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LIST OF ACRONYMS 
 

DMN  default mode network 

ERS  environmental risk score 

GMV  grey matter volume 

GWAS genome-wide associations study 

GxE  gene by environment 

ITG  inferior temporal gyrus 

IQ  intelligence quotient 

PC  precuneus 

PCC  posterior cingulate cortex 

PLEs  psychotic-like experiences 

PRS  polygenic risk score 

SBM  surface-based morphometry 

SCL90-R symptom checklist 90 – revised 

SNP  single nucleotide polymorphism 

SNS  schizophrenia nuclear signs 

SPQ  schizotypal personality questionnaire 

SPQ-B schizotypal personality questionnaire - brief 

STS  schizotypal signs 

VBM  voxel-based morphometry 
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1. INTRODUCTION 
 

The development of pathological functions in a system is quite consistent 

with its usual performance of normal function. 

W.B. Cannon, 1953  

 

1.1. Schizotypy as a dimensional risk phenotype: a rationale 

Schizotypy describes a complex multimodal phenotype in humans, comprising 

of trait characteristics resembling key features of psychotic disorders across 

emotional, behavioural and cognitive dimensions. Those are generally grouped 

into the three facets positive (magical thinking, unusual experiences, beliefs and 

perceptions), negative (introversion, anhedonia, diminished positive affect and 

reward) and disorganised/cognitive (eccentricity, cognitive disorganisation).  

The term schizotypy was originally coined by Rado (1953), abbreviating 

“schizophrenic phenotype”, to describe subclinical levels of schizophrenic 

symptoms preceding the disorder, but also stable conditions, not leading into 

clinical states. Schizotypy is distributed in the general population and thought to 

represent both an underlying liability to the schizophrenia spectrum (particularly 

negative and disorganised facets) or “psychosis proneness” (positive facet), and 

variation of healthy function (Claridge 1997; Kwapil & Barrantes-Vidal 2015). 

This view is explicated by the continuum model of the psychosis spectrum, 

assuming a normal distribution of schizotypy, with spectrum disorders at the 

extreme end (Claridge 1997). Thus, it can also account for schizotypy being 

associated with beneficial characteristics like enhanced creativity, visual 

imagery, and personality correlates (Mohr & Claridge 2015; Baas et al. 2016).  

Determining the position on an underlying dimension of adaptive to maladaptive 

manifestations, protective conditions/resilience mechanisms are thought to play 

an important role, as shown for e.g. intelligence (Brod 1997; Grant et al. 2014a).  

There are different approaches to characterising risk phenotypes in the 

subclinical psychosis spectrum. Schizotypy as a stable personality construct 

can be distinguished from the (usually) transient expression of psychotic 

experiences in the absence of the clinical disorder (“psychotic-like experiences”, 

PLEs, van Os et al. 2009) and the set of clinical features and risk factors 
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constituting clinical high risk (CHR) status (Schultze-Lutter et al. 2015). PLEs, 

e.g. hallucinations or delusions, are conceptually closest to the positive facet, 

and also discussed as expression of positive schizotypy (Barrantes-Vidal et al. 

2015). CHR status includes attenuated and psychotic symptoms and indications 

of cognitive deficits, associated with positive and negative facets of schizotypy 

(Gooding et al. 2005; Flückiger et al. 2019). The concepts show phenotypic 

overlap and are not orthogonal, as has been shown for schizotypy and PLEs 

(Debbané et al. 2015), and schizotypy and high risk (Flückiger et al. 2019). 

Partially shared genetic and neurobiological correlates among the constructs 

(Linscott & van Os 2013; Ettinger et al. 2014) further support the idea of a 

dimensional psychosis continuum.  

Continuous, complex phenotypes generally constitute a valuable framework for 

the study of fundamental neurobiological mechanisms of both psychiatric 

disorders and interindividual differences. Allowing the analysis of aetiological 

mechanisms in the absence of confounding factors (e.g. illness progression, 

medication effects), they surpass animal models in illustrating complex, 

psychological constructs. Facilitating the deconstruction of psychiatric entities 

(Gottesman & Gould 2003), they also enable the consideration of resilience 

factors, preventing conversion into clinical spectra. Within the subclinical 

psychosis spectrum, schizotypy is best suited as model-phenotype due to its 

relative temporal stability (opposed to PLEs), and its differentiation into 

continuous domains (opposed to risk/no risk state). 

Similarly, current constructs of psychopathology describe psychiatric 

phenomena as dimensional continua, from healthy variation to clinical relevance 

(Cuthbert 2014; Kotov et al. 2017). Schizotypy thus not only plays a significant 

role in the study of genetic and neurobiological mechanisms of the 

schizophrenia spectrum (Barrantes-Vidal et al. 2015), but also provides a 

general framework for a dimensional and translational approach to psychiatric 

research, and the study of pathways from health to dysfunction. 

 

1.2. Genetic and neuronal networks of schizotypy 

The genetic and neuronal architectures of schizotypy have also increasingly 

been viewed in the context of continuum models. A shared genetic basis of 



4 

schizotypy and the schizophrenia spectrum has long been speculated. Meehl 

first proposed the existence of a single dominant schizogene leading to 

schizotaxia, a dysfunctional neuronal integration. This gene would, dependent 

on environmental factors and social learning history, be the prerequisite for 

schizotypy and, in its extreme form, schizophrenia-spectrum disorders (Meehl 

1962). Opposing Meehl’s single gene proposal, recent molecular genetic 

studies have identified a large number of relevant genetic loci in genome-wide 

association studies (GWAS), suggesting a polygenic architecture of 

schizophrenia. Those include both commonly occurring single nucleotid 

polymorphisms (SNPs) identified with small effects (Pardiñas et al. 2018) and 

rare genetic variations (e.g. copy number variants, CNVs) with larger impact 

(Mowry & Gratten 2013; Marshall et al. 2017). 

A polygenic architecture suggests a dimensional rather than a taxonic view of 

the psychosis spectrum, yet the inherent idea of a (partially) shared genetic 

architecture is still supported by current literature. Several SNPs (i.e. variations 

in a single base-pair at a specific genomic position) that are established risk 

variants for schizophrenia (e.g. in genes CACNA1C, COMT, DRD2, ZNF804A), 

are also associated with schizotypy (Walter et al. 2016), and SNP-based 

heritability for schizotypal trait dimensions has been reported between 16-30% 

(Ortega-Alonso et al. 2017). Evidence for relatively independent, underlying 

latent genetic factors highlights the importance of dimension-specific modelling 

(Linney et al. 2003; Tarbox et al. 2012). 

In addition, familial risk for schizophrenia spectrum disorders, i.e. affected close 

relatives, is associated with elevated levels of schizotypy (Miller et al. 2002; 

Soler et al. 2017). However, familial risk does not equal genetic risk per se, but 

includes shared environmental factors and interactional processes. Evidence 

indicates that about 20% of familial risk for schizophrenia is mediated through 

(i.e. explained by) polygenic risk (Agerbo et al. 2015). Polygenic risk scores 

(PRS) quantify genetic risk based on a set of multiple genetic markers by 

calculating (on individual level) a sum of allele dosages associated with the trait 

in question, weighted by GWAS-based effect sizes (Dudbridge 2013). Evidence 

for associations of schizotypy dimensions with schizophrenia PRS is, however, 

inconsistent, with null findings as well as effects in opposing directions 



5 

(Sieradzka et al. 2014; Zammit et al. 2014; Hatzimanolis et al. 2018; van Os et 

al. 2019).  

Heterogeneous findings indicate that a certain genetic risk is not linearly 

translated into phenotypic variation, highlighting the urge to consider modulating 

factors (Ronald & Pain 2018). This has been sporadically (but successfully) 

done for both single SNP- (de Castro-Catala et al. 2017) and (cumulative) PRS-

based (Hatzimanolis et al. 2018) genetic risk, but pathways of how genotypes 

and genetic patterns impact schizotypal variance are largely unclear.  

In Meehl’s tradition – and reiterated, albeit refined, in later models (Siever & 

Davis 2004; Howes & Murray 2014) –, it might be speculated that genetic 

effects are mediated through aberrant neuronal development and should thus 

be detectable in brain morphometry (Jones & Murray 1991). Indeed, many 

genetic variants carrying schizophrenia risk are involved in brain development 

(Toulopoulou et al. 2015), and a neurodevelopmental approach is supported by 

data from animal models (Kanyuch & Anderson 2017). In line with this, there is 

increasing evidence for brain structural correlates of schizotypy, in regions 

overlapping with those impaired across the schizophrenia spectrum (Nelson et 

al. 2013; Ettinger et al. 2014; Modenato & Draganski 2015).  

While studies indicate some heterogeneity concerning the direction of 

associations, they allow to assume the implication of prefrontal (Ettinger et al. 

2012; Kühn et al. 2012; DeRosse et al. 2015; Nenadić et al. 2015; Wang et al. 

2015; Wiebels et al. 2016; Modinos et al. 2018), precuneus and anterior and 

posterior cingulate cortex (Modinos et al. 2010, 2018; Nenadić et al. 2015; Tijms 

et al. 2015; Wiebels et al. 2016), superior and medial temporal (DeRosse et al. 

2015; Evans et al. 2016; Wiebels et al. 2016; Modinos et al. 2018) grey matter 

volume (GMV) changes in schizotypy.  

Only few studies have not only looked at volumetric changes of grey matter in 

terms of voxel-based morphometry (VBM), but also considered variation in 

surface-based morphometry (SBM), e.g. patterns of cortical surface folding 

(Stanfield et al. 2008). Those are, however, discussed as important indicators of 

early developmental disruptions (Spalthoff et al. 2018), as cortical folding 

happens very early during brain development (Chi et al. 1977). Alterations of 

those markers in schizophrenia spectrum disorders and high risk individuals 



6 

further indicate relevance for the psychosis spectrum (Nenadic et al. 2014; 

Zuliani et al. 2018).  

This dissertation will focus on grey matter structure, but it should be mentioned 

that there is also evidence for white matter changes associated with schizotypy, 

particularly in fronto-temporal connectivity (Volpe et al. 2008; Nelson et al. 

2011; DeRosse et al. 2015; Schmidt et al. 2015; Grazioplene et al. 2016; 

Lemaitre et al. 2018), mirroring findings in clinical domains (Lener et al. 2015). 

Taken together, the above presented studies indicate that pathological changes 

in neurobiological networks of schizophrenia lie on a continuum with functional, 

healthy variation. However, as not all studies have distinguished schizotypal 

facets, it is unclear whether those findings represent a general vulnerability for 

schizophrenia spectrum disorders, or define specific functions. It is further 

unclear at which point exactly on the pathway from genotype to phenotype 

morphometric variations (and other endophenotypes, e.g. cognition) are 

situated.  

A current model of schizophrenia aetiology integrates neurodevelopmental 

disruptions facilitated by genetic variants, environmental challenges and 

adversities with resulting sensitised and subsequently dysfunctional 

neurotransmission and cognitive biases, leading to the formation and 

progression of psychotic symptoms (Howes & Murray 2014). This approach can 

also be applied to other entities of the psychosis spectrum, including schizotypy. 

Statistical models, incorporating the proposed interacting and mediating 

pathways are, however, scarce. Hence, a key challenge is to develop and test 

multimodal models linking genetic factors, neuronal networks and a complex 

human phenotype. 
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1.3. Aims and hypotheses 

The work in this dissertation aimed to identify neurobiological determinants of 

schizotypal traits in healthy individuals, for their subsequent use as dimensional 

phenotypes in biological psychiatry research.  

The subsequent objective was to develop a statistically testable model linking 

genetic and environmental risk markers with brain structural variation to explain 

phenotypic variation in schizotypy, suited to extrapolate to other continua.  

 

More specifically, the following hypotheses were tested: 

H1: Psychometrically-assessed schizotypy is associated with genetic risk 

markers of schizophrenia (single nucleotide polymorphisms, polygenic risk) with 

cognition as a putative intermediate phenotype in this association. 

H2: Schizotypy dimensions show associations with variation in volume- and 

surface-based brain structural parameters, specifically in the precuneus and the 

fronto-striatal network (lateral and medial prefrontal cortices, striatum, and 

thalamus).  

H3: A multivariate moderation/mediation model accounts for the interaction of 

polygenic risk, environmental risk, and brain structure with dimensions of 

schizotypy.
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2. AGGREGATION OF STUDY RESULTS 

2.1. STUDY I: Schizotypy shows sex-dependent associations with risk 

genes ZNF804A and CACNA1C and altered attention 

Reference: Meller T., Schmitt S., Stein F., Brosch K., Mosebach J., Yüksel D., Zaremba D., 

Grotegerd D., Dohm K., Meinert S., Förster K., Redlich R., Opel N., Repple J., Hahn T., Jansen 

A., Andlauer T.F.M., Forstner A.J., Heilmann-Heimbach S., Streit F., Witt S.H., Rietschel M., 

Müller-Myhsok B., Nöthen M.M., Dannlowski U., Krug A., Kircher T., & Nenadić I. (2019). 

Associations of schizophrenia risk genes ZNF804A and CACNA1C with schizotypy and 

modulation of attention in healthy subjects. Schizophrenia Research 208, 67–75. (IF: 4.6) 

While schizotypy shares several risk alleles with schizophrenia, pathways and 

interactions with additional factors are poorly understood. Recent genetic 

modelling studies in clinical psychosis conclude cognitive deficits and 

schizophrenia symptoms to share a substantial part of genetic variance 

(Toulopoulou et al. 2007, 2015). This might also be the case for schizotypy, 

which is associated with relatively decreased cognitive functions (Siddi et al. 

2017), especially (sustained and selective) attention (Gooding et al. 2006; 

Fuggetta et al. 2015; Moreno-Samaniego et al. 2017), and linked to attention 

deficit hyperactivity disorder (Ettinger et al. 2006; Legge et al. 2019). Cognitive 

functions, e.g. attention, may represent an intermediate endophenotype of 

schizophrenia (risk) genotype and (risk) phenotype (Toulopoulou et al. 2015, 

2018). Yet, it is unclear how genetic influences, schizotypy, and cognition in 

healthy subjects can be integrated into a joint model. (A dimension of) 

schizotypy may constitute a mediator on the path between genes and cognition 

or, vice versa, altered cognitive function may facilitate schizotypal development. 

Candidate genes for such associations are ZNF804A and CACNA1C, whose 

SNPs rs1344706 and rs1006737 have been associated with both schizotypy 

and attention (Yasuda et al. 2011; Roussos et al. 2013; Stefanis et al. 2013). 

In STUDY I, we aimed to (1) clarify the associations of the two SNPs with 

dimensional schizotypy and attention, and (2) integrate the reported bivariate 

associations into a joint framework by testing the two opposing mediation 

models of (a) schizotypy mediating the association between genetic variation 

and attention (Stotesbury et al. 2018) vs. (b) attention explaining the 

relationship of genetic influence and schizotypy, as suggested for schizophrenia 
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(Toulopoulou et al. 2018). Sex differences have been reported for effects of 

ZNF804A and CACNA1C (Strohmaier et al. 2013; de Castro-Catala et al. 2017), 

schizophrenia (Abel et al. 2010), and schizotypy profiles (Kremen et al. 1998), 

so sex was included as a potential moderator in the regression models.  

The results of STUDY I indicate sex-specific effects of both SNPs on different 

schizotypy dimensions, with a higher number of ZNF804A rs1344706 C (non-

risk) alleles linked to increased positive schizotypy in women, and the effect of 

CACNA1C rs1006737 A (risk) alleles on decreased negative schizotypy 

restricted to male participants (Figure I/1, p. 40). Sex-differences in 

schizophrenia are discussed as result of oestrogenic versus androgenic 

influences on dopaminergic pathways (Godar & Bortolato 2014). Such 

processes may also be relevant in the subclinical spectrum, explaining the sex-

specific effects of both SNPs on schizotypy. Extending the model by including 

attention suggests preferential support for a sex-moderated mediation model, 

with positive schizotypy partially explaining the association between ZNF804A 

rs1344706 and attentional performance in women (Figure I/2, p. 40) – as 

opposed to the reverse pathway proposed for schizophrenia (Figure I/3, p. 41, 

Toulopoulou et al. 2018). This indicates partially overlapping, but differential 

pathways along the schizophrenia spectrum and should spark future studies 

further dissecting this association.   

In short, STUDY I further supports the idea of a shared genetic basis of both 

schizophrenia and schizotypy, and offers a model for the association of genetic 

risk, schizotypy, and cognitive alterations in dimensions also impaired in 

schizophrenia. Notably, the study highlights the relevance of accounting for 

secondary factors, like sex, in modulating those associations.  

 

2.2. STUDY II: Intelligence moderates the association between positive 

schizotypy and striatal structure in healthy individuals 

Reference: Meller, T., Ettinger, U., Grant, P., & Nenadić, I. (2019). The association of striatal 

volume and positive schizotypy in healthy subjects: Intelligence as a moderating factor. 

Psychological Medicine 2019 Sep 18:1-9, doi: 10.1017/S0033291719002459P (IF: 5.6) 

According to aetiological models, beneficial factors may buffer the impact of 

brain structural variations on phenotypic variance. Besides variation in parietal 

and temporal structures, increasing evidence suggests fronto-striatal networks 
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to be critically involved in the generation of psychotic(-like) experiences. This is 

supported by findings of associations of (primarily positive) schizotypy with 

brain-structural and -functional alterations in those networks (Mittal et al. 2013; 

Rössler et al. 2018; Wang et al. 2018; Waltmann et al. 2019), but also with 

expression levels of dopaminergic genes and alterations of dopaminergic 

neurotransmission (Ettinger et al. 2013; Grant et al. 2014b; Mohr & Ettinger 

2014). Current studies, however, report heterogeneous direction of effects. 

Striatal size has been discussed as endophenotype for psychosis (Chemerinski 

2013), and fronto-striatal mechanisms might lie on a possible pathway from 

genetic risk through altered neurotransmission and neuronal structure, to 

phenotypic psychosis-proneness.  

Similar propositions are made by a model by Siever and Davis (Siever & Davis 

2004): Authors further suggested that enhanced vulnerability to environmental 

insults caused by genetic risk variants, leading to altered brain structure (and 

function), might be buffered by resilience factors like cognitive capacity (e.g. 

intelligence), thus leading to attenuated symptom levels and preventing 

conversion into the disorder. Such a pattern has in fact been reported for 

processes of perception in positive schizotypy (Grant et al. 2014a).  

STUDY II, in line with this model, analysed the association of schizotypy with 

brain structural parameters, and tested a statistical model with intelligence as a 

putative moderator of this association. The results of STUDY II indeed confirm 

this model: The detected association of positive schizotypy with greater GMV in 

a cluster containing the right putamen and pallidum (see Figure II/1(a), page 50) 

was moderated by intelligence. With increasing levels of IQ, the strength of the 

association decreased, indicating a protective influence of general intelligence 

on the association of striatal structure and positive schizotypy (see Figure II/2, 

page 51). The negative dimension was further positively associated with GMV 

in a cluster in the left precentral gyrus, but intelligence did not influence this 

association (see Figure II/1(b), page 50). There is limited evidence for the role 

of paracentral cortices in schizotypy, although STUDY III detected a similar 

association. Gyrification analyses only yielded significant associations of total 

schizotypy and gyrification in the precuneus and postcentral gyrus in an 

uncorrected, exploratory approach. 
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In conclusion, STUDY II supports the role of the fronto-striatal network also in the 

healthy domain of the psychosis spectrum, extending the dopamine hypothesis 

of schizophrenia (Howes et al. 2017), and presents a pathway for protective 

influence of resilience factors like general cognitive capacity. 

 

2.3. STUDY III: Psychotic-like, distress-based symptoms are associated 

with structural variation in brain areas impaired in schizophrenia 

Reference: Meller, T., Schmitt S., Ettinger, U., Grant, P., Stein, F., Brosch, K., Grotegerd, D., 

Dohm, K., Meinert, S., Förster, K., Hahn, T., Jansen, A., Dannlowski, U., Krug, A., Kircher, T., & 

Nenadić, I. Brain structural correlates of schizotypal signs and subclinical schizophrenia nuclear 

symptoms in healthy individuals. (submitted manuscript) 

It is unclear how distress due to psychotic experiences, as opposed to the 

frequency of symptoms, is associated with brain structural variation. In healthy 

individuals, higher levels of trait schizotypy confer greater liability to psychotic-

like experiences (Gooding et al. 2005; Debbané et al. 2015). However, distress 

associated with PLEs, rather than their frequency, has greater prognostic value 

for conversion into psychosis (Hanssen et al. 2005). The intensity and 

associated distress of such experiences varies vastly, both inter- and intra-

individually (Rössler et al. 2007; Linscott & van Os 2013). This variability is 

thought to be attributable to latent, stable traits (Rössler et al. 2013), 

representing the “trait in action” in response to current environmental challenges 

(Barrantes-Vidal et al. 2015). The schizophrenia nuclear symptoms (SNS) and 

schizotypal signs (STS) scales, constructed using items of the Symptom-

Checklist-90-R (SCL90-R Derogatis 1977; Rössler et al. 2007), assess the level 

of distress caused by PLEs over the course of four weeks – thus closing a gap 

between highly variable mood and stable personality traits. While 

psychometrically well-validated, their neurobiological correlates are yet unclear.  

STUDY III tested the association of SNS and STS with voxel- and surface-based 

brain structural parameters in healthy individuals, to explore whether they show 

similar morphometric correlates as reported for instruments assessing trait-like 

personality characteristics. We assessed both rather quickly adaptable (VBM) 

and more stable, early-determined (SBM) patterns of brain structure.  
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Results of STUDY III show differential patterns for the scales: SNS, assessing 

positive, psychotic symptoms, was associated with decreased grey matter 

volume (GMV) in the right inferior temporal gyrus (ITG), and increased GMV in 

the left superior parietal lobe including the precuneus (see Figure III/2, p. 66). 

STS, capturing a milder, personality-like blend of positive and negative 

symptoms, was negatively associated with GMV in the right and left precentral 

gyrus (see Figure III/2, p. 66). Gyrification analyses did not detect significant 

clusters after correction for multiple testing, however, exploratory uncorrected 

analyses showed positive correlations of gyrification in the left insula and rostral 

middle frontal gyrus with SNS, as well as gyrification in the right insula and 

precuneus with STS, and a negative correlation of STS with gyrification in the 

right inferior/middle temporal gyrus (see Figure III/3, page 67).  

Both precuneus and ITG are involved in higher-order, integrative cognitive 

processes and have previously been linked to symptoms of the psychosis 

spectrum. The precuneus has repeatedly been associated with 

psychometrically-assessed schizotypy (Modinos et al. 2010, 2018; Nenadic et 

al. 2015), and our results support its association with a more acute higher-risk 

state of increased distress. Similarly, structural reductions within the  ITG have 

also been associated with PLEs (van Lutterveld et al. 2014), and are part of an 

anatomical pattern predicting later conversion in at-risk individuals (Koutsouleris 

et al. 2010).  

The blending (rather than distinguishing) of negative and positive schizotypy 

facets in STS might explain its restricted associations. Precentral variation, as 

associated with STS, has been linked to motor dysfunction in schizophrenia 

(Tanskanen et al. 2010), however, its role in schizotypy remains unclear.  

In conclusion, the findings of STUDY III demonstrate that, similar to measures of 

schizotypy and PLEs, distress-related markers are associated with variation in 

precuneus and ITG, underlining the importance of these structures for the 

positive symptom dimension. Pointing to distress as a putative mediating factor, 

they illustrate the relevance of emotional appraisal of psychotic experiences, a 

process which in turn can be influenced by personality characteristics like 

schizotypy (Kline et al. 2012). 
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2.4. STUDY IV: Polygenic risk for schizophrenia, depression and bipolar 

disorder is not associated with schizotypy in non-clinical adults 

Reference: Nenadić, I.*, Meller, T*., Streit, F., Schmitt S., Stein, F., Brosch, K., Mosebach, J., 

Ettinger, U.,  Grant, P., Meinert S., Opel, N., Lemke, H., Fingas, S., Förster, K., Hahn, T., 

Jansen, A., Andlauer, T.F.M., Forstner, A.J., Heilmann-Heimbach, S., Hall, A., Awasthi, S., 

Ripke, S., Witt, S.H., Rietschel, M., Müller-Myhsok, B., Nöthen, M.M., Dannlowski, U., Krug, A., 

Kircher, T. Polygenic risk for schizophrenia and schizotypal traits in non-clinical subjects. 

*contributed equally (unpublished manuscript) 

Schizotypal traits are assumed to be heritable (Ronald & Pain 2018), yet single 

common genetic variants (like SNPs) only explain smaller parts of its variance. 

Cumulative genetic risk scores, calculated on the basis of known SNPs, may 

have greater explanatory power (Mistry et al. 2018). Several studies have 

successfully linked schizotypy dimensions to genetic variants associated with 

schizophrenia risk (Walter et al. 2016), indicating additive effects (Grant et al. 

2015). The impact of polygenic risk for schizophrenia on schizotypy, however, is 

still poorly understood, with current evidence restricted to studies with 

inconsistent results (Hatzimanolis et al. 2018; van Os et al. 2019).  

The aim of STUDY IV was to test the hypothesis that schizotypy is associated 

with a SNP-based polygenic risk score (PRS) for schizophrenia. To test for 

specificity, those analyses were extended to PRS for major depressive disorder 

and bipolar disorder, conducted in two independent samples of psychiatrically 

healthy adults.  

Results of STUDY IV show no significant associations of schizotypy (either total 

score or dimensions) with PRS for schizophrenia or bipolar disorder, consistent 

across the discovery and replication sample, confirmed by meta-analytical 

combination of bootstrapped results. Only in one sample, major depression 

PRS was associated with increases schizotypy levels.  

These findings add important insights to our understanding of the psychosis 

spectrum by indicating that schizotypy is not linearly and independently linked to 

polygenic risk for schizophrenia; in spite of partial overlap in single risk genes. 

However, it has to be considered that PRS only subsumes SNP-based risk of 

common genetic variants, with limited explanatory value (Marshall et al. 2017).  
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In conclusion, the results of STUDY IV suggest only a minor overlap of 

schizotypy and (clinical) genetic risk profiles as accounted for in PRS. As the 

lack of a direct association may also indicate moderating influences, they 

emphasise the need to consider additional modulating factors in statistical 

models analysing associations of the neurobiological fundaments of schizotypy.  

 

2.5. STUDY V: An explanatory model: Genes and environment have an 

interactive impact on schizotypy through changes in brain structure 

Reference: Meller, T., Schmitt S., Stein, F., Brosch, K., Andlauer, T.F.M., Grotegerd, D., Dohm, 

K., Meinert, S., Förster, K., Forstner, A.J., Heilmann-Heimbach, S., Streit, F., Witt, S.H., 

Rietschel, M., Müller-Myhsok, B., Nöthen, M.M., Hahn, T., Jansen, A., Dannlowski, U., Krug, A., 

Kircher, T., & Nenadić, I. The impact of polygenic and poly-environmental risk factors on a 

psychosis risk phenotype is mediated through brain structure. (unpublished manuscript) 

One of the main challenges in biological psychiatry is to clarify the pathway 

between genetic risk variants and phenotypic variation. Current aetiology 

models of psychotic disorders suggest interactive effects of genetic and 

environmental risk markers impacting on neurodevelopmental processes, and 

leading to phenotypic variation, with buffering influences of protective factors 

(Howes & Murray 2014; Carpenter & Strauss 2017). Progressing from simple 

bivariate association studies, emerging evidence of gene by environment (GxE) 

studies in phenotypes (Bernardo et al. 2017; Leighton et al. 2017; Misiak et al. 

2018) and brain structure (Geoffroy et al. 2013) has added valuable insight to 

our understanding of processes and networks. However, those interactions, too, 

have mostly been limited to single genes and risk factors. There is a lack of 

multivariate models, integrating cumulative GxE effects, neuronal biomarkers, 

cognition, and phenotypes into explanatory pathways. 

STUDY V used statistical moderation and mediation analysis to test a model in 

which GxE effects on the dimensional risk phenotype schizotypy are explained 

through brain structural changes, allowing for buffering influences of executive 

function (see Figure V/1, p. 107). To maximise the input of known risk factors 

for the psychosis spectrum, we approximated genetic risk as PRS for 

schizophrenia, while aggregating multiple environmental risks in a cumulative, 

weighted environmental risk score for psychosis (ERS, Vassos et al. 2019). 
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Results of STUDY V support the multivariate model with complex interactive 

associations of GxE on positive schizotypy (see Figure V/3, p. 115). This 

association is mediated by GMV in a cluster in the precuneus and posterior 

cingulate gyrus (Pc/pcG, see Figure V/2, p. 113) and moderated by executive 

function, strengthening the role of the precuneus for positive schizotypy.  

While neither PRS nor ERS show a main effect on Pc/pcG GMV, their 

interaction is significant, with the intensity and direction of the PRS effect 

depending on ERS levels (positive slope for low ERS, negative slope for high 

ERS). Similarly, the association of Pc/pcG GMV and positive schizotypy is 

moderated by executive function (positive slope for low, negative slope for high 

executive function). This supports the notion that in healthy individuals, genetic 

risk affects brain structure and, subsequently, phenotype dependent on 

additional factors (Van der Auwera et al. 2017). Our findings may explain 

previous heterogeneous and null findings, highlighting the relevance of complex 

variance structures and multivariate models. 

The reported bidirectional interaction effects advocate moving on from 

traditional diathesis-stress models to models of differential susceptibility. The 

latter propose a general modulation of susceptibility to environmental influence 

(both adverse and protective) through genetic disposition (Leighton et al. 2017; 

Assary et al. 2018), replacing “vulnerability factors” with “plasticity factors” 

(Belsky & Pluess 2009). 

In conclusion, STUDY V provides a biological framework, integrating the genetic 

and environmental associations of schizotypy as a psychosis risk phenotype 

into a testable model. This approach can also be extended to other genotype-

phenotype associations of psychiatric disorder spectra.  



16 

 

3. GENERAL DISCUSSION 

This dissertation presents a neurobiological characterisation of genetic and 

brain structural markers of schizotypy and psychosis-related symptoms.  

STUDIES I and IV established an association of schizotypy with selected single 

risk genes (CACNA1C and ZNF804A, STUDY I), while failing to show a direct 

association with polygenic risk for schizophrenia (STUDY IV) – thus only partly 

confirming hypothesis H1. STUDY I additionally indicates that schizotypy 

mediates effects of genetic variants on cognition, rather than vice versa.   

In MR-morphometric STUDIES II and III, brain structural correlates of schizotypy 

dimensions were analysed, providing further support for the precuneus and the 

fronto-striatal network, as well as the inferior temporal gyrus to underlie 

symptoms of the positive dimension, in line with hypothesis H2. STUDY II shows 

a protective effect of increased cognitive functioning, while Study III extends 

these associations to distress-based schizotypy-like phenotypes, highlighting 

the relevance of emotional appraisal of symptoms.  

STUDY V integrates the above findings to consider genetic and environmental 

influences, brain structure, cognition, and schizotypy in a multivariate model, 

showing that the interaction effect of genes and environment on the phenotype 

is explained through brain structural variation. The significant model fit confirms 

hypothesis H3 and statistically supports current aetiological models of the 

schizophrenia spectrum.  

Taken together, the five studies add new insights for two neurobiological 

domains of the dimensional psychosis phenotype schizotypy, i.e. its genetic 

basis and its neural networks, as well as their integration into a joint framework.  

