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1 | Introduction

Most interests in the theory of Nichols algebras emerged from the the theory of

pointed Hopf algebras. A pointed Hopf algebra H over an arbitrary field K has

a coradical that is isomorphic to a group algebra KG. Examples to be empha-

sized include universal enveloping algebras of semi-simple Lie algebras and their

q-deformations. In the study of such Hopf algebras an important tool to be used is

the coradical filtration. By [28] the corresponding associated graded Hopf algebra

grH can be decomposed into a smash product

grH ∼= R#KG .

Here R is a graded Hopf algebra in the category of Yetter-Drinfeld modules over

KG [1]. Much information about this is contained in the subalgebra B(V ) generated

by the vector space V of primitive elements. This subalgebra is called the Nichols

algebra of V [2]. As group algebras are well understood, they are finite dimensional

if the corresponding group G is finite. Moreover, there is an equivalence between

KG being of finite Gelfand-Kirillov dimension, G being of finite growth and G being

virtually nilpotent, see [23] for details. Hence the lifting method of Andruskiewitsch

and Schneider states that for the question of classifying finite (Gelfand-Kirillov-)

dimensional pointed Hopf algebras under some finiteness conditions it is an essential

step to classify finite (Gelfand-Kirillov-) dimensional Nichols-algebras [2].

For the first time Nichols algebras have been studied in their own interest in

[27] as bialgebras of type one. Later they have been discussed in various settings

[25, 26, 29, 30, 32, 33]. In the last years much progress has been made in their

understanding. Especially, those of diagonal type which yielded interesting appli-

cations, for example as the positive part U+
q (g) of the quantized enveloping algebra

of a simple finite-dimensional Lie algebra g. Moreover, these Nichols algebras in-

herit a simple braiding. Therefore, these could be analyzed in great detail and

many powerful tools have been developed to handle these, for example the vec-
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6 CHAPTER 1. INTRODUCTION

tor space basis of ordered products of monomials indexed by Lyndon words [21].

Finite-dimensional Nichols algebras of diagonal type have been classified in a series

of papers [12, 11, 14, 17, 18]. One important step for this has been the introduction

of the root-system 4 of B(V ) and the Weyl groupoid under some weak finiteness

assumptions [13]. In this context the following implications were observed:

dimB(V ) <∞ (1)⇒ #4 <∞ (2)⇒ GKdim (B(V )) <∞ .

For (1) the converse is true if the height of all restricted PBW-generators is finite

and the converse of (2) has been conjectured to be true [4]. Later finite dimensional

Nichols algebras of diagonal type have been described using generators and relations

[6]. Recently, the topic of finite Gelfand-Kirillov dimensional Nichols algebras has

received increased attention. In particular rank 2 Nichols algebras of diagonal type

with finite Gelfand-Kirillov dimension over a field of characteristic zero have been

classified [5] and were used to also classify finite Gelfand-Kirillov-dimensional Nichols

algebras over abelian groups [4].

The goal of this work is to extend this result to any characteristic. Note that

there are more braidings yielding a finite root system in positive characteristic,

especially there are examples with simple roots α yielding χ(α, α) = 1 where χ

denotes the corresponding bicharacter. Roots of this kind imply infinite Gelfand-

Kirillov dimension in characteristic zero [5]. Hence new tools have to be developed

generalizing the results for characteristic zero in addition.

We start this work by proving that in ordered products of monomials forming a

vector space basis the monomials can be rearranged under some technical assump-

tions in the following chapter. This applies to the vector space basis granted by [21]

and is used to check the freeness of certain sub-algebras later in this work.

Chapter 3 introduces the Gelfand-Kirillov dimension and we will recollect some

general results on the topic concerning universal constructions of algebras. We

conclude this chapter by proving a valuable inequality between the Gelfand-Kirillov

dimensions of an algebra and of certain sub-quotients needed for the progress of

this work before introducing Nichols algebras in Chapter 4. Due to organizational

reasons we will mainly revise Nichols algebras of diagonal type and refer interested

reader in a comprehensive introduction to [2]. Well-known features such as the

PBW-basis and the root system will be discussed. Finally, we sketch arguments

regarding properties of the Weyl groupoid and Weyl equivalence, as extended details

can be found in [13].
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Our approach requires considerable knowledge of root systems. The main prob-

lem when working with Nichols algebras of diagonal type is that little is known

about the corresponding root system. In Chapter 5 we recall the results from

[19, 34] describing preconditions for the existence of roots of the form mα1 + 2α2

for some positive integer m. Moreover, we show some additional results on the root

system, especially a procedure to prove the existence of infinitely many roots.

With the knowledge of the root system in mind we will be able to give conditions

on a given rank 2 Nichols algebra of diagonal type to be of infinite Gelfand-Kirillov

dimension in Chapter 6. Our approach draws inspiration from two main sources:

. Proving the existence of roots of the form kα + β for all k ∈ N where α, β ∈ Z2.

. Constructing an infinite chain of ”included” Nichols algebras having strictly de-

creasing Gelfand-Kirillov dimension.

It is known that the first source is applicable for Nichols algebras of affine Cartan-

type [5]. For those braidings for which we constructed infinitely many roots in the

preceding chapter we get an analogous result. Using the latter source we reproduce

the main argument used in [5] under additional assumptions.

Finally, chapter 7 is dedicated to the step-by-step proof of our main result ap-

plying the developed arguments. As the converse is clearly true we will prove the

following

Theorem 7.1 Let K be an arbitrary field and B(V ) a rank two Nichols algebra

of diagonal type over K. If B(V ) is of finite Gelfand-Kirillov dimension, then the

corresponding root system is finite.

The reader of this work is assumed to be familiar with concepts of Lie algebras,

Kac-Moody algebras and Hopf algebra. Such theories will not be reiterated and we

refer to standard literature for elementary details such as [8, 20, 31].

1.1 Notation

Unless otherwise stated K is an arbitrary field of characteristic p and K× denotes

the multiplicative group of K. All vector spaces and (co)algebras are over K. Fur-

thermore, by algebra we mean a unital algebra. We use Sweedler notation when

working with coalgebras and comodules. Fix a Hopf algebra (H, ·, 1H ,∆H , εH , SH)

with bijective antipode SH . For n a positive integer we denote Gn (resp. G′n) the set
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of nth roots of unity (resp. the set of primitive nth roots of unity). The assumption

of p - n is implicit when dealing with G′n. The set {α1, . . . , αn} denotes the standard

basis of Zn. Finally, we define q-numbers as

(k)q =
k−1∑
i=0

qi, (k)!
q =

k∏
i=1

(i)q,

(
m

k

)
q

=

∏m
i=m−k+1(i)q

(k)!
q

.

for q ∈ K×, k,m ∈ N, k ≤ m. Recall the following equations for k,m ∈ N:

(k)q + qk(m)q = (m+ k)q

and (
m− 1

k

)
q

+ qm−k
(
m− 1

k − 1

)
q

=

(
m

k

)
q

.



2 | Rearranging ordered products

of monomials

When working with possibly infinite-dimensional algebras knowledge of the under-

lying vector space structure can be essential. For example the vector space basis of

ordered products of monomials provided by the PBW theorem is an important tool

in the context of the universal enveloping algebra of a Lie algebra, see [8]. Simi-

lar vector space bases appear in other fields of algebraic Lie theory, e.g. for Hopf

algebras generated by skew-primitive semi-invariants, see [22]. For technical proofs

rearranging the monomials can be necessary.

In this chapter we prove in a general setting that the given ordering may be

exchanged by another under some technical preconditions. We will later apply this

result to Nichols algebras, see Corollary 6.2 and Corollary 6.9.

First, we fix the setting. Let n ∈ N, Sn denote the symmetric group of degree n,

A be a K-algebra, I an index set and < and � total orderings on I. Additionally,

let b : I → N∪{∞} be a map and X = {xi}i∈I be a family of elements in A and ≺ a

partial ordering on the set X of monomials over X such that the following properties

are satisfied:

(K1) ∀x, y, z ∈ X and i, j ∈ I : xxixjy ≺ z ⇒ xxjxiy ≺ z and

z ≺ xxixjy ⇒ z ≺ xxjxiy .

(K2) ∀x ∈ X : #{y ∈ X | y ≺ x} <∞ .

(K3) ∀x, y, z ∈ X : x ≺ y ⇒ xz ≺ yz and zx ≺ zy .

(B1) The family

B :=
(
xa1i1 · · · x

ak
ik
| k ∈ N, ij ∈ I, i1 > i2 > · · · > ik, 1 ≤ aj < b(ij) ∀ 1 ≤ j ≤ k

)
constitutes a vector space basis for A .

9



10 CHAPTER 2. REARRANGING ORDERED PRODUCTS OF MONOMIALS

(B2) ∀i ∈ I with b(i) ∈ N : x
b(i)
i ∈

〈
y ∈ X | y ≺ x

b(i)
i

〉
K

.

(B3) ∀i < j ∃λij ∈ K∗ : xixj − λijxjxi ∈ 〈y ∈ X | y ≺ xixj and y ≺ xjxi〉K .

Moreover, let

C :=
(
xa1i1 · · · x

ak
ik
| k ∈ N, ij ∈ I, i1 � i2 � · · · � ik, 1 ≤ aj < b(ij) ∀ 1 ≤ j ≤ k

)
be a family of elements in A.

Our aim is to prove that C as well constitutes a vector space basis for A. Note

that there is no relation between < and �. Those are only used as ”parameters”

of the vector space bases B and C. Examples for such an algebra A with ordered

vector space basis B include Lie algebras and Nichols algebras with the corresponding

PBW-bases.

Lemma 2.1 For x ∈ X \ {0} there are representations

x = x̄+
∑
`∈L

λ`x̄` = x̃+
∑
`∈L′

µ`x̃`,

where L,L′ are finite index sets, x̄, x̄` ∈ B with scalars λ` ∈ K for all ` ∈ L and

x̃, x̃` ∈ C with µ` ∈ K for all ` ∈ L′. These satisfy x̄`, x̃` ≺ x and

{y ∈ X | y ≺ x} = {y ∈ X | y ≺ x̄} = {y ∈ X | y ≺ x̃} .

Proof. We prove the existence of x̄, x̄` ∈ B. The existence of x̃, x̃` ∈ C can be proved

analogously. The main idea here is that the factors of x can be reordered using

(B3) to satisfy the ordering in B. This can be used inductively on the additionally

appearing summands.

Let x be given by x = xi1 · · · xik with xij ∈ X, M := {y ∈ X | y ≺ x} and σ ∈ Sk
such that σ(i1) > σ(i2) > · · · > σ(ik) . We will argue inductively on |M |. This is

possible due to (K2).

First, if x ∈ B, then x̄ := x and L = ∅ .

If |M | = 0 holds, then applying (B3) to x does not produce additional terms.

Therefore, we can iteratively swap factors of x by application of (B3) until we obtain

x̄ := xσ(i1) · · · xσ(ik) ∈ B . Since (B2) holds we may assume the exponents of x̄ to be

bounded by b. Since (K1) holds we have

{y ∈ X | y ≺ x} = {y ∈ X | y ≺ x̄} .



11

If |M | > 0 holds, we can again apply (B3) on x iteratively to obtain a decompo-

sition

x = xσ(i1) · · · xσ(ik)︸ ︷︷ ︸
=:x̄∈B

+
∑
`∈L

λ`x` ,

where L is a finite index set, λ` ∈ K, x` ∈ X for all ` ∈ L. Again, due to (B2) we

may assume the exponents of x̄ to be bounded by b and due to (K1) and (K3) we

have x` ≺ x for all ` ∈ L. Now, obviously x` 6= x. Hence x` ≺ x implies

{y ∈ X | y ≺ x`} ( {y ∈ X | y ≺ x} .

Thus, we can apply the induction hypothesis on the x` and get a finite index set L′,

λ′` ∈ K and x̄` ∈ X : x̄` ≺ x for all ` ∈ L′ such that

x = x̄+
∑
`∈L′

x̄` .

Finally, the equation

{y ∈ X | y ≺ x} = {y ∈ X | y ≺ x̄}

holds due to (K1). �

Proposition 2.2 The family C constitutes a vector space basis for A.

Proof. The family C spans A due to Lemma 2.1. It remains to prove that the

elements in C are linearly independent.

Suppose there exists k ∈ N, pairwise distinct elements y1, . . . , yk ∈ C and

λ1, . . . , λk ∈ K× such that

0 =
k∑
i=1

λiyi .

We consider the partial ordering ≺ on {yi}1≤i≤k . Since the number of vectors is

finite there is at least one element among the yi which is maximal with respect to

≺. Let this without loss of generality be y1 . By Lemma 2.1 there are monomials

ȳi ∈ B and families (y`)
(i)
`∈Li
∈ B for all 1 ≤ i ≤ k such that

yi = ȳi +
∑
`∈Li

y
(i)
` .

Because ≺ is independent of the order of the factors and we constructed ȳi by
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rearranging the factors of yi, the vector ȳ1 has to be maximal among the the vectors

ȳi, 1 ≤ i ≤ k. Now, since B is a vector space basis there has to be some i ∈ {2, · · · , k}
such that ȳ1 = ȳi . However, the arrangement of the factors for elements in B or C
is fixed and hence the equation y1 = yi holds, a contradiction. Thus, the elements

of C are linearly independent and, therefore, constitute a basis for A. �



3 | Preliminaries on the Gelfand-

Kirillov dimension

The Gelfand-Kirillov dimension is an often-considered invariant in the study of non-

commutative algebras describing the growth of the structure. Since it’s introduction

in a paper by Borho and Kraft [7] many properties and applications have been devel-

oped, for example in the study of universal enveloping algebras of finite dimensional

Lie algebras. In this section we introduce the notion of the Gelfand-Kirillov di-

mension and prove an important result that will be central in our study of Nichols

algebras. For the basics we follow [23]. Let A be an (unital) K-algebra.

Definition 3.1 Let W ⊆ A be a vector space and

dW (n) = dimK
(
K +W +W 2 + · · ·+W n

)
.

The Gelfand-Kirillov dimension GKdim (A) of A is given by

GKdim (A) = sup
W

lim logn dW (n) ,

where the supremum is taken over all finite dimensional subspaces W of A.

Remark 3.2 If A is finitely generated and W is a generating subspace, i.e. A =∑∞
i=1 W

i, then the equation

GKdim (A) = lim logn dW (n)

holds and the actual choice of such W does not matter for calculating GKdim (A).

Example 3.3 [23, 1.2, 1.6]

(i) Let A be a locally finite dimensional algebra, i.e. every finitely generated

subalgebra is finite dimensional. Then GKdim (A) = 0 holds since for every

13



14 CHAPTER 3. PRELIM. ON GELFAND-KIRILLOV DIMENSION

finite dimensional subspace W ⊂ A there is a N ∈ N such that the sequence

(dimKW
n)n≥N is stable.

(ii) Let A be the free algebra on two generators x and y. Consider the finite

dimensional subspace W = 〈x, y〉K. Then we have

dW (n) = dimK

(
n∑
i=1

W i

)
=

n∑
i=1

2i = 2n+1 − 1

and, consequently, GKdim (A) =∞ .

(iii) Let A = K[X1, . . . , , Xm] be the polynomial ring in m Variables X1, . . . , Xm

and W = 〈X1, . . . , Xm〉K. Then W n is spanned by monomials of degree ≤ n

and dimK(W n) =
(
n+m
m

)
is a polynomial in n of degree m. Since A is generated

by W due to remark Remark 3.2 this yields GKdim (A) = m.

Next, we want to give some results on how the Gelfand-Kirillov dimension inter-

acts with algebraic constructions of a given algebra. When proving that an algebra

is of infinite Gelfand-Kirillov dimension it is often helpful to consider subalgebras

for which it is easy to prove that they are of infinite Gelfand-Kirillov. This is the

approach that we will excessively use when studying the Gelfand-Kirillov dimension

of Nichols algebras of diagonal type later on. With the following lemma we can

conclude that the initial algebra has infinite Gelfand-Kirillov dimension as well.

Lemma 3.4 [23, 3.1] If B is a subalgebra or a homomorphic image of A, then

GKdim (B) ≤ GKdim (A) .

If no subalgebras of infinite Gelfand-Kirillov dimension can be found, the follow-

ing lemma yields an approach to prove that a given algebra is of infinite Gelfand-

Kirillov dimension relying on knowledge about the vector space structure of the

algebra.

Lemma 3.5 [29, Lemma 19] Let A =
⊕

n≥0 A
n be a finitely generated graded

algebra with A0 = K . Let (yk)k≥0 be a family of homogeneous elements of A such

that (yi1 . . . yik)0≤i1<···<ik is a family of linearly independent elements. If there exist

m, p ∈ N such that for all i ∈ N the inequality deg(yi) ≤ mi + p holds, then

GKdimA =∞ .

In the context of Nichols algebras when searching for families of linearly in-

dependent homogeneous elements needed for the application of above lemma it is
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natural to consider the vector space basis of ordered products of root vectors, see

Corollary 6.2. Hence information on the set of roots will be crucial in our discussion.

The next result gives a precondition for the Gelfand-Kirillov dimensions of a

filtered algebra and the associated graded algebra to coincide. We will need this for

some technical proof, see Lemma 6.10.

Proposition 3.6 [23, 6.6] Suppose A has a filtration {Ai}i∈N0 such that the sub-

spaces Ai are finite dimensional for all i ∈ N0 and the associated algebra grA of A

is finitely generated. Then,

GKdim (grA) = GKdim (A) .

Next, one might expect that the equation

GKdim (A⊗ B) = GKdim (A) + GKdim (B)

holds for K-algebras A and B. However, this is not true in general. There are plenty

of proofs for this statement under diverse preconditions. We will use the following

proposition which yields a sufficient result in our context. It is a variation of [23,

3.13].

Proposition 3.7 Let A1, A2 ⊆ A be subalgebras of A such that the multiplication

of A induces an isomorphism A1⊗A2 → A1A2. Suppose there is a finite dimensional

subspace W of A2 and a convergent strictly positive sequence g : N→ R such that

logn dW (n) ≥ g(n) for all n ∈ N. Then the following inequality holds:

GKdim (A) ≥ GKdim (A1) + lim
n→∞

g(n) .

Proof. Let W be as in the claim, V be a finite dimensional subspace of A1 and

U = V +W . Now, GKdim (A) can be estimated via

GKdim (A)
Def
= sup

V ′
lim logn dV ′(n)

special VS

≥ lim logn dU(n)
reduced series

≥ lim logn dU(2n)

Def
= lim logn dimK

(
2n∑
i=0

U i

)
.

Because the multiplication of A induces an isomorphism A1⊗A2 → A1A2, every



16 CHAPTER 3. PRELIM. ON GELFAND-KIRILLOV DIMENSION

u ∈ U i can be written as

u =
∑
j∈J

∏
`∈Lj

v(`)w(`)

where J and Lj are finite index sets and v(`) ∈ V k` , w(`) ∈ Wm` for some k`,m` ∈ N0

satisfying
∑

`∈Lj
(k` + m`) ≤ i for all j ∈ J . Restricting to those vectors where

|Lj| = 1 for all j ∈ J we obtain

lim logn dimK

(
2n∑
i=0

U i

)
≥ lim logn dimK

(
2n∑
i=0

∑
j+k=i

(
V j ⊗W k

))
restriction

≥ lim logn dimK

((
n∑
j=0

V j

)
⊗

(
n∑
k=0

W k

))
V,W fin. dim.

= lim logn dimK

(
n∑
j=0

V j

)
dimK

(
n∑
k=0

W k

)
Def
= lim logn (dV (n)dW (n))

claim

≥ lim (logn dV (n) + g(n))
g(n) conv.

= lim logn dV (n) + lim
n→∞

logn g(n) .

This completes the proof. �
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4.1 Preliminaries on Lyndon words

Before studying Nichols algebras we recall the basics of Lyndon words. For a more

comprehensive discussion we refer interested readers to [24]. Lyndon words will play

an important role in the construction of a vector space basis for Nichols algebras

of diagonal type. In this section we introduce the basic notions and give examples

that will be of interest later on.

Let M be a finite set with a fixed ordering <. Denote by M and M× the sets of

words and non-empty words with letters in M resp. and by <lex the lexicographical

ordering on M extending <, i.e.

w <lex w
′ :⇔ w′ = w · v for some v ∈M× or

∃w′′, v, v′ ∈M, a, a′ ∈M,a < a′ : w = w′′av, w′ = w′′a′v′ .
(4.1)

Let ` : M→ N0 denote the usual length function on M, i.e. `(m1 · · ·mk) = k .

Definition 4.1 A word w ∈M× is called a Lyndon word if for any decomposition

w = v · v′ with v, v′ ∈M× the relation w <lex v
′ · v holds. The set of Lyndon words

over M will be denoted by L(M) .

Proposition 4.2 [24] Let w ∈ L(M) be a Lyndon word with `(w) ≥ 2. Then there

is an unique decomposition w = v · v′ of w into the product of two Lyndon words v

and v′ such that `(v) is minimal.

Definition 4.3 The decomposition (v, v′) of w ∈ L(M) with `(w) ≥ 2 introduced

in Proposition 4.2 is called the Shirshov decomposition of w .

We give some examples that will appear later in this work.

Example 4.4 Let I = {1, 2} be a set with natural ordering. Note that the word 1 is

minimal in I×. Therefore every Lyndon word ends with 2 . Let w = i1 · · · ik ∈ L(I)

17
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be a Lyndon word with

#{ij|1 ≤ j ≤ k, ij = 2} = m.

If m = 1 holds, then w = 1k2 is the only possible Lyndon word with this degree.

The Shirshov decomposition is given by (1, 1k−12) .

If m = 2 holds, then w = 1`121`22 such that `1 > `2, `1 + `2 = k. If `1 =

`2 + 1, then the Shirshov decomposition is (1`12, 1`22). Otherwise it is given by

(1, 1`1−121`22).

Finally, we want to collect some examples with m = 3 that will appear later in

our discussion. For w = 112122 the Shirshov decomposition is given by (1, 12122).

For w = 111211212 the Shirshov decomposition is given by (1, 11211212).

For w = 111212112 the Shirshov decomposition is given by (111212, 112).

For k, t ∈ N and w = 1k+12(1k2)t the Shirshov decomposition is given by

(1k+12(1k2)t−1, 1k2).

4.2 On braided vector spaces and related struc-

tures

In this chapter a brief introduction to braided vector spaces and Yetter-Drinfeld

modules is given following [2]. Those will be the input data for the definition of

Nichols algebras. Hence the Nichols algebra structure is determined by the corre-

sponding braiding. This section is devoted to the introduction of the category we

are working in and the kind of braidings we will restrict to later.

Definition 4.5 Let V be a vector space and c : V ⊗ V → V ⊗ V be a bijective

linear map. The tuple (V, c) is called a braided vector space if c satisfies

(c⊗ idV )(idV ⊗ c)(c⊗ idV ) = (idV ⊗ c)(c⊗ idV )(idV ⊗ c) . (4.2)

The map c is called the braiding of (V, c) .

Usually if the context is clear, a braided vector space (V, c) will be denoted by V .

If different braidings appear, we use indexes to indicate the corresponding braided

vector space, e.g. cV for (V, cV ). Now, we want to introduce the kind of braidings

that are of interest in our further study.
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Example 4.6 Let n be a natural number and V a n-dimensional braided vector

space. If there is a vector space basis {xi}1≤i≤n of V and Q = (qij)1≤i,j≤n ∈ K×n×n

such that

c : V ⊗ V → V ⊗ V, xi ⊗ xj 7→ qij xj ⊗ xi ,

then (V, c) is a braided vector space. In this case (V, c) is called a braided vector

space of diagonal type. The matrix Q = (qij)1≤i,j≤n is called the braiding matrix

of V corresponding to {xi}1≤i≤n .

Next, we recall the notion of Yetter-Drinfeld modules. In the following the

structures to consider are contained in the category of Yetter-Drinfeld modules. Let

H be a Hopf algebra with bijective antipode S.

Definition 4.7 A Yetter-Drinfeld module over H is a triple (V, ·, δ) where

• (V, ·) is an H-module.

• (V, δ) is an H-comodule.

• δ(h · x) = h(1)x(−1)S(h(3))⊗ h(2) · x(0) .

Morphisms of Yetter-Drinfeld-modules over H are linear maps commuting with ·
and δ. The category of Yetter-Drinfeld-modules is denoted by H

HYD.

Remark 4.8 [2] HHYD is a braided monoidal category. The braiding of two Yetter-

Drinfeld modules V and W is given by

cV,W : V ⊗W → W ⊗ V, cV,W (x⊗ y) = x(−1) · y ⊗ x(0)

for all x ∈ V and y ∈ W .

Example 4.9 Let G be a group, H = KG and V ∈ H
HYD. Then, for all g ∈ G and

x ∈ V there are xg ∈ V such that

δ(x) =
∑
g∈G

g ⊗ xg .

Moreover, one checks∑
g∈G

g ⊗ g ⊗ xg =
∑
g∈G

∆H(g)⊗ xg =
∑
g∈G

g ⊗ δ(xg)

using coassociativity. This and the equation x =
∑

g∈G εH(g)xg =
∑

g∈G xg imply

that V is G-graded. Set Vg = {x ∈ V | δ(x) = g ⊗ x}.
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Now, assume G is abelian. Then the equality

δ(h · v) = hgh−1 ⊗ h · x = g ⊗ h · x

holds for all g, h ∈ G, x ∈ Vg. Thus, Vg is a G-module for all g ∈ G.

Assume, that for every g ∈ G the action of G on Vg is given by characters, that

is V =
⊕

g∈G,ζ∈Ĝ V
ζ
g where Ĝ denotes the group of multiplicative characters of G

and

V ζ
g = {x ∈ Vg | h · x = ζ(h)x for all h ∈ G} .

In this case V is called a Yetter-Drinfeld module of diagonal type.

Now, let n a natural number and assume V is n-dimensional with vector space

basis {x1, . . . , xn} ⊂ V . Let g1, . . . , gn elements of G and ζ1, . . . , ζn ∈ Ĝ be given by

xi ∈ V ζi
gi

. Then the following holds:

cV,V (xi ⊗ xj) = (gi · xj)⊗ xi = ζj(gi)xj ⊗ xi .

Hence V induces a braided vector space (V, cV,V ) of diagonal type with braiding

matrix Q = (qij)1≤i,j≤n corresponding to {xi | 1 ≤ i ≤ n} where qij = ζj(gi) .

