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Summary 
 

Efficient capture and conversion of atmospheric carbon dioxide (CO2) is a prerequisite to 

develop a carbon‐neutral, circular future economy. Carbon fixation is the process by which 

inorganic carbon is fixed into biomass. In Nature, enzymes called caboxlyases are able to 

capture atmospheric carbon dioxide under mild conditions and catalyze its incorporation into 

organic molecules. It is estimated that 400 Gt of CO2 are fixed annually solely by the enzyme 

ribulose‐1,5‐bisphophate‐carboxylase/oxygenase (RuBisCO), the key enzyme of 

photosynthesis. In comparison, CO2 utilization by chemical industries accounts for only 0.1 Gt 

of carbon annually and utilizes pressurized CO2, which emphasizes our need to understand 

the molecular mechanism that allow carboxylases to selectively interact with a CO2 at 

atmospheric concentrations (0.04% vol) during catalysis. Enoyl‐CoA carboxylases/reductases 

(ECRs) represent the fastest carboxylases known to date and is, in contrast to RuBisCO, 

completely specific for CO2. These enzymes catalyze the reductive carboxylation of enoyl‐CoAs 

by oxidizing one equivalent of NADPH. ECRs represent a good case study for the understanding 

of the CO2 chemistry that carboxylases use. 

In this work, we try to gain a better understanding of the underlying catalytic principles that 

enable ECRs to achieve high catalytic rates. Initially we focus on understanding how the 

precise interaction between protein and CO2 takes place at the active site of ECRs. We were 

able to identify and assign a function to four conserved amino acid residues found at the active 

site of ECRs. Three residues are responsible for the precise positioning of CO2 for nucleophilic 

attack by the enolate intermediate. Additionally, one residue is able to shield the active site 

from water thereby preventing the irreversible protonation of the enolate. These two 

mechanistic principles are at the base of the efficient carboxylation in ECRs. The following 

chapter briefly describes how the enzyme is able to accept other electrophiles than CO2. We 

show that ECRs can utilize formaldehyde as an alternative electrophile to CO2 thereby yielding 

‐hydroxy thioesters. The exquisite stereospecificity together with the vast range of small 

electrophiles make ECR a potential biocatalyst for the production of various α‐substituted 

thioesters.  

The last two chapters of this work focus on the structural aspects of ECR catalysis. We were 

able to obtain four new crystal structures of an ECR from Kitasatospora setae and to propose 
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a model for the catalytic cycle of this enzyme. We show that the communication between and 

within the dimers that compose the functional homotetramer is crucial for the fast catalytic 

rates observed in this ECR. A separate study aims at developing an in vivo directed evolution 

screen to improve the catalytic properties of an ECR from Burkholderia ambifaria. Our 

approach yields an evolved variant, with mutations distant from the active site. The observed 

improved catalytic supports the importance of the residues for the catalytic rate. Both studies 

revealed the importance of the residues at the interface of the ECR monomers by their impact 

on catalytic rates of this enzyme.  
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Zusammenfassung 
 

Effiziente Abscheidung und Umwandlung von atmosphärischen Kohlenstoffdioxid (CO2) ist 

eine Voraussetzung für die Entwicklung einer zukünftigen Kohlenstoff‐neutralen 

Resourcenvewertung. Kohlenstofffixierung ist der Prozess wodurch anorganischer Kohlenstoff 

in Biomasse eingebaut wird. Carboxylasen sind natürlich vorkommende Enzyme welche in der 

Lage sind atmosphärisches Kohlenstoffdioxid unter milden Bedingungen in organische 

Verbindungen einzubauen. Jedes Jahr werden circa 400 Gt CO2 alleine von Ribulose‐1,5‐

bisphosphat‐Carboxylase/Oxygenase (RuBisCO), das Schlüsselenzym der Photosynthese, 

fixiert. Verglichen dazu, Verwendet die chemische Industrie nur 0.1 Gt CO2 pro Jahr und 

zusätzlich benötigen diese Prozesse einen hohen Druck und Temperaturen. Deshalb ist es 

notwendig mehr Wissen über die molekularen Mechanismen zu erhalten, welche es 

Carboxylasen erlauben mit CO2 unter atmosphärischen Konzentrationen (0.04% vol) zu 

interagieren. Enoyl‐CoA Carboxylasen/Reductasen (ECRs) sind die schnellsten Carboxylasen 

die heutzutage bekannt sind und sind zusätzlich, im Vergleich zu RuBisCO, spezifisch für CO2. 

Diese katalysieren die reduktive carboxylierung von Enoyl‐CoAs mit der Oxidation von NADPH. 

Deshalb stellen ECRs ein gutes Modellsystem dar um die CO2 Chemie von Carboxylasen zu 

studieren. 

In dieser Arbeit, versuchen wir mehr Wissen über die grundlegenden katalytischen Prinzipien 

zu erlangen wodurch ECRs hohe Umschlagszahlen erreichen. Im ersten Kapitel steht die 

Interaktion zwischen CO2 und den Aminosäuren im Aktiven Zentrum von ECRs im 

Vordergrund. Es wurden vier konservierte Aminosäuren identifiziert und für jede eine 

Funktion zugeschrieben. Die Seitenketten von drei Aminosäuren sind verantwortlich um CO2 

genau zu positionieren damit der nucleophile Angriff vom Enolat Intermediat stattfinden 

kann. Eine vierte Seitenkette ist verantwortlich das Aktive Zentrum vor Wasser zu schützen 

sodass das Enolat Intermediat nicht irreversibel protoniert wird. Diese sind die Zwei 

grundlegenden katalytischen Prinzipien wodurch ECRs eine effiziente Carboxylierung 

katalysieren. Im Anschluss wird in einem Kapitel beschrieben, ob es möglich ist, dass ECRs 

zusätzlich zu CO2, andere Elektrophile inkorporieren können. Wir zeigen, dass ECRs 

Formaldehyd verwenden und somit ein ‐hydroxy Thioester bilden können. Die exzellente 

Stereospezifizität und die große Vielfalt an kleinen elektrophilen Verbindungen machen ECR 

zu einem potentiellen Biokatalysator für die Produktion von α‐substituierten Thioestern.  
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In den letzten beiden Kapiteln dieser Arbeit werden strukturelle Eigenschaften von ECRs 

betrachtet. Vier neue Kristallstrukturen der ECR von Kitasatospora setae wurden gelöst und 

ein neuer katalytischer Zyklus für dieses Enzym vorgeschlagen. Wir haben gezeigt, dass die 

Kommunikation zwischen, und innerhalb der Dimere welche das funktionelle Homotetramer 

bilden, die Grundlage für eine schnelle Katalyse darstellt. Im letzten Kapitel versuchen wir eine 

in vivo gerichtete Evolution Strategie zu entwickeln um die katalytischen Parameter einer ECR 

von Burkholderia ambifaria zu verbessern. Mit dieser Methode haben wir eine evolvierte ECR 

Variante erhalten die Aminosäure Mutationen außerhalb des Aktiven Zentrums aufweist. Wir 

konnten feststellen, dass die Umschlagszahl verbessert wurde und somit die mutierten 

Aminosäuren von großer Bedeutung für die Katalyse sind. In beiden Kapiteln konnte 

festgestellt werden, dass Aminosäuren an der Kontaktoberfläche von Monomeren bezüglich 

der Katalyse in ECRs eine wichtige Rolle spielen. 
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1. Introduction 

1.1. Carbon dioxide in the atmosphere 

 

Our planet has seen increasing amounts of atmospheric CO2 since the industrial revolution. 

Since the 18th century, CO2 levels have increased by 200 ppm up to 400 ppm recorded in 2018 

(Fig. 1) due to anthropogenic activities. Burning of fossil fuels such as coal, natural gases and 

oil is the major contributor of CO2 emissions followed by land change and usage and industrial 

activities1. Carbon dioxide is a naturally occurring greenhouse gas and among others such as 

CH4 and N2O contributes to global warming2.  

 

Figure 1: Atmospheric CO2 concentration from the 18th century until present. The data was recorded at Mauna Loa, Hawaii 

by the National Oceanic & Atmospheric Administration (NOAA)/ EarthSystem Research Laboratory (ESRL). Picture adapted 

from https://scripps.ucsd.edu/programs/keelingcurve/. 

The implications of these environmental changes are numerous. Thermal expansion of ocean 

waters as well as melting of land ice both contribute to sea‐level rise and causes flooding of 

coastal regions3. Moreover, atmospheric CO2, which dissolves in water, causes acidification of 

ocean waters. Over a long period this leads to a decrease in atmospheric CO2 uptake by 

oceans4 and has a negative impact on marine ecosystems5. In the light of this, to counteract 

the rise in atmospheric CO2 concentration has become a major challenge for humanity in the 

past decades. This can be achieved by a combined approach of reducing emissions and the 
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development of efficient carbon capture strategies (CCSs). Pumping CO2 into large 

underground reservoirs has been a widely adopted CCS, but in a scenario where the CO2 

emissions need to be reduced this is not a sustainable alternative6. Other CCSs aim at 

capturing atmospheric CO2 and incorporating it into organic molecules, thus storing energy in 

chemical bonds. While on one hand CO2 appears to be the cause of many environmental 

problems we are currently facing, on the other side it represents a readily available carbon 

source. Currently, chemistry is still struggling at developing efficient catalysts for the capture 

of carbon dioxide. Large scale industrial processes still require harsh conditions for the 

production of chemicals such as urea, salicylic acid and polycarbonates7. In contrast, Nature 

offers much more efficient catalytic strategies for the capture and conversion of CO2. It is 

estimated that plants, specifically the enzyme ribulose‐1,5‐bisphosphate‐carboxylase/‐

oxygenase (RuBisCO), are able to fix 400 Gt of CO2 each year, thereby greatly exceeding the 

value for atmospheric CO2 fixed in industrial processes (0.1 Gt/year)8. It is obvious that Nature 

possesses more efficient carbon capture mechanisms that also operate under mild 

physiological conditions. Understanding catalytic principles on Nature’s CO2 capturing 

catalysts, namely carboxylases will provide more insight into the mechanistic principles of CO2 

chemistry and provide the tools for the rational engineering of enzymes towards more 

efficient CO2 fixation.  

1.2. Carboxylases in natural CO2 fixation pathways 

 

In Nature, enzymes are able to capture carbon dioxide and convert it into biomass under mild 

conditions. The catalysts responsible for this reaction are enzymes known as carboxylases. 

They are among the most important enzymes because they catalyze the fixation of inorganic 

carbon. In this way, they contribute to the global carbon cycle by fixing atmospheric carbon 

into biomass. They are present in all domains of life and function in different metabolic 

contexts. 

Carboxylases in autotrophic pathways are alone responsible for the complete carbon fixation 

into biomass of the organism. One example is the reductive tricarboxylic acid (TCA) cycle, 

which represents the most energy efficient CO2 fixation cycle. The efficiency directly correlates 

with the carboxylases found in this pathway, namely the isocitrate dehydrogenase, α‐
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ketoglutarate:ferredoxin oxidoreductase and pyruvate ferredoxin oxidoreductase. All of these 

are reductive carboxylases and except isocitrate dehydrogenase, utilize the strong reducing 

power of ferredoxin to drive an energy efficient carboxylation reaction9. The distribution of 

this pathway is, despite its efficiency, limited to anoxic environments due to the inherent 

oxygen sensitivity of enzymes involved in these pathways. In the Calvin‐Benson‐Bassham 

cycle10, found in plants algae and bacteria, RuBisCO is responsible for fixation of CO2. This 

process is estimated to fix 400 Gt of CO2 each year and represents an essential process for all 

life on earth. It is therefore not surprising that the estimated amount of RuBisCO on earth is 5 

kg of soluble protein per person. A disadvantage this enzyme possesses is its inherent 

reactivity with oxygen instead of CO2. About one in every five catalytic cycles RuBisCO utilizes 

oxygen and produces 2‐phosphoglycolate, a toxic intermediate that has to be metabolized by 

the organism through an energy demanding process known as photorespiration. The 

carboxylase involved in the 3‐hydroxypropionate bicycle and the 

hydroxypropionate/hydroxybutyrate cycle11, acetyl‐CoA/propionyl‐CoA carboxylase, is a 

bifunctional biotin dependent carboxylase that is able to carboxylate acetyl‐CoA and 

propionyl‐CoA to malonyl‐CoA and methylmalonyl‐CoA respectively. Biotin dependent 

carboxylases utilize bicarbonate (HCO3
‐) as carboxylating species. Bicarbonate has to be 

activated prior to covalent attachment onto biotin, and this step requires the formation of 

carboxyphosphate via nucleophilic attack of bicarbonate onto ATP. 

Apart from autotrophic carbon fixation, carboxylases also operate in non‐autotrophic 

assimilatory strategies. There, the carboxylation reaction introduces a reactive functional 

group into the inert substrate molecule which facilitates further downstream processing. 

Examples for this are NADPH:2‐ketopropyl‐CoM oxidoreductase/carboxylase of Xanthobacter 

autotrophicus Py212 and acetone carboxylase which convert epoxypropane and acetone, 

respectively to acetoacetate. This compound is then activated to the corresponding CoA ester 

and is converted to central metabolites such as acetyl‐CoA (Scheme 2e). The same strategy is 

employed by the carboxylases that generate precursor molecules for the biosynthesis of fatty 

acids13, 14. These biotin carboxylases generate malonyl‐CoA from acetyl‐CoA. Here the 

carboxylate group is important for the elongation of fatty acids through decarboxylative 

Claisen condensation. 
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In the assimilation of C2 units in the form of acetate the ethylmalonyl‐CoA pathway (EMCP) 

was initially characterized as an alternative to the well know glyoxylate shunt. The EMCP is 

characterized by crotonyl‐CoA carboxylase/reductase (Ccr)15 that is able to reductively 

carboxylate enoyl thioesters. Ccr converts crotonyl‐CoA to ethylmalonyl‐CoA by oxidizing one 

equivalent of NADPH and using CO2 as carboxylating species. Further steps in the pathway 

finally yield succinyl‐CoA and (L)‐malate which are both C4 units and can be fed back into 

central carbon metabolism. It was additionally demonstrated that these carboxylases also 

operate in secondary metabolism by producing alkylmalonyl‐CoA precursors for the 

biosynthesis of polyketides16. 

Despite the occurrence of carboxylases in various metabolic pathways, they are unified by 

common mechanistic principles, which will be discussed in the following chapter.  

 

1.3. Mechanistic principles employed by carboxylases  

 

Carboxylases differ greatly in their requirements of substrates, cofactors and mechanisms, but 

they all face the same challenge of activating CO2. CO2 represents the most oxidized form of 

carbon and is thus a thermodynamically and kinetically very stable compound7, 17. 

Carboxylases have evolved different strategies to overcome this problem. A common strategy 

is that of substrate activation. This generates reactive intermediates called enolates, which 

represent strong carbon nucleophiles that are able to attack CO2 and form a stable C‐C bond. 

Formation of these intermediates is very difficult in aqueous solution given that they are easily 

protonated, but carboxylases possess active sites that can stabilize these compounds by 

interactions with the protein backbone, sidechain of amino acids or metal cofactors18. The 

formation of enolates is predicted from structures of substrates of carboxylases such as acyl‐

thioesters12, 13, ketones19 and α,‐unsaturated enoyl‐thioesters15. The strategies to generate 

these enolate intermediates vary among carboxylases. In RuBisCO, for example, the sidechain 

of an active site lysine, which is carboxylated  to form a carbamate as a post translational 

modification, abstracts a proton from C3 of the substrate ribulose 1,5‐bisphosphate and 

generates a dienolate which is stabilized by an active site bound magnesium ion20 (Scheme 

2a). In acetone carboxylase, formation of the enolate is dependent on ATP in the presence of 
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Mg2+ and yields phosphoenol acetone as the activated nucleophile responsible for the attack 

of CO2
19. An even different approach is used by ECRs, which reduce their enoyl‐CoA substrates 

by the use of NADPH15 and the resulting thioester enolate is stabilized by interaction of the 2’‐

OH group of the NADPH ribose ring (Scheme 2c). An alternative route has been proposed in 

ECRs which involves the formation of a covalent adduct between substrate and cofactor which 

is then resolved by the enzyme to form the enolate21. Substrate activation provides a great 

driving force for the reaction of carboxylases, but the preferred carboxylating species (HCO3
‐ 

or CO2) is not always present in the form required by the enzyme. This led to a diverse set of 

strategies that allowed carboxylases to adapt to the environmental conditions in order to 

capture and transform their preferred carboxylating species. As enzymes operate in aqueous 

solution, such as the cytoplasm of a cell, it is important to consider in what form CO2 will be 

available.  

 

Scheme 1: Equilibrium of carbon dioxide dissolved in water and pKa values for the dissociation of carbonic acid and 

bicarbonate (pKa1 and pKa2) at 25 °C. 

Given that CO2 and HCO3
‐ are at equilibrium in aqueous solution (Scheme 1)22 the question 

arises on what strategies carboxylases have evolved to utilize the preferred species depending 

on the availability. Bicarbonate dependent carboxylases have to overcome the inherent poor 

electrophilicity of bicarbonate. To activate this species an energy input is required and the 

energy is provided by the exergonic hydrolysis of ATP. Nucleophilic attack of bicarbonate onto 

the ‐phosphate of ATP yields carboxyphosphate where the carbon atom is more electrophilic. 

One class of enzymes that utilize this strategy are biotin carboxylases. In these enzymes the 

biotin cofactor is linked to an active site lysine and is able to swing between the biotin 

carboxylase (BC) and carboxyl transfer (CT) domain. In the BC domain, carboxyphopshate acts 

as a CO2 donor and carboxylates the nitrogen of the ureido moiety of biotin. After 

translocation of to the CT domain a molecule of CO2 is liberated and carboxylates the enolate 
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of the corresponding substrate (e.g. acetyl‐, propionyl‐CoA) (Scheme 2b). 

 

Scheme 2: Reaction mechanism of carboxylases displaying the structure of the common enolate intermediate. Highlighted in 

red are the three atom centers, which stabilize the enolate. Enzymes catalyzing each reaction are a: RuBisCO, b: Acetyl‐CoA 

carboxylase, c: ECR, d: PEP carboxykinase and e: 2‐ketopropyl coenzyme M oxidoreductase/carboxylase. 

 

Another example is phosphoenolpyruvate (PEP) carboxykinase where carboxyphopshate is 

generated by transferring the phosphate group of PEP onto bicarbonate. Subsequently 

enolpyruvate is carboxylated to yield oxaloacetate23 (Scheme 2d). Another strategy 

carboxylases employ is that of electrophilic activation of CO2. A structural study on PEP 

carboxykinase from E. coli proposed that active site residues form a CO2 binding pocket24 in 

which positively charged active site residues interact with the oxygen atoms of CO2. This 

interaction polarizes the C‐O double bond and withdraws electron density from the central 

carbon atom thus increasing its electrophilicity. This may potentially provide a different 

strategy to activate the central carbon atom and similar amino acids have been observed in 

active sites of other (de)carboxylases as well25‐27. 
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Lastly, the increase of effective amount of CO2 in or around the active site of carboxylases is 

another strategy to promote carboxylation turnovers. An increased presence of CO2 in the 

surroundings of an enzyme represents a thermodynamic driving force by pushing the 

equilibrium to the product side. For example, carboxysomes are macroscopic protein 

structures found within cyanobacterial cells28‐30. They encapsulate RuBisCO and carbonic 

anhydrase thereby creating a compartmentalization for these enzymes. Bicarbonate is able to 

diffuse through the protein layer and once it reaches the inside, carbonic anhydrase converts 

it to CO2. This increases the local concentration of CO2 around RuBisCO. Additionally these 

microcompartments are not permeable to oxygen. The overall result is an environment where 

RuBisCO can perform carboxylation reaction without the presence of oxygen, which leads to 

undesired side reactions.  

Mechanistic studies on carboxylases have elucidated the fundamental mechanistic principles 

underlying the catalysis of carboxylases. The next chapter focuses on the family of ECRs, which 

represent one of the fastest carboxylases described today.  

 

1.4. Enoyl-CoA carboxylase/reductase (ECR) 

 

ECRs represent a class of carboxylases, which catalyze the unique reductive carboxylation of 

α,‐unsaturated enoyl thioesters by oxidizing one equivalent of NADPH (Scheme 3). This class 

of enzymes was initially described in the EMCP in which it converts crotonyl‐CoA to (2S)‐

ethylmalonyl‐CoA, the namesake compound of the pathway.  

 

Scheme 3: Reaction catalyzed by ECRs in the presence and absence of CO2. The residue “R” can vary considerably16, 31. 
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This anaplerotic pathway is found in many bacteria and represents an acetyl‐CoA assimilation 

strategy in the absence of isocitrate lyase (ICL), a key enzyme of the glyoxylate cycle. Operation 

of this pathway was first described in the Alphaproteobacterium Rhodobacter sphaeroides, 

which, fed with acetate under aerobic conditions, is able to grow despite lacking ICL. 

Moreover, the EMCP is important for methylotrophs, which can grow on C1 carbon sources 

such as methanol via the serine cycle32. Outside of their metabolic contexts, ECRs also 

represent an interesting model enzyme to study mechanistic principles of carboxylation. 

These enzymes outcompete other carboxylases in turnover rate and/or specificity for their 

substrate33. Mechanistic studies on ECRs have demonstrated that the initial hydride transfer 

occurs from the pro‐(4R) hydrogen of NADPH. The nucleophilic attack of the enolate 

intermediate onto CO2 yields a (S) configuration at the Cα of ethylmalonyl‐CoA. When omitting 

CO2 from the reaction ECR catalyzes the reduction of its substrate, yielding, in the case of 

crotonyl‐CoA as starting material, butyryl‐CoA15. This reactivity is equivalent to enoyl thioester 

reductases (ETRs) which operate, for example, in fatty acid biosynthesis34. In fact, ECRs belong 

to the same superfamily as ETRs, namely, the medium‐chain dehydrogenase/reductase (MDR) 

superfamily. In the light of this phylogenetic analysis, it was proposed that the reduction 

reaction catalyzed by ECRs was present in an early evolutionary state of the enzyme and that 

the carboxylation function, was acquired only later35. ECRs possess a characteristic active site 

able to accommodate CO2 and exclude water to prevent the reduction side reaction36, but this 

hypothesis still lacks experimental evidence. Recent mechanistic studies revealed that, in the 

absence of CO2, a reaction intermediate accumulates during the reaction catalyzed by ECRs. 

Structural characterization using NMR spectroscopy and mass spectrometry showed that this 

compound is a covalent adduct between NADPH and crotonyl‐CoA covalently linked between 

the Cα of crotonyl‐CoA and the C2 carbon of the nicotinamide ring of NADPH. It was also shown 

that, in the presence of CO2, the enzyme is able to convert this adduct to (2S)‐ethylmalonyl‐

CoA and NADP+. This suggests that this intermediate might be relevant for the catalytic cycle 

of ECRs but the accumulation of this intermediate during the carboxylation reaction has only 

scarce evidence21. Many recent studies demonstrated that the accumulation of this 

intermediate is not limited to ECRs but is observed in the MDR and other enzyme families as 

well34, 37‐39 which hints towards a more widespread occurrence of this type of NADPH catalysis 

in oxidoreductases. 
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Since its first description it was clear that ECR was also operative in secondary metabolism of 

streptomcyetes32 by providing extender units for the biosynthesis of antibiotics. The fact that 

many ECR homologs are located within gene clusters together with polyketide synthases 

(PKSs) and given the complexity and diversity of polyketide structures, the substrate scope of 

these enzymes must extend beyond that of crotonyl‐CoA16. A study on substrate promiscuity 

of ECRs revealed three active site residues that define the size of the acyl moiety of the 

thioester that can be accommodated in the active site. The active site of ECRs from primary 

metabolism is lined by three bulky residues (C146, I169 and F373 in the ECR from Caulobacter 

crescentus) which restricts activity to crotonyl‐ and pentenoyl‐CoA as substrates. In contrast, 

in ECRs from secondary metabolism the active site is lined by small residues (P141, A163, G362 

in CinF (PDB: 4A0S)) which allow for bulky and branched (e.g. octenoyl‐, cinnamoyl‐, 5‐

methylhexenoyl‐CoA) enoyl‐CoA esters as substrates. By site‐directed mutagenesis of the 

active site residues of the ECR from C. crescentus it was possible to increase the substrate 

promiscuity of this enzyme. This study revealed consensus amino acid residues that determine 

the substrate promiscuity in ECRs and provided the basis for rational manipulation of 

substrate specificity in these enzymes. Recently this concept was used to generate unnatural 

malonyl‐CoA extender units for polyketide synthases40. The successful production of six 

different alkylmalonyl‐CoA derivatives allowed the authors to generate diverse triketides in a 

modified in vitro PKS system.  

The rational design approach to engineer enzymes is greatly aided by X‐ray crystallography. 

Initially, crystal structures of ECRs were limited to apo structures and/or structures in complex 

with cofactor (e.g. ECR from Streptomyces collinus (PDB 3HZZ), ECR from Streptomyces 

coelicolor (PDB 3KRT), ECR from Methylobacterium extorquens (PDB 4GI2), AntE from 

Streptomyces albus (PDB 4Y0K)41. This limited the structural understanding with respect to 

how this enzyme interacts with enoyl‐CoA substrates and CO2. Later, a structural study on 

CinF, an ECR form Streptomyces cinnabarigriseus, became the base to gain more insights into 

the structural aspects of catalysis. CinF (PDB 4A0S) is responsible to generate hexylmalonyl‐

CoA extender units from octenoyl‐CoA for the biosynthesis of cinnabaramide natural 

products. This study showed the first ECR crystal structure, which contained both NADP+ and 

octenoyl‐CoA36. The presence of both substrate and cofactor in this structure shows an active 

site preordered for catalysis and allowed for the in silico docking of CO2. This revealed a 

potential CO2 binding site composed of highly conserved residues among the whole ECR 
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family. The founding hypothesis was that in the active site of CinF (PDB 4A0S)  the sidechains 

of N77 and E167 would interact with the two oxygens of CO2 through hydrogen bonding 

whereas the sidechain of F166 would undergo hydrophobic interactions with CO2 and shield 

the active site from water. No conclusive data is available to validate this hypothesis and it still 

remains unclear how ECRs are able to interact with CO2 at their active site. 