 

3.1. Genetic basis of schizotypy 

Schizotypy dimensions show heritability estimates between 30-50% (Linney et 

al. 2003; Macare et al. 2012), and current evidence suggests an underlying 

polygenic architecture (Grant et al. 2013; Brambilla et al. 2014). Several SNPs 

have been associated with schizotypy (Walter et al. 2016), and STUDY I finds 

further evidence for links to risk variants in ZNF804A and CACNA1C. Similar to 

other genes associated with schizotypy (e.g. BDNF, DTBNP1, NRG1), both are 
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relevant for neuronal development: In the human brain, ZNF804A is expressed 

in the dorsolateral prefrontal cortex and hippocampus, involved in neurite 

growth and synapse formation, and SNP rs1344706 affects its expression, 

particularly during prenatal brain development (Hill & Bray 2011, 2012). 

CACNA1C is expressed in the hippocampus and the entire central nervous 

system. It codes for calcium channel subunit Cav1.2, mediating synaptic 

plasticity and also showing altered expression in SNP rs1006737 (Bigos et al. 

2010). Functionally, both SNPs have been linked to more basal cognitive 

dysfunctions, as well as altered processing of emotional and social information 

and associated brain activity and structure (Voineskos et al. 2011; Soeiro-de-

Souza et al. 2012; Mohnke et al. 2014; Paulus et al. 2014). Implicated in 

fundamental interpersonal processes, it is not surprising that although ZNF804A 

and CACNA1C are established risk genes for schizophrenia, this association is 

not unique, but extends to other psychiatric and neurodevelopmental disorders 

(Chang et al. 2017; Moon et al. 2018). Similarly, while schizotypy is primarily 

discussed as schizophrenia endophenotype, it also predicts later occurrence of 

other psychiatric disorders, social functioning, and general mental health 

outcomes (Rössler et al. 2011; Kwapil et al. 2013).  

This suggests that although several risk genes are shared between schizotypy 

and schizophrenia, their genetic architectures only partially overlap, as 

supported by the lack of a direct association in STUDY IV. However, regarding 

this finding, some aspects need to be considered. Firstly, PRS scores (based 

on GWAS-identified, common SNPs) can only account for a moderate portion of 

underlying genetic variance and underestimate phenomenological and 

biological heterogeneity within cases and controls (Marín 2016). Secondly, 

additional factors may modulate the expression of the phenotype, e.g. biological 

sex (STUDY I), cognitive function (STUDY II), or environmental influences (STUDY 

V). In fact, recent evidence suggests interactive effects of schizophrenia PRS 

with stressful contexts and shared environment in siblings on schizotypy 

(Hatzimanolis et al. 2018; van Os et al. 2019).  

A prominent approach to explain GxE interactions is the diathesis-stress-model, 

hypothesising that the impact of environmental events on the development of 

the actual disorder is potentiated by genetically-determined vulnerabilities 

(Howes et al. 2017). However, STUDY V suggests that, depending on 
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environmental conditions, high PRS can also have inverse effects, leading to 

increased function. This is in line with a concept of differential susceptibility or 

environmental sensitivity, proposing that genetic “risk” variants may render 

sensitivity to environmental influences in general – including favourable ones 

(Leighton et al. 2017; Assary et al. 2018).  

 

3.2. Neural networks of schizotypy 

Schizotypy describes manifestations across multiple domains of cognition, 

emotion, and behaviour. This dissertation shows that these are associated with 

variation in highly connected, integrative regions throughout the brain.  

STUDIES III and V find associations of positive schizotypal phenotypes with 

precuneus structure. In fact, structural variation in the precuneus is one of the 

most robust findings in (positive) schizotypy (Modinos et al. 2010, 2018; 

Nenadic et al. 2015; Wiebels et al. 2016). The precuneus is extensively 

connected throughout the brain and can be divided into three anatomical and 

functional subsections (Cavanna & Trimble 2006). The detected clusters are 

localised in the central part, functionally connected to parietal, temporal, and 

prefrontal cortices and attributed to cognitive processes producing a conscious 

self-percept in relationship to the world (Margulies et al. 2009). Those include 

cause and effect judgements, attributional evaluation and (mis)attribution of 

personal reference (see Jones & Bhattacharya 2014 for an overview). While the 

precuneus, also an important node of the default-mode network, has shown to 

be of transdiagnostic relevance in schizophrenia, anxiety, depression, and 

obsessive-compulsive disorder (Jones & Bhattacharya 2014), these functions 

show a striking overlap with characteristics of the positive schizotypy dimension. 

Findings of STUDY V indicate that this association arises from interactions of 

genes and environment, as the precuneus cluster is detected in a GxE model 

independently of the phenotype, yet associated with it.  

A second central associative network in the human brain constitutes circuits of 

the fronto-striatal system, connecting striatum, thalamus, orbifrontal, and 

cingulate regions, and linked to a variety of cognitive, emotional, and 

behavioural functions (Tekin & Cummings 2002). STUDY II finds an association 

of striatal structures putamen and pallidum with positive schizotypy. Striatal 
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function (greatly modulated by dopaminergic neurotransmission) is essential for 

behavioural regulation through reward processing and associative learning 

(linking it to anhedonic, negative characteristics), but also for salience attribution 

and (un)certainty judgements. Inappropriate attributions of salience and 

certainty are implicated in the formation of delusional thoughts and positive 

symptoms (Broyd et al. 2017), yet the buffering effect of intelligence shown in 

STUDY II indicates protective influence of preserved or compensatory frontal 

functioning (Colom et al. 2013). Central for striatal functioning, dopaminergic 

neurotransmission and its genetic fundaments are altered in schizotypy (Mohr & 

Ettinger 2014), suggesting an extension of the dopamine hypothesis of 

schizophrenia to the healthy spectrum (Howes et al. 2017).  

While dopamine receptors show high density in the striatum, they are also 

found in other brain regions, including the inferior temporal gyrus (ITG). The ITG 

(connected to both precuneus and prestriate regions) is involved in visual 

imagery, perceptive integration and attributions of intention in others (Brunet et 

al. 2000; Hamamé et al. 2012). In this area, STUDY III also finds altered GMV 

associated with more state-like, distress-based symptoms within the positive 

dimension, in line with it being discussed as underlying neuronal correlate of 

hallucinations in schizophrenia (Goldsmith et al. 1997).  

Consistent across STUDIES II and III, surface parameters of cortical folding did 

not exhibit strong enough effects to survive correction, even though they were 

detected in regions relevant for schizotypy. Given that schizotypy is linked to 

several genetic factors implicated in neuronal development, this is surprising. 

Folding parameters are determined early in brain development and, in contrast 

to grey matter volumes, thought to be relatively stable over time (Chi et al. 

1977). Comparatively weak associations with schizotypal dimensions indicate 

certain predispositions, yet suggest that those can be functionally “overwritten” 

by later developmental processes, and masked by compensatory mechanisms.  

 

3.3. Limitations and implications for future research 

Across the studies reported in this dissertation, some limitations have to be 

considered that bear implications for future research. Firstly, all studies were 

based on healthy individuals, who on average showed (expectedly) low to 
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moderate schizotypy. This may restrict variance, but does not invalidate 

findings, rather speaking for the strength of the effect of even subtle variations. 

Clinical studies might include individuals with subthreshold or manifest symptom 

levels to extend these findings across a clinical spectrum (at the cost of higher 

risk of confounding factors).  

Additionally, although PRS and ERS represent cumulative risk estimates, they 

can each only account for additive effects. PRS scores rely on GWAS-identified, 

common SNPs with small individual effects, and can only account for a portion 

(~20%) of underlying genetic variance. In a differential susceptibility approach, 

a similar genetic predisposition might in one case lead to a clinical disorder 

while in another prevent exactly that, depending on environmental conditions 

and translated through different neurodevelopmental correlates. Investigation of 

associations with rare variants, de novo mutations, epigenetic effects, or gene x 

gene interactions promises extended insights. Lastly, the consideration of GxE 

correlations could help identify additional processes, as genetic predisposition 

resulting in personality traits would also influence the individual’s active creation 

of environmental conditions (Dick 2011), as has been indicated for schizotypal 

traits preceding cannabis consume (Schiffman et al. 2005). 

 

3.4. Integration 

This dissertation shows that schizotypy is linked to genetic variants that impact 

neuronal development and function and carry risk for schizophrenia. Beyond the 

single gene approach, the lack of a direct association with schizophrenia PRS 

suggests limited overlap of the polygenetic architectures of the phenotypes. 

However, there is evidence for an indirect effect through altered brain structure, 

depending on environmental conditions and cognitive functions. This suggests 

that in healthy individuals, the impact of genetic predisposition on schizotypy is 

modulated by intra- and extrapersonal factors and associated with 

neurodevelopment. In line with this, schizotypy is associated with variation in 

brain structures implicated in (higher-level) interpretation and evaluation of 

sensory information, imaginary processes, and behavioural regulation. 

Developmental disturbances of neuronal organisation seem bound to sensitive 

time windows during which activity-dependent modulations cause long-term 
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alterations in brain circuits (Marín 2016). Genetic variants may alter the onset 

and duration of these windows, and render plasticity at glutamatergic and 

dopaminergic synapses (Hall et al. 2015; Genovese et al. 2016). However, not 

only can plastic changes occur beyond those periods (Hübener & Bonhoeffer 

2014), but associations are further modulated by buffering factors like cognitive 

function (which in turn might be indicative of latent genetic and environmental 

effects). Conceptualised as stable personality trait, schizotypy can be seen as 

underlying source of more acute responses to environmental challenges 

expressed in state-like experiences (Barrantes-Vidal et al. 2015), while 

associated distress and its neuronal correlates have predictive value for 

progression into clinically relevant states. However, favourable environmental 

conditions and/or compensatory processes can equally lead to the expression 

of schizotypal predispositions in functionally adaptive behaviours, possibly 

leading to evolutionary advantages (Nettle & Clegg 2006) and explaining the 

perseverance of genetic profiles carrying liability to harmful outcomes.  

In conclusion, schizotypy is a valuable endophenotype of the psychosis 

spectrum, demonstrating that even severe pathophysiological disruptions lie on 

a continuum with subtle variations of healthy function (Venables 1975). 

However, beyond that, it is an expression of multifaceted behavioural, cognitive, 

and emotional interindividual variation, with its underlying mechanisms 

representing an exemplary framework for dimensional phenotypic spectra. 
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SUMMARY 

Complex, dimensional phenotypes represent a valuable framework for the 

analysis of fundamental neurobiological mechanisms of psychiatric disorders. 

They facilitate the deconstruction of diagnostic entities and the study of 

protective processes that prevent progression into clinical domains. Within the 

psychosis spectrum, schizotypy describes a multidimensional personality 

construct with behavioural, cognitive, and emotional characteristics similar to 

key symptoms of schizophrenia, that can equally be grouped into the 

dimensions positive (magical thinking, unusual perceptions and beliefs), 

negative (introversion, anhedonia), and disorganised (cognitive disorganisation, 

eccentricity). Within a continuum model of psychosis, schizotypy is discussed 

as variation of healthy function, and as risk phenotype of schizophrenia and 

psychosis proneness, assuming a (partially) overlapping genetic architecture 

along the spectrum. Current aetiological models propose an impact of genetic 

liability, in interaction with environmental risk and modulated by protective 

factors like cognitive function, through disruptions in neuronal development. In 

fact, recent studies show that schizotypy is associated with brain structural 

variation, partially overlapping with regions that are also impaired in patients 

with schizophrenia spectrum disorders.  

This dissertation characterised neurobiological determinants of schizotypy 

regarding its genetic basis and neural networks, aiming to develop a multimodal 

model to integrate those into a joint framework.  

STUDIES I and IV investigated the genetic structure of schizotypy, demonstrating 

its association with common variants (single nucleotide polymorphisms, SNPs) 

in genes (CACNA1C and ZNF804A) involved in processes of neuronal 

development and identified as risk genes for schizophrenia and other 

psychiatric disorders (STUDY I). In this association, biological sex has a 

moderating role. However, a direct association of a polygenic schizophrenia risk 

score, based on cumulative SNP-risk, was not established (STUDY IV). 

STUDIES II and III analysed brain structural correlates of schizotypy dimensions, 

finding an association of the positive dimension (and symptom-associated 

distress) with grey matter volume in associative brain areas precuneus, striatum 
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and inferior temporal gyrus. STUDY II further indicates that this relationship can 

be buffered by above average general cognitive function.  

Study V ultimately integrates the previous results into a joint multivariate model 

that proves to explain a substantial amount of phenotypic variance. The model 

shows that the interaction effect of polygenic and poly-environmental risk on 

positive schizotypy is mediated through brain structural variation in the 

precuneus, and modulated by the level of executive function.  

In conclusion, this dissertation shows that schizotypy is associated with genetic 

polymorphisms involved in neuronal development and function. While those are 

identified as schizophrenia risk variants, the lack of an association with 

polygenic schizophrenia risk suggests a limited overlap of the genetic 

architectures of the phenotypes. The confirmation of the multivariate model, 

however, indicates an indirect effect through variations in brain structure and 

modulated by intra- and extrapersonal factors. Accordingly, particularly positive 

schizotypy is associated with structural alterations in brain regions central for 

the integration, evaluation, and attribution of perceptual information within 

associative neuronal networks.  

Thus, schizotypy is a valuable endophenotype of the schizophrenia spectrum, 

showing that pathophysiological aberrations lie on a continuum with variation of 

healthy functioning. Schizotypy, however, also describes the manifestation of 

interindividual variation in behaviour, cognition, and emotion, with its underlying 

mechanisms representing an exemplary framework for the study of 

dimensional, phenotypic spectra.  
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ZUSAMMENFASSUNG 

Komplexe, dimensionale Phänotypen stellen ein wertvolles Paradigma für die 

Untersuchung fundamentaler neurobiologischer Mechanismen psychiatrischer 

Erkrankungen dar. Sie vereinfachen die Dekonstruktion von diagnostischen 

Einheiten und die Untersuchung von protektiven Prozessen, die vor dem 

Übergang in klinische Störungen schützen. Innerhalb des Psychosespektrums 

beschreibt Schizotypie ein multidimensionales Persönlichkeitskonstrukt, dessen 

Merkmale in Verhalten, Kognition und Emotion den Kernsymptomen der 

Schizophrenie ähneln und ebenfalls auf den Dimensionen positiv (magisches 

Denken, ungewöhnliche Wahrnehmungen und Überzeugungen), negativ 

(Introversion, Anhedonie) und desorganisiert (kognitive Desorganisation, 

Exzentrizität) beschrieben werden können. Im Rahmen des Kontinuum-Modells 

der Psychose wird Schizotypie sowohl als Variation gesunder Funktion, als 

auch als Risiko-Phänotyp für Schizophrenie und Psychose-Nähe diskutiert, und 

von einer (zumindest teilweisen) Überlappung genetischer Grundlagen über das 

Spektrum hinweg ausgegangen. Aktuelle ätiologische Modelle gehen davon 

aus, dass genetische Effekte, in Interaktion mit umweltbedingten Risikofaktoren 

und moduliert durch protektive Faktoren wie kognitive Leistungsfähigkeit, über 

Veränderungen der neuronalen Entwicklung wirken. Tatsächlich zeigen aktuelle 

Studien, dass die Ausprägung von Schizotypie bei Gesunden mit 

hirnstruktureller Variation assoziiert ist. Diese findet sich in Arealen, welche 

teilweise mit Regionen, die auch bei Patienten mit Erkrankungen des 

Schizophreniespektrums betroffen sind, überlappen. 

Die vorliegende Dissertation hat in fünf Studien neurobiologische  Grundlagen 

der Schizotypie auf genetischer und hirnstruktureller Ebene untersucht, mit dem 

Ziel der Entwicklung eines multimodalen Modells, welches diese Ebenen in 

einen gemeinsamen Rahmen integriert.  

STUDIEN I und IV haben die genetischen Grundlagen der Schizotypie untersucht 

und können demonstrieren, dass Schizotypie mit häufigen genetischen 

Varianten (Single Nucleotide Polymorphismen, kurz SNPs) in Genen 

(CACNA1C, ZF804A) assoziiert ist, welche wichtige Funktionen für neuronale 

Entwicklungsprozesse innehaben, und als Risikogene für Schizophrenie, aber 
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auch andere psychiatrische Erkrankungen identifiziert wurden (STUDIE I). 

Geschlecht wirkt hier als moderierender Faktor. Ein direkter Zusammenhang 

mit einem polygenen Risikoscore für Schizophrenie, basierend auf kumulativem 

SNP-Risiko, ist jedoch nicht nachweisbar (STUDIE IV).  

STUDIEN II und III haben hirnstrukturelle Korrelate der Schizotypiedimensionen 

analysiert und finden einen Zusammenhang insbesondere der positiven 

Dimension (und damit assoziierter Belastung) mit dem Volumen der grauen 

Substanz in den assoziativen Hirnarealen Precuneus, Striatum und inferiorer 

Temporalgyrus. STUDIE II zeigt zudem, dass dieser Zusammenhang durch 

überdurchschnittliche kognitive Leistungsfähigkeit abgemildert werden kann.  

STUDIE V schließlich integriert die vorangegangenen Befunde in ein 

gemeinsames, multivariates Modell, welches substantiell phänotypische 

Varianz aufklärt. Es zeigt sich, dass der Interaktionseffekt von polygenem und 

kumulativem Umweltrisiko auf (positive) Schizotypie durch Veränderungen der 

Hirnstruktur im Precuneus vermittelt und durch das Level an exekutiver 

Funktion moduliert wird.  

Zusammenfassend zeigt diese Dissertation, dass Schizotypie mit genetischen 

Polymorhphismen assoziiert ist, welche Einfluss auf neuronale Entwicklung und 

Funktion haben. Zwar stellen diese auch Risikogene für Schizophrenie dar, die 

fehlende Assoziation mit polygenem Risiko spricht jedoch für eine 

eingeschränkte Überlappung in der genetischen Architektur der Phänotypen. 

Die Bestätigung des multimodalen Modells indiziert allerdings einen indirekten 

Effekt auf Schizotypie, vermittelt über veränderte Hirnstruktur, und beeinflusst 

durch das Wirken intra- und extrapersoneller Faktoren. Übereinstimmend ist 

insbesondere die positive Schizotypiedimension mit Veränderungen in 

Hirnregionen assoziiert, die zentral in die Integration, Evaluation und Attribution 

perzeptueller Information in assoziativen Netzwerken involviert sind.  

Schizotypie ist ein wertvoller Endophänotyp des Schizophreniespektrums und 

zeigt, dass auch pathophysiologische Veränderungen auf einem Kontinuum mit 

Variation gesunder Funktionen liegen. Darüber hinaus repräsentiert sie die 

Manifestation von interindividueller Variation in Verhalten, Kognition und 

Emotion, deren zugrundeliegende Mechanismen ein exemplarisches 

Paradigma für die Untersuchung dimensionaler, phänotypischer Spektren 

darstellen. 
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Schizotypy is amultidimensional risk phenotype distributed in the general population, constituting of subclinical,
psychotic-like symptoms. It is associatedwith psychosis proneness, and several risk genes for psychosis are asso-
ciated with schizotypy in non-clinical populations. Schizotypy might also modulate cognitive abilities as it is as-
sociated with attentional deficits in healthy subjects. In this study, we tested the hypothesis that established
genetic risk variants ZNF804A rs1344706 and CACNA1C rs1006737 are associated with psychometric schizotypy
and that schizotypy mediates their effect on attention or vice versa. In 615 healthy subjects from the FOR2107
cohort study, we analysed the genetic risk variants ZNF804A rs1344706 and CACNA1C rs1006737, psychometric
schizotypy (schizotypal personality questionnaire-brief SPQ\\B), and a neuropsychologicalmeasure of sustained
and selective attention (d2 test). ZNF804A rs1344706 C (non-risk) alleles were significantly associated with
higher SPQ-B Cognitive-Perceptual subscores inwomen andwith attention deficits in both sexes. This schizotypy
dimension also mediated the effect of ZNF804A on attention in women, but not in men. CACNA1C rs1006737-A
showed a significant sex-modulated negative association with Interpersonal schizotypy only in men, and no ef-
fect on attention. Our multivariate model demonstrates differential genetic contributions of two psychosis risk
genes to dimensions of schizotypy and, partly, to attention. This supports amodel of shared genetic influence be-
tween schizotypy and cognitive functions impaired in schizophrenia.
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1. Introduction

Schizotypy is a multidimensional construct of personality traits phe-
nomenologically resembling subclinical schizophrenia symptoms. It is
considered a phenotypic marker of psychosis proneness and schizo-
phrenia risk (Barrantes-Vidal et al., 2015) and elevated in patients

Schizophrenia Research 208 (2019) 67–75

⁎ Corresponding author at: Department of Psychiatry and Psychotherapy, Philipps-
Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany.

E-mail address: tina.meller@staff.uni-marburg.de (T. Meller).

https://doi.org/10.1016/j.schres.2019.04.018
0920-9964/© 2019 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Schizophrenia Research

j ourna l homepage: www.e lsev ie r .com/ locate /schres

Author's Personal Copy

37

http://crossmark.crossref.org/dialog/?doi=10.1016/j.schres.2019.04.018&domain=pdf
https://doi.org/10.1016/j.schres.2019.04.018
tina.meller@staff.uni-marburg.de
https://doi.org/10.1016/j.schres.2019.04.018
http://www.sciencedirect.com/science/journal/09209964
www.elsevier.com/locate/schres


with psychotic disorders (Brosey and Woodward, 2015). Schizotypy,
having predictive value for conversion probability into schizophrenia-
spectrum disorders (Chapman et al., 1994; Gooding et al., 2005;
Kwapil et al., 2013), is also considered a high-risk marker in early inter-
vention research.

The phenotype comprises aspects of deviations in cognition, emo-
tion, speech, and perception (Ettinger et al., 2015), but is also associated
with higher creativity (Fink et al., 2014; Mohr and Claridge, 2015), pos-
sibly even constituting an evolutionary advantage (Nettle and Clegg,
2006). Schizotypy is often delineated into three dimensions (Dodell-
Feder et al., 2019), namely positive/cognitive-perceptual (magical think-
ing, referential ideas, unusual perceptual experiences, and paranoid ide-
ation), negative/interpersonal (difficulties in social interaction and
blunted affect) and disorganised (“odd” speech and behaviour).

While different cognitive dimensions have been linked to schizotypy
(Siddi et al., 2017), relative deficits in sustained and selective attention
have been robustly reported (Breeze et al., 2011; Fuggetta et al., 2015;
Gooding et al., 2006; Moreno-Samaniego et al., 2017). Findings even
point to a possible genetic link between attention-deficit hyperactivity
disorder and schizotypy (Ettinger et al., 2006). While impaired atten-
tion has often been associated with the negative schizotypy dimension
(Alvarez-Moya et al., 2007; Chen and Faraone, 2000; Smyrnis et al.,
2007), recent evidence also suggests the cognitive-perceptual dimen-
sion as a risk factor for attentional difficulties (Gooding et al., 2006;
Stotesbury et al., 2018). Attention deficits are also found in schizophre-
nia patients compared to healthy controls (Elvevåg andGoldberg, 2000;
Hill et al., 2008; Lee et al., 2017; Nuechterlein et al., 2004), and in first-
degree relatives of schizophrenia patients (Snitz et al., 2005), indicating
genetic effects. Attention therefore represents a putative cognitive link
between these risk genotypes and phenotypes.

Growing evidence also suggests a partially shared genetic basis be-
tween schizotypy and psychotic disorders. Genome-wide association
studies (GWAS) have currently identified N120 common genetic varia-
tions contributing to the risk for schizophrenia (Pardiñas et al., 2018),
and while at least some risk genes are shared among clinical psychosis
phenotypes (Craddock et al., 2009; Sheldrick et al., 2008), it seems
that polygenic risk scores for psychosis are only marginally associated
with schizotypy (Hatzimanolis et al., 2018; Jones et al., 2016). However,
recent studies reporting significant associations of schizophrenia risk
variants with schizotypy measures support a partially mutual genetic
background (Barrantes-Vidal et al., 2015).

Among themost prominent susceptibility genes for schizophrenia is
ZNF804A, involved in neurodevelopmental processes (Lencz et al.,
2010) and coding for the zinc-finger binding protein 804A (Voineskos
et al., 2011). The major A allele of the single-nucleotide polymorphism
(SNP) rs1344706 was initially reported to be associated with schizo-
phrenia in a GWAS by O'Donovan et al., with an even stronger associa-
tion to a broader psychosis phenotype that includes bipolar disorder
(O'Donovan et al., 2008). This association has since been replicated
and shown to be one of the strongest susceptibility variants for schizo-
phrenia (Pardiñas et al., 2018; Riley et al., 2010; Williams et al., 2011).
Rs1344706-A has been associated with decreased expression of
ZNF804A in fetal brain tissue (Hill and Bray, 2012) and with
neurocognitive and brain structural variations in schizophrenia patients
and in healthy controls (Chang et al., 2017; Donohoe et al., 2011;
Nenadic et al., 2015). Two recent studies linked ZNF804A rs1344706
with schizotypy (Stefanis et al., 2013; Yasuda et al., 2011), but with het-
erogeneous dimensional associations: While Yasuda and colleagues
found carriers of the rs1344706 major A-allele to have higher
disorganised schizotypal levels, Stefanis et al. reported the opposite ef-
fect, i.e., a positive association of the minor C-allele with positive
schizotypy, calling for further research.

A second gene strongly associated with the psychosis spectrum is
CACNA1C, encoding a subunit of the calcium channel Cav1.2, which is in-
volved in the modulation of gene transcription, synaptic plasticity and
cell survival in the brain (Bhat et al., 2012). CACNA1C's intronic SNP

rs1006737with risk allele A has been established as a susceptibility var-
iant for schizophrenia (Jiang et al., 2015; Ripke et al., 2013; Ruderfer
et al., 2014) and bipolar disorder (Ferreira et al., 2008; Moon et al.,
2018; Ruderfer et al., 2014). It has been associated with cognitive varia-
tion like decreased attentional performance and reduced corresponding
neural activity in risk-allele carriers (Thimm et al., 2011), impaired
working memory (Zhang et al., 2012), but also impaired facial emotion
recognition (Soeiro-de-Souza et al., 2012) and increased interpersonal
distress (Erk et al., 2010). In two previous studies, rs1006737-A has
also been linked to elevated positive schizotypy and schizotypal person-
ality disorder (Roussos et al., 2013, 2011). While the influence of
CACNA1C variants on cognition and its neural correlates has been
shown repeatedly (Dietsche et al., 2014; Krug et al., 2014), it is unclear
whether the gene is also linked to variation in cognitive function in
schizotypy.

Taken together, current research suggests an association of psycho-
sis risk genes ZNF804A and CACNA1C with impaired cognition and
schizotypy in the general population, and an association of both schizo-
phrenia and schizotypy with cognitive deficits. It is, however, lacking
models integrating those univariate associations into a joint framework.
As there are sex differences in schizophrenia prevalence and symptom
profiles (Abel et al., 2010) as well as schizotypy (Kremen et al., 1998;
Raine, 1992), and sex-specific effects have recently been reported for
both genes (de Castro-Catala et al., 2017; Strohmaier et al., 2013), a dif-
ferential impact for males and females should be considered.

Therefore, thefirst aimof thepresent studywas to analyse thediffer-
ential effects of ZNF804A rs1344706 and CACNA1C rs1006737 on dimen-
sional schizotypy as a phenotypic psychosis proneness marker,
considering sex-dependent modulations. Secondly, we tested the op-
posing models of (a) the relatively stable personality trait schizotypy
mediating genetic influence on attention, expecting the Cognitive-Per-
ceptual dimension to particularly affect cognition as recently suggested
(Stotesbury et al., 2018) and (b) attentional variationmediating genetic
influence on schizotypal traits, as derived from recent studies of cogni-
tion in schizophrenia (Toulopoulou et al., 2018, 2015).

2. Material and methods

2.1. Sample

We analysed data of 615 healthy Central European subjects (age
18–65 years, mean = 32.77, standard deviation (SD) = 12.50) drawn
from the FOR2107 cohort, a multi-centre study, recruiting through
newspaper advertisements and mailing lists from the areas of Marburg
andMuenster in Germany (Kircher et al., 2018). Ethics approvalwas ob-
tained from the ethics committees of theMedical Schools of the Univer-
sities of Marburg and Muenster, respectively, in accordance with the
Declaration of Helsinki. All subjects volunteered to participate in the
study and provided written informed consent. Subjects of non-
European origin were excluded from the analyses because of known
population differences in the studied genetic polymorphisms. Exclusion
criteria were current or former psychiatric disorders (assessed with
SCID-I interviews (Wittchen et al., 1997) by trained raters), history of
neurological or other severe medical disorders, verbal IQ b80 (Multiple
ChoiceWord Test-B (Lehrl, 1995)), or current psychotropic medication.
The resulting sample comprised 232 (37.7%) male and 383 (62.3%) fe-
male participants.

2.2. Assessment of psychometric schizotypy

Self-reported schizotypy was assessed with the German version
(Klein et al., 1997) of the Schizotypal Personality Questionnaire-Brief
(SPQ-B (Raine and Benishay, 1995)). Based on Raine's original SPQ
(Raine, 1991), it has recently been validated acrossmulti-national stud-
ies, including the German version (Fonseca-Pedrero et al., 2018). Beside
a total schizotypy score, the SPQ-B provides measures on the Cognitive-
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Perceptual, Interpersonal, and Disorganised dimensions delineated by
previous factor analyses (Axelrod et al., 2001; Compton et al., 2009).
For the questionnaire as a whole and its subscores, adequate internal
consistency and criterion validity have been demonstrated (Fonseca-
Pedrero et al., 2018; Klein et al., 2001). In our sample, the SPQ-B showed
acceptable reliability (Cronbach's α = 0.737, for subscore values see
supplementary table S5).

2.3. Neurocognitive testing

Participants underwent standardised neurocognitive testing for
sustained and selective attention with the d2 test of attention
(Brickenkamp, 2002). It is a cancellation test assessing the continuous
ability to focus on task-relevant characteristics while ignoring similar
characters, requiring constant visual perceptual speed and accuracy. De-
spite its simple structure and implementation, the d2 test has been
shown to be a reliable and valid measure of attention capacity, both in
healthy subjects and in schizophrenia patients (Brickenkamp, 2002;
Lee et al., 2017). The concentration performance parameter (the error-
adjusted number of hits) was used in this analysis as it is resistant to de-
ception attempts and has shown high reliability in the reference sample
(Brickenkamp, 2002) and a randomly drawn subset of our own sample
(n = 100, Cronbach's alpha α = 0.981).

2.4. Genotyping and quality control

Genomic DNAwas extracted from blood samples acquired onsite.
Genotyping and further preparation of genomic data was performed
blinded to phenotype data at the Institute of Human Genetics of the
University Hospital Bonn, Germany and at the Max Planck Institute
of Psychiatry, Munich, Germany. Genotyping was conducted using
the Infinium PsychArray BeadChip (Illumina, San Diego, CA, USA),
according to standard protocols. Clustering and initial QC was con-
ducted in GenomeStudio v.2011.1 (Illumina, San Diego, USA) with
the Genotyping Module v.1.9.4. Full QC was performed in PLINK
v1.90b5 (x) and R v3.3.3, based on a larger dataset of which the pres-
ent subjects constituted a subset. Individuals were removed if they
met any of the following criteria: genotyping call rate b98%, gender
mismatches or other X-chromosome-related issues, genetic dupli-
cates, cryptic relatives with pi-hat ≥12.5%, genetic outlier with a dis-
tance from the mean of N4 SD in the first eight ancestry components,
or a deviation of the autosomal or X-chromosomal heterozygosity
from the mean N 4 SD.