Example 4.10 [2] Let (V, c) be a braided vector space of diagonal type. Then

there is a vector space basis x1, . . . , xn of V and Q = (qij)1≤i,j≤n ∈ K×n×n such

that c(xi ⊗ xj) = qijxj ⊗ xi for all 1 ≤ i, j ≤ n. For 1 ≤ i ≤ n identify αi ∈ Zn

with the automorphism of V given by xj 7→ qijxj for all 1 ≤ j ≤ n. Then V is

a Yetter-Drinfeld module over KZn with coaction δ(xi) = αi ⊗ xi . The braiding

induced by the Yetter-Drinfeld module structure coincides with c.

Next, we introduce algebras and coalgebras in H
HYD.

Definition 4.11 An algebra in H
HYD is a triplet (V,mV , 1V ) where V ∈ H

HYD,

mV : V ⊗ V → V is an associative multiplication with unit 1V : K→ V and mV , 1V

are morphisms in H
HYD.

Analogously, a coalgebra in H
HYD is a triplet (V,∆V , εV ) where V ∈ H

HYD,

∆V : V → V ⊗ V is a coassociative coproduct with counit εV : V → K and ∆V , εV

are morphisms in H
HYD.

Let (V,mV , 1V ) be an algebra in H
HYD. There is a “twisted” algebra structure

on V ⊗ V given by V⊗V = (V ⊗ V,mV⊗V , 1V⊗V ) where

mV⊗V = (mV ⊗mV )(idV ⊗ c⊗ idV )
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and

1V⊗V = 1V⊗V = 1V ⊗ 1V .

Here, c replaces the usual swap.

Definition 4.12 A bialgebra in H
HYD is the quintuple (V,mV , 1V ,∆V , εV ) such

that

• (V,mV , 1V ) is an algebra in H
HYD .

• (V,∆V , εV ) is a coalgebra in H
HYD .

• ∆ : V → V⊗V and εV : V → K are morphisms of algebras.

A Hopf algebra in H
HYD is a bialgebra V in H

HYD such that the identity is

convolution invertible in End(V ). The corresponding inverse is called the antipode

of V .

Finally we recall a well-known result for the construction of subquotients of a

given bialgebra in H
HYD which are bialgebras.

Proposition 4.13 [10] Let B be a bialgebra in H
HYD and let K be a right coideal

subalgebra of B in H
HYD. For any coideal I of B in H

HYD such that I is an ideal of

K and

∆(K) ⊆ K ⊗K + I ⊗ B ,

the structure maps of B induce a bialgebra structure on K/I in H
HYD .

4.3 Preliminaries on Nichols Algebras

Nichols algebras first appeared in [27]. Today, various equivalent characterizations

are known. In this chapter we recall the one that will be most convenient for the

further discussion. Note that this introduction is not meant to be comprehensive.

For more details refer to [2]. In the following let V be a Yetter-Drinfeld module over

H.

Proposition 4.14 [2] The tensor algebra

T (V ) =
∞⊕
m=0

V ⊗m

constitutes an N0-graded Hopf algebra in H
HYD where for all x ∈ V we have

∆T (V )(x) = 1⊗ x+ x⊗ 1 , εT (V )(x) = 0 .
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Definition 4.15 Let S denote the set of homogeneous Hopf ideals of T (V ) with

trivial intersection with K ⊕ V . For all J ∈ S the quotient T (V )/J is called pre-

Nichols algebra ofV .

Remark 4.16 [4] A N0-graded bialgebra A in H
HYD generated by A(1) consisting

of primitive elements is a pre-Nichols algebra of A(1).

There is a partial ordering on S given by inclusion ⊂.

Proposition 4.17 [2] The set S has a maximal element J with respect to ⊂.

Definition 4.18 Let J be as in Proposition 4.17. The quotient T (V )/J is called

the Nichols algebra of V and is denoted by B(V ). The dimension dimV is called

the rank of B(V ). B(V ) is called Nichols algebra of diagonal type if V is of

diagonal type.

Theorem 4.19 [2] B(V ) is a N0-graded Hopf algebra in H
HYD and the primitive

elements P (B(V )) = B(V )(1) = V .

The greatest problem when working with Nichols algebras is that in general J
can not be determined explicitly although there are several equivalent characteri-

zations of this ideal [2]. Hence, in general it remains a difficult task to describe

the vector space structure of a Nichols algebra. For those of diagonal type many

tools have been developed to cope with this kind of problems. Moreover, finite-

dimensional Nichols algebras of diagonal type have been classified in a series of

papers [12, 11, 14, 17, 18]. Therefore, in the following we restrict to this case.

4.4 Nichols Algebras of diagonal type

We restrict to the case of Nichols algebras of diagonal type. Those are the most

accessible and many strong tools have been developed to work in this setting. In this

chapter we collect some well-known results. Some of those might be true in a more

general context. The notions are mainly taken from [19]. In the following we might

switch between braided vector spaces and Yetter-Drinfeld modules if necessary.

Let n be a natural number, I = {1, . . . , n} and V be an n-dimensional Yetter-

Drinfeld module of diagonal type. If the context is clear, the braiding will be denoted

by c. Fix a vector space basis X = {xi}i∈I satisfying

c(xi ⊗ xj) = qijxj ⊗ xi
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for any i, j ∈ I and Q = (qij)i,j∈I ∈ (K×)n×n. First, we give another characterization

of the defining ideal J in the definition of a Nichols algebra.

Remark 4.20 The Zn-grading of V given by Example 4.9 extends to an Zn-grading

on T (V ) and B(V ).

In the following we will denote the degree function corresponding to the N0-

grading with degN. For homogeneous elements x in T (V ) or B(V ) with respect to

the Zn-grading we denote the degree by deg(x). By definition we have deg(xi) = αi.

Let χ be the bicharacter on Zn satisfying χ : Zn × Zn → K×, χ(αi, αj) = qij for

all i, j ∈ I.

Proposition 4.21 [2, 2.8] For all i ∈ I there is a unique skew-derivation ∂i of T (V )

satisfying

∂i(xj) = δij (Kronecker Delta), ∂i(xy) = x∂i(y) + χ(αi, α)∂(x)y

for any j ∈ I, x, y ∈ T (V ) with deg(y) = α. These skew-derivations induce skew-

derivations of any pre-Nichols algebra of V which will be denoted by the same

symbol.

Moreover, for any pre-Nichols algebra T (V )/I the following holds:⋂
i∈I

ker ∂i = K ⇔ I = J .

This characterization of B(V ) is very useful to decide whether some expression

is 0 in B(V ). This is not a trivial task since the ideal J is hard to determine in

general. The following corollary recapitulates this fact.

Corollary 4.22 [2] For x ∈ B(V ) the following equivalence holds:

x = 0 ⇐⇒ ∂i(x) = 0 for all i ∈ I .

When determining the Gelfand-Kirillov dimensions for all rank two Nichols alge-

bras of diagonal type the following property will yield cases to be treated identically.

Definition 4.23 Let Q = (qij)i,j∈I and Q′ = (q′ij)i,j∈I be matrices over K× and V

and V ′ be Yetter-Drinfeld modules of diagonal type with vector space bases B of V

and B′ of V ′ such that Q is a braiding matrix of V corresponding to B and Q′ is a

braiding matrix of V ′ corresponding to B′. V and V ′ are called twist-equivalent

if qii = q′ii and qijqji = q′ijq
′
ji for all i, j ∈ I.
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Lemma 4.24 [3, 1.2] Let V and V ′ be twist-equivalent Yetter-Drinfeld modules.

Then B(V ) and B(V ′) are isomorphic as vector spaces and dim(V ⊗m) = dim(V ′⊗m)

for all m ∈ N0. In particular, the equation GKdimB(V ) = GKdimB(V ′) holds.

Next, we develop the framework of tools usually applied in the work with Nichols

algebras, that is a vector space basis similar to the one of universal enveloping

algebras of a Lie algebra together with so called reflections. These are excessively

used in the classification of finite dimensional Nichols algebras of diagonal type and

will be essential in our deduction as well.

Let I denote the set of non-empty words with letters in I. We fix the natural

ordering on I and extend it to I via (4.1). Moreover, set

Oα =

{
{1, ord (χ(α, α)) ,∞} if ord (χ(α, α)) =∞ or p = 0 .

{1, ord (χ(α, α)) pk,∞|k ∈ N0} if ord (χ(α, α)) <∞, char(K) = p .
,

where ord (χ(α, α)) denotes the multiplicative order of χ(α, α). Additionally, set

N (I) := {wk|w ∈ L(I), k ∈ N} and R(V ) := {wk|w ∈ L(I), k ∈ Oα \ {∞}} .

Remark 4.25 The set R(V ) is the set of root vector candidates in [19].

Definition 4.26 We define a mapping [ · ] : N (I)→ B(V ) inductively as follows:

[i] = xi for i ∈ I .
[w] = [v][v′]− χ (deg(v), deg(v′)) [v′][v] if w ∈ L(I), `(w) ≥ 2 and

(v, v′) is the Shirshov decomposition of w .

[wk] = [w]k for any w ∈ L(I) and k ≥ 2 .

For w ∈ N (I) the vector [w] is called superletter of w.

The lexicographical ordering of I can be extended to an ordering of superletters

via

[w] <lex [v]⇐⇒ w <lex v.

For w ∈ R(V ) let B>w denote the vector space spanned by products

[vm]km · · · [v1]k1

where m ∈ N0, k1, . . . , km ∈ N and v1, . . . , vm ∈ R(V ) with w <lex v1 <lex · · · <lex vm

and deg([vm]km · · · [v1]k1) = deg(w).
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Definition 4.27 Let w be an element in R(V ). [w] is a root vector of B(V ) if

[w] 6∈ B>w.

Remark 4.28 If [w] is not a root vector for w ∈ R(V ), then w ∈ B>w. Let

[v`]
t` · · · [v1]t1 be one summand in the representation of [w] in B>w. Then

w <lex v
t1
1 · · · · · v

t`
` .

Remark 4.29 [21, Lemma 5] Let w = i1 · · · ik be a word in I for k ∈ N. We set

xw = xi1xi2 · · · xik . Then <lex can be extended to the vectors xw via

xw <lex xv :⇔ w <lex v

for any w, v ∈ I. Thus, in the representation of [w] with w ∈ R(V ) after application

of [ · ] the minimal term with respect to <lex is xw with coefficient 1.

A consequence of this fact is the following: Let m > 1, k1, . . . , km non-negative

integers and w = 1k12 · · · 1km2 ∈ L(I) . For every 1 ≤ j < m the following holds:

[[1k12 · · · 1kj2], [1kj+12 · · · 1km2]]c ∈ [w] + B>w .

Especially, if [w] is a root vector, this implies [[1k12 · · · 1kj2], [1kj+12 · · · 1km2]]c 6= 0

for any j ∈ {1, . . . ,m}.

Theorem 4.30 [21] Let L = {y ∈ R(V ) | y is a root vector} be the set of root

vectors. Then the elements

[yk]
mk · · · [y1]m1 , k ∈ N0, y1, . . . , yk ∈ L, y1 <lex · · · <lex yk ,

0 < mi < min(Odeg(yi) \ {1}) for any 1 ≤ i ≤ k ,

form a vector space basis of B(V ).

Corollary 4.31 The total ordering <lex can be exchanged by any total ordering�
on L in Theorem 4.30.

Proof. Consider the following partial ordering on the set of monomials [vk]
mk · · · [v1]m1

with k ∈ N0,m1, . . . ,mk ∈ N, vi ∈ L:

[vk]
mk · · · [v1]m1 ≺ [v′`]

m′` · · · [v′1]m
′
1 :⇔ (c1, . . . , cn) ≤lex (c′1, . . . , c

′
n)

where k, ` ∈ N and ci, c
′
i ∈ N0 count the number of appearances of xi in [vk]

mk · · · [v1]m1

and [v′k]
m′k · · · [v′1]m

′
1 respectively.
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It is easy to see that (K1)-(K3) and (B1)-(B3) in 2 are satisfied by ≺. Thus, we

can apply Proposition 2.2 in our case to exchange the total ordering <lex by another

one. �

Definition 4.32 Let L be the set from Theorem 4.30. The sets

4+ = {deg([u]) | u ∈ L} ⊂ Zn and 4 = 4+ ∪ −4+

are called set of positive roots of B(V ) and the root system of B(V ), respec-

tively. For any α ∈ 4+ the multiplicity of α is given by

mult(α) = #{u ∈ L| deg([u]) = α}.

As the name suggests root systems of Nichols algebras are similar to roots systems

of Lie algebras. In fact the former are a generalization of the latter ones, see [9].

There are also reflections for the root systems of Nichols algebras, but in general

these will not form a group, but a groupoid. We do not develop the full theory here

because this would lead to far. We recall some results that will be applied later in

this work. See [16] for a more comprehensive introduction to Weyl groupoids.

Definition 4.33 Let P = (pjk)j,k∈I ∈ (K×)n×n be a matrix. P is called i-finite for

i ∈ I iff the set {
k ∈ N0 | (k + 1)pii(1− pkiipijpji) = 0

}
is non-empty.

In the following assume Q is i-finite for all i ∈ I.

Definition 4.34 A matrix C = (cij)i,j∈I ∈ Zn×n is called a generalized Cartan

matrix iff

• cii = 2 and cjk ≤ 0 for all i, j, k ∈ I, j 6= k.

• cij = 0⇒ cji = 0 for all i, j ∈ I.

Lemma 4.35 [13, Lemma 3] Set cii = 2 and

cij = −min
{
k ∈ N0 | (k + 1)qii(1− qkiiqijqji) = 0

}
for all i, j ∈ I. Then the matrix CV = (cij)i,j∈I is a generalized Cartan matrix.

Definition 4.36 The matrix CV in the above lemma will be called the Cartan

matrix of B(V ).
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If the context is clear, we denote CV by C.

Theorem 4.37 [5, 2.4] For any i ∈ I there is a n-dimensional Yetter-Drinfeld

module Ri(V ) with vector space basis {y1 | 1 ≤ i ≤ n} satisfying

cRi(V ),Ri(V )(yj ⊗ yk) = pjkp
−cij
ik p−cikji p

cijcik
ii yk ⊗ yj

and GKdim (B(V )) = GKdim (B(Ri(V ))).

Let 4W
+ and 4W denote the set of positive roots and the root system of B(W )

for a braided vector space (W, cW ), respectively.

Theorem 4.38 [13] For i ∈ I there is a Z-linear bijective map sVi : 4V → 4Ri(V )

given by

si(αj) = αj − cijαi.

This map satisfies

sVi (4V
+ \ {αi}) = 4R

i(V )
+ \ {αi}, sVi (4V ) = 4Ri(V ) .

Moreover, the multiplicities of α and si(α) coincide for any α ∈ 4V .

If the context is clear, we denote sVi by si.

Note that if V and Ri(V ) are twist-equivalent, then we can identify 4V and

4Ri(V ). Hence sVi is an automorphism of 4V is this case. Next, we consider one

special case.

Definition 4.39 A Nichols algebra B(V ) of diagonal type is of Cartan-type iff

for all i, j ∈ I there is some k ∈ N such that qijqji = qkii .

Moreover, we say that B(V ) is of finite or affine Cartan-type if it is of Cartan-

type and the corresponding Cartan matrix is of finite type or affine type resp. (for

details refer to [20]).

The next theorem motivates the notion we just introduced. Let B(V ) be of

Cartan-type. Then V and Ri(V ) are twist-equivalent for all i ∈ I. Hence the

automorphisms si generate a group.

Theorem 4.40 [9, Thm. 3.3] Let B(V ) be of Cartan-type with Cartan matrix C.

The group generated by the si is isomorphic to the Weyl-group associated with C.
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5 | On the root system of rank two

Nichols algebras of diagonal type

We have seen in the last chapter that for the classification of finite Gelfand-Kirillov

dimensional Nichols algebras of diagonal type it will suffice to identify twist equiv-

alent Yetter-Drinfeld modules. This motivates the following definition.

Definition 5.1 Let q, r, s ∈ K× and b(q, r, s) denote the full subcategory of KZ2

KZ2YD
consisting of those objects V that have a vector space basis (x1, x2) such that

cV,V (xi ⊗ xj) = qijxj ⊗ xi

where q11 = q, q12q21 = r and q22 = s. We call b(q, r, s) the category of braided

vector spaces distinguished by (q, r, s). For V ∈ Ob(b(q, r, s)) a vector space

basis (x1, x2) as above is called basis distinguished by (q, r, s).

We declare objects in this category via V ∈ b(q, r, s).
Remark 5.2 If V ∈ b(q, r, s), then obiviously V ∈ b(s, r, q) by exchanging the

indices of the basis vectors.

From now on let q, r, s ∈ K× and V ∈ b(q, r, s) with basis (x1, x2) distinguished

by (q, r, s). Let Q = (qij)1≤i,j≤2 denote the corresponding braiding matrix of V with

respect to (x1, x2) and B(V ) the corresponding Nichols algebra. Moreover, we will

use the notation

qkα1+`α2 = χ(kα1 + `α2, kα1 + `α2) = qk
2

rk·`s`
2

.

For the analysis of GKdim (B(V )) knowledge on 4+ will be crucial. If 4+

is finite, it is well-known that all roots have multiplicity 1 and for α ∈ 4+ the

cardinality of {kα | k ∈ N} is one, see [15]. This leads to the approach to use roots

of multiplicity 2 or roots with multiples to prove GKdim (B(V )) = ∞. As stated

29
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before, calculating whether a given root exists or not is very much depending on c.

Thus, there are not many general results on the existence of roots. In this chapter

we collect the information we will need in the following discussion.

When working with rank two Nichols algebras of diagonal type a set of special

vectors proved to be useful. For x ∈ B(V ) let adx denote the adjoint action of B(V )

on itself, i.e.

adx(y) = [x, y]c = xy − χ(deg(x), deg(y)) yx .

Here, [ · , · ]c is called braided commutator.

Set u0 = x2 and uk+1 = adx1(uk) for all k ∈ N.

Note that deg(uk) = kα1 + α2. In this context for k ∈ N the elements

bk =
k−1∏
i=0

(1− qir) ∈ K

appear frequently.

5.1 Calculus with uk

First, we will collect some well known properties of the vectors uk:

∂1(uk) = 0 , ∂2(uk) = bkx
k
1 ,

∆(uk) = uk ⊗ 1 + 1⊗ uk +
k−1∑
i=0

(
k

i

)
q

bk
bi
xk−i1 ⊗ ui . (5.1)

Lemma 5.3 Let m be a natural number and k1, . . . , km ∈ N0. Then the following

holds:

x1uk1uk2 · · · ukm =

(
m∑
i=1

q
∑i−1

j=1 kjqi−1
12 uk1 · · · uki−1

uki+1uki+1
· · · ukm

)
+q

∑m
j=1 kjqn12 uk1 · · · ukmx1 .

Proof. We argue by induction on m.
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For m = 1 by definition the equation

uk+1 = x1uk − qkq12 ukx1

holds. By rearrangement of the terms this yields

x1uk = uk+1 + qkq12 ukx1 .

This was claimed.

For arbitrary m ≥ 2 we calculate

x1uk1 · · · ukm
=

(
x1uk1 · · · ukm−1

)
ukm

induction hyp.
=

(
m−1∑
i=1

q
∑i−1

j=1 kjqi−1
12 uk1 · · · uki−1

uki+1uki+1
· · · ukm−1ukm

)
+q

∑m−1
j=1 kjqm−1

12 uk1 · · · ukm−1x1ukm

=

(
m−1∑
i=1

q
∑i−1

j=1 kjqi−1
12 uk1 · · · uki−1

uki+1uki+1
· · · ukm

)
+q

∑m−1
j=1 kjqm−1

12 uk1 · · · ukm−1ukm+1 + q
∑m

j=1 kjqm12 uk1 · · · ukmx1

=

(
m∑
i=1

q
∑i−1

j=1 kjqi−1
12 uk1 · · · uki−1

uki+1uki+1
· · · ukm

)
+q

∑m−1
j=1 kjqn12 uk1 · · · ukmx1. �

Since B(V ) is defined as a quotient in general it is not clear whether some product

or commutator of elements is 0. The next statements address this problem. It is a

variation of [5, 4.7].

Lemma 5.4 Let m, k, j be natural numbers with m ≤ k. Then the following equa-

tion holds:

∂m1 ∂2(ujk) = bk(k)q · . . . · (k −m+ 1)q

j−1∑
i=0

(qk·mqm12q
k
21s)

i uj−i−1
k xk−m1 uik .

For the special case m = k we get ∂k1∂2(ujk) = bk(k)!
q(j)qk2rks u

j−1
k .

Proof. This follows from direct application of the skew derivatives. �

Corollary 5.5 [29, Lemma 14] The following holds: uk = 0 iff bk(k)!
q = 0 .
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Lemma 5.6 [19, 4.1] Let k be a natural number such that uk 6= 0. Then u2
k = 0 iff

qk
2rks = −1 and uk+1 = 0.

Finally, we prove some formulas on the comultiplication of the uk. These will be

used to find primitive elements in quotients of certain subalgebras of B(V ).

Lemma 5.7 For k ≥ 2 the following holds:

∆([uk+1, uk−1]c) = 1⊗ [uk+1, uk−1]c + [uk+1, uk−1]c ⊗ 1

+(1− qkr)(k + 1)qq
k(k−1)rk−1sq12 uk ⊗ uk

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> k .

Proof. Recall (5.1). We calculate

∆([uk+1, uk−1]c)

= ∆(uk+1)∆(uk−1)− qk2−1rk−1sq2
12 ∆(uk−1)∆(uk+1)

=

(
1⊗ uk+1 + uk+1 ⊗ 1 +

k∑
i=1

(
k + 1

i

)
q

bk+1

bi
xk+1−i

1 ⊗ ui

)
∆(uk−1)

−qk2−1rk−1sq2
12 ∆(uk−1)

(
1⊗ uk+1 + uk+1 ⊗ 1 +

k∑
i=1

(
k + 1

i

)
q

bk+1

bi
xk+1−i

1 ⊗ ui

)
=

(
1⊗ uk+1uk−1 + qk

2−1rk−1sq2
12 uk−1 ⊗ uk+1

+uk+1uk−1 ⊗ 1 + qk(k−1)rk−1sq12(1− qkr)(k + 1)q x1uk−1 ⊗ uk

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> k

)
−qk2−1rk−1sq2

12

(
1⊗ uk−1uk+1 + uk−1 ⊗ uk+1

+uk−1uk+1 ⊗ 1 + (1− qkr)(k + 1)q uk−1x1 ⊗ uk

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> k

)
= 1⊗ [uk+1, uk−1]c + [uk+1, uk−1]c ⊗ 1

+(1− qkr)(k + 1)qq
k(k−1)rk−1sq12 (x1uk−1 − qk−1q12 uk−1x1)︸ ︷︷ ︸

=uk

⊗uk

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> k .

This was claimed. �
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Lemma 5.8 For k,m ∈ N the following holds:

∆(umk ) =
m∑
i=0

(
m

i

)
qk2rks

uik ⊗ um−ik

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> k .

Proof. We argue by induction on m. For m = 1 this was stated in (5.1).

Now, assume m ≥ 2. Then the following equations holds:

∆(umk ) = ∆(um−1
k )∆(uk)

ind. hyp.
=

(
m−1∑
i=0

(
m− 1

i

)
qk2rks

uik ⊗ um−1−i
k

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> k

)
(
uk ⊗ 1 + 1⊗ uk +

k−1∑
i=0

(
k

i

)
q

bk x
k−i
1 ⊗ ui

)

=

(
m−1∑
i=0

(
m− 1

i

)
qk

2rks

uik ⊗ um−1−i
k

)
(uk ⊗ 1 + 1⊗ uk)

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> k

=
m−1∑
i=0

(qk
2

rks)m−1−i
(
m− 1

i

)
qk

2rks

ui+1
k ⊗ um−1−i

k

+
m−1∑
i=0

(
m− 1

i

)
qk2rks

uik ⊗ um−ik

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> k

= umk ⊗ 1 + 1⊗ umk

+
m−1∑
i=1

(
(qk

2

rks)m−i
(
m− 1

i− 1

)
qk

2
rks

+

(
m− 1

i

)
qk

2
rks

)
uik ⊗ um−ik

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> k

=
m∑
i=0

(
m

i

)
qk2rks

uik ⊗ um−ik

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> k .

This was claimed. �
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5.2 Existence of roots

Although rank two Nichols algebras of diagonal type have been studied intensively

in general little is known about the corresponding root system for a given braiding.

Recently, there was progress in this direction. For our deduction it will be essential

to know whether for some m ∈ N there exists an k ≥ 2 such that k(mα1 +α2) ∈ 4+.

For general k ≥ 3 no general result in this direction is known so far. For k = 2 this

was discussed in [19] and [34]. First, we recall those results. Later we develop some

new results on the existence of roots.

First, we need to connect the vectors uk to Lyndon words. For any k ∈ N0

by definition uk = [1k2] as superletter due to the Shirshov decomposition of 1k2.

Moreover, B>1k2 = {0} since 1 is minimal in I with respect to <lex. Hence uk 6= 0 iff

kα1+α2 is a root by Example 4.4. Moreover, kα1+α2 ∈ 4+ ⇒ (k−1)α1+α2 ∈ 4+

for all k ∈ N.

Lemma 5.9 [19, 3.5,4.1] If u2
k is a root vector with k ∈ N, then

uk+1 6= 0 and qk
2

rks = −1 .

Lemma 5.10 [19, 4.3] Let k, ` be natural numbers such that k > ` and uk 6= 0. If

[1k21`2] is not a root, then [1k+121`−12] is not a root.

The preceding lemma shows that the superletters of maximal Lyndon words with

respect to <lex are more likely root vectors than smaller ones. However, such a strong

dependency does not hold for superletters of Lyndon words of degree m1α1 +m2α2

with m1,m2 ≥ 3. We give an example later on, see Lemma 5.23.

Next, we recall the classification of roots mα1 + 2α1 with k ∈ N from [34].

Definition 5.11 [34, 3.1,3.6] Let J ⊂ N0 be the set of those j ∈ N0 satisfying one

of the following

(1) qj(j−1)/2(−r)js = −1 and qk+j−1r2 6= 1 for all k ∈ J, k < j .

(2) there exists some k ∈ J with k < j such thatqk+j−1r2 = 1 and 2p | (j − k), if j − k is even.

q(k+j−1)/2r = −1 and p | (j − k), if j − k is odd.

