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Abstrakt

Tato diplomová práce se zabývá měřeními opticky aktivních materiálů prostřednictvím spek-
troskopické elipsometrie Muellerovy matice. První část práce je věnována rigoróznímu teoretic-
kému popisu optické aktivity za použití Condonova-Fedorovova přístupu. V práci je diskutován
vliv materiálové symetrie na optickou aktivitu. V práci byla dále navržena unikátní metoda mě-
ření chirálních roztoků sacharidů užitím elipsometrie Muellerovy matice v spektrálním rozsahu
od 193 nm do 1700 nm. Z těchto měření byly s vysokou přesností stanoveny mutarotační kon-
stanty. Za účelem teplotně závislých měření roztoků sacharidů, standartní elipsometr Muellerovy
matice byl inovován námi navrženým systémem pro cílené řízení teploty chirálního roztoku. Pro
popis optické aktivity křemenných fázových destiček byl odvozen teoretický model Muellerovy
matice, který zahrnuje efekt optické aktivity v těchto destičkách.

Klíčová slova: chiralita, elipsometrie Muellerovy matice, mutarotace, optická aktivita, optická
aktivita roztoků sacharidů, specifická optická stáčivost, optická aktivita křemene

Abstract

This master thesis is focused on the Mueller matrix spectroscopic ellipsometry measurements of
the optically active materials. The first part is devoted to the rigorous theoretical description
of the optical activity using Condon-Fedorov approach. The effect of material symmetry on
the optical activity is discussed. We propose a novel Mueller matrix ellipsometry method of
the saccharide solution optical activity measurement within the spectral range from 193 nm
to 1700 nm. The mutarotation rate constants are obtained with high accuracy. We extend
the standard Woollam RC2 Mueller matrix ellipsometer using a homemade temperature control
system. The theoretical description of the optical activity in quartz waveplate including the
model of Mueller matrix is proposed.

Key Words: chirality, Mueller matrix ellipsometry, mutarotation, optical activity, optical ac-
tivity of saccharide solutions, specific rotatory power, optical activity of quartz
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1 Introduction

Nowdays, the Mueller matrix spectroscopic ellipsometry is a very widespread optical and
nondestructive method of the optical characterization of matter [1]. Every material has its own
and unique physical and chemical properties, therefore each material interacts with the electro-
magnetic radiation in a different way. This effect is particularly interesting in the case of the
interaction with polarized light [2]. The Mueller matrix ellipsometers analyze the change of the
polarized light after the interaction with the particular sample. The measurement technique is
fast, very sensitive, and can describe various non-trivial effects such as anisotropy and depo-
larization [3]. Therefore, Mueller matrix spectroscopic ellipsometry is a very powerful method,
how to describe broad variety of the samples, from very simple isotropic thin films [4], through
anisotropic crystals [5], or scattering phenomena [6], to complex biological structures [7]. The
Mueller matrix ellipsometry and polarimetry is sensitive method enough to determine, if the
particular human tissue is cancerous of the lowest grades, or even cancer in situ (CIS grade) [8],
which is normally not observable until time-consuming and destructive histology analyses are
performed [9]. The very high sensitivity of the Mueller matrix ellipsometry therefore enables
to study the polarization effects with low optical response. One of these effects is the optical
activity, which has typically low optical response in particular materials.

It is rather difficult to find the example of the optical activity in the everyday routine of an
average man in the World around us. On the other hand, we are very well familiarized with
something, what is strongly related with the optical activity phenomenon. The parity. Take your
hands as an example. We can fairly distinguish between the left and right hand, as there exists a
mirror symmetry between them. Very similar logic applies on the phenomenological description
of the optically active molecules. And if we go further, we can apply this logic even on the
microscopic scale of the crystalline materials. However, on the microscopic level, those ideas
are rather abstract and they become insufficient and misleading. The need of the more rigorous
description of this phenomenon is evident. This is very important, because the optical activity
has various effects with the impact on the daily life: It is the determining effect in the field of
biochemistry. It defines the properties of given molecule and it predicts, if such a molecule is
for example biocompatible, harmless or poisonous [10], if it undergo various organic syntheses,
etc. The human body is constructed from the variety of complex optically active biomolecules
[11]. Optical activity plays an important role in the various naturally occuring crystals and
minerals. Also, the optical activity has an important role in the area of artificial man made
structures, which gives a possibility of e.g. rising a novel optical polarization elements [12]. The
tissue polarimetry of cancer surely also include the effect of the optical activity. However, to
fully understand the effect of the optical activity in various complicated materials and samples,
it is crucial to understand the effect in the simplier ones.

The goal of this diploma thesis is to bring a new characterization techniques of various
optically active media including biisotropic media; to extend the standard techniques of the
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Mueller matrix ellipsometry measurements; to model the effect of the optical activity using
rigorous physical models; and to bring a new insight into the field of the optically active media
of various crystal symmetries.

The organization of the thesis and the contribution of each Chapter is as follows:
In Chapter 2, the basic formalisms (Jones and Mueller) used for the description of the

polarized light are derived. The great emphasis is put on the interpretation of the phenomena
and observable quantities of the Mueller matrix. In order to do it, the connection between
theoretical Mueller algebra and real experiment is offered and discussed.

Chapter 3 is in the frame of an introductory to the optical activity phenomenon. A com-
prehensive historical overview is given and the effect of the optical activity is described mainly
from the chemical perspective. The nomenclature of the optically active chemical compounds
is defined, and standard single-wavelength techniques of optical activity measurement are de-
scribed. Optical activity in the living Nature is discussed. To expound the effect of the optical
activity out of the Mueller matrix ellipsometry scope, a few notes on the optical activity in the
terahertz (THz) spectral region and optically active metamaterials are given.

Chapter 4 describes the rigorous approach of modelling the optical activity based on the
Fedorov covariant method. The method is connected with various material constitutive relations.
The symmetries between the Condon-Fedorov and Born-Landau approach is showed. The optical
activity is described also in the context of all crystal systems. Using the results from this Chapter
are used in the following Chapters involving the experimental measurements.

In Chapter 5, the measurement of optical activity of saccharides solutions is presented. On
the contrary to simple chemical spectrometers, which are using monochromatic source only,
we propose a novel method, how to efficiently measure the optical activity parameters in the
spectral range from 193 nm to 1700 nm using the Woollam RC2 Mueller matrix spectroscopic
ellipsometer. The great advantage of our method is the ability to measure the mutarotation
effects and the reaction kinetics and to determine the related forward and reverse rate constants
with a high precision. We also show the stability of the temperature-dependent measurements
using an experimental system developed in our laboratories, which works as an extension of the
standard sample holder of the Woollam RC2 Mueller matrix ellipsometer.

Chapter 6 shows the effect of the optical activity in the quartz waveplates. The eigenmodes
propagating in the direction parallel and perpendicular to the optic axis are derived. To connect
the optical activity of quartz waveplates, related Mueller matrix is derived and the effect of the
optical activity is theoretically discussed.
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2 Mueller calculus: Basics and Insights

The first part of this Chapter introduces the basic concept of the polarized light, and the
basics of the Jones and Mueller calculus. The second part of the Chapter focuses on the deeper
interpretation of particular phenomena, which arise from the Mueller algebra. There is an
extensive description of various Mueller matrix algebra quantities accros the literature, uncluding
Mueller matrix decompositions, differential Mueller algebra, depolarization effects, etc. Despite
the fact, that those quantites are often experimentally observable, there is usually not provided
any connection with the experimental data in the literature. Therefore, the main intention
of this Chapter is to select some of the interesting parts of the Mueller calculus, and offer the
connection and discussion with the real experimental data measured by the author of this thesis.
We hope, that this will help understanding and interpreting the Mueller matrices.

2.1 Maxwell equations

Following equations represent the Maxwell equations in the differential form [13]:

∇ · D = ρ, (2.1a)

∇ · B = 0, (2.1b)

∇ × H = j + ∂D

∂t
, (2.1c)

∇ × E = −∂B

∂t
, (2.1d)

where D is the vector of the electrical displacement, B is the magnetic flux density, ρ is the free
charges volume density, j is the current density. The relation between D, B and the electric
field E and the magnetic field H, respectively, is given by the set of equations,

D = εE = ε0 E + P , (2.2)

B = µH = µ0 H + M , (2.3)

where the polarization P and the magnetization M volume densities, respectively, and the
permitivitty ε0 and the permeability µ0 of a free space are introduced [14].

Now, the intention is to derive the wave equation of homogenous, isotropic, linear media
with no free charge and without conductivity in order to construct the quantites introducing the
polarization properties of the light. With preset constraints, the Maxwell equations (2.1) may
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be rewriten in the simplified form:

∇ · D = 0, (2.4a)

∇ · H = 0, (2.4b)

∇ × H = ∂D

∂t
, (2.4c)

∇ × E = −µ∂H

∂t
. (2.4d)

Using the substitution of (2.4d) into (2.4c), H is eliminated. After performing some algebra
and with help of basic vector identities, we obtain the wave equation for homogenous, isotropic,
linear media without free charge carriers and conductivity [15],

∇2E − µε
∂2E

∂t2
= 0. (2.5)

2.2 Jones calculus

The polarization state of the light is described by a superposition of two electric fields,
which are oscillating parallel to the x and y axes. Assuming, that the electromagnetic wave is
propagating along the z axis, from the principle of the superposition we have

E (z, t) = Ex(z, t) + Ey(z, t). (2.6)

This equation can be expanded as

E (z, t) = {E0,x ei(ωt−kz+δx)}x + {E0,y ei(ωt−kz+δy)}y, (2.7)

where E0,x,y are the amplitudes of the wave in the x, y direction, ω is the frequency, t is the
time, k is the wavenumber, and δx,y are the absolute phases of the wave. Now, we can rewrite
this equation into the vector form

E (z, t) =
[
E0,x ei(ωt−kz+δx)

E0,y ei(ωt−kz+δy)

]
=
[
E0,x eiδx ei(ωt−kz)

E0,y eiδy ei(ωt−kz)

]
. (2.8)

Because the wave frequency is invariant with time, and the polarization state of the wave is
space-invariant, the factor ei(ωt−kz) can be supresed. The resulting vector