2.5. Statistical analyses

Sex differences in schizotypy, age, and neurocognitive performance
were analysed using Student's t-tests for independent samples or
Mann-Whitney U tests where the assumption of normal distribution
was violated. Distributions of allelic frequencies between sexes were
compared with chi-squared (χ2) tests. Associations of genotypes and
schizotypy were analysed via linear regression models, using the IBM
Statistical Package for Social Sciences (SPSS, version 22, IBM, Armonk,
NY) and the PROCESS macro v3.1 for SPSS (Hayes, 2013). Multidimen-
sional scaling (MDS) analyses to estimate population stratification in
the sample were conducted in PLINK (Purcell & Chang; Chang et al.,
2015), the first three MDS components were included as covariates in
SNP association analyses. Leave-one-out cross-validation was used to
calculate the rootmean PRESS (predicted residual error sum of squares)
as a model fit parameter in stepwise regressions (√mPRESS). As SPQ-B
scales are correlated, p-values were adjusted (padj) to correct for multi-
ple comparison according to Bonferroni-Holm (Holm, 1979), using R (R
Core Team, 2018).

3. Results

3.1. Distribution of schizotypy, attention, and allele frequencies

Descriptive statistics for SPQ-B subscores as well as genotype fre-
quencies for ZNF804A rs1344706 and CACNA1C rs1006737 are shown
in Table 1. Neither rs1344706 (χ2(degrees of freedom (df) = 2) =
0.79, p=0.675) nor rs1006737 (χ2(2) = 3.80, p=0.150) showed sig-
nificant differences inminor allele counts between sexes.We also found
no significant sex differences for age (t(613) = −0.379, p = 0.704;
male mean = 32.52, SD = 11.49, female mean = 32.92, SD = 13.09)
or d2 performance (t(613) = −1.45, p = 0.148). Mean d2 scores for
the whole sample (mean = 191.40, SD = 42.25), as well as for males
(mean = 188.24, SD = 41.75) and females (mean = 193.32, SD =
42.49), were within the average range for healthy subjects, according
to standard tables (Brickenkamp, 2002). As observed in previous studies
(Kremen et al., 1998; Raine, 1992), we found significant sex differences
for the SPQ-B Sum score (U= -2.45, p=0.014, padj = 0.028), the Inter-
personal (U = -2.43, p = 0.015, padj = 0.028) and Disorganised (U = -
3.84, p = 1.3 × 10−4, padj = 3.9 × 10−4) subscores, with higher scores
in males than in females; but not for the Cognitive-Perceptual (U =
−0.96, p = 0.336) subscore.

3.2. Associations of ZNF804A, CACNA1C and schizotypy dimensions

To explore the prediction of the three schizotypy dimensions, we
performed separate stepwise multiple regression analyses, entering
the two SNPs, SNP × sex interaction terms, sex, age, and MDS compo-
nents as possible regressors (Table 2, Suppl. Table S1a-1c).

For the Cognitive-Perceptual dimension (model 1a, √mPRESS = 1.12,
Fig. 1), we found a significant effect of age (β=0.018, p=5.05 × 10−7,
padj = 2.53 × 10−6) and rs1344706 × sex (β=0.089, p=0.015, padj =
0.033), with a higher number of C alleles associated with higher Cogni-
tive-Perceptual schizotypy in females (β=0.212, p=0.007), but not in
males (β = −0.071, p = 0.458).

For the Interpersonal dimension (model 1b, √mPRESS = 1.71, Fig. 1),
we also found a significant effect of age (β = 0.011, p = 0.044, padj =
0.044) and rs1006737 × sex (β = −0.150, p = 0.011, padj = 0.033),
with a higher number of A alleles associated with lower Interpersonal
schizotypy in males (β = −0.399, p = 0.035), but not in females (β
= −0.162, p = 0.209).

For theDisorganised dimension (model 1c), only sexwas identified as
a significant regressor (β = −0.390, p = 2.16 × 10−4, padj = 8.64
× 10−4).

Table 1
Distribution of schizotypy and allele frequencies for both sexes.

total
mean (SDa)

male
mean (SDa)

female
mean (SDa)

SPQ-B
Sum 3.42 (2.99) 3.78 (3.07) 3.20 (2.93)
Cognitive perceptual 0.90 (1.15) 0.81 (1.03) 0.95 (1.21)
Interpersonal 1.72 (1.72) 1.92 (1.76) 1.60 (1.68)
Disorganized 0.80 (1.27) 1.04 (1.43) 0.65 (1.15)

total
no. (%)

male
no. (%)

female
no. (%)

ZNF804A rs1344706
AA 217 (35.3) 85 (36.6) 132 (34.5)
AC 295 (48.9) 106 (45.7) 189 (49.3)
CC 103 (16.7) 41 (17.7) 62 (16.2)

CACNA1C rs1006737
GG 292 (47.5) 118 (50.9) 174 (45.4)
AG 267 (43.4) 99 (42.7) 168 (43.9)
AA 56 (9.1) 15 (6.5) 41 (10.7)

a SD = standard deviation.
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Total schizotypywas neither associatedwith ZNF804A rs1344706 (β
= −0.317, p = 0.591) nor CACNA1C rs1006737 (β = −0.227, p =
0.120).

3.3. Associations of ZNF804A, CACNA1C, schizotypy dimensions and
attention

To explore significant predictors of d2 performance, we calculated a
separate stepwise multiple regression model 2 with the two SNPs, SNP
× sex interaction terms, sex, age, the three schizotypy subscores, and
MDS components as possible regressors (√mPRESS = 37.99, Table 2,
Suppl. Table S2). Here, age (β = −1.342, p = 7.82 × 10−25, padj =
3.14 × 10−24), Cognitive-Perceptual schizotypy (β = −4.509, p =
0.001, padj = 0.003), ZNF804A rs1344706 (β = −15.551, p = 0.003,
padj = 0.006) and rs1344706 × sex (β = 6.553, p = 0.026, padj =
0.026), with a higher number of rs1344706-C associated with lower
d2 performance in males (β = −8.145, p = 0.017) but not in females
(β = −3.041, p = 0.292), were detected as significant regressors.

3.4. Mediation models of ZNF804A, schizotypy and attention

To analyse the proposed mediating relationship of schizotypy and
attention, we hypothesised two models, derived from the associations
detected in the regression models 1a-c and 2. Model 3a (Fig. 2, Suppl.
Table S3) proposes Cognitive-Perceptual schizotypy as a risk factor for
impaired cognition, thus mediating the effect of rs1344706 on d2 per-
formance (F(3,611) = 48.78, p b 1 × 10−100, R2 = 0.197). We found a
significant direct effect of the dosage of ZNF804A rs1344706-C (c′ =
−5.038, t(611) = −2.31, p = 0.021, padj = 0.032) as well as a

significant indirect effect of the SNP via Cognitive-Perceptual schizotypy
(β = −4.210, t(611) = −2.94, p = 0.003, padj = 0.013) on d2 perfor-
mance. However, the latter was again moderated by sex: Only for fe-
males (β = −0.890) but not for males (β = 0.300), a bootstrap-based

Table 2
Summary of model specifications for models 1a, 1b and 2. Full documentation in suppl.
Tables S1–S2.

model 1a (F(2,614) = 16.00, p = 1.7 × 10−7, R2 = 0.050)

prediction ofCognitive-Perceptual schizotypy √mPRESSb = 1.12

coefficient (sea) t p padj

age 0.018 (0.004) 4.34 5.05 × 10−7 2.53 × 10−6

rs1344706 × sex 0.283 (0.124) 2.28 0.015 0.033
rs1344706 (sex = m) −0.073 (0.094) −0.74 0.458
rs1344706 (sex = f) 0.212 (0.079) 2.79 0.007

model 1b (F(2,614) = 16.58, p = 0.003, R2 = 0.015)

prediction of Interpersonal schizotypy √mPRESSb = 1.71

coefficient (sea) t p padj

age 0.011 (0.006) 2.02 0.044 0.044
rs1006737 × sex 0.283 (0.124) −2.57 0.011 0.033
rs1006737 (sex = m) −0.399 (0.188) −2.13 0.035
rs1006737 (sex = f) −0.162 (0.129) −1.26 0.209

model 2 (F(4,610) = 38.89, p = 5.13 × 10−29, R2 = 0.203)

prediction of d2 performance √mPRESSb = 37.99

coefficient
(sea)

t p padj

age −1.342
(0.125)

−10.76 7.85 ×
10−25

3.14 ×
10−24

rs1344706 −15.551
(5.208)

−2.99 0.003 0.006

rs1344706 × sex 6.553 (2.944) 2.23 0.026 0.026
rs1344706 (sex = m) −8.145

(3.399)
−2.40 0.017

rs1344706 (sex = f) −3.041
(2.881)

−1.06 0.292

Cognitive-Perceptual
schizotypy

−4.509
(1.367)

−3.30 0.001 0.003

In bold Bonferroni-Holm-adjusted p-values after correction.
a SE = standard error.
b √mPRESS = root mean predicted residual sum of squares.

Fig. 1. Sex-moderated models 1a and 1b of the effect of ZNF804A rs1344706-C and
CACNA1C rs1006737-A on differential schizotypy dimensions. b1-3 indicate
unstandardised regression coefficients for each path; statistically significant paths are
shown in bold.

Fig. 2. Sex-moderated mediation model 3a of the effect of ZNF804A rs1344706-C on d2
performance, mediated by Cognitive-Perceptual schizotypy. Conceptual (A) and statistical
(B) diagram. a1−d2 indicate unstandardised regression coefficients for each path;
statistically significant paths are shown in bold.
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confidence interval calculated using 10,000 bootstrap samples was con-
sistently below zero, confirming a conditional indirect effect.

We additionally considered the opposingmodel, assuming cognition
at an intermediate position between genes and phenotype. We tested
this assumption in our data, with d2 performance mediating the sex-
moderated effect of rs1344706-C on Cognitive-Perceptual schizotypy.
This model 3b (Fig. 3, suppl. Table S3), although significant, explained
a smaller proportion of the variance (F(5,609) = 6.90, p = 2.4 × 10−6,
R2 = 0.071) than model 3a. Post hoc t-tests comparing absolute z-
transformed bootstrapped coefficient estimates from models 3a and 3b
revealed a stronger effect of rs1344706 on Cognitive-Perceptual
schizotypy than on d2 performance (mean absolute difference (mad,
3a) = 0.130, SD = 0.117; mad(3b) = 0.134, SD = 0.117) in both
models (t(9999) = −111.49, p b 1 × 10−100; t(9999) = −114.47, p
b 1 × 10−100, respectively).

There was no indication of a mediating effect of Interpersonal
schizotypy on the association of CACNA1C rs1006737-A on attention
or vice versa (suppl. Table S4a-b).

4. Discussion

This is the first large-scale study addressing the interplay between
candidate susceptibility genes for psychotic disorders with different di-
mensions of schizotypy and neurocognitive performance as a putative
endophenotype for psychosis in healthy subjects. Our analysis provides
first support for a multivariate model of the interaction of genotype,
phenotype, and cognition, linking schizotypy in the general population
to a dimensional schizophrenia model. This includes two major find-
ings: We observe, for the first time, a sex-moderated association of
ZNF804A rs1344706 with the SPQ-B Cognitive-Perceptual dimension
and of CACNA1C rs1006737 with the SPQ-B Interpersonal dimension.
We suggest a moderated mediation model showing that in women,
the effect of rs1344706 on attention is mediated by Cognitive-Perceptual
schizotypy. Our results have implications for the role of ZNF804A
rs1344706 and CACNA1c rs1006737 in schizotypy and cognitive func-
tion, and suggest a sex-modulated interaction between them.

Concurrent with previous findings (Stefanis et al., 2013; Yasuda
et al., 2011), we further confirmed ZNF804A rs1344706 as susceptibility
SNP for schizotypy.While this association has previously been reported,
we provide a more detailed link to particular schizotypy dimensions,
modulated by sex. Initially, Yasuda et al., reported a positive relationship
between ZNF804A rs1344706-A and Disorganised schizotypal traits in
healthy subjects (Yasuda et al., 2011). Concurrent with our own find-
ings, however, Stefanis et al. reported an inverse relationship, with a
higher number of rs1344706-A associated with decreased schizotypy.
This effect was found for a primarily “positive” schizotypy
endophenotype, including referential ideas and perceptual aberrations
(Stefanis et al., 2013), in line with our results linking rs1344706 to the
Cognitive-Perceptual dimension. Differences to Yasuda's findings might
be attributed to divergent study populations and genetic backgrounds
(Japanese vs. Central-European) and different A allele frequencies in
those populations (38% and 61%, respectively (Clarke and Cardon,
2010; Yasuda et al., 2011)).

We now extend the simple model of a direct dependence of
schizotypal features on rs1344706 allelic load by introducing sex as
moderator. While previous studies on rs1344706 were either confined
to all male samples (Stefanis et al., 2013) or did not test for such an in-
teraction (Yasuda et al., 2011), a similar finding for another schizophre-
nia susceptibility SNP of ZNF804A (rs7597593, in medium linkage
disequilibrium with rs1344706; r2 = 0.395 calculated with LDlink for
the CEU population (Machiela and Chanock, 2015)) has recently been
reported, as only female C allele carriers showed elevated schizotypy
levels compared to A-homozygotes (de Castro-Catala et al., 2017).
Sex-dependent effects of rs7597593 are also evident in clinical mea-
sures and post-mortem brain mRNA expression levels in schizophrenia
(Zhang et al., 2011). Thus, our findings can be explained with clinical
and molecular mechanisms causing sex × SNP interactions for
ZNF804A in the development of schizotypal traits.

In addition, we confirmed recent findings relating ZNF804A
rs1344706 to neurocognitive function in general, and attention in par-
ticular (Chang et al., 2017). In healthy participants, the A allele and A/
A genotypewas associatedwith deficits in the executive control dimen-
sion of attention (Balog et al., 2011). Proposing a neural correlate of
functional alterations, rs1344706-A homozygotes showed reduced
thickness within the anterior cingulate cortex (Voineskos et al., 2011)
and changes in functional coupling of the dorsolateral prefrontal cortex
with the hippocampus (Esslinger et al., 2009; Paulus et al., 2013). Inter-
estingly, in patients with schizophrenia, A allele load has been associ-
ated with fewer cognitive deficits (Van Den Bossche et al., 2012;
Walters et al., 2010) and decreased cortical alteration (Schultz et al.,
2014). It has been suggested that ZNF804A rs1344706may enhance sus-
ceptibility to a certain schizophrenia subtypewith less cognitive impair-
ment (Walters et al., 2010), but also that the effects of rs1344706might
differ between healthy participants and patients (Hargreaves et al.,
2012).

While Stefanis et al. linked ZNF804A SNPs to schizotypy, they did not
detect an effect of rs1344706 on neurocognition (Stefanis et al., 2013).
Differences in test batteries aside, the discrepancy between their find-
ings and our ownmay be caused bymarked differences in sample char-
acteristics. Their sample comprised of young male army recruits while
ours combined female and male participants within a wide range of
age. Given the well-known age effects on neurocognitive measures
(Lufi et al., 2015), a very selective sample with reduced variance
might thus underestimate correlation or regression measures.

Despite evidence linking ZNF804A rs1344706 to illness susceptibility
and psychosis proneness, neurocognitive functions, and variations in
brain structure and function, its exact biological pathway is still unclear.
ZNF804A is expressed widely in the human brain (Sun et al., 2015), es-
pecially within the dorsolateral prefrontal cortex and the hippocampus
(Hill and Bray, 2012). Rs1344706 is non-coding but thought to have ef-
fects on ZNF804A expression (Hill and Bray, 2011), particularly during
early prenatal brain development (Hill and Bray, 2012). ZNF804A has

Fig. 3. Sex-moderated mediation model 3b of the effect of ZNF804A rs1344706-C on
Cognitive-Perceptual schizotypy, mediated by d2 performance. Conceptual (A) and
statistical (B) diagram. a1−d2 indicate unstandardised regression coefficients for each
path; statistically significant paths are shown in bold.
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also been associated with regulation of dopamine receptors (Girgenti
et al., 2012), and alterations of dopamine concentration, and expression
of dopaminergic genes have been linked to psychosis etiology (Howes
and Kapur, 2009) and schizotypy (Grant et al., 2014; Mohr and
Ettinger, 2014). In addition, sex-specific effects of genes involved in do-
pamine transmission have been discussed in schizophrenia, with
oestrogens and androgens differentially modifying the development of
schizophrenia symptoms through dopaminergic pathways (Godar and
Bortolato, 2014). Similar mechanismsmight influence the development
of subclinical symptoms in schizotypy and thus explain sex-dependent
effects of ZNF804A on schizotypal traits.

Taken together, compelling evidence suggests that effects of
ZNF804A rs1344706 polymorphisms have a relevant impact long before
potential illness manifestation. Affected brain areas and neurocognitive
functions have shown to be relevant for schizophrenia as well as
schizotypy. Using genetic modelling in twin samples, Toulopoulou
et al. showed that a substantial part of the phenotypic overlap between
schizophrenia and cognition is explained by shared genetic variability
(Toulopoulou et al., 2007). The authors concluded that the next step
would be to identify specific genes that influence schizophrenia to-
gether with cognitive quantities. Our results support ZNF804A
rs1344706 as such a genetic variant relevant for schizotypy, an interme-
diate schizophrenia phenotype. As has been reported recently
(Stotesbury et al., 2018), we particularly regard the Cognitive-Perceptual
dimension as a risk factor for attentional difficulties.

However, Toulopoulou et al. subsequently argued that schizophre-
nia liability is partially expressed through cognitive deficits
(Toulopoulou et al., 2015) and that cognitive functions lie upstream of
schizophrenia (Toulopoulou et al., 2018). Relevant loci should then
have a bigger effect on cognitive function than on schizophrenia
(Toulopoulou et al., 2015). Our results, however, fail to confirm this pre-
diction for the schizotypy phenotype. In both models tested, ZNF804A
rs1344706 showed a larger effect on schizotypy than on cognitive func-
tion. While aware that this cannot definitively be resolved in our cross-
sectional study, we believe that our results should inspire further dis-
section of the proposed models. Considerably, Toulopoulou's model is
based on net genetic influences rather than single risk variants. It also
relies on patient data and thus on the schizophrenia phenotype rather
than schizotypy (Hargreaves et al., 2012) and ZNF804A expression
seems to differ between schizophrenia patients and healthy controls
(Guella and Vawter, 2014). The underlying mechanisms of schizophre-
nia and schizotypy are overlapping, but most likely not identical. Be-
sides a balanced proportion of male and female participants, the
application of multiple measures of both schizotypy and cognitive per-
formance should be considered to overcome limitations of our own
study.

We further showed a sex-modulated association of the psychosis
susceptibility variant rs1006737 in CACNA1C with the Interpersonal
schizotypy dimension. While sex-dependent effects of rs1006737 or
its proxy rs10774035 have been reported for schizophrenia-spectrum
disorders (Heilbronner et al., 2015) and emotional lability and resilience
(Strohmaier et al., 2013), this is, to our knowledge, the first study de-
tecting a sex-dependent effect of rs1006737 on schizotypy. In contrast
to previous studies (Roussos et al., 2013, 2011), associating
rs1006737-Awith higher Paranoid Ideation, we find an inverse relation-
ship, i.e. with lower Interpersonal schizotypy scores in men only. Beside
the possibility of chance findings, this might be due to differences in
sample characteristics, as both studies by Roussos et al. analysed
young male army recruits, while our sample comprised males and fe-
males of a wide age range. Other discrepancies include the schizotypy
measures and possible population differences (Greek vs. Central
European) across studies (Clarke and Cardon, 2010).

As CACNA1C is suggested to be a susceptibility gene for a more gen-
eral risk for mental illness (Cross-Disorder Group of the Psychiatric Ge-
nomics Consortium, 2013), divergent effects in different studies might
represent a less specific impact of the SNP. This would implicate the

need for more studies with diverse samples. However, CACNA1C
rs1006737 has repeatedly been associated with socially relevant tasks
like emotion recognition and processing (Nieratschker et al., 2015;
Soeiro-de-Souza et al., 2012; Tesli et al., 2013), as well as alterations in
social interaction in animal models (Dedic et al., 2018; Moon et al.,
2018). Thus, variations in rs1006737 seem to affect social functioning
on a behavioural level, as well as brain structural and functional corre-
lates. It might be concluded that rs1006737 primarily affects the Inter-
personal and, as such, social dimension of schizotypy.

The results from our study provide evidence for the involvement of
schizophrenia genetic susceptibility variants in psychometric
schizotypy, a risk phenotype for psychosis. Our findings further provide
an account of how those risk variants might modulate different dimen-
sions of individual schizotypal traits even in healthy subjects, affecting
neurocognitive performance in domains frequently impaired in
schizophrenia.

Conflict of interest
None.

Contributors
TM performed the statistical analyses, TM and IN wrote the first draft of the manu-

script. TFMA helped with chosing the statistical design and wrote the genetic methods
part. SS, FS, KB, JM, DY, DZ, DG, KD, SM, KF, RR, NO, JR, TH and AJ participated in data acqui-
sition, quality checking and preparation, and assisted in literature search and analyses.
TFMA, AJF, SH-H, FS, SHW,MR, BM-M andMMMperformed genotyping as well as further
preparation and quality control of the genetic data. IN, UD, AK and TK designed the study
protocol. All authors contributed to and have approved the final manuscript.

Funding

Part of this work was supported through a FlexiFunds grant (FCMH
grant number 2017_2_1_5 to IN). This work was supported by German
Research Foundation (DFG), grant FOR2107 (grant numbers NE 2254/1-
2 to IN, KI 588/14-1 and KI 588/14-2 to TK, DA 1151/5-1 andDA 1151/5-
2 toUD, KO4291/4-1, KR 3822/5-1 andKR3822/7-2 to AK andKO4291/
3-1) and SFB-TRR58 (projects C09 and Z02 to UD); the Interdisciplinary
Center for Clinical Research (Interdisziplinäres Zentrum für Klinische
Forschung, IZKF) of the medical faculty of Münster (grant number
Dan3/012/17 to UD), the European Commission through ERA-NET
NEURON (01EW1810 to MR), and the German Federal Ministry of Edu-
cation and Research (BMBF), through the Integrated Network
IntegraMent, under the auspices of the e:Med programme (grant num-
bers 01ZX1314A to MMN, 1ZX1314G to MR and 01ZX1614J to BMM).

Acknowledgements
We thank all participants volunteering for this study. Also, we would like to thank all

student research assistants for their help.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.schres.2019.04.018.

References

Abel, K.M., Drake, R., Goldstein, J.M., 2010. Sex differences in schizophrenia. Int. Rev. Psy-
chiatry 22, 417–428. https://doi.org/10.3109/09540261.2010.515205.

Alvarez-Moya, E.M., Barrantes-Vidal, N., Navarro, J.B., Subira, S., Obiols, J.E., 2007.
Exophenotypical profile of adolescents with sustained attention deficit: a 10-year
follow-up study. Psychiatry Res. 153, 119–130. https://doi.org/10.1016/j.
psychres.2006.12.021.

Axelrod, S.R., Grilo, C.M., Sanislow, C., McGlashan, T.H., 2001. Schizotypal personality
questionnaire-brief: factor structure and convergent validity in inpatient adolescents.
J. Personal. Disord. 15, 168–179.

Balog, Z., Kiss, I., Kéri, S., 2011. ZNF804A may be associated with executive control of at-
tention. Genes Brain Behav. 10, 223–227. https://doi.org/10.1111/j.1601-
183X.2010.00657.x.

Barrantes-Vidal, N., Grant, P., Kwapil, T.R., 2015. The role of schizotypy in the study of the
etiology of schizophrenia spectrum disorders. Schizophr. Bull. 41 (Suppl. 2),
S408–S416. https://doi.org/10.1093/schbul/sbu191.

72 T. Meller et al. / Schizophrenia Research 208 (2019) 67–75

Author's Personal Copy

42

https://doi.org/10.1016/j.schres.2019.04.018
https://doi.org/10.1016/j.schres.2019.04.018
https://doi.org/10.3109/09540261.2010.515205
https://doi.org/10.1016/j.psychres.2006.12.021
https://doi.org/10.1016/j.psychres.2006.12.021
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0015
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0015
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0015
https://doi.org/10.1111/j.1601-183X.2010.00657.x
https://doi.org/10.1111/j.1601-183X.2010.00657.x
https://doi.org/10.1093/schbul/sbu191


Bhat, S., Dao, D.T., Terrillion, C.E., Arad, M., Smith, R.J., Soldatov, N.M., Gould, T.D., 2012.
CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease. Prog. Neurobiol.
99, 1–14. https://doi.org/10.1016/j.pneurobio.2012.06.001.

Breeze, J.M.B., Kirkham, A.J., Marí-Beffa, P., 2011. Evidence of reduced selective attention
in schizotypal personality disorder. J. Clin. Exp. Neuropsychol. 33, 776–784. https://
doi.org/10.1080/13803395.2011.558495.

Brickenkamp, R., 2002. Der Aufmerksamkeits-Belastungstest d2. 9th ed. Hogrefe,
Goettingen.

Brosey, E., Woodward, N.D., 2015. Schizotypy and clinical symptoms, cognitive function,
and quality of life in individuals with a psychotic disorder. Schizophr. Res. 166,
92–97. https://doi.org/10.1016/j.schres.2015.04.038.

de Castro-Catala, M., Mora-Solano, A., Kwapil, T.R., Cristóbal-Narváez, P., Sheinbaum, T.,
Racioppi, A., Barrantes-Vidal, N., Rosa, A., 2017. The genome-wide associated candi-
date gene ZNF804A and psychosis-proneness: evidence of sex-modulated associa-
tion. PLoS One 12, e0185072. https://doi.org/10.1371/journal.pone.0185072.

Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., Lee, J.J., 2015. Second-
generation PLINK: rising to the challenge of larger and richer datasets. Gigascience
4, 7. https://doi.org/10.1186/s13742-015-0047-8.

Chang, H., Xiao, X., Li, M., 2017. The schizophrenia risk gene ZNF804A: clinical associa-
tions, biological mechanisms and neuronal functions. Mol. Psychiatry 22, 944–953.
https://doi.org/10.1038/mp.2017.19.

Chapman, L.J., Chapman, J.P., Kwapil, T.R., Eckblad, M., Zinser, M.C., 1994. Putatively
psychosis-prone subjects 10 years later. J. Abnorm. Psychol. 103, 171–183.

Chen, W.J., Faraone, S.V., 2000. Sustained attention deficits as markers of genetic suscep-
tibility to schizophrenia. Am. J. Med. Genet. 97, 52–57.

Clarke, G.M., Cardon, L.R., 2010. Aspects of observing and claiming allele flips in associa-
tion studies. Genet. Epidemiol. 34, 266–274. https://doi.org/10.1002/gepi.20458.

Compton, M.T., Goulding, S.M., Bakeman, R., McClure-Tone, E.B., 2009. An examination of
the factorial structure of the schizotypal personality questionnaire-brief (SPQ-B)
among undergraduate students. Schizophr. Res. 115, 286–289. https://doi.org/
10.1016/J.SCHRES.2009.04.012.

Craddock, N., O'Donovan, M.C., Owen, M.J., 2009. Psychosis genetics: modeling the rela-
tionship between schizophrenia, bipolar disorder, and mixed (or &quot;
schizoaffective&quot;) psychoses. Schizophr. Bull. 35, 482–490. https://doi.org/
10.1093/schbul/sbp020.

Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013. Identification of risk
loci with shared effects on five major psychiatric disorders: a genome-wide analysis.
Lancet 381, 1371–1379. https://doi.org/10.1016/S0140-6736(12)62129-1.

Dedic, N., Pöhlmann, M.L., Richter, J.S., Mehta, D., Czamara, D., Metzger, M.W., Dine,
J., Bedenk, B.T., Hartmann, J., Wagner, K.V., Jurik, A., Almli, L.M., Lori, A.,
Moosmang, S., Hofmann, F., Wotjak, C.T., Rammes, G., Eder, M., Chen, A.,
Ressler, K.J., Wurst, W., Schmidt, M.V., Binder, E.B., Deussing, J.M., 2018. Cross-
disorder risk gene CACNA1C differentially modulates susceptibility to psychiat-
ric disorders during development and adulthood. Mol. Psychiatry 23, 533–543.
https://doi.org/10.1038/mp.2017.133.

Dietsche, B., Backes, H., Laneri, D., Weikert, T., Witt, S.H., Rietschel, M., Sommer, J., Kircher,
T., Krug, A., 2014. The impact of a CACNA1C gene polymorphism on learning and hip-
pocampal formation in healthy individuals: a diffusion tensor imaging study.
Neuroimage 89, 256–261. https://doi.org/10.1016/j.neuroimage.2013.11.030.

Dodell-Feder, D., Saxena, A., Rutter, L., Germine, L., 2019. The network structure of
schizotypal personality traits in a population-based sample. Schizophr. Res. https://
doi.org/10.1016/j.schres.2019.01.046.

Donohoe, G., Rose, E., Frodl, T., Morris, D., Spoletini, I., Adriano, F., Bernardini, S.,
Caltagirone, C., Bossù, P., Gill, M., Corvin, A.P., Spalletta, G., 2011. ZNF804A risk allele
is associated with relatively intact gray matter volume in patients with schizophre-
nia. Neuroimage 54, 2132–2137. https://doi.org/10.1016/j.neuroimage.2010.09.089.

Elvevåg, B., Goldberg, T.E., 2000. Cognitive impairment in schizophrenia is the core of the
disorder. Crit. Rev. Neurobiol. 14 (1), 21.

Erk, S., Meyer-Lindenberg, A., Schnell, K., Opitz von Boberfeld, C., Esslinger, C., Kirsch, P.,
Grimm, O., Arnold, C., Haddad, L., Witt, S.H., Cichon, S., Nöthen, M.M., Rietschel, M.,
Walter, H., 2010. Brain function in carriers of a genome-wide supported bipolar dis-
order variant. Arch. Gen. Psychiatry 67, 803. https://doi.org/10.1001/
archgenpsychiatry.2010.94.

Esslinger, C., Walter, H., Kirsch, P., Erk, S., Schnell, K., Arnold, C., Haddad, L., Mier, D., Opitz
von Boberfeld, C., Raab, K., Witt, S.H., Rietschel, M., Cichon, S., Meyer-Lindenberg, A.,
2009. Neural mechanisms of a genome-wide supported psychosis variant. Science
324, 605. https://doi.org/10.1126/science.1167768.

Ettinger, U., Joober, R., DE Guzman, R., O'Driscoll, G.A., 2006. Schizotypy, attention deficit
hyperactivity disorder, and dopamine genes. Psychiatry Clin. Neurosci. 60, 764–767.
doi:https://doi.org/10.1111/j.1440-1819.2006.01594.x.

Ettinger, U., Mohr, C., Gooding, D.C., Cohen, A.S., Rapp, A., Haenschel, C., Park, S., 2015.
Cognition and brain function in Schizotypy: a selective review. Schizophr. Bull. 41,
S417–S426. https://doi.org/10.1093/schbul/sbu190.