Remark 5.12 [34, 3.6] Note that in case (2) of the above definition the relation

qj(j−1)/2(−r)js = −1 is also fulfilled.
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The following lemma gives a restriction to the cardinality of J∩ [0, k]. Note that

this will essentially be the reason for Nichols algebras with uk 6= 0, k ≥ 8 to be of

infinite Gelfand-Kirillov dimension, see Lemma 7.3.

Lemma 5.13 [34, 3.5] For j ∈ J we have j + 1, j + 2 6∈ J. In particular, for any

k ∈ N0 the following inequality holds:

# (J ∩ [0, k]) ≤ k

3
+ 1 .

Theorem 5.14 [34, 3.23] Let m ∈ N0 such that um 6= 0. Then the multiplicity of

mα1 + 2α2 is given by

m′ −# (J ∩ [0,m]) ,

where m′ depends on m as follows

m′ =


(m+ 1)/2 if m is odd,

m/2 if m is even and qm
2/4rm/2s 6= 1 ,

m/2 + 1 if m is even and qm
2/4rm/2s = −1 .

Remark 5.15 By Remark 5.2 the above theorem implies an analogous result for

roots of the form 2α1 +mα2.

As stated before such a simple answer to the question whether m1α1 + m2α2

with m1,m2 ≥ 3 can not be expected due to the more complex set of corresponding

Lyndon words. In the following we prove some special results in this direction. As

stated above it appears natural to check Lyndon words that are large with respect

to <lex. This is due to the fact that the dimension of B>w is smaller for such w.

Lengthy formulas where shifted to Appendix B to improve readability.

Remark 5.16 Assume w = 1k+121k−12. Then B>w = 〈u2
k〉K. This follows directly

from Remark 4.28. Hence if 2kα1 + 2α2 is not a root, this implies [w] ∈ K u2
k by

Lemma 5.10.

First, we prove under special conditions on q, r and s that [112122] is a root

vector.

Lemma 5.17 Let w = 112122 ∈ R(V ). Then

B>w = 〈[112212], u1[1122], u3
1〉K .

Proof. Let [v`]
t` · · · [v1]t1 be a generator of B>w. Then w <lex v

t1
1 · · · · · v

t`
` =: v by

Remark 4.28. Now, if v starts with 12, then there are two 1’s and two 2’s to be
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arranged. Since v1 <lex vi for all 2 ≤ i ≤ ` we conclude v = (12)3. Thus, u3
1 ∈ B>w.

Furthermore, if v started with 1112, this yields v <lex w, a contradiction. Thus,

assume v = 112v′ with v′ ∈ I. If v′ starts with 1, then due to w <lex v it starts with

122 and hence v = w, a contradiction. Thus, v′ starts with 2 and cannot end with

1 due to 1 <lex w. This yields v = 112212. There are only two decompositions into

Lyndon words satisfying the assumptions on v, namely 1122 · 12 and 112212. The

claim follows. �

Corollary 5.18 Let w = 112122 ∈ R(V ). If [1122] is not a root vector, then

[w] ∈ B>w iff [w] ∈ K u3
1.

Proof. First, note B>w = 〈[112212], u1[1122], u3
1〉K. Now, [1122] is not a root vector

and, consequently, [1122] = λu2
1 for some λ ∈ K by Remark 5.16. Therefore, u1[1122]

and [112212] = [[1122], u1]c are multiples of u3
1. Thus, B>w = Ku3

1. �

Lemma 5.19 Assume u3 6= 0, [122] 6= 0, (3)!
qrs 6= 0 and qr2s+1 = 0. Then [112122]

is a root vector.

Proof. Let w = 112122 ∈ R(V ) and assume [w] is not a root vector. First note

that u2
1 6= 0 since (3)!

qrs 6= 0. Moreover, qr2s + 1 = 0 and [122] 6= 0 imply 2 ∈ J
and, consequently, [1122] is not a root vector by Theorem 5.14. Thus, there exists

λ ∈ K such that [112122] = λu3
1 by Corollary 5.18. Moreover, let µ ∈ K such that

∂2([12122]) = µu2
1 by Lemma B.3(i). We construct a contradiction by application of

skew-derivations using qr2s = −1.

By Lemma B.1 and Lemma B.3 comparing ∂1∂2([112122]) and ∂1∂2(λu3
1) implies

µq2q2
12b1u

2
1 = ∂1∂2([112122]) = ∂1∂2(λu3

1) = λ(3)qrsb1u
2
1 .

Hence λ =
µq2q212
(3)qrs

. Moreover, comparison of ∂2
2([112122]) and ∂2

2(λu3
1) yields

µb1

(
q21su3 + (1 + qrs+ q2rs− q2r3s)u2x1 + (2)qrsqq12(1− qr2)u1x

2
1

)
= ∂2

2([112122]) = ∂2
2(λu3

1)

= (2)sb
2
1q21

(
q2

21s
2u3 + (1 + qrs+ q2rs)q21q22u2x1 + (3)qrsu1x

2
1

)
.

Here, all vectors are basis vectors due to Theorem 4.30 and u3 6= 0 was assumed.

Comparing the coefficients of u3 using the above solution for λ we conclude

µb1q21s = b2
1q

3
21s

2(2)s
µq2q2

12

(3)qrs
,
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that is

0 = (3)qrs − (1− r)q2r2s(2)s

= 1 + qrs− qs+ q + qs− qr − qrs

= 1 + q − qr .

Additionally, by Lemma B.1 and Lemma B.3 comparison of ∂3
2(u3

1) and ∂3
2([112122])

implies

(
(3)qrs

(
b3s+ b2(1 + qrs+ q2rs− q2r3r) + b1(2)qrsqr(1− qr2)

)
−q2r2b2

1(3)!
s

)
x3

1 = 0 .

Note that x3
1 6= 0 since u3 6= 0. Then simplification using qr2s+1 = 0 and 1+q−qr =

0 yields

−q2s− 2qs− rs− s = −s(2)q(3)q
q

= 0 .

But s ∈ K× and u3 6= 0, i.e. b3(2)q(3)q 6= 0, a contradiction. �

For two special braidings we give additional result. In those cases all other tools

will not be applicable.

Lemma 5.20 Let w = 111212112 ∈ R(V ). Then B>w = 〈u3
2〉K.

Proof. Let [v`]
t` · · · [v1]t1 ∈ B>w. Then w <lex v

t1
1 · · · · · v

t`
` =: v by Remark 4.28.

Now, if v starts with 112, then there are four 1′s and two 2′s to be arranged. Since

v1 <lex vi for all 2 ≤ i ≤ ` we conclude v = (112)3. Thus, u3
2 ∈ B>w.

If v starts with 11122, then v = 111221112 since 1 <lex w <lex v1. Then v 6∈ L(I)

and, consequently, v1 = 11122. This yields a contradiction to v1 <lex · · · <lex v` .

If v starts with 11121, then v = 111212112 = w since 1 <lex w <lex v1. This

contradicts w <lex v. The same applies if v starts with 1111. �

Lemma 5.21 Let w = 111211212 ∈ R(V ) and assume 4α1 + 2α2 is not a root.

Then B>w = 〈u3
2〉K.

Proof. The argumentation is similar to the one in the proof of Lemma 5.20. The

difference is the case where v starts with 11121. Here, v = 111212112 is possible.

Then the products [111212][112] and [111212112] are possible decompositions into

products of superletters. Note that [111212112] = [[111212], u2]c. Now, 4α1 + 2α2

not a root and hence [111212] ∈ Ku2
2 by Remark 5.16. Therefore, both possible

products are in K u3
2. This implies the claim. �
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Lemma 5.22 Let s = q ∈ G′12 be a primitive 12-th root of unity and r = q8. Then

[111212112] is a root vector.

Proof. Let w = 111212112 ∈ R(V ). First, note that (q, r, s) is symmetric with

u4 6= 0, q4r = rs4 = 1. One easily checks 0, 1 6∈ J and 2 ∈ J due to qr2s = −1. Now,

B>w = 〈u3
2〉K by Lemma 5.20. Thus, if [w] is not a root vector, then there is some

λ ∈ K such that [w] = [[111212], u2]c = λu3
2. Consequently, comparison of ∂2

1∂2([w])

and ∂2
1∂2(u3

2) yields

λb2(2)q(3)q4r2s u
2
2

= ∂2
1∂2(λu3

2)

= ∂2
1∂2([w])

= ∂2
1∂2([111212]u2 + u2[111212])

= b2(2)q [111212] + q4r2s ∂2
1∂2([111212])u2

+ u2∂
2
1∂2([111212]) + q8r4s2b2(2)q [111212]

= 0 .

This implies λ = 0 since b2(2)q(3)q4r2su
2
2 6= 0 due to q4r2s = −q3 ∈ G′4 and the

assumptions. Using this conclusion and comparing the application of ∂3
2 on [w] and

u3
2 we obtain

0 =λb3
2(3)!

sq
6
21 x

6
1

= ∂3
2(λu3

2)

= ∂3
2([w])

= ∂3
2([111212]u2 + u2[111212])

= ∂2
2(b2 [111212]x2

1 + q2
21s ∂2([111212])u2

+ u2∂2([111212]) + q4
21s

2b2 x
2
1[111212])

= b2q
4
21(3)s ∂

2
2([111212])x2

1 + b2q
4
21(3)s x

2
1∂

2
2

= 2b1b
2
2(2)qq

5
21(3)s(1− q3r2) x6

1 .

But since p 6∈ {2, 3} due to q ∈ G′12 and b1b
2
2(2)qq

5
21(3)s(1−q3r2) 6= 0 this implies x6

1 =

0 . Now, ∂6
1(x6

1) = (6)!
q =

∏6
i=1(qi−1)

(q−1)6
6= 0 due to q ∈ G′12. This is a contradiction. �

Lemma 5.23 Let q ∈ G′18 be a primitive 18-th root of unity, s = q5 and r = q13 or

q ∈ G′9, s = q5, r = q4, p = 2. Then [111211212] is a root vector.
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Proof. Let w = 111211212. First, note that rs = 1, u5 6= 0, q5r = 1 and 1, 4 ∈ J.

Now, B>w = 〈u3
2〉K by Lemma 5.21. Thus, if [w] is not a root vector, then [w] =

[x1, [11211212]]c = [x1, [u2, [11212]]c]c = λu3
2 for some λ ∈ K. Consequently, we

obtain the following equation by comparison of ∂2
1∂2(λu3

2) and ∂2
1∂2([w])

λb2(2)q(3)q4r2s u
2
2

=∂2
1∂2(λu3

2)

=∂2
1∂2([w])

=∂2
1∂2(x1[11211212]− q5q3

12 [11211212]x1)

=∂2
1∂2(x1u2[11212]− q6r3s2q12 x1[11212]u2

− q5q3
12 u2[11212]x1 + q11r4s2q4

12 [11212]u2x1)

=0 .

Hence λ = 0 since b2(2)q(3)q4r2s u
2
2 6= 0. Now, we conclude

0 =λb3
2(3)!

sq
6
21 x

6
1

=∂3
2(λu3

2)

=∂3
2([w])

=∂3
2(x1u2[11212]− q6r3s2q12 x1[11212]u2

− q5q3
12 u2[11212]x1 + q11r4s2q4

12 [11212]u2x1)

=q4
21(3)!

s(2)qb1b
2
2(1− q6r4s2 − q5r3 + q11r7s2) x6

1 .

But since q4
21(3)!

s(2)qb1b
2
2x

6
1 6= 0 this implies

0 = (1− q6r4s2 − q5r3 + q11r7s2) = (1− q6r4s2)(1− q5r3) = (1− qr)(1− r)(1 + r).

This is a contradiction to the assumptions. �

5.3 A construction of infinitely many roots

We will see that our usual approach using roots with multiples will not work if

V ∈ b(q, r, s) with q, r, s ∈ G4, see Corollary 6.16 and Corollary 6.18. Especially

for those cases we introduce an approach to prove the existence of infinitely many

roots in this section. This will be done in a more general setting mostly using linear

algebra. Note that for general q, r, s and p this approach only gives limited results,
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but could be used in p = 0 to greater extent.

Let t, k be natural numbers such that uk+1 6= 0. Moreover, let wk,t = 1k+12(1k2)t ∈
I. The following lemma is inspired by [5, 4.9].

Lemma 5.24 The vector space B>wk,t is trivial, i.e. B>wk,t = {0} .

Proof. Let [v`]
t` · · · [v1]t1 ∈ B>wk,t \ {0} and 1 ≤ i ≤ `. First, note that 1 <lex wk,t

and, consequently, vi 6= 1. Thus, since vi ∈ R(V ) we conclude vi = 1m12 · · · 1m`i2

for some `i,mj ∈ N0, 1 ≤ j ≤ `i with mj ≤ m1 ≤ k + 1 since wk,t <lex vi.

Let M = {1 ≤ j ≤ `i |mj = k + 1} and assume M 6= ∅. Hence 1 ∈M since vi ∈
R(V ) . Then decompose vi =

∏
j∈M v

(j)
i where v

(j)
i = 1mj21mj+12 · · · 1mj′−12 . Here,

j′ denotes the successor of j in M . Now, v
(1)
i 6= 1k+12(1k2)N for some 0 ≤ N ≤ `i

since otherwise vi ≤lex wk,t . Thus,

deg(v
(1)
i ) = k

(1)
1 α1 + k

(1)
2 α2

with k
(1)
1 ≤ k

(1)
2 . Since vi ∈ R(V ) we have v

(1)
i ≤lex v

(j)
i for all j ∈M . Hence for any

j ∈ M we conclude deg(v
(j)
i ) = k

(j)
1 α1 + k

(j)
2 α2 with k

(j)
1 ≤ k

(j)
2 and, consequently,

deg(vi) = k1α1 + k2α2 with k1 ≤ k2.

The same holds if mj ≤ k for all 1 ≤ j ≤ `i. Since i was arbitrary we conclude

deg
(
[v`]

t` · · · [v1]t1
)
6= deg([wk,t]) .

This is a contradiction. �

Our aim will be to prove that [wk,t] is a root vector for all t ∈ N. Note that

by above lemma wk,t is the maximal Lyndon word with that degree with respect to

<lex. Hence this is a promising candidate as stated before.

Corollary 5.25 If [wk,t] 6= 0, then it is a root vector.

Proof. Assume [wk,t] is not a root vector. This implies [wk,t] ∈ B>wk,t . By Lemma 5.24

B>wk,t = {0}, a contradiction. �

Now, proving that wk,t 6= 0 for all t ∈ N seems to be hard to decide at first. We

want to reduce it to the question whether some vectors are linearly independent.

Then we can apply the rich theory of linear algebra to solve this question.

Corollary 5.26 Let k ∈ N, uk+1 6= 0 and
(
ut−jk uk+1u

j
k | 0 ≤ j ≤ t

)
be a set of

linearly independent vectors. Then ((t+ 1)k + 1)α1 + (t+ 1)α2 is a root.
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Proof. Note that by Example 4.4 for all m ∈ N we have

[wk,m] = [[wk,m−1], uk]c =
t∑

j=0

λj u
m−j
k uk+1u

j
k

for some λj ∈ K, 1 ≤ j ≤ t. In this representation the coefficient of uk+1u
t
k equals

1 by definition of [ · , · ]c. By assumption these vectors are linearly independent,

so [wk,t] 6= 0. Hence [wk,t] is a root vector by Corollary 5.25 and, consequently,

deg([wk,t]) = ((t+ 1)k + 1)α1 + (t+ 1)α2 is a root. �

In the following proposition we use the notation u−1
k = 0.

Lemma 5.27 Let k, t, j ∈ N such that j ≤ t and uk+1 6= 0 . The following equation

holds:

∂k1∂2(ut−jk uk+1u
j
k) = −bk(k)!

q(j)qk2rksq
kq12u

t−j+1
k x1u

j−1
k

+bk(k)!
q

(
(j)qk2rks + (qk

2

rks)j(1− qkr)(k + 1)q

−(qk
2

rks)jqk(k+2)rk+1s(t− j)qk2rks
)
ut−jk x1u

j
k

+bk(k)!
q(q

k2rks)jqk(k+1)rksq21(t− j)qk2rksu
t−j−1
k x1u

j+1
k .

Proof. We prove this equality by direct application of the skew-derivations.

∂k1∂2(ut−jk uk+1u
j
k)

=∂k1
(
ut−jk uk+1∂2(ujk)

+ (qk21q22)jut−jk ∂2(uk+1)ujk

+(qk21q22)jqk+1
21 q22∂2(ut−jk )uk+1u

j
k

)
=ut−jk uk+1∂

k
1∂2(ujk)

+ (qk
2

11q
k
12q

k
21q22)jut−jk ∂k1∂2(uk+1)ujk

+ (qk
2

11q
k
12q

k
21q22)jq

k(k+1)
11 qk12q

k+1
21 q22∂

k
1∂2(ut−jk )uk+1u

j
k

Lemma 5.4
= bk(k)!

q(j)qk2rksu
t−j
k uk+1u

j−1
k

+ (qk
2

rks)jbk+1(k + 1)!
qu

t−j
k x1u

j
k

+ (qk
2

rks)jqk(k+1)rksq21bk(k)!
q(t− j)qk2rksu

t−j−1
k uk+1u

j
k

split uk+1
= bk(k)!

q(j)qk2rksu
t−j
k (x1uk − qkq12ukx1)uj−1

k

+ (qk
2

rks)jbk+1(k + 1)!
qu

t−j
k x1u

j
k

+ (qk
2

rks)jqk(k+1)rksq21bk(k)!
q(t− j)qk2rksu

t−j−1
k (x1uk − qkq12ukx1)ujk
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=bk(k)!
q(j)qk2rksu

t−j
k x1u

j
k

− bk(k)!
q(j)qk2rksq

kq12u
t−j+1
k x1u

j−1
k

+ (qk
2

rks)jbk+1(k + 1)!
qu

t−j
k x1u

j
k

+ (qk
2

rks)jqk(k+1)rksq21bk(k)!
q(t− j)qk2rksu

t−j−1
k x1u

j+1
k

− (qk
2

rks)jqk(k+2)rk+1sbk(k)!
q(t− j)qk2rksu

t−j
k x1u

j
k

=− bk(k)!
q(j)qk2rksq

kq12u
t−j+1
k x1u

j−1
k

+ bk(k)!
q

(
(j)qk2rks + (qk

2

rks)j(1− qkr)(k + 1)q

−(qk
2

rks)jqk(k+2)rk+1s(t− j)qk2rks
)
ut−jk x1u

j
k

+ bk(k)!
q(q

k2rks)jqk(k+1)rksq21(t− j)qk2rksu
t−j−1
k x1u

j+1
k . �

For k, t ∈ N0 let

Bk,t = {ut−jk uk+1u
j
k | 0 ≤ j ≤ t}, Ck,t = {ut−jk x1u

j
k | 0 ≤ j ≤ t}

and Vk,t and Wk,t be the vector spaces generated by Bk,t and Ck,t resp. By the above

lemma ∂k1∂2 can be restricted to a linear map

ϕk,t := ∂k1∂2

∣∣
Vk,t

: Vk,t → Wk,t

for all k, t ∈ N0.

Proposition 5.28 Let t ∈ N arbitrary and k ∈ N such that uk+1 6= 0. If ϕk,m is an

isomorphism for all 0 ≤ m ≤ t, then Bk,t is a set of linearly independent vectors.

Proof. If ϕk,m is an isomorphism of vector spaces, then the dimensions of Vk,m and

Wk,m need to coincide. We want to prove dimWk,m = m + 1 by induction over

m. For m = 0 the equation dimWk,0 = dim (〈x1〉K) = 1 holds since x1 6= 0 . For

arbitrary m ≤ t the vector space Wk,m is given by 〈um−jk x1u
j
k | 0 ≤ j ≤ m〉K . Here,

the following holds

um−jk x1u
j
k

Lemma 5.3
= um−jk

((
j−1∑
i=0

qikqi12u
i
kuk+1u

j−1−i
k

)
+ qjkqj12u

j
kx1

)

=

(
j−1∑
i=0

qikqi12u
m−j+i
k uk+1u

j−1−i
k

)
+ qjkqj12u

m
k x1
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for any 0 ≤ j ≤ m by Lemma 5.3. We want to check that the vectors{(
j−1∑
i=0

qikqi12u
m−j+i
k uk+1u

j−i
k

) ∣∣ 0 ≤ j ≤ m

}

are linearly independent. Note that qikqi12 are non zero for all 0 ≤ i ≤ j. Addition-

ally, the matrix composed by the coordinate vectors of these vectors with respect

to Bk,m−1 is an upper triangular matrix with non-zero entries along the diagonal.

Thus, Wk,m = Vk,m−1 + K umk x1.

Using the induction hypothesis the dimension of Vk,m−1 is given by Vk,m−1 =

Wk,m−1 = m . Note that the sum of vector spaces is actually a direct sum since

∂1(Vk,t) = 0 and ∂1(umk x1) = umk . Now, the vector umk is non-zero since otherwise

um−1
k uk+1 = um−1

k x1uk and uk+1u
m−1
k = ukx1u

m−1
k due to uk+1 = [x1, uk]c. Hence

Vk,m−1 ⊂ 〈um−jk x1u
j
k | 1 ≤ j ≤ m − 1〉 and, consequently, dim Vk,m−1 ≤ m − 1, a

contradiction to the induction hypothesis. Thus, dim Vk,m = dimWk,m = m + 1 for

all m ≤ t. Since Vk,t = 〈Bk,t〉K is generated by t+1 vectors, those need to be linearly

independent. This proves the claim. �

Finally, let Dk,t denote the transformation matrix of ϕk,t corresponding to Bk,t
and Ck,t. Dk,t inherits the structure of a so-called tridiagonal matrix by Lemma 5.27.

We will see that under some weak assumptions this matrix decomposes into blocks.

This will make it possible to check det(Dk,t) 6= 0 for all t ∈ N with reasonable effort.

For a set M ⊂ {1, . . . ,m} and A ∈ Km×m let A(M) denote the matrix given by

canceling all rows i and columns j of A where i, j 6∈ M . Assume in the following

that qk
2rks ∈ G′N with N ≥ 2. For t ∈ N let 1 ≤ t̄ ≤ t be minimal such that

t ≡ t̄ mod N .

Lemma 5.29 For t ≥ t̄+N the following holds

det (Dk,t+mN) 6= 0 for all m ∈ N0 ⇔ det
(

(Dk,t)(t̄+1,...,t̄+N)

)
6= 0 .
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Proof. By Lemma 5.27 the matrix Dk,t = bk(k)!
q(di,j)1≤i,j≤t+1 is given by

dij =



0, |i− j| ≥ 2 ,

−(j)qk2rksq
kq12, i+ 1 = j ,

(j)qk2rks + (qk
2
rks)j(1− qkr)(k + 1)q

−(qk
2
rks)jqk(k+2)rk+1s(t− j)qk2rks, i = j ,

(qk
2
rks)jqk(k+1)rksq21(t− j)qk2rks, i = j + 1 .

Note that dij does not essentially depend on k but on k mod N . We can easily

check (t − t̄)qk2rks = 0 and (qk
2
rks)t−t̄ = 1. Especially d(t̄+1) t̄ = 0. Hence Dk,t

consists of blocks

Dk,t =


D

(1)
k,t 0 0 · · · 0

0 D
(2)
k,t 0 · · · 0

...
. . .

...

0 0 D
(`)
k,t


where ` = min{i ∈ N0|t̄+ i ·N ≥ t+ 1}+ 1 is the number of blocks and

D
(i)
k,t = Dk,t({t̄+1,··· ,t̄+N}) = D

(2)
k,t for 2 ≤ i ≤ `

and D
(1)
k,t = Dk,t({1,··· ,t̄}) .

First note that for t̄ 6= 0 the matrix Dk,t̄ = D
(1)
k,t =

(
D

(2)
k,t

)
({N,··· ,t̄+N})

is a block

of D
(2)
k,t due to d(N−1)N = (N)qk2rksq

kq12 = 0 . Next, the blocks that appear in the

matrices D
(2)
k,t and D

(2)
k,t+N are identical due to t̄ = t̄ + N and (t + N − t̄)qk2rks =

(t − t̄)qk2rks . Now, bk(k)!
q 6= 0 since uk+1 6= 0 and, consequently, det

(
D

(2)
k,t

)
6= 0 if

and only if det (Dk,t̄+m·N) 6= 0 for all m ∈ N0. �

For t ≥ N the matrix (Dk,t)(t̄+1,...,t̄+N) = D
(2)
k,t that appeared in the preceding

proof will be denoted in the following with Fk,t̄.

Corollary 5.30 The following holds:

ϕk,t is an isomorphism for all t ∈ N iff det(Fk,t̄) 6= 0 for all 1 ≤ t̄ ≤ N .

Proof. This follows directly from Lemma 5.29. �

Remark 5.31 It turns out that for given k ∈ N and qk
2rks ∈ G′N the determinants

of the matrices Fk,t̄ coincide for all 0 ≤ t̄ < N .

By construction of the matrix Fk,t̄ its determinant is in Z[q, r, s]. In the cases
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we determine such determinants the elements q, r and s of K are related such that

det(Fk,t̄) ∈ Z[q] and q ∈ G′N for some N ∈ N. Since we work over an arbitrary

field it is hard to prove det(Fk,t̄) 6= 0 independent from p since we do not know

the minimal polynomial of q. There is one special case known where this can be

accomplished.

Proposition 5.32 Let k ∈ N and q, r, s ∈ K such that uk+1 6= 0 and qk
2
rks = −1.

Then ((t+ 1)k + 1)α1 + (t+ 1)α2 is a root for all t ∈ N0.

Proof. We calculate det (Fk,t̄) for t̄ ∈ {0, 1}. First, assume t̄ = 0. If j is even, then

(j)qk2rks = (t− j)qk2rks = 0 and we obtain

∂k1∂2(ut−jk uk+1u
j
k) = bk(k)!

q(1− qkr)(k + 1)qu
t−j
k x1u

j
k = bk+1(k + 1)!

qu
t−j
k x1u

j
k .

If j is odd, then (j)qk2rks = (t− j)qk2rks = 1 and hence we obtain

∂k1∂2(ut−jk uk+1u
j
k) = −bk(k)!

qq
kq12u

t−j+1
k x1u

j−1
k

+bk(k)!
q

(
1− (1− qkr)(k + 1)q − q2kr

)
ut−jk x1u

j
k

+bk(k)!
qq
kq21u

t−j−1
k x1u

j+1
k .