 

1.5. Evolution within enzyme families  

 

Studying the evolution enzyme families allows us to gain a better understanding of the 

fundamental mechanisms that drive functional and structural evolutionary divergence in 

enzymes. Laboratory evolution offers the great possibility to observe intermediary stages 

along the evolutionary coordinate. In this respect, directed evolution represents a powerful 

methodology to recreate natural selection and enables evolution on a shorter timescale 

compared to Nature.  

It is believed that the specificity displayed by modern enzymes is a consequence of selective 

pressure on more promiscuous enzymes42. When exposed to an environment with a specific 

set of conditions, (e.g. temperature, pH, salinity, limited nutrient availability) enzymes are put 

under strong selective pressure and have to rapidly adapt. This principle of natural selection 

drives the evolution of enzymes toward variants with specific functions and kinetic 

parameters. Knowledge of these parameters allows us to gain a better understanding of the 

biochemistry, evolutionary history and the role of enzymes in various physiological contexts.  

For example, enzymes operating in metabolic pathways represent a large library of kinetically 

characterized catalysts for studies on evolution within enzyme families. In central metabolism 

(carbohydrates, fatty acids, nucleotides and amino acids, energy conservation), in order to 

sustain the high flux rates of metabolites through these pathways, enzymes have to become 

catalytically efficient and fast. In kinetic terms, this translates to a high kcat/KM and kcat value, 

respectively. In contrast, enzymes from secondary metabolism (the metabolism of non‐

essential metabolites that are produced in low amounts) have to sustain a lower metabolic 

flux and are thus on average slow. This is reflected in a 30‐fold higher average kcat and 6‐fold 

higher kcat/KM value of enzymes in central compared to secondary metabolism43. In reality, 
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other factors than metabolic flux rates also play an important role in the evolution of enzymes. 

The physicochemical properties of substrate molecules, such as molecular mass and 

hydrophobicity, have a major impact on their KM values. The smaller size of a substrate 

translates to less interaction surface with the enzyme which in turn is reflected in high KM 

values (e.g. hydrogen peroxide in catalase44 and carbon dioxide in carbonic anhydrase45). 

Moreover, it was shown that the intracellular concentration of metabolites often exceeds KM 

values in metabolic enzymes. This was explained by the necessity of keeping flux rates high 

throughout central metabolic pathways. Low KM values are not needed when enzymes 

operate in the presence of saturating substrate concentrations. Under these circumstances, 

enzymes can operate at maximal turnover (kcat) and maintain a high flux of metabolites46. This 

scenario confirms the concept of the inherent accuracy‐speed tradeoff that enzymes display47, 

which describes to what degree an improvement in accuracy corresponds to a decrease in 

catalytic efficiency. Finally, adaptation might also occur on the genetic level, where the 

regulation of the expression level changes the amount of enzyme present in the cell.  
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1.6. Aims of this thesis 

The general goal of this thesis was to gain a better understanding of the underlying principles 

of ECR catalysis. Of particular interest was the interaction between the protein and the CO2 

molecule at the active site of the enzyme and how this knowledge can be exploited to 

rationally identify new electrophiles, other than CO2, for this enzyme. Moreover, this thesis 

focuses on understanding the structural determinants that are at the basis of the fast catalytic 

rates observed in ECRs. 

1.6.1 Mechanistic Principles of CO2 interaction at the active site of ECRs 

The second and third chapter delve into the fundamental aspects of CO2‐binding in ECRs. As 

ECRs represent one of the fastest carboxylases known today and are highly specific for CO2, 

they represent a good model system to study CO2 chemistry employed by enzymes. Using 

experimental biochemistry, X‐Ray crystallography and QM/MM simulations, we were able to 

identify and assign a function to four conserved amino acid residues. ECRs appear to utilize 

residues, which anchor and precisely position CO2 for nucleophilic attack by the enolate 

intermediate. Additionally, one residue is able to shield the active site from water thereby 

preventing the irreversible protonation of the enolate. These two mechanistic principles are 

at the base of the efficient carboxylation observed in ECRs. Our gained knowledge in this study 

prompted us to test whether ECR was promiscuous towards other electrophiles than CO2. We 

showed that ECR can utilize formaldehyde instead of carbon dioxide and yield 2‐hydroxy 

thioesters. Further development of this system has the potential to yield a more diversified 

product range which could be employed as building blocks for organic synthesis. 

1.6.2. Structural determinants of ECR catalysis 

The fourth and fifth chapter of this thesis focus on the structural aspects of ECR catalysis. We 

were able to obtain four new crystal structures of an ECR from Kitasatospora setae and to 

propose a model for the catalytic cycle of this enzyme. The functional homotetramer, 

composed of two dimers, breaks its symmetry upon cofactor binding and yields a set of two 

distinct functional dimers. We showed that the communication between and within the dimer 

is crucial for the fast catalytic rates observed in this ECR. We elucidated how this precise 

communication functions on the molecular level by a combined approach of analytical 

methods and steady state analysis. A separate study aimed at developing an in vivo directed 
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evolution screen to improve the catalytic properties of a slow ECR from Burkholderia 

ambifaria. An ECR library was expressed in an organism lacking the genomic ecr, and under 

specific conditions, growth of the organism was dependent on a functional ECR. Through our 

approach we obtained an improved variant, which revealed mutations distant from the active 

site. These have a major impact on the catalytic rate of these enzymes and represent new 

structural hotspots of this enzyme family, which were previously unknown. Both studies 

revealed the importance of the residues at the interface of the ECR monomers by their high 

impact on catalytic rates of this enzyme.  
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2.1. Abstract 
 

Carboxylases are biocatalysts that capture and convert carbon dioxide (CO2) under mild 

conditions and atmospheric concentrations at a scale of more than 400 Gt annually. 

However, how these enzymes bind and control the gaseous CO2 molecule during catalysis is 

only poorly understood. One of the most efficient classes of carboxylating enzymes are 

enoyl-CoA carboxylases/reductases (Ecrs), which outcompete the plant enzyme RubisCO in 

catalytic efficiency and fidelity by more than an order of magnitude. Here we investigated 

the interactions of CO2 within the active site of Ecr from Kitasatospora setae. Combining 

experimental biochemistry, protein crystallography and advanced computer simulations we 

show that four amino acids, N81, F170, E171 and H365 are required to create a highly 

efficient CO2-fixing enzyme. Together, these four residues anchor and position the CO2 

molecule for the attack by a reactive enolate created during the catalytic cycle. Notably, a 

highly ordered water molecule plays an important role in an active site that is otherwise 

carefully shielded from water, which is detrimental to CO2-fixation. Altogether our study 

reveal unprecedented molecular details of selective CO2 binding and C-C bond formation 

during the catalytic cycle of nature’s most efficient CO2-fixing enzyme. This knowledge 

provides the basis for the future development of novel catalytic frameworks for the capture 

and conversion of CO2 in biology and chemistry. 

Enzyme catalysis | Reaction mechanism | Carboxylase | Enoyl Reductase | Oxidoreductase  

Significance  

Carboxylases capture and convert CO2, which makes them key enzymes in photosynthesis and 

the global carbon cycle. However, the question how enzymes bind atmospheric CO2 is still 

unsolved. We studied enoyl‐CoA carboxylases/reductases (ECRs) the fastest CO2‐fixing 

enzymes in Nature, using structural biology, biochemistry and advanced computational 

methods. ECRs create a highly specific CO2‐binding pocket with four amino acids at the active 

site. The pocket controls the fate of the gaseous molecule during catalysis and shields the 

catalytic center from oxygen and water. This exquisite control makes ECRs highly efficient 

carboxylases outcompeting RubisCO, the key enzyme of photosynthesis, by an order of 

magnitude. Our findings define the atomic framework for the future development of CO2‐

converting catalysts in biology and chemistry. 
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2.2. Introduction 
 

The efficient capture and conversion of atmospheric carbon dioxide (CO2) is a prerequisite to 

develop a carbon‐neutral, circular future economy. In biology, carbon fixation is performed 

under mild conditions and at atmospheric concentrations of CO2 (0.04 vol%) by enzymes called 

carboxylases1. It is estimated that 400 Gt of CO2 are fixed annually by a single biocatalyst, 

ribulose‐1,5‐bisphophate‐carboxylase/oxygenase (RuBisCO), the key enzyme of 

photosynthesis2, 3. In comparison, the chemical conversion of CO2 in industry accounts for only 

0.1 Gt of carbon annually and uses pressurized CO2
4, which emphasizes our need to 

understand the molecular mechanism that allow (bio)catalysts to selectively interact with a 

low‐concentrated CO2 molecule during catalysis.  

Carboxylases catalyze the formation of a C‐C bond between an acceptor substrate and a CO2 

molecule 1 where the latter represents the electrophile5. To facilitate C‐C bond formation, 

most carboxylases activate their respective nucleophilic substrate (usually a thioester, α‐

ketoacid or ketone) by converting it into an enol(ate)6. Enol(ate)s are strong nucleophiles and 

highly reactive. A key requirement of CO2‐fixation catalysis is the tight control of the reaction 

between the activated acceptor substrate and CO2. Any loss of catalytic control over the 

enol(ate) or the CO2 molecule bears the danger of side reactions and reduces the efficiency of 

carbon fixation7. The most prominent example is RuBisCO, which is known to feature several 

side reactions, most notably an oxygenation reaction8. One in every five turnovers RuBisCO 

will incorporate an oxygen (O2) molecule instead of CO2, which leads to the formation of 2‐

phosphoglycolate, a side‐product that is toxic to the cell and has to be recycled in an energy 

demanding process, highlighting the need of carboxylases to control the reaction of the 

activated acceptor with CO2.  

Another challenge in this respect is the accessibility of water (or protic amino acids) to the 

active site of carboxylases. Protons are better electrophiles than the CO2 molecule, which can 

directly quench the enolate. As a consequence, it is not sufficient that carboxylases enrich a 

low abundant gaseous CO2 molecule, they also need to efficiently suppress any competing (re‐

)protonation reactions. Altogether, these examples show that controlling the fate of CO2 at 

the molecular level is a crucial feature of carboxylases. However, to date only very limited 
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biochemical, let alone structural information on CO2 binding in carboxylases (and other 

proteins) is available, besides some theoretical considerations9‐14. 

Here, we focused on a class of carboxylases, Enoyl‐CoA carboxylases/reductases (Ecrs)15, 16 

that show the fastest turnover frequencies among all carboxylases to date and exclusively 

react with CO2 in the presence of O2. These features make Ecrs excellent model systems to 

understand the details of selective CO2 binding and C‐C‐bond formation in proteins.  

The best‐studied Ecr is Crotonyl‐CoA carboxylase/reductase (Ccr) that catalyzes the NADPH‐

dependent reductive carboxylation of crotonyl‐CoA into (2S)‐ethylmalonyl‐CoA. While Ccr 

does not show side reactivity with O2, the enzyme catalyzes the reduction of crotonyl‐CoA to 

butyryl‐CoA as a side reaction, but only in the absence of CO2 and at low catalytic efficiency 

(Scheme 1)17, 18. It has been suggested that this side reaction is an evolutionary remnant of 

Ecrs, which are evolutionary related to enoyl thioester reductases (ETRs) that catalyze the 

ordinary reduction of enoyl‐CoA esters6, 19. Apparently, Ecrs evolved from simple reductases 

into reductive carboxylases by acquiring a CO2‐fixation function along their evolutionary 

trajectory. 

 

Scheme 1: Reaction catalyzed by Ccr. Carboxylation to (2S)‐ethylmalonyl‐CoA in the presence of CO2 and reduction to butyryl‐
CoA in the absence of CO2. 

In a previous structural study, CinF, an Ecr from Streptomyces sp. JS360, was crystallized with 

NADP+ and octenoyl‐CoA (PDB 4A0S20). A putative CO2 binding pocket was proposed to be 

composed of Asn77, Phe166 and Glu167, which are all highly conserved in Ecrs. It was 

suggested that CO2 is held in position by hydrogen bonding to Asn77 and Glu167 while Phe166 

would undergo hydrophobic interactions with CO2. Mutation of these residues suppressed the 

carboxylation of octenoyl‐CoA20. However, the exact role of the individual residues directing 

and controlling the carboxylation reaction remains enigmatic. In particular, how the gaseous 
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CO2 molecule is aligned at the active site and how the reduction side reaction is efficiently 

suppressed.  

Here we combine experimental biochemistry, protein crystallography and computer 

simulations to define the molecular interactions of CO2 during C‐C bond formation at the 

active site of Ecrs. Our results suggest that four amino acids are sufficient to convert an 

ordinary reductase into a highly efficient carboxylase. Together, these four residues anchor 

and lock the CO2 molecule in a favorable position for the attack by the reactive enolate created 

during catalysis. Notably, a highly ordered water molecule plays an essential role in 

coordinating the CO2 molecule, while the active site is otherwise effectively shielded from 

water to suppress the reduction side reaction. Altogether, our computational and 

experimental studies reveal the details of selective CO2 binding and C‐C bond formation in the 

catalytic cycle of nature’s most efficient CO2‐fixing enzyme.  

2.3. Results 
 

Crystal structure of KsCcr with Ethylmalonyl-CoA and NADPH 

 

Figure 1: Structure of KsCcr complexed with NADPH and ethylmalonyl‐CoA. Left: KsCcr forms a dimer of dimers of open‐ and 

closed‐form subunits. The subunits are highlighted in grey and green (closed form with NADPH and ethylmalonyl‐CoA, both 

represented in spheres) and blue and orange (open form with NADPH only, represented in spheres). The rectangle represents 

close‐up of the active site shown in the middle and right panel. Middle: the active site with the CO2‐binding residues His365, 

Glu171, Phe170 and Asn81 in green, ethylmalonyl‐CoA (salmon) and NADPH (cyan); oxygen and nitrogen atoms are colored 

in red and blue, respectively. Right: same as middle panel but rotated by 180 degrees about the viewing direction.  

We solved the structure of Ccr from Kitasatospora setae (KsCcr) co‐crystallized with NADPH 

and soaked with ethylmalonyl‐CoA, the product of the carboxylation reaction, at 1.7 Å 
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resolution (Fig. 1, SI Appendix, Table S1, PDB: 6OWE). The active site of KsCcr shares similar 

features with the CinF homologue previously reported20 (PDB 4A0S20, 4Y0K21, 4GI2). In 

contrast to these structures that did not capture the interaction of the protein with CO2, 

neither as free gas or covalently bound to the acyl‐CoA moiety, our structure shows densities 

that can be interpreted as carboxylated product (SI Appendix, Fig. S1). This enabled us to 

identify four residues that potentially interact with CO2, namely Asn81, Phe170, Glu171 and 

His365. His365 also interacts with NADPH via hydrogen bonding (3.0 Å) to the carboxamide 

group of the nicotinamide, indicating a second function of His365 in coordinating the NADPH 

cofactor during catalysis. Similar to previously published structures we also observed an 

ordered water molecule between His365 and Glu171 at a distance of 2.9 Å and 2.7 Å, 

respectively. This feature is absent in structures lacking substrate and cofactor (PDB 3HZZ, 

3KRT) suggesting a role of the water molecule in the active enzyme complex. To test the 

function of these residues during catalysis, we characterized different active site variants and 

addressed the reaction mechanism with molecular dynamics simulations along the minimum 

free energy path within the QM/MM methodology. 

Kinetic characterization of KsCcr WT 

KsCcr WT showed an apparent turnover frequency (kcat) of 103 ± 3 s‐1 which is well in line with 

previously reported value of 104 s‐1 for the Ccr of Rhodobacter sphaeroides16 . Apparent KM 

values where 21  ± 2 µM (crotonyl‐CoA), 37 ± 4 µM (NADPH) and 90 ± 10 µM (CO2), 

respectively, and substrate inhibition for crotonyl‐CoA was observed at a Ki of 3,650 ± 810 µM. 

Under saturating amounts of CO2, the enzyme showed 100% carboxylation activity and 

exclusively formed (2S)‐ethylmalonyl‐CoA. In the absence of CO2, the enzyme catalyzed the 

reduction of crotonyl‐CoA to butyryl‐CoA (Table 1). Stereochemical analysis of the butyryl‐CoA 

in D2O showed that 94 ± 2% of the deuterium label was retained (Table 1), demonstrating that 

the reduction side reaction took place in a stereospecific manner. 
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Table 1: Apparent steady state parameters for KsCcr and its mutants expressed as mean value ± standard error. 

SI Appendix, Fig. S2 shows the Michaelis‐Menten graphs of the original data.a Apparent KM values for CO2 were calculated 
from the HCO3

‐ concentration in solution at pH = 8.b Percentage of (2S)‐ethylmalonyl‐CoA over total amount of products. C 

Not determined due to accumulation of the covalent C2‐ene adduct.d Deuterium label retention at the ‐position of crotonyl‐
CoA expressed as mean value ± standard deviation. 

Asn81 anchors the CO2 molecule 

How is the CO2 molecule bound in the active site? A key residue is Asn81, which defines one 

end of the putative CO2 binding pocket. Simulations of the WT enzyme exhibited a hydrogen 

bond interaction between the carboxamide NH2 group of Asn81 and the CO2 molecule (SI 

Appendix, Supplementary Video 1 and Fig. 2, panel A). When we experimentally characterized 

the reaction of the N81L variant in more detail, we observed a strongly decreased 

carboxylation reaction, as well as accumulation of a covalent reaction intermediate, a so‐

called C2‐ene adduct (SI Appendix, Fig. S3). C2‐ene adducts are also observed in WT Ecrs when 

the catalytic cycle is stalled, for example when CO2 is omitted from the reaction mixture. The 

fact that a C2‐ene adduct is observed in the reaction of the N81L variant even under saturating 

CO2 conditions suggests that the interaction of the enzyme with CO2 is severely disturbed by 

the N81L mutation. Simulations of the N81L variant revealed that most of the catalytic 

residues and water molecules remain in the same position, while the CO2 molecule appears 

increasingly disordered (Fig. 2, panel D, SI Appendix, Supplementary Video 2). As a 

consequence, the minimum energy profile from the C2‐adduct to the product (2S)‐

Enzyme Substrate KM (µM) Ki (µM) kcat (s-1) % EMCb % Label 

retentiond 

Wild-type (WT) Crotonyl‐CoA 21 ± 2 3650 ± 810 103 ± 3 100 94.3 ± 1.8 

 NADPH 37 ± 4 ‐ 86 ± 2 

 CO2
a 90 ± 10 ‐ 78 ± 2 

N81L Crotonyl‐CoA NDc ND ND 19 58.9 ± 1.1 

 NADPH ND ND ND 

F170Y Crotonyl‐CoA 10 ± 1 558 ± 80 83 ± 4 100 ND 

 NADPH 36 ± 3  ‐ 56 ± 1 

 CO2
a 150 ± 20 ‐ 56 ± 2 

F170A Crotonyl‐CoA 31 ± 6  ‐ 8.3 ± 0.4 17 87 ± 0.6 

 NADPH 11 ± 0.6 ‐ 11 ± 0.1  

H365N Crotonyl‐CoA 29.8 ± 4.2 ‐ 5.0 ± 0.2 93 

 

63.3 ± 0.5 

 NADPH 22 ± 2 ‐ 8.1 ± 0.3 

 CO2
a 1310 ± 220 ‐ 7.4 ± 0.7 

E171A Crotonyl‐CoA 500 ± 62 ‐ 5.1 ± 0.2 97 91.4 ± 0.2 

 NADPH 112 ± 8 ‐ 6.0 ± 0.2 

 CO2 155 ± 30 ‐ 5.1 ± 0.3 
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ethylmalonyl‐CoA of N81L becomes endothermic and shows significantly higher barriers for 

the C‐C bond formation step compared to the WT. This explains the reduced carboxylation 

activity, as well as the accumulation of the C2‐ene adduct that we experimentally observed in 

the N81L variant (Fig. 2, panel C and F). 

 

 

Figure 2: Left, middle and right column represent the WT, N81L and F170A variants respectively. A, D, G: Active site of KsCcr 

variants prior to the nucleophilic attack of the enolate onto CO2. An overlay of different conformations of the CO2 molecule 

visualizes the tumbling motion in the different enzyme variants. CoA‐ester is shown in salmon and NADP+ in cyan, and the 

red sphere represents the conserved water molecule coordinated by His365 and Glu171. B, E, H: Hydration sites located 

within 5 Å of the Cα obtained with SSTMap. For each enzyme, representative structures of the reactant state were subjected 

to 1 ns of constrained QM/MM simulations. The different positions sampled by the water molecules allowed the 

determination of clusters showing the preferential location of the solvent within the active site. C, F, I Minimum free energy 
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path from the C2‐ene adduct through the enolate to the products (2S)‐ethylmalonyl‐CoA and NADP+. Parameter D represents 

the distance between Cα and C2 minus the distance between Cα and CO2. 

Our simulations show that the active site of N81L does not become more solvent accessible, 

so that the reduction side reaction is still suppressed at the enzyme’s active site. But why 

does N81L show 89% butyryl‐CoA formation?  Note that C2‐ene adducts are unstable and 

prone to spontaneous decay into butyryl‐CoA and NADP+ in free solution. Accordingly, the 

“apparent” side reaction in N81L is non‐enzymatic and caused by release of the C2‐ene 

  

Figure 3: Left and right column represent the E171A and H365 N variants respectively A, D: Active site of KsCcr variants prior 

to the nucleophilic attack of the enolate onto CO2. The CoA‐ester is shown in salmon and NADP+ in cyan. Different orientations 

of carbon dioxide in the simulations represent the tumbling motion of the molecule prior to product formation. B, E: 

Hydration sites located within 5 Å of the Cα obtained with SSTMap. C, F: Minimum free energy paths from the C2‐ene adduct 

through the enolate to the products (2S)‐ethylmalonyl‐CoA and NADP+. Parameter D represents the distance between Cα and 

C2 minus the distance between Cα and CO2. 
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adduct from the active site followed by its spontaneous decay in the solvent, as described 

before18, 22, 23. This hypothesis is supported by our observation that stereospecificity of butyryl‐

CoA formation is almost completely lost in N81L compared to the WT (Table 1). Altogether, 

our experimental findings are well in line with the higher calculated free energy barriers for 

the carboxylation step and endothermic product formation in the N81L variant (Fig. 2, panel 

F), highlighting how crucial Asn81 is for correct positioning of CO2.  

How is the interaction of the carboxamide group of Asn81 with CO2 controlled? Analysis of the 

interaction network of the amino acid shows hydrogen bonding of Asn81 to two residues in 

the second shell of the active site, Thr82 and Ser119. We hypothesized that these interactions 

are essential in pointing the carboxamide NH2 group Asn81 towards the active site to enforce 

its interaction with the CO2 molecule. Indeed, the variants T82D and S119A showed almost 

full carboxylation, but at more than 50‐fold reduced turnover frequency (SI Appendix, 

Supplementary Table 3), demonstrating the importance of these secondary shell residues in 

increasing catalytic activity of Asn81. In summary, both simulation and experimental data 

suggest that Asn81 is crucial to position CO2 and to establish favorable interactions of the gas 

molecule with the enzyme during catalysis. Absence of this residue leads to lowered 

carboxylation efficiency and increased formation of the labile C2‐ene adduct, which is not 

further processed by the enzyme and leaves the active site upon which it spontaneously 

decays in solution.  

Phe170 shields the active site from water 

The reactive nature of the enolate that is formed during the catalytic cycle of Ccr mandates 

that the enolate does not get into contact with water at the active site, which would inevitably 

lead to its protonation and formation of the butyryl‐CoA side product. A role in shielding the 

active site from water had been previously suggested for Phe17020. Simulations of a F170A 

variant reveal conformational changes that result in a disorganization of the active site and an 

increase in the number of hydration sites compared to the WT (Fig. 2, compare panel B and 

H, SI Appendix, Supplementary Video 3 and Supplementary Pymol and Chimera Files 1a & b 

and 3a & b). These changes also perturb the interaction of the CO2 molecule with Asn81 (Fig. 

2, panel G). Accordingly, the CO2 molecule loses its favorable position for the reaction with 

the enolate so that both activation barriers are increased (Fig. 2, panel I), which is in 

agreement with our experimental data (Table 1). In the F170A variant, the carboxylation 



32 
 

activity is decreased to 17% at the expense of increased reduction side reactivity. Unlike in the 

N81L variant, however, protonation takes place in F170A with almost WT stereospecificity 

(see Table 1), confirming that in the F170A enzyme water is able to reach the active site and 

directly protonate the enolate.  

Some Ecrs feature a tyrosine at position 170 instead of the phenylalanine. When we tested a 

F170Y variant, the enzyme showed a slightly increased substrate inhibition, but otherwise very 

similar kinetic parameters as the WT. Most importantly, the F170Y variant displayed full 

conversion of crotonyl‐CoA to (2S)‐ethylmalonyl‐CoA in the presence of saturating amounts 

of CO2, indicating that the presence of the hydroxyl group does not affect carboxylation 

activity. In summary, these experiments together with the simulations showed that the phenyl 

rings of phenylalanine (and tyrosine) play an important role in suppressing the reduction 

reaction of Ecrs by water shielding.  

His365 and Glu171 coordinate an ordered water molecule interacting with CO2 

Opposite of Asn81 and at the other end of the putative CO2 binding pocket the residues His365 

and Glu171 are located. Together, these two residues coordinate a water molecule. In our 

simulations, the ordered water molecule participates in hydrogen bonded network of three 

water molecules, which interact directly with the CO2 molecule during the carboxylation step 

(Fig. 3). What is the exact contribution of these two residues to catalysis, in particular in 

respect to CO2 binding and water accessibility?  