J =
[
|Ex| eiδx

|Ey| eiδy

]
=
[
Ex

Ey

]
, (2.9)

is called the Jones vector [16], and it determines the polarization state of the plane monochro-
matic wave [2]. Note, that only positive values of E0,x,y were used. The intensity of the wave is
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given by the equation
I = J†J . (2.10)

Every pair of orthogonal Jones vectors is a basis-set of two-dimensional space. Therefore,
every linear combination of these vectors forms an element of the space itself. Mathematically
speaking, if a pair of the J vectors is orthonormal, it must exists a linear transformation of
them, which is called the Jones matrix J,

Jout = JJ in. (2.11)

As a simple example, transformation of the Jones vector upon rotation in xy-plane by the angle φ
is expressed as follows: [

Ex+φ

Ey+φ

]
=
[

cosφ sinφ
− sinφ cosφ

] [
Ex

Ey

]
(2.12)

2.3 Mueller calculus

Altough the Jones calculus is a very effective and elegant mathematical way, how to describe
totally polarized states of light and its transformations, it is impossible to use this formalism
when one wants to treat with unpolarized light. Beside this extremes of totally polarized and
totally unpolarized light, and partially polarized light. In order to do so, we have to implement
more complex formalism and define the Stokes1 vector S

S =

⎡⎢⎢⎢⎢⎢⎣
Ix − Iy

Ix + Iy

I45 − I−45

ILCP − IRCP

⎤⎥⎥⎥⎥⎥⎦ , (2.13)

where Ix, Iy, I±45 denotes the wave intensities along x, y, ±45 directions, respectively. ILCP/RCP

stands for the intensity of left circular and right circular polarized light, respectively [1].
To find a propper mathematical and physicaly meaningful transformation between input and

output Stokes vectors, we have to introduce statistical properties of the light [18]. Let us define
the coherence vector C =

[
⟨ExE

∗
x⟩ ,

⟨
ExE

∗
y

⟩
, ⟨EyE

∗
x⟩ ,

⟨
EyE

∗
y

⟩]T
. The relation between C and

S is given below introducing the transformation matrix A,⎡⎢⎢⎢⎢⎢⎣
S0

S1

S2

S3

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 1
1 0 0 −1
0 1 1 0
0 −i i 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
⟨ExE

∗
x⟩⟨

ExE
∗
y

⟩
⟨EyE

∗
x⟩⟨

EyE
∗
y

⟩

⎤⎥⎥⎥⎥⎥⎦ . (2.14)

1Contemporary matrix notation is based on the work of George Gabriel Stokes [17].
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Now, having the S vector defined statistically in terms of the J vector, it is possible to find a
direct transformation between input and output Stokes vectors using the 4×4 coherence matrix
F:

Cout = FC = ⟨J ⊗ J∗⟩ C in, (2.15)

where the symbol ⊗ stands for the Cronecker product. Substituting into (2.14), we get

Sout = A ⟨J ⊗ J∗⟩ A−1  
M

Sin. (2.16)

The transformation matrix M of the system is called the Mueller matrix2 [19] and contains
the most comprehensive description of the polarization properties of the sample including all
possible depolarization effects. For absolute clarity, we explicitly show the transformation as
follows

Sout =

⎡⎢⎢⎢⎢⎢⎣
Sout

0
Sout

1
Sout

2
Sout

3

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
Sin

0
Sin

1
Sin

2
Sin

3

⎤⎥⎥⎥⎥⎥⎦ ≡ MSin. (2.17)

The matrix is usually presented and measured in its normalized form, in which all elements are
divided by m11.

2.4 Poincaré sphere

Henri Poincaré proposed, that any polarization state of the light given by the Stokes vec-
tor can be represented on a complex-plane, and stereographically projected onto a point on a
spherical surface – Poincaré sphere P, see Fig. (2.1). The sphere of the radius S0 is defined in
a space with the basis vectors given by Stokes parameters S1, 2, 3, which are related to latitude
(azimuth) φ and to longitude (ellipticity) χ as follows:

S1 = cos 2χ cos 2φ, (2.18a)

S2 = cos 2χ sin 2φ, (2.18b)

S3 = sin 2χ. (2.18c)

Comparing equations (2.18a)–(2.18c) with (2.13) gives us following observations: The equa-
tor of the sphere (χ = 0) represents linear polarizations. South and north poles are the only
points, which represent totally LCP and RCP light, respectively (2χ = 90). The lower and
upper hemispheres (excluding the poles and the equator) stand for the left-handed and right-

2For curious readers, a historical revision of Jones-Stokes-Mueller formalism was published in [20].
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handed elliptical polarizations, respectively. For totally polarized light, the polarization states
are located at the spherical surface given by radius S0. A depolarization effect affects each axis
separately, therefore P is mapped to any subspace of itself, E ⊂ P ∧ min dimE = 1. Subspace E
is generally eliptical surface. Completely unpolarized light is represented by a point at the centre
of the coordinate system. Other types of the subspace dimensionality reduction are possible due
to various effects, which will be discussed later.

S1

S2

S3

2ϕ

2χ

p

S1

S2

S3

Figure 2.1: Poincaré sphere P. The polarization state of the Stokes vector S is given by a point
given by the tip of the vector p (φ, χ) on the spherical surface.

The quantification of the depolarization effects is given by the degree of polarization [21]

Sp =

√
S2

1 + S2
2 + S2

2

S0
. (2.19)

The depolarization effects of a Mueller matrix are given by the depolarization index as [22]

P∆ =

√∑4
i,j=1m

2
ij −m2

11√
3m11

. (2.20)

2.5 Mueller matrix decompositions

Mueller matrix decompositions are one of the suitable tools, which may help in the inter-
pretation of Mueller matrices. The Mueller matrix decompositions can be devided into two
cathegories: Sum and product decompositions.
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2.5.1 Sum decompositions

The most famous is the Cloude decomposition [23]. Cloud showed, that an arbitrary exper-
imental Mueller matrix can be decomposed into the sum of four Jones-Mueller3 matrices, each
multiplied by the eigenvalue λi of corresponding Coherency matrix C,

M = λ1M1 + λ2M2 + λ3M3 + λ4M4. (2.21)

This decomposition is sometimes called as the noise filtering, because it is recommended for
slightly depolarizing4 systems, P∆ ≤ 5 %. For these experimental Mueller matrices the decom-
position results in

M ≈ λ1M1, (2.22)

while λ2, 3, 4 ≈ 0. They are usually negligibly small, and equal to zero for non-depolarizing
systems. Corresponding Mueller matrices are therefore related to the noise or the experimental
errors only and can be dropped. The Mueller matrix λ1M1 is therefore nondepolarizing and
contains only relevant response from the sample. For highly depolarizing samples, the eigenvalues
are arbitrary (0 < λi ≤ 1) and the system more likely remains in its full form as shows Eq. (2.21).
Note, that each eigenvalue λi must not be negative, otherwise, calculated Mueller matrix is non-
physical5.

Let’s suppose an example: We have measured the gold thin film on the glass substrate
using Mueller matrix ellipsometry in the reflection configuration. This particular sample was
manufactured for the surface plasmon resonance (SPR) measurements [24], therefore it can be
considered as the ideal sample with perfect optical response. Figure 2.2 shows the relation
between P∆, λi and the condition number of the matrix, given by

(cond. number)i = maxλi

minλi
. (2.23)

First, the shadowed part of the ultraviolet region can be neglected due to an experimental
noise. Second, there is an inverse proportion between P∆ and λ1. This supports the fact, that
only M1 significantly contributes to the summation (2.21). As long as P∆ ≈ 0, the condition
numbers remain acceptable. However, for slightly depolarizing regions (red shadowing), the
matrix becomes ill-conditioned. On other hand, the right-end of the blue region shows better

3Jones-Mueller matrix is a special case of Mueller matrix, which represents a nondepolarizing system. This
is the only case, for which a physically meaningful Jones matrix can be found. If the Mueller matrix represents
a depolarizing system, related Jones matrix can be always calculated, however it will stand for an unphysical
description of given system.

4The decomposed matrices are constructed from the eigenvectors of the related coherency matrix, however
related eigenvalues are close to zero for slightly depolarizing systems. Caluclated Mueller matrices are therefore
poorly conditioned and the calculation is numericaly unstable.

5Theory is strict, however it can be shown, that for almost perfect system depolarizing less then 1 %, it is
common to have at least one eigenvalue slightly negative. This raises from the experimental noise and numerical
artifacts, and as long as the negative eigenvalue is close to zero, we omit it.
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conditioning as the depolarization raises. For the case of λ1 ̸= λ1, 2, 3 = 0, the fraction in (2.23)
diverges to infinity. The calculations were performed using algorithm presented in [25].

0.98

1.00 1

0

2

4Dep. Index

0.00

0.01 2 3 4
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Figure 2.2: Quantities obtained during Cloud decomposition in relation with the depolariza-
tion of the sample. Noisy UV shadowed region is neglectable. Blue region: With increasing
depolarizations, the Mueler matrix gets well-conditioned. Red region: Ill-conditioned matrix for
depolarizations just around 1 %.

Depolarizing samples can be treated well with Le Roy-Bréhonnet decomposition [26]. The
interpretation of this another type of the noise-filtering is rather straightforward, because result-
ing sum of the matrices is represented only with two matrices, representing the non-depolarizing
contribution and the depolarizing contribution, respectively,

M = Mnondep + Mdep, (2.24)

where the signal is typically contained in Mnondep and is independent from Mdep, which stands
for an ideal depolarizer.

2.5.2 Product decompositions

Second cathegory of the Mueller matrix decompositions contains the product decomposi-
tions. The interpretation of the decomposed matrices is completely different. Regarding the
sum decompositions, each Mueller matrix in the summations was containing relative part of the
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intensity (signal). Due to this reason, for a general depolarizing system, each of the addend
must be taken into account to process the matrices further. On the other hand, product decom-
positions provide products of Mueller matrices, which differ in the type of polarization property
or quantity they describe, therefore it is possible to treat with each of the decomposed matrices
separately, without concern for losing the physically reliable response, resulting in the numerical
instability or misinterpretations, eventually.