Thus, the determinant of Fk,0 is the product of the diagonal entries, that is

det(Fk,t) = bk+1(k + 1)!
qbk(k)!

q

(
1− (1− qkr)(k + 1)q − q2kr

)
.

Now, the equations

1− (1− qkr)(k + 1)q − q2kr

=1−
k∑
i=0

qi + r

k∑
i=0

qk+i − q2kr

=−
k∑
i=1

qi + r
k−1∑
i=0

qk+i

=− q(k)q + qkr(k)q

=q(k)q
(
qk−1r − 1

)
6= 0

hold since uk 6= 0. Therefore, det (Fk,0) 6= 0 since uk+1 6= 0.

On the other hand consider t̄ = 1. If j is even, then (j)qk2rks = 0 and (t −
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j)qk2rks = 1. Hence we obtain

∂k1∂2(ut−jk uk+1u
j
k) = bk(k)!

q

(
(1− qkr)(k + 1)q + q2kr

)
ut−jk x1u

j
k

−bk(k)!
qq

2kq21u
t−j+1
k x1u

j+1
k .

If j is odd, then (j)qk2rks = 1 and (t− j)qk2rks = 0. We obtain

∂k1∂2(ut−jk uk+1u
j
k) = −bk(k)!

qq
kq12u

t−j+1
k x1u

j−1
k

+bk(k)!
q

(
1− (1− qkr)(k + 1)q

)
ut−jk x1u

j
k .

Thus, we conclude

Fk,1 := bk(k)!
q

(
(1− qkr)(k + 1)q + q2kr −qkq12

−qkq21 1− (1− qkr)(k + 1)q

)
.

Now, we calculate

det(Fk,1) =b2
k

(
(k)!

q

)2 (
(1− qkr)(k + 1)q + q2kr

) (
1− (1− qkr)(k + 1)q

)
− q2kr

=b2
k

(
(k)!

q

)2
(

1− qkr)(k + 1)qu
t−j
k x1u

j
k((1− q

kr)(k + 1)q + q2kr

+ (1− qkr)2(k + 1)q − q2kr(1− qkr)(k + 1)q − q2kr
)

=bk+1bk(k + 1)!
q(k)!

q

(
1− (1− qkr)(k + 1)q − q2kr

)
6= 0

analogously to the case where t was even. Thus, det(Fk,t̄) 6= 0 for arbitrary t ∈ N0

and hence Bk,t is a set of linearly independent vectors for all t ∈ N0 by Proposi-

tion 5.28. Thus, Corollary 5.26 completes the proof. �

We want to give one more example with a given braiding. This as well is a case,

where our other tools will not apply.

Example 5.33 Let p ≥ 3, q = −r = 1, s ∈ G′4. Then u2 6= 0 and qrs = −s ∈ G′4.

We determine F1,t̄ for 0 ≤ t̄ ≤ 3 and calculate the corresponding determinants.

F1,0 =


s4 − s3 + s2 − 4s+ 1 −s+ 1 0 0

s4 − s3 + s2 s4 − s3 + 4s2 − s+ 1 s2 − s+ 1 0

0 s4 − s3 s4 − 4s3 + s2 − s+ 1 0

0 0 s4 4
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=


−3s+ 1 −s+ 1 0 0

s −2 −s 0

0 s+ 1 3s+ 1 0

0 0 1 4

 .

F1,1 =


−s5 + s4 − s3 + 4s2 − s+ 1 s2 − s+ 1 0 0

−s5 + s4 − s3 −s5 + s4 − 4s3 + s2 − s+ 1 0 0

0 −s5 + s4 −s+ 4 1

0 0 −s −4s+ 1



=


−s− 2 −s 0 0

1 2s+ 1 0 0

0 −s+ 1 −s+ 4 1

0 0 −s 4

 .

F1,2 =


s6 − s5 + s4 − 4s3 + s2 − s+ 1 0 0 0

s6 − s5 + s4 s2 − s+ 4 1 0

0 s2 − s s2 − 4s+ 1 −s+ 1

0 0 s2 4s2 − s+ 1



=


2s 0 0 0

−s −s+ 3 1 0

0 −s− 1 −4s −s+ 1

0 0 −1 −s− 3

 .

F1,3 =


−s3 + s2 − s+ 4 1 0 0

−s3 + s2 − s −s3 + s2 − 4s+ 1 −s+ 1 0

0 −s3 + s2 −s3 + 4s2 − s+ 1 s2 − s+ 1

0 0 −s3 −4s3 + s2 − s+ 1



=


3 1 0 0

−1 −3s −s+ 1 0

0 s− 1 −3 −s
0 0 s 3s

 .

Then for any 0 ≤ t̄ ≤ 3 the we calculate det(F1,t̄) = −64 6= 0 due to p 6= 2.
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6 | On the Gelfand-Kirillov dimen-

sion of rank two Nichols alge-

bras of diagonal type

In this chapter we develop tools to decide whether the Gelfand-Kirillov dimension

of B(V ) is infinite. At first, this is not a trivial task due to the fact that we don’t

know the defining ideal J of B(V ) or the set of root vectors. We show that in

most cases little knowledge of the set of root vectors suffices. It is known that the

Gelfand-Kirillov dimension of a Nichols algebra is finite if the set of roots is, see [13].

Recall the classification of Nichols algebras of diagonal type with finite root system.

Theorem 6.1 [18, thm. 5.1] The following are equivalent:

• #4re <∞ .

• (q, r, s) or (s, r, q) appears in A.

We will show that in any non-finite case the Gelfand-Kirillov dimension is infinite.

We need to develop tools to prove this. Therefore, Lemma 3.5 will play an important

role. We start with some simple applications.

Corollary 6.2 If there are α, β ∈ Z2 such that kα + β ∈ 4+ for all k ∈ N, then

GKdim (B(V )) =∞ .

Proof. By assumption there is a root vector yk of degree kα+ β for any k ∈ N. We

define an ordering on R(V ). For vi, vj ∈ R(V ) let

vj � vi :⇔

{
`(vi) < `(vj) .

`(vi) = `(vj), vi <lex vj .

This can be extended to the corresponding superletters in Theorem 4.30 as we did

with <lex.

49
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Then

(yk1 · · · yk` | ` ∈ N, k1 < · · · < k`)

forms a family of homogeneous basis vectors of B(V ) after rearrangement of the

factors in Theorem 4.30 using Corollary 4.31. Thus, they are linearly independent.

Moreover, assuming

α = α(1)α1 + α(2)α2, β = β(1)α1 + β(2)α2

we conclude degN(yk) = k(α(1) +α(2)) +β(1) +β(2) . Consequently, B(V ) is of infinite

Gelfand-Kirillov dimension by Lemma 3.5. �

Corollary 6.3 [2, 3.7] If GKdim (B(V )) <∞, then (k)qbk = 0 for some k ∈ N. In

particular, if GKdim (B(V )) <∞, then Q is i-finite for all i ∈ I.

Proof. For any k ∈ N the following holds

(k)qbk 6= 0⇔ uk 6= 0⇔ kα1 + α2 ∈ 4+.

Thus, if (k)qbk 6= 0 for all k ∈ N, then Corollary 6.2 is applicable. The last part

follows from Remark 5.2. �

Since we want to prove GKdim (B(V )) =∞ we can in the following assume that

Q is i-finite for all i ∈ I if #4+ =∞ by the above corollary. In the last chapter we

constructed another set of roots which allows the application of Corollary 6.2. For

k, t̄ ∈ N we use the notation Fk,t̄ from the preceding chapter.

Corollary 6.4 Let k be a natural number and q, r, s ∈ K such that uk+1 6= 0 and

qk
2
rks ∈ G′N . If det (Fk,t̄) 6= 0 for all 0 ≤ t̄ < N , then GKdim (B(V )) =∞.

Proof. The assumption implies that {ut−jk uk+1u
j
k}t∈N,0≤j≤t are linearly independent

by Corollary 5.30 and Proposition 5.28. Therefore, t(kα1 +α2) + (k+ 1)α1 +α2 is a

root for all t ∈ N by Corollary 5.26. Thus, GKdim (B(V )) =∞ by Corollary 6.2.�

The above corollary especially holds for qk
2
rks = −1. This follows from Propo-

sition 5.32. This special case will be the main application of the statement.

As discussed before the structure generated by the reflections of roots of a Nichols

algebra of Cartan-type with Cartan matrix C coincides with the Weyl group W (C).

The next application fully utilizes the knowledge of the corresponding root systems

developed in [20]. We use the well-known notions of real roots and imaginary roots,

resp.
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Proposition 6.5 [4, 3.1] If the Nichols algebra B(V ) is of affine Cartan-type, then

GKdim (B(V )) =∞ .

Proof. Let4re denote the set of real roots of B(V ). There exists a positive imaginary

root δ such that 4re + δ = 4re, see [20, Prop. 6.3 (d)]. Let h be the height of δ and

let α be a simple root. Then for all k ≥ 0 there exists a root vector yk of N0-degree

k · h+ 1. Hence GKdim (B(V )) =∞ by Corollary 6.2. �

To use above results one needs specific knowledge of Q. Next we develop the main

tool that only depends on the existence of roots that are multiples of others or have

multiplicity bigger 1. With this result we will be able to approach general Q. We

introduce certain quotients of subalgebras of B(V ) as it was done in [5]. Note that

the general approach shown here and in [5] both work with this kind of quotients, but

the argument that yields infinite Gelfand-Kirillov dimension ultimately is different.

Let B(V )(a1,a2) denote the homogeneous component of B(V ) of degree a1α1+a2α2.

For any d ∈ Q≥0 we set

B≥d :=
⊕

(a1, a2) ∈ Z2

a1 ≥ da2

B(V )(a1,a2) .

K≥d := {y ∈ B(V ) |∆(y) ∈ B≥d ⊗ B(V )} ,

K>d := K≥d ∩ B>d .

First observe that for d, e ∈ Q≥0, d < e the following inclusions hold:

K≥e ⊆ K>d, K>d ⊆ K≥d ⊆ B≥d .

The last inclusion follows via application of the counit.

Lemma 6.6 [5, 3.9] K≥d is a right coideal subalgebra of B(V ) in KZ2

KZ2YD. Moreover,

K>d is an ideal of K≥d and a coideal of B(V ) in KZ2

KZ2YD such that

∆(K≥d) = K≥d ⊗K≥d +K>d ⊗ B(V ) .

Proposition 6.7 [5, 3.9] The bialgebra structure of B(V ) induces a bialgebra struc-

ture on K≥d/K>d.

Remark 6.8 The quotient K≥d/K>d is isomorphic to

K≥d ∩
⊕
a∈Z

B(V )(a,da)
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as an algebra due to the Z2-algebra grading on B(V ).

The following corollary will be very important to prove infinite Gelfand-Kirillov

dimension in many cases of Proposition 6.15 and Proposition 6.17. This replaces

the argument used in [5] which does not work for arbitrary fields.

Corollary 6.9 Let d, e, f ∈ Q≥0, d ≤ e, f and e 6= f and assume

GKdim (K≥f/K>f ) ≥ 1. Then the following holds:

GKdim (B≥d) ≥ GKdim (K≥e/K>e) + 1 .

Proof. Assume f < e without loss of generality. Moreover, let cnt : I × I → N0 be

the map

cnt(i, w) = #{1 ≤ j ≤ `(w) |w = i1 · · · i`(w), ij = i}

counting the appearances of i in w. We define an ordering � on I:

v � w :⇔

{
cnt(1,v)
cnt(2,v)

< cnt(1,w)
cnt(2,w)

cnt(1,v)
cnt(2,v)

= cnt(1,w)
cnt(2,w)

, v <lex w .

Now, by Proposition 2.2 and Corollary 4.31 we can exchange the arrangement

of the factors in Theorem 4.30 with �.

Thus, we get a vector space basis of B≥d by restricting the PBW-bases of B(V )

to those generators satisfying the constraint on the degree in B≥d. Now by Re-

mark 6.8 we can identify K≥e/K>e and K≥f/K>f as subalgebras of B≥d. Recall the

inclusion K≥f ⊂ K>e. It follows from the arrangement of the generators that the

multiplication of B≥d induces an isomorphism

K≥e/K>e ⊗K≥f/K>f → K≥e/K>eK≥f/K>f .

Thus, we can apply Proposition 3.7. This completes the proof. �

Due to B≥d ⊆ B(V ) and Lemma 3.4 the above inequlity extends to

GKdim (B(V )) ≥ GKdim (K≥e/K>e) + 1.

To be able to apply the above result we need information on GKdim (K≥e/K>e).

Below we give a way to construct an ”included” Nichols-algebra. Then we can reuse

results for special braidings especially those of affine Cartan-type.
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Lemma 6.10 Let x, y ∈ K≥d/K>d be linearly independent primitive elements.

Then there is a Nichols algebra B(W ) with W ∈ b(q′11, q
′
12q
′
21, q

′
22) where

Q′ = (q′ij)1≤i,j≤2 =

(
χ(deg(x), deg(x)) χ(deg(x), deg(y))

χ(deg(y), deg(x)) χ(deg(y), deg(y))

)

such that GKdim (K≥d/K>d) ≥ GKdim (B(W )) .

Proof. Let A ⊂ K≥d/K>d be the subalgebra generated by x and y. Define the

following filtration {Fi}i∈N0 of A :

F 0 = K, F 1 = K + 〈x, y〉K, F n = 〈y1 · · · ym | yi ∈ F 1, 1 ≤ i ≤ m〉K .

Note that dimF i < ∞ for all i ∈ N0. This filtration is obviously an algebra filtra-

tion. Moreover, it is a coalgebra filtration since x and y are primitive in K≥d/K>d.

Consequently, the associated graded algebra Ā is an N0-graded bialgebra in KZ2

KZ2YD.

Note that for m ≥ 1 the homogenous component Ā(m) = Fm/Fm−1 is generated

by Ā(1) consisting of the primitive cosets corresponding to x and y. Thus, Ā is

generated by primitives and hence it is a pre-Nichols algebra by Remark 4.16 and

there is a projection Ā→ B(W ) where W is the vector space generated by the cosets

of x and y. The braiding matrix is induced by construction. The last claim follows

from Proposition 3.6. �

Finally, we give ways to construct primitive elements in K≥d/K>d. With those

at hand Corollary 6.9 and Lemma 6.10 yield a new argument to prove that B(V ) is

of infinite Gelfand-Kirillov dimension.

Remark 6.11 Let x ∈ B(V ) be a nonzero homogeneous element of degree m1α1 +

m2α2 with m1,m2 ∈ N0. If gcd(m1,m2) = 1, then x is primitive in K≥m1
m2

/K>
m1
m2

.

This follows from the fact that the Z2-grading of B(V ) is a coalgebra-grading.

Lemma 6.12 Let x ∈ B(V ) \ {0} be an homogeneous element of degree deg(x) =

m(kα1 + α2) such that x and umk are linearly independent and satisfy

∆(x) ∈ 1⊗ x+ x⊗ 1 +
m−1∑
i=1

λi u
i
k ⊗ um−ik

+B>k ⊗ B(V )

where λi ∈ K for 1 ≤ i ≤ m − 1. If (m)!
qk2rks

6= 0, then there is a homogeneous

element y ∈ B(V ) with deg(y) = deg(x) which is primitive in K≥k/K>k .
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Proof. If uk = 0, then the coset of x in K≥k/K>k satisfies the claim. Otherwise,

using Lemma 5.4 we calculate

(
∂k1∂2

)m
(umk ) =

(
bk(k)!

q

)m
(m)!

qk
2rks
6= 0

due to uk 6= 0 and the assumptions. Note that (m)!
qk2rks

6= 0 by assumption. Thus,

let y be the coset of x− λumk in K≥k/K>k where λ = λ1
(m)

qk
2
rks

. This vector satisfies

∆(y) = 1⊗ y + y ⊗ 1 +
m−1∑
i=2

(
λi −

(
m

i

)
qk2rks

λ1

(m)qk2rks

)
uik ⊗ um−ik

in K≥k/K>k due to Lemma 5.8. We want to prove

(
λi −

(
m
i

)
qk2rks

λ1
(m)

qk
2
rks

)
= 0 for

all i ∈ {2, · · · ,m− 2}. This will be accomplished using coassociativity.

First, due to the distribution of degrees and the fact that the Z2-grading is a

grading of coalgebras the term (∆ ⊗ id)(y) represented as a sum of tensors whose

factors are products of some u` has a summand

(i)qk2rks

(
λi −

(
m

i

)
qk

2rks

λ1

(m)qk2rks

)
uk ⊗ ui−1

k ⊗ um−ik

by Lemma 5.8. Here (i)qk2rks uk ⊗ u
i−1
k ⊗ um−ik 6= 0 since i < m, (m)!

qk
2rks
6= 0 and

umk 6= 0 .

On the other hand, using the same argumentation (id ⊗ ∆)(y) can not have

a summand with this distribution of degrees since the Z2-grading is a grading of

bialgebras. Consequently, we obtain(
λi −

(
m

i

)
qk2rks

λ1

(m)qk2rks

)
= 0

for any i ∈ {2, . . . ,m − 1}. Hence y satisfies deg(y) = deg(x) and is primitive in

K≥k/K>k . �

Corollary 6.13 Let m ∈ N be such that mα1 + α2, 2mα1 + 2α2 ∈ 4+. Then

there is some nonzero homogeneous y ∈ B(V ) with deg(y) = 2mα1 + 2α2 which is

primitive in K≥m/K>m .

Proof. Since 2mα1 + 2α2 is a root there exists a corresponding root vector x such
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that deg(x) = 2mα1 + 2α2. Due to [34, 3.22] we can assume

x =
[
1m+121m−12

]
or x = [1m2]2 .

If x = u2
m is a root vector, then by Lemma 5.9 and Lemma 5.8 x is primitive in

K≥m/K>m and there is nothing else to prove.

Otherwise, x = [1m+121m−12]. By Lemma 5.7 we know

∆(x) = x⊗ 1 + 1⊗ x

+(m+ 1)q(1− qmr)χ(βm+1, βm−1)um ⊗ um
+B>m ⊗ B(V ) .

Consequently, by Lemma 6.12 there is an element y ∈ B(V ) such that deg(y) =

deg(x) that is primitive in K≥m/K>m. This completes the proof. �

Corollary 6.14 Assume that one of the following holds:

(i) u3 6= 0, [122] 6= 0, (3)!
qrs 6= 0 , qr2s+ 1 = 0 and γ = qrs .

(ii) s = q ∈ G′12, r = q8 and γ = q4r2s .

(iii) q ∈ G′18, s = q5, r = q−5 and γ = q4r2s .

(iv) q ∈ G′9, s = q5, r = q4, p = 2 and γ = q4r2s .

Then there exists W ∈ b(γ, γ6, γ9) such that GKdim (B(V )) ≥ GKdim (B(W )).

Proof. Under the given preconditions Lemma 5.19, Lemma 5.22 or Lemma 5.23 are

applicable. Then Lemma 6.12 can be applied due to Lemma B.4, Lemma B.5 or

Lemma B.6 resp.. Then Lemma 6.10 yields the claim. �

Proposition 6.15 Assume r = s = q4 and q ∈ G′N where N 6∈ {1, 2, 4}. Then

B(V ) satisfies GKdim (B(V )) =∞.

Proof. First note that B(V ) is of Cartan-type. Moreover, if N ∈ {3, 5, 6, 8}, then

B(V ) is of affine Cartan type. Thus, Proposition 6.5 implies GKdim (B(V )) = ∞.

For the remaining cases we differentiate three cases:

In the following note that c12 = −N + 4 ≤ −3. Especially, 0 and 1 are not

contained on J. First, if N ∈ {2k+3, 3k+1 | k ∈ N}, then c21 = −N ≤ −7 holds.
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This yields mult(2α1 + 4α2) ≥ 1 by Theorem 5.14 and Lemma 5.13 due to q 6= −1,

qr = q5 6= 1. Then we obtain

q′ := qα1+2α2 = qr2s4 = q25 ∈ G′N

since gcd(25, N) = 1. Therefore, there is a Nichols algebra B(Wq′) with Wq′ ∈
b(q′, q′4, q′4) due to Lemma 6.10 and Corollary 6.13. Now the Gelfand-Kirillov di-

mensions of B(Wq′) and B(V ) coincide since they are twist-equivalent up to the

choice of the primitive N -th root of unity.

Furthermore, we have qr2s = q13 6= −1 and q3r3s = q19 6= −1. Thus, the

multiplicity of 3α1 + 2α2 equals two by Theorem 5.14 and q̂ := q3α1+2α2 = q9r6s4 =

q49 ∈ G′N since gcd(49, N) = 1. Now the root vectors for 3α1 + 2α2 are linearly

independent and primitive in K≥ 3
2
/K> 3

2
due to Remark 6.11. Thus, there is a Nichols

algebra B(Wq̂) with Wq̂ ∈ b(q̂, q̂2, q̂) by Lemma 6.10 and GKdim (B(Wq̂)) ≥ 1 by

Theorem 6.1. Consequently, we obtain

GKdim (B(V )) ≥ GKdim (B≥ 1
2
) ≥ GKdim (B(Wq′)) + 1 = GKdim (B(V )) + 1

by Corollary 6.9. Therefore, B(V ) is of infinite Gelfand-Kirillov dimension.

If N ∈ {7k | k ∈ N}, we can again construct the Nichols algebra B(Wq′) as above.

Here qr2s 6= −1 and qr3s3 = q25 6= 1. Thus, the multiplicity of 2α1 + 3α2 equals

two by Theorem 5.14 and q̂ := q2α1+3α2 = q4r6s9 = q64 ∈ G′N since gcd(64, N) = 1.

The root vectors for 2α1 + 3α2 are linearly independent and primitive in K≥ 2
3
/K> 2

3

due to Remark 6.11. Thus, there is a Nichols algebra B(Wq̂) with Wq̂ ∈ b(q̂, q̂2, q̂)

by Lemma 6.10 and GKdim (B(Wq̂)) ≥ 1 by Theorem 6.1. Consequently, we obtain

GKdim (B(V )) ≥ GKdim (B≥ 1
2
) ≥ GKdim (B(Wq′)) + 1 = GKdim (B(V )) + 1

by Corollary 6.9. Therefore, B(V ) is of infinite Gelfand-Kirillov dimension.

Finally, let N 6∈ {5, 6, 2k+2, 3k, 7k | k ∈ N}. Then we have N > 9. In this case

the multiplicity of 4α1 + 2α2 is at least one by Lemma 5.13 and Theorem 5.14 due

to s 6= −1, rs = q8 6= 1. Furthermore, we have q′ := q2α1+α2 = q4r2s = q16 6∈ G4 by

assumption on N . Again, there is a Nichols algebra B(Wq′) with Wq′ ∈ b(q′, q′4, q′4)

due to Lemma 6.10 and Corollary 6.13 with GKdim (B(Wq′)) = GKdim (B(V )).

Now, the equations qr2s = q13 = −1 and q10r5s = q34 = 1 can not hold simul-

taneously since q 6∈ G8. Thus, the multiplicity of 5α1 + 2α2) is at least two and
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q̂ := q5α1+2α2 = q81 6∈ G3 by assumption on N . As before we construct a Nichols

algebra B(Wq̂) with Wq̂ ∈ b(q̂, q̂2, q̂) like above. If q̂ 6∈ G2, then B(Wq̂) is infinite

dimensional by Theorem 6.1. Hence GKdim (K≥ 5
2
/K> 5

2
) ≥ 1.

If q81 ∈ G2, then qr2s = q13 6= −1 due to 1 = q162 = q156q6 and q 6∈ G6.

Moreover, qr3s3 = q25 6= 1 since otherwise 1 = q162−150 = q12 and 1 = q162−13·12 = q6,

a contradiction to the assumptions on q. Thus, mult(2α1 + 3α2) = 2. We set

q̄ := q2α1+3α2 = q64. Now, q̄ 6∈ G2 due to the assumptions on q. Furthermore,

if q̄ ∈ G3, then 1 = q192−162 = q30 and, consequently, 1 = q162−150 = q12. This

yields a contradiction as seen before. Therefore, the Nichols algebra B(Wq̄) with

Wq̄ ∈ b(q̄, q̄4, q̄4) constructed as before is infinite dimensional by Theorem 6.1. Hence

GKdim (K≥ 2
3
/K> 2

3
) ≥ 1.

In any case we obtain

GKdim (B(V ))
Lemma 3.4

≥ GKdim (B≥ 2
3
)

Corollary 6.9

≥ GKdim (B(Wq′)) + 1 .

We can use the above construction iteratively since q′ = q16 6∈ G4 for q 6∈ G2k for any

k ∈ N0. If at any point the constructed q′ ∈ GM for M ∈ {5, 6, 2k+2, 3k, 7k | k ∈ N},
then GKdim (B(V )) = ∞ by the above. Otherwise, we have an chain of Nichols-

algebras (B(k))k∈N with

B(1) = B(V ) and GKdim (B(k)) ≥ GKdim (B(k+1)) + 1 .

Since in this construction q′ can never be in G4 due to the assumption this chain is

infinite and we conclude GKdim (B(V )) =∞. �

Corollary 6.16 Let m ∈ N such that mα1 + α2, 2mα1 + 2α2 ∈ 4+ and qmα1+α2 6∈
G4. Then GKdim (B(V )) =∞.

Proof. By assumption here is a root vector x of degree mα1 + α2 which is primitive

in K≥m/K>m by Remark 6.11. Moreover, there is a homogeneous element y of

degree 2mα1 + 2α2 ∈ 4+ which is primitive in K≥m/K>m due to Corollary 6.13.

Application of Lemma 6.10 yields a braided vector space W ∈ b(q′, q′4, q′4) with

q′ = qmα1+α2 satisfying GKdim (B(V )) ≥ GKdim (B(W )). Then the claim follows

from Proposition 6.15. �
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Proposition 6.17 Suppose B(V ) is of Cartan type with Cartan matrix

C =

(
2 −N
−N 2

)

for some N ≥ 2. Then GKdim (B(V )) =∞.

Proof. Note that we can assume q, s 6= 1 since Cartan-type would imply r = 1 and

hence N = 0, a contradiction. For N = 2 the claim is true since B(V ) is of affine

Cartan-type and we apply Proposition 6.5.