His365 serves a dual role by also coordinating the nicotinamide ring of NADPH. To preserve 

interaction of residue 365 with the NADPH cofactor, but interrupt its coordination of the 

ordered water molecule, we generated KsCcr H365N. The H365N variant showed a 20‐fold 

decreased activity compared to the WT enzyme but still displayed 93% of carboxylated 

product, even though the KM for CO2 was raised by more than one order of magnitude. This 

data suggests that a defect in water coordination negatively affects C‐C bond formation 

activity in the H365N variant. However, this does not lead to a complete hydration of the 

active site. Simulations of the H365N mutant revealed broken interactions of the CO2 molecule 

with Asn81 (Fig. 3, panel D, SI Appendix, Supplementary Video 4). The coordination to the 

ordered water molecule that bridges to Glu171 is lost, and the latter residue is rotated out of 

the active site disfavoring CO2 binding, which explains the experimentally observed increased 

KM for CO2. In our simulations, the CO2 molecule shows an increased rotational tumbling at 
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the active site of the H365N variant compared to the WT, which is reflected by an increased 

RMSD for CO2 (2.4 Å versus 0.46 Å). Together, experiment and simulations indicated reduced 

carboxylation efficiency because of decreased control of CO2 (but not water) at the active site 

in the H365N variant, lowering the chances of productive Michaelis complex formation. 

Similar to the H365N variant, replacement of Glu171 with alanine also resulted in a kcat 

decrease (17‐fold), and carboxylation of crotonyl‐CoA was also maintained (97%). 

Additionally, however, the KM for crotonyl‐CoA increased 25‐fold, indicating an additional role 

of Glu171 in positioning the CoA‐substrate. In our simulations of the E171A mutant, 

interaction of CO2 with Asn81 is partially maintained, while Phe170 adopts the position of the 

mutated glutamate in the WT (Fig. 3, panel A, SI Appendix, Supplementary Video 5). As for 

H365N, the E171A variant showed increased CO2 tumbling at the active site, which is reflected 

by a RMSD of 2.0 Å (compared to 0.46 Å of the WT). Altogether, these results suggested that 

in the E171A variant, similar to the H365N variant, control of the CO2 molecule (but not water) 

is affected.  

While H365N and E171A show a similar carboxylation behavior, the free energy paths of the 

two variants show distinct differences (Fig. 3, panel C and F). In both variants, the two main 

barriers along the minimum free energy path of the reaction – the one that leads to the 

enolate from the C2‐ene adduct and the one that adds CO2 to the enolate – appear increased 

compared to the WT (for WT see Fig.2, panel C). This is experimentally reflected by the 

decreased catalytic activity of the two variants and can be related to a distorted water network 

and increased tumbling of CO2 at the active site of these enzymes. In H365N, however, the 

first energy barrier is higher compared to E171A. This indicates that enolate formation is 

disfavored and suggests that the C2‐ene adduct accumulates in the H365N variant. This was 

experimentally confirmed by measuring the stereospecificity of the reduction reaction in the 

absence of CO2. In the H365N variant, stereospecificity was lost (see Table 1), indicating that 

the H365N is additionally affected in enolate formation compared to the E171A mutant and 

the WT, respectively.  

In summary, His365 and Glu171 can partially compensate each other so that carboxylation 

function is maintained. However only the combined action of the two residues allows full 

control over the CO2 molecule and thus a fast carboxylation rate. 
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2.4. Discussion 
 

Ccr from Kitasatospora setae carboxylates crotonyl‐CoA at a turnover frequency of more than 

100 s‐1. This is almost one order of magnitude faster than an average RubisCO homolog and 

one of the fastest CO2‐conversion rates described to date. Combining X‐ray crystallography, 

experimental biochemistry and molecular dynamics simulations we characterized the role of 

individual amino acids at the active site of KsCcr in CO2 binding and C‐C‐bond formation. In 

KsCcr the active site is optimized to accommodate CO2 and at the same time exclude water to 

suppress the competing reduction reaction. All this is apparently achieved by only four amino 

acids: Asn81, His365, Glu171 and Phe170. The amide group of Asn81 is responsible for 

anchoring the CO2 from one side, while a water network organized from an ordered water 

molecule coordinated between His365 and Glu171 serves as an additional anchor point for 

CO2 from the opposite side. The aromatic ring of Phe170 side chain actively prevents the 

diffusion of water into the active site. 

Why is the CO2‐fixation reaction of Ecrs so much faster but still more specific compared to the 

reaction catalyzed by RubisCO, although both enzymes react through an enolate? Note that 

there are fundamental differences in the catalytic mechanisms of RubisCO and Ecrs. In 

RuBisCO, enolization of the substrate ribulose 1,5‐bisphosphate is achieved by abstraction of 

the H3 proton through an active site carbamylated lysine, which is a reversible process and 

very close to equilibrium24. (Re‐)protonation of the enolate yields the substrate again, which 

can undergo another round of activation until it reacts with a CO2 (or O2) molecule, which pulls 

the reaction further25. In contrast, in Ecrs the enolate is formed by hydride transfer from 

NADPH to the ‐position of crotonyl‐CoA17‐19. This provides a more “unidirectional” reaction 

path and leaves the enolate committed for a nucleophilic attack. Accordingly, Ecrs are 

required to carefully control the further fate of the enolate and especially to prevent its 

protonation, which would irreversibly quench the reaction (in stark contrast to the case of 

RubisCO). When CO2 is absent from the active site of WT Ecr18, or its positioning is disturbed 

(e.g. by H365N or N81L mutation, this study), the enolate is not simply transformed back into 

the starting substrates as in RubisCO, but tends to collapse into the C2‐ene adduct, which is in 

line with the idea of “unidirectionality” in Ecr catalysis. It might be tempting to speculate that 

the C2‐ene adduct serves as a way to “store” the reactive enolate until a resolving CO2 



35 
 

electrophile becomes available, thereby increasing the overall reactivity of Ecrs compared to 

RubisCOs.  

RubisCO and Ecrs probably both evolved from non‐CO2‐fixing ancestors. While it has been 

speculated that RubisCO emerged from an ancestral sugar phosphate isomerase it is thought 

that Ecrs evolved from a primordial enoyl‐CoA reductase6, 26. Clearly, this put more constraints 

onto the active site topology of Ecrs, because unlike the CO2 fixation reaction in RubisCO that 

could be simply built on top of a reversible isomerization reaction, the reduction reaction 

needed to be suppressed and replaced by the carboxylation reaction in the Ecr scaffold 

because of the “unidirectionality” of Ecr’s catalytic mechanism. The situation is reminiscent of 

2‐ketopropyl coenzyme M oxidoreductase/carboxylase that evolved within the superfamily of 

NAD(P)H disulfide oxidoreductases for which the enzyme also had to replace an active site 

topology prone to reduction reactions by a CO2‐fixing active site11. In both cases, the active 

site transformation was achieved with only little changes and notably without introduction of 

a competing oxygenation reaction, posing the question whether the evolutionary 

circumstances or the nature of the catalytic cycle of both enzymes were responsible to achieve 

this superior selectivity against oxygen compared to RubisCO.  

In summary, our findings provide detailed insights into the molecular control of CO2 at one of 

nature’s most efficient carbon fixing enzymes. These insights will be helpful in the future 

design of catalytic frameworks for the capture and conversion of CO2 in chemistry and 

biology27, but also for efforts that aim at using Ecrs as key enzymes in the development of 

synthetic cycles for the sustainable and efficient fixation of CO2
28, 29.   
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2.5. Materials and Methods 
 

Chemicals 

Crotonic Anhydride and Carbonic anhydrase from bovine erythrocytes were purchased from 

Sigma Aldrich AG, Coenzyme A trilithium salt and DNAse I from Roche Diagnostics, NADPH Na4 

(98%) from Carl Roth GmbH. Solvents and salts were all analytical grade or better. Crotonyl‐

CoA was synthesized as previously reported30.  

Cloning and Mutagenesis  

The KsCcr gene was provided by the JGI. Enzyme variants were generated with the 

QuikChange® Site‐Directed Mutagenesis Kit (Stratagene, La Jolla, USA) using primer pairs 

listed (SI Appendix, Supplementary Table 2). 

Protein Expression and Purification 

His‐tagged protein was expressed in E. coli BL21 AITM (DE3). Cells in terrific broth were grown 

at 37 °C to an OD600 = 0.8‐1.0 upon which expression for 12‐16 h at 23 °C was induced by the 

addition of 500 μM IPTG (Isopropyl‐D‐β‐thiogalactopyranoside) and 0.02% L‐Arabinose. Cells 

were harvested for 15 min at 7’500 g at 4 °C then resuspended in 2 mL of Buffer A (50 mM 

Tris, 500 mM NaCl, 1M L‐Proline, pH= 7.5) per gram of pellet. The suspension was treated with 

10 mg/mL of DNAse I and 5 mM MgCl2 on ice for 20 min upon which cells were lysed at 16000 

Psi using a LM10 MicrofluidizerTM. The lysate was clarified at 45’000 g at 4°C for 45 min and 

then loaded onto a pre‐equilibrated 1 mL HisTrap FF column and washed with 12 % Buffer B 

(50 mM Tris, 500 mM NaCl, 1 M L‐Proline, 500 mM imidazole, pH = 7.5) for 20‐30 column 

volumes until the UV 280 nm reached the baseline level. The protein was eluted by applying 

100% buffer B, collected then pooled and desalted into 12.5 mM Tris, 125 mM NaCl, 1 M L‐

Proline. The addition of L‐Proline to each buffer increased the yields for the protein 

purification by making the protein more soluble as previously reported31. The protein was 

frozen in N2 (l) and stored at ‐80°C if not immediately used for assays. 

Quantification of reaction products 

Reactions for product analysis of KsCcr contained saturating amounts (at least 10 times the 

KM) of Crotonyl‐CoA, NADPH, 100 mM K2HPO4 pH = 8.0, 50 mM NaHCO3, 2 ug/mL carbonic 
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anhydrase and each enzyme was added at a final concentration of 1 µM. The reaction 

procedure was monitored by decrease in absorbance of NADPH at 340 nm, quenched with 10 

µL of 50% formic acid at completion and spinned at 17’000 g for 10 min to precipitate the 

protein. The reaction was diluted 10 times into 5% methanol/Buffer 8.1 and analyzed by 

UHPLC over a Sonoma C18(2), 3 µm 100 Å, 100 x 2.1 mm using a 5 to 45% methanol gradient 

over 14.5 min. Quantification was performed by peak integration at 260 nm: ethylmalonyl‐

(4 min), crotonyl‐(7.4 min) and butyryl‐CoA (8.6 min).  

Spectrophotometric enzyme assays 

Assays were performed on a Cary‐60 UV/Vis spectrophotometer (Agilent) at 30°C using quartz 

cuvettes (1 or 10 mm path length; Hellma). Reactions contained 20 µg/mL carbonic anhydrase 

and were performed in 100 mM K2HPO4 pH = 8.0. Kinetic parameters for one substrate were 

determined by varying its concentration while the others were kept constant at 10 times their 

KM value. Reaction procedure was monitored by following the oxidation of NADPH at 365 nm 

(εNADPH,365nm = 3.33 mM‐1 cm‐1). Each concentration was measured in triplicates and the obtained 

curves were fit using GraphPad Prism 8. Hyperbolic curves were fit to the Michaelis‐Menten 

equation to obtain apparent kcat and KM values. For mutants revealing substrate inhibition, the 

data was fit to v0= (VMax [S])/(KM+ [S] ((1+[S])/Ki)). 

Determining the stereochemistry of protonation 

Isotopic label incorporation experiments were performed analogous to a previously described 

method (see SI Appendix, Fig. S4)22.  

Molecular Dynamics Simulations 

From the crystal structure, chains A and C along with the corresponding cofactors and 

substrates were solvated inside a cubic box of TIP3P water molecules, with a distance of 12 Å 

between the enzyme and the edge of the box. To neutralize the system, sodium and chloride 

ions were added to reach a concentration of 0.125 M. All molecular dynamics simulations 

were performed with the software Amber1632 and the force field CHARMM22/CMAP33, 34. 

Details are described in the SI Appendix.  
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2.7. Supplementary Appendix 

Supplementary Tables 

Supplementary Table 1. Data collection and refinement statistics. 
 

 K. setae ECR  NADPH 
 Ethylmalonyl‐CoA 

Data collection  
Space group P21 
Cell dimensions  
    a, b, c (Å) 109.1, 78.7, 138.9 

    α,, ()  90.0, 108.1, 90.0 

Resolution (Å) 30 – 1.72 
 (1.83 – 1.72) 

Rsym or Rmerge 0.15 (0.51) 
I / σI 4.7 (2.26) 

Completeness (%) 97.2 (97.8) 
Redundancy 3.34 
  
Refinement  

Resolution (Å) 29.89 – 1.72 
(1.79 – 1.72) 

No. reflections 230524 (24347) 

Rwork / Rfree 0.16/0.17 
No. atoms  
    Protein 14014 
    Ligand/ion 324 
    Water 1112 
B‐factors  
    Protein 25.4 
    Ligand/ion 35.1 
    Water 33.5 
R.m.s. deviations  

    Bond lengths (Å) 0.014 

    Bond angles () 1.23 

*Single crystal used for the dataset.  

**Values in parentheses are for highest‐resolution shell. 
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Supplementary Table 2. Forward and reverse primer pairs used for site‐directed 
mutagenesis of the KsCcr gene. 
 

 

 
Supplementary Table 3. Apparent steady state parameters for KsCcr S119A and T82D 
mutants expressed as mean value ± standard error. 

Enzyme Substrate KM (µM) Ki (µM) kcat (s-1) % EMCb 
S119A Crotonyl‐CoA 36 ± 5 ‐ 1.79 ± 0.05 98 

 NADPH 30 ± 7 ‐ 1.47 ± 0.08  

 CO2
a 80 ± 20 ‐ 1.32 ± 0.09  

T82D Crotonyl‐CoA 13.4 ± 2.4 446 ± 63 0.172 ± 0.001 94 

 

 NADPH 52 ± 6 ‐ 0.157 ± 0.005  

 CO2
a 30 ± 0.003 ‐ 0.170 ± 0.004  

SI Appendix, Fig. S2 shows the Michaelis‐Menten graphs of the original data.a Apparent KM values for CO2 were calculated 
from the HCO3

‐ concentration in solution at pH = 8.b Percentage of (2S)‐ethylmalonyl‐CoA over total amount of products. 
 
 

Mutation Forward Primer Reverse Primer  

N81L CGTCTTCCGTAAACTATCTGACCGTTTGGTCTTCCA
TC 

GATGGAAGACCAAACGGTCAGATAGTTTACGGAAGA
CG 

N81D GTCTTCCGTAAACTATGACACCGTTTGGTCTTC GAAGACCAAACGGTGTCATAGTTTACGGAAGAC 

T82D GTCTTCCGTAAACTATAACGACGTTTGGTCTTCCAT
CTTC 

GAAGATGGAAGACCAAACGTCGTTATAGTTTACGGAA
GAC 

S119A CACGTTCTGGGTGCTGATCTGGCTG 
 

CAGCCAGATCAGCACCCAGAACGTG 
 

F170A GCGCATCTGGGGCGGCGAAACCAACTTTG CAAAGTTGGTTTCGCCGCCCCAGATGCGC 

E171L CGCATCTGGGGCTTCCTGACCAACTTTGGTGG CCACCAAAGTTGGTCAGGAAGCCCCAGATGCG 

H365N CGTATCGTAGGCTCTAACTTCGCTAACTATC GATAGTTAGCGAAGTTAGAGCCTACGATACG 
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Supplementary Figures 

Supplementary Figure S1: Simulated annealing Fo‐Fc omit‐maps at 3.0 σ for NADPH (cyan) 

and at 1.25 σ for ethylmalonyl‐CoA (salmon) bound to KsCcr. A high occupancy was obtained 

for NADPH, which was co‐crystallized with KsCcr. Ethylmalonyl‐CoA was soaked into the 

crystals before freezing resulting in a much lower occupancy. The very weak electron density 

at the carboxy group of ethylmalonyl‐CoA can be explained by enzyme mediated and/or 

partial spontaneous decarboxylation, as reported before35.  

 

 

Asn81  
Phe170  

Glu171  

His365 

NADPH  

ethylmalonyl-CoA  
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Supplementary Figure S2: Steady state parameters of KsCCR and its variants. The data are 

summarized in Table 1. All reactions contained 50 mM NaHCO3 and 20 µg/ml of carbonic 

anhydrase and were performed in 100 mM K2HPO4 pH = 8. For The H365N mutant 100 mM 

NaHCO3 were used.  
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Supplementary Figure S3: Formation of the C2-ene adduct in KsCCR N81L. In the absence or 

presence of 50 mM HCO3
‐ (blue and red trace respectively) KsCcr N81L accumulates the C2‐

ene adduct. The formation was followed at 385 nm and the reaction contained 300 µM 

NADPH, 1mM Crotonyl‐CoA, 5µM KsCcr N81L and was performed in 100 mM K2HPO4 pH = 8 

at 30°C. 
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Supplementary Figure S4: Isotopic labelling experiment. The reduction reaction is performed 

in D2O in the presence of Ccr and the reaction product is purified by HPLC. The product is then 

incubated with Acx4 to generate crotonyl‐CoA. 

 

 

Supplementary Figure S5: Quantum mechanical region used in the QM/MM calculations 

shown for the C2-adduct representing the reactant state. The indexed atoms are those 

involved in the collective coordinates. L= link atom. 
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Collective coordinates used to trace the minimum free energy path in the adaptive string 

method. Asterisks indicate collective coordinates important in energetic terms. 

 

CV type Atoms involved 

Distance between atoms 1‐4*, 4‐5*, 6‐7, 7‐9, 4‐6, 6‐9, 5‐8,  

Angle 2‐1‐3 

Torsion 11‐12‐13‐14 

Point‐Plane distance (central atom) 4, 5, 9, 6, 8, 10 
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Supplementary Figure S6: Dissociation of CO2 from the product ethylmalonyl-CoA shown as 

snapshots. Panels A to D visualize the sequential increase in distance between the C of the 

substrate and the carbon atom of CO2. Starting from ethylmalonyl‐CoA, where the distance 

between C and the carboxylate carbon atom is 1.5 Å, the system reaches the state in panel 

D where the CO2 carbon atom is 3.6 Å away from C and the C2‐adduct is formed. 
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Supplementary Figure S7: Root-mean-squared-deviation (RMSD, left) and Root-mean 

squared-fluctuation (RMSF, right) of the protein backbone C. 100 ns of MM equilibration 

shows an increased but converged RMSD for the F170A variant, compared to the other 

mutants. The RMSF measured for the last 25 ns of the same equilibration trajectory shows 

increased fluctuations in F170A and smaller variations in the E171A mutant. 
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Protein Crystallization and Structural Analysis 

72‐well sitting‐drop crystallization trays (Terasaki) were set up and screened against a library 

of various crystallization conditions (Molecular Dimensions, Hampton). Each crystallization 

well contained 0.77 µl of 10 mg/ml K. setae ECR protein kept in 500 mM Imidazole, 300mM 

NaCl, 1M proline and TRIS‐HCl pH = 8.5 mixed with 0.77 µL of the various crystallization 

buffers. Each well was sealed with 16.6 µL of 100% paraffin oil (Hampton Research) to slow 

the crystallization process. Crystals of apo ECR protein were observed in various morphologies 

after 24 hours of incubation. The initial crystallization conditions were from various MIDAS, 

Crystal Screen, and PGA‐LM screening conditions (Molecular Dimensions, Hampton Research). 

The apo ECR was crystallized from a solution containing 100 mM TRIS pH = 8.0 and 20% w/v 

poly (acrylic acid sodium salt) 5100 and resulted in 30‐micron plate‐like crystals. The ternary 

ECR complex were co‐crystallized with final concentration of 5 mM of NADPH and soaked with 

5 mM ethylmalonyl‐CoA. Crystals were harvested after 30 minutes incubation with 30% (v/v) 

glycerol as a cryoprotectant and then flash cooled in liquid nitrogen. 

Diffraction data of the ternary complex with NADPH and ethylmalonyl‐CoA were collected on 

23‐ID‐B beamline of The Advanced Photon Source (APS). The K. setae ternary complex 

belonged to the space group P21 with unit cell dimensions a= 109.1 Å, b= 78.7 Å, c= 138.9 Å 

and ⍺ = γ = 90° β = 108.1 °. The data processing for synchrotron structures were carried out 

using autoXDS and scaling was done with XSCALE36, 37. A set of 5% of randomly chosen 

reflections were set aside for the calculation of the free Rfactor (Rfree). The apo structure was 

solved using by PHENIX38, 39 and PHASER40, 41 molecular replacement program. Initial search 

model for molecular replacement was generated by using SWISS-MODEL42 server against a 

structure of a crotonyl‐CoA carboxylase/reductase (PDB 4GI2). The K. setae apo structure 

served as the model for solving the ternary‐complex structure structure. This resulted in four 

monomers in the asymmetric unit. The refinement was carried out using PHENIX refinement, 

utilizing automatically generated TLS groups based on the structure and ordered solvent to 

place the water molecules43, 44. Following the first round of refinement, the structure was 

manually adjusted to the electron density and waters were added using COOT45, 46.  
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Molecular Dynamics Simulations Workflow Description 

Molecular mechanics parameters for NADPH and for the Coenzyme A fraction of Crotonyl‐CoA 

were taken from Pavelites47 and Aleksandrov48, respectively. The carboxylic region of the 

product ethylmalonyl‐CoA was parameterized (bonded and non‐bonded terms) using as 

model the glutamate residue present in CHARMM22/CMAP33, 34. The same force field was 

used at all the stages of this work.   

The first step of the molecular dynamics simulations was the modification of the crystal 

structure to create ethylmanlonyl‐CoA (EMC), the carboxylated product, inside the active 

cavity. For the mutants, this step was followed by the modification of the target residue. After 

the solvation, each system was subject to energy minimization and three equilibration stages: 

500ps NVT using the Langevin thermostat (300 K, 1.0 ps‐1, 2 kcal mol‐1Å‐2 restraint on non‐

solvent atoms), 5 ns NPT using Langevin thermostat and Monte Carlo barostat (300 K, 1 bar, 

2 kcal mol‐1 Å‐2 restraint on non‐solvent atoms) and a final equilibration of 100 ns NVT (2 kcal 

mol‐1 Å‐2 restraint on NADP+ and EMC atoms), in order to relax the protein (SI Appendix, Fig. 

S7). 

QM/MM Molecular Dynamics 

The final equilibrated structure at 100 ns of molecular dynamics, as well as frames 

corresponding to 80 and 90 ns, were subject to the following QM/MM scheme of simulations. 

The QM region comprised 56 atoms, corresponding to the reactive portions of both NADPH 

and crotonyl‐CoA (SI Appendix, Fig. S5), and was described using the semiempirical 

hamiltonian DFTB3, with the 3ob‐3‐1 set of parameters49‐52. The semiempiricial DFTB3 

hamiltonian was validated for representative structures of reactant, transition states and 

intermediate in the WT MFEP with ωB97X/def2‐TZVP QM/MM potential energy calculations 

presenting an energy difference between 0.1 and 3.7 kcal/mol to the DFTB3 results.  

After an energy minimization of the carboxylated system, it was equilibrated at 300 K for 100 

ps. Steered molecular dynamics (SMD) was used to form the decarboxylated reactant state, 

pulling the carboxyl group from its bonded position at 1.5 Å  from the Cɑ atom to a distance of 

3.6 Å in 100 ps (SI Appendix, Fig. S6). During the SMD simulation, spontaneous formation of 

the C2‐adduct was observed. Then the reactant system, formed by the C2‐adduct and the 

dissociated CO2 molecule, was equilibrated during 100 ps, applying a small restraint of 200 



53 
 

kcal mol‐1 Å‐2 on the distance between the carbon atom of CO2 and Cɑ, to maintain carbon 

dioxide in the catalytic cavity. 

Minimum free energy path determination 

The equilibrated reactant and product structures of the system were used as a guess for the 

initial and final points in the adaptive string method, implemented in Amber1653. This method 

allows the exploration of the free energy surface projected on key collective coordinates (CVs) 

in order to find the minimum free energy path. Fifteen relevant structural parameters 

(detailed in the SI) were selected as collective variables to describe the progress of the 

reaction.  

The string was formed by forty nodes connecting reactant and product states, and each replica 

was given a period of 2 ps to reach the configuration corresponding to a linear interpolation 

between initial and final values of each CV. Then, every node drifted, following the direction 

of the mean force in the space spanned by the CVs. No nodes were fixed allowing the reactant 

and product state to reach their stationary points. For every enzymatic system simulated the 

convergence of the free energy path was monitored by the mean distance between successive 

paths and the sampling was improved attempting replica exchange every 20 steps. After 

reaching convergence, this final path was used as a reaction coordinate to perform umbrella 

integration54, obtaining a free energy profile. The string method provides a measure of the 

95% confidence interval for the free energy; the umbrella integration was stopped after 

obtaining a constant value (around 1.0 kcal mol‐1) for this parameter. The distribution of water 

molecules inside the active site was examined with the SSTMap software55 to determine the 

hydration sites. For this purpose, representative frames of the reactant, enolate and product 

states were subject to 1 ns of constrained QM/MM molecular dynamics.  

Supplementary Video Files Descriptions 

Supplementary Videos 1-5: The videos show molecular dynamics of key points along reaction 

coordinate for KsCcr WT and its variants. 