The most common product decomposition is the Lu-Chipman decomposition. They proposed
[27] the following decomposition:

M = M∆MRMD. (2.25)

Each of the decomposed matrices describe only one polarization property. Depolarization matrix
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Figure 2.3: Poincaré sphere of output Stokes vector transformed by Left: a pure depolarizer,
M = M∆. Centre: retarder followed by depolarizer, M = M∆MR. Right: diattenuator
followed by depolarized retarder M = M∆MRMD.

M∆ contains information about the depolarization of the sample only. Retardation matrix MR

represent the general (elliptical) retardation of the sample and diattenuation matrix MD is
affected by the absorptions of the sample. Figure 2.3 summarizes the geometrical interpretation
of the Stokes vector transformed by each of the decomposed matrices successively. Matrix M∆

maps the input polarization states (represented by a sphere) onto ellipsoid. The interpretation
of the MR transformation is the rotation of the Poincaré surface6 around the coordinate system
origin. Finally, the form of MD is affected by the absorptions and the transformation result is
a corresponding subspace of the input Stokes vector.

Because the matrix multiplication is not commutative, the change in the matrix multiplica-
tion order in Eq. (2.25) causes different results, thus there is no certainty, that the particular
form of Eq. (2.25) reflects the real system correctly. Ossikovski [29] proposed reversed variation
on the Lu-Chipman (forward) decomposition, which was experimentaly validated [30] and to
completely avoid the multiplication order dependency, the symmetric decomposition was sug-

6More examples of the geometrical interpretation of the Poincaré sphere transformation are discussed in detail
in [28].
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gested [31],
M = MD2MR2Md∆MT

R1MD1, (2.26)

where diagonal depolarizer is encapsulated by pairs of diattenuators and retarders.
Beside discussed decomposition, several other types of Mueller matrix decompositions exist,

for example differential decomposition [32] or integral decomposition [33]. Kindhearted reader
can find a detailed overview in the purely theoretical excellent textbook [34].

Please, note the final remark on the Mueller matrix decompositions: They are not necessary
for not complicated and isotropic samples, however they are quite essential in the description
regarding strongly depolarizing, rough, non-ideal samples with unclear physical inerpretation
– typically biological structures [7, 35]. For those structures, rigorous physically meaningful
models are extremely cumbersome to obtain, therefore it is advantageous to separate the complex
information from the sample, and model each of the polarization property individually using
mathematical models, for example Monte-Carlo simulations [36, 37].

2.6 Mueller matrix: Theory versus Experiment

Mueller matrix contains complete information about the polarization properties of the sam-
ple, however, for particularly complicated sample, the useful information could be accursed in
the overwhelming complexity of the corresponding Mueller matrix. Thus, the particular form of
the measured matrix could be extremely complex and really challenging to understand, and can
cause several difficulties with proper interpretation. This Chapter offers a basic insight into the
problematics, and shows, how the polarimetric calculus and Mueller matrix theory are connected
with the experiment and standard physical models.

2.6.1 Ideal Mueller matrix

Mueller matrix in the block-diagonal form

MNCS =

⎡⎢⎢⎢⎢⎢⎣
1 −N 0 0
N 1 0 0
0 0 C S

0 0 −S C

⎤⎥⎥⎥⎥⎥⎦ , (2.27)

which is dependent only on two parameters ψ and ∆,

N = cos 2ψ, (2.28a)

C = sin 2ψ cos ∆, (2.28b)

S = sin 2ψ sin ∆, (2.28c)
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which are connected with the p and s- refflection coefficients rp, s through the ellipsometric
equation

rp
rs

= tanψ ei∆, (2.29)

is called the NCS Mueller matrix. NCS matrices are easy to understand and model, but within
given boundaries. Physically speaking, a NCS-type sample must be perfectly smooth, nonab-
sorbing, in theory composed of an infinite half-plane (thin-film structure allowed) and nondepo-
larizing. The absence of the depolarization in the NCS system could be mathematically verified
using the necessary, but sufficient depolarization criterion [22],

Tr
(
MTM

)
= 4m2

11. (2.30)

Applied on Eq. (2.27), we get

MT
NCSMNCS = m2

11

⎡⎢⎢⎢⎢⎢⎣
1 +N2 0 0 0

0 1 +N2 0 0
0 0 C2 + S2 0
0 0 0 C2 + S2

⎤⎥⎥⎥⎥⎥⎦ , (2.31)

and finally,

Tr
(
MT

NCSMNCS
)

= 2m2
11

(
N2 + S2 + C2 + 1

)
= 4m2

11, (2.32)

which is a true proposition and the criterion (2.30) is fulfilled. The concept of the Mueller matrix
ideality will be discussed into more detail next.

2.6.2 Mueller matrix purity

The depolarizing properties of every M can be quantified. An arbitrary normalized Mueller
matrix (2.17) can be rewriten into the partitioned form [27] as

M = m11

[
1 DT

P m

]
, (2.33)

where m is 3 × 3 matrix. This convinient expression introduces the polarizance vector P and
diattenuation vector D. Their magnitudes are defined, respectively, as follows,

P ≡ |P | =
√
m2

21 +m2
31 +m2

41 , (2.34a)

D ≡ |D| =
√
m2

12 +m2
13 +m2

14 . (2.34b)
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The alternative definition of the depolarization index (2.20) P∆ (or the degree of polarimetric
purity) of a system characterized by M was defined in [38] and further modified in [39] as,

P 2
∆ = 1

3P
2 + 1

3D
2 +

[√
3

3 ∥m∥2

]2

∈ ⟨0, 1⟩ , (2.35)

where the label ∥...∥2 is the Frobenius norm. P 2
∆ represents a global measure of the system in

terms of the depolarizations (or the ability to polarize). If P∆ = 1, the system is called pure
and exhibits no effects leading to depolarizations. In order to analyze the depolarization effects
into more detail, the degree of polarimetric purity PP and the degree of spherical purity PS are
defined [39], respectively,

PP ≡
[1

2
(
P 2 +D2

)]1/2
, (2.36a)

PS ≡
√

3
3 ∥m∥2. (2.36b)

PP is a global quantity characterizing polarizing and diattenuation properties of the system
(dichroism properties), while PS stands for the complemetary contribution to P∆ due to nonpo-
larizing attributes of the system (birefrigence properties). Therefore, the quantites PP, PS are
independent of each other and form the two-dimensional purity space. Substituting (2.36) into
(2.35), we obtain the equation of the purity space

2
3
P 2

P
P 2

∆
+ P 2

S
P 2

∆
= 1, (2.37)

which stands for an equation of an ellipse. Physically meaningful is only the first quadrant of
the ellipse. Moreover, if we set PS = 0, we get PP =

√
6

2 , but it violates Eq. (2.37) in the form
P 2

∆ = 2
3P

2
P + P 2

S , and a restriction must be evaluated. The restriction holds

P 2
P ≤ 1

2
(
1 + 3P 2

S

)
, (2.38)

which is an equation of the hyperbole. The intersection of the areas given by (2.37) and (2.38)
defines physically feasable region of the purity space.

Figure 2.4 shows the purity space. Edge BC (including points B and C) represent pure
systems (P∆ = 1). Points B and C stand for an ideal retarder, and ideal polarizer, respectively.
Vertex A represents an ideal depolarizer. Edge AB corresponds to depolarizing retarder, edge
AD to partial polarizers. Hyperbolic segment CD represents nonpure polarizing systems, with
its maximum polarizance lowered (from the ideal state at vertex C) by the presence of the
complementary birefrigence effects. For a detailed analysis, see [34].

To connect the theory with the reality, we have performed the transmission Mueller matrix
ellipsometry measurements on the commercialy available Agilent wire-grid polarizer (P) and the

27



0 0.3 3
3

6
3

1
Degree of Spherical Purity PS

0

0.35

2
2

1

6
2

De
gr

ee
 o

f P
ol

ar
im

et
ric

 P
ur

ity
 P

P

6.424 eV

A B

C

D

P: 0.87 eV - 4.90 eV
P: 4.90 eV - 6.42 eV
R: 0.87 eV - 6.42 eV

0.560 0.565 0.570 0.575 0.580

0.98

1.00

1.02 1.887 eV

C

Figure 2.4: Feasable region ABCD of the purity space. The wire-grid polarizer (P) is not an
ideal component for any of the measured wavelengths (orange points). The best performance
was achieved for the energy of 1.887 eV. It exhibits strong birefrigence (green points) for higher
energies. The waveplate (R) is an ideal component for a broad span of energies, but exhibits
depolarization effects for particular wavelenghts.

experimental sample of compound quartz quarter-waveplate (R) from Meopta. Those samples
should represent an ideal polarizing or retarding samples. The orange points represents the
wavelengths for which the polarizer was designed to operate. The inset figure shows, that the
polarizer is not ideal for any of the measured wavelengths. Nevertheless, the best performance
is achieved at the energy of 1.887 eV – vertex C was marked for the clarity. The green points
represent the wavelengths, for which the polarizer works outside from its designated region and
transmits both s and p-polarized waves. Red points shows the performance of the measured
waveplate. Apart of a few points, the waveplate can be concidered the ideal retarder, or slightly
depolarizing retarder.

2.6.3 Note on the relation between Mueller matrices with P∆ = 0 and P∆ = 1

Consider two pure (with no depolarizations) Mueller matrices. Their summation produces
depolarizing Mueller matrix [1].