Thus, consider N = 3. Since B(V ) is of Cartan-type the equations q3r = rs3 = 1

hold by assumption. Assume (qr2s + 1)(q4r4s4 − 1) 6= 0. Then 2 6∈ J and hence

mult(2α1 +2α2) = 1 by Theorem 5.14. Then GKdim (B(V )) =∞ by Corollary 6.16

since qα1+α2 6∈ G4. Thus, assume (qr2s+ 1)(q4r4s4 − 1) = 0.

First, suppose qr2s = −1. We obtain

−1 = (qr2s)3 = (q3r)r4(rs3) = r4.

If p = 2, this implies r = 1, a contradiction to N = 3. Otherwise, we conclude

r ∈ G′8. Assume q′ := qrs = −r−1 ∈ G′8. Then by Corollary 6.14 there exists a

Nichols algebra B(W ) withW ∈ b(q′, q′6, q′9) and GKdim (B(V )) ≥ GKdim (B(W )).

In any case this is of affine Cartan-type. Hence GKdim (B(V )) =∞.

Now, suppose q4r4s4 = 1 and qr2s 6= −1. Then with q3r = rs3 = 1 we conclude

1 = q4r4s4 = qr2s. As above we obtain r4 = 1, 1 = (qr2s)2 = q2s2 and (q3r)4 = q12 =

1, analogously for s. We want to calculate the multiplicity of 3α1 + 2α2. Therefore,

(q3r3s)3 = r5 = r 6= 1. Hence q3r3s 6= 1 and, consequently, the multiplicity of

3α1 + 2α2 is two by Theorem 5.14. Let q′ := q3α1+2α2 = q9r6s4 = r2s = s7.

Now, Lemma 6.10 yields a Nichols algebra B(W ) with W ∈ b(q′, q′2, q′). Here

s ∈ G′4 ∪ G′6 ∪ G′12 since N = 3. If s ∈ G′4, then B(W ) is of affine Cartan-type

and hence GKdim (B(V )) ≥ GKdim (B(W )) = ∞. Otherwise, the Cartan matrix

of B(W ) has entries c
B(W )
12 = c

B(W )
21 ∈ {−4,−5}. These cases are implicitly treated

below.

Now, let N ≥ 4. Due to s 6= 1, rs 6= 1 we have 0, 1 6∈ J and hence the multiplicity

of 4α1 + 2α1 is at least one by Theorem 5.14. If q2α1+α2 6∈ G4, then we conclude

GKdim (B(V )) =∞ by Corollary 6.16.

Otherwise, we can additionally assume (qr2s + 1)(q4r4s4 − 1) = 0 as above. If

p = 2, then q2α1+α2 = 1 and, consequently, 1 = q2α1+α2 = q4r2s ∈ {q3r, q3}, in any
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way a contradiction to N ≥ 4.

Now, let p 6= 2. If qr2s = −1, then q2α1+α2 = q4r2s = −q3 ∈ G4. Thus,

q12 = 1. Due to N ≥ 4 we conclude q ∈ G′6 ∪ G′12. If q ∈ G′6, then r ∈ {q, q2}
again since N ≥ 4. In any case 1 = −(qr2s)3 = s3. This is a contradiction to the

assumption. If q ∈ G′12, let r = qi for some i ∈ {1, . . . , 8} due to N ≥ 4. Then

−1 = qr2s = q1+2is is equivalent to q5−2i = s and N = 12 − i. Since rsN = 1 we

conclude i ∈ {2, 8}. In any case s = q. For i = 2 we have mult(6α1 + 2α2) ≥ 1

by Theorem 5.14 and q3α1+α2 = q9r3s = q4 6∈ G4. Thus, GKdim (B(V )) = ∞ by

Corollary 6.16. Hence assume i = 8 and q′ := q2α1+α2 = q4r2s = −q3 = q9 ∈ G′4.

Then by Corollary 6.14 there is a Nichols algebra B(W ) with W ∈ b(q′, q′2, q′)

satisfying GKdim (B(V )) ≥ GKdim (B(W )). This is of affine Cartan-type. Hence

GKdim (B(V )) =∞.

Next, let qrs ∈ G4 and assume qr2s 6= −1. As above

1 = q4
2α1+α2

= q16r8s4 = q12r4(qrs)4 = q12−4N .

Thus, q ∈ G4(N−3) and, consequently, N ≥ 5. Analogously, we obtain s ∈ G8N−12.

Moreover 1 = q16r8s4 = (qrs)8(q8s−4) ⇔ s4 = q8. Combining these equations we

get

1 = s8N−12 = s4(2N−3) = q8(2N−3) = q2(4N−12)q8N .

From above calculations we conclude q24 = r8 = s12 = 1. Since we are in Cartan-

type r = s−N , that is r ∈ G8 ∩ G12 \ {1} = G4 \ {1}. Due to N ≥ 5 we know

s ∈ G′6 ∪ G′12. In the first case this together with the restriction on r yields a

contradiction to N ≥ 5. Thus, s ∈ G′12 and N ∈ {6, 9}.
If N = 9, then 1 = qNr = q9s3 = qs7 implies q = s5. Now, the multiplicity

of 6α1 + 2α2 is greater than 1 by Theorem 5.14 and q3α1+α2 = q9r3s = s7. Thus,

GKdim (B(V )) =∞ by Corollary 6.16.

If N = 6, then 1 = q4r4s4 = q4s4 and 1 = q16r8s4 = q12. Thus, q = si for some

0 ≤ i ≤ 11. In any case mult(6α1 + 2α2) ≥ 1 and q3α1+α2 = q9r3s = −s9i+1 =

(−s9i)s. This is not in G4 due to the fact that (−s9i) ∈ G4 and s ∈ G′12. Thus,

GKdim (B(V )) =∞ by Corollary 6.16. This completes the proof. �

Corollary 6.18 Let α = m1α1 + m2α2 ∈ 4+ be such that gcd(m1,m2) = 1,

mult(α) = 2 and qα ∈ GN for some N > 3. Then GKdim (B(V )) =∞.

Proof. There are root vectors x and y of degree α. Those are linearly independent

by definition and primitive in K≥ m1
m−2

/K>
m1
m2

due to Remark 6.11. Then application
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of Lemma 6.10 yields a braided vector space W ∈ b(q′, q′2, q′) with q′ = qα satisfying

GKdim (B(V )) ≥ GKdim (B(W )). Finally, the claim follows from Proposition 6.17

since B(W ) is obviously of Cartan-type. �



7 | Infinite Gelfand-Kirillov dimen-

sional Nichols algebras

This section is devoted to the step-by-step proof of our main result.

Theorem 7.1 Let K be an arbitrary field and B(V ) a rank two Nichols algebra

of diagonal type over K. If B(V ) is of finite Gelfand-Kirillov dimension, then the

corresponding root system is finite.

Note that the converse is known to be true [13]. We recall a statement from [5].

Together with above theorem and Theorem 6.1 one can compute the Gelfand-Kirillov

dimension of B(V ) in case it is finite.

Proposition 7.2 [5] Let L be as in Theorem 4.30. For ` ∈ L we set

N` = min{k ∈ N | (k)qdeg(`) = 0} ∈ N ∪∞ .

Then GKdim (B(V )) = #{` ∈ L |N` =∞} .

The proof of Theorem 7.1 follows from below lemmata proving the statement

step-by-step. The main idea of the proof is to exhaust the knowledge of

4+ ∩ {mα1 + 2α2 |m ∈ N}

stated in Theorem 5.14 and apply Corollary 6.16 and Corollary 6.18 to conclude

GKdimB(V ) = ∞. The remaining cases satisfy #4 < ∞ or will be treated indi-

vidually mainly using Corollary 6.4.

We stick to the notation from the previous chapters. By Corollary 6.3 we can

assume B(V ) to be i-finite for all i ∈ {1, 2}. Thus, we can assign a Cartan matrix

C = (cij)1≤i,j≤2 to B(V ). Furthermore, by Remark 5.2 we can assume c12 ≤ c21. In

case c12 = c21 we use Remark 5.2 to reduce the number of cases to be considered.

Finally, we assume r 6= 1 since otherwise the set of roots and, consequently, by

61
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Theorem 6.1 the Gelfand-Kirillov dimension are finite.

We denote B(V ) to be of finite type k if #4 < ∞ and B(V ) ∈ b(q, r, s) with

q, r, s as in the row in A.1. Moreover, in the proofs below if 1 ∈ {q, s}, we implicitly

assume p > 0 since we assumed i-finiteness.

Lemma 7.3 Suppose u6 6= 0. Then B(V ) is of infinite Gelfand-Kirillov dimension

p 6= 7.

If p = 7, then

GKdimB(V ) <∞⇔ B(V ) is of finite type 18.

Proof. The proof splits in three big parts:

(A) 6α1 + 2α2 6∈ 4+,

(B) 6α1 + 2α2 ∈ 4+ with c12 ≤ −2,

(C) 6α1 + 2α2 ∈ 4+ with c12 ≤ −2.

Starting with case (A) note that 6α1 + 2α2 6∈ 4+ if and only if 0, 3, 6 ∈ J by

Lemma 5.13 and Theorem 5.14.

Assume 0, 3, 6 ∈ J. It follows that

s = −1,

q3r3s = 1, qr 6= −1 or (qr = −1 and p− | 3)

q15r6s = −1, q5r2 6= 1 or (q5r2 = 1 and 2 · p | 6)

and q4r 6= −1 or (q4r = −1 and p | 3)

We conclude −1 = q15r6s = q9(q3r3s)2s−1 = −q9, that is q9 = 1 . It follows that

q ∈ {1} ∪ G′9 since u6 6= 0. Moreover, −1 = (q15r6s)(q3r3s) = q18r9s2 = r9. Note

that r 6= −1 since otherwise 1 = q3r3s = q3 contradicts u6 6= 0.

First, we consider p = 2. Then q 6= 1 due to u6 6= 0 and q9 = r9 = 1. So q ∈ G′9
and r = qi for some 1 ≤ i ≤ 3 again due to u6 6= 0. We obtain

i = 1⇒ q3r3 = q6 6= 1 .

i = 2⇒ q5r2 = r9 = 1, but 2 · p - 6 .

i = 3⇒ q3r3 = q3 6= 1 .

All cases contradict the assumptions. Thus, there is no solution for p = 2.

Now, assume p 6= 2. First, assume q ∈ G′9. If r ∈ G′6, then q15r6s = −q6 6= 1.

Hence r ∈ G′18 and q = r2i for some 1 ≤ i ≤ 8. Then c12 = −8 and hence
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4α1+α2 ∈ 4+ and 8α1+2α2 ∈ 4+ by Theorem 5.14 with q4α1+α2 = q16r4s = r13+14i.

Here r13+14i ∈ G4 iff i = 1. In this case q4r = −1, but p - 3 since otherwise

r ∈ G′18 = ∅, a contradiction to 6 ∈ J. Hence q4α1+α2 6∈ G4 and GKdimB(V ) = ∞
by Corollary 6.16.

Next, assume q = 1 and p ≥ 7 since otherwise u6 = 0. This implies r 6= −1

and r3 = −1 since 3 ∈ J. If p > 7, then 7, 8 6∈ J by Lemma 5.13. Consequently,

8α1+2α2 ∈ 4+ and q4α1+α2 = q16r4s = r 6∈ G4 by the above. Hence GKdimB(V ) =

∞ by Corollary 6.16. If p = 7, then B(V ) is of finite type 18 by Theorem 6.1.

Now, we consider case (B) with 6α1 + 2α2 ∈ 4+ and we assume q3α1+α2 ∈ G4

due to Corollary 6.16.

First suppose c21 < −1. This implies s 6= −1, rs 6= 1 and hence 0, 1 6∈ J.

Consequently, #(J ∩ [0, 4]) ≤ 1 by Lemma 5.13. Thus, 4α1 + 2α2 ∈ 4+ and we

assume q2α1+α2 = q4r2s ∈ G4 like above. If p = 2, then q4r2s = 1 and q9r3s = 1

since G4 = {1} and hence q5r = 1, a contradiction to u6 6= 0.

Next, assume p 6= 2. This divides into the cases (B.1) 2 ∈ J and (B.2) 2 6∈ J.

First, assume (B.1) 2 ∈ J holds, that is qr2s = −1. Then 1 = (q4r2s)4 =

(−q3)4 = q12. If q ∈ G12 \ (G′12 ∪ {1}), then u6 = 0, a contradiction. Thus, suppose

q ∈ G′12 first. This implies 1 = (q9r3s)4 = q36r12s4 = q20r4(q4r2s)4 = q8r4 ⇒ r12 = 1.

That is r = qi for some 1 ≤ i ≤ 6. Then 1 = (q9r3s)4 = q36r12s4 = s4 and

qr2s = −1⇒ s = q5−2i ∈ G4. Since q ∈ G′12 this is equivalent to 5− 2i ≡ 0 mod 3,

that is i ∈ {1, 4}. If i = 1, then c12 ≤ −8 and hence 8α1 + 2α2 ∈ 4+ and q4α1+α2 =

q16r4s = q11 ∈ G′12. This yields GKdimB(V ) =∞ by Corollary 6.16. If i = 4, then

q10r5s 6= 1. This implies mult(5α1 + 2α2) = 2 with q5α1+2α2 = q25r10s4 = q5 ∈ G′12.

Then GKdimB(V ) =∞ by Corollary 6.18.

Now, assume q = 1. As above r4 = q20r4 = 1 and, consequently, 1 = (qr2s)2 =

s2. Since s 6= −1 by assumption this yields s = 1 and −1 = qr2s = r2, that is r ∈ G′4.

Thus, u3 6= 0 and q4r2s = −1. This implies GKdimB(V ) =∞ by Corollary 6.4.

Next, assume (B.2) holds, i.e. 2 6∈ J and, consequently, qr2s 6= −1 since 0, 1 6∈ J.

Note that by Lemma 5.13 and Theorem 5.14 the multiplicity of 5α1 + 2α2 is at

least two. Moreover, we can assume qrs ∈ G4 for otherwise Corollary 6.16 was

applicable and q4r2s, q9r3s ∈ G4 for the same reason. This implies 1 = (q4r2s)4 =

(q3r)4(qrs)4 = q12r4 and 1 = (q9r3s)4 = (q5r)4(q4r2s)4 = q20r4. Hence q ∈ G8.

Esp. q 6∈ G′2 ∪ G′4 since u6 6= 0 and, consequently, q ∈ {1} ∪ G′8. Therefore,

1 = q12r4q20r4 = q32r8 = r8.

If p = 2, then G8 = {1} and r = 1, a contradiction. So assume p 6= 2 and
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q 6= 1. Then 1 = q12r4 = −r4, i.e. r ∈ G′8, and since u6 6= 0 we conclude q = r

for otherwise qir = 1 for 1 ≤ i ≤ 5. In addition, 1 = (q4r2s)4 = q16r8s4 = s4.

Hence q5α1+2α2 = q25r10s4 = qr2 = q3 ∈ G′8 which implies GKdimB(V ) = ∞ by

Corollary 6.18.

If q = 1, then 1 = q12r4 = r4 and 1 = (qrs)4 = s4. We have s 6∈ {−1, r−1} due

to 0, 1 6∈ J. Thus, s ∈ G′4 and r ∈ {−1, s} or s = 1 and r = −1 since qr2s 6= −1. If

r = −1, s ∈ G′4, then qrs ∈ G′4. Note that p 6= 2 due to u6 6= 0. By Example 5.33

det(F1,t̄) = −64 6= 0 for all 0 ≤ t̄ ≤ 3. Hence Corollary 6.4 implies GKdimB(V ) =

∞. Otherwise qrs = −1 and Corollary 6.4 implies GKdimB(V ) =∞.

Finally, assume (C) holds, that is c21 = −1 and, consequently, (C.1) s = −1⇔
0 ∈ J or (C.2) rs = 1, s 6= −1⇔ 1 ∈ J. We still assume 6α1 + α2 ∈ 4+ and, thus,

q9r3s ∈ G4 as above.

We start by assuming (C.2): s 6= −1, rs = 1. Note that r 6= −1 since otherwise

s = −1. Then 1 = (q9r3s)4 = q36r8. If 4 6∈ J, then mult(4α1 + 2α2) ≥ 1 and

q2α1+α2 = q4r2s = q4r ∈ G′4 or GKdimB(V ) = ∞ by Corollary 6.16. This implies

1 = q36r8 = q4(q4r)8 = q4. Then q = 1 for otherwise u6 = 0. Hence p ≥ 7,

1 = (q4r)4 = r4 and since r 6∈ G2 we conclude r ∈ G′4. Then u4 6= 0 and q3α1+α2 =

q9r3s = −1 which implies GKdimB(V ) =∞ by Corollary 6.4.

If 4 ∈ J, then −1 = q6r4s = q6r3. If p = 2, then 1 = q9r3s = q8r2 since

G4 = {1} and, thus, 1 = (q8r2)3 = (q6r3)4r−6 = r−6. This implies r ∈ G′3 since

p = 2. Consequently, 1 = q6r3 implies q ∈ G3 and hence u6 = 0, a contradiction.

Thus, assume p 6= 2. Then 1 = (q9r3s)4 = q36r8 = (q6r3)6r−10 = r−10 and hence

r ∈ G′5 ∪G′10 since r 6∈ G2. Moreover, −1 = (q6r3)5 = q30r15 = (q36r8)q−6r7 ⇔ q6 =

−r7 ⇒ q18 = −r.
If r ∈ G′5, then q30 = −1 and r = q−12. Hence we conclude q ∈ G′20 ∪ G′60 since

r 6= 1 and u6 6= 0. Thus, c12 = −12 and mult(10α1 + 2α2) ≥ 1 by Theorem 5.14

with q5α1+α2 = q25r5s = q25(q−12)2(rs) = q 6∈ G4. Then GKdimB(V ) = ∞ by

Corollary 6.16.

If r ∈ G′10, then q30 = 1 and q16r4s = q16r3 = −q10. We conclude q ∈ G′10∪G′15∪
G′30 since u6 6= 0. In the first case, u5 6= 0, q16r4s = −1. Thus, GKdimB(V ) = ∞
by Corollary 6.4. In the latter cases c12 ≤ −8 due to −r = q18 and q4α1+α2 =

q16r4s = −q10 6∈ G4. Hence GKdimB(V ) =∞ by Corollary 6.16.

Finally, assume (C.1), that is s = −1, q9r3s = −q9r3 ∈ G4. This implies

0 ∈ J, 1, 2 6∈ J.

If p = 2, then q9r3 = 1 since G4 = {1}. Assume 3 ∈ J. This implies q3r3 = 1
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and hence 1 = q9r3 = q6, a contradiction to u6 6= 0.

Assume 4 ∈ J. Then 1 = q6r4s = q6r4. Thus, 1 = (q9r3)2 = (q6r4)3r−6 = r−6

and, consequently, r3 = 1 since p = 2. Therefore, 1 = q9r3 = q9 and 1 = q6r4 = q6r.

This implies r = q3. Then R2(V ) ∈ (q4, q6, 1) and c
B(R2(V ))
12 = −3, c

B(R2(V ))
21 = −1.

Note that V = R1(V ) and R2(V ) = R1(R2(V )). We conclude that σ1σ2σ1σ2 is an

automorphism of 4V . We calculate

σ1σ2σ1σ2(3α1 + α2) = σ1σ2σ1(3α1 + 2α2)

= σ1σ2(3α1 + 2α2)

= σ1(3α1 + α2)

= 3α1 + α2

and

σ1σ2σ1σ2(α1) = σ1σ2σ1(α1 + α2)

= σ1σ2(2α1 + α2)

= σ1(2α1 + α2)

= 4α1 + α2

= α1 + (3α1 + α2) .

Hence by linearity of the σi we conclude k(3α1 + α2) + α1 ∈ 4V
+ for all k ∈ N0.

Consequently, GKdim (B(V )) =∞ by Corollary 6.2.

If 3, 4 6∈ J, then mult(4α1+2α2) ≥ 1. Consequently, we assume q2α1+α2 = q4r2s ∈
G4 = {1}. Then 1 = q9r3s = q5r, contradicting u6 6= 0.

Now, assume p 6= 2. We want to to discuss the following cases:

(C.1.1) 3 ∈ J,

(C.1.2) 4 ∈ J,

(C.1.3) 3, 4 6∈ J.

First, assume (C.1.1), i.e. 3 ∈ J and, consequently, q3r3s = 1. Then 1 =

(q9r3)4 = (−q6)4 = q24 and 1 = (q3r3)8 = r24. Thus, q ∈ {1} ∪G′8 ∪G′12 ∪G′24 since

u6 6= 0.

First, assume q ∈ G′24. Then q3r3 = −1 implies r3 = q9 ∈ G′8. If r ∈ G′24, then

r = qi with i ∈ {1, 5, 7, 11, 13, 17, 19, 23}. If i > 18, then u6 = 0, a contradiction.
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If i 6= 11, then q3r3 6= −1, a contradiction to 3 ∈ J. If r = q11, we have q2r2 = 1.

Hence 3 ∈ J iff p | 3− 0 = 3. This is a contradiction to q ∈ G′24.

Otherwise, r ∈ G′8. Then −1 = (q3r3)3 = q9r implies r = q3. Consequently,

c12 ≤ −8, 8α1 + 2α2 ∈ 4+ and q4α1+α2 = q16r4s = q16 ∈ G′3. Hence GKdimB(V ) =

∞ by Corollary 6.16.

Next, assume q ∈ G′12. This implies r3 = (q3r3)q9 = −q9 = q3 ∈ G′4. Thus,

r ∈ G′4 ∪ G′12. In the first case −1 = q3r3 = −q3r yields q3r = 1, a contradiction

to u6 6= 0. In the latter case r = qi with i ∈ {1, 5, 7, 11}. Here i > 6 implies

u6 = 0, a contradiction to u6 6= 0. If r = q5, then q2r2 = 1. Hence 3 ∈ J iff

p | 3− 0 = 3, a contradiction to q ∈ G′12. Consequently, r = q and c12 ≤ −8. Thus,

8α1 + 2α2 ∈ 4+ by Theorem 5.14 and q4α1+α2 = q16r4s = q8 ∈ G′3. Corollary 6.16

implies GKdimB(V ) =∞.

Now, assume q ∈ G′8. Then r3 = (q3r3)q−3 = −q−3 = q ∈ G′8. Hence r ∈
G′8 ∪ G′24. In the former case r = (r3)3 = q3 and hence q5r = 1, a contradiction to

u6 6= 0. In the latter case R1(V ) ∈ b(r3, r5, r22) with c
B(R1(V ))
12 = −7, c

B(R1(V ))
21 < −1.

This was treated above and satisfies GKdimB(V ) = GKdim (B(R1(V ))) =∞.

Next, assume q = 1. This implies q3r3 = r3 = −1. If r = −1, then q2r2 = 1

and hence 3 ∈ J iff p | 3 − 0 = 3. Then u6 = 0, a contradiction. Thus, r ∈ G′6 and,

consequently, 6 ∈ J and 6α1 + 2α2 6∈ 4+. This is a contradiction.

For the next step assume p 6= 2, s = −1, 3 6∈ J and q9r3s ∈ G4.

Next assume (C.1.2): 4 ∈ J. Then q6r4 = 1 and hence 1 = (q9r3s)4 =

q18(q6r4)3 = q18 and 1 = (q6r4)3 = q18r12 = r12. Esp. q ∈ {1} ∪ G′9 ∪ G′18 for

otherwise u6 = 0. First, if q = 1, then 1 = q6r4 = r4. If 1 = r2 = q3r2, then 4 ∈ J
iff p | 4 − 0 = 4, a contradiction to p 6= 2. Thus, r ∈ G′4, q16r4s = −1 and u5 6= 0.

Thus, GKdimB(V ) =∞ by Corollary 6.4.

Now, assume q 6= 1, i.e. q ∈ G′9 ∪ G′18. Consequently, if r 6= qi for some

1 ≤ i < ord (q), then c12 = − ord (q) + 1 ∈ {8, 17}, 8α1 + 2α2 ∈ 4+ and q4α1+α2 =

q16r4s = −q10(q6r4) = −q10 ∈ G′18. Thus, GKdimB(V ) = ∞ by Corollary 6.16.

Therefore, assume r = qi for some 1 ≤ i < ord (q). Assume q ∈ G′18. If r ∈ G′2∪G′6,

then r ∈ {q3, q9, q15}. Since r = q15 yields u6 = 0 we conclude c12 ≤ −8 and

q4α1+α2 = q16r4s = q7r4 ∈ G′18. Hence GKdimB(V ) = ∞ by Corollary 6.16. If

r ∈ G′3, then 1 = q6r4 = q6r and hence r = q12. Here R2(V ) ∈ (q4, q6,−1) and

c
B(R2(V ))
12 = −3, c

B(R2(V ))
21 = −1. Note that V = R1(V ) and R2(V ) = R1(R2(V )).
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We conclude that σ1σ2σ1σ2 is an automorphism of 4V . We calculate

σ1σ2σ1σ2(3α1 + α2) = σ1σ2σ1(3α1 + 2α2)

= σ1σ2(3α1 + 2α2)

= σ1(3α1 + α2)

= 3α1 + α2

and

σ1σ2σ1σ2(α1) = σ1σ2σ1(α1 + α2)

= σ1σ2(2α1 + α2)

= σ1(2α1 + α2)

= 4α1 + α2

= α1 + (3α1 + α2) .

Hence by linearity of the σi we conclude k(3α1 + α2) + α1 ∈ 4V
+ for all k ∈ N0.

Consequently, GKdim (B(V )) =∞ by Corollary 6.2.

Next, assume q ∈ G′9. Then r ∈ G′3 and q9r3s = −1. Since u4 6= 0 we can apply

Corollary 6.4. Thus, GKdimB(V ) =∞.

Finally, we can assume (C.1.3): 3, 4 6∈ J. By Theorem 5.14 this implies 4α1 +

2α2 ∈ 4+ and hence we may assume q2α2+α2 = q4r2s ∈ G4. Then 1 = (q9r3s)8 =

q72r24 = q24(−q4r2)12 = q24 and hence 1 = (q4r2s)12 = q48r24 = r24. Again, q ∈
{1} ∪G′8 ∪G′12 ∪G′24.

First, consider q ∈ G′24. Then −q12 = 1 = (q9r3s)4 = q36r12 = −r12 and

r8 = (q4r2s)4q−16 = q8. Therefore r4 = q4 and consequently r ∈ G′24. Thus, r = qi

with i ∈ {1, 7, 13, 19}. Here i = 19 implies q5r = 1 and u6 = 0, a contradiction. In

any remaining cases q10r5s 6= 1 and hence 5 6∈ J. Therefore, mult(5α1 + 2α2) ≥ 2

and q2
5α1+2α2

= q50r20s4 = q70 = q22 ∈ G′12 and, consequently, q5α1+2α2 6∈ G2 ∪ G3.