SV1: KsCcr WT 

SV2: KsCcr N81L 

SV3: KsCcr F170A 

SV4: KsCcr E171A 
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SV5: KsCcr H365N 

 

Supplementary Pymol and Chimera Session Files Descriptions 

Supplementary data 1-6: Pymol and Chimera files corresponding to figure 2 panels B, E, H 

and figure 3 panels B and E 

SD1a: Pymol file of figure 2 panel B 

 

SD1b: Chimera file of figure 2 panel B 

 

SD2a: Pymol file of figure 2 panel E 

 

SD2b: Chimera file of figure 2 panel E 

 

SD3a: Pymol file of figure 2 panel H 

 

SD3b: Chimera file of figure 2 panel H 

 

SD4a: Pymol file of figure 3 panel B 

 

SD4b: Chimera file of figure 3 panel B 

 

SD5a: Pymol file of figure 3 panel E 

 

SD5b: Chimera file of figure 3 panel E 

 

Files can be downloaded under the following link: 

 

https://www.mpi‐marburg.mpg.de/547072/Data 
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3.1. Abstract 
 

Carboxylases are enzymes responsible for the fixation of carbon into biomass and are 

essential to the global carbon cycle. They are able to utilize atmospheric CO2 and 

incorporating it into organic molecules. Generally, they form a C-C bond by creating an 

activated substrate nucleophile, called an enolate, which can then be carboxylated with 

CO2. Enoyl-CoA cabroxylases/reductases (ECRs) catalyze the reductive carboxylation of 

enoyl-CoAs and represent the fastest carboxylases known today. We tested whether an 

aldehyde could replace CO2 as the resolving electrophile in the final step of the reaction. We 

show that ECR from Kitasatospora setae is able to utilize formaldehyde as an alternative 

electrophile thereby forming 2-(hydroxymethyl) butyryl-CoA (2-HMB-CoA). This compound 

was characterized by mass spectrometry and NMR spectroscopy and confirmed the 

predicted structure. This opens up the possibility for more electrophiles to be tested and 

employ ECRs as biocatalyst for the production of α-substituted carboxylic acids. 

3.2. Introduction 
 

Enoyl‐CoA carboxylases/reductases (ECRs) perform the unique reductive carboxylation of 

enoyl‐CoA thioesters by oxidizing one equivalent of NADPH. ECRs catalyze the carboxylation 

of crotonyl‐CoA to ethylmalonyl‐CoA in the ethylmalonyl‐CoA pathway, an important pathway 

for the assimilation of C2 units in many ecologically relevant bacteria1. ECRs are also found 

associated with the biosynthesis of natural products where they produce malonyl‐CoA 

derivatives as extender units2. A previous study on substrate promiscuity within this enzyme 

family also determined the active site residues responsible for the substrate specificity in 

ECRs3. Carboxylases in general activate their substrates and form a reactive enolate 

intermediate which readily reacts with CO2
4. ECR is known to utilize CO2 as the resolving 

electrophile for the enolate, but is also able to catalyze the normal reduction reduction by 

using H+ 5. We therefore thought to interrogate the potential of alternative electrophiles that 

this enzyme can accept.  
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Scheme 1: A Reductive carboxylation catalyzed by ECRs. B Aldol addition of a ketone to an aldehyde yielding a 3‐hydroxy 

ketone compound. LDA: Lithium diisopropylamide.  

The reactivity of ECRs, which reminds of an aldol reaction (Scheme 1B), prompted us to 

consider alternative electrophiles for the ECR catalyzed reaction. Formaldehyde (FALD) is a 

small one carbon compound with a high electrophilic character and contains a carbonyl 

function for the coordination through hydrogen bonding in the active site. Moreover, its size 

is well suited to be accommodate din the active site given that it is smaller than CO2. Following 

reaction in scheme 1B the reaction of ECR with formaldehyde would yield a ‐hydroxy‐

thioester as the product of an aldol addition reaction. Such intermediates represent valuable 

building blocks for organic synthesis6 after cleavage with a thioesterase.  

Here we show that ECR can accept formaldehyde as an alternative electrophile to CO2 and 

form 2‐(hydroxymethyl) butyryl‐CoA (2‐HMB‐CoA). The proposed structure was confirmed by 

mass spectrometry and 2D‐NMR spectroscopy. The conversion to 2‐HMB‐CoA was 

stoichiometric with no formation of butyryl‐CoA at a concentration of 20 mM FALD. This opens 

up the possibility to higher substituted aldehydes instead of CO2 in addition  

3.3. Results 

Structural characterization of 2-HMB-CoA 

ECR from Kitasatospora setae was able to utilize formaldehyde as a substrate in the presence 

of crotonyl‐CoA and NADPH. In the absence of CO2 ECR is known to catalyze the normal 

reduction reaction to butyryl‐CoA. We therefore determined how much of the aldol reaction 

product (2‐HMB‐CoA)would be formed compared to the reduction product (butyryl‐CoA). ECR 

was able to produce 94% of aldol reaction product at 20 mM FALD (Supplementary Table 1) 

at 1/10 of the speed of the carboxylation reaction. This data also yielded an apparent KM value 

of 25 mM which is 3 orders of magnitude higher than the apparent KM value for CO2. 
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The MS2 spectra of 2‐HMB‐CoA confirmed the expected mass of the acyl‐pantethenoyl 

fragment (Fig. 2) and other characteristic peaks, which derive from the fragmentation of CoA 

esters7 (Supplementary figure S2) 

 

 

Figure 2: MS2 spectrum of 2‐HMB‐CoA. The peak at m/z 868.2 (blue star) generates the peak at m/z 361.3 represents the 

characteristic acyl‐S‐(cyclo)pantetheine MS2 product. The structure of this product is highlighted on the right of the spectrum.  

 

We additionally performed structural characterization by NMR spectroscopy. The newly 

formed C‐C bond is confirmed by the observed spin coupling between protons at the Cα and 

the Cα’ positions in the DQF COSY spectrum. The heteronuclear multiple bond correlation 

(HMBC) experiment further confirms the result by showing the coupling over the carbon 

backbone (supplementary figure S1). These findings allowed us to identify the structure of the 

acyl moiety of 2‐HMB‐CoA. 
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3.4. Discussion 

 

We showed that ECR from Kitasatospora setae is able to utilize FALD as an alternative 

electrophile to CO2. The structure of the product was confirmed by mass spectrometry and 

2D‐NMR spectroscopy. We confirmed that the predicted structure of the acyl moiety is a ‐

hydroxy thioester. We exploited the inherent reactivity of an enolate intermediate produced 

by a carboxylase under mild conditions and quenched this species with a potent electrophile. 

This approach represents a novel biocatalytic alternative to already known routes for the 

preparation of enantiomerically pure hydroxy‐acids 6, 8. A previous study reported that an 

engineered fructose‐1,6‐bisphosphate aldolase9 variant was able to connect a variety of 

ketones with aldehydes yielding ‐hydroxy ketones and aldehydes with high stereoselectivity. 

Analogous to that ECRs could be used as a biolcatalyst to promote stereoselective C‐C bond 

formation. The well studied substrate promiscuity of the ECR family3 and the synthetic 

accessibility of enoyl‐CoAs7, 10 provide a good starting point for the development of this 

biocatalytic strategy. 

 

Scheme 2: Expansion of the product range of the ECR catalyzed aldol addition reaction. The rest R’ can be varied by employing 
different ECR homologs whereas the rest R’’ by employing a different aldehyde  

On the other side the simple case of FALD as the alternative electrophile could be expanded 

to higher substituted aldehydes (Scheme 2). The reaction of enoyl‐CoAs with higher 

substituted aldehydes would generate 2 stereocenters in one reaction.  

ECRs represent a new biocatalytic strategy for the fast and stereospecific C‐C bond formation 

between and enoyl‐CoA and formaldehyde. Reactions can be performed under mild 

conditions and do not require protective group strategies. Further experiments are needed to 

address the promiscuity towards additional electrophiles and clarification of the reaction 

mechanism. 
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3.5. Materials and Methods  
 

Large scale synthesis of 2-HMB-CoA 

15 mg of crotonyl‐CoA, 16 mg of NADPH, were dissolved in 100 mM KH2PO4 pH = 8, 100 mM 

formaldehyde and the reaction started by addition of 10 µM ECR form Kitasatorspora setae in 

a final volume of 3 mL and incubated at 30 °C for 20 min. The reaction was quenched by 

addition of 100 µL 50% formic acid and centrifuged at 17000x g to precipitate the protein. 

2HMB‐CoA was purified by preparative RFLC/MS over a Gemini 10 μm NX‐C18 110 Å, 100 x 

21.2 mm, AXIA packed column (Phenomenex) using a methanol gradient from 5 % to 30 % 

over 10.5 min with 25 mM ammonium formate pH = 8.1 as the aqueous phase. Fractions 

containing the product were pooled, lyophilized and stored at ‐20°C. For NMR experiments 

the sample was dissolved in 600 µL 50 mM KH2PO4 pH = 7.0 and was resuspended in 600 µL 

of D2O. The sample was measured at a final concentration of 9 mM in 50 mM KD2PO4 pD = 7.4. 

Spectrophotometric enzyme assays 

Assays were performed on a Cary‐60 UV/Vis spectrophotometer (Agilent) at 30°C using quartz 

cuvettes (1 or 10 mm path length; Hellma). Reactions were performed in 100 mM K2HPO4 pH 

= 8.0. Kinetic parameters for one substrate were determined by varying its concentration 

while the others were kept constant at 10 times their KM value. Reaction procedure was 

monitored by following the oxidation of NADPH at 365 nm (εNADPH,365nm = 3.33 mM‐1 cm‐1). 

Analysis of reaction products 

Reactions for product analysis contained saturating amounts (at least 10 times the KM) of 

Crotonyl‐CoA, NADPH, 100 mM K2HPO4 pH = 8.0, and varying amounts of formaldehyde in a 

final volume of 100 µL. The reaction procedure was monitored by decrease in absorbance of 

NADPH at 365 nm, quenched with 10 µL of 50% formic acid at completion and spinned at 

17’000 g for 10 min to precipitate the protein. The reaction was diluted 10 times into 5% 

methanol/Buffer 8.1 and analyzed by UHPLC over a Sonoma C18(2), 3 µm 100 Å, 100 x 2.1 mm 

using a 5 to 45% methanol gradient over 14.5 min. Retention times were 2HMB‐(6.4 min), 

crotonyl‐(7.2 min) and butyryl‐CoA (8.1 min) 
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3.7. Supplementary Information 
Supplementary figure S1: Two-dimensional NMR analysis of 2-HMB-CoA recorded at 600 MHz in 50 

mM NaD2PO4 pD = 7.4 at 25°C. Recorded spectra are A) Structure and numbering of 2‐HMBCoA B) 

Assignment table for 2‐HMBCoA C) 1H‐NMR D) DQF‐COSY E) HSQC F) HMBC 
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Position 1H-shift (ppm) 13C-shift (ppm) HMBC DQF-COSY 

α 2.64 57.68 C’, C, C C’, C 

α’a 3.51 62.26 C, C, C12” C 

α’b 3.57 62.26 C, C, C12” C 

β 1.34 21.82 C, C’, C, C12” C, C 

γ 0.69 10.75 C, C C 

1’’a 3.36 71.70  ‐ 

1’’b 3.63 71.70  ‐ 

2’’ ‐ 38  ‐ 

3’’ 0.55 18.15  ‐ 

4’’ 0.67 20.72  ‐ 

5’’ 3.81 74.01  ‐ 

6’’ ‐ 175  ‐ 

7’’ 3.22 35.21  C8” 

8’’ 2.25 35.21  C7” 

9’’ ‐ 173  ‐ 

10’’ 3.16 38.45  C11”a,b 

11’’a 2.81 27.62  C10” 

11”b 2.91 27.62  C10” 

1’ 6.00 86.59  C2’ 

2’ 4.65 74.05  C1’ , C3’ 

3’ 4.59 73.32  C2’ , C4’ 

4’ 4.41 83.69  C3’ , C5’ 

5’ 4.06 65.78  C4’ 

CA2 8.11 152   

CA4 ‐ 149   

CA5 ‐ 119   

CA6 ‐ 156   

CA8 8.37 140   
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Supplementary Figure S2: MS/MS spectrum of 2HMB-CoA.  

The peak observed at m/z 259.1 is likely an oxidation product of the compound found at m/z 

261.1 
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Supplementary Table 1: Product analysis of reaction catalyzed by KsECR with formaldehyde. 

The initial slopes were fitted to the Michaelis Menten equation to estimate an apparent KM 

value for FALD. Prolonged incubation of the reaction with [FALD] > 50 mM rvealed formylation 

of the adenosine moiety of The CoA ester and cofactor as previsouly described 

 

[FALD]/(mM) 2‐HMB‐CoA/% V0/[E]/(s‐1) 

10 88 8 

20 94 12 

50 97 20 

100 98 22 
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CHAPTER IV 

Coupled inter-subunit dynamics enable the fastest CO2-fixation by 

reductive carboxylases 
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4.1. Abstract 
 

Enoyl-CoA carboxylases/reductases (ECRs) are the most efficient CO2-fixing enzymes 

described to date, outcompeting RubisCO, the key enzyme in photosynthesis in catalytic 

activity by more than an order of magnitude. However, the molecular mechanisms 

underlying ECR’s extraordinary catalytic activity remain elusive. Here we used different 

crystallographic approaches, including ambient temperature X-ray Free Electron Laser 

(XFEL) experiments, to study the dynamic structural organization of the ECR from 

Kitasatospora setae. K. setae ECR is a homotetramer that differentiates into a dimer of 

dimers of open- and closed-form subunits in the catalytically active state, suggesting that 

the enzyme operates with “half-site reactivity” to achieve high catalytic rates. Using 

structure-based mutagenesis, we show that catalysis is synchronized in K. setae ECR across 

the pair of dimers by conformational coupling of catalytic domains and within individual 

dimers by shared substrate binding sites. Our results provide unprecedented insights into 

the dynamic organization and synchronized inter- and intra-subunit communications of 

nature’s most efficient CO2-fixing enzyme during catalysis. 

4.2. Introduction 
The capture and conversion of atmospheric CO2 remains a challenging task for chemistry, 

resulting in an ever‐increasing interest to understand and exploit CO2 fixation mechanisms 

offered by biology1. The recently described family of enoyl‐CoA carboxylases/reductases 

(ECRs) represent the most efficient CO2‐fixing enzymes found in nature to date2, 3. ECRs 

catalyze the reductive carboxylation of a variety of enoyl‐CoA thioester substrates at catalytic 

rates that are up to 20‐fold higher than Ribulose‐1,5‐bisphosphate carboxylase/oxygenase 

(RubisCO), an enzyme involved in the first carbon fixation step in the Calvin‐Benson cycle of 

photosynthesis1, 4.  

ECRs catalyze the reduction of α,β‐unsaturated enoyl‐CoAs using the reduced form of the 

cofactor nicotinamide adenine dinucleotide phosphate (NADPH). This generates a reactive 

enolate species, which acts as a nucleophile to attack a CO2 molecule2, 3, 5. The structural 

details of the carboxylation reaction have remained elusive, due in part to the lack of high‐

resolution structures of ECRs containing catalytic intermediates and carboxylated products. 

Currently, there are five available ECR structures. However, they all have different substrate 
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specificities, ranging from short‐ (PDB: 3HZZ, 3KRT) to long‐chain (4A0S6) and aromatic enoyl‐

CoA substrates (4Y0K7), and are from different biological backgrounds including primary (i.e. 

central carbon) metabolism (PDB: 4GI2) and secondary metabolism. Moreover, most of them 

were co‐crystalized with NADPH or NADP+only and do not contain CO2, enoyl‐CoA substrates 

or acyl‐CoA products. This significantly limits our structural understanding of the enzyme’s 

catalytic mechanism. 

The aim of this study was to provide a detailed structural understanding of the carboxylation 

reaction of ECRs at the level of the oligomeric protein complex. To this end, we chose the ECR 

from K. setae, which shows high substrate specificity for crotonyl‐CoA and superior catalytic 

efficiency (see Table 1). Using cryogenic X‐ray crystallography at synchrotrons and room 

temperature serial femtosecond X‐ray crystallography (SFX) at an XFEL, four high‐resolution 

ECR structures were determined in different conformational states: the apo form and three 

holo forms, in binary complex with the reduced cofactor NADPH, in ternary complex with 

NADPH and butyryl‐CoA, and in binary complex with the oxidized cofactor NADP+ (Figure 1a).  

Here we show that the tetrameric complex assumes a dimer‐of‐dimers (“a pair of dimers”) 

configuration during catalysis. The central oligomerization domains of ECR remain largely 

unchanged, while the peripheral catalytic domains move drastically to provide two sets of 

active site conformations, open‐ and closed‐form, upon binding of the NADPH cofactor alone 

or in the presence of substrates. This coordinated motion is enabled by a tight coupling of 

catalytic domains across the pairs of dimers. Structure based mutagenesis of the interface of 

the catalytic domains supports this notion and provides compelling evidence that 

synchronization across the pair of dimers is a crucial factor in K. setae ECR to achieve the high 

catalytic efficiency. Further kinetic experiments demonstrate that subunit communication 

within the pair of dimers is important to synchronize open‐ and closed‐states. Altogether, our 

data unveil a detailed picture of the dynamic structural organization and subunit 

synchronization of the ECR complexes, providing unprecedented insights into the functional 

organization of nature’s most efficient CO2‐fixing enzyme during catalysis. 

4.3. Results 
 

Apo ECR is a symmetric homotetramer, readily accessible for NADPH binding 
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We first determined the apo form of the ECR crystal structure from K. setae at 1.8 Å resolution 

by using synchrotron X‐ray crystallography at cryogenic temperature (Supplementary Table 

1). The asymmetric unit contains one homotetramer composed of four subunits arranged in a 

dimer of dimers geometry (“pair of dimers”) similar to those of the previously reported binary 

(PDB: 4Y0K) and ternary (PDB: 4A0S) ECR structures. Overall, the tetramer shows a non‐

crystallographic, close to D2 (dihedral) symmetry (Supplementary Figure S1, top right panel) 

with four conformationally identical subunits (Supplementary Figures S1&S2, RMSD = 0.1 Å). 

The tetrameric structure of K. setae ECR is further supported by size‐exclusion 

chromatography which showed that the apo enzyme eluted as a single peak at 205 kDa 

compared to the expected monomer molecular weight of 51.2 KDa corresponding to a 

functional complex of four subunits (Supplementary Figure S3). 

Each ECR subunit consists of two domains – a larger catalytic domain formed by residues 1‐

212 and 364‐445, and a smaller oligomerization domain formed by residues 212 to 363 

(Supplementary Figure S4). The oligomerization domain comprises a Rossmann fold8 with 

repeating αβ‐motifs that forms a 6‐stranded β‐sheet (β12 to β17). The 6‐stranded β‐sheets of 

two neighboring subunits are combined into one 12‐stranded β‐sheet, forming the core of one 

dimer, A/C or B/D. Two of these 12‐stranded β‐sheets then form the core of the tetrameric 

complex (Supplementary Figure S4).  

The catalytic domains of K. setae ECR are located at the periphery of the tetrameric complex. 

The active site of ECR is formed by helix 8 and surrounding loops at the interface with an 

adjacent subunit in the tetramer (Supplementary Figure S4). The active site cavities in the apo 

form are open and accessible for both the cofactors and substrates. 

NADPH binding induces ECR into a dimer of dimers with distinct open and closed form 

subunits 

To understand how cofactor binding affects the enzyme, we determined the crystal structure 

of the K. setae ECR‐NADPH binary complex at 2.4 Å resolution by using serial femtosecond X‐

ray crystallography (SFX) at ambient temperature (Figure 2, Supplementary Table 1)9‐12. The 

simple Fo‐Fc difference electron density map allowed us to unambiguously place NADPH 

molecules in all four subunits. NADPH binds with its adenine moiety in the oligomerization 

domain and spans the catalytic domain, where its nicotinamide moiety is located 

(Supplementary Figure S5).  
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Notably, binding of NADPH breaks the dihedral D2 symmetry observed in the apo‐form 

tetramer structure, while symmetry about the y‐axis is retained, resulting in a non‐

crystallographic, almost cyclic C2 symmetry (Supplementary Figure S1 bottom right). In the 

NADPH‐ECR binary complex, the four subunits of ECR differentiate into two forms (A & B and 

C & D), which are structurally distinct from each other (Supplementary Figure S1, RMSD = 0.5 

Å between A & B and C & D, 1.8 Å between A & C, A & D, B & C and B & D respectively) (Figure 

2a&b). The A & B subunits show cofactor‐binding pockets that are open, referred hereafter as 

“open‐form” state (Figure 2b). On the other hand, in the C & D subunits, the cofactor binding 

pocket is compressed inwards, which seals the NADPH cofactor within the catalytic domain, 

resulting in a “closed‐form” state (Figure 2b).   

The bulk of the NADPH cofactor is bound almost identically in the two closed‐form subunits, 

C & D (Figure 2d,e&f). However, the nicotinamide moiety adopts two alternate conformations 

in the two open‐form subunits A & B (Figure 2e&f), indicating a more flexible cofactor binding 

than in the closed‐form subunits (Figure 2d). Possible conformations of the NADPH cofactor 

in the open and closed binding cavities and its flexibility were studied with molecular dynamics 

(MD) simulations in a dimer of subunits A and C. In the closed‐form subunit C the cofactor 

kept its position in the binding site as observed in the X‐ray crystal structure. When we placed 

the NADPH cofactor in the same position in the open subunit A and performed similar MD 

simulations, NADPH left this initial confirmation in all three 200 ns trajectories and adopted 

various alternate conformations in the open cavity, including the two that were observed in 

our high‐resolution crystal structure (Supplementary Figure S6). These variable 

conformations in the open A subunit are allowed by a substrate binding pocket that is more 

than 5 Å wider than the closed C subunit (Figure 2c).  

In summary, binding of the NADPH cofactors to the apo enzyme induces the four subunits of 

the enzyme to differentiate into open‐ and closed‐form states in both dimers (Figure 2b) thus 

breaking the dihedral D2 symmetry to cyclic C2 symmetry. This coupled subunit 

rearrangement of K. setae ECR and the large active site differences within each pair of dimers 

suggest that catalysis is synchronized between the individual subunits of the complex, which 

will become clearer in the subsequent analysis sections below. 

Ternary complex supports half-site reactivity in ECR catalysis 



78 
 

We next attempted to determine the structure of the K. setae ECR ternary complex crystallized 

in the presence of spent cofactor NADP+ and the reaction product ethylmalonyl‐CoA. The 

structure of the ternary complex, however, indicated that the carboxylate group was lost 

during the crystallization process, which resulted in butyryl‐CoA, which is in line with the 

finding that ethylmalonyl‐CoA is unstable and tends to decarboxylate at the active site of ECR 

into butyryl‐CoA and CO2 over time2, 13 (Supplementary Figure S7). Numerous attempts of 

preserving ethylmalonyl‐CoA in the crystal structure proved to be extremely challenging and 

therefore we co‐crystallized ECR with butyryl‐CoA and NADPH and determined its structure at 

1.7 Å resolution (Figure 3). This structure revealed that two butyryl‐CoA molecules are bound 

at the active sites of the closed‐form subunits B & D. 

This ternary complex structure is overall very similar to the structure of ECR‐NADPH binary 

complex. It also displays the non‐crystallographic, pseudo C2 cyclic symmetry (Figure 3a and 

Supplementary Figure S1 bottom right panel) and comprises of open‐ and closed‐form 

subunits that overlay very well with the open‐ and closed‐form subunits of the ECR‐NADPH 

binary complex (Supplementary Figures S1&S2, RMSD = 0.1, 2.1 Å respectively). The NADPH 

cofactor appears bound to all active sites, however, only the closed‐form subunits B & D also 

contain the completely intact butyryl‐CoA thioester (Figure 3a&b). This strongly suggests that 

the closed‐form subunits represent the Michaelis complex in which substrate and cofactor are 

positioned for catalysis, while the open‐form subunits represent catalytically incompetent 

complexes that are in place to perform the next round of catalysis.  

ECR uses an elegant mechanism to align CoA‐ester for catalysis in the closed‐form subunit 

pairs. The active site of the closed‐form subunits is sealed by the collective motion of loops 

37‐44, 88‐94, 338‐350, and helices 6, 7 and 21 of the catalytic domain (Figure 3c), which 

creates multiple interactions of the protein with the CoA‐ester (Figure 3d,e&f). Notably, the 

CoA‐ester extends from the catalytic closed‐form domain into the neighboring open‐form 

subunit within the same dimer pair, where Arg352, and Tyr353 interact with the phosphate 

backbone of CoA. The CoA moiety stretches further into the neighboring open‐form subunit, 

where its adenosine tail interacts with a small binding pocket formed by three residues on the 

surface of the dimerization domain, Tyr328, Lys296, and Arg303 (Figure 3g).  

When we inspected the adenine binding pocket of the closed‐form subunits, we also observed 

electron density of adenine, indicating that the CoA‐ester was bound (Figure 3g right inset). 
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The electron density beyond the adenine ring, however, becomes disordered, suggesting that 

the part of the CoA molecule that extends into the active site of the neighboring open‐form 

subunit remains flexible, which is corroborated by the higher anisotropy of the CoA binding 

site (Figure 1c). Quantum mechanical/molecular mechanics (QM/MM) simulations on a dimer 

of subunits A and C were performed to further evaluate the flexibility of the substrate in the 

open‐ and closed‐form subunits. These simulations showed that the substrate residing in the 

closed subunit had significantly lower B‐factors than the simulated substrate in the open 

subunit (Supplementary Videos 1a-e, 2a-e). In the open subunit, the acyl moiety was found 

to have a high degree of flexibility within the active site (Supplementary Figure S8, 

Supplementary Videos 1&2). Taken together, both the crystallographic analyses and QM/MM 

simulations are agreeing with the idea that the closed‐, but not the open‐form subunits 

represent the catalytically competent subunits. Furthermore, the organization of the ternary 

K. setae ECR complex into catalytically competent and incompetent subunits, suggests that 

the enzyme operates with half‐site reactivity, in which active sites alternate during catalysis14–

16.  

Product release returns ECR back into a symmetric homotetramer  

Following catalysis, K. setae ECR has to release the product and oxidized cofactor. In order to 

understand the structural basis for this part of the catalytic cycle, the protein was co‐

crystallized with NADP+ and its structure was solved at 1.8 Å resolution. The enzyme 

transitioned back to the D2 symmetry of the apo enzyme, with four conformationally identical 

subunits (Supplementary Figures S1&S2) all containing bound NADP+ molecule (Figure 4a). 