Ferreira, M.A.R., O'Donovan, M.C., Meng, Y.A., Jones, I.R., Ruderfer, D.M., Jones, L., Fan, J.,
Kirov, G., Perlis, R.H., Green, E.K., Smoller, J.W., Grozeva, D., Stone, J., Nikolov, I.,
Chambert, K., Hamshere, M.L., Nimgaonkar, V.L., Moskvina, V., Thase, M.E., Caesar,
S., Sachs, G.S., Franklin, J., Gordon-Smith, K., Ardlie, K.G., Gabriel, S.B., Fraser, C.,
Blumenstiel, B., Defelice, M., Breen, G., Gill, M., Morris, D.W., Elkin, A., Muir, W.J.,
McGhee, K.A., Williamson, R., MacIntyre, D.J., MacLean, A.W., St, C.D., Robinson, M.,
Van Beck, M., Pereira, A.C.P., Kandaswamy, R., McQuillin, A., Collier, D.A., Bass, N.J.,
Young, A.H., Lawrence, J., Ferrier, I.N., Anjorin, A., Farmer, A., Curtis, D., Scolnick,
E.M., McGuffin, P., Daly, M.J., Corvin, A.P., Holmans, P.A., Blackwood, D.H., Gurling,
H.M., Owen, M.J., Purcell, S.M., Sklar, P., Craddock, N., Wellcome Trust Case Control
Consortium, N, 2008. Nat. Genet. 40, 1056–1058. https://doi.org/10.1038/ng.209 Col-
laborative genome-wide association analysis supports a role for ANK3 and CACNA1C
in bipolar disorder.

Fink, A., Weber, B., Koschutnig, K., Benedek, M., Reishofer, G., Ebner, F., Papousek, I.,
Weiss, E.M., 2014. Creativity and schizotypy from the neuroscience perspective.
Cogn. Affect. Behav. Neurosci. 14, 378–387. https://doi.org/10.3758/s13415-013-
0210-6.

Fonseca-Pedrero, E., Ortuño-Sierra, J., Lucas-Molina, B., Debbané, M., Chan, R.C.K., Cicero,
D.C., Zhang, L.C., Brenner, C., Barkus, E., Linscott, R.J., Kwapil, T., Barrantes-Vidal, N.,
Cohen, A., Raine, A., Compton, M.T., Tone, E.B., Suhr, J., Bobes, J., Fumero, A.,
Giakoumaki, S., Tsaousis, I., Preti, A., Chmielewski, M., Laloyaux, J., Mechri, A.,
Lahmar, M.A., Wuthrich, V., Larøi, F., Badcock, J.C., Jablensky, A., Barron, D., Swami,
V., Tran, U.S., Voracek, M., 2018. Brief assessment of schizotypal traits: a multinational
study. Schizophr. Res. 197, 182–191. https://doi.org/10.1016/J.SCHRES.2017.10.043.

Fuggetta, G., Bennett, M.A., Duke, P.A., 2015. An electrophysiological insight into visual at-
tention mechanisms underlying schizotypy. Biol. Psychol. 109, 206–221. https://doi.
org/10.1016/j.biopsycho.2015.06.007.

Girgenti, M.J., LoTurco, J.J., Maher, B.J., 2012. ZNF804a regulates expression of the
schizophrenia-associated genes PRSS16, COMT, PDE4B, and DRD2. PLoS One 7,
e32404. https://doi.org/10.1371/journal.pone.0032404.

Godar, S.C., Bortolato, M., 2014. Gene-sex interactions in schizophrenia: focus on dopa-
mine neurotransmission. Front. Behav. Neurosci. 8, 71. https://doi.org/10.3389/
fnbeh.2014.00071.

Gooding, D.C., Tallent, K.A., Matts, C.W., 2005. Clinical status of at-risk individuals 5 years
later: further validation of the psychometric high-risk strategy. J. Abnorm. Psychol.
114, 170–175. https://doi.org/10.1037/0021-843X.114.1.170.

Gooding, D.C., Matts, C.W., Rollmann, E.A., 2006. Sustained attention deficits in rela-
tion to psychometrically identified schizotypy: evaluating a potential
endophenotypic marker. Schizophr. Res. 82, 27–37. https://doi.org/10.1016/J.
SCHRES.2005.11.015.

Grant, P., Gabriel, F., Kuepper, Y., Wielpuetz, C., Hennig, J., 2014. Psychosis-proneness cor-
relates with expression levels of dopaminergic genes. Eur. Psychiatry 29, 304–306.
https://doi.org/10.1016/j.eurpsy.2013.12.002.

Guella, I., Vawter, M.P., 2014. Allelic imbalance associatedwith the schizophrenia risk SNP
rs1344706 indicates a cis-acting variant in ZNF804A. Schizophr. Res. 153, 243–245.
https://doi.org/10.1016/J.SCHRES.2014.01.005.

Hargreaves, A., Morris, D.W., Rose, E., Fahey, C., Moore, S., Cummings, E., Tropea, D., Gill,
M., Corvin, A., Donohoe, G., 2012. ZNF804A and social cognition in patients with
schizophrenia and healthy controls. Mol. Psychiatry 17, 118–119. https://doi.org/
10.1038/mp.2011.102.

Hatzimanolis, A., Avramopoulos, D., Arking, D.E., Moes, A., Bhatnagar, P., Lencz, T.,
Malhotra, A.K., Giakoumaki, S.G., Roussos, P., Smyrnis, N., Bitsios, P., Stefanis, N.C.,
2018. Stress-dependent association between polygenic risk for schizophrenia and
schizotypal traits in young army recruits. Schizophr. Bull. 44, 338–347. https://doi.
org/10.1093/schbul/sbx074.

Hayes, A., 2013. Introduction to Mediation, Moderation, and Conditional Process Analysis:
A Regression-Based Approach. 2nd ed. The Guilford Press.

Heilbronner, U., Malzahn, D., Strohmaier, J., Maier, S., Frank, J., Treutlein, J., Mühleisen,
T.W., Forstner, A.J., Witt, S.H., Cichon, S., Falkai, P., Nöthen, M.M., Rietschel, M.,
Schulze, T.G., 2015. A common risk variant in CACNA1C supports a sex-dependent ef-
fect on longitudinal functioning and functional recovery from episodes of
schizophrenia-spectrum but not bipolar disorder. Eur. Neuropsychopharmacol. 25,
2262–2270. https://doi.org/10.1016/j.euroneuro.2015.09.012.

Hill, M.J., Bray, N.J., 2011. Allelic differences in nuclear protein binding at a genome-wide
significant risk variant for schizophrenia in ZNF804A. Mol. Psychiatry 16, 787–789.
https://doi.org/10.1038/mp.2011.21.

Hill, M.J., Bray, N.J., 2012. Evidence that schizophrenia risk variation in the ZNF804A gene
exerts its effects during fetal brain development. Am. J. Psychiatry 169, 1301–1308.
https://doi.org/10.1176/appi.ajp.2012.11121845.

Hill, S.K., Harris, M.S.H., Herbener, E.S., Pavuluri, M., Sweeney, J.A., 2008. Neurocognitive
allied phenotypes for schizophrenia and bipolar disorder. Schizophr. Bull. 34,
743–759. https://doi.org/10.1093/schbul/sbn027.

Holm, S., 1979. A simple sequentially Rejective multiple test procedure. Scand. J. Stat.
https://doi.org/10.2307/4615733.

Howes, O.D., Kapur, S., 2009. The dopamine hypothesis of schizophrenia: version III–the
final common pathway. Schizophr. Bull. 35, 549–562. https://doi.org/10.1093/
schbul/sbp006.

Jiang, H., Qiao, F., Li, Z., Zhang, Y., Cheng, Y., Xu, X., Yu, L., 2015. Evaluating the association
between CACNA1C rs1006737 and schizophrenia risk: a meta-analysis. Asia Pac. Psy-
chiatry 7, 260–267. https://doi.org/10.1111/appy.12173.

Jones, H.J., Stergiakouli, E., Tansey, K.E., Hubbard, L., Heron, J., Cannon, M., Holmans, P.,
Lewis, G., Linden, D.E.J., Jones, P.B., Davey Smith, G., O'Donovan, M.C., Owen, M.J.,
Walters, J.T., Zammit, S., 2016. Phenotypic manifestation of genetic risk for schizo-
phrenia during adolescence in the general population. JAMA Psychiat. 73, 221.
https://doi.org/10.1001/jamapsychiatry.2015.3058.

Kircher, T., Wöhr, M., Nenadic, I., Schwarting, R., Schratt, G., Alferink, J., Culmsee, C., Garn,
H., Hahn, T., Müller-Myhsok, B., Dempfle, A., Hahmann, M., Jansen, A., Pfefferle, P.,
Renz, H., Rietschel, M., Witt, S.H., Nöthen, M., Krug, A., Dannlowski, U., 2018. Neuro-
biology of the major psychoses: a translational perspective on brain structure and
function-the FOR2107 consortium. Eur. Arch. Psychiatry Clin. Neurosci. https://doi.
org/10.1007/s00406-018-0943-x.

Klein, C., Andresen, B., Jahn, T., 1997. Erfassung der schizotypen Persönlichkeit nach DSM-
II-R: Psychometrische Eigenschaften einer autorisierten deutschsprachigen
Übersetzung des “Schizotypal Personality Questionnaire” (SPQ) von Raine.
Diagnostica 43, 347–369. https://doi.org/10.1037/t10727-000.

Klein, C., Andresen, B., Jahn, T., 2001. Konstruktvalidierung der deutschsprachigen Adap-
tation des Schizotypal Personality Questionnaires (SPQ) von Raine (1991). In:
Andresen, B., Maß, R. (Eds.), Schizotypie. Psychometrische Entwicklungen Und
Biopsychologische Forschungsansätze. Hogrefe, Göttingen, pp. 349–378.

73T. Meller et al. / Schizophrenia Research 208 (2019) 67–75

Author's Personal Copy

43

https://doi.org/10.1016/j.pneurobio.2012.06.001
https://doi.org/10.1080/13803395.2011.558495
https://doi.org/10.1080/13803395.2011.558495
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0040
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0040
https://doi.org/10.1016/j.schres.2015.04.038
https://doi.org/10.1371/journal.pone.0185072
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1038/mp.2017.19
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0065
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0065
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0070
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0070
https://doi.org/10.1002/gepi.20458
https://doi.org/10.1016/J.SCHRES.2009.04.012
https://doi.org/10.1016/J.SCHRES.2009.04.012
https://doi.org/10.1093/schbul/sbp020
https://doi.org/10.1093/schbul/sbp020
https://doi.org/10.1016/S0140-6736(12)62129-1
https://doi.org/10.1038/mp.2017.133
https://doi.org/10.1016/j.neuroimage.2013.11.030
https://doi.org/10.1016/j.schres.2019.01.046
https://doi.org/10.1016/j.schres.2019.01.046
https://doi.org/10.1016/j.neuroimage.2010.09.089
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0115
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0115
https://doi.org/10.1001/archgenpsychiatry.2010.94
https://doi.org/10.1001/archgenpsychiatry.2010.94
https://doi.org/10.1126/science.1167768
https://doi.org/10.1111/j.1440-1819.2006.01594.x
https://doi.org/10.1093/schbul/sbu190
https://doi.org/10.1038/ng.209
https://doi.org/10.3758/s13415-013-0210-6
https://doi.org/10.3758/s13415-013-0210-6
https://doi.org/10.1016/J.SCHRES.2017.10.043
https://doi.org/10.1016/j.biopsycho.2015.06.007
https://doi.org/10.1016/j.biopsycho.2015.06.007
https://doi.org/10.1371/journal.pone.0032404
https://doi.org/10.3389/fnbeh.2014.00071
https://doi.org/10.3389/fnbeh.2014.00071
https://doi.org/10.1037/0021-843X.114.1.170
https://doi.org/10.1016/J.SCHRES.2005.11.015
https://doi.org/10.1016/J.SCHRES.2005.11.015
https://doi.org/10.1016/j.eurpsy.2013.12.002
https://doi.org/10.1016/J.SCHRES.2014.01.005
https://doi.org/10.1038/mp.2011.102
https://doi.org/10.1038/mp.2011.102
https://doi.org/10.1093/schbul/sbx074
https://doi.org/10.1093/schbul/sbx074
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0195
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0195
https://doi.org/10.1016/j.euroneuro.2015.09.012
https://doi.org/10.1038/mp.2011.21
https://doi.org/10.1176/appi.ajp.2012.11121845
https://doi.org/10.1093/schbul/sbn027
https://doi.org/10.2307/4615733
https://doi.org/10.1093/schbul/sbp006
https://doi.org/10.1093/schbul/sbp006
https://doi.org/10.1111/appy.12173
https://doi.org/10.1001/jamapsychiatry.2015.3058
https://doi.org/10.1007/s00406-018-0943-x
https://doi.org/10.1007/s00406-018-0943-x
https://doi.org/10.1037/t10727-000
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0250
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0250
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0250
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0250


Kremen, W., Faraone, S., Toomey, R., Seidman, L., Tsuang, M., 1998. Sex differences in self-
reported schizotypal traits in relatives of schizophrenic probands. Schizophr. Res. 34,
27–37. https://doi.org/10.1016/S0920-9964(98)00081-4.

Krug, A., Witt, S.H., Backes, H., Dietsche, B., Nieratschker, V., Shah, N.J., Nöthen, M.M., Rietschel,
M., Kircher, T., 2014. A genome-wide supported variant in CACNA1C influences hippo-
campal activation during episodic memory encoding and retrieval. Eur. Arch. Psychiatry
Clin. Neurosci. 264, 103–110. https://doi.org/10.1007/s00406-013-0428-x.

Kwapil, T.R., Gross, G.M., Silvia, P.J., Barrantes-Vidal, N., 2013. Prediction of psychopathol-
ogy and functional impairment by positive and negative schizotypy in the Chapmans'
ten-year longitudinal study. J. Abnorm. Psychol. 122, 807–815. https://doi.org/
10.1037/a0033759.

Lee, P., Lu, W.-S., Liu, C.-H., Lin, H.-Y., Hsieh, C.-L., 2017. Test–retest reliability andminimal
detectable change of the D2 test of attention in patients with schizophrenia. Arch.
Clin. Neuropsychol. 19. https://doi.org/10.1093/arclin/acx123.

Lehrl, S., 1995. Mehrfachwahl-Wortschatz-Intelligenztest MWT-B. Hogrefe, Göttingen.
Lencz, T., Szeszko, P.R., DeRosse, P., Burdick, K.E., Bromet, E.J., Bilder, R.M., Malhotra, A.K.,

2010. A schizophrenia risk gene, ZNF804A, influences neuroanatomical and
neurocognitive phenotypes. Neuropsychopharmacology 35, 2284–2291. https://doi.
org/10.1038/npp.2010.102.

Lufi, D., Segev, S., Blum, A., Rosen, T., Haimov, I., 2015. The effect of age on attention level.
Int. J. Aging Hum. Dev. 81, 176–188. https://doi.org/10.1177/0091415015614953.

Machiela, M.J., Chanock, S.J., 2015. LDlink: a web-based application for exploring
population-specific haplotype structure and linking correlated alleles of possible
functional variants. Bioinformatics 31, 3555–3557. https://doi.org/10.1093/bioinfor-
matics/btv402.

Mohr, C., Claridge, G., 2015. Schizotypy - do not worry, it is not all worrisome. Schizophr.
Bull. 41, 436–S443. https://doi.org/10.1093/schbul/sbu185.

Mohr, C., Ettinger, U., 2014. An overview of the association between Schizotypy and do-
pamine. Front. Psychiatry 5, 184. https://doi.org/10.3389/fpsyt.2014.00184.

Moon, A.L., Haan, N., Wilkinson, L.S., Thomas, K.L., Hall, J., 2018. CACNA1C: association
with psychiatric disorders, behavior, and neurogenesis. Schizophr. Bull. 44,
958–965. https://doi.org/10.1093/schbul/sby096.

Moreno-Samaniego, L., Gaviria, A.M., Vilella, E., Valero, J., Labad, A., 2017. Schizotypal
traits and cognitive performance in siblings of patients with psychosis. Psychiatry
Res. 258, 551–556. https://doi.org/10.1016/j.psychres.2017.09.007.

Nenadic, I., Maitra, R., Basmanav, F.B., Schultz, C.C., Lorenz, C., Schachtzabel, C., Smesny, S.,
Nöthen, M.M., Cichon, S., Reichenbach, J.R., Sauer, H., Schlösser, R.G.M.M., Gaser, C.,
2015. ZNF804A genetic variation (rs1344706) affects brain grey but not white matter
in schizophrenia and healthy subjects. Psychol. Med. 45, 143–152. https://doi.org/
10.1017/S0033291714001159.

Nettle, D., Clegg, H., 2006. Schizotypy, creativity and mating success in humans. Proc. R.
Soc. B Biol. Sci. 273, 611–615. https://doi.org/10.1098/rspb.2005.3349.

Nieratschker, V., Brückmann, C., Plewnia, C., 2015. CACNA1C risk variant affects facial
emotion recognition in healthy individuals. Sci. Rep. 5, 17349. https://doi.org/
10.1038/srep17349.

Nuechterlein, K.H., Barch, D.M., Gold, J.M., Goldberg, T.E., Green, M.F., Heaton, R.K., 2004.
Identification of separable cognitive factors in schizophrenia. Schizophr. Res. 72,
29–39. https://doi.org/10.1016/j.schres.2004.09.007.

O'Donovan,M.C., Craddock, N., Norton, N.,Williams, H., Peirce, T., Moskvina, V., Nikolov, I.,
Hamshere, M., Carroll, L., Georgieva, L., Dwyer, S., Holmans, P., Marchini, J.L., Spencer,
C.C.A.A., Howie, B., Leung, H.-T.T., Hartmann, A.M., Möller, H.-J.J., Morris, D.W., Shi,
Y.Y., Feng, G.Y., Hoffmann, P., Propping, P., Vasilescu, C., Maier, W., Rietschel, M.,
Zammit, S., Schumacher, J., Quinn, E.M., Schulze, T.G., Williams, N.M., Giegling, I.,
Iwata, N., Ikeda, M., Darvasi, A., Shifman, S., He, L., Duan, J., Sanders, A.R., Levinson,
D.F., Gejman, P.V., Buccola, N.G., Mowry, B.J., Freedman, R., Amin, F., Black, D.W.,
Silverman, J.M., Byerley, W.F., Cloninger, C.R., Cichon, S., Nöthen, M.M., Gill, M.,
Corvin, A., Rujescu, D., Kirov, G., Owen, M.J., Buccola, N.G., Mowry, B.J., Freedman,
R., Amin, F., Black, D.W., Silverman, J.M., Byerley, W.F., Cloninger, C.R., Molecular
Genetics of Schizophrenia Collaboration, 2008. Identification of loci associated with
schizophrenia by genome-wide association and follow-up. Nat. Genet. 40,
1053–1055. https://doi.org/10.1038/ng.201.

Pardiñas, A.F., Holmans, P., Pocklington, A.J., Escott-Price, V., Ripke, S., Carrera, N., Legge,
S.E., Bishop, S., Cameron, D., Hamshere, M.L., Han, J., Hubbard, L., Lynham, A.,
Mantripragada, K., Rees, E., MacCabe, J.H., McCarroll, S.A., Baune, B.T., Breen, G.,
Byrne, E.M., Dannlowski, U., Eley, T.C., Hayward, C., Martin, N.G., McIntosh, A.M.,
Plomin, R., Porteous, D.J., Wray, N.R., Caballero, A., Geschwind, D.H., Huckins, L.M.,
Ruderfer, D.M., Santiago, E., Sklar, P., Stahl, E.A., Won, H., Agerbo, E., Als, T.D.,
Andreassen, O.A., Bækvad-Hansen, M., Mortensen, P.B., Pedersen, C.B., Børglum,
A.D., Bybjerg-Grauholm, J., Djurovic, S., Durmishi, N., Pedersen, M.G., Golimbet, V.,
Grove, J., Hougaard, D.M., Mattheisen, M., Molden, E., Mors, O., Nordentoft, M.,
Pejovic-Milovancevic, M., Sigurdsson, E., Silagadze, T., Hansen, C.S., Stefansson, K., Ste-
fansson, H., Steinberg, S., Tosato, S., Werge, T., GERAD1 Consortium: D.A., CRESTAR
Consortium:, D. Collier, D.A. Rujescu, D. Kirov, G. Owen, M.J. O'Donovan, M.C. Walters,
J.T.R., GERAD1 Consortium, CRESTAR Consortium, GERAD1 Consortium, CRESTAR
Consortium, 2018. Common schizophrenia alleles are enriched in mutation-
intolerant genes and in regions under strong background selection. Nat. Genet. 50,
381–389. doi: https://doi.org/10.1038/s41588-018-0059-2.

Paulus, F.M., Krach, S., Bedenbender, J., Pyka, M., Sommer, J., Krug, A., Knake, S., Nöthen,
M.M., Witt, S.H., Rietschel, M., Kircher, T., Jansen, A., 2013. Partial support for
ZNF804A genotype-dependent alterations in prefrontal connectivity. Hum. Brain
Mapp. 34, 304–313. https://doi.org/10.1002/hbm.21434.

Purcell, S., Chang, C., n.d. PLINK v1.9.
R Core Team, 2018. R: A Language and Environment for Statistical Computing.
Raine, A., 1991. The SPQ: a scale for the assessment of schizotypal personality based on

DSM-III-R criteria. Schizophr. Bull. 17, 555–564. https://doi.org/10.1093/schbul/
17.4.555.

Raine, A., 1992. Sex differences in schizotypal personality in a nonclinical population.
J. Abnorm. Psychol. 101, 361–364. https://doi.org/10.1037/0021-843X.101.2.361.

Raine, A., Benishay, D., 1995. The SPQ-B: a brief screening instrument for schizotypal per-
sonality disorder. J. Personal. Disord. 9, 346–355. https://doi.org/10.1521/
pedi.1995.9.4.346.

Riley, B., Thiselton, D., Maher, B.S., Bigdeli, T., Wormley, B., McMichael, G.O., Fanous, A.H.,
Vladimirov, V., O'Neill, F.A., Walsh, D., Kendler, K.S., 2010. Replication of association
between schizophrenia and ZNF804A in the Irish case-control study of schizophrenia
sample. Mol. Psychiatry 15, 29–37. https://doi.org/10.1038/mp.2009.109.

Ripke, S., O'Dushlaine, C., Chambert, K., Moran, J.L., Kähler, A.K., Akterin, S., Bergen, S.E.,
Collins, A.L., Crowley, J.J., Fromer, M., Kim, Y., Lee, S.H., Magnusson, P.K.E., Sanchez,
N., Stahl, E.A., Williams, S., Wray, N.R., Xia, K., Bettella, F., Borglum, A.D., Bulik-
Sullivan, B.K., Cormican, P., Craddock, N., de Leeuw, C., Durmishi, N., Gill, M., Golimbet,
V., Hamshere, M.L., Holmans, P., Hougaard, D.M., Kendler, K.S., Lin, K., Morris, D.W.,
Mors, O., Mortensen, P.B., Neale, B.M., O'Neill, F.A., Owen, M.J., Milovancevic, M.P.,
Posthuma, D., Powell, J., Richards, A.L., Riley, B.P., Ruderfer, D., Rujescu, D., Sigurdsson,
E., Silagadze, T., Smit, A.B., Stefansson, H., Steinberg, S., Suvisaari, J., Tosato, S.,
Verhage, M., Walters, J.T., Bramon, E., Corvin, A.P., O'Donovan, M.C., Stefansson, K.,
Scolnick, E., Purcell, S., McCarroll, S.A., Sklar, P., Hultman, C.M., Sullivan, P.F., Schwab,
S.G., Wildenauer, D.B., Dudbridge, F., Holmans, P., Shi, J., Albus, M., Alexander, M.,
Campion, D., Cohen, D., Dikeos, D., Duan, J., Eichhammer, P., Godard, S., Hansen, M.,
Lerer, F.B., Liang, K.-Y., Maier, W., Mallet, J., Nertney, D.A., Nestadt, G., Norton, N.,
O'Neill, F.A., Papadimitriou, G.N., Ribble, R., Sanders, A.R., Silverman, J.M., Walsh, D.,
Williams, N.M., Wormley, B., Psychosis Endophenotypes International Consortium,
Arranz, M.J., Bakker, S., Bender, S., Bramon, E., Collier, D., Crespo-Facorro, B., Hall, J.,
Iyegbe, C., Jablensky, A., Kahn, R.S., Kalaydjieva, L., Lawrie, S., Lewis, C.M., Lin, K.,
Linszen, D.H., Mata, I., McIntosh, A., Murray, R.M., Ophoff, R.A., Powell, J., Rujescu,
D., Van Os, J., Walshe, M., Weisbrod, M., Wiersma, D., Wellcome Trust Case Control
Consortium 2, Donnelly, P., Barroso, I., Blackwell, J.M., Bramon, E., Brown, M.A.,
Casas, J.P., Corvin, A.P., Deloukas, P., Duncanson, A., Jankowski, J., Markus, H.S.,
Mathew, C.G., Palmer, C.N.A., Plomin, R., Rautanen, A., Sawcer, S.J., Trembath, R.C.,
Viswanathan, A.C., Wood, N.W., Spencer, C.C.A., Band, G., Bellenguez, C., Freeman,
C., Hellenthal, G., Giannoulatou, E., Pirinen, M., Pearson, R.D., Strange, A., Su, Z.,
Vukcevic, D., Donnelly, P., Langford, C., Hunt, S.E., Edkins, S., Gwilliam, R., Blackburn,
H., Bumpstead, S.J., Dronov, S., Gillman, M., Gray, E., Hammond, N., Jayakumar, A.,
McCann, O.T., Liddle, J., Potter, S.C., Ravindrarajah, R., Ricketts, M., Tashakkori-
Ghanbaria, A., Waller, M.J., Weston, P., Widaa, S., Whittaker, P., Barroso, I., Deloukas,
P., Mathew, C.G., Blackwell, J.M., Brown, M.A., Corvin, A.P., McCarthy, M.I., Spencer,
C.C.A., Bramon, E., Corvin, A.P., O'Donovan, M.C., Stefansson, K., Scolnick, E., Purcell,
S., McCarroll, S.A., Sklar, P., Hultman, C.M., Sullivan, P.F., 2013. Genome-wide associa-
tion analysis identifies 13 new risk loci for schizophrenia. Nat. Genet. 45, 1150–1159.
doi:https://doi.org/10.1038/ng.2742.

Roussos, P., Giakoumaki, S.G., Georgakopoulos, A., Robakis, N.K., Bitsios, P., 2011. The
CACNA1C and ANK3 risk alleles impact on affective personality traits and startle reac-
tivity but not on cognition or gating in healthy males. Bipolar Disord. 13, 250–259.
https://doi.org/10.1111/j.1399-5618.2011.00924.x.

Roussos, P., Bitsios, P., Giakoumaki, S.G., McClure, M.M., Hazlett, E.A., New, A.S., Siever, L.J.,
2013. CACNA1C as a risk factor for schizotypal personality disorder and schizotypy in
healthy individuals. Psychiatry Res. 206, 122–123. https://doi.org/10.1016/j.
psychres.2012.08.039.

Ruderfer, D.M., Fanous, A.H., Ripke, S., McQuillin, A., Amdur, R.L., Schizophrenia Working
Group of the Psychiatric Genomics Consortium, S.W.G. of the P.G, Bipolar Disorder
Working Group of the Psychiatric Genomics Consortium, B.D.W.G. of the P.G, Cross-
Disorder Working Group of the Psychiatric Genomics Consortium, C.-D.W.G. of the P.
G, Gejman, P.V., O'Donovan, M.C., Andreassen, O.A., Djurovic, S., Hultman, C.M., Kelsoe,
J.R., Jamain, S., Landén, M., Leboyer, M., Nimgaonkar, V., Nurnberger, J., Smoller, J.W.,
Craddock, N., Corvin, A., Sullivan, P.F., Holmans, P., Sklar, P., Kendler, K.S., 2014. Poly-
genic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophre-
nia. Mol. Psychiatry 19, 1017–1024. https://doi.org/10.1038/mp.2013.138.

Schultz, C.C., Nenadic, I., Riley, B., Vladimirov, V.I., Wagner, G., Koch, K., Schachtzabel, C.,
Mühleisen, T.W., Basmanav, B., Nöthen, M.M., Deufel, T., Kiehntopf, M., Rietschel,
M., Reichenbach, J.R., Cichon, S., Schlösser, R.G.M., Sauer, H., 2014. ZNF804A and cor-
tical structure in schizophrenia: in vivo and postmortem studies. Schizophr. Bull. 40,
532–541. https://doi.org/10.1093/schbul/sbt123.

Sheldrick, A.J., Krug, A., Markov, V., Leube, D., Michel, T.M., Zerres, K., Eggermann, T.,
Kircher, T., 2008. Effect of COMT val158met genotype on cognition and personality.
Eur. Psychiatry 23, 385–389. https://doi.org/10.1016/j.eurpsy.2008.05.002.

Siddi, S., Petretto, D.R., Preti, A., 2017. Neuropsychological correlates of schizotypy: a sys-
tematic review and meta-analysis of cross-sectional studies. Cogn. Neuropsychiatry
22, 186–212. https://doi.org/10.1080/13546805.2017.1299702.

Smyrnis, N., Avramopoulos, D., Evdokimidis, I., Stefanis, C.N., Tsekou, H., Stefanis, N.C.,
2007. Effect of schizotypy on cognitive performance and its tuning by COMT val158
met genotype variations in a large population of young men. Biol. Psychiatry 61,
845–853. https://doi.org/10.1016/j.biopsych.2006.07.019.

Snitz, B.E., Macdonald, A.W., Carter, C.S., 2005. Cognitive deficits in unaffected first-degree
relatives of schizophrenia patients: ameta-analytic review of putative endophenotypes.
Schizophr. Bull. 32, 179–194. https://doi.org/10.1093/schbul/sbi048.

Soeiro-de-Souza, M.G., Otaduy, M.C.G., Dias, C.Z., Bio, D.S., Machado-Vieira, R., Moreno,
R.A., 2012. The impact of the CACNA1C risk allele on limbic structures and facial emo-
tions recognition in bipolar disorder subjects and healthy controls. J. Affect. Disord.
141, 94–101. https://doi.org/10.1016/j.jad.2012.03.014.

Stefanis, N.C., Hatzimanolis, A., Avramopoulos, D., Smyrnis, N., Evdokimidis, I., Stefanis,
C.N., Weinberger, D.R., Straub, R.E., 2013. Variation in psychosis gene ZNF804A is as-
sociated with a refined schizotypy phenotype but not neurocognitive performance in
a large young male population. Schizophr. Bull. 39, 1252–1260. https://doi.org/
10.1093/schbul/sbs110.

74 T. Meller et al. / Schizophrenia Research 208 (2019) 67–75

Author's Personal Copy

44

https://doi.org/10.1016/S0920-9964(98)00081-4
https://doi.org/10.1007/s00406-013-0428-x
https://doi.org/10.1037/a0033759
https://doi.org/10.1037/a0033759
https://doi.org/10.1093/arclin/acx123
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0275
https://doi.org/10.1038/npp.2010.102
https://doi.org/10.1038/npp.2010.102
https://doi.org/10.1177/0091415015614953
https://doi.org/10.1093/bioinformatics/btv402
https://doi.org/10.1093/bioinformatics/btv402
https://doi.org/10.1093/schbul/sbu185
https://doi.org/10.3389/fpsyt.2014.00184
https://doi.org/10.1093/schbul/sby096
https://doi.org/10.1016/j.psychres.2017.09.007
https://doi.org/10.1017/S0033291714001159
https://doi.org/10.1017/S0033291714001159
https://doi.org/10.1098/rspb.2005.3349
https://doi.org/10.1038/srep17349
https://doi.org/10.1038/srep17349
https://doi.org/10.1016/j.schres.2004.09.007
https://doi.org/10.1038/ng.201
https://doi.org/10.1038/s41588-018-0059-2
https://doi.org/10.1002/hbm.21434
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0345
https://doi.org/10.1093/schbul/17.4.555
https://doi.org/10.1093/schbul/17.4.555
https://doi.org/10.1037/0021-843X.101.2.361
https://doi.org/10.1521/pedi.1995.9.4.346
https://doi.org/10.1521/pedi.1995.9.4.346
https://doi.org/10.1038/mp.2009.109
https://doi.org/10.1038/ng.2742
https://doi.org/10.1111/j.1399-5618.2011.00924.x
https://doi.org/10.1016/j.psychres.2012.08.039
https://doi.org/10.1016/j.psychres.2012.08.039
https://doi.org/10.1038/mp.2013.138
https://doi.org/10.1093/schbul/sbt123
https://doi.org/10.1016/j.eurpsy.2008.05.002
https://doi.org/10.1080/13546805.2017.1299702
https://doi.org/10.1016/j.biopsych.2006.07.019
https://doi.org/10.1093/schbul/sbi048
https://doi.org/10.1016/j.jad.2012.03.014
https://doi.org/10.1093/schbul/sbs110
https://doi.org/10.1093/schbul/sbs110


Stotesbury, H., Gaigg, S.B., Kirhan, S., Haenschel, C., 2018. The influence of schizotypal
traits on attention under high perceptual load. Schizophr. Res. Cogn. 11, 6–10.
https://doi.org/10.1016/j.scog.2017.10.002.