Hence Corollary 6.18 yields GKdimB(V ) =∞.

Now, assume q ∈ G′12. Then 1 = q36r12 = r12 and q4 = r4 like above. We

conclude r ∈ G′3 ∪ G′6 ∪ G′12. Due to q4 = r4 and u6 6= 0 this implies c12 ≤ −8,

8α1 + 2α2 ∈ 4+ and q16r4s = −q20 = q2 ∈ G′6. Hence Corollary 6.16 implies

GKdimB(V ) =∞.

Next, consider q ∈ G′8. Like above 1 = q36r12 = −r12 and 1 = q16r8 = r8. This

implies r ∈ G′8 and, thus, r = q due to u6 6= 0. Then q10r5s = −q−1 = q3 6= 1. Hence
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mult(5α1 + 2α2) ≥ 2 with q5α1+2α2 = q25r10s4 = q3 ∈ G′8. Again, Corollary 6.18

yields GKdimB(V ) =∞.

Finally, assume q = 1. Then 1 = (q9r3s)4 = r12 and 1 = (q4r2s)4 = r8. Hence

r4 = 1. Therefore, q16r4s = −1 and u5 6= 0 and by Corollary 6.4 GKdimB(V ) =∞
holds. �

Lemma 7.4 Suppose −5 ≤ c12 ≤ −4 and −5 ≤ c21 ≤ −2. Then GKdimB(V ) =

∞.

Proof. First, note that c21 ≤ −2 implies 0, 1 6∈ J. We can assume

(qr2s+ 1)((qrs)4 − 1) = 0

since otherwise mult(2α1 + α2) ≥ 1 due to Theorem 5.14 and, consequently, Corol-

lary 6.16 yields the claim. Moreover, mult(4α1 + 2α2) ≥ 1 due to 0, 1 6∈ J and

Lemma 5.13 and Theorem 5.14. Hence we assume q4r2s ∈ G4.

If p = 2, then q4r2s = 1 since G4 = {1}. Thus, qr2s 6= 1 for otherwise 1 =

q4r2s = q3, a contradiction to c12 ≤ −4. Analogously, qrs 6= 1 since 1 = q4r2s =

(qrs)(q3r). This is a contradiction to above assumption. Thus, GKdimB(V ) = ∞
if p = 2.

Thus, assume p 6= 2. The remaining proof splits into the cases (A) c12 = −4

and (B) c12 = −5. Both cases will be further split into the cases qr2s 6= −1 and

qrs ∈ G4 by the above. Those will be denoted by (A.1) and (A.2) or, analogously,

(B.1) and (B.2).

We start discussing case (A.1): c12 = −4 and qr2s 6= −1. We consider the cases

(a) q4r = 1; (b) q ∈ G′5; (c) q = 1, p = 5 .

In case (a) 1 = (q4r2s)4 = (q4r)4(rs)4 = q−4(qrs)4 = q−4, a contradiction to

c12 = −4.

In case (b) 1 = (q4r2s)4 = q16r8s4 = q12r4(qrs)4 = q2r4. Hence r4 = q3 and

s4 = (qrs)4q−4r−4 = q3. Then (q3r3s)4 = q12r12s4 = q12+9+3 = q4 ∈ G′5. This

implies q3r3s 6= 1 and hence 3 6∈ J. We conclude mult(3α1+2α2) = 2 with q2
3α1+2α2

=

(q9r6s4)2 = (q4r4s4)2(q5r2)2 = r4 = q3 ∈ G′5. Thus, q3α1+2α2 6∈ G2 ∪ G3 and

Corollary 6.18 implies GKdimB(V ) =∞.

In case (c) q4r2s = r2s ∈ G4 and qrs = rs ∈ G4 imply r ∈ G4. Note that

r2s 6= −1 since we assumed r2s = qr2s 6= −1. Moreover, r 6= 1 and s 6= −1.
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If r2s = 1, then 1 = r4s4 = (r2s)2s2 = s2 and hence s = 1 and r = −1. Then

qrs = −1 and u2 6= 0 by assumption on c12. Thus, Corollary 6.4 is applicable and

GKdimB(V ) =∞.

If r2s ∈ G′4, then −1 = (r2s)2 = (r4)s2 = s2,i.e. s ∈ G′4. Consequently, r = s or

s ∈ G′4 and r = −1. In any case u2 6= 0 since c12 = −4. If r = s, then qrs = −1

and, consequently, GKdim (B(V ) = ∞ by Corollary 6.4. Otherwise qrs ∈ G′4 and

det(F1,t̄) = −64 6= 0 by Example 5.33 for all 0 ≤ t̄ ≤ 3 due to p = 5. Hence

Corollary 6.4 implies GKdimB(V ) =∞.

Next, we discuss (A.2). This impliesqr2s = −1 and, consequently, 1 = (q4r2s)4 =

(qr2s)4q12 = q12. We consider the cases

(a) q4r = 1 and (b) q = 1, p = 5 .

In case (a) 1 = (q4r)3 = q12r3 = r3 and hence 1 = (q4r2s)4 = (q4r)4(rs)4 = rs4.

Here s 6= 1 since r 6= 1. Due to c21 ≤ −2 this implies rsi 6= 1 for i ≤ 4. Hence B(V ) is

of Cartan-type with c12 = c21 = −4. Thus, GKdimB(V ) =∞ by Proposition 6.17.

In case (b) u3 6= 0 since c12 = −4 and q2α1+α2 = q4r2s = qr2s = −1. Then

Corollary 6.4 implies GKdimB(V ) =∞.

In the following we still assume q4r2s ∈ G4.

Assume case (B.1) holds, that is c12 = −5 and qr2s 6= −1, 2 6∈ J. Thus,

mult(5α1 + 2α2) ≥ 2 by Lemma 5.13. If q5α1+2α2 = q25r10s4 = q9r2(q4r2s)4 =

q9r2 6∈ G2 ∪ G3, then Corollary 6.18 implies GKdimB(V ) = ∞. Therefore assume

q9r2 ∈ G2 ∪G3.

If q5r = 1, then q = q−9r−2 ∈ G2 ∪G3, contradicting c12 = −5.

If q ∈ G′6, then since qr2s 6= −1 we assume q4r4s4 = 1 for otherwise Corol-

lary 6.16 was applicable. Then 1 = q16r8s4 = q12r4(qrs)4 = r4. If qrs = −1, then

Corollary 6.4 was applicable and hence GKdimB(V ) = ∞. If qrs 6= −1, then

R1(V ) ∈ b(q, q2r3, qrs) and the Nichols algebra B(R1(V )) has c
B(R1(V ))
21 ≤ −2 and

c
B(R1(V ))
12 = −5. Thus, mult(4α1 +2α2) ≥ 1 by Theorem 5.14. In this Nichols algebra

the following holds:

q2α1+α2 = q16(q2r3)8(qrs)4 = q32 = q2 ∈ G′3.

Thus, GKdim (B(V )) = GKdim (B(R1(V ))) =∞ by Corollary 6.16.

Finally, we discuss (B.2), that is c12 = −5 and qr2s = −1. Then 1 = (q4r2s)4 =

(−q3)4 = q12. Since c12 = −5 we conclude q ∈ G′6∪G′12. First, assume q ∈ G′12. Then
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q5r = 1 for otherwise c12 6= −5. Thus, r = q7 and s = (qr2s)q−1r−2 = −q−15 = q3.

Note that for these parameters q, r, s the preconditions of Lemma 5.19 are met.

Thus, Corollary 6.14 yields some W ∈ b(q11,−1, q3). The corresponding Nichols

algebra B(W ) has c
B(W )
12 = −6. Thus, GKdim (B(V )) ≥ B(W ) =∞ by Lemma 7.3.

Next, if q ∈ G′6, then q10r5s = q9(qr2s)r3 = r3 6= 1 due to c12 = −5. Thus, 5 6∈ J
and mult(5α1 + 2α2) = 2. Now, q25r10s4 = q9r2 = −r2. If −r2 6∈ G′2 ∪ G′3, then

Corollary 6.18 implies GKdim (B(V )) = ∞. If −r2 ∈ G2, then r4 = 1. If r = −1,

then 1 = q3r, contradicting c12 = −5. Thus, r ∈ G′4. Then q = (qr2s)r−2s−1 =

s−1. Analogously to a case above, R1(V ) ∈ b(q, q2r3, r) and c
B(R1(V ))
12 = −5 and

c
B(R1(V ))
21 = −3. Thus, mult(4α1 + 2α2) ≥ 1 and q16(q2r3)8r4 = q2 ∈ G′3. Thus,

GKdim (B(V )) = GKdim (B(R1(V ))) =∞ by Corollary 6.16.

Finally, if −r2 ∈ G′3 \ {1}, then r6 = −1 and s3 = −r6s3 = −1. We conclude

r ∈ G′12 since r2 6= −1 and s ∈ G′6 since c21 ≤ −2. Now, −1 = qr2s yields q = r2 = s

since r2, s ∈ G′6 = {q, q−1}. Then (qrs)2 = q5 ∈ G′6 and, consequently, γ := qrs ∈
G′12. Note that for these parameters q, r, s the preconditions of Lemma 5.19 are

met. Thus, Corollary 6.14 yields some W ∈ b(γ,−1,−γ3). The corresponding

Nichols algebra B(W ) has c
B(W )
12 = −6. Thus, GKdim (B(V ) ≥ B(W ) = ∞ by

Lemma 7.3. This completes the proof �

Lemma 7.5 If −3 ≤ c12 ≤ c21 ≤ −2, then GKdimB(V ) < ∞ if and only if

#4+ <∞.

Proof. Note that GKdimB(V ) = ∞ ⇒ #4+ = ∞ is well known. Moreover,

c21 ≤ −2 implies 0, 1 6∈ J. We can assume

(qr2s+ 1)((qrs)4 − 1) = 0

since otherwise we could apply Corollary 6.16.

The proof consists of the parts

(A) c12 = c21 = −3,

(B) c12 = −3, c21 = −2,

(C) c12 = c21 = −2,

We start discussing (A) c12 = c21 = −3. Then q 6= 1 for otherwise p = 4.

Moreover, the case q3r = rs3 = 1 has already been treated by Proposition 6.17.
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Thus, we consider the following cases:

(a) q3r = 1, s ∈ G′4, rs3 − 1 6= 0 and (b) q, s ∈ G′4, q3r − 1 6= 0, rs3 − 1 6= 0 .

Note that in both cases forth root of unity appear. Thus, assume p 6= 2. Addition-

ally, if r ∈ G4, then rsi = 1 for some 1 ≤ i ≤ 3 since r 6= 1. This contradicts the

assumptions in both cases.

First, we consider (a). If qrs ∈ G4, then 1 = q4r4s4 = q4r4 = q−8(q3r)4 = q−8.

Moreover, q 6∈ G4 since otherwise r ∈ G4 and hence q ∈ G′8. Then q3r = 1 implies

r = q5 and s ∈ {q2, q6}.
If s = q2, then q3r3s = q20 = −1 6= 1 since p 6= 2. Thus, 3 6∈ J, mult(3α1 +

2α2) = 2 by Theorem 5.14 and q3α1+2α2 = q9r6s4 = q39 = q−1 ∈ G′8. Consequently,

GKdimB(V ) =∞ by Corollary 6.18.

If s = q6, then qrs = q12 = −1 and u2 6= 0 due to c21 = −3. Then GKdimB(V ) =

∞ by Corollary 6.4.

If qr2s = −1, then 1 = (qr2s)6 = q6r12s6 = −(q3r)2r10 = −r10. Thus, r ∈ G′20

since r 6∈ G4. This implies 1 = (qr2s)10 = −q10, i.e. q ∈ G′4 ∪ G′20. Since r =

q−3 we conclude q ∈ G′20. Thus, s = (qr2s)(qr2)−1 = −(q−5)−1 = q15. Assume

q′ := qrs = q13 ∈ G′20. Here by Corollary 6.14 there is W ∈ b(q′, q′6, q′9) satisfying

GKdim (B(V )) ≥ GKdim (B(W )) =∞ by Lemma 7.3.

Next, consider (b). If qrs ∈ G4, then r4 = 1, a contradiction to r 6∈ G4. If

qr2s = −1, then 1 = (qr2s)2 = q2r4s2 = (−1)2r4 = r4, again a contradiction to

r 6∈ G4. Thus, this case has already been treated.

Now, assume (B) c12 = −3, c21 = −2. If p = 2, then q3r = 1 and 1 ∈ {qrs, qr2s}.
In the first case 1 = (qrs)3 = (q3r)r2s3 = r2s3 = (rs)rs2. Since c21 = −2

either s ∈ G′3 or else rs2 = 1 holds. By the preceding equation both yields

a contradiction to c21 = −2. In the latter case, first assume rs2 = 1. Then

1 = (qr2s)6 = (q3r)2r7(rs2)3 = r7 and hence r ∈ G′7 since r 6= 1. Consequently,

q = q(q3r)(rs2)2 = (qr2s)4r−5 = r2 and s = s(q3r)(rs2) = (qr2s)3r−4 = r3. As-

sume q′ := qrs = r6 ∈ G′7. Here by Corollary 6.14 there is W ∈ b(q′, q′6, q′2)

satisfying GKdim (B(V )) ≥ GKdim (B(W )). This is of affine Cartan-type. Hence

GKdim (B(V )) =∞.

If s ∈ G′3, then 1 = (qr2s)3 = r5. Therefore, r ∈ G′5 again due to r 6= 1.

This implies q ∈ G′5 ∪ G′15 since q3 = r−1. In the former case r = q2 and hence

1 = qr2s = s, a contradiction to c21 = −2 because p = 2. Thus, q ∈ G′15 and

r = q−3 = q12, s = q30s = q5(qr2s)2 = q5. Then B(V ) is a Nichols algebra of finite
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type 16.

Now, assume p 6= 2. As stated in the beginning of the proof we differentiate the

cases (B.1) qr2s = −1 and (B.2) qr2s 6= −1, qrs ∈ G4. Each case will be further

split into the following sub cases:

(a) q3r = rs2 = 1;

(b) q3r = 1, s ∈ G′3;

(c) q3r = 1, s = 1, p = 3;

(d) q ∈ G′4, rs2 = 1;

(e) q ∈ G′4, s ∈ G′3;

(f) q ∈ G′4, s = 1, p = 3.

We start by discussing (B.1) qr2s = −1.

In case (a) the equation 1 = (qr2s)6 = (q3r)2r7(rs2)3 = r7 holds and hence

r ∈ G′7 since r 6= 1. Consequently, q = q(q3r)(rs2)2 = (qr2s)4r−5 = r2 and

s = s(q3r)(rs2) = (qr2s)3r−4 = −r3. Assume q′ := qrs = −r6 ∈ G′14. Here by Corol-

lary 6.14 there existsW ∈ b(q′, q′6, q′9) satisfying GKdim (B(V )) ≥ GKdim (B(W )) =

∞ by Lemma 7.3.

If (b) holds, then −1 = (qr2s)3 = (q3r)s3r5 = r5. Thus, r ∈ {−1} ∪G′10. In the

first case, −1 = qr2s = qs. Thus, q ∈ G′6 and, consequently, s = q2 since s ∈ G′3.

If p = 5, then B(V ) is of finite type 16” where q = −ζ with ζ ∈ G′3. Otherwise,

R1(B(V )) ∈ b(−1, q, q2) and R2R1(B(V )) ∈ b(−1, q5, 1). Since p 6∈ {2, 3, 5} we have

c21 ≤ −6. Thus, GKdim (B(V )) = GKdim (B(R2(R1(V )))) =∞ by Lemma 7.3.

If r ∈ G′10, then q3 = r−1 ∈ G′10 and q5 = −(qr2s)5r−10s−5 = −s ∈ G′6. Thus,

q ∈ G′30, r = q27 and s = q20. Then B(V ) is of finite type 16 where q = −ζ, ζ ∈ G′15.

In case (c) the equation −1 = (qr2s)3 = (q3r)r5 = r5 holds. Since −1 = qr2s =

qr2 this implies r ∈ G′10 and, consequently, q = r3 by the preceding. Then B(V ) is

of finite type 16’ where q = −ζ2, r = −ζ−1 for some ζ ∈ G′5.

For the following cases note that r 6= −1 since otherwise q2r = 1, contradicting

c12 = −3.

In case (d) the equation 1 = (qr2s)2 = −r3 holds and hence r ∈ G′6. Now,

s2 = r−1 ∈ G′6 implies s ∈ G′12 and r = s10. Thus, q = (qr2s)r−2s−1 = −s−21 = s9.

Assume q′ := qrs = s8 ∈ G′4. Then by Corollary 6.14 there exists W ∈ b(q′, q′2, q′)
satisfying GKdim (B(V )) ≥ GKdim (B(W )) =∞ since this is of affine Cartan-type.
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In case (e) the equation 1 = (qr2s)6 = −r12 holds, that is r ∈ G′8 ∪ G′24. In the

first case 1 = (qr2s)4 = s4 = s, a contradiction. In the latter case the equations

1 = (qr2s)4 = r8s and −1 = (qr2s)3 = q3r6 hold. Hence s = r16 and q = r18. Thus,

B(V ) is a Nichols algebra of finite type 13.

In case (f), 1 = (qr2s)2 = −r4 yields r ∈ G′8 and, consequently, −1 = qr2s = qr2,

that is q = r2. Therefore, B(V ) is a Nichols algebra of finite type 13’.

Now, assume (B.2) qr2s 6= −1, (qrs)4 = 1. We consider the same cases as above.

In case(a) the equation 1 = (qrs)4 = (q3r)(rs2)qr = qr holds, a contradiction to

c12 = −3.

If (b) holds, then 1 = (qrs)12 = (q3r)4(s3)4r8 = r8. Thus, r ∈ G′N with

N ∈ {2, 4, 8}. In any case q3r3s = r2s 6= 1. Therefore, {0, 1, 2, 3} ∩ J = ∅ and,

consequently, mult(3α1 + 2α2) = 2 with q3α1+2α2 = q9r6s4 = r3s ∈ G′3N . Thus,

GKdimB(V ) =∞ by Corollary 6.18.

In case (c) the equation 1 = (qrs)12 = r8 holds. Again, r ∈ G′N with N ∈
{2, 4, 8}. If r = −1, then q3 = −1 and, consequently, q = −1 due to p = 3, a

contradiction to c12 = −3. Otherwise, q3r3s = r2 6= 1 and q9r6s4 = r3 ∈ G′N . Hence

GKdimB(V ) =∞ by Corollary 6.18.

For the following cases note that r 6= −1 since otherwise q2r = 1, contradicting

c12 = −3.

If (d) holds, then 1 = q4r4s4 = r2, a contradiction to r 6∈ G2.

In case (e) the equation 1 = (qrs)12 = r12 holds. Then (q3r3s)4 = s 6= 1.

Hence the multiplicity of 3α1 + 2α2 is two and q2
3α1+2α2

= q18r12s8 = −s2 ∈ G′6 and,

consequently, q3α1+2α2 6∈ G2 ∪G3. Thus, GKdimB(V ) =∞ by Corollary 6.18.

In case (f), 1 = (qrs)4 = r4 implies r = q ∈ G′4 due to c12 = −3. This case was

treated above.

Finally, assume (C) c12 = c21 = −2. If q2r = rs2 = 1, then B(V ) is of affine

Cartan-type and hence GKdim (B(V )) =∞ by Proposition 6.5.

We consider the following cases

(a) q2r = 1, s ∈ G′3;

(b) q2r = 1, s = 1, p = 3;

(c) q ∈ G′3, s ∈ G′3;

(d) q = s = 1, p = 3.
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First, assume p = 2. Assume (a) holds. If qr2s = 1, then 1 = (qr2s)3 = qr5 =

(q2r)−5qr5 = q−9. Hence r = q7 and s = (q2r)2s = q3(qr2s) = q3. Then B(V ) is a

Nichols algebra of finite type 10.

If 1 = qrs, then 1 = (qrs)3 = qr2 and 1 = (qrs)6 = r3. Hence q = r = s ∈ G′3
due to c21 = −2. This case is of affine Cartan-type.

Now, in case (c) the equations (qr2s)3 = r6 and (qrs)3 = r3 hold. So in any case

q = r = s ∈ G′3 due to c12 = c21 = −2. The claim follows as above.

Now, assume p 6= 2. We discuss the cases (C.1) qr2s = −1 and (C.2) (qrs)4 = 1,

qr2s 6= −1. First, consider (C.1) qr2s = −1.

In case (a), 1 = (qr2s)2 = r3s2 implies s = r3. Thus, r ∈ G′9 and, consequently,

q2 = r−1, that is q ∈ G′9 ∪G′18. In the former case r = q7 and s = r3 = q3. But then

−1 = qr2s = q18 = 1. A contradiction to p 6= 2.

In the latter case the equations r = q−2 = q16 and s = r3 = q12 hold. Then B(V )

is a Nichols algebra of finite type 10.

If (b) holds, then 1 = (qr2s)2 = r3. But r 6= 1 and G3 = {1} due to p = 3, a

contradiction.

Now, in case (c) the equation −1 = (qr2s)3 = r6 holds. Hence r ∈ G′4 ∪G′12. In

the first case −1 = qr2s = −qs holds and, consequently, s = q2. Assume ζ ∈ G′12

such that r = ζ3 and without loss of generality q = ζ8, s = ζ4. Then B(V ) is a

Nichols algebra of finite type 8.

In the latter case the equation q, s ∈ {r4, r8} holds. Since −1 = qr2s we conclude

q = s = r8. Thus, B(V ) is a Nichols algebra of finite type 9.

In case (d) the equation −1 = qr2s = r2 holds. Then r ∈ G′4 and B(V ) is a

Nichols algebra of finite type 9’.

Finally, assume (C.2) (qrs)4 = 1, qr2s 6= −1.

Assume (a) holds. Then 1 = (qrs)4 = r2s, that is r2 = s2 ∈ G′3. If r ∈ G′3, then

r = s and B(V ) is of affine Cartan type. Hence GKdimB(V ) = ∞. Thus, assume

r ∈ G′6. Therefore q2 = r−1 implies q ∈ G′12, r = q−2 = q10, s ∈ {q4, q8}. In the first

case we have R2(V ) ∈ b(q, r, s). We conclude that σ1σ2σ1σ2 is an automorphism of

4V . We calculate

σ1σ2σ1σ2(α1 + α2) = σ1σ2σ1(α1 + α2)

= σ1σ2(α1 + α2)

= σ1(α1 + α2)

= α1 + α2
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and

σ1σ2σ1σ2(α1) = σ1σ2σ1(α1 + 2α2)

= σ1σ2(3α1 + 2α2)

= σ1(3α1 + 4α2)

= 5α1 + 4α2

= α1 + 4(α1 + α2) .

Hence by linearity of the σi we conclude k(4α1 + 4α2) + α1 ∈ 4V
+ for all k ∈ N0.

Consequently, GKdim (B(V )) =∞ by Corollary 6.2.

If s = q8, then R2(V ) ∈ b(q5,−1, q8). Then B(R2(W )) has c
B(R2(W ))
12 = −6.

Thus, GKdim (B(V )) = GKdim (B(W )) =∞ by Lemma 7.3.

If (b) holds, then 1 = (qrs)4 = r2. Thus, r = −1 and, consequently, q ∈ G′4.

Then R2(V ) ∈ b(q, r, s). Then this case works analogously to case (a) with s = q4.

In case (c) the equation 1 = (qrs)4 = qr4s holds. If q = s2, then r4 = 1 and

since −1 6= qr2s = r2 we conclude r = −1. Now, u2 6= 0 and qrs = −1. Then

Corollary 6.4 implies GKdimB(V ) = ∞. Otherwise, q = s and, consequently,

r4 = q. If r ∈ G′3, then r = q and q2r = rs2 = 1. This case is of affine Cartan-type.

Thus, r ∈ G′6∪G′12. If r ∈ G′6, then u2 6= 0 and qrs = r9 = −1. Hence Corollary 6.4

implies GKdimB(V ) = ∞. If r ∈ G′12, then R2(V ) ∈ b(r10, r7, r4). Then B(W )

satisfies GKdimB(W ) = GKdimB(V ) and c
B(W )
12 = −5, c

B(W )
21 = −2. This was

treated before yielding GKdimB(V ) =∞.

Assume (d) holds. Then 1 = (qrs)4 = r4 and −1 6= qr2s = r2. Hence r ∈ G′4.

Then R2(V ) ∈ b(q, r−1, s). We conclude that σ1σ2σ1σ2 is an automorphism of 4V .

We calculate

σ1σ2σ1σ2(α1 + α2) = σ1σ2σ1(α1 + α2)

= σ1σ2(α1 + α2)

= σ1(α1 + α2)

= α1 + α2
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and

σ1σ2σ1σ2(α1) = σ1σ2σ1(α1 + 2α2)

= σ1σ2(3α1 + 2α2)

= σ1(3α1 + 4α2)

= 5α1 + 4α2

= α1 + 4(α1 + α2) .

Hence by linearity of the σi we conclude k(4α1 + 4α2) + α1 ∈ 4V
+ for all k ∈ N0.

Consequently, GKdim (B(V )) =∞ by Corollary 6.2.

This completes the proof. �

In the following cases c21 = −1 and hence {0, 1} ∩ J 6= ∅. Therefore, 2α1 + 2α2

is not a root.

Lemma 7.6 If c12 = −5 and c21 = −1, then GKdimB(V ) < ∞ if and only if

#4+ <∞ .

Proof. First, assume p = 2. Note that G′6 = ∅. Hence q5r = 1. Assume s = 1.

Then 0 ∈ J, 1, 2 6∈ J by Lemma 5.13. If 3 ∈ J, then 1 = q3r3s = (q5r)−3q3r3 = q−12.

Hence q ∈ G3 due to p = 2. This is a contradiction to c12 = −5.

If 4 ∈ J, then 1 = q6r4s = (q5r)−4q6r4 = q−14. Hence q ∈ G′7 due to p = 2 and,

consequently r = q2. Assume ζ ∈ G′7 such that q = ζ−2, r = q2 = ζ3. Then B(V ) is

a Nichols algebra of finite type 17.