Compared to the homotetrameric apo enzyme in which helix ⍺6 and loop 88‐93 of the catalytic 

domain stabilize the phosphate backbone of the NADP+ molecule(Figure 4b), the 

corresponding helix and loop  moved closer to each other (Figure 4a), similar to the ternary 

complex (Figure 3d), which leaves the homotetramer in an “all‐closed” state. Notably, while 

the NADP+ binding mode is comparable between the ternary complex and the complex with 

NADP+ alone, the B‐factors of the latter are larger than those in the ternary complexes (Figure 

1b), indicating that in the NADP+ bound enzyme the atoms become in general more mobile, 

which may be advantageous for discharging the oxidized, spent cofactor. The configuration of 

the nicotinamide group of NADP+ in the NADP+ bound structure is similar to those of the 

NADPH in the cofactor‐bound, closed form subunits (Figure 4c). 
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Swing motion of the peripheral catalytic domain during catalysis 

Comparison of the high‐resolution structures of apo, NADPH‐bound, NADPH/butyryl‐CoA‐

bound and NADP+‐bound K. setae tetrameric ECRs suggests that there are coordinated 

motions of the catalytic domains which are peripheral to the more rigid oligomerization 

domains (Supplementary videos 3 & 4). The apo‐form and NADP+‐bound form show 4 

equivalent subunits, while NADPH‐bound and NADPH/butyryl‐CoA‐bound forms divide into 

two groups of open‐ (i.e., catalytically incompetent) and closed‐form (i.e., catalytically 

competent) subunit pairs (Figure 1a). In order to understand how these global structural 

changes affect catalysis, a principal component analysis (PCA) was used to extract major 

structural differences among the four structures.  

The PCA revealed 8 major contributions based on their singular values (Supplementary Figure 

S9a) and the movement of the catalytic domains described above was the strongest, followed 

by other less significant structural changes. The 8 PCA components were used to analyze the 

contributions of PC1 to PC8 to the structural changes between each of the 4 structures and 

the average tetramer structure. This analysis showed that the first three PCA components, 

PC1‐3 (Supplementary Videos 5a,b,&c), can explain more than 50% of the structural changes 

(Supplementary Videos 5d). PC1 shows that the peripheral catalytic domains are coupled and 

swing up and down on either side of the central oligomerization domains; PC2 shows that 

each of the catalytic domains moves away from its partner catalytic domain, and finally the 

catalytic domains undergo subtle tilt motions in PC3. The deviations of the NADPH‐bound and 

NADPH/butyryl‐CoA‐bound structures from the average structure is explained mainly by PC1, 

the NADP+‐bound form by PC2, and the apo form by PC3 (Supplementary Figure S9b).  

Communication between pairs of dimers promotes catalysis 

Given the coordinated motions of the peripheral catalytic domains during the catalysis, how 

is catalysis synchronized across the enzyme complex? One intriguing aspect of the ECR 

tetramer structures is that the catalytic domains share a common interface of 1636 Å2 

between the pairs of dimers (between the catalytic domains of A and D, and those of B and C, 

Figure 5a&b) suggesting that they move together as rigid bodies. A comparison of the overall 

domain movements between the apo‐form and NADPH/product‐bound ternary complex 

shows that the enzyme tetramer changes from the homotetrameric apo state to the open and 

closed‐form subunit dimer pairs (Figure 5a). Upon binding of CoA and NADPH, neighboring 
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catalytic domains rotate, which couples the widening of one active site with the compression 

of the other active site across the pair of dimers (Figure 5a). Thus, it seems to be a direct 

consequence of the rigid structure of the inter‐catalytic domain interface that the enzyme will 

adopt two distinct conformational states in each dimer when it becomes catalytically active. 

What are the molecular determinants that synchronize catalysis across the pair of 

open/closed form dimers? The inter‐catalytic domain interface is mostly hydrophobic, but also 

features some electrostatic interactions (Figure 5b). Most notable are Asn218 of one subunit 

of one dimer that forms a hydrogen bond to Asn157 of the adjacent subunit of the other 

dimer, as well as Glu151 of one subunit of one dimer that forms hydrogen bonds to the main 

chain nitrogen of Asn133 (and/or Ala134) of the neighboring subunit of the other dimer 

(Figure 5b). Multiple sequence alignment showed that Glu151, Ans218 and Asn157 are highly 

conserved in ECRs from primary (i.e., central carbon) metabolism, which show faster 

CO2‐fixation kinetics (average kcat 28 s‐1), but not in ECRs from secondary metabolism (Figure 

5c), raising an interesting question about their roles in catalysis (average kcat
 1.2 s‐1). 

Mutation of these residues, that are more than 20 Å away from the active site, dramatically 

affected the kinetic parameters of K. setae ECR (Table 1). In the E151D variant, the kcat value 

was fivefold decreased, demonstrating that weakening the interaction of catalytic domains 

has profound effects on the catalytic rate of the enzyme. Mutations that targeted the 

asparagine interaction network showed also strong effects on the catalytic rate, but did 

additionally affect KM of substrate binding. Most notable were variants N218E single and 

E151D/N157E/N218E triple variants that decreased the kcat by more than 25‐ and 100‐fold, 

respectively, highlighting that communication at the interface of the catalytic domains of the 

pair of dimers is an important determinant of the catalytic rate in K. setae ECR. 

To exclude that the overall structure of the complex was not altered through these mutations, 

we used gel filtration, as well as native gel analysis to analyze the oligomerization state of the 

different enzyme variants (Supplementary Figure S3a). Gel filtration assays were performed 

under the same conditions as our kinetic measurements and showed that all mutant enzyme 

variants kept their tetrameric form. Only native gel analysis, which was performed under more 

disruptive conditions, showed slightly increase in the dimer and monomer fractions, indicating 

that interface interactions are weakened in these variants (Supplementary S3b). Overall, our 

mutational and kinetic data supports the hypothesis that synchronization of catalytic domains 
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strongly contributes to catalytic rate and is conferred through hydrogen‐bond network at the 

interface of the pair of dimers.  

Shared substrate binding within dimers is important for catalysis 

While our study on the interface between catalytic domains explained how communication is 

conferred between different dimers through the strong coupling of the two catalytic domains, 

each from two dimers (inter‐dimer interaction, Figure 5a), it did not explain how catalysis is 

synchronized between the open‐ and closed‐form subunits within the same dimer. We turned 

our attention back to the fact that CoA substrate binding is shared between the open‐ and 

closed‐form subunits in each dimer through the adenine binding pocket (intra‐dimer 

interaction, Figure 5a). 

To understand the role of substrate adenine binding in catalysis, we characterized the kinetics 

of different single, double and triple mutant variants of the adenine binding site (Figure 3g 

and Table 2). Mutations in the adenine binding pocket, and in particular of Arg303, strongly 

increased the KM of the CoA substrate as expected, but also decreased the apparent kcat of the 

enzyme by a factor of two to three. Notably, a comparable decrease in kcat was also observed 

in the wild‐type enzyme when we used crotonyl‐ panthetheine, a truncated substrate that 

lacks the adenosine moiety and cannot bind to the adenine binding pocket. This indicated that 

shared cofactor binding between neighboring subunit is important for efficient catalysis, but 

did not provide a conclusive answer, how catalysis is synchronized across the subunits.  

We noticed that the substrate adenine binding pocket is directly followed by a loop that 

carries a lysine residue (Lys332), which interacts with the active site of the neighboring 

subunit. Lys332 residue from the open‐form subunit engages in a hydrogen bonding network 

with the nicotine amide group of the NADPH cofactor bound to the closed‐form subunit 

through Gln165 and His365 of the neighboring subunit (Figure 5d). These interactions are not 

observed in the active site of the open‐form subunit (Figure 5d), raising the question whether 

the hydrogen bonding network connected to the adenine binding pocket might be important 

for catalysis. In K332A and Q165A variants, kcat was decreased two‐ to three‐fold (Table 2). 

When we tested these variants with crotonyl‐panthetheine, we saw much to our surprise that 

catalytic activity in the K332A variant was reduced by more than two orders of magnitude, 

leaving us with the suggestion that adenine binding together with the loop carrying Lys332 

are important to synchronize catalysis between the two subunits within the dimer. Together 
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with the inter‐domain coupling, this intra‐dimer synchronization drive fast CO2‐fixation by K. 

setae ECR. 

4.4. Discussion 

Our structural studies of K. setae ECR revealed unprecedented details on the functional 

organization of nature’s most efficient and fastest CO2‐fixing enzyme. During catalysis, the 

enzyme complex differentiates into distinct functional subunits. Binding of NADPH cofactor 

and substrates forces the homotetrameric apo enzyme into a dimer of dimers in which each 

dimer is constituted of an open‐ and a closed‐form subunits. In the closed‐form subunits the 

NADPH cofactor and CoA substrate are aligned with each other, suggesting that this is the 

catalytically competent state. The open‐form subunits bind cofactor and the adenine rings of 

the substrates but the rest of the acyl‐CoA substrate remains flexible and invisible in the active 

site. Thus, the open‐subunit active sites seem to represent a catalytically incompetent state 

that is pre‐organized for a next round of catalysis. Altogether, this structural reorganization of 

ECR strongly supports the idea that the enzyme operates with “half‐site reactivity”, according 

to which catalysis is synchronized across the enzyme tetramer and alters between the open‐ 

and closed‐form subunits to increase the overall catalytic efficiency of the complex14‐17. 

Interaction of the catalytic domains of neighboring subunits is crucial for efficient catalysis in 

K. setae ECR. Especially important is the interaction of catalytic domains between the pairs of 

dimers. As soon as this interaction is disturbed, the catalytic rate of the enzyme is severely 

diminished. This observation is consistent with theoretical and experimental data on half‐site 

reactivity. Synchronization of the distant catalytic subunits can enhance the catalytic rate of 

enzymes several‐fold18, 19. Mutation of a single amino acid coupling the two catalytic sites of 

heptose isomerase GmhA reduced catalytic rate of GmhA to 6% of wild‐type activity20. 

Escherichia coli thymidylate synthase is another example for an enzyme showing half‐site 

reactivity21. Disturbing the interaction network in E. coli thymidylate synthase leads to a 400‐

fold decrease in kcat
22, 23, demonstrating that domain interactions are important factors in 

promoting enzyme catalysis24.  

Besides the inter‐dimer domain interaction, our study on ECR also suggests joint substrate‐

binding between neighboring subunits as another potentially important mechanism of fast 

synchronized catalysis. The binding of the adenine end of the CoA ester into a pocket in the 

neighboring subunit seems to be connected back via a hydrogen‐bonding network to the 



84 
 

active site of the subunit where the CoA ester originated. This provides the missing link of how 

catalysis might be synchronized between the open‐ and closed‐form subunits within one 

dimer. Taken together an attractive model of continuous turnover scheme emerges explaining 

the overall fast catalytic cycle of ECR; two consecutive reaction cycles alternate aided by the 

coupled inter‐dimer catalytic domain motions (Figure 5e). In the first cycle (right half of Figure 

5e), the open‐form subunits A and B receive two sets of substrate and cofactor molecules, 

while the closed subunits C and D finish the previous reaction cycle, and release the products 

and NADP+. As a result, the subunits A and B become closed and the subunits C and D switch 

to the open‐subunit state.  In the second cycle (left half of Figure 5e), subunits A and B perform 

the reaction and release the products and NADP+ becoming open subunits, and the C and D 

subunits switch to closed state by acquiring a new set of substrate and NADPH. 

While structural and biochemical data indicate that K. setae ECR achieves high catalytic rates 

by synchronizing active sites, this might not necessarily be true for other ECRs. A 

differentiation into dimers of dimers was not observed in NADPH‐bound or ternary structures 

of other ECRs so far (e.g., PDB: 4Y0K and 4A0S respectively, which share substantial amino 

acid identity) (Supplementary Figure S10). Another reason might be that not all ECRs might 

perform synchronized catalysis. Note that ECRs fall into two different classes. Primary ECRs 

that operate in central carbon metabolism and secondary ECRs that serve in secondary 

metabolism, where they provide extender units for the synthesis of polyketides. Whereas 

primary ECRs are under strong evolutionary pressure and show on average kcat values of 28 s‐

1 25, secondary ECRs are not selected for high catalytic rates, which is also reflected by the fact 

that they show an average kcat value of 1.2 s‐1 25. Thus, it might be tempting to speculate that 

secondary ECRs are not selected for high turnover rates during catalysis and thus might not 

display synchronized “half‐site reactivity”.  

In summary, this work provides the first overall picture of the organization of the ECR 

homotetrameric complex. The observation of the differentiation of the apo tetramer into 

open and closed form subunits upon binding of NADPH seemed to have been made possible 

by room temperature data collection using the XFEL beam at SACLA, highlighting the power 

of ambient temperature crystallography to study larger scale motions in macromolecular 

crystals26, 27. Further experiments using time‐resolved X‐ray crystallography at room 

temperature and mixing jets will be helpful to obtain a fully dynamic picture of the ECR 
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complex during catalysis, which will be important to fill the gaps in the mechanistic 

understanding of nature’s most efficient CO2‐fixing principle.   

 

Data Availability 

Coordinates of the four ECR structures have been deposited in the Protein Data Bank under 

accession codes, 6NA3 (apo), 6NA4 (Butryl‐CoA/NADPH bound), 6NA5 (NADP+ bound), and 

6NA6 (NADPH‐bound). 
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Table 1. Steady state analysis of K. setae ECR and variants targeting the catalytic domain interface between the 

pair of dimers. (Michaelis‐Menten curves of K. setae ECR and its variants are provided in Supplementary Figure 

S11) 

 Crotonyl-CoA NADPH CO2 

Enzyme KM (µM) Ki (µM) kcat (s-1) KM (µM) kcat (s-1) KM (µM) kcat (s-1) 

Wild‐type (WT) 21 ± 2 3650 ± 810 103 ± 3 37 ± 4 86 ± 2 90 ± 10 78 ± 2 

E151D 28 ± 2 1958 ± 251 20 ± 1 72 ± 11 17 ± 1 80 ± 10 21 ± 1 

N157E 515 ± 75 ‐ 22 ± 1 105 ±  27 17.1 ± 0.4 40 ± 6 14 ± 0.2 

N218E 272 ± 37 ‐ 3.7 ± 0.2 66 ± 9 1.49 ± 0.06 630 ± 70 5.6 ± 0.2 

E151DN157EN218E 245 ± 25 ‐ 1.11 ± 0.04 26 ± 3 0.70 ± 0.02 440 ± 40 0.95 ± 0.03 

 

Table 2. Apparent Michaelis‐Menten parameters of K. setae ECR and variants targeting the adenine binding 

pocket and hydrogen binding network within the dimer as mean values ± standard error. (Michaelis‐Menten 

curves of K. setae ECR and its variants are provided in Supplementary Figure S11) 

 

 

 

 

 

 Crotonyl-CoA Crotonyl-Pantetheine 

Enzyme KM (µM) Ki (µM) kcat (s-1) KM (µM) kcat (s-1) 

Wild‐type (WT) 21 ± 2 3650 ± 810 103 ± 3 8658 ± 531 37 ± 1 

K296A 107 ± 11 ‐ 68 ± 2 ‐ ‐ 

Y328F 11 ± 2 4671 ± 1693 80 ± 3 ‐ ‐ 

R303K 702 ± 64 ‐ 87 ± 3 ‐ ‐ 

R303A 516 ± 55 ‐ 69 ± 3 2558 ± 769 16 ± 1 

R303V 334 ± 33 ‐ 31 ± 1 6930 ± 116 16 ± 1 

K296A/Y328F 192 ± 34 ‐ 39 ± 2 ‐ ‐ 

K296A/R303A/Y328F 2176 ± 280 ‐ 29 ± 2 7772 ± 106 42 ± 3 

K296A/R303K/Y328F 832 ± 138 ‐ 53 ± 2 ‐ ‐ 

K332A 451± 130 3507 ± 1809 39 ± 7 2983 ± 509 0.33 ± 0.02 

Q165A 27 ± 4 1873 ± 437 56 ± 3 5632 ± 521 8.5 ± 0.3 
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Figure 1: Structural organization of the Kitasatospora setae ECR complex. a. Oligomeric organization of K. setae 

ECR, as inferred from the crystal structures solved in this study. The homotetrameric apo enzyme differentiates 

into a dimer of dimers of open (circles with 45° wedges) and closed (full circles) subunits upon binding of NADPH 

cofactor. The enzyme remains a dimer of dimers in the butyryl‐CoA/NADPH‐ternary complex and returns back 

into a homotetrameric state after product release. b. Anisotropic B‐factors of the tetramer of the different ECR 

complexes solved in this study. c. Anisotropic B‐factors of the active site of the open and closed form subunits of 

the ternary complex. Cofactors and acyl‐CoA ester are shown as stick models in red and salmon, respectively. 
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Figure 2: Binding of NADPH results in global and local conformational changes in K. setae ECR. a. NADPH bound 

tetramer complex that is organized as dimer of dimers, a pair of closed (green) and open (orange) subunits and 

another pair containing closed (gray) and open (blue) subunits. b. The foreground dimer with open‐ (orange) and 

closed‐form (green) subunits rotated by 30 degrees from the view in Figure 2a. Each monomer is composed of a 

catalytic and an oligomerization domain. c. Comparison of the putative substrate binding sites between the open 

and closed‐form subunits. d. Surrounding residues and loops sealing NADPH in the closed‐form subunit. In panels 

d to f, simple 2FO‐FC density contoured at 1.5 sigma level is shown for NADPH within 3 Å from the molecule. e. 

Surrounding residues and loops composing the looser binding of NADPH in the open‐form subunit. f. Alternate 

binding of NADPH in the open‐form subunit (gray subunit in a.), viewed in the same direction as in e.). 
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Figure 3: Structure of the ternary ECR complex. a. ECR tetramer in complex with NADPH and butyryl‐CoA 

organized as dimer of dimers, the foreground dimer with one closed subunit (green) with NADPH and butyryl‐

CoA and open (orange) subunit containing NADPH, and another pair in the background with one closed (gray) 

and open (blue) subunits.  b. The foreground dimer with closed (green) and open (orange) subunits, rotated by 

30 degrees from the view in Figure 3a. Butyryl‐CoA and NADPH atoms are represented as spheres. c. Comparison 

of the product binding site between the open and closed‐form subunits. d. Cartoon and stick representation of 

the closed‐form subunit active site. In panels d to g, simple 2FO‐FC density contoured at 1.5 sigma level is shown 

for butyryl‐CoA, or potion thereof, and NADPH within 3 Å from the molecules. e. Cartoon and stick representation 

of the open‐form subunit active site. f. Superposition of the open‐form subunit onto the closed‐form subunit 

with stick representation of the residues surrounding butyryl‐CoA. g. Comparison of the butyryl‐CoA binding sites 

between open and closed‐form subunits with electron density of the bound butyryl‐CoA and NADPH at the active 

site of the closed subunit (green) and the adenine ring of butyryl‐CoA at the active site of the open subunit (only 

the adenine ring electron density is visible). Left inset: the adenine binding pocket of the open‐form subunit 

stabilizing the adenine ring of butyryl‐CoA that stretches into the adjacent closed‐form subunit. Right inset: the 

adenine binding pocket of the closed‐form subunit holding the adenine ring of butyryl‐CoA. Note that only the 

adenine ring of butyryl‐CoA is visible, while the rest of the molecule is disordered. In both cases, three residues 

of the adjacent subunits, Lys296, Arg303, and Tyr328 together hold the adenine ring. 
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Figure 4: NADP+ binding at the active site of the NADP+ bound tetramer. a. The simple 2FO‐FC electron density 

map of NADP+ bound in the K. setae ECR tetramer complex. Helix α6 and loop 88‐93 (top left) close the binding 

site of NADP+. b. Cofactor binding site in the apo form subunit of the K. setae ECR tetramer. Helix α6 and loop 

88‐93 have moved away from the loop containing Ser342 and Tyr345, resulting in an open binding pocket for 

NADPH or NADP+. The two loops forming the cofactor binding pocket are wider apart by about 2 Å: the distances 

between the Cα atoms of Pro90 and Tyr345 are 13.1 Å in the open‐form (blue) compared to 11.2 Å in the closed 

form (green). c. Superposition of the NADP+ molecules from all four subunits of the tetramer (red) with the open 

(purple) and closed‐form (cyan) subunits of the NADPH/butyryl‐CoA bound ternary complex. 
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Figure 5. Inter- and intra-dimer communications drive fast CO2 fixation by K. setae ECR.  a. Two distinct sets of 

communications: inter‐dimer interactions between the catalytic domains from two dimers (purple arrows) and 

intra‐dimer communication between the open and closed subunits within each dimer (brown arrows). b. Inter‐

dimer catalytic domain interface and positions of selected amino acids that were mutated in this study in order 

to affect the interface between the two catalytic domains (open‐form subunit in orange and closed form subunit 

in gray). The right panel shows the mutual H‐bonding interaction between Asn218 and Asn157 from open and 

closed form subunits and H‐bonding between Glu151 and N‐atom from protein backbone. c. Alignment of ECR 

protein sequences from the primary (upper row) and the secondary (lower row) metabolism represented as 

sequence logos. Numbering of residues, above first row, is according to their position in K. setae ECR. d. 

Communication between the closed (green) and open (orange) subunits across the two dimers of K. setae ECR. 

In the closed conformation, the contacts between NADPH‐His365‐Glu165 and Lys332 of the adjacent open 

monomer allow for the correct intra‐dimer communication. In the open conformation, the communication 

network is compromised as indicated by the increased distances between the amino acid sidechains that cause 

the incorrect positioning of the nicotinamide ring of NADPH. e. Continuous turnover scheme in which the open‐

form subunits (A and B) become closed by releasing the product and NADP+ while, concurrently, the closed 

subunits (C and D) bind the substrate and NADPH thus becoming closed subunits. These alternating cycles are 

aided by the swing motions of tightly coupled catalytic subunits like two blades swinging synchronously.  

 

4.5. Materials and Methods 
 

Amplification & cloning of K. setae ECR  

The K. setae enoyl‐CoA carboxylase reductase (ECR) coding sequence was codon optimized using the 

E. coli codon frequency table, and synthesis constraints were removed using the Build Optimization 

Software Tools (BOOST) developed by DOE‐Joint Genome Institute (JGI), USA28. Overlapping synthetic 

DNA fragments were obtained from Thermo Fisher Scientific and cloned into the NdeI site of the 

pET16b vector (Novagen) by using the Gibson Assembly HiFi kit (SGI‐DNA). The resulted colonies were 

sequence verified by the PacBio sequencing platform. 

 

Site-directed Mutagenesis of K. setae ECR  

Mutations are introduced by the similar methods as described in the previous section. Two fragments 

flanking the mutagenesis site were amplified and the Gibson assembly was performed as described 

above. Below is the FASTA sequence of the ECR protein and list of primers that we used to introduce 

catalytic site single mutations Y328F, R303K, and K296A, and the triple mutant K296A/R303K/Y328F. 