Strohmaier, J., Amelang, M., Hothorn, L.A., Witt, S.H., Nieratschker, V., Gerhard, D., Meier,
S., Wüst, S., Frank, J., Loerbroks, A., Rietschel, M., Stürmer, T., Schulze, T.G., 2013. The
psychiatric vulnerability gene CACNA1C and its sex-specific relationship with person-
ality traits, resilience factors and depressive symptoms in the general population.
Mol. Psychiatry 18, 607–613. https://doi.org/10.1038/mp.2012.53.

Sun, Y., Hu, D., Liang, J., Bao, Y.-P., Meng, S.-Q., Lu, L., Shi, J., 2015. Association between var-
iants of zinc finger genes and psychiatric disorders: systematic review and meta-
analysis. Schizophr. Res. 162, 124–137. https://doi.org/10.1016/J.
SCHRES.2015.01.036.

Tesli, M., Skatun, K.C., Ousdal, O.T., Brown, A.A., Thoresen, C., Agartz, I., Melle, I., Djurovic,
S., Jensen, J., Andreassen, O.A., 2013. CACNA1C risk variant and amygdala activity in
bipolar disorder, schizophrenia and healthy controls. PLoS One 8, e56970. https://
doi.org/10.1371/journal.pone.0056970.

Thimm, M., Kircher, T., Kellermann, T., Markov, V., Krach, S., Jansen, A., Zerres, K.,
Eggermann, T., Stöcker, T., Shah, N.J., Nöthen, M.M., Rietschel, M., Witt, S.H.,
Mathiak, K., Krug, A., 2011. Effects of a CACNA1C genotype on attention networks
in healthy individuals. Psychol. Med. 41, 1551–1561. https://doi.org/10.1017/
S0033291710002217.

Toulopoulou, T., Picchioni, M., Rijsdijk, F., Hua-Hall, M., Ettinger, U., Sham, P., Murray, R.,
2007. Substantial genetic overlap between neurocognition and schizophrenia. Arch.
Gen. Psychiatry 64, 1348. https://doi.org/10.1001/archpsyc.64.12.1348.

Toulopoulou, T., Van Haren, N., Zhang, X., Sham, P.C., Cherny, S.S., Campbell, D.D.,
Picchioni, M., Murray, R., Boomsma, D.I., Pol, H.H., Brouwer, R., Schnack, H., Fañanás,
L., Sauer, H., Nenadic, I., Weisbrod, M., Cannon, T.D., Kahn, R.S., 2015. Reciprocal cau-
sation models of cognitive vs volumetric cerebral intermediate phenotypes for
schizophrenia in a pan-European twin cohort. Mol. Psychiatry 20, 1386–1396.
https://doi.org/10.1038/mp.2014.152.

Toulopoulou, T., Zhang, X., Cherny, S., Dickinson, D., Berman, K.F., Straub, R.E., Sham, P.,
Weinberger, D.R., 2018. Polygenic risk score increases schizophrenia liability through
cognition-relevant pathways. Brain, 1–15 https://doi.org/10.1093/brain/awy279.

Van Den Bossche, M.J.A., Docx, L., Morrens, M., Cammaerts, S., Strazisar, M., Bervoets, C.,
Smolders, S., Depreeuw, V., Lenaerts, A.-S., De Rijk, P., Del-Favero, J., Sabbe, B.G.C.,
2012. Less cognitive and neurological deficits in schizophrenia patients carrying
risk variant in ZNF804A. Neuropsychobiology 66, 158–166. https://doi.org/10.1159/
000339731.

Voineskos, A.N., Lerch, J.P., Felsky, D., Tiwari, A., Rajji, T.K., Miranda, D., Lobaugh, N.J.,
Pollock, B.G., Mulsant, B.H., Kennedy, J.L., 2011. The ZNF804A gene: characterization
of a novel neural risk mechanism for the major psychoses.
Neuropsychopharmacology 36, 1871–1878. https://doi.org/10.1038/npp.2011.72.

Walters, J.T.R., Corvin, A., Owen, M.J., Williams, H., Dragovic, M., Quinn, E.M., Judge, R.,
Smith, D.J., Norton, N., Giegling, I., Hartmann, A.M., Möller, H.-J., Muglia, P.,
Moskvina, V., Dwyer, S., O'Donoghue, T., Morar, B., Cooper, M., Chandler, D.,
Jablensky, A., Gill, M., Kaladjieva, L., Morris, D.W., O'Donovan, M.C., Rujescu, D.,
Donohoe, G., 2010. Psychosis susceptibility gene ZNF804A and cognitive performance
in schizophrenia. Arch. Gen. Psychiatry 67, 692. https://doi.org/10.1001/
archgenpsychiatry.2010.81.

Williams, H.J., Norton, N., Dwyer, S., Moskvina, V., Nikolov, I., Carroll, L., Georgieva, L., Wil-
liams, N.M., Morris, D.W., Quinn, E.M., Giegling, I., Ikeda, M., Wood, J., Lencz, T.,
Hultman, C., Lichtenstein, P., Thiselton, D., Maher, B.S., Malhotra, A.K., Riley, B.,
Kendler, K.S., Gill, M., Sullivan, P., Sklar, P., Purcell, S., Nimgaonkar, V.L., Kirov, G.,
Holmans, P., Corvin, A., Rujescu, D., Craddock, N., Owen, M.J., O'Donovan, M.C.,
O'Donovan, M.C., 2011. Fine mapping of ZNF804A and genome-wide significant evi-
dence for its involvement in schizophrenia and bipolar disorder. Mol. Psychiatry 16,
429–441. doi:https://doi.org/10.1038/mp.2010.36.

Wittchen, H.-U., Wunderlich, U., Gruschwitz, S., Zaudig, M., 1997. SKID-I. Strukturiertes
Klinisches Interview für DSM-IV. Hogrefe, Göttingen.

Yasuda, Y., Hashimoto, R., Ohi, K., Fukumoto, M., Umeda-Yano, S., Yamamori, H., Okochi,
T., Iwase, M., Kazui, H., Iwata, N., Takeda, M., 2011. Impact on schizotypal personality
trait of a genome-wide supported psychosis variant of the ZNF804A gene. Neurosci.
Lett. 495, 216–220. https://doi.org/10.1016/j.neulet.2011.03.069.

Zhang, F., Chen, Q., Ye, T., Lipska, B.K., Straub, R.E., Vakkalanka, R., Rujescu, D., St. Clair, D.,
Hyde, T.M., Bigelow, L., Kleinman, J.E., Weinberger, D.R., 2011. Evidence of sex-
modulated association of ZNF804A with schizophrenia. Biol. Psychiatry 69,
914–917. https://doi.org/10.1016/J.BIOPSYCH.2011.01.003.

Zhang, Q., Shen, Q., Xu, Z., Chen, M., Cheng, L., Zhai, J., Gu, H., Bao, X., Chen, X., Wang, K.,
Deng, X., Ji, F., Liu, C., Li, J., Dong, Q., Chen, C., 2012. The effects of CACNA1C gene poly-
morphism on spatial working memory in both healthy controls and patients with
schizophrenia or bipolar disorder. Neuropsychopharmacology 37, 677–684. https://
doi.org/10.1038/npp.2011.242.

75T. Meller et al. / Schizophrenia Research 208 (2019) 67–75

Author's Personal Copy

45

https://doi.org/10.1016/j.scog.2017.10.002
https://doi.org/10.1038/mp.2012.53
https://doi.org/10.1016/J.SCHRES.2015.01.036
https://doi.org/10.1016/J.SCHRES.2015.01.036
https://doi.org/10.1371/journal.pone.0056970
https://doi.org/10.1371/journal.pone.0056970
https://doi.org/10.1017/S0033291710002217
https://doi.org/10.1017/S0033291710002217
https://doi.org/10.1001/archpsyc.64.12.1348
https://doi.org/10.1038/mp.2014.152
https://doi.org/10.1093/brain/awy279
https://doi.org/10.1159/000339731
https://doi.org/10.1159/000339731
https://doi.org/10.1038/npp.2011.72
https://doi.org/10.1001/archgenpsychiatry.2010.81
https://doi.org/10.1001/archgenpsychiatry.2010.81
https://doi.org/10.1038/mp.2010.36
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0475
http://refhub.elsevier.com/S0920-9964(19)30143-4/rf0475
https://doi.org/10.1016/j.neulet.2011.03.069
https://doi.org/10.1016/J.BIOPSYCH.2011.01.003
https://doi.org/10.1038/npp.2011.242
https://doi.org/10.1038/npp.2011.242


46 

 

 

 

 

 

 

ii. STUDY II: Publication Meller et al. (2019b) 

The association of striatal volume and positive schizotypy in healthy subjects: 
intelligence as a moderating factor.  
 
Tina Meller, Ulrich Ettinger, Phillip Grant and Igor Nenadić  
 
DOI: https://doi.org/10.1017/S0033291719002459 
 
Published online by Cambridge University Press: 18 September 2019 
reproduced with permission. License no. 4720771506180 

 

 

https://doi.org/10.1017/S0033291719002459


Psychological Medicine

cambridge.org/psm

Original Article

Cite this article: Meller T, Ettinger U, Grant P,
Nenadić I (2019). The association of striatal
volume and positive schizotypy in healthy
subjects: intelligence as a moderating factor.
Psychological Medicine 1–9. https://doi.org/
10.1017/S0033291719002459

Received: 14 May 2019
Revised: 14 July 2019
Accepted: 21 August 2019

Key words:
Brain structure; intelligence; moderation;
psychotic-like experiences; psychosis;
schizotypy; striatum

Author for correspondence:
Tina Meller,
E-mail: tina.meller@uni-marburg.de and Ulrich
Ettinger,
E-mail: ulrich.ettinger@uni-bonn.de

© Cambridge University Press 2019

The association of striatal volume and positive
schizotypy in healthy subjects: intelligence as a
moderating factor

Tina Meller1,2 , Ulrich Ettinger3, Phillip Grant4,5 and Igor Nenadić1,2,6

1Cognitive Neuropsychiatry lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg,
Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; 2Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-
Str. 6, 35032 Marburg, Germany; 3Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn,
Germany; 4Psychology School, Fresenius University of Applied Sciences, Marienburgstr. 6, 60528 Frankfurt am
Main, Germany; 5Faculty of Life Science Engineering, Technische Hochschule Mittelhessen University of Applied
Sciences, Giessen, Germany and 6Marburg University Hospital – UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg,
Germany

Abstract

Background. Schizotypy, a putative schizophrenia endophenotype, has been associated with
brain-structural variations partly overlapping with those in psychotic disorders. Variations in
precuneus structure have been repeatedly reported, whereas the involvement of fronto-striatal
networks – as in schizophrenia – is less clear. While shared genetic architecture is thought to
increase vulnerability to environmental insults, beneficial factors like general intelligence
might buffer their effect.
Methods. To further investigate the role of fronto-striatal networks in schizotypy, we exam-
ined the relationship of voxel- and surface-based brain morphometry and a measure of
schizotypal traits (Schizotypal Personality Questionnaire, with subscores Cognitive-
Perceptual, Interpersonal, Disorganised) in 115 healthy participants [54 female, mean age
(S.D.) = 27.57(8.02)]. We tested intelligence (MWT-B) as a potential moderator.
Results. We found a positive association of SPQ Cognitive-Perceptual with putamen volume
(p = 0.040, FWE peak level-corrected), moderated by intelligence: with increasing IQ, the
correlation of SPQ Cognitive-Perceptual and striatal volume decreased (p = 0.022).
SPQ Disorganised was positively correlated with precentral volume (p = 0.013, FWE peak
level-corrected). In an exploratory analysis (p < 0.001, uncorrected), SPQ total score was
positively associated with gyrification in the precuneus and postcentral gyrus, and SPQ
Disorganised was negatively associated with gyrification in the inferior frontal gyrus.
Conclusions. Our findings support the role of fronto-striatal networks for schizotypal features
in healthy individuals, and suggest that these are influenced by buffering factors like intelli-
gence. We conclude that protective factors, like general cognitive capacity, might attenuate
the psychosis risk associated with schizotypy. These results endorse the idea of a continuous
nature of schizotypy, mirroring similar findings in schizophrenia.

Introduction

Current dimensional models of psychopathology (e.g. Kotov et al., 2017) suggest that phenom-
ena associated with clinical syndromes and disorders are continuous in nature and extend also
into the realm of health as dimensions of personality. This suggestion, however, is not new
(e.g. Eysenck, 1952), and regarding psychotic disorders, relevant traits are most commonly
subsumed under the (wide) rubric of schizotypy or psychosis-proneness (Rado, 1953;
Meehl, 1962; Claridge, 1997; Grant et al., 2018). Evidence of associations between variations
in different brain circuits shared between clinical entities like schizophrenia (Bakhshi and
Chance, 2015) and states of ultra-high risk as well as schizotypal traits in healthy individuals
(Ettinger et al., 2015; Nenadic et al., 2015a) support this notion.

Like all traits, schizotypy is seen as a relatively stable personality framework that, like
schizophrenia, consists of three major sub-facets, namely positive, negative and disorganised
facets (Vollema and van den Bosch, 1995; Oezgen and Grant, 2018). The positive facet resem-
bles positive symptoms of psychosis (e.g. as magical ideation and unusual experiences), is
linked to psychotic-like experiences (PLEs) (Kline et al., 2012) and has been suggested as
an endophenotype of psychosis-in-schizophrenia (Howes and Kapur, 2009; Barrantes-Vidal
et al., 2015; Grant, 2015).

Negative and disorganised schizotypy, however, have been suggested as more related to
schizophrenia-liability than mere proneness to psychotic and PLEs, as these facets – unlike posi-
tive schizotypy (Tarbox and Pogue-Geile, 2011; Tarbox et al., 2012) – are also elevated in patients
with psychotic disorders and their healthy relatives (Brosey and Woodward, 2015). Schizotypy,
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albeit sharing variance with schizophrenia-liability, is a relatively
stable trait (Venables and Raine, 2015; Janssens et al., 2016), with
low conversion rates into the clinical domain (Kwapil et al.,
2013). This is, however, expected (Meehl, 1990; Grant et al.,
2018) and, thus, does not disqualify schizotypy as an important
construct for understanding schizophrenia-spectrum pathology
(Debbané and Mohr, 2015; Kwapil and Barrantes-Vidal, 2015).
Additionally, familial association studies underline the necessity
of distinguishing between positive and negative/disorganised facets
of schizotypy (Tarbox and Pogue-Geile, 2011; Tarbox et al., 2012).
This is in line with findings by Schultze-Lutter and co-workers,
showing that conversion form clinical high risk (CHR) to frank
psychosis is best predicted by negative/disorganised schizotypy
(Flückiger et al., 2016, 2019).

Nonetheless, psychometrically-assessed estimates of schizo-
typy (like schizotypal traits, measured through scales based on
DSM-criteria for Schizotypal Personality Disorder) have, repeat-
edly, been associated with variations in brain structures also
implicated in schizophrenia. One finding replicated in several
studies is that of structural and functional variation within the
precuneus: Evidence for an association of schizotypy and schizo-
typal traits with increased grey matter volume (GMV) in the pre-
cuneus has been reported in several structural imaging studies
(Modinos et al., 2010, 2018; Nenadic et al., 2015b), although
not in all (Ettinger et al., 2012; Kühn et al., 2012). Furthermore,
PLEs have been shown to be associated with increased precuneus
activation (van Lutterveld et al., 2014).

Additionally, there is growing evidence for fronto-striatal cir-
cuits to be involved in the generation of PLEs. Recent studies
have suggested positive schizotypal traits to be associated with var-
iations in frontal volume, but the direction is unclear, with
increases (Kühn et al., 2012; Nenadic et al., 2015b; Modinos
et al., 2018) as well as decreases (Ettinger et al., 2012; DeRosse
et al., 2015) being reported. As most studies have focused on varia-
tions in volumetric parameters, apart from one study finding
increased right prefrontal lobe gyrification in participants scoring
above v. below a clinical cut-off (Stanfield et al., 2008), there is
no study using a dimensional approach to schizotypy and folding
analysis. Those, however, are of particular interest as cortical fold-
ing, happening early during brain development (Chi et al., 1977),
might indicate disruption in neurodevelopmental processes
(Nenadic et al., 2014), and has also been reported to be altered in
psychosis and high risk (Spalthoff et al., 2018; Zuliani et al., 2018).

Striatal regions have also been reported to correlate with the
level of subclinical psychotic-like traits or symptoms: Psychotic
experiences in healthy subjects are associated with smaller puta-
men volumes (Mittal et al., 2013), and psychoticism has been
shown to be correlated with greater activation in putamen and
pallidum (Ettinger et al., 2013), while positive schizotypy has
been linked to reduced BOLD signal during antisaccades
(Aichert et al., 2012). Interpersonal schizotypal traits have been
associated with decreased task-related activation in the striatum
and amygdala (Yan et al., 2016).

In addition, highlighting the role of the fronto-striatal net-
work, positive and negative schizotypy have recently been asso-
ciated with variations in cortico-striatal resting state functional
connectivity (Rössler et al., 2018; Wang et al., 2018; Waltmann
et al., 2019). SPQ Disorganised has, furthermore, been associated
with a higher availability of striatal dopamine (Chen et al., 2012).

Together, these findings – to some extent – mirror those in
psychotic disorder. Specifically, schizophrenia patients, and (to
a lesser degree) their unaffected siblings, show increased volume

of striatal regions putamen and pallidum (Mamah et al., 2008;
Okada et al., 2016; van Erp et al., 2016) and greater putamen
volume variability compared to healthy controls (Brugger and
Howes, 2017). Pallidum volume has been positively associated
with symptom severity in schizophrenia patients (Spinks et al.,
2005) and there is evidence for altered extra-striatal functional
connectivity in schizophrenia patients during a psychotic episode
(Peters et al., 2017).

It has been suggested that these overlaps in phenotype and
concurring neuroanatomy might be, at least partially, explained
by overlapping genetic architecture (Walter et al., 2016). The cur-
rent literature, however, also implies that genetic risk is not lin-
early represented through overall schizotypal traits, as studies
show only marginal associations with polygenic risk scores in
healthy individuals, and an influence of environmental factors
like stress contexts (Hatzimanolis et al., 2018).

Those findings fit well into a model by Siever and Davis, pro-
posing that common genetic variants increase schizophrenia risk
through elevated vulnerability for environmental insults, leading
to brain structural changes within temporal or striatal regions
(Siever and Davis, 2004). In contrast to schizophrenia patients,
however, in schizotypal individuals, independent genetic variants
and/or beneficial environmental contexts, leading to preserved or
increased frontal volume or cognitive protectors like general intel-
ligence, buffer the effect of susceptibility variants and thus lead to
a subclinical level of PLEs (Siever and Davis, 2004). The issue of a
moderating effect of intelligence has also been suggested by Brod
(1997) – regarding highly creative individuals – and substantiated
by findings that intelligence moderates the tendency of highly
positive schizotypal individuals to see meaning in random noise
(Grant et al., 2014a).

Indeed, dysfunctions in prefrontal networks are often reported
in psychotic disorders (Dandash et al., 2017). Dysregulation of the
striatum, a centre for the integration of high-level cognitive,
motor and limbic processes (Simpson et al., 2010), seems to be
contributing to the manifestation of psychotic symptoms in
schizophrenia (Howes and Kapur, 2009) and possibly also (posi-
tive) schizotypy (Ettinger et al., 2013; Mohr and Ettinger, 2014).

To further examine the relationship of morphometric varia-
tions in fronto-striatal networks with dimensional schizotypal
traits, we analysed voxel- and surface-based brain structural para-
meters in association with psychometrically-assessed schizotypy
in healthy individuals. We hypothesised associations of frontal
and striatal volume variations with both positive and negative
schizotypal traits. Based on a fronto-thalamo-striatal model of
the psychosis continuum, brain structural effects in both medial
and lateral prefrontal cortex are observed in both positive and
negative dimensions of schizophrenia, and in the thalamus for
the negative dimension (Koutsouleris et al., 2008; Nenadic
et al., 2010, 2015c). Assuming the possibility of general cognitive
capacity buffering psychosis risk (Brod, 1997; Siever and Davis,
2004), we also tested for a moderating effect of intelligence on
the relationship of brain morphometry and schizotypal traits.
This is, to our knowledge, the first study investigating intelligence
as a moderator in the association of brain structural variation and
estimates of schizotypy.

Material and methods

Sample

We analysed data of N = 115 healthy participants [54 female, aged
18–50 years, mean age = 27.57 years (S.D. = 8.02)], recruited
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through advertisements in and around Munich, Germany. All
experimental procedures were approved by the research ethics
committee of the Faculty of Medicine at the University of
Munich, in accordance with the current division of the
Declaration of Helsinki. Participants were included after thorough
clinical screening and only if they did not meet any of the exclu-
sion criteria: any DSM-IV Axis I disorders, first-grade relatives
with psychotic disorders, former or current neurological disor-
ders, current physical conditions, current medication except for
contraceptives, uncorrected visual impairments. Further inclusion
criteria were age between 18 and 55 and German as a first lan-
guage. All subjects volunteered to take part in the study, gave writ-
ten informed consent and received a financial compensation for
their participation.

Psychometric assessment of schizotypal traits and IQ

All participants completed theGerman version (Klein et al., 1997) of
the Schizotypal PersonalityQuestionnaire (SPQ,Raine, 1991), asses-
sing schizotypal traits on the three dimensions Cognitive-Perceptual
(measuring positive schizotypy), Disorganised (related to eccentri-
city and – somewhat – disorganised schizotypy) and Interpersonal
(tapping into negative schizotypy) as delineated by previous factor
analyses (Axelrod et al., 2001; Compton et al., 2009). For the ques-
tionnaire as awhole and its subscores, adequate internal consistency
and criterion validity have been demonstrated (Klein et al., 2001;
Fonseca-Pedrero et al., 2018). In our sample, the SPQ subscales
showed acceptable to good reliability (Cronbach’s α for the total
score α = 0.882, for the subscales Disorganised α = 0.832, Negative
α = 0.848, Positive α = 0.757).

For an estimation of intelligence, we applied the Multiple
Choice Word Test-B (MWT-B, Lehrl, 1995). The MWT-B con-
sists of 37 items in ascending difficulty, each requiring identifica-
tion of one truly existing word opposed to three distractors. It has
been shown to be an economic, easy to administer and robust esti-
mate of global crystallised intelligence, highly correlated with both
verbal and general intelligence measured with extensive tests like
the HAWIE, the German version of the Wechsler Adult
Intelligence Scale (Satzger et al., 2002). In our sample, the
MWT-B showed an internal consistency of Cronbach’s α = 0.664.

Image acquisition and preprocessing

We acquired high-resolution, T1-weighted structural images on a
3T MAGNETOM Verio scanner (Siemens, Erlangen, Germany)
using a 12-channel head matrix Rx-coil. We used a three-
dimensional MPRAGE sequence with a repetition time of TR =
2400 ms, echo time TE = 3.06 ms, flip angle = 9 degrees with 160
slices, slice thickness = 1.0 mm, voxel size = 1.0 × 1.0 × 1.0 mm,
field of view FOV = 256 mm.

Images were preprocessed with the CAT12 toolbox
(Computation Anatomy Toolbox for SPM, v12.3, build r1318,
http://www.neuro.uni-jena.de/cat), based on SPM12 v7219
(Statistical Parametric Mapping, version 12) running under
MATLAB R2017a (The MathWorks, Natick, MA, USA). Images
were spatially registered using tissue probability maps implemented
in SPM12, segmented and spatially normalised using the optimised
shooting algorithm (Ashburner and Friston, 2011), with an inhomo-
geneity correction of 0.5. All images passed visual quality inspection
formovement artefacts and imagequality, aswell as the qualityassur-
ance protocols implemented in CAT12 (grade B or higher). During
preprocessing, total intracranial volume (TIV) was calculated.

Additionally, we extracted gyrification parameters to analyse
surfaced-based morphometry with the CAT12 toolbox, using a
recently developed algorithm to calculate cortical surface para-
meters (Dahnke et al., 2013), based on absolute mean curvature
(Luders et al., 2006). Gyrification images were smoothed with a
Gaussian kernel of 20 mm (FWHM).

Statistical analyses

Statistical analyses were conducted using general linear regression
models (GLM) in SPM and CAT12. Given the discussed specifi-
city of the different schizotypy dimensions (Tarbox and
Pogue-Geile, 2011; Grant, 2015), we conducted separate GLMs
for each of the subscores. We further tested a GLM using SPQ
total score as a regressor. In a supplementary analysis, we entered
all three subscores into the GLM (and set + 1/−1 in the contrast)
to assess the overall effect of schizotypal traits (see online
Supplementary SF1).

For both VBM and gyrification analyses, we used age and sex
as covariates (setting them to zero to remove related variance),
and for VBM we additionally defined TIV as a covariate to
remove global brain size differences. For all analyses, we consid-
ered significance at p < 0.05 FWE peak level-corrected threshold.
For gyrification analyses, that did not survive FWE peak level cor-
rection, we conducted additional exploratory analyses at p < 0.001
uncorrected.

To test for a modulating effect of IQ on the association of
SPQ-levels and structural variation, we set up a moderation
model using the PROCESS macro v3.3 (Hayes, 2013) running
on IBM Statistical Package for Social Sciences (SPSS, version 24,
IBM, Armonk, NY, USA). It is unclear, whether particular aspects
of intelligence or cognitive functions might serve as better factors
or predictors in such models. Given the limited availability of cog-
nitive data from this data set, we therefore focused on IQ to be
included as a moderator in the model. For schizotypal traits,
the respective dimension scores were entered, while for structural
data we considered a wider cluster comprising peak and sur-
rounding voxels at an uncorrected p < 0.001 threshold, taking
into consideration voxels might not reach corrected significance
in direct association statistics (due to the assumed moderation
effects), but might add to moderation. Here, we used extracted
eigenvariate values as an approximation of mean volume inside
the clusters, a weighted mean more robust to heterogeneous
voxel values. Correcting for the two models tested, significance
was assumed at p < 0.025.

Results

Descriptive statistics and intercorrelations

Demographic details and descriptive statistics for SPQ sum
score and subscores are shown in Table 1. IQ was significantly
negatively correlated with SPQ Cognitive-Perceptual (r = −0.196,
p = 0.036), indicating that higher IQ is associated with lower
schizotypy scores. There were no significant correlations of
IQ with the Disorganised (r = −0.030, p = 0.746) or Interpersonal
(r =−0.104, p = 0.268) dimensions.

Voxel-based morphometry

Regression analyses showed significant correlations of the positive
and disorganised dimensions of the SPQ with GMV (Fig. 1a, b).

Psychological Medicine 3

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0033291719002459
Downloaded from https://www.cambridge.org/core. Forschungsinstitut fuer deutsche Sprache "Deutscher Sprachatlas", on 18 Sep 2019 at 10:30:55, subject to the Cambridge Core terms of use,

49

http://www.neuro.uni-jena.de/cat
http://www.neuro.uni-jena.de/cat
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0033291719002459
https://www.cambridge.org/core


Cognitive-Perceptual was positively correlated with GMV in a
cluster containing the right pallidum and putamen (k = 6 voxels,
x/y/z = 22/−12/−2, T = 4.75, p = 0.040 FWE peak level-corrected).
Disorganised was positively correlated with GMV in a cluster
including the left precentral gyrus (k = 67 voxels, x/y/z =−40/
−12/42, T = 4.90, p = 0.013 FWE peak level-corrected). There
were no significant negative correlations of the two subscales
with GMV and not any significant associations of GMV and
the SPQ total score, the Interpersonal SPQ dimension, or
the GLM including all three subscores after FWE-peak-level-
correction (see online Supplementary Fig. SF1).

Surface-based analysis of gyrification

We did not find any significant associations at p < 0.05 FWE peak
level-correction for gyrification with either total SPQ score or
subscores. In a subsequent, exploratory analysis (p < 0.001,
uncorrected, see online Supplementary Fig. SF2), however, we

found a positive correlation of the SPQ total score with gyrifica-
tion in the left precuneus (k = 10 voxels, x/y/z =−19/−65/25,
T = 3.31, p < 0.001 uncorrected), as well as a negative correlation
with the gyrification in the right postcentral gyrus (k = 57 voxels,
x/y/z = 28/−34/69, T = 3.70, p < 0.001 uncorrected). Additionally,
we found a negative association of the Disorganised score
with gyrification in the right inferior frontal gyrus (k = 22 voxels,
x/y/z =−43/29/−1, T = 3.47, p < 0.001 uncorrected).

Moderation analysis

We tested whether intelligence, as a measure for general cognitive
capacity, has a moderating effect on the association of striatal
structure and schizotypy. Based on the results of the voxel-
based-morphometry analyses, we tested this assumption for the
association of the cluster around the detected peak voxel in a clus-
ter containing the putamen and pallidum and Cognitive-
Perceptual, with age, sex and TIV as covariates (model 1). This

Table 1. Demographic characteristics of the sample

Mean (S.D.) Range Kurtosis Skewness

Sex 54 female/61 male − − −

Age 27.57 (8.02) 18–50 0.34 1.17

IQ 112.54 (12.26) 88–143 −0.47 0.57

SPQ total score 8.14 (7.11) 0–35 2.03 1.37

SPQ Cognitive-Perceptual 3.15 (3.08) 0–15 1.36 2.1

SPQ Disorganised 2.28 (2.99) 0–14 3.81 1.92

SPQ Interpersonal 3.67 (3.82) 0–18 2.59 1.61

Fig. 1. Clusters of positive correlation between grey matter volume and the SPQ Cognitive-Perceptual dimension in the striatum (a, upper panel) and the
Disorganised dimension in the pre- and postcentral gyri (b, lower panel); for illustration purposes and highlighting the putamen/pallidum cluster selected for mod-
eration analysis, these images are thresholded at p < 0.001 (uncorrected). Note that parts of both clusters also survive p < 0.05 FWE peak level-correction (illustra-
tion prepared with MRIcroGL; www.nitrc.org/projects/mricrogl and depicted in radiological orientation).