Let us show you an example. Figure 2.5 shows the experimental configuration of our expei-
ment. There is an compound optical component, which is cut in half, where each of the halves
represents ideal polarizer with its fast-axis perpendicular to the second polarizer axis. The axes
orientations are φ = 0◦, 90◦, respectively. The totally polarized collimated beam with defined
diameter of the spot size passes through the polarizers in such a manner, that the intensity
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transmitted through each half is complemetary to the intensity trasmitted through the second
half (p+ [1 − p] = 1). The polarization of the incident light beam is transformed differently and

p
1-p

ϕ

Figure 2.5: The scheme of the mental experiment. The collimated light beam is transmistted
through the couple of ideal polarizers with its fast axes aligned at 0◦ and 90◦, respectively. The
depolarization index P∆ of the transmitted beam is the function of p.

independently (incoherently) for each side of the component. The resulting Mueller matrix for
the horizontal-vertical component is given by the weighted summation of both Mueller matrices
[40]. The whole system is represented by the matrix M

M = pMP(0) + (1 − p) MP(90), (2.39)

where p is the intensity fraction. Using Eq. (B.2), each polarizer is described with according
Mueller matrix with respect to the particular value of φ, which leads to

M =

⎡⎢⎢⎢⎢⎢⎣
1 2p− 1 0 0

2p− 1 1 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ . (2.40)

Using Eq. (2.35), the depolarization index takes the form of

P 2
∆ = 1

3
(
4p2 − 4p+ 3

)
, (2.41)

with the global minimum (see Fig. 2.6) at the point p = 1/2. For this value, the system shows
the strongest depolarizations. For the values of p = {0, 1}, the transmitted beam is horizontally
or vertically polarized, respectively. For values p ∈ (0, 1), the Mueller matrix (2.40) takes the
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particular form of non-ideal depolarizer

M (p = 0.5) =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ = M∆. (2.42)

According to Eq. (B.1), this Mueller matrix represents the partial ideal depolarizer.
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Figure 2.6: Depolarization index P∆ of M(p) and its derivative as the function of p.

2.6.4 Ellipsometric instrumentation

The last aspect we would like to mention is an influence of the ellipsometer construction on
the form of the measured Mueller matrix. There are several ellipsometer construction types,
which differs depending on types and position of the optical components used in the particular
device. Here, our scope will be limited to the rotating-elements ellipsometers only.

The rotating-elements ellipsometers are composed of polarization state generator (PSG),
polarization state analyzer (PSA), light source and detector. Samples S are placed between PSA
and PSG. PSG generates the polarization states of the light. It interacts with the measured
sample, the polarization state is adequately changed and finally it is decoded in PSA. PSA and
PSG in rotating-element ellipsometers are composed of polarizers P, analyzers A, and rotating
waveplates (which are called compensators due to the historical reasons) C. Figure 2.7 shows
graphical interpretation of Eq. (2.17) expressing measurable elements of the Mueller matrix in
comparison to the ellipsometer construction type. [41]. Full Mueller matrix is obtainable only
in the case of double-rotating compensator ellipsometer known as Mueller matrix ellipsometer,
Fig. 2.7d. Other types of ellipsometers are not able to measure (red squares) last row and/or
last column elements of the Mueller matrix. Those matrix elements contain the information
about circular light transformation. Depending on which elements are missing, corresponding
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Figure 2.7: Graphical representation of the equation Sout = MSin with respect to the ellipsome-
ter construction type. The green squares represent measurable elements of the Mueller matrix
(Stokes vector). The red squares are completely undetectable. Gray elements exist, but has
no contribution to the signal. Purple element of case c) exists, however it does not bear any
information about transformation of pure circular polarizations.

Stokes vector is obtained, but none of them (apart from 2.7d) contains the information about
transformation of pure circular polarizations.
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3 Introduction to Molecular optical activity

From our point of view, the optical activity phenomenon is absolutely textbook example
of an interdisciplinary problem. It originates partly in Physics, partly in Chemistry, and the
consequences are growing taller into Biochemistry and other sciences. Therefore, very special
approach has to be choosed for the explanation. Sometimes, the rigorous theories full of juicy
equations (purely physical approach) can be almost indigestible in its rare form. On the other
hand, purely molecular (chemistry) approach can lead to the improper understanding of some
phenomena arising from the optical activity. Therefore, this Chapter offers to a reader a gentle,
illustrative, and explanatory way of understanding the basics of the optical activity phenomenon
to build up the picture as clear as possible, stainless and smudgeless.

3.1 Historical overview

No other chemical characteristic is as
distinctive of living organisms as is
optical activity.

George Wald (1957)

We started this Chapter somewhat more ceremonially – with a quote. This sentence is
written at the very begining of the famous George Wald’s article [42]. The article offers very
detailed description of important chemical experiments and observations which took place in
history and were crucial in understanding phenomenon of the optical activity. We must not
disregard authors personal insight into the problematics, everything spiced up with numerous
rhetorical questions and author’s brief flashbacks to the past. Now, let us start from the begining.
As we proceed further, we will see, why George Wald’s words are so true.

The pioneer of the optical activity phenomenon is considered Jean-Baptiste Biot. In his
article [43] he observed, that when polarized light passes through optically active substance,
it could be rotated clockwise or counterclockwise. After that, he continued with his research
on various chemical compounds, both organic and inorganic. As a result, he formulated and
defined the constancy of specific (or molecular) rotatory power [44], nowdays known as the
specific rotatory power, as

[α] = αobs
l σ ρ

, (3.1)

where αobs is observed rotation in degrees, l is the length of the cell for liquid, σ is the fraction by
weight of the optically-active compound and ρ is the density of the liquid. The meaning of the
(3.1) will be discussed later, for now, note, that this equation is used until nowdays practically
in the same form.

In the very same Mémoir [44] he proved the optical activity of the tartaric acid. The chemi-
cals, which Biot choosed for his experiments were completely arbitrary, nearly randomly picked,
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because the origin of the polarized-light plane rotation wasn’t clear. The most crucial observa-
tion was made by Louis Pasteur in 1848 [45]. He studied physical and chemical properties of the
tartaric acid, which involved crystallization experiments. He noticed, that in the tartarate solu-
tion, two forms of the tartaric crystals can be found. They were almost the same, they “differed
only as an image in a mirror differs in its symmetry of position from the object which produces
it” [45]. Based on this observations7, he formulated terms of the Molecular Hemihedrism and
the Molecular disymmetry. The later is according to International Union of Pure and Applied
Chemistry (IUPAC) the obsolescent synonym for chirality [46]. Detailed explanation of these
terms together with thorough historical overview can be found in the excellent textbook [47].

From this point further, the scope of the optical activity has to be devided into two main
fields of interest. The goal of the chemists was to understand what is the origin of the optical
activity at the atomic scale. The proposed theories and laws laied the foundations of the modern
stereochemistry. On other hand, physicists were much more into quantification of the optical
activity. The main questions were how to measure the polarization rotation of the optically
active chemical solutions and to create physically meaningful mathematical models next [47].
Both of the branches, chemical and physical, are described in the following chapters into more
detail.

Now, let us skip several decades of history and let us land in middle 1950’s, when brand new
medicine was introduced. Commericaly available medicine Contergan was advertised as a great
treatment of morning sickness and nausea in pregnant women [48]. Very soon after Contergan
was launched to the market, disturbing increase in amount of newborners with severe limb ma-
lignities was registered. It took almost 5 years and it cost thousands of children lifes and tenths
of thousand of handicapped children until the scope of investigation was aimed to Contergan.
Several researches were conducted and it was pointed out, that the Contergan’s active ingredi-
ent – thalidomide – is the perpetrator [49]. Thalidomide exists in two forms. While its R-form
is a completely harmless molecule, which treats the nausea well, the S-thalidomide is strongly
teratogenic. The fundamentals of its mechanism can be summed up as rapid interconversion
between R and S-form in physiological pH [10]. Thalidomide was banned for pregnant woman
in 1961, however in several countries it continues to be used for leprosy or specific cancer types
treatment [50].

Thalidomide tragedy showed us the importance of the optical activity. Before Contergan was
released, the optical activity phenomenon was sort of trapped between nowhere and somewhere,
it appeared in theories concerning molecular symmetry, in crystallography, but nobody actually
paid attention to its biochemical aspect. On the other hand, as a consequence of the tragedy,
precise laboratory tests and protocols of every single potentional medicine must be carried out,

7Pasteur’s experiment with tartaric acid is very well-known, therefore Pasteur can be sometimes misunderstood
as the first researcher who encountered the phenomenon of optical activity, which is not true. He can be considered
as the pioneer of this field quite justifiably anyway.
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so one can be absolutely sure, which compound form is treating with and what effects it causes8.
This is only the one characteristics of the opticaly active compounds in the relation with life.
George Wald’s quote is going much further.

3.2 Stereochemistry of chiral compounds

Let us consider organic compounds first. The main principles, which manage the manifes-
tation of optical activity in such a compounds were formulated by Le Bel [51]. He summarized
his observations into a set of general principles, which must be fulfilled if the molecule possesses
optical activity. They are explained rather lenghtily, but valid generally. Le Bel worked with
molecules as if they were planar structures, which is not sufficient approach, when treating with
optical activity. Van’t Hoff noticed that, and he upgraded Le Bel’s rules and generalized them
to three-dimensional space [47, 52, 53].

Consider a molecule of tartaric acid with condensed chemical formula HOOC-C∗(OH)H–C∗(OH)H-
COOH. The C atoms labeled with star are called the asymmetric carbon atoms. It is possible to
illustrate the spatial strucure of tartaric acid using van’t Hoff’s polygons, see Fig. 3.1. Two assy-
metric carbons linked together with a single bond are represented by two tetrahedrons linked to
the apex of each other. If we place planar mirror between the tetrahedrons, we can see, that the
first two cases exhibits no symmetry even upon the tetrahedra rotation. These structures are
called chiral and each represents stand-alone chemical individuum. The last example at Fig. 3.1
shows, that the tetrahedrons are mirror images of each other, which correpospond to achiral
molecule – without optical activity. Van’t Hoff extended his theory to molecules with double

HO

COOH

OHH

HCOOH

COOH

COOH
HO

COOH

HCOOH

HO

H OH

H HO H

L-tartaric acid D-tartaric acid meso-tartaric acid

Figure 3.1: Van’t Hoff representation of tartaric acid [52]. Assymetric carbons linked with a
single bond are represented by apex-connected tetrahedra. If the tetrahedra are not their own
mirror images, the molecule is chiral. Therefore, we distinguish between L and D-tartaric acid.
Meso-tartaric acid is symmetric along the horizontal symmetry plane.

and triple-bonded asymmetric carbons, which are represented by two tetrahedrons connected
8Another interesting example is methamphetamine. R-form is well-known central nervou system stimulant,

while S-form acts as a mild hypertension relieve.
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with common edge, and common face, respectively [47, 52]. The polyhedral representation of
molecules is no longer used, because it was replaced with cleaner and simplier Fisher repre-
sentation [54], despite the fact they are equal. Figure 3.2 shows the transition between each
representation. Fisher’s notation is a simple inplane projection of Van’t Hoff’s polyhedrons.
From now on, we will use Fisher projection only9.