Thus, assume 3, 4 6∈ J. Then mult(4α1 + 2α2) ≥ 1. If q4r2s ∈ G4 = {1}, then

q−6 = (q5r)−2(q4r2s) = 1 and, consequently, q ∈ G3 due to p = 2, a contradiction

to c12 = −5. Thus, q2α1+α2 6∈ G4. This implies GKdim (B(V )) = ∞ due to

Corollary 6.16.

Now, assume rs = 1. Then 0, 2, 3 6∈ J. If 4 ∈ J, then 1 = q6r4s = (q5r)−3q6r3 =

q−9. We conclude q ∈ G′9 due to c12 = −5. Hence r = q4, s = q5. Assume

q′ := q4r2s = q8 ∈ G′9. Then by Corollary 6.14 there exists W ∈ b(q′, q′6, 1) with

GKdim (B(V ) ≥ GKdim (B(W )). Now, R2(W ) ∈ b(q′7, q′3, 1). Thus, c
B(R2(W ))
12 =

−6 and, consequently, GKdim (B(V ) ≥ GKdim (B(R2(W ))) =∞ by Lemma 7.3.

If 4 6∈ J, then mult(4α1 + 2α2) ≥ 1 and q2α1+α2 = q4r2s = q−1 6∈ G4 since

otherwise c12 6= −5. Thus, GKdimB(V ) =∞ due to Corollary 6.16.

Now, assume p 6= 2. We consider the following cases

(a) q5r = rs = 1;
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(b) q ∈ G′6, rs = 1;

(c) q5r = 1, s = −1;

(d) q ∈ G′6, s = −1.

We assume s 6= −1 in cases (a) and (b). Thus, 1 ∈ J, i.e. {0, 2, 3} ∩ J = ∅.
Assume (a) holds. If 4 6∈ J, mult(4α1 +2α2) ≥ 1 and q2α1+α2 = q4r2s = q−1 6∈ G4

due to c12 = −5. Hence GKdimB(V ) =∞ by Corollary 6.16.

Thus, assume 4 ∈ J, that is −1 = q6r4s = (q5r)−3q6r3 = q−9. If q ∈ G′6, then q =

r and s = q5. But q4+1−1r2 = q6 = 1 and p 6= 3 contradicts 4 ∈ J. If q ∈ G′18, assume

q′ := q4r2s = q−1 ∈ G′18. Then by Corollary 6.14 there exists W ∈ b(q′, q′6,−1) with

GKdim (B(V ) ≥ GKdim (B(W )). This implies GKdim (B(V )) =∞ by Lemma 7.3

due to c
B(W )
12 = −12.

Next, assume (b) holds. If 4 6∈ J, then mult(4α1+2α2) ≥ 1 and q2α1+α2 = q4r2s =

q4r ∈ G4. Thus, r12 = 1 and q4r4 = 1 implies q = −r8. Therefore, r ∈ G′3∪G′6∪G′12.

In the first case r ∈ {q2, q4}, contradicting c12 = −5. If r ∈ G′6, then q = r since

qr 6= 1 due to c12 = −5. This case has already been considered. In the last case we

have R1(V ) ∈ b(r2, r3,−1) and R2(R1(V )) ∈ b(r11, r9,−1). Here c
B(R2(R1(V ))
12 = −9.

Hence GKdim (B(V )) = GKdim (B(R2(R1(V ))) =∞ by Lemma 7.3.

If 4 ∈ J, then −1 = q6r4s = r3. Thus, r = q due to rs = 1, s 6= −1 and c12 = −5.

This implies q5r = 1 and was treated in case (a).

Now, assume s = −1. Then 0 ∈ J, 1, 2 6∈ J.

First, we consider case (c). If 3 ∈ J, then 1 = q3r3s = (q5r)−3q3r3s = −q−12.

Hence q ∈ G′8 ∪ G′24. If q ∈ G′8, then q2r2 = q−8 = 1. Thus, by definition 3 ∈ J
implies p = 3. Then B(V ) is of finite type 13’.

If q ∈ G′24, then B(V ) is a Nichols algebra of finite type 13.

Next, 4 ∈ J implies 1 = −q6r4s = (q5r)−3qr3 = q−14. Due to 4 ∈ J, q4r2 = q−7

and p - 4 we conclude q ∈ G′14. Assume ζ ∈ G′7 such that q = −ζ−2. Then

r = q2 = ζ3 and B(V ) is a Nichols algebra of finite type 17.

If 3, 4 6∈ J, then mult(4α1+2α2) ≥ 1. Hence we may assume q2α1+α2 = q4r2s ∈ G4

for otherwise GKdimB(V ) =∞ due to Corollary 6.16. This implies 1 = (q4r2s)4 =

qr5. Thus, 1 = q25r5 = q24. Now, q10r5s = −q9. Hence 5 6∈ J iff q 6∈ G′6 due

to c12 = −5. In those cases q5α1+2α2 = q25r10s4 = q23 6∈ G2 ∪ G3. This implies

GKdimB(V ) =∞ by Corollary 6.18.

If q ∈ G′6, then q = r, u3 6= 0 and q4r2s = −1. Hence GKdimB(V ) = ∞ by

Corollary 6.4.
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Finally, assume (d) holds. If 3 ∈ J, then 1 = q3r3s = r3. Thus, r ∈ G′3 = {q2, q4}.
This contradicts c12 = −5.

If 4 ∈ J, this implies 1 = −q6r4s = r4. Since q3 = −1 and q3r 6= 1 this yields

r ∈ G′4. Then R2(V ) ∈ b(−qr, r−1,−1). Note that −qr ∈ G′12 and (−qr)3r−1 = −1.

Hence c
B(R2(V ))
12 ≤ −6 and GKdimB′ =∞ by Lemma 7.3.

If 3, 4 6∈ J, then again assume q4r2s = qr2 ∈ G4. If additionally 5 6∈ J, then

mult(5α1 + 2α2) ≥ 2 and q5α+2α2 = q25r10s4 = (q16r8s4)q9r2 = −r2. Note that

−r2 6∈ G4 due to qr2 ∈ G4, q 6∈ G4. If −r2 6∈ G3, then GKdim (B(V )) = ∞ by

Corollary 6.18. Otherwise −r2 ∈ G′3 implies −r6 = 1 and, consequently, r ∈ G′12

since r 6∈ G4. By the above results 1 = (qr2)4 = qr2. Then R1(V ) ∈ b(r10, r7, r9).

Note that c
B(R1(V ))
12 = −5 and c

B(R1(V ))
21 ≤ −2. This has already been treated by the

preceding lemmata.

If 5 ∈ J, then 1 = q10r5s = qr5 and 1 = q4r8 = −r3 by the above results. Due

to c12 = −5 this implies r = q. Then q4r2s = −1 and u3 6= 0 and, consequently,

GKdimB(V ) =∞ by Corollary 6.4.

This completes the proof. �

Lemma 7.7 If c12 = −4 and c21 = −1, then GKdimB(V ) < ∞ if and only if

#4+ <∞ .

Proof. First, note that the case q4r = rs = 1 is of affine Cartan-type. Thus,

GKdim (B(V )) = ∞ due to Proposition 6.5. It remains to consider the following

cases:

(a) q4r = 1, s = −1;

(b) q ∈ G′5, s = −1.

(c) q = 1, s = −1, p = 5.

(d) q ∈ G′5, rs = 1;

(e) q = 1, rs = 1, p = 5;

Assume p = 2. Assume (a) holds. If 3 ∈ J, then 1 = q3r3s = (q4r)−3q3r3 = q−9.

This implies q ∈ G′9 due to c12 = −4 and, consequently, r = q5. Here B(V ) is a

Nichols algebra of finite type 10.

If 4 ∈ J, then the equation 1 = q6r4s = (q4r)−4q6r4 = q−10 implies that q ∈ G′5
due to p = 2, c12 = −4. Then r = q and B(V ) is a Nichols algebra of finite type 14.
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If 3, 4 6∈ J, then mult(4α1 + 2α2) ≥ 1 and q2α1+α2 = q4r2s = r 6∈ G4 due to

G4 = {1}. Hence GKdim (B(V )) =∞ by Corollary 6.16.

In case (b), if 3 ∈ J, then 1 = q3r3s = q−2r3. Thus, q2 = r3 and r15 = 1, that is

r ∈ G′5∪G′15. In the former case r = q−1 due to q2 = r3, but then qr = 1 contradicts

c12 = −4. In the latter case assume ζ ∈ G′15 such that r = ζ2, q = ζ3. Then B(V )

is a Nichols algebra of finite type 16.

If 4 ∈ J, then 1 = q6r4s = qr4 and, consequently, r ∈ G20 = G5 due to p = 2.

Hence r = q ∈ G′5. Then q4r = 1 which was treated in case (a).

If 3, 4 6∈ J, then mult(4α1 + 2α2) ≥ 1 and q2α1+α2 = q4r2s = q−1r2. Suppose

q−1r2 ∈ G4 = {1}. This implies r = q3 ∈ G′5 due to p = 2 and, consequently, q2r = 1,

a contradiction to c12 = −4. Therefore, GKdim (B(V )) =∞ by Corollary 6.16.

Now, assume (d) holds and s 6= 1. If 3 ∈ J, then 1 = q3r3s = q−2r2. Hence

r ∈ G′5 due to p = 2. This implies q4r = 1 which was treated above. If 4 ∈ J,

then 1 = q6r4s = qr3. That is r ∈ G′5 ∪ G′15. In the first case r = q3, contradicting

c12 = −4. Otherwise, assume ζ ∈ G′15 such that r = ζ4, s = ζ−4, q = r−3 = ζ3.

Then B(V ) is a Nichols algebra of finite type 16.

If 3, 4 6∈ J, then mult(4α1 + 2α2) ≥ 1 and q2α1+α2 = q4r2s = q−1r. In case

q = r holds, B(V ) is of affine-Cartan type. This was treated before. Otherwise,

Corollary 6.16 implies GKdim (B(V )) =∞.

Next, assume p 6= 2. In the cases (a), (b) and (c) we have 0 ∈ J and consequently

1, 2 6∈ J.

Assume (a) holds. If 3 ∈ J, then 1 = q3r3s = −q−1r2. This implies 1 = q4r = r9,

that is r ∈ G′3 ∪ G′9. In the former case R2(V ) ∈ b(1, r−1,−1). Note that p ≥ 5

due to r ∈ G′3. Thus, u4 6= 0 and 19(r−1)3(−1) = −1. Hence GKdim (B(V )) =

GKdim (B(R2(V ))) = ∞ by Corollary 6.4. In the latter case B(V ) is a Nichols

algebra of finite type 10.

If 4 ∈ J, then 1 = −q6r4s = q−2r2 = q−10. We also conclude 1 = q4r = r5. Thus,

r ∈ G′5 and q ∈ G′5∪G′10. In the former case q2 = r2 implies q = r. This was treated

before. In the latter case assume ζ ∈ G′10 such that q = −ζ−2 and, consequently,

r = ζ−2. Then B(V ) is of finite type 14.

If 3, 4 6∈ J, then mult(4α1 + 2α2) ≥ 1 and q2α1+α2 = q4r2s = −r. Thus, r ∈
G4 \ {1}. If r = −1, then we are in affine Cartan-type. Hence assume r ∈ G′4.

Then q ∈ G′16. Here R2(V ) ∈ b(q5, q4,−1). We conclude that σ1σ2σ1σ2 induces an
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automorphism of 4V . We calculate

σ1σ2σ1σ2(2α1 + α2) = σ1σ2σ1(2α1 + α2)

= σ1σ2(2α1 + α2)

= σ1(2α1 + α2)

= 2α1 + α2

and

σ1σ2σ1σ2(α1) = σ1σ2σ1(α1 + α2)

= σ1σ2(3α1 + α2)

= σ1(3α1 + 2α2)

= 5α1 + 2α2

= α1 + 2(2α1 + α2) .

Hence by linearity of the σi we conclude k(4α1 + 2α2) + α1 ∈ 4V
+ for all k ∈ N0.

Consequently, GKdim (B(V )) =∞ by Corollary 6.2.

In case (b) if 3 ∈ J, then 1 = −q3r3 implies r3 = −q2 ∈ G′10. Thus, r ∈ G′10∪G′30.

If r ∈ G′10, then 1 = (q3r3s)7 = −qr. Then r = −q4 yielding q2r2 = 1. Thus, p = 3

by definition of 3 ∈ J. Then B(V ) is of finite type 16’. In the last case assume

ζ ∈ G′15 such that r = −ζ2 and, consequently, q = ζ3. Then B(V ) is of finite type

16.

If 4 ∈ J, then 1 = −q6r4s = qr4. Therefore, r ∈ G′5 ∪ G′10 ∪ G20. If r ∈ G10,

then q3r2 = r−12r2 = 1. Thus, 4 ∈ J implies p = 2 due to definition of J. This is a

contradiction to p 6= 2. In the remaining case q = r16. Assume ζ ∈ G′20 such that

r = ζ3. Then q = ζ−2. Here B(V ) is of finite type 15.

If 3, 4 6∈ J, then mult(4α1 + 2α2) ≥ 1 and q2α1+α2 = q4r2s = −q−1r2 ∈ G4 for

otherwise GKdim (B(V )) = ∞. Now R1(V ) ∈ b(q, q2r−1,−qr4). If −qr4 = −1

holds, then 1 = (−q−1r2)4 = qr8 implies q = 1, contradicting q ∈ G′5. Furthermore,

assume (q2r−1)(−qr4) = −q3r3 = 1. Thus, q3r3s = 1. Now, if additionally q2r2 = 1,

then r14 = 1 due to qr8 = 1 and r10 = 1 due to q ∈ G′5. This contradicts r 6∈ G2.

Thus, q2r2 6= 1 and, consequently, 3 ∈ J, a contradiction. Thus, c
B(R1(V ))
21 ≤ −2.

Thus, GKdim (B(V )) = GKdim (B(R1(V ))) =∞ by Lemma 7.4.

Assume (c) holds. If 3 ∈ J, then 1 = q3r3s = −r3. Thus, r ∈ G′2 ∪ G′6. In the

former case u3 6= 0 and q4r2s = −1. Hence GKdimB(V ) =∞ by Corollary 6.4. In
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the latter case assume ζ ∈ G′3 such that r = −ζ−1. Here B(V ) is of finite type 16”.

If 4 ∈ J, then 1 = −q6r4s = r4. If r = −1, then u3 6= 0 and q4r2s = −1 imply

GKdimB(V ) =∞ via Corollary 6.4. Thus, assume r ∈ G′4. We conclude that B(V )

is of finite type 15.

If 3, 4 6∈ J, then mult(4α1 + 2α2) ≥ 1 and q2α1+α2 = q4r2s = −r2. Like before we

can assume −r2 ∈ G4, that is r8 = 1. If r = −1, then u3 6= 0 and q4r2s = −1. Hence

GKdimB(V ) =∞ by Corollary 6.4. If r ∈ G′4, then q6r4s = −1 and q3r2 = −1 6= 1.

This contradicts 4 6∈ J. In the last case we have R1(V ) ∈ b(1, r−1,−1). We conclude

that σ1σ2σ1σ2 induces an automorphism of 4V . We calculate

σ1σ2σ1σ2(2α1 + α2) = σ1σ2σ1(2α1 + α2)

= σ1σ2(2α1 + α2)

= σ1(2α1 + α2)

= 2α1 + α2

and

σ1σ2σ1σ2(α1) = σ1σ2σ1(α1 + α2)

= σ1σ2(3α1 + α2)

= σ1(3α1 + 2α2)

= 5α1 + 2α2

= α1 + 2(2α1 + α2) .

Hence by linearity of the σi we conclude k(4α1 + 2α2) + α1 ∈ 4V
+ for all k ∈ N0.

Consequently, GKdim (B(V )) =∞ by Corollary 6.2.

Next, assume s 6= −1, rs = 1. Thus, {0, 1, 2, 3} ∩ J = {1}. Note that r 6= −1

due to s 6= −1.

In case (d) if 4 ∈ J, then 1 = −q6r4s = −qr3. Thus, r15 = −1, that is r ∈
G′6∪G′10∪G′30. In the first case the equation 1 = −qr3 = q holds, a contradiction to

q ∈ G′5. If r ∈ G′10, then 1 = (−qr3)3 = −q3r−1. Thus, r = −q3 and, consequently,

s = −q−3. Now, q4r2 = q10 = 1. Hence p = 3 by definition of J. Then B(V )

is of finite type 16’. In the last case assume ζ ∈ G′15 such that r = −ζ4. Then

1 = −qr3 = qζ12 implies q = ζ3. Here B(V ) is of finite type 16.

If 4 6∈ J, then mult(4α1 + 2α2) ≥ 1 and q2α1+α2 = q4r2s = q−1r. Like before

we can assume q−1r ∈ G4, that is 1 = q−4r4 = qr4. Then r ∈ G′5 ∪ G′10 ∪ G′20. In
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the first case q = r and, consequently, q4r = 1. Thus, B(V ) is of affine Cartan-

type. Otherwise, R1(V ) ∈ b(q, q2r−1, qr3). Note that qr3 = qr4r−1 = r−1 6= −1. If

q2 = r2, then q6r4s = −1 and q4r2 = q 6= 1 imply 4 ∈ J, a contradiction. Otherwise,

c
B(R1(V ))
21 ≤ −2. This was treated in Lemma 7.4.

Finally, in case (e) if 4 ∈ J, then 1 = −q6r4s = −r3. Assume ζ ∈ G′3 such that

r = −ζ. Here B(V ) is of finite type 16”.

If 4 6∈ J, then mult(4α1+2α2) ≥ 1 and q2α1+α2 = q4r2s = r. Thus, we can assume

r ∈ G′4. Then u4 6= 0 and q9r3s = −1. Then Corollary 6.4 implies GKdimB(V ) =

∞. �

The last two proofs rely on references to the above cases and the classification

of finite root systems.

Lemma 7.8 If c12 = −3 and c21 = −1, then GKdimB(V ) < ∞ if and only if

#4+ <∞.

Proof. We consider the following cases:

(a) q3r = rs = 1;

(b) q3r = 1, s = −1;

(c) q ∈ G′4, rs = 1;

(d) q ∈ G′4, s = −1.

First, note that case (a) is of finite type 11.

First, assume p = 2. The only case to consider is (b). Here R2(V ) ∈ b(q′, r′, s′)
where (q′, r′, s′) := (q−2, q3, 1). Now, 1 6∈ {r′, q′r′, q′2r′, q′3r′, q′, q′2, q′3, q′4} due to

c12 = −3 and p = 2. Thus, c
B(R2(V ))
12 ≤ −4. Thus, the claim follows using the above

lemmata.

Now we assume that p 6= 2. Assume (b) holds. Note that q 6= 1 due to r 6= 1.

Now, R2(V ) ∈ b(q′, r′, s′) with (q′, r′, s′) := (−q−2, q3,−1). Here 1 6∈ {r′, q′r′, q′2r′}.
If 1 = q′3r′ = −q3, then q ∈ G′6 since c12 = −3 and, consequently, q3r = −r =

rs = 1. This has already been discussed. Moreover, 1 ∈ {q′, q′2, q′3, q′4} implies

q ∈ G′4 ∪ G′8 ∪ G′12. In the first case q′ = 1. If p > 3, then c
B(R2(V ))
12 < −3. Those

cases were treated in above lemmata. If p = 3, then B(V ) is of finite type 9′. If

q ∈ G′8, then q′ = q2 and r′ = −q−1. Then B(R2(V )) and B(V ) are of finite type 12.

If q ∈ G12, assume ζ ∈ G′12 such that q = −ζ−1 and, consequently, r = q−3 = −ζ3.

Here B(V ) is of finite type 9.
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Assume (c) holds. Note that s 6= −1 since otherwise r = −1 and q2r = 1, a

contradiction to c12 = −3. Now, R1(V ) ∈ b(q′, r′, s′) with (q′, r′, s′) := (q,−s, qs−2).

Here r′ 6= 1. If 1 = r′s′ = −qs−1, then q3r = −qr = rs = 1. This is case (a).

Furthermore, if 1 = −s′ = q3s−2, then s ∈ G′8. Assume ζ ∈ G′8 such that s = ζ−1,

r = ζ and q = s−2 = ζ2. Here B(V ) is of finite type 12. Otherwise, c
B(R1(V ))
21 < −1

due to p 6= 2. Those cases have been discussed in Lemma 7.5.

Finally assume (d) holds. We can assume 1 6∈ {rs, q3r} for those cases were

discussed above. Moreover, qr 6= 1 due to c12 = −3. Hence r 6∈ G4. Then R2(V ) ∈
b(q′, r′, s′) where (q′, r′, s′) = (q−1r, r−1,−1). Here 1 6∈ {r′, q′r′, q′2r′, q′, q′2, q′4} due

to the assumptions on r. If 1 = q′3r′ = qr2, then r ∈ G′8 due to assumptions on

r. Assume ζ ∈ G′8 such that r = −ζ−1. Consequently, q = r6 = ζ2. Here B(V ) is

of finite type 12. If 1 = q′3 = qr3, then r ∈ G′12 due to assumptions on r. Assume

ζ ∈ G′12 such that r = ζ−1 and ,consequently, q = r−3 = ζ3. Here B(V ) is of

finite type 8. Otherwise, c
B(R2(V ))
12 < −3. Those cases have been discussed in above

lemmata. This completes the proof. �

Lemma 7.9 If c12 ≥ −2 and c21 = −1, then GKdimB(V ) < ∞ if and only if

#4+ <∞.

Proof. First, assume c12 = −2. We consider the following cases:

(a) q2r = rs = 1;

(b) q2r = 1, s = −1, r 6= −1;

(c) q ∈ G′3, rs = 1;

(d) q ∈ G′3, s = −1.

(e) q = 1, rs = 1, p = 3.

(f) q = 1, s = −1, p = 3.

Note that in case (a) B(V ) is of finite type 4 and in case (b) it is of finite type 5.

Assume p = 2 and (c) holds. If qs 6= 1, then B(V ) is of finite type 6. Otherwise,

r = s−1 = q and, consequently, q2r = 1. This was considered in (a).

Next, assume (d) holds. Note that r 6∈ G′3 = {q, q2} for otherwise qr = 1 or

this has been considered in case (b). Here R2(V ) ∈ b(q′, r′, s′) with (q′, r′, s′) =

(qr, r−1, 1). Then 1 6∈ {r′, q′r′, q′2r′, q′, q′2, q′3} due to the assumption on r. Thus,

c
B(R2(V ))
12 < −2. This has been discussed in above lemmata.
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Now, assume p 6= 2. Assume (c) holds. If qs 6= −1, then B(V ) is of finite type

6. Otherwise, s = −q−1 and r = −q. Here B(V ) is of finite type 6”.

Next, suppose case (d). Again, r 6∈ G2 ∪ G3 and R2(V ) ∈ b(q′, r′, s′) with

(q′, r′, s′) = (−qr, r−1,−1). Here 1 6∈ {r′, q′r′, q′2r′} due to the assumption on r. If

1 = q′ = −qr, then c
B(R2(V ))
12 < −2 due to p 6= 3. Hence this has been discussed in

above lemmata. If −1 = q′ = −qr, then r ∈ G′3 which has been excluded. Assume

1 = q′3 = (−qr)3 = −r3. By assumption on r this implies r ∈ G′6. If q = r2, then

−qr = 1 which we discussed above. Hence r = −q. Here B(V ) is of finite type 7.

Otherwise, c
B(R2(V ))
12 < −2. This has been treated in above lemmata.

In case (e), if s = −1, then B(V ) is of finite type 6”’. Otherwise it is of finite

type 6’.

Now, assume (f) holds. Again, r 6∈ G2. ThenR2(V ) ∈ b(q′, r′, s′) with (q′, r′, s′) =

(−r, r−1,−1). Here 1 6∈ {r′, q′r′, q′2r′, q′, q′2, q′3} due to the assumption on r and

p = 3. Thus, c
B(R2(V ))
12 < −2. This has been discussed in above lemmata.

Finally if c12 = c21 = −1, then B(V ) is of finite type 2 or 3.

This completes the proof. �

This completes the proof of Theorem 7.1.



A | Finite Root Systems

The following table was published in [11, 18] and lists preconditions for q, r, s and p
such that the corresponding root system is finite.

V ∈ b(q, r, s) parameters char(K)

1 (q, 1, s) q, s ∈ K×

2 (q, q−1, q) q ∈ K× \ {1}
3 (q, q−1,−1), (−1, r,−1) q, r ∈ K× \G2

4 (q, q−2, q2) q ∈ K× \G2

5 (q, q−2,−1), (−q−1, q2,−1) q ∈ K× \G4

6 (ζ, s−1, s), (ζ, ζ−1s−1, ζs)
ζ ∈ G′3, ζs 6= −1
s ∈ K× \G3

p 6= 3

6′ (1, s−1, s), (1, s−1, s) s ∈ K× \G2 p = 3

6′′ (ζ,−ζ,−ζ−1) ζ ∈ G′3 p 6= 2, 3

6′′′ (1,−1,−1) p = 3

7 (ζ,−ζ,−1), (ζ−1,−ζ−1,−1) ζ ∈ G3 p 6= 3

8
(−ζ2, ζ,−1), (−ζ2, ζ3,−ζ−2), (−1,−ζ−1,−ζ−2),
(−1,−ζ, ζ3), (−1, ζ−1, ζ3)

ζ ∈ G′12 p 6= 2, 3

9 (−ζ−1,−ζ3,−1), (−ζ2, ζ3,−1), (−ζ2, ζ,−ζ2) ζ ∈ G′12 p 6= 2, 3

9′ (ζ, ζ,−1), (1,−ζ,−1), (1, ζ, 1) ζ ∈ G′4 p = 3

10 (−ζ2, ζ,−1), (ζ3, ζ−1,−1), (ζ3, ζ−2,−ζ) ζ ∈ G′9 p 6= 3

11 (q, q−3, q3) q ∈ K× \ (G2 ∪G3)

12 (ζ,−ζ,−1), (ζ2,−ζ−1,−1), (ζ2, ζ, ζ−1) ζ ∈ G′8 p 6= 2

13
(ζ, ζ−5,−1), (−ζ−4, ζ5,−1),
(−ζ−4,−ζ−1, ζ6), (ζ−1, ζ, ζ6)

ζ ∈ G′24 p 6= 2, 3

13′
(−ζ, ζ−1,−1), (1, ζ,−1),
(1, ζ−1,−ζ2), (−ζ−1,−ζ,−ζ2)

ζ ∈ G′8 p = 3

14 (ζ, ζ2,−1), (−ζ−2, ζ−2,−1) ζ ∈ G′5 p 6= 5

15
(ζ, ζ−3,−1), (−ζ−2, ζ3,−1),
(−ζ−2,−ζ3,−1), (−ζ,−ζ−3,−1)

ζ ∈ G′20 p 6= 2, 5

15′ (ζ, ζ,−1), (1,−ζ,−1), (1, ζ,−1), (−ζ,−ζ,−1) ζ ∈ G′4 p = 5

16
(ζ5,−ζ−3,−ζ), (ζ5,−ζ−2,−1),
(ζ3,−ζ2,−1), (ζ3,−ζ4,−ζ−4)

ζ ∈ G′15 p 6= 3, 5

16′
(1,−ζ−1,−ζ2), (1,−ζ,−1),
(ζ,−ζ−1,−1), (ζ,−ζ3,−ζ−3)

ζ ∈ G′5 p = 3

16′′
(ζ−1,−1,−ζ), (ζ−1,−ζ,−1),
(1,−ζ−1,−1), (1,−ζ,−ζ−1)

ζ ∈ G′3 p = 5

17 (−ζ,−ζ−3,−1), (−ζ−2,−ζ3,−1) ζ ∈ G′7 p 6= 7

18
(ζ−1,−1,−ζ), (ζ−1,−ζ,−1), (1,−ζ−1,−1),
(1,−ζ,−1), (ζ,−ζ−1,−1), (ζ,−1,−ζ−1)

ζ ∈ G′3 p = 7
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B | Formulas for proving the exis-

tence of roots

In this section we want to collect some lengthy formulas which we use to prove

results on roots of degree mα1 + 3α2. To improve readability of the other parts

these were shifted to the appendix.