4 Tina Meller et al.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0033291719002459
Downloaded from https://www.cambridge.org/core. Forschungsinstitut fuer deutsche Sprache "Deutscher Sprachatlas", on 18 Sep 2019 at 10:30:55, subject to the Cambridge Core terms of use,

50

http://www.nitrc.org/projects/mricrogl
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0033291719002459
https://www.cambridge.org/core


model was significant overall [F(6,108) = 6.93, p < 0.001, R2 = 0.28]
and furthermore revealed a significant moderation effect of
MWT-B IQ estimation on the association of striatal volume and
Cognitive-Perceptual [regression coefficient b =−5.41, F(1,108) =
5.38, p = 0.022]: With increasing MWT-B values, the association
between striatal structure and schizotypy decreased (Fig. 2). In a
separate model, we tested the equivalent assumption of the associ-
ation of the Disorganised dimension and the significant paracentral
cluster being moderated by IQ. This model, however, was not sig-
nificant [F(6,108) = 1.13, p = 0.350, R2 = 0.06].

Discussion

We found an association of the positive dimension of the SPQ
with greater right striatal volume in healthy controls, which was
moderated by IQ as a measure of general cognitive capacity.
Additionally, we found an association of the Disorganised factor
with increased volume of the left precentral gyrus.

In several previous studies, primarily variations in precuneus
structure and function have, repeatedly, been associated with
schizotypal traits and subclinical PLEs (Modinos et al., 2010,
2018; van Lutterveld et al., 2014; Falkenberg et al., 2015;
Nenadic et al., 2015b). It is, therefore, unexpected that we did
not find any association with any of the SPQ dimensions in
this region in our data.

We did, however, find further evidence of fronto-striatal cir-
cuits to be involved in the aetiology of PLEs in healthy indivi-
duals. Our finding echoes previous studies suggesting that
variations in striatal structure and function are associated with
psychotic experiences in healthy subjects (Chen et al., 2012;
Ettinger et al., 2013; Mittal et al., 2013), partially paralleling find-
ings in frank psychosis: In a mega-analysis by the ENIGMA
schizophrenia consortium, patients with schizophrenia showed
greater pallidum volumes than healthy controls, and putamen
and pallidum volumes were correlated with illness duration
(van Erp et al., 2016). Further support comes from several studies

showing that similar to schizophrenia patients, their healthy rela-
tives also show increased GMV within the putamen (Knöchel
et al., 2016). In healthy controls, the genetic risk for schizophrenia
and bipolar disorder has been associated with volumetric abnor-
malities within those regions (Caseras et al., 2015). It has, thus,
been suggested that striatal size might be an important endophe-
notype for psychosis (Chemerinski et al., 2013). Putamen size and
function might even play a role in risk stratification, predicting
clinical course: Subjects at CHR for psychosis showed increased
striatal cerebral blood flow (Hubl et al., 2018) and in CHR sub-
jects, smaller putamen volume was associated with the reduction
of positive symptoms over a course of six months (Hong et al.,
2015).

Dopaminergic neurotransmission is central to striatal func-
tioning, and findings from several (although not all; Ettinger
et al., 2012) experimental and pharmacological studies implicate
an association of altered dopamine neurotransmission with
schizotypy and psychosis-proneness (Ettinger et al., 2013, 2014;
Mohr and Ettinger, 2014). Schizotypy has, additionally, been
associated with expression levels of dopaminergic genes (Grant
et al., 2014b) and dopamine receptor gene polymorphisms
(Ettinger et al., 2006; Grant et al., 2013; Gurvich et al., 2016),
including additive effects thereof (Grant et al., 2015). Taken
together, those findings suggest that the dopamine hypothesis
of schizophrenia (Howes et al., 2017) also extends into the healthy
domain (Grant et al., 2015).

Additionally, we detected an association of greater GMV with
higher levels of disorganised schizotypy in the left precentral
gyrus. Previous findings linking this region to schizotypy are lim-
ited. There is some evidence for reduced paracentral volume in
individuals with schizotypal personality disorder (Koo et al.,
2006). Another study in subjects with high risk for psychosis
and first episode patients also found reduced precentral volume
compared to healthy controls (Chang et al., 2016).

Those regions have primarily been associated with motor
functions, and while there is clear evidence for motor

Fig. 2. Scatterplot, depicting the association of extracted
grey matter values within the significant striatal cluster
and the level on the SPQ Cognitive-Perceptual dimen-
sion, dependent on IQ. The colour of the dots represents
IQ value. To illustrate the moderating effect of IQ, regres-
sion lines have been fitted for IQ values of 85, 100, 115
and 130, represented by the colour of the lines in accord-
ance with the figure legend. Illustration prepared with
the ggplot2 package (Wickham, 2016) in RStudio
v1.1.456 (RStudio Team, 2016).
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dysfunctions in schizophrenia and other psychotic disorders
(Peralta and Cuesta, 2001; Cuesta et al., 2018; Hirjak et al.,
2018), there is limited evidence in schizotypy (Roché et al.,
2015). As motor functions were not assessed in this study, we
can neither assume nor exclude such an association in our data.
It should be noted, however, that the reported cluster lies within
the lateral frontal eye field and that schizotypy has repeatedly been
associated with impairments in oculomotor function (Aichert
et al., 2012; Meyhöfer et al., 2015).

An additional perspective comes from functional imaging
studies, suggesting connections of striatal regions with areas in
the pre- and postcentral gyri. Several functional connectivity stud-
ies – in healthy subjects as well as schizophrenia patients – have
indeed shown important projections from striatal regions to
motor areas in the pre- and postcentral cortex, and caudate and
putamen seeds were reported to predict resting state activity in
pre- and postcentral regions (Postuma and Dagher, 2006; Di
Martino et al., 2008; White et al., 2016). Given the focus of
grey matter structure in our study, however, we can only speculate
on similar associations in our sample.

Further evidence for the notion that brain networks, rather than
single structures are involved in the generation of psychotic experi-
ences comes from recent studies analysing resting state connectivity
in schizotypy. Several studies report reduced functional connectivity
of striatal and cortical regions in associationwith (primarily positive)
schizotypy, indicating an association of this dimension with striatal
hypoconnectivity or cortico-striatal decoupling (Wang et al., 2018;
Waltmann et al., 2019). Such dysconnectivity might be facilitated
by altered striatal dopamine levels, as has been suggested based on
results in animal studies (Grace et al., 2007; Waltmann et al.,
2019). There is, in fact, evidence for striato-cortical decoupling asso-
ciated with positive schizotypy being induced by altered dopamin-
ergic neurotransmission (Rössler et al., 2018).

Our results also indicate, however, that protective factors may
act as a buffer to decrease the risk for psychotic experiences
induced by striatal alterations, in line with arguments by Brod
(1997) or Siever and Davis (2004). The model assumes that gen-
etic risk variants render the vulnerability for the impact of envir-
onmental factors, but can be attenuated by other genetic variants
leading to preserved frontal volume or capacity, possibly
expressed in an elevated cognitive capacity like general intelli-
gence (Siever and Davis, 2004). Indeed, even though we did not
find any association of schizotypy dimensions with GMV in
frontal regions, our moderation model showed that IQ (as a meas-
ure for cognitive capacity known to be associated with frontal lobe
structure, Colom et al., 2013) influences the association of pallidal
volume and positive schizotypy: With higher IQ, that association
decreased to the point of non-significance. This fits well in line
with evidence of cognitive performance or IQ having substantial
predictive value for the outcome of individuals at risk for psych-
osis and with schizophrenia (Leeson et al., 2009; Woodberry et al.,
2010; Ziermans et al., 2014; Metzler et al., 2016). However, we
would like to stress that, both in our results and in previous
work; it might be that general intelligence rather acts as a proxy
for other, possibly psycho-social, resilience factors.

We did not find an association of SPQ scores with gyrification
patterns at corrected threshold levels, but the exploratory, uncor-
rected analysis revealed associations in regions thought to be rele-
vant for psychosis as well as schizotypy (Honea et al., 2005;
Ettinger et al., 2015; Nenadic et al., 2015a). It might be speculated
that while those effects indeed are of interest, our analysis did not
provide the necessary power for them to reach statistical

significance. This should spark further studies in larger samples.
So far, our findings do not provide robust evidence for gyrifica-
tion to show a dimensional relationship with schizotypy.

Limitations to the generalisation of our findings arise from the
relatively restricted sample size and the fact that our participants
showed rather low to moderate SPQ levels, compared to a recent
validation sample (Barron et al., 2018). This, however, only leads
to a reduction in statistical power, but does not invalidate our
findings (Eysenck, 1952).

Additionally, since the SPQ is derived from clinical criteria of
schizotypal personality disorder (Raine, 1991), it differs in both
conceptualisation and phenotypal characterisation from other
self-rating measures, which needs to be taken into account (for
further details, see Gross et al., 2014; Grant et al., 2018). While
the Cognitive-Perceptual dimension of the SPQ seems to map
well on positive schizotypy, the Interpersonal factor taps into
negative schizotypy less specifically and includes aspects of
Neuroticism, which could account for the lack of associations
with this dimension in our analysis in contrast to previous work.

Furthermore, we have to consider that the MWT-B is only an
approximating measure of particularly crystallised intelligence,
necessitating further studies to replicate the moderation model
with the use of an extensive intelligence battery. As due to the
study design, several risk factors for psychotic diseases, but also
for schizotypy were excluded to rule out confounding influences,
our results might only represent part of the subclinical spectrum.

Taken together, our findings suggest that the involvement of
fronto-striatal circuits in psychosis aetiology extends into the
healthy domain of schizotypy and PLEs, thus, supporting a con-
tinuous model of the psychosis spectrum.
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Abstract  

Subclinical psychotic-like experiences, resembling key symptoms of psychotic 

disorders, are common throughout the general population and possibly associated with 

psychosis risk. There is evidence that such symptoms are also associated with 

structural brain changes.  

In 672 healthy individuals, we assessed psychotic-like experiences and associated 

distress with the symptom-checklist-90R (SCL-90R) scales “schizotypal signs” (STS) 

and “schizophrenia nuclear symptoms” (SNS) and analysed associations with voxel- 

and surfaced-based brain structural parameters derived from structural MRI at 3T with 

CAT12.  

For SNS, we found a positive correlation with the volume in the left superior parietal 

lobule and the precuneus, and a negative correlation with the volume in the right 

inferior temporal gyrus (p<0.05, FWE cluster level-corr.). For STS, we found a negative 

correlation with the volume of the left and right precentral gyrus (p<0.05, FWE cluster 

level-corr.). Surface-based analyses did not detect any significant clusters with the 

chosen statistical threshold of p<0.05. However, in explorative analyses (p<0.001, 

uncorrected) we found a positive correlation of SNS with gyrification in the left insula 

and rostral middle frontral gyrus and of STS with the left precuneus and insula, as well 

as a negative correlation of STS with gyrification in the left temporal pole. Our results 

show that brain structures in areas implicated in schizophrenia are also related to 

psychotic-like experiences and its associated distress in healthy individuals. This 

pattern supports a dimensional model of the neural correlates of symptoms of the 

psychotic spectrum. 
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1. Introduction 

Suspiciousness, paranoid thinking, as well as feelings of alienation and isolation are 

key symptoms of psychotic disorders like schizophrenia. However, it is well-established 

that reports of psychotic-like experiences are also frequently found in the general 

population, sparking a continuum model of psychosis-proneness (Claridge, 1997; van 

Os, Hanssen, Bijl, & Ravelli, 2000). In contrast to the schizophrenia prevalence of ~1% 

(Simeone, Ward, Rotella, Collins, & Windisch, 2015), psychotic symptoms (e.g. 

hallucinations) in the absence of the disorder have a lifetime prevalence of ~6-7% in 

the general population (Linscott & van Os, 2013; McGrath et al., 2015), and are 

considered a risk phenotype for psychosis (Kelleher & Cannon, 2011). A considerable 

~34% of healthy individuals between the age of 20 and 41 report at least mild psychotic 

signs (Rössler et al., 2015), in child cohorts even up to >60% (Downs, Cullen, 

Barragan, & Laurens, 2013).  

The subclinical psychosis spectrum comprises different domains: The construct of a 

stable, multidimensional set of schizophrenia-like personality traits is often 

conceptualised as “schizotypy” and seen as continuous phenotypic marker of 

psychosis proneness (Barrantes-Vidal, Grant, & Kwapil, 2015; Martin Debbané & 

Barrantes-Vidal, 2015; Grant, 2015). The expression of psychotic experiences in non-

clinical populations is conceptually closer to (but not necessarily associated with) the 

clinical disorder and is often referred to as “psychotic-like experiences” (PLEs) (van Os, 

Linscott, Myin-Germeys, Delespaul, & Krabbendam, 2009). In contrast to the rather 

stable nature of schizotypy, in the majority of individuals, PLEs remit over time and only 

persist in about 20%, while ~7% of affected individuals convert into a psychotic 

disorder (Linscott & van Os, 2013). Lastly, the concept of “clinical” or “ultra-high risk” 

captures risk factors and clinical features relevant for early detection and prevention of 

transition into psychosis (Schultze-Lutter et al., 2015). These concepts have also been 

linked with variations in cognitive functions (Fusar-Poli et al., 2012; Siddi, Petretto, & 

Preti, 2017; Simons, Jacobs, Jolles, van Os, & Krabbendam, 2007) that are impaired in 
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schizophrenia (Nuechterlein et al., 2004). These concepts overlap substantially and 

may coincide, such as in clinical high risk and high schizotypy (Debbané et al., 2015; 

Michel et al., 2019), where combined assessment improves psychosis prediction 

(Flückiger et al., 2016). 

A recent line of research (Rössler et al., 2007) delineates two dimensions of state-like, 

subclinical psychotic experiences: schizotypal signs versus schizophrenia nuclear 

symptoms (Bakhshaie, Sharifi, & Amini, 2011; Breetvelt et al., 2010; Rössler et al., 

2015; Rössler, Hengartner, Ajdacic-Gross, Haker, & Angst, 2013, 2014; Rössler, 

Hengartner, et al., 2011; Rössler, Vetter, et al., 2011; Zhornitsky, Tikàsz, Rizkallah, 

Chiasson, & Potvin, 2015). Assessed with the widely used SCL-90R symptom checklist 

(Derogatis, 1977), a questionnaire capturing subjective distress symptoms across 

several psychological and physical dimensions, they show good internal consistency 

and validity (Rössler et al., 2015; Rössler et al., 2007). 

The schizotypal signs (STS) scale addresses distress evoked by interpersonal 

deficiencies, reduced capacity for close relationships, suspiciousness and paranoid 

ideation, resembling the criteria for schizotypal personality disorder and positive and 

negative dimensions of schizotypy. Schizophrenia nuclear symptoms (SNS) assess 

distress caused by delusions of control, auditory hallucinations, thought-broadcasting 

and thought-intrusion, representing nuclear symptoms of schizophrenia (see Figure 1).  

Although the two scales partially overlap with measures of schizotypy, rather than 

assessing a general personality disposition, they measure the level of distress caused 

by such experiences in a recent temporal interval. This level may vary across time, as 

suggested by studies investigating courses of PLE, STS and SNS (Linscott & van Os, 

2013; Rössler et al., 2007). By focussing on symptom distress during the last four 

weeks, STS and SNS close a gap between extremely variable mood and stable 

personality structure (Franke, 1995).  
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Figure 1. Psychosis continuum model incorporating the STS vs SNS dimensions.  
Upper half (modified from Claridge & Beech (Claridge & Beech, 1995) shows a model of the psychosis 

continuum where, from the non-clinical towards the clinical parts of the spectrum symptoms like 

suspiciousness, thought broadcasting, alienations and hallucinations increase in intensity in the general 

population. The model emphasises a dimensional transition across this spectrum, where distress may play 

an important role in conversion probability. 

Lower half: Within the non-clinical part of the spectrum, different concepts like schizotypy, PLEs and ultra-

high risk have been used to capture either trait-like person features or state-related clinical aspects (left). 

The model on the right, depicting STS and SNS, specifically focuses on the distress caused by more trait-

related, distress-associated schizotypal personality features (STS) vs. schizophrenia nuclear symptoms 
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(SNS) closer to the clinical part of the spectrum (right). The overlap of STS and SNS acknowledges the 

dimensional nature of this alternative approach.  

While the temporally restricted assessment implies state-like rather than trait-like 

character of the scales, longitudinal studies show high expression of STS or SNS in 

adolescence is associated with a higher risk for common mental disorders in later life 

(Rössler, Hengartner, et al., 2011). 

This suggests that the variability of state expression can be (partially) attributed to 

latent, stable traits and shows “the trait in action”, possibly representing responses to 

environmental challenges (Barrantes-Vidal et al., 2015; Rössler et al., 2013).  

Growing evidence suggests that both state- (PLEs) and trait-like (schizotypy) 

expression of such attributes is associated with morphometric variation in certain brain 

regions, particularly in inferior and superior frontal and superior and medial temporal 

cortical areas and the precuneus. Variations in these regions have been consistently 

shown to be associated with schizotypy (Ettinger et al., 2012; Modinos et al., 2010; 

Nenadic, Lorenz, et al., 2015; Wang et al., 2015; Wiebels, Waldie, Roberts, & Park, 

2016), and PLE in healthy individuals (Schmidt et al., 2015; van Lutterveld, Diederen, 

Otte, & Sommer, 2014; van Lutterveld, van den Heuvel, et al., 2014), as well as 

individuals at ultra-high risk for psychosis (Dietsche, Kircher, & Falkenberg, 2017; 

Fusar-Poli et al., 2011; Nenadic, Dietzek, et al., 2015). This suggests that PLEs might 

have common neuroanatomical correlates along the psychosis spectrum (Modinos et 

al., 2010), as those regions also overlap with alterations in schizophrenia (Siever & 

Davis, 2004). While previous literature strongly supports volumetric correlates of PLEs, 

the association with brain surface morphometry, such as cortical folding or gyrification, 

still remains largely unknown. Opposed to the high plasticity of volumetric structure, 

cortical folding, determined during early brain development (Chi, Dooling, & Gilles, 

1977), is thought to be a sensitive and stable marker of neurodevelopmental variation 

(Nenadic, Yotter, Sauer, & Gaser, 2014; Yotter, Nenadic, Ziegler, Thompson, & Gaser, 

2011). It might thus indicate neuronal processes long before symptom onset and serve 

as a surrogate of early neurodevelopmental insult. As altered gyrification patterns 
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within superior temporal, prefrontal, and cingulate cortex have been identified both in 

psychosis and high risk, the parameter has been suggested as a neurodevelopmental 

marker for psychosis (Damme et al., 2019; Zuliani et al., 2018).  

STS and SNS are psychometrically well-validated, whereas their neuroanatomical 

correlates still remain unclear. Therefore, the aim of the present study was to test in a 

large, healthy cohort drawn from the general population the hypothesis that the 

phenomenologically delineated dimensions schizotypal signs and schizophrenia 

nuclear symptoms are associated with volume- and surface-based brain structural 

correlates similar to those found for schizophrenia and PLEs. Based on current 

evidence from brain imaging studies, we hypothesised reduced volume in frontal and 

medial temporal cortical areas and increased volume in the precuneus with increasing 

symptom load. In addition, we tested the hypothesis that altered gyrification in part of 

these regions, as seen in schizophrenia (Spalthoff, Gaser, & Nenadić, 2018), would be 

related to schizophrenia nuclear symptoms. 

 

2. Methods 

2.1 Sample 

We analysed data from 672 healthy participants (424 female (63.1%), 248 male 

(36.9%); mean age=32.51 years, SD=12.23), a subset of the FOR2107 cohort (Kircher 

et al., 2018), a multi-centre study recruiting from the areas of Marburg and Münster in 

Germany. All experimental procedures were approved by the local ethics committees 

of the Medical Schools of the Universities of Marburg and Münster, respectively, in 

accordance with the current version of the Declaration of Helsinki. We included healthy 

adults between the age of 18 and 65 years. Exclusion criteria were current or former 

psychiatric disorders (assessed with SCID-I interviews (Wittchen, Wunderlich, 

Gruschwitz, & Zaudig, 1997) by trained raters), neurological, or other severe medical 

disorders, current drug use, verbal IQ<80 (estimated with Multiple Choice Word Test-B 

(Lehrl, 1995)) as well as common MRI contraindications. All participants volunteered to 
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take part in the study, gave written informed consent and received a financial 

compensation afterwards.  

2.2 Assessment of schizotypal signs and schizophrenia nuclear symptoms 

All participants completed the German version (Franke, 1995) of the SCL-90R-checklist 

(Derogatis, 1977) as part of a larger test battery (Kircher et al., 2018) within 14 days of 

MRI scanning. The SCL-90R is a well-established self-report questionnaire assessing 

the distress of 90 psychological symptoms across nine dimensions on a five-point 

Likert scale, including the dimensions psychoticism and paranoid thinking. Participants 

were asked to rate symptoms over the past four weeks.  Based on previous studies 

(Rössler et al., 2015; Rössler et al., 2013, 2007), we computed the sum of the scales 

“schizotypal signs” (STS; 8 items) and “schizophrenia nuclear symptoms” (SNS; 4 

items) that were derived from factor analysis in a large longitudinal cohort study, based 

on the items of the original SCL-90R scales “paranoid ideation” and “psychoticism” 

(Rössler et al., 2007). Table 1 shows a list of items for both scales and respective 

descriptive statistics. SCL-90R has been shown to possess good internal consistency 

and test-retest-reliability (Derogatis & Cleary, 1977; Schmitz, Hartkamp, & Franke, 

2000). The STS and SNS subscales have been derived and validated in 

epidemiological studies (Rössler et al., 2015; Rössler et al., 2007). 

 

2.3 MRI acquisition 

High resolution, T1-weighted structural images were acquired on a 3T MRI system in 

Marburg (12-channel head matrix Rx-coil; Tim Trio, Siemens, Erlangen, Germany) or 

Münster (20-channel head matrix Rx-coil; Prisma, Siemens, Erlangen, Germany). At 

each site, a three-dimensional MPRAGE sequence with a repetition time of TR=1.9ms, 

echo time TE=2.26ms, inversion time TI=900ms, flip angle=9° with 176 slices, slice 

thickness=1.0mm, voxel size=1.0 x 1.0 x 1.0mm, field of view FOV=256mm was used. 

Imaging data from both centres were pooled based on extensive quality assurance 

protocols (Vogelbacher et al., 2018).  
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2.4 MRI data pre-processing 

Pre-processing and voxel-based morphometry (VBM) analyses (Ashburner & Friston, 

2000) were executed using the pipeline of the CAT12 toolbox (version 1184, Structural 

Brain Mapping group, Jena University Hospital, Jena, Germany) building on SPM12 

(Statistical Parametric Mapping, Institute of Neurology, London, UK), running under 

MatLab (v2017a, The MathWorks, USA) with default parameter settings.  

For VBM analyses, images were segmented into grey matter, white matter and 

cerebrospinal fluid and spatially normalised with the DARTEL algorithm (Ashburner, 

2007). All images passed visually quality control (inspection for artefacts and image 

quality) and the homogeneity control implemented in the CAT12 toolbox. Images were 

smoothed with a Gaussian kernel of 10mm (FWHM). 

We extracted surfaced-based morphometry (SBM) parameters with the CAT12 toolbox, 

that uses a novel algorithm to extract the cortical surface (Dahnke, Yotter, & Gaser, 

2013), allowing to calculate additional information on cortical parameters. We analysed 

cortical gyrification, based on absolute mean curvature (Luders et al., 2006). 

Gyrification images were smoothed with a Gaussian kernel of 20mm (FWHM). 

 

2.5 Statistical analyses 

Statistical analyses were conducted using general linear models (GLM) in CAT12 with 

a multiple regression design. For both SCL-90R subscales (STS, SNS), separate 

models were set up to test for associations with grey matter volume (GMV) and 

gyrification, respectively. To control for the influence of confounding variables, age, sex 

and site were included in the model as nuisance variables. We also accounted for an 

Rx coil change after 386 of 445 scans at the Marburg site by including head coil as an 

additional nuisance variable (Vogelbacher et al., 2018). In VBM analyses, total 

intracranial volume was included as an additional covariate. We analysed positive and 

negative correlations of SCL-90R subscale sum values (STS, SNS) with morphometric 

parameters in whole-brain analyses. Results were considered significant at p<0.05, 
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FWE cluster level-corrected for multiple comparisons after an initial cluster-forming 

threshold of p<0.001.  

 

3. Results 

3.1 Demographic characteristics 

Neither SNS nor STS were correlated with sex (r=0.041, p=0.289; r=-0.030, p=0.433, 

respectively). STS was correlated with age (r=0.077, p=0.046), but SNS was not 

(r=0.001, p=0.971). SNS and STS showed a significant intercorrelation (r=0.355, 

p=1.9×10-21). There were significant differences in age (p=7.3×10-11) and SNS 

(p=0.023) between the Marburg and Münster sub-cohorts.  

 
 
Table 1. Items of the SCL-90R scales schizotypal signs and schizophrenia nuclear 

symptoms with group means and standard deviations (SD). 

 

Items are rated („How much were you distressed by…“) over the last 4 weeks on a 5 point Likert scale 

between 0 (“not at all”), 1 (“a little bit”), 2 (“moderately”), 3 (“quite a bit”), and 4 (“extremely”) for each item, 

resulting in scale ranges of 0-16 (SNS) and 0-32 (STS). 
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SCL-90R 
item no. schizophrenia nuclear symptoms scale mean (SD) 
7 Someone else can control your thoughts. 0.03 (0.21) 

0.11 (0.47) 
16 Hearing voices other people do not hear 0.00 (0.06) 

35 Other people being aware of your private thoughts 0.05 (0.25) 

62 Having thoughts that are not your own 0.03 (0.22) 

 
SCL-90R 
item no. schizotypal signs scale 

 

mean (SD) 
8 Others are to blame for your troubles 0.15 (0.44) 

1.68 (2.48) 

18 Feeling most people cannot be trusted 0.16 (0.51) 

43 Feeling you are watched by others 0.16 (0.45) 

68 Having ideas others do not share 0.18 (0.45) 

76 Others not giving you proper credit 0.32 (0.62) 

77 Feeling lonely even when with people 0.24 (0.58) 

83 Feeling people take advantage of you 0.22 (0.52) 

88 Never feeling close to another person 0.25 (0.62) 
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3.2 VBM results 

Regression analyses revealed significant correlations between the two scales and 

clusters in the following brain regions (see Figure 2): 

Schizophrenia Nuclear Symptoms (SNS) 

SNS were positively correlated with GMV in the left superior parietal lobe, including 

parts of the precuneus (k=406 voxels, x/y/z=-18/-62/45, T=4.56, p<0.05 FWE cluster 

level-corrected); and negatively correlated with the GMV within the right inferior 

temporal gyrus, extending into fusiform gyrus (k=915 voxels, x/y/z=36/-8/-50, T=3.92, 

p<0.05 FWE cluster level-corrected).  

Schizotypal Signs (STS) 

STS were negatively correlated with the GMV in the right (k=1035, voxels, x/y/z=38/-

10/70, T=4.16) and left (k=298 voxels, x/y/z=-34/-10/75, T=3.86) precentral gyrus (all 

p<0.05 FWE cluster level-corrected). 

 

 
 

 

Figure 2. Clusters of 

significant positive (red) and 

negative (blue) correlation 

between grey matter volume 

and SCL-90R-scales 

schizophrenia nuclear 

symptoms (upper panel) and 

schizotypal signs (lower 

panel) at p<0.05, FWE 

cluster level-corrected 
(illustration prepared with 

MRIcroGL 

www.nitrc.org/projects 

/mricrogl).  

 

 

 

 



67 

 

3.3 SBM results 

Schizophrenia Nuclear Symptoms (SNS) 

There were no significant FWE cluster level-corrected associations of the SNS score 

with gyrification. However, performing an exploratory analysis (p<0.001 uncorrected), 

we identified a positive correlation of SNS with gyrification in the left insula (k=27 

voxels, x/y/z=-34/-24/5, T=3.32) and the left rostral middle frontal gyrus (k=13 voxels, 

x/y/z=-23/38/34, T=3.30, see Figure 3).  

Schizotypal Signs (STS) 

There were no significant FWE cluster level-corrected associations of STS with 

gyrification. An exploratory analysis (p<0.001 uncorrected), however, revealed that 

STS was positively correlated with gyrification in the insula (k=29 voxels, x/y/z=40/-2/0, 

T=3.31) and the precuneus (k=13 voxels, x/y/z=23/-62/21, T=3.27), as well as 

negatively correlated with gyrification in the inferior/middle temporal gyrus (k=42 

voxels, x/y/z=-41/3/-37, T=3.78 see Figure 3). 

 

 

 

 

 

 

 

 

Figure 3. Clusters of significant positive (red) 

and negative (blue) correlation between 

gyrification and SCL-90R-scales schizophrenia 

nuclear symptoms (upper panel) and 

schizotypal signs (lower panel) revealed in the 

exploratory analysis at p<0.001 (uncorrected). 
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4. Discussion 

In the present study, we demonstrated that the level of distress related to psychotic-like 

experiences in healthy adults is correlated with brain structural variation, similar to 

previously reported findings for measures of schizotypy and PLEs. Schizophrenia 

nuclear symptoms (SNS), capturing primarily positive, subpsychotic aspects closer to 

the clinical spectrum, were positively correlated with precuneus volume and negatively 

correlated with the volume in the inferior temporal gyrus. Schizotypal signs (STS), 

reflecting a milder, personality trait-associated dimension of negative and positive 

symptoms, were negatively correlated with precentral volume.  

A main finding of our study is the disentangling of precuneus volume being linked to 

distress associated with positive, psychotic-like symptoms (SNS), but not to personality 

related STS. This reinforces a spectrum model (shown in Figure 1) in which sub-

psychotic features closer to the clinical spectrum (as captured in SNS) are associated 

with precuneus variation. Therefore, our results provide strong evidence for differential 

brain structural associations of schizotypy and PLEs. 

To date, this is the largest study analysing the association of brain structure and 

experiences from the schizotypal spectrum in a cohort of healthy individuals, including 

a broader demographic spectrum than most preceding studies. Our results further 

endorse a dimensional model of neural correlates of schizotypy and psychosis-

proneness, and highlight the role of emotional appraisal of psychotic-like experiences 

in the healthy spectrum. This closes an existing gap between psychometrically-

assessed schizotypy (Claridge, 1997; Grant, 2015) and clinically-derived concepts 

(PLEs, ultra high risk).  

Importantly, the level of distress associated with psychotic experiences, rather than the 

symptom level, has a higher predictive value for conversion into clinical stages and 

psychotic disorders (Hanssen, Bak, Bijl, Vollebergh, & Van Os, 2005; Hanssen, 

Krabbendam, De Graaf, Vollebergh, & Van Os, 2005). Schizotypy appears to play a 
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crucial role in differentiating between those two subgroups, as it moderates the 

association between PLEs and distress: Individuals showing high levels of schizotypy 

reported more PLEs, but at the same time less distress associated with them, 

compared to individuals with low trait schizotypy (Kline et al., 2012). 

Our finding of the association with precuneus structure thus suggests its crucial role in 

mediating a higher risk stage. Precuneus structure has previously been linked to 

psychometrically-assessed schizotypy, indeed this is one of the few findings that has 

been replicated across several studies (Modinos et al., 2010; Gemma Modinos et al., 

2018; Nenadic, Lorenz, et al., 2015). There is also evidence of links to functional 

changes: Non-clinical individuals with verbal hallucinations show increased precuneus 

activation (van Lutterveld, van den Heuvel, et al., 2014), and individuals at clinical high 

risk for psychosis show a failure to deactivate the precuneus in a working memory task 

(Falkenberg et al., 2015). These structural and functional findings corroborate the role 

of the precuneus for symptoms within the psychosis spectrum.  