HO

COOH

OHH

H
COOHCOOH

COOH

H

H

OH

HO

Figure 3.2: Fisher graphical representation of molecule is the inplane projection of Van’t Hoff
representation. While Fisher projection is simple and clean, Van’t Hoff is more explanatory.

Now, having the visualization established, we can make the description more abstract. First,
the asymmetric atom is not limited to carbons only, it can be almost arbitrary asymmetric
atom, for example quaternary N, tetravalet P or sulfoxidic S [56]. We call these atoms to be the
chirality centres. The most simple chiral molecule contain only one chirality centre. Obviously,
this molecule is always chiral. Voluntary exercise for a reader: It can be demonstrated using
your hands (similarly to Fig. 3.1). If you arrange your hands (each representing the same chiral
molecule) opossitely to each other, then rotate one hand by 180◦ and superimpose them, you
will find out, that your hands are chiral. Therefore, we sometimes talk about the handedness of
molecules. However, chiral molecules, which contains two or more chirality centers, does not have
to be necessarily always chiral. To understand this, we need to introduce formal nomenclatures.

The most general Cahn-Ingold-Prelog nomenclature (priority rules) [57] distinguishes be-
tween R and S chirality centres and is based on the determination of the direction, in which
bonded groups molar mass increases and with respect to their chemical priority. The R, S
descriptors are related only with given chirality centre of a molecule. Together with E, Z de-
scriptors, it uniquely determines the absolute conformation of particular enantiomer, whether or
not it is chiral. However, RS nomenclature describes the chirality centre itself, one by one, and
it does not take into account the effective characteristics of the molecule. In practice, D and L

9For eager readers we can recommend Ronald Bentley’s article [55] Are Fischer Projection Formulas Really
Necessary?
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relative conformation descriptors are used, because they directly reffer to the spatial structure
of the molecule and its handedness. To be more precise, by further investigation it was shown,
that D-form and L-form may not correspond to the side, in which the plane of the polarized
light is rotated. To describe also this phenomenon, signs (+) for clockwise rotation and (–) for
counterclockwise rotation were added as correction prefices.

3.3 Chiral molecules in the living Nature

First, let us take a closer look on the nomenclatures. The descriptors D and L are derived
from Latin and their meaning is Dexter (right-sided) and Laevus (left-sided), respectively10.
The E and Z have come from German, and stand for Entgegen (opposite to) and Zusammen
(together), respectively (correspondence with cis and trans conformations). Finally, R and S
prefices have its roots in Latin words Rectus and Sinister. Let the reader be aware of possible
incorrect translation as Right(-sided) and Left(-sided), which is quite common especially in
popular scientific texts. The correct meanings for Rectus and Sinister are, respetively, proper
(right), and improper11.

The essential chemical compounds for the living organisms is the triad of proteins, saccha-
rides, and fats. The structure of proteins is scalable [58]. In context of the optical activity, the
tertiary and quaternary structure is not that important as the primary and secondary structure.
Primary structure of the protein is a sequence of aminoacids in a polypeptide chain. Each of the
aminoacids has its own chirality centres, and is therefore optically active. It was investigated,
that the vast majority of the aminoacids in living organisms exists in the L-form exclusively
[11]. The handedness of each molecule preserves whether it participates on some biochemical
reaction or remains intact at the moment. The chain of the aminoacids forms spatial secondary
structures: α-helix or β-sheet. The spatial structure arrangement of proteins contributes to the
optical activity with its own handedness and changes the measurable quantities (e.g. specific
rotatory power (3.1)) with respect to the secondary structure disorder [59].

On the other hand, saccharides in living matter exist exclusively in the D-form. DNA and
RNA nucleic acids contains D-Deoxyribose (sugar) as one of its main structural components
[60]. From the chirality point of view, those acids can be considered as hybrids between proteins
on the secondary level and simple saccharides12.

The absence of the complementary enantiomer of particular chemical within living organisms
is called the homochirality [61]. Following observations were done: First, every thermodynamical

10It corresponds with the obsolete name for Glucose (Dextrose) and Fructose (Levulose), respectively. Glucose
rotates the polarization plane to the right side (clockwise), while Fructose to the left side (counterclockwise).

11The incorrect translation have possibly come from the medicine terminology. In medicine, the parity is given
by latin words sinister (for leftside) and dexter (for rightside). In the context of the optical activity, the word
sinister is connected with historical collocations, because it was understood as a pejorative term for something
being wrong, evil, akward or left-handed (left-handed people were considered to be against Nature and God during
the Middle Ages).

12For following purposes of the thesis, the chirality of saccharides will be discussed in the following Chapter
into more detail.
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system drives toward the racemic composition (equimolar ammount of D and L isomers) [11].
Second, it is not possible to achieve an absolute asymmetric synthesis (a synthesis without the
aid of an asymmetric molecule as a reactant or catalyst) in the laboratory conditions [62]. How it
is possible, that living organisms preserved the ability of this synthesis and the products do not
tend to racemic mixtures? Organic molecules have the ability to autocatalysis (self-reproduce).
This implies, that it must exists a mechanism for homochirality preservation in prebiotic systems
(complex organic molecules before RNA existence). Various mechanisms, how to introduce an
enantiomorphic excess (purity of chiral compounds) into assymetric catalysis were proposed [66],
including photochemical catalysis [63], or the influence of the circular polarized light [64, 65].
As it is difficult to unambiguously prove one or other theory, this field yields open questions,
what are the prerequisities for the life, and what is the actual possible origin of the life (in
the physical-chemical point of view) [66]. Nice review on the optical activity manifestation in
different materials was published in [67].

By now, I hope, that the true meaning of George Wald’s quote from the Chapter beggining
is crystal clear.

3.4 Rotatory power dispersion: Phenomenological approach, history

Specific rotatory power [α] is considered the optical response of an optical system. Therefore,
we expect a dispersion in [α] over the wavelength λ. Moreover, the value of [α] is temperature-
dependent, as we know from the reaction kinetics (equilibrum constant shifting with temperature
T changes). Therefore, for a particular wavelength λ and constant temperature T , the system
is responding with corresponding value of [α], which should be therefore labeled as [α]Tλ .

Contemporaneously with Le Bel and Van’t Hoff research on theory of asymmetric carbon,
the effort for quantifying the rotary disperson was in process [47]. First dispersion models were
developed by Cauchy [47] and von Lang [68], but their form originated from the mathematical
basis and empirical observations based on experiments. The requirement of chiraly isotropic
medium (all chirality centres are identical) was presumed by Drude [69]. He noticed, that
absorbing media contains natural vibrations. Assuming the vibrations of the chirality centres,
he proposed an equation

[α] =
∑

i

ki

λ2 − λ2
i

, (3.2)

where constant km is connected with the number of vibrations in unit volume and other medium
parameters. The summation can be ommited in most cases, as only one i-th vibration is domi-
nant. Drude’s concept was used further by Sellmeier, who pointed out, that the vibration wave-
length region differs widely from the measured transparent region of the dispersion. Therefore,
the normal dispersion of the non-absorbing medium can be expressed by Sellmeier’s equation

n2 = 1 +
∑

i

Aiλ
2

λ2 − λ2
i

. (3.3)
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One of the main scopes of the biochemists in the middle of 20th century were proteins.
Proteins are usually very complex structures with many chirality centres, therefore Drude’s
assumption was no longer valid. Moffitt and Yang proposed [70], that instead of [α], new
quantity of effective molecular rotations [m] is needed. The physical meaning of [m] is effective
residue of monomer rotation – the contribution of [α] of chiral monomers in polymeric achiral
structures after polymerization. Based on the quantum theories, following equation was derived:

[m] =
∑

i

aiλ
2
i

λ2 − λ2
i

+
∑

i

biλ
4
i(

λ2 − λ2
i

)2 , (3.4)

where the first term reflects the rotary dispersion of the molecules, and the second term is
connected with the protein secondary helical structure. The summation can be neglected, as a
dominant vibration is accounted only. Based on various experiments (overview in [71]), highly
disordered systems possess values of bi → 0. This is useful for example in a description of protein
denaturation13.

3.5 Simple measurements of rotatory power

Each of proposed model of rotatory power dispersion was either empirically deducated based
on the experimental data or was experimentally validated afterwards.

The first polarimeters used for the measurements of chiral solutions were based on eye de-
tection if the optical response is present. Thus, they were only able to answer the question
whether a solution is chiral or not. The very first visual polarimeter was consructed by Nörren-
berg. The sunlight was polarized by a reflection from a glass plate aligned at Brewster angle.
The analyzer glass plate was tilted at Brewster angle. When the horizontal axes of glass plates
are mutually perpendicular, the ray is extinguished. If a chiral solution was placed between
the glass plates, the plane of the polarized light was rotated, the Brewster law was violated
and visible light beam was spoted. The polarization optics was gradually replaced with more
effective prism polarizer and analyzer, and the sunlight was changed by monochromatic sodium
light sources. The detection was however based on the manual reading of the polarized plane
azimuth inclination. Note, that polarimeters constructed for sugar solution measurements were
called saccharimeters. Instead of rotating analyzer, the quartz compensator was used. Rotating
the compensator, the concentration of sugar in solution could be determined using the scale,
when the compensator was set to give a zero total rotation.

With a development of electronic detectors, the basic construction of either polarimeters
and saccharimeters is composed of a light source (mostly sodium lamps with D spectral line
of λ = 589 nm), fixed polarizer, adjustable analyzer, long tube (reservoir for a chiral solution,
usually up to a few dm long) and a light intensity detector. The scheme of a single wavelenghth
polarimeter (saccharimeter) is shown in Fig. 3.3. The calculations of rotatory power are based
on the Malus law.

13The most common example of the protein denaturation is the heat-induced albumen denaturation (fried eggs).

39



α

P A

Figure 3.3: Scheme of the tube polarimeter for rotatory power measuements. The (centime-
ters up to a few decimeters long) tube is filled with chiral solution. The light emmited by a
monochromatic source is linearly polarized with a polarizer P. The polarization plane is rotated
as the wave propagates through the chiral solution. The angle of the polarization plane rotation
is calculated according to Malus law.