Lemma B.1 The following equations hold:

(i) ∂2([122]) = (2)s(1− rs)u1 .

(ii) ∂2(u2
1) = b1q21su2 + b1(2)qrsu1x1 .

(iii) ∂1∂2(u3
1) = (3)qrsb1u

2
1 .

(iv) ∂2
2(u3

1) = (2)sb
2
1q21 (q2

21s
2u3 + (1 + qrs+ q2rs)q21su2x1 + (3)qrsu1x

2
1) .

(v) ∂3
2(u3

1) = b3
1(3)!

sq
3
21x

3
1 .

(vi) If qr2s = −1, then ∂1∂2([11212]) = b1(1 + qrs)(3)qu2 .

(vii) ∂2
2([11212]) = b1b2q21(2)s(1− q2r2s)x3

1 .

Proof. (i)

∂2([122]) = ∂2(u1x2 − q12sx2u1)

= u1 + ((1− r)s · x1x2 − (1− r)q12s · x2x1) + q12q21s
2u1

= (1 + s− rs− rs2)u1

= (2)s(1− rs)u1 .
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(ii)

∂2(u2
1) = b1 (u1x1 + q21sx1u1)

= b1 (u1x1 + q21su2 + qrsu1x1)

= b1q21su2 + b1(2)qrsu1x1 .

(iii)

∂1∂2(u3
1) = b1∂1

(
u2

1x1 + q21su1x1u1 + q2
21s

2x1u
2
1

)
= (3)qrsb1u

2
1 .

(iv)

∂2
2(u3

1) = b1∂2

(
u2

1x1 + q21su1x1u1 + q2
21s

2x1u
2
1

)
= b2

1(2)s
(
q21u1x

2
1 + q2

21sx1u1x1 + q3
21s

2x2
1u1

)
= b2

1(2)s
(
q21u1x

2
1 + q2

21su2x1 + q21qrsu1x
2
1

+q3
21s

2x1u2 + q2
21qrs

2x1u1x1

)
= b2

1(2)s
(
q21u1x

2
1 + q2

21su2x1 + q21qrsu1x
2
1

+q3
21s

2u3 + q2
21q

2rs2u2x1 + q2
21qrs

2u2x1 + q21(qrs)2u1x
2
1

)
= b2

1(2)sq21

(
q2

21s
2u3 + (1 + qrs+ q2rs)q21su2x1 + (3)qrsu1x

2
1

)
.

(v)

∂3
2(u3

1) = b2
1(2)sq21∂2

(
q2

21s
2u3 + (1 + qrs+ q2rs)q21su2x1 + (3)qrsu1x

2
1

)
= b2

1(2)sq
3
21

(
s2b3 + (1 + qrs+ q2rs)sb2 + (3)qrsb1

)
x3

1

= b3
1(3)!

sq
3
21x

3
1 .

(vi)

∂1∂2([11212]) = ∂1∂2(u2u1 − q2rsq12u1u2)

= b1u2 + qrsb2(2)qx1u1 − b2(2)qq
2rsq12u1x1 − b1q

4r3s2u2

= b1u2 + b2(2)qqrsu2 + b2(2)qq
2rsq12u1x1

−b2(2)qq
2rsq12u1x1 − b1q

4r3s2u2

= b1(1 + qrs(1− qr)(1 + q)− q4r3s2)u2 = b1(1 + qrs)(3)qu2 .
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(vii)

∂2
2([11212]) = ∂2

2(u2u1 − q2rsq12u1u2)

= ∂2

(
b1u2x1 + b2q21sx

2
1u1 − b2q

2rsq12u1x
2
1 − q2r2s2q21b1x1u2

)
= b1b2q21(2)s(1− q2r2s)x3

1 . �

Lemma B.2 The following equations hold:

(i) ∂2
1∂2(u3

2) = b2(2)q(3)q4r2su
2
2 .

(ii) ∂3
2(u3

2) = b3
2(3)!

sq
6
21x

6
1 .

(iii) ∂2
1∂2([11212]) = 0 .

(iv) ∂2
1∂2([111212]) = 0 .

(v) ∂2
2([11212]) = b1b2(2)sq21(1− q2r2s)x3

1 .

(vi) ∂2
2([111212]) = b1b2(2)sq21(1− q2r2s)(1− q3r2)x4

1 .

Proof.

(i)

∂2
1∂2(u3

2) = b2∂
2
1(u2

2x
2
1 + q2

21su2x
2
1u2 + q4

21s
2x2

1u
2
2)

= b2(2)q(3)q4r2su
2
2 .

(ii)

∂3
2(u3

2) = b2∂
2
2(u2

2x
2
1 + q2

21su2x
2
1u2 + q4

21s
2x2

1u
2
2)

= b2
2(2)s∂2(q2

21u2x
4
1 + q4

21sx
2
1u2x

2
1 + q6

21s
2x4

1u2)

= b3
2(3)!

sq
6
21x

6
1 .

(iii)

∂2
1∂2([11212]) = ∂2

1∂2(u2u1 − q2rsq12u1u2)

= q2rsq12(∂2
1∂2(u2)u1 − u1∂

2
1∂2(u2)))

= 0 .

(iv) Follows from (iii) due to [111212] = [x1, [11212]]c .
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(v)

∂2
2([11212]) = ∂2(b1u2x1 + b2q21sx

2
1u1 − b2q

2rsq12u1x
2
1 − b1q

2r2s2q21x1u2)

= b1b2(2)sq21(1− q2r2s)x3
1 .

(vi)

∂2
2([111212]) = ∂2

2(x1[11212]− q3q2
12[11212]x1)

= x1∂
2
2([11212])− q3r2∂2

2([11212])x1

= b1b2(2)sq21(1− q2r2s)(1− q3r2)x4
1 . �

Note that qr2s+ 1 = 0 implies that [1122] is not a root by Theorem 5.14. Hence

there exists ν ∈ K such that [1122] = νu2
1 by Remark 5.16.

Lemma B.3 Assume u3 6= 0, [122] 6= 0 and qr2s+ 1 = 0 .

(i) ∃µ ∈ K such that ∂2([12122]) = µu2
1 .

(ii) ∃µ ∈ K such that ∂1∂2([112122]) = µq2q2
12b1u

2
1 .

(iii) ∃µ ∈ K such that

∂2
2([112122]) = µb1

(
q21su3 + (1 + qrs+ q2rs− q2r3s)u2x1

+(2)qrsqq12(1− qr2)u1x
2
1

)
.

(iv) ∃µ ∈ K such that

∂3
2([112122]) = q21µb1

(
b3s+ b2(1 + qrs+ q2rs− q2r3s)

+b1(2)qrsqr(1− qr2)
)
x3

1 .
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Proof. (i)

∂2([12122]) = ∂2(u1[122]− qrs2q12[122]u1)

= (2)s(1− rs)u2
1 + q21s

2b1x1[122]

−qrs2q12b1[122]x1 − qr2s3(2)s(1− rs)u2
1

= (2)s(1− rs)(1− qr2s3)u2
1 + q21s

2b1(x1[122]− qq2
12[122]x1)

= (2)s(1− rs)(1− qr2s3)u2
1 + q21s

2b1[1122]

=
(
(2)s(1− rs)(1− qr2s3) + q21s

2b1ν
)︸ ︷︷ ︸

=:µ

u2
1 .

Note that µ 6= 0 since otherwise [12122] = 0. But [12122] is a root due to

Theorem 5.14 if [1222] 6= 0 and otherwise due to Lemma 5.10 and

s2(2α1 + α2) = 2α1 + 3α2 .

(ii)

∂1∂2([112122])

= ∂1∂2(x1[12122]− q2q3
12[12122]x1)

= ∂1

(
x1∂2([12122])− q2q3

12q21∂2([12122])x1

)
= µ∂1(x1u

2
1 − q2q3

12q21u
2
1x1)

= µb1q
2q2

12u
2
1 .

(iii)

∂2
2([112122])

= x1∂
2
2([12122])− q2q3

12q
2
21∂

2
2([12122])x1

= µ
(
x1∂2(u2

1)− q2q3
12q

2
21∂2(u2

1)x1

)
= µb1

(
q21sx1u2 + (2)qrsx1u1x1 − q2r3su2x1 − q2q3

12q
2
21(2)qrsu1x

2
1

)
= µb1

(
q21su3 + q2rsu2x1 + (2)qrsu2x1 + qq12(2)qrsu1x

2
1

−q2r3su2x1 − q2q3
12q

2
21(2)qrsu1x

2
1

)
= µb1q21su3 + µb1(1 + qrs+ q2rs− q2r3s)u2x1

+µb1(1 + qrs)qq12(1− qr2)u1x
2
1 .
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(iv)

∂3
2([112122])

= µb1∂2

(
q21su3 + (1 + qrs+ q2rs− q2r3s)u2x1+

(1 + qrs)qq12(1− qr2)u1x
2
1

)
= q21µb1

(
b3s+ b2(1 + qrs+ q2rs− q2r3s)

+b1(2)qrsqr(1− qr2)
)
x3

1 . �

Now, we apply the comultiplication to the superletters considered in Lemma 5.19,

Lemma 5.22 and Lemma 5.23. Then using Lemma 6.12 those superletters can be

transformed to homogeneous vectors primitive in K>d/K≥d with r = 1 or r = 2

under given preconditions.

Let u′2 := [122] and recall the Shirshov-decomposition of 122 is (12, 2). From

(5.1) we deduce

∆(u1) = u1 ⊗ 1 + b1x1 ⊗ x2 + 1⊗ u1 ,

∆(u2) = u2 ⊗ 1 + b2x
2
1 ⊗ x2 + (2)q(1− qr)x1 ⊗ u1 + 1⊗ u2 ,

∆(u3) = u3 ⊗ 1 + b3x
3
1 ⊗ x2 +

b3

b1

(3)qx
2
1 ⊗ u1 + (1− q2r)(3)qx1 ⊗ u2 + 1⊗ u3 ,

and, consequently,

∆(u′2) = ∆(u1)∆(x2)− q12s∆(x2)∆(u1)

= u1 ⊗ x2 + u1x2 ⊗ 1 + b1x1 ⊗ x2
2

+b1sx1x2 ⊗ x2 + 1⊗ u1x2 + q12sx2 ⊗ u2

−q12s
(
q21su1 ⊗ x2 + b1q21x1 ⊗ x2

2 + 1⊗ x2u1

+x2u1 ⊗ 1 + b1x2x1 ⊗ x2 + x2 ⊗ u1)

= [122]⊗ 1 + 1⊗ [122] + (1− rs2)u1 ⊗ x2 + (1− rs)(2)su1 ⊗ x2 .

Lemma B.4 Assume u3 6= 0, [122] 6= 0, (3)qrs
! 6= 0 and qr2s + 1 = 0. Then

[u2, u
′
2]c 6= 0 and there are λ, λ′ ∈ K such that

∆([u2, u
′
2]c) ∈ [u2, u

′
2]c ⊗ 1 + 1⊗ [u2, u

′
2]c

+λu2
1 ⊗ u1 + λ′u1 ⊗ u2

1

+K≥1/K>1.
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Proof. First, by Lemma 5.19 [112122] is a root vector. Then [u2, u
′
2]c 6= 0 by Re-

mark 4.29. Furthermore,

∆([u2, u
′
2]c) = ∆(u2)∆(u′2)− q2q4

12q21s
2 ∆(u′2)∆(u2)

= u2u
′
2 ⊗ 1 + 1⊗ u2u

′
2 + (2)q(1− qr)qrs2q12 x1u

′
2 ⊗ u1

+(2)s(1− rs)q2rsq12 u1 ⊗ u2x2

−q2rs2q3
12 (u′2u2 ⊗ 1 + 1⊗ u′2u2

+(2)q(1− qr) u′2x1 ⊗ u1 + (2)s(1− rs) u1 ⊗ x2u2)

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> 1

= [u2, u
′
2]c ⊗ 1 + 1⊗ [u2, u

′
2]c

+(2)q(1− qr)qrs2q12 [x1, u
′
2]c ⊗ u1

+(2)s(1− rs)q2rsq12 u1 ⊗ [u2, x2]c

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> 1 .

Now, [1122] is not a root vector by Theorem 5.14 since qr2s = −1. Thus,

[x1, u
′
2]c = [1122] = µu2

1, [u2, x2]c
Remark 4.29

= [x1, u
′
2]c + µ′u2

1 = (µ+ µ′)u2
1

for some µ, µ′ ∈ K. Thus, there are λ, λ′ ∈ K such that

∆([u2, u
′
2]c) = [u2, u

′
2]c ⊗ 1 + 1⊗ [u2, u

′
2]c

+λu2
1 ⊗ u1 + λ′u1 ⊗ u2

1

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> 1 . �

Finally, we want to develop formulas for the comultiplication of [111212112] and

[111211212] for certain braidings. These cases could not be treated for general p by

the other tools we have seen so far. We will do this step by step on the corresponding

Shirshov-decompositions.

First, the Shirshov-decomposition of 11212 is (112, 12). Hence [11212] = [u2, u1]c.

∆([11212]) = ∆(u2)∆(u1)− q2rsq12∆(u1)∆(u2)

= u2u1 ⊗ 1 + b1 u2x1 ⊗ x2

+u2 ⊗ u1 + b2q21s x
2
1u1 ⊗ x2
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+b1b2q21 x
3
1 ⊗ x2

2 + b2 x
2
1 ⊗ x2u1

+(2)q(1− qr)qrs x1u1 ⊗ u1 + b2(2)qqq21 x
2
1 ⊗ u1x2

+(2)q(1− qr) x1 ⊗ u2
1 + q2rsq12 u1 ⊗ u2

+b1q
2q21 x1 ⊗ u2x2 + 1⊗ u2u1

−q2rsq12 u1u2 ⊗ 1− b2q
2rsq12 u1x

2
1 ⊗ x2

−(2)q(1− qr)q2rsq12 u1x1 ⊗ u1 − q2rsq12 u1 ⊗ u2

−b1q
2r2s2q21 x1u2 ⊗ x2 − b1b2q

2r2sq21 x
3
1 ⊗ x2

2

−b2(2)qq
2r2s x2

1 ⊗ x2u1 − b1q
2rsq12 x1 ⊗ x2u2

−q4r3s2 u2 ⊗ u1 − b2q
4r2sq21 x

2
1 ⊗ u1x2

−(2)q(1− qr)q3r2s x1 ⊗ u2
1 − q2rsq12 1⊗ u1u2

= [11212]⊗ 1 + 1⊗ [11212] + b1b2q21(1− q2r2s) x3
1 ⊗ x2

2

+b1

(
u2x1 + (1− qr)q21s x

2
1u1

−(1− qr)q2rsq12 u1x
2
1 − q2r2s2q21 x1u2

)
⊗ x2

+ (u2 + (2)q(1− qr)qrs x1u1

−(1− qr)(2)qq
2rsq12 u1x1 − q4r3s2 u2

)
⊗ u1

+b2 x
2
1 ⊗

(
x2u1 + (2)qqq21 u1x2 − (2)qq

2r2s x2u1 − q4r2sq21 u1x2

)
+x1 ⊗

(
(2)q(1− qr) u2

1 + b1q
2q21 u2x2

−b1q
2rsq12 x2u2 − (2)q(1− qr) q3r2su2

1

)
.

Now, the Shirshov-decomposition of 111212 is (1, 11212). Hence [111212] =

[x1, [11212]]c. Using the above we conclude

∆([111212]) = ∆(x1)∆([11212])− q3q2
12 ∆([11212])∆(x1)

= x1[11212]⊗ 1 + 1⊗ x1[11212]

−q3q2
12 [11212]x1 ⊗ 1− q3q2

12 1⊗ x1[11212]

+q2q12 (u2 + (2)q(1− qr)qrs x1u1

−(1− qr)(2)qq
2rsq12 u1x1 − q4r3s2 u2

)
⊗ x1u1

−q3q2
12 (u2 + (2)q(1− qr)qrs x1u1

−(1− qr)(2)qq
2rsq12 u1x1 − q4r3s2 u2

)
⊗ u1x1

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> 2

= [111212]⊗ 1 + 1⊗ [111212]
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+q2q12

(
1 + (2)q(1− qr)qrs− q4r3s2

)
u2 ⊗ u2

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> 2.

Lemma B.5 Assume q = s ∈ G′12, r = q8. Then there are λ, λ′ ∈ K such that

∆([111212112]) ∈ [111212112]⊗ 1 + 1⊗ [111212112]

+λ u2
2 ⊗ u2 + λ′ u2 ⊗ u2

2

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> 2 .

Proof.

∆([111212112]) = ∆([111212])∆(u2)− q8r4s2 ∆(u2)∆([111212])

= [111212112]⊗ 1 + 1⊗ [111212112] + λ u2
2 ⊗ u2

+λ′ u2 ⊗ u2
2 + (1− (q8r4s2)2) [111212]⊗ u2

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> 2

= [111212112]⊗ 1 + 1⊗ [111212112] + λ u2
2 ⊗ u2 + λ′ u2 ⊗ u2

2

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> 2

for some λ, λ′ ∈ K due to q8r4s2 = q6 = −1 . �

Lemma B.6 Assume q ∈ G′18, r = q13, s = q5 or q ∈ G′9, r = q4, s = q5, p = 2.

Then [u3, [11212]]c 6= 0 and there are λ, λ′ ∈ K such that

∆([u3, [11212]]c) = [u3, [11212]]c ⊗ 1 + 1⊗ [u3, [11212]]c + λ u2
2 ⊗ u2 + λ′ u2 ⊗ u2

2

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> 2 .

Proof. First, by Lemma 5.23 [111211212] is a root vector. Then [u3, [11212]]c 6= 0

by Remark 4.29. Note that

1 + (2)q(1− qr)qrs− q4r3s2 = (3)q(1 + qrs)

due to qr2s = −1 under given assumptions on q, r, s. Hence

∆([u3, [11212]]c) = ∆(u3)∆([11212])− q9r3s2q3
12 ∆([11212])∆(u3)

=
(
u3[11212]− q9r3s2q3

12 [11212]u3

)
⊗ 1

+1⊗
(
u3[11212]− q9r3s2q3

12 [11212]u3

)
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+(1− q2r)(3)q
(
q6r3s2q12 x1[11212]− q9r3s2q3

12 [11212]x1

)
⊗ u2

+(3)q(1− q2r) u2 ⊗
(
q6r2sq12 u3u1 − q9r3s2q3

12 u1u3

)
+ terms x⊗ y with deg(x) = a1α1 + a2α2,

a1

a2

> 2

= [u3, [11212]]c ⊗ 1 + 1⊗ [u3, [11212]]c

+(1− q2r)(3)qq
6r3s2q12 [111212]⊗ u2

+(1− q2r)(3)qq
6r2sq12 u2 ⊗ [u3, u1]c

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> 2

= [u3, [11212]]c ⊗ 1 + 1⊗ [u3, [11212]]c + λ u2
2 ⊗ u2 + λ′ u2 ⊗ u2

2

+ terms x⊗ y with deg(x) = a1α1 + a2α2,
a1

a2

> 2

for some λ, λ′ ∈ K due to Remark 4.29 since [111212] is not a root due to 1, 4 ∈ J.�



C | Zusammenfassung

Das Interesse an Nichols-Algebren ging vornehmlich aus der Theorie der punk-

tierten Hopf-Algebren hervor. Umgekehrt ist die Klassifikation von Nichols-Algebren

mit endlicher Dimension bzw. endlicher Gelfand-Kirillov-Dimension ein wichtiger

Schritt für die Klassifizierung punktierter Hopf-Algebren von endlicher Dimension

bzw. endlicher Gelfand-Kirillov Dimension unter gewissen Bedingungen [2].

Nichols-Algebren wurden zunächst als Bialgebren von Typ eins betrachtet [27].

Später wurden sie von verschiedenen Autoren charakterisiert [25, 26, 29, 30, 32, 33].

Als besonders zugänglich haben sich Nichols-Algebren von diagonalem Typ erwiesen,

die als positiver Anteil von Quantengruppen auftreten [29]. Endlich-dimensionale

Nichols-Algebren von diagonalem Typ sind in einer Reihe von Veröffentlichungen

klassifiziert worden [12, 11, 14, 17, 18]. Wichtige Merkmale einer Nichols-Algebra

B(V ) von diagonalem Typ sind dabei ihr Wurzelsystem 4 und die zugehörige Basis

von Produkten von Wurzelvektoren sowie der assoziierte Weyl-Gruppoid. In diesem

Kontext wurden folgende Implikationen beobachtet:

dimB(V ) <∞ (1)⇒ #4 <∞ (2)⇒ GKdim (B(V )) <∞ .

Dabei ist bekannt, dass unter gewissen Bedingungen auch die Umkehrung von (1)

zutrifft. Es wird vermutet, dass die Umkehrung von (2) im Allgemeinen auch gilt

[4]. Diese Vermutung hat in den vergangenen Jahren zunehmend Aufmerksamkeit

erhalten. Insbesondere wurde gezeigt, dass sie für Rang zwei Nichols-Algebren von

diagonalem Typ über einem Körper der Charakteristik null [5] sowie darauf auf-

bauend für Nichols-Algebren über abelschen Gruppen zutrifft [4].

Ziel dieser Arbeit ist es, zu beweisen, dass diese Aussage für Rang zwei Nichols-

Algebren von diagonalem Typ über einem beliebigen Körper gilt. Dabei ist zu

beachten, dass es über beliebigen Körpern zusätzliche Beispiele von Nichols-Algebren

mit endlichem Wurzelsystem gibt. Insbesondere existieren Beispiele mit einfachen

Wurzeln α mit χ(α, α) = 1, wobei χ den zugehörigen Bicharakter bezeichnet.
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Solche Wurzeln implizieren unendliche Gelfand-Kirillov Dimension über Körpern

von Charakteristik null [5]. Daher werden neue Hilfsmittel benötigt, um die Aus-

sage für beliebige Körper zu zeigen. Das Resultat für Charakterstik null wird dabei

neu bewiesen.

In Kapitel 2 zeigen wir, dass die Vektorraum-Basis aus geordneten Produkten

von Monomen einer Algebra sich unter technischen Voraussetzungen umordnen lässt.

Die Vektorraum-Basis einer Nichols-Algebra aus Produkten von Wurzelvektoren ist

ein Beispiel, auf das sich dieses Resultat anwenden lässt.

Anschließend wird in Kapitel 3 die Gelfand-Kirillov-Dimension eingeführt und

einige Aussagen zu algebraischen Konstruktionen werden gezeigt. Insbesondere be-

weisen wir eine Abschätzung der Gelfand-Kirillov Dimension einer Algebra gegen

die von gewissen Sub-Quotienten.

Danach führen wir in Kapitel 4 in die Theorie der Nichols-Algebren ein. Dabei

beschränken wir uns im Wesentlichen auf solche von diagonalem Typ. Bekannte

Merkmale wie die PBW-basis und das Wurzelsystem werden diskutiert sowie der

Weyl-Gruppoid skizziert. Für eine ausführlichere Einführung verweisen wir auf [2].

Um zu zeigen, dass eine Nichols-Algebra unendliche Gelfand-Kirillov-Dimension

besitzt, benötigen wir einige Informationen über das Wurzelsystem. Dazu werden in

Kapitel 5 die Ergebnisse aus [19, 34] zusammengefasst und um zusätzliche Resultate

ergänzt. Insbesondere zeigen wir eine Methode, um die Existenz von unendlich vielen

Wurzeln nachzuweisen.

Mit diesem Wissen werden in Kapitel 6 Bedingungen gesammelt, um Nichols-

Algebren mit unendlicher Gelfand-Kirillov-Dimension zu identifizieren. Dabei folgen

unsere Ansätze vor allem zwei Motivationen:

. Die Existenz von Wurzeln der Gestalt kα+β für alle k ∈ N zeigen, wobei α, β ∈ Z2.

. Eine unendliche Kette von ”enthaltenen” Nichols-Algebren mit strikt fallenden

Gelfand-Kirillov-Dimension konstruieren.

Als Beispiel für den ersten Zugang wiederholen wir das Ergebnis zu Nichols-Algebren

von affinem Cartan-Typ [5]. Der zweite Zugang wird genutzt, um unter stärkeren

Bedingungen eine analoge Aussage zu beweisen, die für die Klassifizierung in Charak-

teristik null genutzt wurde.

Schließlich widmet sich Kapitel 7 dem schrittweisen Beweis des Hauptresultats:

Theorem 7.1 Sei K ein beliebiger Körper und B(V ) eine Rang zwei Nichols-Algebra

von diagonalem Typ über K. Falls B(V ) unendliche Gelfand-Kirillov-Dimension be-

sitzt, so ist das zugehörige Wurzelsystem unendlich.
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