 

tr|E4N096|E4N096_KITSK Putative crotonyl-CoA reductase OS= Kitasatospora setae  

MQEILDAILSGDAASADYAALALPESYRAVTLHKGEERMFDGLASRDKDPRKSLHLDDVP 

LPELGPGEALVAVMASSVNYNTVWSSIFEPVSTFGFLERYGRLSPLTARHDLPYHVLGSD 
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LAGVVLRTGAGVNAWKPGDEVVAHCLSVELESPDGHNDTMMDPEQRIWGFETNFGGLAQL 

ALVKTNQLLPKPKHLTWEEAASPGLVNSTAYRQLVSRNGAGLKQGDNVLIWGASGGLGSY 

ATQYALAGGATPICVVSSPRKADICRAMGAEAIIDRSAEGYRFWKDEHHQDPREWKRLGG 

KIREFTGGEDVDIVFEHPGRETFGASVYVTRKGGTIVTCASTSGYMHQYDNRYLWMSLKR 

IVGSHFANYREAFEANRLVAKGKIHPTLSKVYALEETGQAALDVHHNKHQGKVGVLCLAP 

REGLGVTDPELRSKHLTKINAFRNV 

  

Single mutations were introduced with the following *_F&*_R primer pairs: 

E4N096_DMP_064_Y328F_F: catccgtgttcgtgacccgcaaaggtggcactatcg 

E4N096_DMP_064_Y328F_R: gcgggtcacgaacacggatgcaccgaaggtttcgcg 

E4N096_DMP_064_R303K_F: ggtggcaaaatcaaggaattcaccggtggggaagacgtgg 

E4N096_DMP_064_R303K_R: aattccttgattttgccacccagacgtttccactcacg 

E4N096_DMP_064_K296A_F: agtgggcccgtctgggtggcaaaatccgtgaattcaccg 

E4N096_DMP_064_K296A_R: ccagacgggcccactcacgcgggtcttggtggtgttcg 

 

The double and triple mutants were introduced in the following order: By using Y328F plasmid we 

introduced R303K mutation to generate double mutant Y328F/R303K 

For the triple mutant we used the following special primers pair 

E4N096_DMP_064_triple_F: agtgggcccgtctgggtggcaaaatcaaggaattcaccg 

E4N096_DMP_064_triple_R: ccagacgggcccactcacgcgggtcttggtggtgttcg 

Mutagenesis of K. setae ECR subunit interface residues  

Two fragments franking the mutagenesis site were amplified and the Gibson assembly was performed 

as with the list of primers that we used to introduce various combinations of subunit interface single 

mutations N157E, N218E, E151D, E151R, E151K, E151L, E151I 

Seven single mutants were introduced with the following *_F&*_R primer pairs: 

ECR_N157E_F: ccggacggtcacgaagacactatgatggacccagagcagc 
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ECR_N157E_R: catcatagtgtcttcgtgaccgtccggagattccagttcaacagacagg 

ECR_N218E_F: gctggtgtctcgtgaaggcgccggcctgaaacagggtgacaacg 

ECR_N218E_R: caggccggcgccttcacgagacaccagctgacgataagcggtagagttaacg 

ECR_E151D_F: gtctgttgaactggattctccggacggtcacaacgacactatgatgg 

ECR_E151D_R: gaccgtccggagaatccagttcaacagacaggcagtgagcaaccacctcgtcacc 

ECR_E151R_F: gtctgttgaactgaggtctccggacggtcacaacgacactatgatgg 

ECR_E151R_R: gaccgtccggagacctcagttcaacagacaggcagtgagcaaccacctcgtcacc 

ECR_E151K_F: gtctgttgaactgaagtctccggacggtcacaacgacactatgatgg 

ECR_E151K_R: gaccgtccggagacttcagttcaacagacaggcagtgagcaaccacctcgtcacc 

ECR_E151L_F: gtctgttgaactgctgtctccggacggtcacaacgacactatgatgg 

ECR_E151L_R: gaccgtccggagacagcagttcaacagacaggcagtgagcaaccacctcgtcacc 

ECR_E151I_F: gtctgttgaactgatctctccggacggtcacaacgacactatgatgg 

ECR_E151I_R: gaccgtccggagagatcagttcaacagacaggcagtgagcaaccacctcgtcacc 

Five triple mutants were obtained with the following *_F&*_R primer pairs respectively (third 

mutation varies):  

1) Asn157Glu, Asn218Glu, Glu151Asp 

            ECR_N157E_N218E_E151D_F: 

ctgtctgttgaactggattctccggacggtcacgaagacactatgatggacccagagcagcgcatctgg 

ECR_N157E_N218E_E151D_R: 

gtccatcatagtgtcttcgtgaccgtccggagaatccagttcaacagacaggcagtgagcaaccacctcg 

2) Asn157Glu, Asn218Glu, Glu151Arg 

ECR_N157E_N218E_E151R_F: 

            ctgtctgttgaactgaggtctccggacggtcacgaagacactatgatggacccagagcagcgcatctgg 

ECR_N157E_N218E_E151R_R: 

            gtccatcatagtgtcttcgtgaccgtccggagacctcagttcaacagacaggcagtgagcaaccacctcg 

3) Asn157Glu, Asn218Glu, Glu151Lys 

            ECR_N157E_N218E_E151K_F: 
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ctgtctgttgaactgaagtctccggacggtcacgaagacactatgatggacccagagcagcgcatctgg 

            ECR_N157E_N218E_E151K_R:  

            gtccatcatagtgtcttcgtgaccgtccggagacttcagttcaacagacaggcagtgagcaaccacctcg 

4) Asn157Glu, Asn218Glu, Glu151Leu 

            ECR_N157E_N218E_E151L_F: 

            ctgtctgttgaactgctgtctccggacggtcacgaagacactatgatggacccagagcagcgcatctgg 

            ECR_N157E_N218E_E151L_R: 

            gtccatcatagtgtcttcgtgaccgtccggagacagcagttcaacagacaggcagtgagcaaccacctcg 

5) Asn157Glu, Asn218Glu, Glu151Ile 

            ECR_N157E_N218E_E151I_F: 

            ctgtctgttgaactgatctctccggacggtcacgaagacactatgatggacccagagcagcgcatctgg 

            ECR_N157E_N218E_E151I_R: 

            gtccatcatagtgtcttcgtgaccgtccggagagatcagttcaacagacaggcagtgagcaaccacctcg 

Mutagenesis of Adenine binding residues and intra-dimer communication residues 

 

Variants of the K. Setae ECR were generated with the QuikChange® Site‐Directed Mutagenesis Kit 

(Stratagene, La Jolla, USA) using 60 ng of template plasmid and the following forward and reverse 

primer pairs: 

 

Mutation Forward Primer Reverse Primer  

R303A CTGGGTGGCAAAATCGCTGAATTCACCG

GTG 

CTGGGTGGCAAAATCGCTGAATTCACCGG

TG 

R303V CTGGGTGGCAAAATCGTGGAATTCACCG

GTGGG 

CTGGGTGGCAAAATCGTGGAATTCACCGG

TGGG 

K332A GTACGTGACCCGCGCAGGTGGCACTATC GTACGTGACCCGCGCAGGTGGCACTATC 

Q165A CACTATGATGGACCCAGAGGCACGCATC

TGGGGCTTCGAAAC 

CACTATGATGGACCCAGAGGCACGCATCT

GGGGCTTCGAAAC 
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Cell lysis, protein purification, and characterization 

The cells were harvested by centrifugation (3000 rpm, 30 min) and the cell pellet was pooled. The 

pellet was resuspended in a lysis buffer containing 50 mm Tris‐HCl pH 8.5, 1 M NaCl, 5% glycerol 

supplemented with 100µl Triton x100 per 100ml of final buffer volume (Sigma‐Aldrich). The suspension 

was sonicated at 50% amplitude for 30 seconds three times. Immediately after the lysis, the suspension 

was ultra‐centrifuged at 33,000 rpm for 40 minutes at 4°C. 

The soluble fraction was pooled and was applied to a 10 ml Ni‐NTA column and purified using an AKTA 

prime FPLC setup. The column was washed with 2 column volumes of HisA loading buffer (50 mM Tris‐

HCl pH 8.5, 300 mM NaCl, 10 mM imidazole) for equilibration. Preliminary attempts of His‐tag 

purification were unsuccessful since the protein would precipitate out of solution during application 

to the column. This was remedied by adding 1 M L‐proline (Sigma‐Aldrich) to the lysis and HisB elution 

buffers to ensure the protein remains soluble. The soluble portion was then applied to Ni‐NTA column, 

and then eluted using HisB elution buffer containing 50 mM Tris‐HCl pH 8.5, 300 mM NaCl, 500 mM 

imidazole. The eluted fractions were collected on a fraction collector, and their purities were analyzed 

by SDS‐PAGE, and pure fractions were pooled and concentrated to 10 mg/ml using MilliPore Amicon 

Ultra 30KDa molecular‐weight cutoff concentrators. 

Determination of the oligomeric state of KsCcr 

Oligomeric state of K. setae ECR was determined by analytical size‐exclusion chromatography. 260 µl 

containing 500 µg of purified protein were injected into a pre‐equilibrated S200 INCREASE 10‐300GL 

(GE Healthcare) column. Runs were performed using a 100 mM KH2PO4 pH=8.0 buffer at a flow of 0.75 

ml/min. Protein size was determined by comparing the obtained retention volumes (RV) with a Gel 

filtration standard protein mixture (BioRad).  

 

Protein RV (mL) MW (kDa) 

K. setae ECR WT 12.98 205.1 

K. setae ECR E151D 12.97 202.8 

K. setae ECR N157E 13.00 199.1 

K. setae ECR N218E 13.01 197.7 

K. setae ECR E151DN157E N218E 12.92 207.5 

Gel filtration standard   

Thyroglobulin 9.45 670 
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Gamma‐globulin 12.65 158 

Ovalbumin 15.52 44 

Myoglobin 17.30 17 

 

Spectrophotometric Enzyme assays 

Assays were performed on a Cary‐60 UV/Vis spectrophotometer (Agilent) at 30°C using quartz cuvettes 

(1 or 10 mm path length; Hellma). Reactions contained 20 µg/ml carbonic anhydrase and were 

performed in 100 mM K2HPO4 pH = 8.0. Kinetic parameters for one substrate were determined by 

varying its concentration while the others were kept constant at 10 times their KM value. Reaction 

procedure was monitored by following the oxidation of NADPH at 365 nm (εNADPH,365nm = 3.33 M‐1 cm‐1). 

Each concentration was measured in triplicates and the obtained curves were fit using GraphPad Prism 

8. Hyperbolic curves were fit to the Michaelis‐Menten equation to obtain apparent kcat and KM values. 

For mutants revealing substrate inhibition, the data was fit to v0= (VMax [S])/(KM+ [S] ((1+[S])/Ki)).  

Chemical Synthesis of CoA-esters 

Crotonic Anhydride, Carbonic anhydrase from bovine erythrocytes, 1,1‐Carbonyldiimidazole (CDI) and 

4‐dimethylaminopyridine (DMAP) were purchased from Sigma Aldrich AG, Coenzyme A trilithium from 

Roche Diagnostics, NADPH Na4 (98%) and pyridine from Carl Roth GmbH. Solvents and salts were all 

analytical grade or better. Crotonyl‐CoA was synthesized as previously reported2. Briefly, 200 mg of 

CoA trilithium salt were dissolved in 4 ml of 0.4 M KHCO3 and stirred on ice for 45 min. After addition 

of 64 μl of crotonic anhydride the reaction procedure was tested by mixing 5 μl of reaction mixture 

with 20 μl of an aqueous solution of DTNB (5,5'‐dithio‐bis‐[2‐nitrobenzoic acid]). Crotonyl‐CoA was 

purified by Preparative RFLC/MS  over a Gemini 10 μm NX‐C18 110 Å, 100 x 21.2 mm, AXIA packed 

column (Phenomenex) using a methanol gradient from 5% to 35% over 15 min with 25 mM ammonium 

formate pH = 8.1 (Buffer 8.1) as the aqueous phase. Fractions containing the product were pooled, 

lyophilized and stored at ‐20°C. 

Synthesis of crotonyl‐pantetheine (3) was performed according to scheme 1 as previously reported29. 
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Scheme 1: Reaction conditions for the synthesis of crotonyl‐pantetheine. 

 

Pantetheine 1 (0.50 g, 1.57 mmol), DMAP (0.02 g, 0.19 mmol) and crotonic anhydride (0.50 ml, 3.37 

mmol) in pyridine (12.5 ml) were stirred for 15 h at 23° C then 1 h at 50 °C. Pyridine was removed under 

reduced pressure and the product dissolved in saturated aqueous NaHCO3 (1 ml) and water (1 ml). The 

aqueous phase was extracted with CH2Cl2 (3x 5 ml), dried over MgSO4, filtered and the solvent removed 

under reduced pressure. The obtained product was purified over FC (SiO2; EtOAc/hexane, 2:3 → EtOAc) 

to afford 2. 2 then stirred in Water/EtOH/FA, 1:1:1 for 30 min at 23 °C. After completion the solution 

was lyophilized, the solid dissolved in 0.5 % aqueous TFA and then purified with HPLC (C18; 25mM 

Ammonium formate pH = 8.1/MeOH, 5% → 95%) and lyophilized to yield 3 as a transparent thick oil. 

For use in assays, the compound was resuspended in water and stored at ‐20°C if not used. 

 

Analysis of Ethylmalonyl-CoA stability 

Reactions to measure the stability of ethylmalonyl‐CoA under crystallization conditions were 

performed in 200 mM TrisHCl pH = 7.5, 20% Polyacrylic acid sodium salt 5100 at 19°C.  Reactions 

contained 600 µM Ethylmalonyl‐CoA, NADP+ µM and 1 µM KsECR WT. Samples were quenched at 

different time points using 50% formic acid and spinned at 17’000 g for 10 min to precipitate the 

protein. The reaction was diluted 10 times into 5% methanol/Buffer 8.1 and analyzed by UHPLC over 

a Sonoma C18(2), 3 µm 100 Å, 100 x 2.1 mm using a 5 to 45% methanol gradient over 14.5 min. 

Crystallization of K.setae ECR complexes 

72‐well sitting‐drop crystallization trays (Terasaki) were set up and screened against a library of various 

crystallization conditions (Molecular Dimensions, Hampton). Each crystallization well contained 0.77 

µl of 10 mg/ml K. setae ECR protein kept in 500 mM Imidazole, 300mM NaCl, 1M proline and TRIS‐HCl 

pH 8.5 mixed with 0.77 µL of the various crystallization buffers. Each well was sealed with 16.6 µL of 
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100% paraffin oil (Hampton Research) to slow the crystallization process. Crystals of apo ECR protein 

were observed in various morphologies after 24 hours of incubation. The initial crystallization 

conditions were from various MIDAS, Crystal Screen, and PGA‐LM screening conditions (Molecular 

Dimensions, Hampton Research). The apo ECR was crystallied from a solution containing 100 mM TRIS 

pH 8.0 and 20% w/v poly (acrylic acid sodium salt) 5100 and resulted in 30‐micron plate‐like crystals. 

It is important to note that all structures were solved using this condition as basis, with addition 

reagents as needed. The binary and ternary ECR complexes were co‐crystallized with final 

concentration of 5 mM of each respective ligand and cofactor with a protein concentration of 10 

mg/ml. Alternative crystallization conditions were used either to obtain larger crystals for higher 

resolution synchrotron structures or higher microcrystal density for SFX experiments. For the 

crystallization of K. setae ECR‐butyrylCoA‐NADPH ternary complex, the crystallization condition 

contained 17% w/v PEG 10000, 100 mM BisTris‐HCl pH 7.5, 100 mM ammonium acetate and resulted 

in 50‐micron plate‐like crystals. For K. setae ECR‐NADP+ binary complex, the crystallization solution 

contained 0.2 M ammonium formate, 10%  (w/v) polyvinylpyrrolidone, 20% (w/v) PEG 4000 and 

resulted in 50‐micron plate‐like crystals. No further seeding was required for any of the synchrotron 

structures, and crystals were harvested after 30 minutes incubation with 30% (v/v) glycerol as a 

cryoprotectant. For the SFX experiments, neither of the synchrotron crystallization conditions of 

crystals would be sufficient due to size limitations and an optimal crystal density of 109 to 1011 

crystals/ml could not be obtained. To test various crystal conditions, a batch method was employed 

with equal parts of protein and crystal condition to see if increased crystal densities could be achieved 

in 15 mL Corning conical falcon tubes. Initial tests were total volume of 1 ml (0.5 ml 10 mg/ml protein 

and 0.5 ml crystal condition) and incubated for 48 hours.  From the tubes with crystals present, the 1 

ml crystal slurry was used to seed a 10 ml total crystallization solution. The best crystals were obtained 

in final 10 ml sample solution consisted of the 1 ml seed crystal slurry solution, 4.5 ml of 10 mg/ml 

protein solution and 4.5 ml of crystallization buffer containing 0.03M Magnesium chloride 

hexahydrate, 0.03M Calcium chloride dihydrate, 0.05M imidazole, 0.05M MES‐KOH pH 6.5, 15% v/v 

glycerol and 15% v/v PEG. Prior to sample injection, the crystals were filtered using a 20‐micron nylon 

mesh filter to separate the contaminant of large crystals from the smaller ones (Millipore). 

 

Data collection, processing and structure determination 

 

For the apo, ternary, and NADP+ binary complex structures, the crystals were flash cooled in liquid 

nitrogen. The apo (1.8 Å) and NADP+ complex (1.75 Å) diffraction datasets were collected at 100 K on 
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Beamline 23ID‐B, the Advanced Photon Source, Argonne National Laboratory (Argonne, Illinois, USA), 

equipped with an Eiger 16M detector. The butyryl‐CoA ternary complex (1.7 Å) diffraction dataset was 

collected at 100 K on Beamline 12‐2 at the Stanford Synchrotron Radiation Lightsource, SLAC National 

Accelerator Laboratory (Menlo Park, California, USA), equipped with a Dectris Pilatus 6M detector. The 

K. setae apo crystals belonged to the space group P212121 with unit cell dimensions a= 78.1 Å, b= 153.0 

Å, c= 202.7 Å and ⍺=β=γ=90°. The K. setae ternary complex crystals belonged to the space group P21 

with unit cell dimensions of a = 109.3 Å, b = 78.8 Å, c = 138.8 Å and ⍺=90°, β=108.1°, γ=90°. The K. 

setae NADP+ complex crystals belonged to the space group P212121 with unit cell dimensions of a = 

77.0 Å, b = 146.7 Å, c = 200.2 Å and ⍺=β= γ=90°. The K. setae ECR‐NADPH binary complex was 

determined using serial femtosecond X‐ray crystallography (SFX) at an X‐ray Free Electron Laser (XFEL) 

and was carried out on May 2017 at SACLA beamline 3 (Hyogo, Japan) (Proposal number 2017A8055)30. 

The SALCA beam had a pulse duration of 10 fs. The photon energy was 10kEV. The in air concentric 

Electrokinetic Microfluidic Sample Holder (coMESH) injector27 installed at DAPHNIS9 chamber was used 

to introduce samples suspended in mother liquor to the 10 fs‐long X‐ray pulses. X‐ray diffraction data 

was recorded by using the multiport CCD (MPCCD)31 detector. Data analysis was performed on the 

SACLA High Performance Computing Cluster consisting of several steps of parameter optimization. 

Diffraction images were collected with consistent experimental parameters (attenuation, 

transmission, detector distance etc.) during one 12‐hour shift. Crystal hits were identified with the 

program Cheetah32. The raw data were processed  with CrystFEL's indexamajig against given cell 

parameters of the K. setae NADPH (XFEL) complex microcrystals belonging to the space group P21 with 

unit cell dimensions of a = 109.8 Å, b = 78.1 Å, c = 138.9 Å and ⍺=90°, β=107.8°, γ=90°. 

 

The data processing for synchrotron structures were carried out using autoXDS and scaling was done 

with XSCALE33, 34. A set of 5% of randomly chosen reflections were set aside for the calculation of the 

free R factor (Rfree). The apo structure was solved using by PHENIX35, 36 and PHASER37, 38 molecular 

replacement program. Initial search model for molecular replacement is generated by using SWISS-

MODEL39 server against an unpublished CCR structure of a putative crotonyl‐CoA 

carboxylase/reductase (PDB code 4GI2, deposited by S. Weidenweber, T.J. Erb, U. Ermler). The K. setae 

apo structure served as the model for solving the binary and ternary‐complex synchrotron structures 

and also SFX structure. This resulted in four monomers in the asymmetric unit. The refinement was 

carried out using PHENIX refinement, utilizing automatically generated TLS groups based on the 

structure and ordered solvent to place the water molecules40, 41. Following the first round of 

refinement, the structure was manually adjusted to the electron density and waters were added using 

COOT at one sigma cutoff42, 43. The K. setae/NADP+ complex also shares the same space group as the 
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apo form, and was solved directly using Phenix molecular replacement35, 36. The NADP+ structure and 

restraint files were taken from previously solved CCR/NADP+ complexes (PDB: 4Y0K).  

 

MD and QM/MM studies of the open and closed subunits of ECR 

 

The flexibility of NADPH in the open and closed cavity were studied with a binary complex using the 

CHARMM22 force field44, 45 and parameters from Pavelites et al. for NADPH46 in 200 ns explicit solvent 

simulations (TIP3P) at 298 K and 1 atm with the AMBER16 software package47 (dt = 2 fs, tau = 1 ps, 

PME cutoff = 8.0 Å , SHAKE). Additionally, in three independent 200 ns simulations NADPH was 

positioned in the open cavity in the conformation observed in the closed cavity to test if these 

conformations are also visited in the open form.  

To study crotonyl‐CoA binding in the ternary complex we first extracted a dimer with one open‐ and 

another closed‐subunits (subunit A & C) from the butyryl‐CoA/NADPH ECR ternary X‐Ray structure. We 

added the unresolved butyryl‐CoA molecule to the open subunit aligning the protein chains from the 

closed subunit on the open one and shifting the butyryl‐CoA coordinates from the closed subunit. The 

butyryl‐CoA molecules were then modified to obtain the substrate crotonyl‐CoA deleting the two 

hydrogen atoms. The resulting dimer consisted of one closed and one open subunit each with NADPH  

and one crotonyl‐CoA molecule. The system was solvated and equilibrated (500ps NVT, 5ns NPT, 100ns 

NVT) as described above and substrate and NADPH were restrained to their initial configuration to 

relax the protein and the solvent. From these equilibrated configurations five structures were 

randomly extracted to study the behavior of the cofactor and substrate molecules. Five trajectories of 

2 ns each for the closed and open cavity were performed with the QM/MM method using the DFTB3 

Hamiltonian48 and the 3ob parameter49, 50 set to describe NADPH and the crotonyl fragment.  

An electrostatic embedding using the link atom method at 298K and 1 atm was used together with a 

time step of 1 fs in AMBER16 software package. Parameters for the CoA fragment of the substrate 

were taken from Aleksandrov et al51. 
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4.7. Supplementary Information  
 
Supplementary Table 1. Data collection and refinement statistics 

 
 K. setae ECR 

Apo form 
K. setae ECR  

NADP+ 
 Butyryl‐CoA 

K. setae ECR  
NADP+ 

K. setae ECR  
NADPH 
(XFEL) 

Data collection     
Space group P212121 P21 P212121 P21 
Cell dimensions��     
    a, b, c (Å) 78.1, 153.0, 202.7 109.3, 78.8, 138.8 77.0, 146.7, 200.2 109.8, 78.1, 138.9 

������������ ()  90.0, 90.0, 90.0 90.0, 108.1, 90.0 90.0, 90.0, 90.0 90.0, 107.8, 90.0 

Resolution (Å) 16.9 – 1.80 
(1.86 – 1.80) 

38.4 – 1.78 
 (1.84 – 1.78) 

47.7 – 1.75 
(1.81 – 1.75) 

31.8 – 2.34 
(2.42 – 2.34) 

Rsym or Rmerge 0.12 (2.38) 0.08 (0.78) 0.17 (3.26) ‐ 
Rsplit ‐ ‐ ‐ 0.31 (1.36) 
I / �I 12.3 (1.56) 16.6 (2.07) 11.9 (0.89) 6.7 (0.74) 

Completeness (%) 100.0 (100.0) 98.8 (98.5) 96.5 (88.5) 100.0(100.0) 
Redundancy 6.14 6.67 6.21 129.2 
     
Refinement     

Resolution (Å) 16.93 – 1.80 
(2.42 – 2.34) 

38.34 – 1.78 
(1.81 – 1.78) 

47.69 – 1.75 
(1.82 – 1.75) 

31.75 – 2.34  
(2.42 – 2.34) 

No. reflections 223907 (18723) 227701 (16317) 220094 (24907) 93978 (9367) 

Rwork / Rfree 0.20/0.24 0.17/0.20 0.19/0.21 0.28/0.31 
No. atoms     
    Protein 13791 14067 13796 13796 
    Ligand/ion 45 349 192 192 
    Water 1369 1885 1749 587 
B‐factors     
    Protein 48.6 25.6 33.0 35.9 
    Ligand/ion 54.2 33.2 39.4 41.6 
    Water 48.2 35.3 37.3 37.1 
R.m.s. deviations     

    Bond lengths (Å) 0.010 0.006 0.007 0.015 

    Bond angles () 1.17 0.99 1.15 1.53 

*Single crystal used for all datasets except the XFEL NADPH dataset.  
**Values in parentheses are for highest‐resolution shell. 
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Supplementary Figure S1: Root‐mean‐squared deviations of the 4 subunits from the different ECR crystal 
structures. The C⍺ main chain atoms from each subunit were used for the alignments. The reported values in the 
left 4 tables are in Å. In the ternary complex, subunits A and B are open‐form subunits having only cofactors while 
C and D are closed‐form subunits which have the cofactors and butyryl‐CoA bound. Top right: the arrangement 
of the 4 subunits in the apo and NADP+ bound ECR with dihedral D2 symmetry, 3 two‐fold symmetry axes are 
shown with ovals and broken lines. Bottom right: the arrangement of the 4 subunits in the NADPH and butyryl‐
CoA/NADPH bound ECR, with vertical cyclic C2 axis shown by a set of oval and broken line. The viewing angles of 
these two are the same as in Figures 2a and 3a. 

 

Chain RMSD (Å)

A/B 0.11

A/C 0.08

A/D 0.11

B/C 0.11

B/D 0.08

C/D 0.08

AB

C D

Chain RMSD (Å)

A/B 0.50

A/C 1.84

A/D 1.78

B/C 1.74

B/D 1.70

C/D 0.52

Chain RMSD (Å)

A/B 0.10

A/C 2.04

A/D 2.06

B/C 2.07

B/D 2.04

C/D 0.08

Chain RMSD (Å)

A/B 0.18

A/C 0.70

A/D 0.25

B/C 0.85

B/D 0.35

C/D 0.49

Apo NADPH complex

ECR + NADPH + 
Butyryl-CoA

NADP+ complex

D

B

C

A



107 
 

 
Supplementary Figure S2: This figure shows the disparity among subunits to reveal the broken symmetry. The 
left‐hand side shows the various rotations that were used to test the symmetry. The right‐hand side graphs the 
RMSD values of the post‐rotation aligned with the reference position against each residue. The rotation axes are 
color coded as follows: x‐axis = purple, y‐axis = Red, z‐axis = cyan. 
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Supplementary Figure S3: A) Size‐exclusion chromatography of K. setae ECR WT and variants. The WT protein 
and its variants elute at the same retention volume confirming the expected size of the protein. B) Blue native 
PAGE of K. setae ECR wildtype and variants. Oligomeric states according to numbering 1: tetramer 2: dimer 3: 
monomer. 