3.6 Optical activity: Perspective of the phenomenon

The physical foundations of the simple polarimetric and saccharimetric measurements have
remained practically intact over decades. The main improvements of the measurement tech-
nique are based on more precise polarization optics and more sensitive detectors. However, it is
convenient to extend the frequency range outside the visible spectrum of the light or to intro-
duce a new experimental method, which brings the optical activity phenomenon in a new light
(literally!).

In the following Chapters, we introduce the optical activity of liquid and solid media in the
frame of Mueller matrix ellipsometry, therefore, we will not discuss this method here. Each
experimental technique is suitable for measurement of different physical property of the sam-
ple. For example, Raman optical activity together with Vibrational optical activity are great
approaches for the determination of the absolute configuration of organic [72, 73], biochemical
[74], or organometallic [75] compounds, because it combines the structural sensitivity of vibra-
tional spectroscopy with the stereochemical sensitivity of an optical activity itself [76]. From
nature of those measurement techniques, the experiments upon those techniques are involved
among the variety of natural materials. The proper description of the optical activity on the
molecular level is far beyond the scope of the thesis. The detailed description of microscopic
optical activity is given in [77].

Now, let us extend the frequency region further, and comment on the terahertz (THz) optical
activity briefly. THz radiation [78] is nowdays very rapidly developing area with many fields
of interests and applications including security [79], biomedical imaging [80] or ultra-short THz
pulses [81]. The THz measurements of natural optical activity in natural materials is not in
the scope of the contemporary research, mainly because the optical response of the optical
activity in THz region is very small or below the detection limit [82]. However, there is an
extensive effort to incorporate the THz spectral range into the optical activity phenomenon
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using artificially prepared structures or metamaterials14. The term optical activity is connected
rather with natural materials, therefore we will use term chirality instead, when speaking about
artificial structures or metamaterials.

The connection between THz radiation and metamaterials is advantageous, because the
wavelength of the THz radiation, together with the dimensionality of the prepared structures,
exhibits various effects as a result. In other words, THz waves are long enough to be able
to interact with the chiral metamaterial, which dimensionallity is given by the limits of the
manufacturing process.

To control the polarization properties of the THz wave, various designs of polarization state
modulators and active manipulation polarization components exist: Transmission THz polar-
ization rotator was proposed [12] for the polarization and phase control of the incident wave.
The schemes of all proposed optical components are shown in Fig. 3.4. Note, that the figure is
shown for the illustration purpose only. The metamaterial was based on the double metasur-
face, with anisotropic rectangular-shaped silicon pillars etched into the substrates. The relative
rotation between two metasurfaces controls the polarization properties of the transmitted wave
Fig. 3.4a. Choi et al. [85] proposed parylene (polymer with high transparency across the THz
spectrum) polarization modulators with Au deposited Herringbone structure for the ellipticity
control of transmitted wave, which can be used for THz circular dichroism spectroscopy Fig.
3.4b. Parylene substrates were used also in structures proposed in [86], Fig. 3.4e. Ellipticity
control was achieved also using THz chiral metasurface based on multi-layered graphene [87]
or single graphene layer [88], see Fig. 3.4d. The metasurfaces based on Fresnel nonlinear zone
plates were introduced in [89], and are used for the conversion of near-infrared (NIR) wave to
THz wave. Other designs are shown only for the illustration [90, 82].

We believe, that in time, and maybe with the help of the metamateral-based devices, we will
have better THz generators, precise dynamic polarization control, and more sensitive detection,
and we will be able to fully characterize the chirality in natural materials with low response in
THz range.

14Metamaterials are man-made composite structured materials with unique electromagnetic properties. The
father of the metamaterials was Veselago [83], who created the concept of the materials with both negative
permittivity and permeability. Those materials were hugely developed and made famous by Pendry [84].
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Figure 3.4: a) The polarization plane rotation is controled by a rotation of the metasurface [12].
b) Kirigami parylene polarization modulators with Au Herringbone structure for the circular
polarization light generation. The control is produced by stretching of the structure [85]. d)
Single layer graphene meta-surface for the circular polarized THz light generation [88]. e)
Parylene based metastructures [86]. c, f) Examples of other designes for control of the THz
polarized light properties [90, 82].
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4 The concept of Chirality: Rigorous approach

The goal of this Chapter is to calculate the eigenmodes propagating in various anisotropic
media. In order to do this, the effect of optical activity (or the gyration) must be evaluated
correctly, and the material equations (2.2) must have incorporated the contribution of that phe-
nomenon. Various constitutive relations [91] have been proposed until nowdays, and altough
they are equivalent to each other, it may be beneficial to use one or other approach depending
on a situation. For example, while Berreman’s method is perfectly suitable for numerical cal-
culations, Fedorov’s covariant method15 stands for an elegant and efficient way for analytical
derivations.

• Born-Landau [92] constitutive relations (commonly used in Yeh’s 4 × 4 matrix approach
of eigenvalue problem):

D = εE + iG × E, (4.1a)

B = µH, (4.1b)

where G is the gyration vector.

• Berreman-Drude constitutive relations [93] (6 × 6 Berreman’s matrix method):

D = εE + iγH, (4.2a)

B = µH, (4.2b)

where γ is the optical rotation tensor.

• Condon-Fedorov constitutive relations [94, 95] (Fedorov’s covariant method):

D = εE + iαH, (4.3a)

B = µH − iαTE, (4.3b)

where α is the gyration tensor. In the following text, we will use Condon-Fedorov notation
mainly.

4.1 Onsager-Casimir principle

In a broad variety of literature, the derivation of Condon-Fedorov constitutive relations is
disregarded. The basis of the Eqs. (4.3) is given by a definition of Tellegen’s constitutive relations

15The Fedorov covariant (coordinate-free) method has some algebraic specifics. Probably the best overview
on covariant linear algebra was introduced in his book [95] in Chapter IV: Elements of Linear Algebra and
Direct Tensor Calculations. (Глава IV: Элементы линейной алгебры и прямого тензорного истчисления.)
Unfortunately, the book was never translated from Russian.
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[96] of general bianisotropic media:

D = εE + αH, (4.4a)

B = µH + βE, (4.4b)

where ε, µ, and α, β are general second-rank tensors and coupling tensors, respectively. The
coupling terms express, that when medium is exposed to an electric field E, it will become
magnetically polarized and vice versa. The constitutive relations can be rewriten into the matrix
form as [

D

B

]
=
[

ε α

β µ

] [
E

H

]
. (4.5)

Because all fields are time-dependent, we can use the Onsager theory [97, 98]. Onsager developed
a general theory of irreversible thermodynamical systems. He assumed, that if the system is
exposed to arbitrary affinities ak it responds with associated flux ji. He further assumed, that
the flux-affinity relation16 is linear and that each flux is not dependent only of its associated
affinity, but also of every other affinities. The relation is given by the coefficients of a linear
response (or kinetic coefficients) Lik,

ji =
∑

k

Likak. (4.6)

The Eq. (4.5) can be therefore rewriten17 as

Fi =
6∑

k=1
LikYk. (4.7)

The theory was enhanced by Casimir [100] and the main result of the Onsager-Casimir theory
is the proof of following symmetry of kinetic coefficients:

Lik(B) = Lki(−B). (4.8)

The proof is based on the time-reversal symmetry of motion equations. Time-reversed motion
equations remains the same in the presence of B (or D), but not if the sign of the fields is
changed. The time-reversal symmetry applied on (4.5) and (4.8) gives following symmetries

16In other words, Onsager theory describes the behaviour of a linear thermodynamical systems describing any
irreversible process near the state of the thermodynamic equilibrium. The affinities can be understood as forces,
which drive the irreversible system out from its equilibrium state. The system responds with related flux, which
are linearly dependent of the related affinity. Onsager reciprocal relations are sometimes considered the fourth
thermodynamic law [99].

17Here, the forces (affinities) shifting the irreversible thermodynamic process out of the equilibrium state are
the field intensities, and the system is responding by generating the associated displacements.
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between the tensors in (4.4).

ε = εT, µ = µT, α = −βT. (4.9)

The electromagnetic energy conservation law18 with no energy dissipation (j = 0) takes the
form [

E
∂D

∂t
+ H

∂B

∂t

]
  

∂w/∂t

+div (E × H)  
S

= 0, (4.10)

where S is the Stokes vector and w is the density of electromagnetic energy. The first term can
be rewriten with respect to (4.7) as

E
∂D

∂t
+ H

∂B

∂t
=

6∑
k

Yk
∂Fi

∂t
. (4.11)

Supposing monochromatic waves only, this equation can be rewriten as

ED∗ + HB∗ − E∗D − H∗B =
6∑
k

(YiF
∗
i − Y ∗

i Fi) . (4.12)

Assuming (4.7), the expression becomes

6∑
i,k=1

(YiL
∗
ikY

∗
k − Y ∗

i LikYk) . (4.13)

The Eq. (4.13) must be satisfied for any possible affinity (field). From Onsager-Casimir theory
can be shown, that this is satisfied, if

L∗
ik = Lki. (4.14)

Therefore, following symmetries are valid:

ε = ε†, µ = µ†, α = β†. (4.15)

If a medium is non-dissipating,

ε = εT, µ = µT, α† = −α. (4.16)

The constitutive relations between D, B and H, E for monochromatic waves are obtained
18The derivation of the electromagnetic energy conservation law is based on the curl Maxwell equations. We

must expand them by H, E and subtract them. The law is then derivated with the help of the vector identity
div (E × H) = H rotE − E rotH.
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from the time-reversal symmetry theorem. It is convenient to use the pseudotensor iα [101]:

D = εE + iαH, (4.17a)

B = µH − iαTE, (4.17b)

Further, we showed, that for non-dissipative media and monochromatic waves, following
constitutive relations are valid:

D = εE + iαH, (4.18a)

B = µH − iαE, (4.18b)

Note, that these constitutive equations are valid for non-dissipative media [102] and monochro-
matic waves only. This fact is almost always disregarded across the literature.