The precuneus, part of the medial parietal cortex, has vast structural and functional 

connections with multiple brain regions and is thought to be involved in various higher-

order cognitive processes (Cavanna & Trimble, 2006; Leech & Sharp, 2014; Zhang & 

Li, 2012). Its involvement in self-reflection, discrimination of self-versus-others, and 

cognitive biases like thought-action fusion, reality distortion and self-referential ideas 

has been shown in studies in obsessive-compulsive disorder and the psychosis 

spectrum (Cavanna & Trimble, 2006; Jones & Bhattacharya, 2014; Rikandi et al., 

2017). Those findings are in line with our own results, linking precuneus volume to 

thought intrusion and broadcasting, verbal hallucinations and control delusions, as 

assessed by the SCL-90R schizophrenia nuclear symptoms scale. 

In line with our finding of a negative correlation between SNS and inferior temporal 

grey matter volume, cortical thinning in the inferior temporal gyrus (ITG) has been 

linked to PLEs, i.e. verbal hallucinations in nonclinical individuals (van Lutterveld, van 

den Heuvel, et al., 2014). In one smaller study, volume reductions were also 
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associated with attenuated psychotic symptoms in UHR individuals (Nenadic, Dietzek, 

et al., 2015). ITG reductions were also part of a pattern distinguishing at-risk individuals 

with later conversion from non-converters (Koutsouleris et al., 2010), and have been 

shown as longitudinal changes following transition from risk status to psychosis onset 

(Borgwardt et al., 2008). 

While these findings suggest PLEs and clinically-derived markers to be associated with 

ITG structural variations, there is no evidence for such an association with schizotypy. 

This is consistent with the notion that SNS and STS might tap different parts of the 

psychosis spectrum. Given the overall low SNS scores in our sample, these findings 

appear all the more impressive, suggesting similar neuroanatomical correlates of even 

subtle subclinical variations as shown across the psychosis spectrum.  

In our data, associations with the schizotypal signs scale were less prominent and 

restricted to a negative correlation in a cluster within the right and left precentral gyrus. 

While precentral gyrus volume decreases are generally associated with motor 

dysfunctions in schizophrenia (Tanskanen et al., 2010), and one study found a similar 

pattern in high risk and first episode individuals compared to healthy controls (Chang et 

al., 2016), it does not generally feature in studies of PLEs in nonclinical individuals. 

There is, however, evidence for variations in adjacent regions, as reduced grey matter 

density in the dorsolateral prefrontal cortex has been reported in high vs. low 

schizotypy (Wang et al., 2015) and postcentral grey matter reduction was reported in 

women with vs. without schizotypal personality disorder (Koo et al., 2006).  

We did not detect associations of the STS scale with areas recently linked to 

psychometrically-assessed schizotypy, such as the precuneus, prefrontal or temporal 

structures. STS in parts certainly overlaps with commonly used schizotypy measures, 

still there are distinct differences: While other measures also often imply distress-

proneness, the STS primarily and directly rates the distress level rather than that of the 

symptoms causing it. Also, blending of positive (e.g. suspiciousness) and negative (e.g. 

social anhedonia) dimensions rather than distinguishing them may dilute effects. While 
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there is compelling evidence for the role of distress in conversion to clinical 

dimensions, as well as elevated distress and impaired quality of life in both long-term 

and first episode schizophrenia patients (Addington, Penn, Woods, Addington, & 

Perkins, 2008; Gaite et al., 2002) and clinical high risk states (Paolo Fusar-Poli et al., 

2015; Hui et al., 2013), in schizotypy, the association to quality of life seems to be less 

distinct and more dimension-specific (Cohen, Auster, MacAulay, & McGovern, 2014; 

Fumero, Marrero, & Fonseca-Pedrero, 2018).  

Taken together, we show distinct associations with neuroanatomical correlates 

between SNS and STS, and to recent findings in schizotypy. The spectrum of 

psychotic-like experiences towards psychotic symptoms is often seen as a continuum 

(Claridge, 1997). This phenomenological continuum, however, is likely not monotonic 

and unidimensional, but falls into several (potentially overlapping) dimensions or facets 

(Grant, Green, & Mason, 2018), represented by different brain structural (and 

functional) correlates and networks. It has been suggested that there are partially 

distinct susceptibilities to the schizophrenia spectrum (Barrantes-Vidal et al., 2015): 

While shared genetic variations render certain vulnerabilities to environmental events, 

other factors might buffer this influence and decrease the impact of schizophrenia risk 

factors by preserved or increased regional brain volume or stabilised neurotransmitter 

activity (Siever & Davis, 2004). These models have been mostly explored in 

schizophrenia versus schizotypal personality disorder patients, but should be extended 

to the full spectrum including schizotypy in healthy individuals. Our study further 

highlights the role of emotional appraisal that might modulate the impact of psychotic-

like experiences on brain structure and subclinical vs. clinical course. 

While we did not find an association of the SNS and STS scales with gyrification 

patterns at corrected threshold levels, the exploratory, uncorrected analysis is of 

interest due to the associations with the precuneus as well as frontal and temporal 

regions. So far, there are no cortical folding or gyrification studies analysing 

associations of those dimensions with developmentally early and rather stable brain 
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structural patterns, so additional studies are warranted. Although the SNS and STS are 

state-dependent, longitudinal analyses in a large, general population study showed that 

their variability is largely (75-89%) associated by stable traits (Rössler et al., 2013). 

This, in line with our results, hints to a possible association of the scales with early, 

developmental markers, possibly indicating a vulnerability to the psychosis spectrum. 

In a developmental approach, it has also been argued that an underlying high level of 

psychometrically-assessed schizotypy may constitute an increased liability to state-like 

subclinical PLE, suggesting an overlap of the partially distinct concepts (Debbané & 

Barrantes-Vidal, 2015).  

Our study addresses the nonclinical spectrum of schizotypal and sub-psychotic 

symptoms; therefore, as expected, the population shows low symptom loadings and 

restricted variance. This, however, only reduces statistical power, but should not 

invalidate the findings (Eysenck, 1952) as it speaks to a robustness of the effects.  

Taken together, our results support the notion that structural brain abnormalities in 

psychosis occur prior to or even independent of the development of full-blown 

symptoms, may progressively worsen over the course of the illness (Jung, Borgwardt, 

Fusar-Poli, & Kwon, 2012) and are modulated by emotional appraisal. As such, the 

phenomenological continuum seems to be reflected in a (at least partial) continuum of 

neurobiological correlates. It has to be pointed out, however, that the idea of a 

monotonic linear continuum appears to be overly simplified. Further, the existence of 

different concepts and phenomenological definitions as well as the use of instruments 

based thereon might contribute to mixed findings in current research, highlighting the 

importance of concise conceptualisation (Grant et al., 2018; Lee et al., 2016; Oezgen & 

Grant, 2018). 
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Abstract 

Schizotypy is a putative risk phenotype for psychosis liability. While sharing some risk 

genes with schizophrenia, the overlap of genetic architectures is poorly understood. 

We tested the hypothesis that dimensions of schizotypy (assessed with the SPQ-B) are 

associated with a polygenic risk score (PRS) for schizophrenia in a sample of 623 

psychiatrically healthy, non-clinical subjects from the FOR2107 multi-centre study and 

a second sample of 1133 blood donors. We did not find a correlation of schizophrenia 

PRS with either overall SPQ or specific dimension scores, nor with adjusted schizotypy 

scores derived from the SPQ (addressing inter-scale variance). Also, PRS for affective 

disorders (bipolar disorder and major depression) were not significantly associated with 

schizotypy. This important negative finding demonstrates that despite some overlap in 

single risk alleles, schizotypy might share less mutual genetic risk factors with 

schizophrenia than previously assumed (and possibly less compared to psychotic-like 

experiences), but might rather reflect a risk phenotype with some overlap in particular 

genetic variants across the psychosis spectrum. 

Key words: bipolar disorder; depression; major depressive disorder; schizophrenia; 

schizotypy; psychosis; psychosis proneness 
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Introduction 

Genetic studies of schizophrenia (SZ) have typically focused on case-control study 

designs, comparing samples with a diagnosis of schizophrenia to those without. The 

recent surge of large genome-wide association studies (GWAS) using this case-control 

design has led to a dramatic improvement of our understanding of the genetic 

architecture of common versus rare genetic variants (Henriksen et al., 2017, Hyman, 

2018, Sullivan and Geschwind, 2019). The identification of schizophrenia-associated 

single nucleotide polymorphisms (SNP) has also allowed the construction of polygenic 

risk scores (PRS) allowing the quantification of SNP-based genetic risk for 

schizophrenia. So far, however, linking these PRS to putative biomarkers of SZ has 

proven difficult (Mistry et al., 2017). In contrast to case-control designs, dimensional 

models of psychopathology are based state or trait markers present not only in patients 

but across the general population. Hence, they can serve as risk phenotypes to study 

neurobiological continuum models across both non-clinical and clinical populations. 

Schizotypy is a trait that can be assessed psychometrically (through self-report) and is 

considered to reflect psychosis proneness and schizophrenia liability (Grant et al., 

2018). Given the ease of applying reliable and valid schizotypy questionnaires in large 

population studies, schizotypy lends itself as a candidate risk phenotype for the 

psychosis/schizophrenia spectrum (Barrantes-Vidal et al., 2015). Schizotypy does not 

imply a psychiatric diagnosis; in fact, schizotypy is neither identical nor conceptually 

congruent with schizotypal personality disorder, which is a clinical condition that has 

often been used to study the schizophrenia spectrum (Siever and Davis, 2004). Rather, 

schizotypy is conceptualized as a trait distributed throughout the general population 

and associated with proneness for psychosis (Flückiger et al., 2019, Nelson et al., 

2013). As such, schizotypy is a complex phenotype that encompasses multiple 

domains relevant to the schizophrenia spectrum, including positive, negative, and 

disorganized domains of variation in cognition, emotion, and behavior (Ettinger et al., 

2015, Fonseca-Pedrero et al., 2018, Oezgen and Grant, 2018) as well as subclinical 
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features such as delayed motor development (Filatova et al., 2018). It is more frequent 

in first-degree relatives of schizophrenia patients (Soler et al., 2019) and prodromal 

states (Racioppi et al., 2018). 

Importantly, there are are several lines of evidence that schizotypy is associated with 

variation in biological markers of the schizophrenia spectrum, including cognitive, brain 

imaging, and genetic parameters (Ettinger et al., 2015, Walter et al., 2016). Non-clinical 

subjects who are high in schizotypy (i.e., without a psychiatric diagnosis) show lower 

performance in attention, working memory, and executive functions in general (Lui et 

al., 2018, Matheson and Langdon, 2008, Siddi et al., 2017, Steffens et al., 2018). Also, 

higher schizotypy in psychiatrically healthy cohorts has been associated with brain 

structural variation in brain areas identified to show grey matter loss prefrontal cortices 

(similar to schizophrenia, Ettinger et al., 2012), as well as precuneus and other areas 

(Modinos et al., 2010, Nenadic et al., 2015). Functional imaging has demonstrated 

similar effects with high-schizotypy subjects showing changes in fronto-striatal systems 

intermediate between low-schizotypy and clinical schizophrenia subjects (Taurisano et 

al., 2014), paralleled by recent resting state fMRI studies(Waltmann et al., 2019, Wang 

et al., 2018), anti-saccade fMRI (Aichert et al., 2012), as well as studies on the 

dopamine system (Rössler et al., 2018, Woodward et al., 2011). 

The molecular genetics of schizotypy are, however, poorly understood (Grant, 2015, 

Walter et al., 2016). There are several studies linking single schizophrenia risk genes 

to psychometric schizotypy. Such effects have been shown for risk markers like 

ZNF804A (Meller et al., 2019, Soler et al., 2019, Stefanis et al., 2013a, Yasuda et al., 

2011), DTNBP1 (Kircher et al., 2009, Stefanis et al., 2007), ERBb4 (Stefanis et al., 

2013b), GLRA1 (Vora et al., 2018), MMP16 (Morton et al., 2017), and other 

schizophrenia-linked risk loci like CACNA1C (Roussos et al., 2013). Altogether, 

however, these studies provide some evidence that schizotypy shares part of its 

genetic architecture with schizophrenia. At the same time, several of these risk markers 

have also been linked to other psychiatric disorders, which parallels the overlap of 
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genetic risk for schizophrenia with risk for other psychiatric conditions, especially 

bipolar disorder (Smeland et al., 2019). Only few studies have used genome-wide 

approaches to study the genetic overlap of schizotypy and schizophrenia, which might 

quantify the intersection (Fanous et al., 2007). A genome-wide association study of 

4269 nonpsychotic subjects from the Northern Finland Birth Cohort of 1966 found an 

association of a schizotypy-related measure (Chapman scale) with schizophrenia risk 

genes (incl. CACNA1C, Ortega-Alonso et al., 2017). In one study of male army recruits, 

PRS for schizophrenia was shown to be negatively associated with positive and 

disorganized schizotypy, but only under stressful conditions (Hatzimanolis et al., 2018). 

This is paralleled by studies of related risk phenotypes, such as psychotic-like 

experiences (PLEs), showing an inverse relationship with GWAS-derived genetic 

schizophrenia-risk in healthy adults, and in part also with studies in adolescents (Pain 

et al., 2018, Sieradzka et al., 2014). Taken together, despite some initial evidence, it is 

still unclear whether and to what extent schizotypal traits overlap genetically with the 

risk for schizophrenia (at whole-genome level), and in particular with polygenic risk 

scores that have been used to relate endophenotypes or subclinical phenotypes to 

schizophrenia risk (Mistry et al., 2017). 

In the present study, we tested the hypothesis of an association of SNP-related 

polygenic risk for schizophrenia with schizotypal traits in non-clinical subjects of the 

multi-centre FOR2107 cohort and a replication sample of blood donors. We tested for 

associations for overall schizotypal traits, which we followed up with post-hoc analyses 

for the three dimensions thereof. Also, we controlled for relative specificity by testing 

associations with polygenic risk for affective disorders (bipolar disorder and major 

depressive disorder). 

Methods 

Subjects  

For the test sample, we analysed data from 623 healthy subjects recruited into the 

multi-center cohort study FOR2107, as part of the Marburg and Münster affective 
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cohort study (MACS, Kircher et al., 2018). All subjects gave written informed consent to 

a study protocol approved by the local ethics committees of the Philipps-University 

Marburg and Westfälische-Wilhelms-Universität Münster.  

Both samples included nonclinical psychiatric healthy subjects (without life-time 

psychiatric disorder), all of whom had undergone the Structured Clinical Interview for 

DSM-IV Axis I Disorders (SCID-I, Wittchen et al., 1997) to confirm absence of a 

psychiatric axis I diagnosis. Additional exclusion criteria were history of traumatic brain 

injury, current or previous neurological disease of the central nervous system, 

uncontrolled general medical diseases, current or previous substance abuse or 

dependence, as well as current psychotropic medication. Subjects were recruited from 

the local communities in Marburg and Münster, respectively.  

This sample of N=623 included 392 (62.9%) female and 231 (37.1%) male participants; 

mean age was 32.62 years (SD=12.47), ranging from 18 to 65 years. There was no 

indication of differences in sex-distribution across sites (Marburg 151 male, 253 female; 

Münster 80 male, 139 female; chi-square-test one tailed, p=.835). As participants 

recruited in Münster were significantly (F(1,622)=44.535, p=5.54×10-11) younger 

(M=28.24, SD=10.35) than Marburg participants (M=34.99, SD=12.89), we included 

age as a covariate in all analyses. We administered clinical interviews and schizotypy 

assessments and obtained blood samples for genetic analysis within a week. 

The Mannheim replication sample consisted of a control cohort of n=1133 subjects 

(mean age=44.63, SD=12.85, range 18–70 years; 516 male (45.5%), 617 female 

(54.5%)) recruited at blood donation events in the state of Baden-Württemberg, 

Germany. Written informed consent was obtained from all subjects, and the study was 

approved by the local ethics committee of the Medical Faculty Mannheim, University of 

Heidelberg. Subjects were handed a questionnaire assessing demographic information 

and information about their mental and somatic health at the blood donation event 

which they then mailed back to the study centre.  
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Phenotyping / Assessment of schizotypal traits 

We administered the SPQ-B (Schizotypal Personality Questionnaire, brief version) to 

assess schizotypy through self-report. The SPQ-B is the short form of the well-

validated SPQ questionnaire first introduced by Raine (Raine, 1991). It has been 

validated in its German translation in previous studies (Barron et al., 2018, Fonseca-

Pedrero et al., 2017, Klein et al., 1997). In addition to providing an overall assessment 

of schizotypal traits, the SPQ-B also allows analysis of the three major dimensions 

thereof: a Cognitive-Perceptual factor (measuring positive schizotypy), a Disorganized 

factor (measuring mainly eccentricity), and an Interpersonal factor (tapping into 

negative schizotypy and neuroticism). These dimensions reflect the three-factor 

structure seen in many other schizotypy questionnaires (Asai et al., 2011, Gross et al., 

2014, Oezgen and Grant, 2018).  

Given that psychometric assessments of schizotypy often tend to show substantial 

overlap with facets of neuroticism (e.g., Gross et al., 2014, Macare et al., 2012), we 

also calculated an adjusted schizotypy score, along with scores for its three dimensions 

(Oezgen and Grant, 2018), and adapted for the brief version of the SPQ. These 

adjusted factors aim to reduce variance between schizotypy measures (due to slight 

conceptual differences) by re-assigning items to higher-order factors thought to mirror 

the common ground between the inventories. The resulting scales are: Adjusted 

Positive, Adjusted Negative, Adjusted Cognitive and Adjusted Eccentricity. These 

adjusted schizotypy scores were used for additional testing to confirm that the 

association was not driven by conceptual contaminants and to enable generalisation 

across instruments (Oezgen and Grant, 2018). 

Genotyping and polygenic risk score (PRS) calculation 

Genotyping from blood samples in all subjects of the MACS test sample was performed 

according to previously published methods using the Infinium PsychArray-24 v1.3 

BeadChip (Opel et al., 2018). Quality control was conducted in PLINK v1.90b5 (Chang 

et al., 2015) and R v3.3.3. Individuals were removed if they met any of the following 
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criteria: genotyping call rate <98%, gender mismatches or other X-chromosome-related 

issues, genetic duplicates, cryptic relatives with pi-hat ≥0.125, genetic outlier with a 

distance from the mean of >4 SD in the first eight ancestry components, or a deviation 

of the autosomal or X-chromosomal heterozygosity from the mean >4 SD. Genotype 

data were imputed to the 1000 Genomes Phase 3 reference panel using SHAPEIT and 

IMPUTE2 (Delaneau et al., 2011, Howie et al., 2012, Howie et al., 2009).  

PRS for schizophrenia (SZ), bipolar disorder (BPD), and major depression (MDD) were 

calculated in R v3.33 by summing the minor allele dosages of the linkage 

disequilibrium (LD)-independent SNPs in our test sample, weighted by GWAS effect 

sizes (SZ: Ripke et al., 2014, BD: Stahl et al., 2019, MDD: Wray, 2018). The weighted 

PRS thus represent an estimation of cumulative, additive risk. PRS were calculated at 

p-value thresholds that showed the best discrimination of case-control status in the 

original GWAS (SZ: p=.05, BD: p=.01, MDD: p=.05).  

To adjust for genetic heterogeneity within our sample, we computed multi-dimensional 

scaling (MDS) components based on the pairwise identity-by-state distance matrix 

calculated on the genotype data in PLINK v1.90b5. Based on screeplot inspection, the 

first three components (C1–C3) were included as covariates in the analyses.  

The Mannheim replication sample served as part of the control cohort in the framework 

of a case-control GWAS of Borderline Personality Disorder for which details have been 

published previously (Witt et al., 2017). Analyses in the present manuscript are based 

on an updated quality control and imputation carried out using the RICOPILI GWAS 

pipeline (Lam et al., 2019). 

Individuals and SNPs were removed if they met any of the following exclusion criteria in 

the first round of quality control: genotyping call rate for given SNPs or individuals 

<98%, difference in SNP genotyping call rate between cases and controls >2%, 

deviation for the autosomal heterozygosity from the mean (|Fhet|>0.2), or a deviation 

from Hardy-Weinberg equilibrium (p<1x10−10 in cases; p<1x10−6 in controls). Genotype 

data were imputed using a publicly available reference panel consisting of 54,330 
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phased haplotypes with 36,678,882 variants from the haplotype reference consortium 

(EGAD00001002729) with the pre-phasing/imputation stepwise approach in 

EAGLE/MINIMAC3  (default parameters and a variable chunk size of 132 genomic 

chunks, Das et al., 2016, Loh et al., 2016) . In the second round of quality control, 

relatedness testing and population structure analysis were performed using a SNP 

subset that fulfilled strict quality criteria after imputation (INFO >0.8, missingness <1%, 

minor allele frequency >0.05), and which had been subjected to LD pruning (r2>0.02). 

This subset comprised 66,240 SNPs. For cryptic relatives with pi-hat >0.2, one 

member of each pair was removed at random following the preferential retention of 

cases over controls. To obtain a highly informative SNP set with minimal statistical 

noise for PRS calculation, the following were excluded: low frequency SNPs (minor 

allele frequency <0.1), low-quality variants (INFO <0.9), and indels in each of three 

GWAS (SZ: Ripke et al., 2014, BD: Stahl et al., 2019, MDD: Wray, 2018). 

Subsequently, the remaining SNPs were clumped. From the major histocompatibility 

complex region, only one variant with the strongest significance was retained. These 

SNPs were then used as weights to calculate PRS for each individual in the cohort. 

Five MDS components (C1–C4 and C7) were used to adjust for genetic heterogeneity 

within the Mannheim cohort along with sex and age in subsequent analysis. 

 

Statistical analysis 

Statistical analysis was performed using SPSS (SPSS, version 24, IBM, Armonk, NY) 

and R/Rstudio(R Core Team, 2018, RStudio Team, 2015). Distributions of sex and 

differences in age and SPQ scores were assessed using chi-square tests and 

univariate and multivariate analyses of variance (ANOVA), respectively. As is to be 

expected, schizotypy scores showed substantial skewness that remained after 

common transformation attempts. Schizotypy scale variables were z-transformed to 

ensure comparability between test and replication samples. 
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To test our main hypothesis, we performed a multiple regression analysis between 

schizophrenia PRS and the SPQ-B total score; with age, sex, and MDS components 

(C1–C3 in test sample, C1–C4 and C7 in replication sample) as covariates. We then 

tested separate multiple regression models post-hoc with each of the three SPQ-B 

dimensions and the adjusted schizotypy scores as the outcome variable. To account 

for the remaining skewness in the variables, robust standard errors were calculated 

using bootstrapping (N=1000) and bootstrapped p-values are reported.  

To aggregate results across samples, combined p-values were calculated with the 

Stouffer meta-analysis method(Stouffer et al., 1949) using the R package gmeta 

(https://cran.r-project.org/web/packages/gmeta/index.html) to weight by the different 

sample sizes (N=623 vs. N=1133).  

Finally, given the genetic overlap between schizophrenia and affective disorders, we 

examined potential associations with affective disorders using the PRS for bipolar 

disorder and for major depression as independent variables in further multiple 

regression models. Since SPQ-B scales (as well as adjusted factors) display significant 

intercorrelations, p-value thresholds were adjusted to account for multiple comparisons 

according to the Bonferroni-Holm method for the eight schizotypy scores tested for 

each of the PRS (Eichstaedt et al., 2013). 

 

Power Analysis for Correlations 

Based on the literature reported, we expected small local effect sizes of PRS prediction 

of schizotypy scores (Cohen’s f2≥0.02). To determine the effect size we were able to 

detect with our data, we conducted an a posteriori power analysis, using the sensitivity 

test in GPower (v3.1.9.4,(Faul et al., 2007)) for multiple regression models. Given the 

sample size of N=623 (N=1133), an alpha level of 0.05 and a power of 0.80, in a linear 

multiple regression model with one tested predictor and six (eight) predictors in total, 

resulting in 616 (1124) degrees of freedom, we would have had enough power to 



88 

detect a local effect size of Cohen’s f2≥0.013 (test sample), f2≥0.007 (replication 

sample), respectively.  

 

Results 

Distribution of schizotypal traits 

Descriptive statistics for the original scales and adjusted schizotypy scores are shown 

in table 1. Both age (F(1,622)=4.95, padj=.026, partial Eta2 (η²)=.008) and sex 

(F(1,622)=6.61, padj=.020, η²=.010) were significantly associated with total schizotypy. 

Therefore, both variables were included into subsequent correlation analyses.  

Table 1. Distribution of schizotypy scores 

Schizotypy scale 
MACS sample Mannheim sample 

Mean 
(SD) Range Skewness Mean 

(SD) Range Skewness 

SPQ-B total score 3.38 
(2.97) 0–16 1.07 3.58 

(3.34) 0-18 1.22 

  Cognitive-
Perceptual 

0.90 
(1.16) 0–6 1.48 1.54 

(1.64) 0-10 1.24 

  Interpersonal 1.70 
(1.70) 0–8 1.06 2.14 

(2.11) 0-10 0.94 

  Disorganized 0.78 
(1.25) 0–6 1.81 0.54 

(1.05) 0-6 2.32 

Adj. Positive 0.14 
(0.19) 0–1.05 1.54 0.16 

(0.20) 0-1.05 1.33 

Adj. Negative 0.23 
(0.25) 0–0.94 0.63 0.24 

(0.25) 0-0.94 0.68 

Adj. Cognitive 0.18 
(0.26) 0–1.25 1.76 0.23 

(0.31) 0-1.25 1.49 

Adj. Eccentricity 0.16 
(0.19) 0–0.83 1.38 0.14 

(0.18) 0-0.97 1.86 
 

Note. SD=standard deviation 

 
Association of PRS-SZ and schizotypal traits 

Neither the SPQ-B total score, nor the subscores Cognitive-Perceptual, Interpersonal, 

or Disorganized showed significant associations with the schizophrenia PRS in any of 

the two samples (see Table 2 for details). This observation was also confirmed by 

meta-analysing the p-values of each sample. Likewise, analyses of the adjusted factors 

showed no significant correlation with the PRS for schizophrenia. 
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Table 2. Model statistics of regression models with PRS SZ as predictor. 

dependent variable 

MACS sample Mannheim sample 
comb. 
p* ß 

PRS 
SZ 

f2 
PRS 
SZ 

p(ß) 
ß 

PRS 
SZ 

f2 
PRS 
SZ 

p(ß) 

SPQ-B total score 0.003 9.2×10-6 0.955 -0.045 0.002 0.340 0.818 

  Cognitive-
Perceptual 0.006 3.8×10-5 0.873 -0.028 0.001 0.228 0.610 

  Interpersonal 0.007 5.0×10-5 0.882 -0.035 0.001 0.223 0.618 

  Disorganized -0.007 5.0×10-5 0.851 -0.002 4.3×10-6 0.882 0.942 

Adj. Positive 0.019 3.0×10-4 0.635 -0.003 9.4×10-6 0.339 0.480 

Adj. Negative -0.013 1.7×10-4 0.743 0.000 3.3×10-8 0.956 0.952 

Adj. Cognitive -0.012 1.4×10-4 0.807 -0.005 2.6×10-5 0.258 0.561 

Adj. Eccentricity 0.009 8.2×10-5 0.833 -0.001 1.1×10-6 0.588 0.800 
 

Note. Age, sex, and MDS components C1–C3 (MACS)/C1–C4 (Mannheim) were included as covariates in 
all models. All p- and ß- values after z-transformation and bootstrapping with N=1000. *p-values were 
combined with the Stouffer meta-analysis method. All p-values are above the threshold for statistical 
significance (pT=.00625–.05). 

 

Association of PRS-BD and schizotypal traits 

In follow-up analyses testing the association of the PRS for bipolar disorder (BD) with 

schizotypy, we did not find a significant correlation between BD PRS and any of the 

SPQ dimensions in either of the samples (see Table 3).  

 

Association of MDD PRS and schizotypal traits 

Findings for associations of the PRS for major depression (MDD) and schizotypy were 

inconsistent, as we detected a significant association only in the Mannheim sample. 

However, all combined p-values were above the significance thresholds after correcting 

for multiple testing (see Table 4). 
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Table 3. Model statistics of regression models with PRS BD as predictor. 

dependent variable 

MACS sample Mannheim sample 
comb. 
p* ß 

PRS 
BPD 

f2 
PRS 
BPD 

p(ß) 
ß 

PRS 
BPD 

f2 
PRS 
BPD 

p(ß) 

SPQ-B total score -0.010 1.0×10-4 0.824 0.067 0.005 0.044 0.292 

  Cognitive-
Perceptual -0.044 0.002 0.247 0.038 0.002 0.203 0.142 

  Interpersonal 0.007 5.0×10-5 0.871 0.065 0.004 0.117 0.483 

  Disorganized 0.009 8.4×10-5 0.801 0.033 0.001 0.060 0.308 

Adj. Positive -0.034 0.001 0.384 0.006 3.8×10-5 0.147 0.171 

Adj. Negative -0.014 2.0×10-4 0.734 0.005 2.6×10-5 0.330 0.552 

Adj. Cognitive 0.014 2.0×10-4 0.715 0.013 1.7×10-4 0.041 0.204 

Adj. Eccentricity 0.003 9.2×10-6 0.940 0.004 1.7×10-5 0.194 0.688 
 

Note. Age, sex, and MDS components C1–C3 (MACS)/C1–C4 (Mannheim) were included as covariates in 
all models. All p- and ß- values after z-transformation and bootstrapping with N=1000. *p-values were 
combined with the Stouffer meta-analysis method. All p-values are above the threshold for statistical 
significance (pT=.00625–.05). 
 

 

Table 4. Model statistics of regression models with PRS MDD as predictor. 

dependent variable 

MACS sample Mannheim sample 
comb. 
p* ß 

PRS 
MDD 

f2 
PRS 
MDD 

p(ß) 
ß 

PRS 
MDD 

f2 
PRS 
MDD 

p(ß) 

SPQ-B total score -0.026 6.9×10-4 0.543 0.328 0.114 0.001 0.017 

  Cognitive-
Perceptual -0.039 0.002 0.348 0.130 0.018 0.002 0.010 

  Interpersonal -0.012 1.4×10-4 0.762 0.185 0.035 0.001 0.046 

  Disorganized -0.008 6.6×10-5 0.848 0.089 0.009 0.002 0.095 

Adj. Positive -0.042 0.002 0.325 0.008 6.7×10-5 0.104 0.113 

Adj. Negative -0.020 4.1×10-4 0.632 0.020 4.2×10-4 0.001 0.258 

Adj. Cognitive 0.013 1.7×10-4 0.743 0.022 5.0×10-4 0.007 0.101 

Adj. Eccentricity -0.021 4.5×10-4 0.607 0.018 3.5×10-4 0.001 0.023 
 

Note. Age, sex, and MDS components C1–C3 (MACS)/C1–C4 (Mannheim) were included as covariates in 
all models. All p- and ß- values after z-transformation and bootstrapping with N=1000. *p-values were 
combined with the Stouffer meta-analysis method. Only p-values in bold are below the threshold for 
statistical significance (pT=.00625–.05). 
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Discussion 

In this study, we provide a large-scale analysis in two independent samples testing the 

hypothesis that schizotypy is significantly associated with the SNP-based polygenic risk 

for schizophrenia. Neither overall SPQ scores nor subscores / dimensions or adjusted 

schizotypy factors were associated with PRS for SZ, BP, or MDD. This finding 

contributes important new aspects to our understanding of the psychosis spectrum at 

both the phenotype and genotype levels, thus extending previous findings 

(Hatzimanolis et al., 2018, Zammit et al., 2014). 

For the interpretation of our findings, we will discuss the use of schizotypy in 

phenotypic characterization across the psychosis spectrum (contrasting findings in 

schizotypy vs. those in PLEs), factors related to the timing of impact of genetic risk (i.e., 

schizotypy and PLEs in adolescence vs. adult life), as well as methodological factors. 

