sp): Probability that calves without the outcome of interest 

had a test result > cut-off value; 10 Bovine respiratory disease (BRD); 11 Other causes morbidity: calves treated for navel infection, joint infection/lameness, or other disease 

events; 12 Q1BW: calves within the lower quartile for standardised 205-day BW. 
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