4.2 General eigenvalue solution

The curl Maxwell equations (2.1c) and (2.1d) for a monochromatic plane wave can be in
CGS19 units rewriten as

m×E0 = B, (4.19a)

m×H0 = −D, (4.19b)

where

m× =

⎡⎢⎢⎣
0 −m3 m2

m3 0 −m1

−m2 m1 0

⎤⎥⎥⎦ . (4.20)

We say, that tensor m× is dual to the associated refraction vector m, which is defined as

m = nn = n

⎡⎢⎢⎣
n1

n2

n3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
m1

m2

m3

⎤⎥⎥⎦ , (4.21)

and which determines the direction n of the wavector k of the light propagating in the medium.
Assuming the normal incidence, n = [0, 0, 1]T. In the case of non-normal incidence, the
tangential component of the wavevector (and of the refraction vector) must be conservated. In
terms of m, its tangential component is expressed as n sinφ1. From the Snell law we have
n sinφ1 = n0 sinφ0, where n0 is the refractive index of the ambient medium and φ0 is the angle
of incidence (defined in 13 (xz) plane from the 3 (z)-axis.)

19The main reason, why choose the Fedorov covariant method (coordinate free method) is its elegancy and
simplicity. However, the elegancy would disappear if the Maxwell equations were not in CGS system. Nevertheless,
it has no impact on the quality of the physics, nor on the final form of the solution of eigenmodes propagating in
particular medium.
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By substitution of Equations (4.17) into (4.19) we obtain

m×E0 = µH0 − iαTE0, (4.22a)

m×H0 = εE0 + iαH0. (4.22b)

From Eq. (4.22a), H can be expressed as

H0 = µ−1
(
m×E0 + iαTE0

)
, (4.23)

and by a substitution into (4.22b), H is eliminated. Following set of equations is therefore
derivated:[

ε + m×µ−1m× + i
(
αµ−1m× + m×µ−1αT

)
− αµ−1αT

]
E0 ≡ XE0 = 0. (4.24)

Fedorov proved [95] following identity:

αµ−1m× + m×µ−1αT ≡ (gm)× , (4.25)

or alternatively [95, 101, 103]

G =
[
tr
(
µ−1αT

)
I − µ−1αT

]
m = gm, (4.26)

where I is the identity matrix, g is the gyration tensor, and G is the gyration vector introduced
in Born-Landau (Yeh) formalism (4.1). The gyration vector is in a relation with gyration scalar
parameter G:

G = Gn (4.27)

The Eq. (4.24) can be therefore rewriten as[
ε + m×µ−1m× + i (gm)× − αµ−1αT

]
E0 ≡ XE0 = 0. (4.28)

To obtain a nontrivial solution of (4.24) [or equivalently (4.28)], the determinant of X must
be equal zero. If we consider nonmagnetic media only, and we apply the tensor symmetries
(4.9), the components of the determinant

det (X) =

⏐⏐⏐⏐⏐⏐⏐⏐
X11 X12 X13

X21 X22 X23

X31 X32 X33

⏐⏐⏐⏐⏐⏐⏐⏐ , (4.29)
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can be derived as follows:

X11 = ε11 −
(
m2

2 +m2
3

)
+
(
α2

11 + α2
12 + α2

13

)
,

X12 = ε12 + (m1m2) + i [α13m1 + α22m2 + (α21 − α11)m3] + (−α11α12 + α12α22 + α13α23),

X13 = ε13 + (m1m3) + i [−α12m1 + (α11 + α33)m2 + α23m3] + (−α11α13 − α12α23 + α13α33, )

X21 = ε21 + (m1m2) + i [−α13m1 − α23m2 + (α11 + α22)m3] + (−α11α12 − α12α22 + α13α23),

X22 = ε22 −
(
m2

1 +m2
3

)
+
(
α2

12 + α2
22 + α2

23

)
,

X23 = ε23 + (m2m3) − i [(α22 + α33)m1 + α12m2 + α13m3+] + (α12α13 − α22α23 + α23α33),

X31 = ε13 + (m1m3) + i [α12m1 − (α11 + α33)m2 − α23m3] + (−α11α13 − α12α23 + α13α33),

X32 = ε23 + (m2m3) + i [(α22 + α33)m1 + α12m2 + α13m3] + (α12α13 − α22α23 + α23α33),

X33 = ε33 −
(
m2

1 +m2
2

)
+
(
α2

13 + α2
23 + α2

33

)
.

Solving the quartic equation

X11X22X33 +X13X21X32 +X12X23X31 −(X13X22X31 +X11X23X32 +X12X21X33) = 0, (4.30)

in terms of n leads to the solution of eigenmodes nk, k = {1, 2, 3, 4}, propagating in particular
media defined by tensors in (4.22). Note, that the analytical solution of the quartic equation for
general media and arbitrary angle of incidence is very cumbersome. Therefore, it is convinient
to solve the problem in a simplified form (e.g. normal incidence) and for a given symmetry of
the media.

4.3 Effects of material symmetry

To classify the crystal lattice, 7 crystallographic (crystal) system are defined. The crystal-
lographic systems are based on the fact, that every crystal is symmetric in some manner. The
description is given by the symmetry elements: Symmetry axes (two, three, four and six-fold
– labeled as 2, 3, 4, and 6, respectively), symmetry (mirror) plane m, inversion centre C and
inversion symmetry axes labeled as a number with bar. The external shape of the crystal is
called the habit and is given by a combination of basic crystal habits [104, 105]:

• Pedion – formed by one, unique plane.

• Pinacoid – two equivalent parallel and opposite faces symmetrical to 2-fold axis, symmetry
plane or inversion cenre.

• Sfenoid – two nonparallel equivalent faces symmetrical to 2-fold symmetry axis.

• Doma – two nonparallel equivalent and opposite faces symmetrical to symmetry plane or
2-fold axis and symmetry plane.

• Prism – three or more equivalent planes intersecting in parallel edges.
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• Pyramid – three or more equivalent planes intersecting in coomon apex.

All possible combinations of microscopic parameters form 230 space groups, without translation
components 32 point groups, see Tab. 4.1.

The particular crystal symmetry affects the shape of the tensors in the constitutive relations
(4.1)–(4.4). The crystallographic symmetry elements can be mathematically described using
transformation matrix formalism. Every crystallographic symmetry operation can be uderstood
as an operation, that transforms a set of points or a single point on itself. According to the
Neumann’s principle [106], if any crystal is invariant to certain symmetry operations according
to the crystal symmetry it belongs to, any physical property must also be invariant with respect
to these symmetry operations.

Here is an example: Consider the crystal class m (m is perpendicular to z). One possibility
of the tensor transformation is using the rotation and mirror matrices. First, we take the most
general form of tensor and apply the mirror matrix transforming z-axis into −z-axis. Comparing
the resulting tensor with the most general form with respect to the Neumann’s principle and
tensor symmetries (4.16) we obtain the tensor for a particular crystal point group. This method
requires matrix multiplication and is therefore lengthy.

Much more convenient way is to use the direct inspection method [107] introduced by Fumi
[108]. Considering the same example of the crystal symmetry m. The transformation axes are

1 → 1, 2 → 2, 3 → −3. (4.31)

From the tensor symmetries (4.16) we have

εij = εij , µij = µij , αij = −αji, gij = −gji. (4.32)

Tensors ε and µ are both transformed according to logic below:⎡⎢⎢⎣
ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

⎤⎥⎥⎦ m⊥z, εij=εji−−−−−−−−→

⎡⎢⎢⎣
ε11 ε12 −ε13

ε21 ε22 −ε23

−ε31 −ε32 ε33

⎤⎥⎥⎦ Neumann−−−−−−→

⎡⎢⎢⎣
ε11 ε12 0
ε21 ε22 0
0 0 ε33

⎤⎥⎥⎦ . (4.33)

Tensors α and g are transformed in a following way:⎡⎢⎢⎣
g11 g12 g13

g21 g22 g23

g31 g32 g33

⎤⎥⎥⎦ m⊥z, gij=−gji−−−−−−−−−→

⎡⎢⎢⎣
−g11 −g12 g13

−g21 −g22 g23

g31 g32 −g33

⎤⎥⎥⎦ Neumann−−−−−−→

⎡⎢⎢⎣
0 0 g13

0 0 g23

g31 g32 0

⎤⎥⎥⎦ . (4.34)

Using the same logic, the transformation of point group 4̄ is given:

1 → 2, 2 → −1, 3 → −3, (4.35)
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and corresponding tensors are obtained:⎡⎢⎢⎣
ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

⎤⎥⎥⎦ 4̄, εij=εji−−−−−−→

⎡⎢⎢⎣
ε22 −ε12 −ε13

−ε21 ε11 −ε23

−ε31 −ε32 ε33

⎤⎥⎥⎦ Neumann−−−−−−→

⎡⎢⎢⎣
ε11 0 0
0 ε11 0
0 0 ε33

⎤⎥⎥⎦ , (4.36)

⎡⎢⎢⎣
g11 g12 g13

g21 g22 g23

g31 g32 g33

⎤⎥⎥⎦ 4̄, gij=−gji−−−−−−−→

⎡⎢⎢⎣
−g22 g12 −g23

g12 −g11 −g13

g32 g31 −g33

⎤⎥⎥⎦ Neumann−−−−−−→

⎡⎢⎢⎣
g11 g12 0
g12 −g11 0
0 0 0

⎤⎥⎥⎦ . (4.37)

Tensors for every other symmetry are obtained analogically. The summarization is given in
Tab. 4.2.