109 
 

 
 
Supplementary Figure S4: Topology diagrams of both a monomer and a dimer which shows the central β‐sheet 
network. A) The monomeric representation shows the disparity between the flexible loops of the catalytic 
domain and the rigid Rossmann fold in the oligomerization domain. B) This dimer representation shows how the 
12 β‐strand Rossmann fold network is formed which links the two subunits. The active site is also highlighted to 
show that is on the edge of the catalytic domain. 
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Supplementary Figure S5: A.) The NADPH spans from the adenine ring which is stabilized by the oligomerization 
domain to the catalytic domain, where the nicotinamide group is located. B.) The conserved stabilization of 
NADPH between the open and closed‐form subunits is from Arg276 and Glu321. C.) The electrostatic surface of 
the co‐factor binding pocket in the closed‐form subunit. D.) The electrostatic surface of the co‐factor binding 
pocket in the open‐form subunit. E.) The conformational disparity between the open and closed‐form subunits 
from two view angles, rotated 180°. 
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Supplementary Figure S6: Comparison between snapshots of molecular dynamics simulations (blue) and crystal 
structures (purple) of the binary complex in the closed and open subunits. For the closed subunits (a, b) the two 
predominant conformations sampled by NADPH fit very close to the crystal one. For the open subunits, the larger 
binding pocket allows the sampling of a wider range of conformations (d,f) including states similar to the one in 
the X‐Ray structure (c,e). 
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Supplementary Figure S7: Stability of ethylmalonyl‐CoA stability measured over time at 19°C. The trace 
represented by blue triangles is the only condition in which ethylmalonyl‐CoA is depleted over time. The enzyme 
catalyzed decarboxylation of ethylmalonyl‐CoA to butyryl‐CoA and CO2 is the cause for the observed 
disappearance of ethylmalonyl‐CoA. “E” corresponds to 1 µM K. setae ECR wt in the reaction mixture.  
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Supplementary Figure S8: QM/MM simulations of the substrate crotonyl‐CoA and NADPH at the active sites. a. 
The differential flexibility of the Crotonyl‐CoA substrate is reflected in the atomic fluctuations obtained from the 
dynamics. A. Range of B‐factors (in Å2) estimated from the squared atomic fluctuations (RMSF) and weighted by 
(8/3)π2. b. Crotonyl‐CoA molecule flexibility as modelled and simulated in the open subunit. c. Crotonyl‐CoA 
molecule in the closed. The color reflects the estimated B‐factor of each atom from low (blue) to high (red). (See 
also Supplementary Videos 1&2) 
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Supplementary Figure S9: Principal Component Analysis shows coupled motions of the catalytic domains to 
create alternating open and closed subunits.  a. Singular values of the PCA components are plotted, showing the 
first component is the major contributor to the overall structural change. b. Contributions of PC1 to PC3 to the 
deviations of the NADPH‐bound and NADPH/butyryl‐CoA‐bound structures from the average structure. See 
Supplementary Videos 5 showing a morphing movie showing the structural changes between the apo form and 
ternary complex, and three most significant PCA motions. 
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Supplementary Figure S10: The sequence alignment between two primary ECRs: K. setae & M. metallidurans, 
and two secondary ECRs: B. ambifaria & CinF from S. collinus. Two ECRs use crotonyl‐CoA as their substrate: K. 
setae and B. ambifaria, while the others use octenoyl‐CoA: CinF and M. metallidurans. The boxes in pink 
represent the residues which interact with NADP+/NADPH. The residues in orange represent the residues which 
interact with the bound CoA. The residues in salmon represent the residues involved in substrate specificity. The 
residues in yellow represent the novel adenine ring CoA binding pocket discovered in the K.setae ECR. The 
residue in black (Asn81) represents the residue in question for stabilizing the CO2 molecule for reductive 
carboxylation. 
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Supplementary Figure S11: Steady state parameters of K. seate ECR and its variants. The data 
are summarized in table 1 and table 2.  
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In vivo directed evolution of ECRs 
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5.1. Abstract  
 

Enoyl-CoA carboxylases/reductases (ECRs) are the fastest carboxylases known to date and 

represent a good model enzyme for the understanding of carboxylation chemistry. ECRs are 

found in primary metabolism (primary ECRs) operating in the ethylmalonyl-CoA pathway 

(EMCP) and in secondary metabolism (secondary ECRs) where they generate precursors for 

natural products. Previous studies established the catalytic parameters and the structural 

basis for substrate specificity, which are distinctive for the two subfamilies. Here we 

developed an in vivo selection method to convert a secondary ECR from Burkholderia 

ambifaria, to an enzyme with primary ECR kinetic parameters. The turnover number of the 

evolved ECR (2.evo D3) increased 4-fold compared to the wildtype (WT) was able to 

complement growth Methylobacterium extorquens strain lacking the native ECR by 1.24-

fold increase in growth rate. The accumulated mutations during three directed evolution 

cycles, are located distant form the active site and represent previously unknown structural 

hotspots in ECRs. Our work validates the hypothesis that strong selective pressure in 

primary metabolic pathways acts as a driving force to shape the kinetic parameters of 

enzymes. 

5.2. Introduction 
 

Carbon fixation is the process by which enzymes known as carboxylases utilize inorganic 

carbon, in the form of gaseous CO2, and incorporate it into biomass. The enzyme Ribulose 1,5‐

bisphosphate carboxylase/oxygenase (RuBisCO) found in plants and bacteria is responsible for 

fixing 400 Gt of carbon per year1. Nature’s CO2‐fixing catalysts are of great interest because 

they possess the ability of utilizing atmospheric CO2 under mild conditions. Knowledge of the 

underlying catalytic principles of carbon fixation is essential for the development of efficient 

carbon capture strategies to reduce the amount of atmospheric CO2.  

Compared to RuBisCO, reductive carboxylases from the enoyl‐CoA carboxylase/reductase 

(ECR) family are faster and specific for CO2
2. The ECR family can be divided into two subfamilies 

based on the physiological role of the enzyme. ECRs operate in primary metabolism (primary 

ECRs), namely in the ethylmalonyl‐CoA pathway (EMCP) which is used for the assimilation of 

C2 units in many proteo‐ and actinobacteria3. In this pathway, they catalyze the NADPH‐
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dependent reductive carboxylation of crotonyl‐CoA to (2S)‐ethylmalonyl‐CoA. These ECRs are 

limited to their physiological substrate crotonyl‐CoA and are thus called crotonyl‐CoA 

carboxylases/reductases (Ccrs). The ccr gene is usually very close to the ethylmalonyl‐CoA 

mutase (ecm) gene, which is responsible for the successive reaction in the EMCP4. In 

secondary metabolism, ECRs (secondary ECRs) catalyze the reductive carboxylation of a large 

variety of enoyl‐CoAs. The alkylmalonyl‐thioesters products represent extender units for the 

biosynthesis of natural products5. The ecr gene is often directly associated with the polyketide 

synthase (PKSs) or nonribosomal peptide synthetases (NRPSs) gene clusters6‐8.  

The high turnover rates, the specificity for CO2 and their occurrence in different metabolic 

contexts make ECRs interesting case study for the evolution within an enzyme family. A kinetic 

study on the ECR enzyme family revealed that members of each subfamily display a distinct 

set of kinetic properties9. Primary ECRs are fast and specific for their substrates whereas 

secondary ECRs are slower and promiscuous. The findings could be rationalized based on the 

physiological role of the ECRs. Primary ECRs need to sustain a high flux of metabolites through 

the EMCP and therefore need to be fast and specific. Secondary ECRs are slower because the 

production of secondary metabolites, such as antibiotics, is not a frequent necessity and 

therefore there is no selective pressure to achieve high turnover rates. It has therefore been 

hypothesized that the evolutionary pressure exerted on enzymes shapes their kinetic 

parameters in a way to optimize their function within metabolic pathways10. In this regard, 

the previously described accuracy‐rate tradeoff property that enzymes display11 was 

confirmed for the ECR enzyme family in vitro 12. In the light of this, we sought of developing 

an in vivo directed evolution system to improve kinetic parameters of a slow ECR variant.  

Using an in vivo selection method in the proteobacterium Methylobacterium extorquens we 

show that a secondary ECR from Burkholderia ambifaria (here termed D3) can be evolved into 

an enzyme with improved kinetic parameters similar to primary ECRs. A gene library of D3 was 

expressed in the M. extorquens Δccr strain and selected for growth on methanol. The evolved 

triple mutant (2.evo D3) has a 4‐fold increased kcat compared to the wild type (WT) enzyme 

and is able to complement growth on methanol in the M. extorquens Δccr strain. The 

mutations are located far from the active site and occurred on solvent exposed patches of the 

protein and at the interface between monomers. Characterization of 2.evo D3 revealed that 

the thermal stability of the enzyme was unaffected. Steady state analysis of the carboxylation 
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half‐reaction revealed an increased kcat value compared to the WT. This study shows that the 

increased selection pressure exerted on ECRs in the EMC pathway represents a strong driving 

force towards increased catalytic rates.  
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5.3. Results 
 

Gene library generation and selection of evolved variants 

The directed evolution approach consisted of iterative steps of secondary ecr library 

generation followed by screening of evolved variants after growth on methanol. M. 

extorquens is a facultative methylotroph, which is able to grow on methanol 13. The library 

was then transformed into the M.extorquens he sole source of energy and carbon. We 

therefore used the M.extorquens Δccr strain, which is dependent on a functional variant of 

Ccr in the EMCP for growth on methanol. The ecr gene library generated by epPCR and the 

product was cloned into the pTE103 vector Δccr strain and transformants were selected for 

growth on plates supplemented with methanol. Colonies typically appeared after 7 days of 

incubation at 30 °C. Colonies of 1‐2 mm diameter were picked, plasmids isolated and 

sequenced (SI Fig. S1).  

Steady state analysis reveals improved turnover number for evolved D3 variants 

For each of the three rounds of evolution the obtained Ccrs were expressed, purified and 

kinetically characterized. The variant with the highest kcat value each round was chosen for 

the following round of evolution. Kinetic parameters are summarized in table 1. D3 WT 

displays a kcat of 18 ± 1 s‐1 and apparent KM values of 7 ± 1 µM (crotonyl‐CoA), 64 ± 5 µM 

(NADPH) and 20 ± 4 µM (CO2), respectively. Substrate inhibition for crotonyl‐CoA was 

observed at a Ki of 741 ± 108 µM. The first round of evolution yielded the K289EL381M double 

mutant, which displayed a kcat of 24 ± 2 s‐1. The KM and Ki for crotonyl‐CoA did not increase 

significantly, whereas the KM for NADPH and CO2 more than doubled. This double mutant was 

employed as the template for the successive round of epPCR. The fastest D3 variant obtained 

in this round accumulated the R325P mutation, and had a turnover number of 78 ± 8 s‐1. The 

KM for CO2 in the second evolution was comparable to the WT and the KM for NADPH was 

similar to 1.evo D3. In an effort to increase the already 5‐fold improved kcat of 2.evo D3 we 

performed another round of directed evolution with this variant. The obtained variants either 

had the the same amino acid sequence as 2.evo D3 or did not show improvement in kcat. The 

fastest variant isolated, 3.evo D3 had a kcat of 60 ± 3 s‐1. The KM for crotonyl‐CoA, NADPH and 

CO2 were not affected and the increased Ki of 2803 ± 749 µM is likely the reason for the 

decrease in kcat compared to 2.evo D3.   
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Table 1: Apparent steady state parameters for crotonyl‐CoA, NADPH and CO2 for D3 WT and evolved variants. 

 Crotonyl-CoA NADPH CO2 

D3 variant kcat (s-1) KM (µM) Ki (µM) KM (µM) KM (µM) 

WT 18 ± 1 7 ± 1 741 ± 108 64 ± 5 20 ± 4 

1.evo D3 24± 2 10 ± 1 828 ± 193 147 ± 28 42 ± 7 

2.evo D3 78 ± 8 87 ± 17 619 ± 143 150 ± 27 19 ± 3 

3.evo D3 60 ± 3 55 ± 6 2803 ± 749 95 ± 10 40 ± 7 

SI Appendix, Fig. S2 shows the Michaelis‐Menten graphs of the original data a Calculated from bicarbonate concentration at 
pH = 8. 

D3 variants complement growth on methanol 

To confirm that the improved D3 variants could sustain the metabolic flux through the EMCP 

under our selection condtions we tested the evolved D3 variants for their ability to 

complement growth on methanol in M. extorquens AM1 ∆ccr. To determine the growth rate 

and doubling time the M. extorquens AM1 ∆ccr strain was transformed with the pTE103 vector 

containing either D3 WT, the evolved D3 variants or the native M. extorquens AM1 Ccr. The 

strain expressing D3 WT had a doubling time of 6.67 h and a growth rate of 0.1 h‐1 whereas 

M. extorquens AM1 containing the native Ccr had a growth rate of 0.13 h‐1 and doubling time 

of 5.43 h (Table 2). Complementation with evolved D3 variants improved growth on methanol 

in comparison with D3 WT. Growth rate for the strain containing the 1.evo D3 and the 3.evo 

D3 variant was 0.12 h‐1, thus increased 20 % in comparison with the WT, while the doubling 

time decreased by 13 %. With 30 % increase in growth rate and a doubling time of 5.23 h the 

strain with 2.evo D3 complemented growth on methanol with similar values for doubling time 

and growth rate as measured for M. extorquens AM1 Ccr (Table 2). 

Table 2: M. extorquens AM1 ∆ccr growth rate µmax and doubling time complemented with D3 variants during 
exponential growth. 

 D3 WT 1.evo D3 2.evo D3 3.evo D3 M. ext. AM1 Ccr 

µmax (h‐1) 0.10 0.12 0.13 0.12 0.13 

doubling time (h) 6.67 5.77 5.23 5.87 5.43 

Growth curves for M. extorquens AM1 ∆ccr with D3 WT or 2.evo D3 reached a maximal OD600 

of approximately 6 in the stationary phase, but the onset of the exponential phase was 

delayed in the M. extorquens AM1 ∆ccr complemented with D3 WT in comparison to 2.evo D3 

(Figure 1). The delayed onset of the exponential phase was also observed for 
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complementation with 1.evo D3, 3.evo D3 and the native Ccr of M. extorquens AM1. The 

maximal OD600 reached by the latter cultures varied between the biological replicates 

(Figure 1) due to the natural variance typically occurring in biological replicates. In conclusion, 

2.evo D3 expressed M. extorquens AM1 ∆ccr was able to complement growth on methanol 

better than 1.evo D3 and 3.evo D3 and displayed similar growth parameters to M. extorquens 

complemented with its native Ccr. 

 

Figure 1: Growth curves for M. extorquens AM1 ∆ccr complemented with D3 WT, its evolved variants or native Ccr. 

Characterization of 2.evo D3 

The second round of evolution yielded the D3 K289EL381MR325P triple mutant which 

displayed an increased turnover number compared to D3 WT. Position of these mutations in 

the crystal structure of D3 (unpublished) are shown in figure 2. The K289E mutation is found 

in an α‐helix, while mutations L381M and R325P are found in a loop (Figure 2). All mutations 

occurred on solvent exposed parts of the protein and distant from the active site. In the 

functional tetrameric unit of D3, R325P of chain A is located in close proximity to chain D. 

While Arg325 is 3.7 Å away from Leu147 of chain D, Pro 325, in the triple mutant, is 3.6 Å away 

from L147 (Figure 2 B and C). Thus, the R325P mutation changes the distances to the adjacent 

chain D and seems to influence the chains interaction of D3 in the tetrameric organization.  
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Figure 2: Structure of D3 WT with labeled mutations introduced by directed evolution. A ECR monomer with active site 
residues (deep blue) and NADP+ (magenta). B,C Close up of residues R325 of D3 WT and P325 of 2.evo D3 respectively with 
indicated distance to L147 of chain D (grey). 

To test the contribution of each mutation to the observed increased turnover of 2.evo D3, the 

possible combinations of single and double mutants of D3 were generated by site directed 

mutagenesis. We determined the kinetic parameters and performed product analysis to 

determine the ratio of carboxylated (ethylmalonyl‐CoA) to reduced (butyryl‐CoA) product 

(C/H). Single mutants D3 K289E, D3 L381M and D3 R325P all displayed increased kcat values 

compared to D3 WT (Table 3). The R325P mutation had the biggest impact on kcat among single 

mutants, which increased to 35 ± 3 s‐1 compared to D3 WT. Double mutants showed both 

beneficial and deleterious effects on catalysis depending on the combination of mutations. 

Double mutant D3 K289ER381P had a turnover number similar to the WT, thus decreased 

turnover number in comparison to the single mutants. The highest impact on turnover among 

double mutants was observed in D3 R325PL381M. With a 3‐fold improved turnover number 

of 52 ± 2 s‐1, compared to D3 WT, this mutant is the closest to the 2.evo D3 triple mutant in 

terms of kcat (Table 1).  

The KM values for the substrates differed between mutants. The apparent KM for crotonyl‐CoA 

increased along with the turnover number leaving the catalytic efficiency similar. The KM of 

NADPH was not changed significantly in all mutants compared to the WT except for the L381M 

mutant that displayed a KM value of 186 ± 19 µM. Double and triple mutants containing 

mutation L381M increased the NADPH KM about 2‐fold. KM values for CO2 where mostly 

unaffected, only double mutant R325L381M showed a 5‐fold increase compared to the WT. 
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The data indicates that all three mutations had additive effects on the turnover number of 

2.evo D3 variant. 

Table 3: Apparent steady state parameters for crotonyl‐CoA, NADPH and CO2, kcat/KM and carboxylation to 

reduction product ratio for D3 WT and its evolved variants. 

 
Crotonyl-CoA NADPH CO2   

D3 variant kcat (s-1) KM (µM) Ki (µM) KM (µM) aKM (µM) 

kcat/KM 

(s-1 µM-1)b C/H (%) 

WT 18 ± 1 7 ± 1 741 ± 108 64 ± 5 20 ± 4 1.36 100 

K289E 23 ± 1 13.4 ± 1.8 927 ± 186 65 ± 7 21 ± 2 0.625 100 

L381M 29 ± 2 17.4 ± 2.5 1805 ± 597 186 ± 19 21 ± 2 0.618 100 

R325P 35 ± 3 32 ± 6 1460 ± 613 55 ± 6 15 ± 2 0.618 94 

K289EL381M 24 ± 2 10.4 ± 1 828 ± 193 147 ± 28 42 ± 7 1.174 100 

K289ER325P 18 ± 1 42 ± 5 ‐ 57 ± 6 22 ± 2 0.328 100 

R325PL381M 52 ± 2 81.7 ± 9 ‐ 88 ± 10 100 ± 16 0.334 100 

K289EL381MR325P 64 ± 5 43 ± 8 694 ± 146 113 ± 13 49 ± 3 1.025 100 

SI Appendix, Fig. S2 shows the Michaelis‐Menten graphs of the original data a Calculated from bicarbonate concentration at 
pH = 8. b Calculated with respect to crotonyl‐CoA. 

All mutants where able to carboxylate more than 94 % of the starting crotonyl‐CoA to 

ethylmalonyl‐CoA indicating that the observed changes in kinetic parameters did not affect 

the carboxylation efficiency.  

To determine if the increased turnover number was due to improved protein stability, melting 

curves for D3 WT and the evolved variants were measured by following changes in tryptophan 

fluorescence upon thermal denaturation and protein unfolding (Figure 4). D3 WT, 1.evo D3 

and 2.evo D3 showed similar progress curves and inflection points, indicating that the 

unfolding occurred at the same temperature. The differences in peak height were due to 

slightly differing protein concentrations in each measurement.  
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We then set out to determine the kinetic parameters of the carboxylation half reaction by 

starting the assay using the C2‐adduct, a reaction intermediate previously described to 

accumulate in ECRs 14. Steady state analysis revealed that the carboxylation half reaction is 

faster in 2.evo D3 than the WT (Table 4) and that this is the cause for the improved overall 

turnover rate. 

Table 4: Steady‐state parameters of the carboxylation half reaction. 

Enzyme kcat (s-1) KM, C2 (µM) 

D3 WT 2.8 ± 0.1 26 ± 3 

2.evo D3 8.6 ± 0.4 190 ± 18 

 

 

 

 

 

 

 

 

 

 

  

A B

Figure 4: Melting curves with derivation of the tryptophan fluorescence against the temperature for D3 WT and variants. 

Samples with 0.1 µg/µL purified protein were measured in 100 mM K2HPO4 buffer pH = 8. 
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5.4. Discussion 
 

With an in vivo directed evolution method, we were able to evolve a secondary ECR into a 

primary one. The obtained triple mutant 2.evo D3 displayed a 4‐fold increased kcat compared 

to D3 WT and was able to complement growth on methanol when expressed in M. extorquens 

AM1 Δccr. The accumulated mutations during directed evolution rounds occurred on within 

loops (R325P, L318M), on a solvent exposed α‐helix (K298E) and were located distant form 

the active site. During directed evolution cycles mutations often accumulate far away from 

the enzymatic active site15, 16. These mutations may influence the protein solubility and/or the 

kinetic parameters of the enzyme. In the case 2.evo D3 the kinetic parameters were improved 

and we showed that this was due to an increased rate of the carboxylation half‐reaction rather 

than the increased protein stability. The introduced mutation might have a beneficial impact 

on the overall flexibility of the protein, which might lead to a faster release rate of the product. 

The R325P mutation specifically, is located at the interface between two monomers and might 

influence the interactions between them and regulate the flexibility of the protein during 

catalysis.  

Previous studies revealed that the difference in activity between primary an secondary ECRs 

is due to inherent accuracy rate tradeoff observed in enzymes. This was observed also in the 

ECR subfamily and was ascribed to the residues, which determine the substrate promiscuity 

in ECR. Not surprisingly, our evolved variants did not mutate residues in the active site because 

the specificity for crotonyl‐CoA is essential to operate in the EMCP. Therefore, in contrast to 

what was previously reported12, our case shows how residues not involved with substrate 

promiscuity are also important structural determinants for ECR catalysis. As these residues are 

well conserved throughout the ECR family they might represent structural hotspots that were 

not modified during evolutionary divergence of the family. 

Characterization of 2.evo D3 did not improve its stability. We showed that an increased rate 

in the carboxylation half‐reaction was the reason for the observed overall improvement in 

turnover. Over the rounds of directed evolution, the increase in turnover number was 

accompanied by an increase in KM, which implies that the catalytic efficiency of the enzyme 

was not affected. Our system, in the current state, was able to improve only kcat as we showed 
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in the steady state analysis. The KM value could not be improved likely because the substrate 

and cofactor amounts were always saturating in the intracellular environment. 

We showed that the selective pressure exerted on an ECR operating in the EMCP is the driving 

force for the evolution towards an improved turnover rate.  
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5.5. Materials and methods  
 

Cloning and Mutagenesis 

The error prone PCR (epPCR) performed with the GeneMorph II Random Mutagenesis Kit 

(Agilent Technologies, USA). The ECR genes were amplified with Mutazyme II polymerase by 

using Gibson primers G_pTE103/100_D3 fwd and rev (Table 2). The epPCR was performed 

with 20 ng and 100 ng template DNA and reaction conditions according to table 1.  

Table 1: Reaction conditions for epPCR. 

Step Temperature [°C] Time [min] 

Initial denaturation 95 2.0 

Denaturation 95 0.5 

Annealing 55 0.5 

Elongation 72 2.0 

Final elongation 72 10.0 

 

Enzyme variants were generated with the QuikChange® Site‐Directed Mutagenesis Kit 

(Stratagene, La Jolla, USA) using primer pairs listed (table 2). 

Table 1: Primers used for the Gibson assembly and Quikchange mutagenesis. . 

Primer Sequence (5’-3’) 
G_pTE103_D3_fwd AGATCTTGACTAGTCCTGCAGGTACGTTTAACTTTAAGAAGGAGATATAC 

G_pTE103_D3_rev AAACGACGGCCAGTGAATTAGGTACAACTCAGCTTCCTTTCGG 

G_pTE100_D3_fwd TCACATGGAATTCTGTACATGTTTAACTTTAAGAAGGAGATATAC 

G_pTE100_D3_rev ACGGCCAGTGAATTAGGTACCAACTCAGCTTCCTTTCG 

pTE951_D3_R325P_fwd CTACGTTGTGAAACCCGGTGGTATGGTTG 

pTE951_D3_R325P_rev CAACCATACCACCGGGTTTCACAACGTAG 

pTE951_D3_K289E_fwd CTTATGTTGACGCAGTAAAAGAATTCGGTAAAGCTATCTGGG 

pTE951_D3_K289E_rev CCCAGATAGCTTTACCGAATTCTTTTACTGCGTCAACATAAG 

pTE951_D3_L381M_fwd CAAAATCGACCCGTGCATGTCCGAAGTATTCC 

pTE951_D3_L381M_rev GGAATACTTCGGACATGCACGGGTCGATTTTG 

 

Restriction and assembly 

DNA restriction was performed by incubation of 2 µg vector DNA with appropriate restriction 

enzymes (NEB, USA; Thermo Scientific, USA) and buffer (FastDigest; Thermo Scientific, USA) 

at 37°C. The vector and insert DNA was applied in a 3:1 molar ratio to the 2x Gibson Assembly® 

Master Mix (NEB, USA) and was assembled in two steps. The first proceeds at 50 °C for 30 min 

and the second for 10 min at 70 °C. 

Selection of improved D3 variants 

 30 cycles 
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Selection was performed by transforming the ECR library into the M. extorquens Δccr strain17 

and plating it on Minimal media plates supplied with methanol. Plates were incubated at 

30°C and checked daily for colonies.  

Determination of growth curves 

Bacterial growth over the course of time was monitored using TECAN Infinite® 200 PRO plate 

reader systems (Tecan Trading AG, Switzerland) with TC‐Plate 96 Well, Standard, F (Sarstedt, 

Germany). Every well contained 180 µL culture with starting OD600 of 0.1. The determination 

of OD600 in 10 min intervals was preceded by 530 s shaking. The measurement was continued 

until the cultures reached the stationary phase at OD600 4‐6. The analysis and fitting of growth 

data was done using the Prism 7 software (GraphPad Software, USA) and the growth equation 

Y=Y0*exp(k*X). 

Protein expression and purification 

His‐tagged proteins were expressed in E. coli BL21 DE3. The TB media complemented with salt 

buffer and antibiotics was inoculated with overnight grown cultures. After incubation at 37 °C 

to OD600 0.5‐0.8 cells were cooled for 20 min at 20 °C. Protein expression was induced by 

adding 500 µM IPTG (β‐Isopropyl‐thiogalactopyranoside) and occurred overnight at 110 rpm 

at 22 °C. During the following procedures cells were kept at 4°C. Cells were harvested for 20 

min at 4000 g at 4°C. 2 mL lysis buffer (buffer A: 500 mM NaCl, 50 mM Tris‐HCl, pH 7.5, 1 M L‐

proline) per gram of pellet was used to resuspend the cells. 10 mg/mL DNAse I (Roche 

Diagnostics, Switzerland) and 50 mM MgCl2 were added to the suspension. Cells were lysed 

using a LM10 Microfluidizer™ at 16000 Psi or sonication for 2 times with 1 min resting time at 

4 °C in between. The lysate was clarified at 45000 g for 45 min at 4 °C and the supernatant 

subsequently filtered with a 45 µm filter. Purification of the His‐tagged protein was performed 

on a buffer A‐ equilibrated 1 mL Ni‐Sepharose Fast Flow Column (HiTrapTM, FF, GE Life Science, 

USA) on an ÄKTA Start FPLC system (GE Life Science, USA). The filtered supernatant was 

applied onto the column with 1 mL/min. The purification progress was followed at 280 nm. 