Schizotypal traits are increasingly used as a phenotypic marker of psychosis liability 

improving our understanding of the psychosis spectrum (Nelson et al., 2013). They 

share variance with other measures, such as PLEs and clinical criteria of subjects at 

ultra-high risk for psychosis (Barrantes-Vidal et al., 2013, Flückiger et al., 2019). In 

contrast to a growing number of association studies of schizotypy with clinical or 

cognitive phenotypes or endophenotypes of schizophrenia (Ettinger et al., 2015, 

Nenadic et al., 2015), there have hardly any genetic studies investigating more than 

one risk gene in relation to schizotypy (for overview, see Meller et al., 2019)).  

First, our findings diverge from association studies using PLEs as subclinical markers. 

While schizotypy is linked to clinical risk for psychosis (Flückiger et al., 2016, Kwapil et 

al., 2013), thus emphasising its predictive clinical utility in prodromal 

screening(Schultze-Lutter et al., 2019), it is not fully congruent with PLEs or at-risk 

states. Most high- schizotypy individuals are likely not to convert to psychotic disorders 

(Chapman et al., 1994, Gooding et al., 2007, Kwapil et al., 2013), suggesting 

schizotypy to encompass more than just schizophrenia liability. In addition, we also 

need to consider that different schizotypy instruments are based on somewhat 
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incongruent conceptual backgrounds. For example, the SPQ is based on early DSM 

criteria of schizotypal personality disorder, while other questionnaires, such as the 

Multi-Dimensional Schizotypy Scales (MSS) are developed with an explicitly multi-

dimensional approach to study the general population (Kwapil et al., 2018). 

A recent large study of psychosis proneness using multiple psychometric measures 

found an association with physical anhedonia and hypomanic features but not with 

other core aspects of schizotypy (Ortega-Alonso et al., 2017); also, the study only 

found modest heritability across the phenotypes. Findings from the ALSPAC study 

have suggested that polygenic risk for schizophrenia links to anxiety and negative 

symptoms in adolescence but not depressive or psychotic symptoms (Jones et al., 

2016). Furthermore, a recent study from the UK biobank using a health questionnaire 

on frank psychotic experiences in non-clinical subjects found an indication for 

associations of psychotic experiences with PRS for schizophrenia, but also 

associations with PRS for bipolar disorder and major depressive disorder, as well as 

schizophrenia copy number variants (CNV, Legge et al., 2019). Importantly, these 

phenotypes reflect a more state-related emergence of quasi-psychotic symptoms, 

which is different from the enduring trait-like quality of core schizotypy features. Our 

findings could, thus, be reconciled considering the difference between state- versus 

trait-like features of liability markers. Across the phenotype itself, cognitive 

disorganization and anhedonia might show higher SNP-heritability than more narrow 

positive symptom dimensions (Pain et al., 2018), which is consistent with some older 

twin studies examining “Meehlian”-based measures of schizotypy (Hay et al., 2001). 

Incidentally, analyses of (fully) dimensional schizotypy conceptualizations show similar 

heritability estimates of positive and negative schizotypy by individual latent genetic 

factors, which both equally explain variance in disorganized schizotypy (Linney et al., 

2003). 

However, studies identifying associations between subclinical psychosis symptoms in 

population-drawn samples have either failed to show associations with schizophrenia 
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PRS (Sieradzka et al., 2014, Zammit et al., 2014) or have shown such associations 

only when pooling patients and controls, but not in non-clinical samples only (Derks et 

al., 2012). It has to be considered, however, that those studies are based on the first-

wave GWAS data that relied on a smaller sample and therefore significantly less power 

than the following GWAS. So far, a comprehensive study assessing both state and trait 

features of the psychosis spectrum is still lacking. Overall, our findings suggest that 

neither total schizotypy nor individual dimensions of the construct are substantially 

related to genetic psychosis risk. In contrast to other studies using the SPQ as a 

measure for schizotypy, which differs conceptually from “true” schizotypy, we also used 

the adjustment method suggested by Oezgen and Grant to reduce inter-scale 

conceptual variance und, potentially, provide a closer approximation of „true“ 

schizotypy from the SPQ-items (Oezgen and Grant, 2018). It is unclear whether the 

above spectrum phenotypes might be related to polygenic risk for other psychiatric 

disorders like major depression, as suggested from a recent systematic review of 

studies (Ronald and Pain, 2018), since unlike our study, many other previous studies 

did not include PRS scores for other disorders in their analyses. The significant positive 

association of schizotypy scales and MDD-PRS suggests further research is needed to 

understand a potential link to genetic risk for affective disorders. 

The lower heritability of psychosis spectrum features (schizotypal traits vs. PLEs) also 

points to the problem of the timing of emerging risk phenotypes and the interaction with 

environmental risk. Association studies have variably used adolescent and adult 

samples. For example, the ALSPAC study relied on population-drawn cohorts of 

adolescents (Jones et al., 2016), while other mentioned studies analysed adult data 

(e.g., Ortega-Alonso et al., 2017). Some schizotypal features show only moderate 

temporal stability in late adolescence only, which might make them more prone to 

variation than other phenotypes, while others are more temporally stable (Ericson et 

al., 2011, Rosa et al., 2000, Venables and Raine, 2015). 
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The different risk backgrounds of genetic association studies of psychosis proneness 

also point to environmental risk factors as mediators of genetic risk. Like psychosis, 

schizotypy as a trait emerges from complex gene-environment interactions (Barrantes-

Vidal et al., 2015). Indeed, particularly those subjects scoring high on both types of risk 

factors might be at particular risk of developing manifest psychosis. Such effects for 

schizotypy and other risk phenotypes have been demonstrated for interactions with 

environmental risk factors like stress (Hatzimanolis et al., 2018) or urban environment 

(Grech et al., 2017).  

The current understanding of the genetic architecture of the psychosis continuum has 

largely benefited from recent studies linking particular risk phenotypes like PLEs to 

schizophrenia PRS. Our findings indicate that schizotypy as one of the main spectrum 

phenotypes may not be robustly linked to schizophrenia polygenic risk. In the non-

clinical part of the psychosis spectrum, this emphasizes the role of other factors, 

including environmental risk (Karcher et al., 2019, van Os et al., 2019). This is in 

accordance with the limited variance of common intermediate phenotypes that PRS 

explain (Mistry et al., 2018), however, they do not capture the genetic contribution of 

rare variants like copy number variants (Mowry and Gratten, 2013), but only account 

for the additive risk deriving from common SNPs. We also need to consider the 

possibility that polygenic risk factors, while successful in case-control studies, might be 

inherently limited in quantitative measures or risk phenotypes. While integrating 

multiple biological pathways, only part of the genes and pathways of a PRS might be 

relevant to schizotypy. However, part of these relevant gene groups might have 

transdiagnostic impact, which is not limited to the psychosis spectrum (Ronald and 

Pain, 2018). This ultimately results in a multi-dimensional continuum or continua (van 

Os, 2014, van Os and Reininghaus, 2016), especially considering transdiagnostic 

overlap with affective disorders. 

A methodological aspect to consider in view of our negative results is the sample 

variance. Correlational or regression-based analyses will often lead to null results when 
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sample-variance is low. As these methods depend on shared variance between 

variables, low variance in the variables will lead to null results, although the true 

correlation may, in fact, be higher. The short scales of inventories, such as the SPQ-B, 

are inherently less capable of capturing the same amount of variance as are full scales 

(Oezgen and Grant, 2018); therefore, also the adjustment method by Oezgen and 

Grant cannot perform as well when short scales are used (compared to full scales). 

Thus, our findings may have been different, had more schizotypal variance been 

captured within a sample not as ardently screened for psychiatric health. Yet, even 

within the Mannheim replication sample, in which in which no filtering was performed 

with regard to psychiatric phenotypes, no association with SZ-PRS was found. 

Additionally, as the effect-size of the (putative) association between schizotypy and the 

PRS for schizophrenia is, so far unknown, our sample may have lacked the power 

necessary to detect it. In comparison, Hatzimanolis and colleagues found a relationship 

between full SPQ scores and PRS for schizophrenia (albeit an inverse one), but only in 

a male sample almost twice as large as ours, under stressful conditions for the 

participants (i.e., army recruits) and avoiding potential gender effects (their sample was 

entirely male, Hatzimanolis et al., 2018). 

In conclusion, the findings of our multi-centre study call for a reappraisal of suitable risk 

phenotypes and delineation within polygenic risk factors for both schizophrenia as well 

as affective disorders for an improved understanding of the biological continuum model 

of psychosis. Instead, understanding schizotypy as a wider phenotype (compared to 

merely harbouring risk for schizophrenia or psychosis) and gathering data in a fashion 

more suitable to this wider understanding of the schizotypy construct may be an 

important step forward. This is not only crucial for understanding those aspects of 

schizotypy that are, indeed, associated with schizophrenia liability, but also (and maybe 

even more) those factors that are not, or even protective with regards to 

decompensation into frank psychosis in highly schizotypal individuals. 
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Abstract 

Objective: While single, genetic and environmental, risk factors for psychosis have 

been studied for their impact on brain structure and function, there is little 

understanding of how they interact to generate psychosis liability on the neural level. 

Direct associations between cumulative genetic risk scores and risk phenotypes are 

often weak, and analyses of G×E interactions are scarce. We developed and tested a 

multivariate model, in which the effects of cumulative environmental and genetic risk on 

a dimensional phenotype are mediated by brain structural variation. 

Methods: In a data set of 440 non-clinical subjects, we tested a moderated mediation 

model with an interaction of an environmental (ERS) and a polygenic risk score (PRS) 

for schizophrenia, impacting on the subclinical psychosis spectrum phenotype 

schizotypy. We propose this effect to be mediated by grey matter volume variation, 

derived from voxel-based morphometry. In addition, cognitive function was considered 

as a potential moderator. 

Results: We identified a significant multivariate model (R2=10.91%, p=4.9×10-5) in 

which precuneus/posterior cingulate volume mediated the impact of a PRS×ERS 

interaction on the positive schizotypy dimension. Furthermore, variation in executive 

function modulated this effect (p=0.027).  

Conclusions: Our finding is the first to integrate polygenic and poly-environmental 

markers with MRI parameters to demonstrate that the interaction of these cumulated 

risk factors leads to the emergence of subclinical symptoms through changes in brain 

structure. This also provides a testable model that can be applied to other clinical 

spectra. 
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Introduction 

Multiple genetic and environmental risk factors for psychosis impact different neuronal 

circuits to modulate risk for disease or expression of risk phenotypes1. Although 

aetiological models agree on multivariate interactions of risk and protective factors 

across multiple levels2, the majority of studies conducted univariate associations of 

single risk factors. Thus, the complex interplay of different factors, as well as their 

cumulative effects, has often been neglected. Partially, the interplay of risk factors is 

addressed in gene by environment (G×E) interaction studies, yet often restricted to 

single risk factors1. Multivariate models are, therefore, needed to integrate different risk 

factors and their effects on the neurocircuit level into a joint framework.  

Genetic liability may modulate environmental vulnerability by affecting brain structure 

and function, while protective influences and compensatory processes may buffer the 

impact of genetic risk3,4. Surprisingly, previous studies analysing the impact of 

polygenic risk on brain structure in non-clinical or clinical cohorts show only weak 

effects5, and statistically tested models of gene by environment (G×E) interactions, 

including specific pathways, are scarce. Such models are required to establish a 

mechanistic account for the emergence and maintenance of psychopathology.  

While most studies of G×E interactions in psychiatry have focussed on depression1, 

there is also a growing number of research within the psychosis spectrum. For 

example, polymorphisms in risk genes COMT and FKBP5 affect the outcome in 

schizophrenia spectrum disorders depending on cannabis consume and early life 

stress, respectively6. Moreover, interactions between genetic variants involved in 

serotonergic neurotransmission and neurodevelopment and the exposure of early and 

late life environmental risk factors modulate the risk for first episode psychosis7. While 

studies focussing on single genetic and environmental factors are valuable for 

analysing specific pathways, none of these exert their effects in isolation, but are part 

of complex interactions. On the genetic level, genome-wide association studies 

(GWAS) have provided polygenic risk scores as cumulative expression of common 
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single nucleotide polymorphism-related risk8. Recently, aggregated scores integrating 

multiple environmental risk pathways have been developed9. This creates a multi-

dimensional space, in which pathways of risk and protective factors unfolding during a 

subject’s life-time can be explored. 

Another limitation of previous studies is the lack of dimensionality in analysed 

phenotypes, as many studies relied on case-control designs. In view of psychosis-

spectrum models10, the case/control approach can only explain minor parts of the total 

phenotypic variation11. In addition to the heterogeneity within clinical dimensions, it is 

well established that the expression of psychotic or psychotic-like symptoms also 

extends to the non-clinical population4. Well-established dimensional phenotypes are, 

for example, dimensions of schizotypy, which can be assessed in healthy subjects, yet 

share a fully dimensional relationship with schizophrenia10,12. With schizotypy as a risk 

phenotype, G×E interactions established in schizophrenia can also be extended to the 

non-clinical spectrum. Recent examples include interactions of cannabis use and 

variants of DRD213, and childhood maltreatment and FKBP5 variants14. Similarly, 

polygenic risk for schizophrenia impacts schizotypy in interaction with stressful life 

conditions15 and the shared environment of siblings15.  

For most of these associations, it is unclear how effects unfold on the neural level. Both 

disease status and dimensional markers like schizotypy are associated with brain 

structural and functional variation. Key regions seem to be inferior and superior frontal, 

superior and medial temporal cortices, as well as the precuneus16–19. Those are also 

shown in non-clinical samples, where confounding effects of disease onset or 

medication are avoided. This concurs with the (early) idea that even severe 

psychopathological alterations are preceded by subtle variations of healthy brain 

structure and function20. Such alterations might mediate the association of G×E 

interactions and phenotypes. Studies are limited8, but, for example, indicate an 

interaction of polygenic risk and cannabis on cortical thickness in females21.  
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The present study sought to develop and test a multivariate model that would 

overcome some of the limitations of previous studies. In this model, we incorporated 

both cumulative genetic and environmental risk scores as well as structural brain 

imaging data and cognition to explain variance in psychopathology, using schizotypy as 

a dimensional phenotype. Based on the central assumption of a relationship of genetic 

risk and psychopathology, we constructed a model that incorporates the mediation of 

this relationship through brain structural parameters, while allowing moderation by 

environmental risk and cognitive function (figure 1). The latter has been proposed as a 

buffer against emerging psychopathology in schizophrenia spectrum models3 with 

empirical evidence in schizotypy22, at-risk individuals23, and schizophrenia24. 

 

 

Figure 1. Conceptual moderated mediation model of the effect of genetic x environmental risk on 
schizotypy, mediated by variation in brain structure, and moderated by level of executive function. 
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Methods 

Sample 

We analysed data of N=440 healthy subjects with complete data in all necessary 

markers (age 18-65 years, mean=32.77, standard deviation (SD)=12.12; 172 (39.1%) 

male and 268 (60.9%) female), who were part of the FOR2107 cohort, a bi-centre 

study recruiting from the areas of Marburg and Muenster, Germany25. All procedures 

were approved by the ethics committees of the Medical Schools of the Universities of 

Marburg and Muenster, in accordance with the Declaration of Helsinki. Participants 

were thoroughly screened for exclusion criteria, i.e., current or former psychiatric 

disorders (tested by trained raters through SCID-I interviews26), neurological or other 

severe medical disorders, current drug use, verbal IQ<80 (estimated with Multiple 

Choice Word Test-B27) and common MRI contraindications. All subjects volunteered to 

take part in the study, gave written informed consent and received a financial 

compensation for participation.  

Magnetic resonance imaging (MRI) data acquisition and voxel-based morphometry 

(VBM) pre-processing 

We acquired high resolution, T1-weighted structural images on a 3T MRI system in 

both Marburg (12-channel head matrix Rx-coil; Tim Trio, Siemens, Erlangen, Germany) 

and Münster (20-channel head matrix Rx-coil; Prisma, Siemens, Erlangen, Germany). 

We used a 3D MPRAGE sequence with slice thickness=1.0mm, voxel 

size=1.0x1.0x1.0mm, field of view FOV=256mm and the following parameters in 

Marburg: repetition time of TR=1.9s, echo time TE=2.26ms, inversion time TI=900ms, 

flip angle=7°; and Münster: TR=2.13s, TE=2.28ms, TI=900ms, flip angle=8°. Based on 

extensive quality assurance protocols27, imaging data from both centres were pooled.  

Pre-processing and voxel-based morphometry (VBM) analyses were executed using 

the pipeline of the CAT12 toolbox (version 1184, Gaser, Structural Brain Mapping 

group, Jena University Hospital, Jena, Germany) building on SPM12 (Statistical 
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Parametric Mapping, Institute of Neurology, London, UK), running under MatLab (The 

MathWorks, USA) with default parameter settings. Images were segmented into grey 

matter, white matter, and cerebrospinal fluid and spatially normalised with the DARTEL 

algorithm. All images passed visually quality control (inspection for artefacts and image 

quality) and the quality and homogeneity controls implemented in CAT12. Images were 

smoothed with a Gaussian kernel of 8mm (full width at half maximum, FWHM). 

 

Assessment of dimensional schizotypy 

Schizotypy was assessed with the German version28 of the Schizotypal Personality 

Questionnaire-Brief (SPQ-B). This short version of the original SPQ has been validated 

in cohorts of multiple nationalities29. We calculated adjusted dimensional scores (table 

1) for positive (AdjPos), negative (AdjNeg), cognitive (AdjCog) and eccentricity 

(AdjEcc) facets of schizotypy. Those adjusted scores have been constructed based on 

a factorial analysis of the major schizotypy instruments to identify their overlapping 

common ground, and represent a more instrument-independent, general account of 

those dimensions30. 

 

Table 1. Sample descriptives. 

 

 mean SD range 

ERS score -0.35 2.71 -4.5 - 7.0 

schizotypy dimensions    

positive 0.15 0.19 0.00 - 1.05 

negative 0.25 0.26 0.00 - 0.94 

cognitive disorganisation 0.17 0.26 0.00 - 1.25 

eccentricity 0.15 0.19 0.00 - 0.83 

SD = standard deviation 
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Polygenic risk score (PRS): Genotyping, quality control, and PRS calculation 

Genotyping was performed with genomic DNA extracted from blood samples using the 

Infinium PsychArray-24 v1.3 BeadChip. Quality control was conducted in PLINK 

v1.90b531 and R v3.3.3. Individuals were removed if they met any of the following 

criteria: genotyping call rate <98%, gender mismatches or other X-chromosome-related 

issues, genetic duplicates, cryptic relatives with pi-hat ≥12.5%, genetic outlier with a 

distance from the mean of >4 SD in the first eight ancestry components, or a deviation 

of the autosomal or X-chromosomal heterozygosity from the mean >4 SD.  

Schizophrenia PRS was calculated by summing the minor allele dosage of LD-

independent single nucleotide polymorphisms, weighted by GWAS-derived effect size,  

in R. PRS was calculated based on variants surpassing a GWAS p-value threshold of 

pT=0.05, which showed the best discrimination between schizophrenia cases and 

controls in the original GWAS32. Multi-dimensional scaling (MDS) components were 

calculated in PLINK and included as covariates to adjust for population stratification.  

 

Environmental risk score (ERS) calculation 

Calculation of the environmental risk score (ERS) was conducted according to the 

Maudsley Environmental Risk Score for Psychosis9 (see table 1 for descriptives). For 

this score, six environmental risks were selected based on the amount of replicated 

evidence, exposure before illness onset and relatively easy assessment: ethnic 

minority status, urbanicity, high paternal age, obstetric complications, cannabis use, 

and childhood adversity. Point scores for categorical levels of each risk factor have 

been calculated by Vassos and colleagues based on relative risks (RR) compared to 

an “average” exposure, (as only a marginal proportion of the population are not 

exposed to any risk), rescaled, multiplied and rounded to construct a simpler scale9 

(see table 2). The resulting categories, respective point values, and operationalisations 

are shown in table 2. The ERS was calculated by summing the points of each category, 
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resulting in a range from -4.5 (lowest risk) to 16 (maximum risk), where 0 equals an 

average risk for psychosis.   

Table 2. Operationalisation and respective point values for environmental risk factors in 
the calculation of the ERS in the study sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

‡Lederbogen urbanicity score46; †CTQ: childhood trauma questionnaire47 

 

 

risk factor operationalisation ERS points 

ethnic 
minority 

native -0.5 

white 2 

other 2.5 

urbanicity 

low 

(Lederbogen‡ score 15) 
-1.5 

medium 

(Lederbogen‡ score 15-30) 
0 

high 

(Lederbogen‡ score 30-45) 
1.5 

paternal age 

<40 0 

40-50 0.5 

>50 2 

obstetric 
complications 

birth weight ≥ 2.5kg and no other 
complications 0 

birth weight < 2.5kg or any other 
complication 2 

cannabis 

no exposure -1 

little to moderate 0 

high exposure 3 

childhood 
adversity 

no exposure  

(no CTQ† scale above cut-off) 
-1.5 

any exposure  

(≥ 1 CTQ† scale above cut-off) 
2.5 
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Neurocognitive testing 

As an indicator of working memory and executive function, we chose a subtest of the 

Wechsler Adult Intelligence Scale (WAIS, German version), the letter-number-

sequencing task (LNS). Participants are asked to recall a given sequence of letters and 

numbers in increasing (numbers) and alphabetical (letters) order, respectively. The 

LNS indexes working memory and executive function, assessing sequential 

processing, cognitive flexibility, and fluid intelligence, and compared to traditional 

measures of digit span, surpasses those by including processing speed and visual 

spatial memory34. 

 

Statistical analyses 

VBM analysis  

To identify clusters of grey matter volume significantly affected by the interaction effect 

of schizophrenia PRS and ERS, we conducted a whole-brain analysis using general 

linear modelling (GLM) in SPM12/CAT12 with a full factorial design. Age, sex, site, total 

intracranial volume (TIV), and MDS components were included as covariates to control 

for potentially confounding effects. We accounted for an Rx coil change after 247 of 

296 scans at the Marburg site by including head coil as an additional nuisance 

variable35.  

As interactions can only be tested between one continuous variable and categorical 

variables in SPM, we categorised participants into three groups (low, medium, high) 

according to their ERS score: Scores ≤0.5 were considered as “low” (63.4%), scores 

between 0.5 and 3.5 as “medium” (29.5%), and scores >3.5 as “high” (6.4%). 

Categorisation cut-offs were chosen similar to suggestions by Vassos et al.9, resulting 

in an expected distribution of the three categories. Results were considered significant 

at p<0.05 FWE (Family Wise Error) cluster level-correction for multiple comparisons, 

after an initial cluster-forming threshold of p<0.001. 
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Moderated mediation model 

Testing of the moderated mediation model was conducted with multiple linear 

regression models, using the PROCESS macro v3.4 for SPSS36, running under IBM 

Statistical Package for Social Sciences (SPSS, version 24, IBM, Armonk, NY). In the 

model (figure 1), PRS was entered as the predictor, schizotypy dimension score as the 

outcome, extracted cluster values as a mediator, and ERS and LNS as moderators.  

Age, sex, MDS components, site, TIV, and head coil were entered as covariates.  

Results 

Voxel-based morphometry (VBM) analysis of PRS X ERS interaction 

The VBM analysis detected a significant interaction effect of PRS x ERS in a cluster 

(figure 2; k=910, x/y/z=-4/-50/33, p=0.024 FWE cluster-level corrected) including the 

left precuneus (Pc, 64%), left posterior cingulate gyrus (pcG, 33%) and left superior 

parietal lobule (2%), for the comparison of individuals in category 1 (low risk) to 

category 2 (moderate risk). This cluster did not reach significance, when comparing 

groups 1 (low risk) and 2 (moderate risk) to group 3 (high risk), possibly due to the 

small sample size of group 3.  

 

Figure 2. Cluster of significant association of the interaction of ERS x PRS and grey matter volume in the 
precuneus and posterior cingulate gyrus (p<0.05 FWE cluster level-corrected, illustration prepared with 
MRIcroGL; www.nitrc.org/projects/mricrogl).  

 

Moderated mediation model  

The moderated mediation model was overall significant for the prediction of positive 

(AdjPos) schizotypy (F(17,422)=3.04, p=4.9×10-5, R2=10.91%, figure 3/panel A). In 
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predicting Pc/pcG grey matter value variation (R2=51.69%, p<0.001), the model shows 

that while neither PRS (path a1, b=0.638, p=0.830) nor ERS (a2, b=0.001, p=0.416) had 

a main effect on grey matter variation within the extracted cluster, their interaction was 

significant (a3, b=-3.13, p=0.002; figure 3/panel B): The intensity and direction of the 

effect of PRS on cluster variation was moderated by level of ERS, with a positive slope 

for low ERS (i.e., decreased environmental risk), and a negative slope for high ERS.  

 

Figure 3. A. Statistical moderated mediation model with path coefficients, indicating that the interactive 
effect of ERS x PRS on positive schizotypy is mediated through brain structural variation within a cluster in 
the left precuneus/posterior cingulate gyrus, and moderated by executive function (LNS). Bold print 
indicates significant paths. B. Plot of the path a3, showing a significant interaction of ERS x PRS on cluster 
volume, with fitted regression lines for low, average, and high ERS scores. Colours indicate the ERS level. 
C. Plot of the path b3, a significant interaction of Pc/pcG x LNS on positive schizotypy, with fitted 
regression lines for low, average, and high LNS scores. Colours indicate LNS performance level.  
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In the prediction of positive schizotypy, the direct effects of PRS (c1, b=6.116, p=0.477), 

ERS (c2, b=0.006, p=0.068), and their interaction (c3, b=1.555, p=0.604) were not 

significant (although a trend toward significance was observed for ERS). However, the 

model revealed an indirect effect through brain structural variation, showing a 

significant mediation (index=0.223, bootstrapped [n=10.000] confidence interval lower 

level=0.004, upper level=0.542). Cluster value variation had a significant main effect on 

positive schizotypy (b1, b=-0.277, p=0.049), but was also modulated by the level of 

executive function, with a positive slope for low LNS scores, and a negative slope for 

high LNS scores, showing a second significant interaction (b3, b=-0.070, p=0.027, 

figure 3/panel C). At the same time, the main effect of LNS on positive schizotypy was 

not significant (b2, b=-0.003, p=0.319). 

 

Discussion 

The present study provides proof for a multivariate model predicting the impact of both 

polygenic and poly-environmental risk on a psychosis risk phenotype, mediated 

through brain structure. Extending previous studies focusing on singular risk factors 

(e.g., cannabis use or single risk genes), the particular strength of this model is the 

integration of multiple facets of genetic and environmental risk, intermediate 

phenotypes (brain structure and cognition), as well as a commonly used dimensional 

phenotype for the psychosis spectrum.  

The resulting model provides several novel insights. First, we showed that the 

interaction of polygenic and poly-environmental risk was significantly associated with 

grey matter volume within a cluster in the precuneus/posterior cingulate gyrus (pcG). 

Structural variation in this region has already repeatedly been linked to positive 

schizotypy in non-clinical cohorts18,37,38. As part of the default mode network (DMN), 

connectivity in this region was also altered in high-risk subjects and first-episode and 

chronic schizophrenia across multiple-studies and meta-analyses39,40. We have now 

identified grey matter volume in this region to be affected by a cumulative G×E 
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interaction effect – that is detected independently of the phenotype, in a model not 

including a phenotypic variable. 

The precuneus is a highly associative region and has extensive structural and 

functional connections throughout the brain. It is an important node of the default mode 

network, involved in sensory information integration, mental imagery, self-other-

discrimination, and introspection41 – functions relevant to manifestations of psychosis, 

especially the positive symptom domain.  

Interestingly, the precuneus association with genetic and environmental risk is 

bidirectional: While under high environmental risk load, a higher PRS was linked to 

reduced precuneus/pcG volume, this effect was reversed under low environmental risk 

load (figure 3/panel B). These findings indicate higher sensitivity of individuals with high 

PRS not only to adverse, but also to beneficial environmental factors, with opposing 

effects. Conventional diathesis-stress models propose increased vulnerability 

specifically to adverse events; our model extends this to suggest an inverted effect for 

high PRS and low ERS subjects, where regional volumes showed relative increase. 

Under favourable environmental conditions, an increased genetic load might 

paradoxically result in low psychopathology outcomes or gain of function, supporting 

the notion of  genes associated with schizophrenia as “plasticity genes” rather than 

simple risk factors1,42.  

In the framework of our multivariate model, brain structure is shown to act as an 

intermediate modulating the emergence of psychopathology. Such moderation effects 

cannot be detected by simple univariate associations. By extending the interaction 

model to include a (moderated) mediating pathway, we showed that a significant part of 

the phenotypic variance in positive schizotypy could be explained through changes in 

brain structure (precuneus/pcG) arising from G×E interactions.  

Finally, our model confirms cognitive performance as a protective factor. With lower 

executive function, higher precuneus volume was associated with higher positive 

schizotypy; this association changed with increasing executive function, resulting in a 
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reversal at higher levels of cognitive functioning (figure 3/panel C). Cognition, therefore, 

may act as a buffer, although our analyses do not provide a neural-level account for 

this process. Similar findings, however, have been reported for general cognitive 

measures in schizophrenia and schizotypy22,43,44, indicating that above-average levels 

of cognitive function can compensate for dysfunctional processes that arise from 

altered neurodevelopment, potentially leading to a manifest disorder. Such 

compensatory mechanisms are crucial for understanding resilience, as they explain the 

existence of high (positive) symptom load in unaffected individuals.  

Our model explained a substantial amount of variance: while current genetic, PRS-

based schizophrenia case versus control differentiation in large-scale GWAS can 

explain up to ~20%32 of the variance, our model explained ~11% of the phenotypic 

variance even within a non-clinical cohort, thus surpassing other endophenotypic 

markers and measures. To put our findings in perspective, other studies found, for 

example, schizophrenia PRS to explain 9% of the variance between first episode 

psychosis versus control status45, 1% of global functioning in schizophrenia patients 

and healthy controls46, and <1% in cognitive performance in psychotic patients and 

controls47. However, it has to be taken into account that, while schizophrenia and 

dimensional phenotypes are highly polygenic, PRS capture only part of the genetic 

variance, i.e. incorporating only common single nucleotide polymorphisms at a certain 

p-value threshold. PRS do not account for rare genetic variants (e.g., copy number 

variants), epigenetic effects, non-additive risk effects, or gene×gene interactions. Thus, 

an increased genetic risk due to those might still show as a low polygenic risk modelled 

in standard PRS values11. Calculations of PRS also depend on dichotomous case-

/control comparisons, thus not accounting for heterogeneity within each of the 

categories or for diverging pathways of specific symptom dimensions. This limitation 

might be overcome by using gene expression profiles in addition to static genotype 

information. Similarly as is the case for PRS, the ERS score does not fully account for 

E×E interactions.  
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In conclusion, one of the main challenges in biological psychiatry has been to establish 

a link between genetic risk variants and clinical disorders, and current models propose 

a pathway through neurodevelopmental processes. Using a dimensional risk 

phenotype, we present a model of how brain structure mediates the interaction effect of 

environmental and polygenic risk on phenotypic variance. This model can be extended 

to other genotype-phenotype associations. Our results may explain heterogeneous 

results in previous studies and highlight the importance of considering multivariate 

models in the future. These results further advocate the use of schizotypy and other 

dimensional, continuous phenotype markers as a valuable framework for detecting 

multifactorial associations in a dimensional perspective on psychopathology. 
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