After washing steps with buffer A containing first 0 % and afterwards 12 % elution buffer B 

(500 mM NaCl, 50 mM Tris‐HCl, pH 7.5, 500 mM imidazole, 1 M L‐proline) protein was eluted 

in 1 mL fractions by applying 100 % buffer B. Fractions containing the protein were desalted 

into 125 mM NaCl, 12.5 mM Tris pH =7.5, 1 M L‐proline. L‐proline was added to the purification 

buffers to increase the solubility and yield of the proteins18. The protein was concentrated 
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using Amicon® Ultra 4 mL Filters (Merck, Germany), snap‐frozen in N2 (l) and stored at ‐80 °C 

or stored at ‐20 °C, after addition of 50 % glycerol. 

Chemicals 

Crotonic Anhydride and Carbonic anhydrase from bovine erythrocytes were purchased from 

Sigma Aldrich AG, Coenzyme A trilithium salt and DNAse I from Roche Diagnostics, NADPH Na4 

(98%) from Carl Roth GmbH. Solvents and salts were all analytical grade or better. Crotonyl‐

CoA was synthesized as previously reported19. The C2‐ene adduct was synthesized as 

previously reported14 

Enzyme assays 

Enzyme assays were performed on an Agilent Cary 60 UV‐Vis (Agilent Technology, USA) in 

quartz cuvettes (1 or 10 mm path length, Hellma Analytics, Germany) by following NADPH 

consumption at 340 nm (εNADPH, 340nm= 6.22 mM‐1 cm‐1) or 365 nm (εNADPH, 365nm= 3.3 mM‐1 cm‐

1). Steady state parameters were determined by varying the concentration of one substrate 

while keeping the other constant at 10 times its KM value. The enzyme assays contained 100 

mM K2HPO4 buffer pH = 8 and 2 µg/mL carbonic anhydrase in 100 µL reaction volume and 

were started by addition of either crotonyl‐CoA or enzyme after 1 min incubation at 30 °C. 

Apparent kcat and KM values were obtained by fitting the data to the Michaelis‐Menten 

equitation  

V0 = Vmax ([S]/([S] + KM)). 

or 

V0 = (Vmax[S])/(KM+[S] ((1+[S])/Ki)) 

if substrate inhibition was observed. 

Analytical methods  

Purification of substrates was performed with preparative reverse phase HPLC‐MS (High‐

performance liquid chromatography‐mass spectrometry) with Gemini® 10 µm C18 110 °A, LC 

Column 50 x 21.2 mm (Phenomenex, USA) in an Agilent 1260 Infinity LC HPLC system. The 

column was equilibrated with 95 % 25 mM NH4HCO2, pH = 8.1 and 5 % MeOH for 2 min at 25 

mL/min. The MeOH concentration was raised from 5 % to 35 % over 15 min to elute the 
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substrate. In a final step, the column was washed with 95% MeOH for 2 min. The eluted 

compounds were collected and their mass confirmed by a coupled 6130 Quadrupole mass 

spectrometer. The fractions were pooled, frozen in N2 (l), lyophilized and stored at ‐80 °C. 

UHPLC (Ultra‐high‐performance liquid chromatography) was used to analyze the products of 

the enzyme assays with ECR D3 variants. Samples were prepared by addition of 50 % formic 

acid to quench the completed reaction and precipitation of protein at 17000 g for 10 min. The 

supernatant was either undiluted or diluted 5 times into 5% methanol, 95 % 25 mM NH4HCO2 

pH = 8.1 and analyzed using a Sonoma C18 column (100 x 2.1 mm, particle size 3 µm, 100 Å 

pore size, ES Industries). The compounds were separated with a MeOH gradient from 5 to 

90 % over 9 min. Quantification was performed by peak integration at 260 nm. Elution times 

of compounds were: ethylmalonyl‐CoA (2.5 min), crotonyl‐CoA (4.4 min) and butyryl‐CoA after 

(4.8 min).  

Protein folding and stability 

The thermal stability of enzymes was determined on a Prometheus NT.48 nanoDSF technology 

(NanoTemper Technologies, Germany). Protein concentrations of 1 µg/µL or 0.1 µg/µL in 1 M 

proline pH = 7.5 or 100 mM K2HPO4 buffer pH = 8 were applied in capillaries to the instrument. 

The samples were exposed to a temperature increase from 20 °C to 80 °C in 60 min, while 

measuring fluorescence at 330 and 350 nm. The melting temperature is calculated from the 

ratio of tryptophan emission shifts at the measured wavelength. 
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5.7. Supplementary Materials 
 

Supplementary Figure S1: Protein sequences of obtained D3 ECR variants after directed 

evolution cycles. Accumulated mutations are marked in red.  

Protein sequences after first round of directed evolution 

WT       1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.1     1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.2     1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.4     1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.7     1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.9     1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.10    1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.11    1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.12    1 MDSELMEVVEKNENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.13    1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTMEIVDVP 
 
 
WT      61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.1    61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGTNVKKW 
20.2    61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.4    61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.7    61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.9    61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.10   61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.11   61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.12   61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.13   61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
 
 
WT     121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.1   121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.2   121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.4   121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.7   121 KVGDEVVAHCSQVDGDDDECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.9   121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.10  121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.11  121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.12  121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.13  121 KVGDEVVVHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMLRPKH 
 
 
WT     181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.1   181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.2   181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.4   181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGIMAIQLAALAGARPVA 
20.7   181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.9   181 LTWAASACYNLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.10  181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.11  181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.12  181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.13  181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
 
 
WT     241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKKFGKAIWDALGE 
20.1   241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKKFGKAIWDALGE 
20.2   241 VVSDDSKAEFVKRLGAAGVINRSNFSCWGAPPPVDATNEYAAYVDALKKFGKAIWDALGE 
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20.4   241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKKFGKAIWDALGE 
20.7   241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKKFGKAIWDALGE 
20.9   241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKKFGKAIWDALGE 
20.10  241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKEFGKAIWDALGE 
20.11  241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKKFGKAIWDALGE 
20.12  241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKKFGKAIWDALGE 
20.13  241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKKFGKAIWDALGE 
 
 
WT     301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.1   301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.2   301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.4   301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.7   301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.9   301 RRDVDMVFEHPGRNTFAPSCYVVKRGGIVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.10  301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.11  301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMCQKRIQGSHFA 
20.12  301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.13  301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
 
 
WT     361 SLKEAAQANRLVMSGKIDPCLSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.1   361 SLKEAAQANRLVMSGKIDPCLSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.2   361 SLKEAAQANRLVMSGKIDPCLSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.4   361 SLKEAAQANRLVMSGKIDPCLSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.7   361 SLKEAAQANRLVMSGKIDPCLSEVFPWNRLPDAHAKIRTNQHLPGNMAVLVQASSRDDLD 
20.9   361 SLKEAAQANRLVMSGKIDPCLSEVFPWNRLPDAHAKIRANQHQPGNMAVLVQASSRDDLD 
20.10  361 SLKEAAQANRLVMSGKIDPCMSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.11  361 SLKEAAQANRLVMSGKIDPCLSEVFPWNCLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.12  361 SLKEAAQANRLVMSGKIDPCLSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.13  361 SLKEAAQANRLVMSGKIDPCLSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
 
 
WT     421 AARRH 
20.1   421 AARRH 
20.2   421 AARRH 
20.4   421 AARRH 
20.7   421 AARRH 
20.9   421 AARRH 
20.10  421 AARRH 
20.11  421 AARRH 
20.12  421 AARRH 
20.13  421 AARRH 

 

Protein sequences after second round of directed evolution. Mutations marked in green are 

those present in template used for ePCR 

WT       1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.1     1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.2     1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.3     1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.4     1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.5     1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.6     1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.8     1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.9     1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.10    1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
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20.11    1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRDNHGEPQHAFTKEIVDVP 
20.12    1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.13    1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.14    1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.15    1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
 
 
WT      61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.1    61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.2    61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.3    61 TLGPNDVLILVMAAGVNYNGIWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.4    61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.5    61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.6    61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.8    61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.9    61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.10   61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.11   61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGAKVKKW 
20.12   61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.13   61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.14   61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.15   61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
 
 
WT     121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.1   121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.2   121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.3   121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.4   121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTRGSFAQFACVQATQLMPRPKH 
20.5   121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.6   121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.8   121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACAQATQLMPRPKH 
20.9   121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.10  121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.11  121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.12  121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.13  121 KVGDEVVAHCSQVDGDDEECNGGDPILSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.14  121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.15  121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
 
 
WT     181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.1   181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.2   181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.3   181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.4   181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.5   181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGIMAIQLAALAGARPVA 
20.6   181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.8   181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.9   181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.10  181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.11  181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.12  181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.13  181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.14  181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.15  181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
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WT     241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKKFGKAIWDALGE 
20.1   241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKEFGKAIWDALGE 
20.2   241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKEFGKAIWDALGE 
20.3   241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVEATNEYAAYVDAVKEFGKAIWDALGE 
20.4   241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKEFGKAIWDALGE 
20.5   241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKEFGKAIWDALGE 
20.6   241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKEFGKAIWDALGE 
20.8   241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKEFGKAIWDALGE 
20.9   241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKEFGEAIWDALGE 
20.10  241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKEFGKAIWDALGE 
20.11  241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKEFGKAIWDALGE 
20.12  241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKEFGKAIWDALGE 
20.13  241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKEFGKAIWDALGE 
20.14  241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKEFGKAIWDALGE 
20.15  241 VVSDDSKAEFLKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKEFGKAIWDALGE 
 
 
WT     301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.1   301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.2   301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.3   301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.4   301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.5   301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.6   301 RRDVDMVFEHPGRNTFAPSCYIVKSGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.8   301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.9   301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.10  301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.11  301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.12  301 RRDVDMVFEHPGRNTFAPSCYVVKPGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.13  301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.14  301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.15  301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
 
 
WT     361 SLKEAAQANRLVMSGKIDPCLSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.1   361 SLKEAAQANRLVMSGKIDPCMSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.2   361 SLKEAAQANRLVMSGKIDPCMSEVFPWNRLPDAHAKFRANQHLPGNMAVLVQASSRDDLD 
20.3   361 SLKEAAQANRLVMSGKIDPCMSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.4   361 SLKEAAQANRLVMSGKIDPCMSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.5   361 SLKEAAQANRLVMSGKIDPCMSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.6   361 SLKEAAQANRLVMSGKIDPCMSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.8   361 SLKEAAQANRLVMSGKIDPCMSEVFPWNRLPDAHAKIRANQHLPGNTAVLVQASSRDDLD 
20.9   361 SLKEAAQANRLVMSGKIDPCMSEVFPWNSLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.10  361 SLKEAAQANRLVMSGKIDPCMSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.11  361 SLKEAAQANRLVMSGKIDPCMSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.12  361 SLKEAAQANRLVMSGKIDPCMSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.13  361 SLKEAAQANRLVMSGKIDPCMSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.14  361 SLKEAAQANRLVMSGKIDPCMSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.15  361 SLKEAAQANRLVMSGKIDPCMSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
 
 
WT     421 AARRH 
20.1   421 AARHH 
20.2   421 AARRH 
20.3   421 AARRH 
20.4   421 AARRH 
20.5   421 AARRH 
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20.6   421 AARRH 
20.8   421 AARRH 
20.9   421 AARRH 
20.10  421 AARRH 
20.11  421 AARRH 
20.12  421 AARRH 
20.13  421 AARRH 
20.14  421 AARRH 
20.15  421 AARRH 

 

Protein sequences after third round of directed evolution. Mutations marked in green are 

those present in template used for ePCR. 

WT       1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.3     1 MDSELMEVVEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.5     1 MDSELMEVIEKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.9     1 MDSELMEVVEKTENGQPELFNIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
20.10    1 MDSELMEVVKKTENGQPELFDIGCAIPLGVVPRTMHAWTIRRENHGEPQHAFTKEIVDVP 
 
 
WT      61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.3    61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.5    61 TLGPNDVLILVMAAGVNYNGIWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVEKW 
20.9    61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
20.10   61 TLGPNDVLILVMAAGVNYNGVWAALGQPFSVLDLHDDPYHITGSDASGIVWAVGANVKKW 
 
 
WT     121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.3   121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.5   121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.9   121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
20.10  121 KVGDEVVAHCSQVDGDDEECNGGDPMLSPSQRIWGYETTHGSFAQFACVQATQLMPRPKH 
 
 
WT     181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.3   181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.5   181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
20.9   181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMALQLAALAGARPVA 
20.10  181 LTWAASACYTLTLATAYRMLFGHKPHVLSPGQSVLVWGAAGGLGTMAIQLAALAGARPVA 
 
 
WT     241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKKFGKAIWDALGE 
20.3   241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKEFGKAIWDALGE 
20.5   241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKEFGKAIWDALGE 
20.9   241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKEFGKAIWDALGE 
20.10  241 VVSDDSKAEFVKRLGAVGVINRSNFSCWGAPPPVDATNEYAAYVDAVKEFGKAIWDALGE 
 
 
WT     301 RRDVDMVFEHPGRNTFAPSCYVVKRGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.3   301 RRDVDMVFEHPGRNTFAPSCYVVKPGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.5   301 RRDVDMVFEHPGRNTFAPSCYVVKPGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.9   301 RRDVDMVFEHPGRNTFAPSCYVVKPGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
20.10  301 RRDVDMVFEHPGRNTFAPSCYVVKPGGMVVFCAATSGYDLTCDARYVWMRQKRIQGSHFA 
 
 
WT     361 SLKEAAQANRLVMSGKIDPCLSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.3   361 SLKEAAQANRLVMSGKIDPCMSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.5   361 SLKEAAQANRLVMSGKIDPCMSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSCDDLD 
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20.9   361 SLKEVAQANRLVMSGKIDPCMSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
20.10  361 SLKEAAQANRLVMSGKIDPCMSEVFPWNRLPDAHAKIRANQHLPGNMAVLVQASSRDDLD 
 
 
WT     421 AARRH 
20.3   421 AARRH 
20.5   421 AARRH 
20.9   421 AARRH 
20.10  421 AARRH 
 
 

 

Supplementary Figure S1: Steady state parameters of ECR D3 and its variants. All reactions 

contained 50 mM NaHCO3 and 20 µg/ml of carbonic anhydrase and were performed in 100 

mM K2HPO4 pH = 8 at 30 °C. 
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Supplementary Figure S3: Melting curves with derivation of the tryptophan fluorescence against the 

temperature for selected D3 variants. Samples of 0.1 µg/µL purified protein were measured in 100 mM 

KH2PO4 pH = 8. Inflection points are listed in the inset table. 

 

D3 variant Inflection point

WT 50.9°C

K289E 51.0°C

R325P 50.9°C

K289ER325P 51.8°C

1.evo D3 47.8°C

2.evo D3 50.7°C
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6. General Discussion and Outlook 

6.1. CO2 binding in carboxylases  

One of the goals of this thesis was to gain a better understanding of the catalytic principle that 

ECRs employ for the interaction with CO2. ECRs use a unique mechanism of reductive 

carboxylation and operate at very fast turnover rates. Moreover, ECRs do not require ATP in 

contrast to biotin carboxylases1 and are fully specific for CO2 in contrast to RuBisCO. Therefore, 

ECRs represent an interesting case study for the understanding of this catalytic principle. This 

work shows that ECRs utilize four amino acid residues in their active site to promote 

carboxylation. The challenging tasks carboxylases face is that of CO2 binding and suppression 

of side reactivity. The enolate intermediate generated during catalysis represents an 

extremely potent carbon nucleophile and must therefore be efficiently protected from solvent 

water to prevent its protonation. Positioning of CO2 close to the enolate intermediate is crucial 

to promote carboxylation. We demonstrated that the anchoring of the CO2 molecule is 

performed through interaction with the sidechain of an asparagine residue and a water 

molecule held in position by a glutamate and a histidine sidechain. QM/MM simulations also 

showed that in the absence of these residues the CO2 molecule starts to tumble and is not 

correctly positioned, unlike in the wild‐type enzyme. Bringing substrates in close proximity in 

the active site of enzymes is a factor that highly contributes to catalysis 2. Carboxylases use 

this principle to promote carboxylation of the enolate compared to its protonation. This is 

partially supported by the observation that decarboxylases have to separate the carbanion 

from CO2 to efficiently complete the reaction as the reactivity of both components (enolate 

and CO2) makes this step readily reversible3. The fourth residue important for ECR catalysis is 

a conserved active site phenylalanine (or tyrosine). This residue was shown to be responsible 

for shielding the active site from bulk water, thereby preventing the irreversible protonation 

of the enolate. The reason why this residue is crucial lies in the mechanism through which 

ECRs generate the enolate intermediate. As highlighted in the introduction, carboxylases 

employ various mechanisms for the generation of enolates4. In this respect, ECRs represent a 

unique example. The hydride transfer from NADPH onto the ‐position of crotonyl‐CoA 

represents the driving force for the first half‐reaction in ECRs. This causes the enolate to be 

more committed for the subsequent steps in catalysis compared to other carboxylases. 

Protonation of the enolate leads to the irreversible formation of butyryl‐CoA, therefore 
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consuming one equivalent of NADPH without productive carboxylation. In other carboxylases, 

the enolisation occurs by abstraction of a proton by an active site base. This generates an 

active site acid, which could potentially protonate the enolate and go back to the substrate, 

as is the case for example in RuBisCO5. It was shown that in RuBisCO this leads to a non 

negligible formation of the substrate ribulose‐1,5‐bisphosphate from the enolate 

intermediate6. This is not the case for ECRs as chapter 2 showed that under saturating 

amounts of CO2 the conversion to (2S)‐ethylmalonyl‐CoA is complete. The increased 

commitment of the enolate towards productive carboxylation might represent an 

evolutionary driving force that brought ECRs to limit the water diffusion into their active site.  

The precise alignment of CO2 together with the efficient shielding of the active site from water 

are the most important aspects of ECR’s catalysis.  

PEP carboxykinase was proposed to have a CO2 binding pocket composed of residues which 

wait for the incoming CO2 molecule and anchor it for carboxylation of the enolate7. A 

protonated arginine also might have the function of polarizing the C‐O bond of CO2 thereby 

making the central carbon atom more electrophilic. ECRs represent a similar case in that the 

CO2 molecule is anchored in the active site ready for nucleophilic attack by the enolate. Up to 

date there is no evidence for CO2 binding in carboxylases and likely this is because of the apolar 

nature of CO2, which makes the interactions very difficult. A bioinformatic study tried to 

generalize what residues are commonly found at the active site of carboxylases and 

speculated about the nature of the interaction these residues might undergo with CO2
8. It was 

concluded that H‐bond interactions with polar residues are the preferential mode of 

interaction with CO2. Other examples of interactions include hydrophobic and van der Waals 

interactions. Moreover they observed that CO2 is coordinated by the protein via the oxygen 

atoms and not via the central carbon atom. The latter represents the point of attack of the 

enolate and must therefore not be sterically hindered. ECRs also obey this principle because 

they coordinate the CO2 via the oxygen atoms. Interestingly, one oxygen is coordinated with 

a hydrogen bond to a water molecule, which has not been described yet. This work 

contributed in identifying new interactions and might aid our prediction of carboxylase 

function based on active site residues.  
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6.2. Structural Determinants of ECR catalysis 
 

The fourth and fifth chapter of this thesis aimed at gaining better understanding of the 

structural elements that promote the fast catalytic rates observed in ECRs. A detailed 

structural study revealed the complex communication between subunits of the oligomeric ECR 

complex of Kitasatospora setae. Aided by four new crystal structures of ECR with different 

ligands (cofactor and substrate) we were able to propose the major structural rearrangements 

during the catalytic cycle (chapter 4) for this enzyme. The functional homotetrameric ECR 

complex differentiates into distinct functional units. Binding of the NADPH cofactor forces the 

homotetramer into a dimer of dimer conformation. Each dimer is composed of two monomers 

with the bound cofactor in either an open‐ or closed‐form. The structure containing the 

substrate analog butyryl‐CoA revealed that the disparity between subunits is still present and 

only one molecule of substrate is bound per dimer. Interestingly, the electron density of the 

CoA adenine ring can be observed in the adenosine binding pocket, suggesting that a new 

substrate molecule is approaching for catalysis or that a product molecule is dissociating from 

the enzyme as the last step in catalysis. We described how the communication between 

dimers and within monomers of a dimer functions on a molecular level. Inter‐ and intradimer 

communication is what enables the fast catalytic rates observed in KsECR. This 

synchronization was likely also optimized in the directed evolution study described in chapter 

3. In fact, one mutation occurred at a residue found at the interface of two monomers namely 

R325P. In KsECR the analogous residue K332 was shown to have major impact on the catalytic 

rate when mutated to an alanine. It is tempting to speculate that only primary ECRs perform 

synchronized catalysis whereas secondary ECRs are simply not evolved for fast catalytic rates 

because of the reduced evolutionary pressure in this metabolic context. It was previously 

reported that enzymes do not need to have a low KM value if the intracellular substrate 

concentration is always saturating and the enzyme can always operate at its kcat
9. This is a 

consequence of the intrinsic accuracy rate tradeoff10 observed in enzymes. Our system might 

therefore provide an environment where crotonyl‐CoA and NADPH are present at saturating 

amounts and this might limit the improvement of the KM values with the directed evolution 

approach described in chapter 5.  
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6.3. Outlook 
 

This work aimed at describing the underlying mechanistic principles of catalysis in ECRs. We 

elucidated the mechanistic principles that ECRs use to promote efficient carboxylation over 

unwanted side reactivity. One principle is that of preventing water from diffusing into the 

active site. The other principle is correct positioning of CO2 close to the reactive enolate for 

optimal nucleophilic attack. In general, it is not clear, whether a true binding of CO2 occurs 

during the catalytic mechanism of carboxylases and if there exists a Michaelis complex with 

CO2. Efforts in identifying a Michaelis complex in RuBisCO have not been successful11. This was 

also not shown in ECRs despite the fact that a saturation kinetic was determined for this 

substrate. It was previously reported that the observation of saturation kinetics for CO2 does 

not imply that there is a Michaelis complex with CO2
12. Presumably, other steps, such as 

product release, become limiting under saturating amounts of CO2. An alternative possibility 

to a Michaelis complex is that of a bimolecular reaction between the enzyme substrate 

complex (ECR, crotonyl‐CoA and NADPH) and CO2. This could be determined by single turnover 

kinetics under varying amounts of CO2 where a linear relationship between  and CO2 

concentration is expected.  

We showed that residues located at the interface between functional subunits of the ECR 

homotetramer are important for the fast activity observed in these carboxylases. We 

discussed that the nature of synchronized catalysis in ECRs might be performed solely by fast 

primary ECRs and that secondary ECRs are not evolved for high turnover rates. Having this 

structural information as well as a kinetic characterization study of the ECR family13 at hand it 

would be interesting to compare the residues at interfaces of subunits between ECRs of 

primary and secondary metabolism and test if there is a correlation with the catalytic rate. 

Preliminary data show that ECR homologues that operate in primary metabolism do not 

possess the same residues as ECR from K. seate (E151, N157, N217) but still have a comparable 

turnover number. This indicates that there are other aspects that need to be considered in 

order to correctly interpret the trends in the ECR family. 

We also showed that during directed evolution of a slow ECR from Burkholderia ambifaria in 

the context of primary metabolism, the enzyme accumulated three mutations, which led to a 

4‐fold increase in turnover number and a concomitant increase of the apparent KM for 



150 
 

crotonyl‐CoA. One mutation (R325P), is located at the interface between two monomers and 

corresponds to the same residue in the enzyme homologue from K.setae (K332) described in 

chapter 4. Mutation of R332 to proline in K. setae did not show an improved turnover number. 

This is equivalent to the R332A mutant, which showed a decreased turnover number because 

of the compromised communication between monomers. This might be indicative of the fact 

that ECR from K. setae is already fully optimized in terms of evolution and might therefore 

show only deleterious effects upon mutation. 

The functional characterization of the CO2 binding pocket in ECRs provide new knowledge 

about interactions between proteins and CO2. This could be employed for the identification 

of CO2 binding motifs in enzymes or for a rational design of carboxylases. One possibility would 

be the reversal of a decarboxylase reaction. This was demonstrated for L‐methionine 

decarboxylase, a thiamine diphosphate‐dependent enzyme14. Is it possible to design a de novo 

carboxylase? The general knowledge about carboxylase mechanisms and what was acquired 

in this study suggest that an enolase represents a good starting point, as the generation of an 

enolate is essential to carboxylation reactions. For this purpose aldolases represent a family 

of enzymes that would be well suited as a starting point for such approaches. Aldolases are 

enzymes that catalyze aldol reactions, which also involve enolate intermediates. The enzyme 

family is divided into 2 classes, based on their reaction mechanism. Class II aldolases have an 

active site Zn2+ which polarizes the carbonyl oxygen of the substrate whereas class I aldolases 

possess an active site lysine, which generates a Schiff base with the substrate. Both strategies 

facilitate deprotonation at the alpha carbon thereby forming an enolate or an enamine 

intermediate in the case of class I or II aldolases, respectively. Note that an enamine 

intermediate reacts in an analogous way to an enolate, mechanistically speaking. The enzyme 

D‐fructose 6‐phosphate aldolase belongs to class I subfamily and catalyzes the cleavage of 

fructose 6‐phosphate to dihydroxyacetone and glyceraldehyde‐3‐phosphate. This enzyme was 

engineered to accept a variety of ketones and aldehydes and produced a variety of unusual 

sugar compounds15. Having this in mind, one could engineer this enzyme to utilize CO2 instead 

of an aldehyde as the electrophile to carboxylate the substrate. In this work, it was shown that 

in ECR CO2 can be exchanged with formaldehyde as an electrophilic species, suggesting that 

the two electrophiles are very similar. For further improvement, the carboxylation the 

knowledge about CO2 binding pockets available and acquired here could be employed to 
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design the active site of this novel carboxylase. This enzyme variant could be used as a starting 

point for directed evolution of a highly proficient carboxylase. 
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