The rotation of a crystal in a laboratory coordinate system xyz is given by a set of Euler
angles φ, θ, ψ, which completely determines the orientation of rotated x′y′z′ system relative
to xyz [109]. The rotation matrix is understood as a three consecutive transformation. First,
rotation in xy-plane by the angle φ produces new coordinate system XY z, in which the rotation
in Y z-plane about the angle φ is performed. In resulting XY Z system, last rotation in XY -
plane about the angle ψ produces the resulting x′y′z′ coordinate system. The rotation matrix
R is then

R =

⎡⎢⎢⎣
cosψ cosφ− cos θ sinφ sinψ cosψ sinφ+ cos θ cosφ cosψ sinψ sin θ

− sinψ cosφ− cos θ sinφ cosψ − sinψ sinφ+ cos θ cosφ cosψ cosψ sin θ
sin θ sinφ − sin θ cosφ cos θ

⎤⎥⎥⎦ , (4.38)

and since R is Hermitean, R−1 = RT.
Now, having the symmetries defined, we can define a general expression for the gyration

scalar parameter G introduced in (4.27) with respect to the gyration tensor g, which is defined
for every crystal symmetry in Tab. 4.2:

G = g11θ2
1 + g22θ2

2 + g33θ2
3 + (g12 + g21)θ1θ2 + (g13 + g31)θ1θ3 + (g23 + g32)θ2θ3, (4.39)

where θ1,2,3 are direction cosines in 123 coordinate system. For example, if we choose Cartesian
coordinate system, we obtain 1 → x, 2 → y, and 3 → z.
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Table 4.1: 32 crystal symmetry classes. Every crystal belongs to one of these.

Crystal system Hermann-Maugin symbol Dominant habit Chirality

Triclinic 1 Pedial Yes
1̄ Pinacoidal No

Monoclinic
2 Sphenoidal Yes
m Domatic Yes

2/m Prismatic No

Orthorombic
222 Rhombic-Disphenoidal Yes
mm2 Rhombic-Pyramidal Yes

2/m 2/m 2/m (mmm) Rhombic-Dipyramidal No

Tetragonal

4 Tetragonal-Pyramidal Yes
4̄ Tetragonal-Disphenoidal Yes

4/m Tetragonal-Dipyramidal No
422 Tetragonal-Trapezoidal Yes

4mm Ditetragonal-Pyramidal No
4̄2m Tetragonal-Scalenohedral Yes

4/m 4/m 4/m (4/mmm) Ditetragonal-Dipyramidal No

Trigonal

3 Trigonal-Pyramidal Yes
3̄ Rhombohedral No
32 Trigonal-Trapezohedral Yes
3m Ditrigonal-Pyramidal No

43̄ 2/m (3̄m) Hexagonal-Scalenohedral No

Hexagonal

6 Hexagonal-Pyramidal Yes
6̄ Trigonal-Dipyramidal No

6/m Hexagonal-Dipyramidal No
622 Hexagonal-Trapezohedral Yes

6mm Dihexagonal-Pyramidal No
6̄2m Ditrigonal-Dipyramidal No

6/m 2/m 2/m (6/mmm) Dihexagonal-Dipyramidal No

Cubic

23 Tetaroidal Yes
2/m3̄ Diploidal No
432 Gyroidal Yes
4̄3m Hextetrahedral No

4/m 3̄ 2/m Hexoctahedral No
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Table 4.2: Tensor symmetries of every point group. Note, that µ and ε, and g and α symmetries
are, respectively, equal.

Crystal symmetry Dielectric tensor ε Point group Gyration tensor g

Triclinic

⎡⎢⎣ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

⎤⎥⎦ 1̄

⎡⎢⎣g11 g12 g13
g21 g22 g23
g31 g32 g33

⎤⎥⎦

Monoclinic
⎡⎢⎣ε11 ε12 0
ε21 ε22 0
0 0 ε33

⎤⎥⎦ 2

⎡⎢⎣g11 g12 0
g21 g22 0
0 0 g33

⎤⎥⎦
m

⎡⎢⎣ 0 0 g13
0 0 g23
g31 g32 0

⎤⎥⎦

Orthorombic
⎡⎢⎣ε11 0 0

0 ε22 0
0 0 ε33

⎤⎥⎦ 222

⎡⎢⎣g11 0 0
0 g22 0
0 0 g33

⎤⎥⎦
mm2

⎡⎢⎣ 0 g12 0
g21 0 0
0 0 0

⎤⎥⎦

Tetragonal

⎡⎢⎣ε11 0 0
0 ε11 0
0 0 ε33

⎤⎥⎦
4, 422

⎡⎢⎣g11 0 0
0 g11 0
0 0 g33

⎤⎥⎦
4̄

⎡⎢⎣g11 g12 0
g12 −g11 0
0 0 0

⎤⎥⎦
4mm

⎡⎢⎣ 0 g12 0
−g12 0 0

0 0 0

⎤⎥⎦
4̄2m

⎡⎢⎣g11 g12 0
g12 −g11 0
0 0 0

⎤⎥⎦

Trigonal and Hexagonal
⎡⎢⎣ε11 0 0

0 ε11 0
0 0 ε33

⎤⎥⎦ 3, 32, 6, 622

⎡⎢⎣g11 0 0
0 g11 0
0 0 g33

⎤⎥⎦
3m, 6mm

⎡⎢⎣ 0 g12 0
−g12 0 0

0 0 0

⎤⎥⎦

Cubic
⎡⎢⎣ε11 0 0

0 ε11 0
0 0 ε11

⎤⎥⎦ 23

⎡⎢⎣g11 0 0
0 g11 0
0 0 g33

⎤⎥⎦
432

⎡⎢⎣g11 0 0
0 g11 0
0 0 g11

⎤⎥⎦
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5 Chirality in non-crystalline biisotropic media: liquids

In Chapter 3 we have seen, that the measurements of optically active solutions in order
to obtain specific rotatory powers have been always in the scope of the scientist. Those mea-
surements have a huge imperfection, because they are still being performed using polarimeters
operating at a single wavelength. In this Chapter, we present a novel technique of rotatory
power measurements using Mueller matrix ellipsometry. The advantages and capabilities of this
method will be demonstrated on water solutions of simple saccharides.

5.1 Eigenmodes propagating in chiral liquids

The constitution equations (4.17) are generally valid for an arbitrary bianisotropic medium.
It is not surprising, that the liquids possess no crystal symmetry. However, optically active
solutions exhibit the additional effect of the chirality and thus, they can not be characterized as
a classic isotropic media. We call these media biisotropic [110]. The constitutive relations for
biisotropic non-magnetic media have the form

D = εE0 + iαH0, (5.1a)

B = H0 − iαE0, (5.1b)

where tensors ε and α from (4.17) are substituted by scalars ε, α, respectively, and permeability
tensor becomes a unit matrix (µ = diag [1 1 1]T).

If we choose transmission straighthrough measurements in the Cartesian coordinate system,
the incoming wave is propagating along the z-axis, therefore n = [0 0 1]T. The determinant of
Eq. (4.24) can be rewriten as⏐⏐⏐⏐⏐⏐⏐⏐

⎡⎢⎢⎣
ε 0 0
0 ε 0
0 0 ε

⎤⎥⎥⎦+

⎡⎢⎢⎣
0 −2inα 0

2inα 0 0
0 0 0

⎤⎥⎥⎦+

⎡⎢⎢⎣
−n2 0 0

0 −n2 0
0 0 0

⎤⎥⎥⎦−

⎡⎢⎢⎣
α2 0 0
0 α2 0
0 0 0

⎤⎥⎥⎦
⏐⏐⏐⏐⏐⏐⏐⏐ = 0, (5.2)

leading to the biquadratic equation in terms of n with solutions

n1,2 =
√
ε± α = n± α. (5.3)

The eigenmodes refractive indices n1 and n2 are related with the left-circular and right-circular
polarized light, respectively, propagating in the chiral liquid. Refractive index n is the refraction
index of the soution without the effect of chirality.

Note, that using constitutive relations (4.1) and Yeh’s matrix formalism, given eigenvalue
problem is leading to the equation [111](

n2 − n2
1

) (
n2 − n2

2

)
= G2, (5.4)
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with solution
n1,2 = n± G

2n. (5.5)

Comparing the results obtained using Fedorov approach and Yeh approach, we immediately
obtain equality

α = G

2n. (5.6)

This result is consistent with Eq. (4.25), because

(
αm× + m×αT

)
=

⎡⎢⎢⎣
2α 0 0
0 2α 0
0 0 2α

⎤⎥⎥⎦
⎡⎢⎢⎣

0
0
n

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0

2nα

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
G

⎤⎥⎥⎦ = gm. (5.7)

The gyration tensor α is not very commonly used across the Western literature. Since those ten-
sors are mutually convertible, the following models will be expressed in terms of g or equivalently
in terms of G instead.

5.2 Chirality of simple saccharide diastereoisomers

The basic building block of every (complex) saccharide is a monosacharide. Molecule of a
monosaccharide (monosugar) is formed by six-membered (pyranose) or five-membered (furanose)
rings. Those rings can be attached together forming gradually a disaccharide, trisaccharide,
attaching n rings together will form general polysaccharide. Note, that lower monosaccharides
and lower forms of oligosaccharides (usually up to disaccharides) are loosely called sugars. Every
molecule of a monosaccharide exists in three forms: α, open-chain, and β. The open-chain
form of sugar contains carbonyl group (=O) attached to a carbon, which is called the anomeric
carbon [46]. The absolute configuration of a molecule (see Fig. 5.1) is given by the position of the
hydroxyl (OH) group attached to anomeric carbon with respect to C5/6 (C5 for fructofuranose,
C6 for glucopyranose) hydroxyl group. Antiperiplanar configuration of hydroxyl groups gives
an α-anomer, while synperiplanar configuration stands for a β-anomer. The anomeric carbon is
therefore asymmetric, and constitutes the chirality centre of a molecule. The role of the achiral
open-chain form is the transition between α and β forms, which are chiral and its rotatory
powers are different [112].

The reaction kinetics of sugars in solutions diametrically differs from the sugar kinetics
in living organisms. For example, by melting (dissolving) of five-membered D-fructose, we
get equilibrum solution of all other anomers, even the six-membered ones. For example, the
equilibrum state of D-fructose water solution is 70 % of β-pyranose, 2 % α-pyranose, 23 %
β-furanose, 5 % α-furanose and 0.7 % of an open-chain form [113]. However, solution of pure
n-ring α-anomer will tend to the racemic mixture of n-ring α and β-anomers only. This effect
is called the mutarotation, it was discovered in 1846 by Dubrunfaut on a glucose [114], and is
temperature-dependent. For example, melting α-lactose at temperature higher then 93.5 ◦C, the
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Figure 5.1: Diastereoisomers of glucose (glucopyranose) and fructose (fructofuranose). The
difference between α and β forms is given by synperiplanaraity or antiperiplanarity of hydroxylic
OH groups on anomeric carbon with respect to hydroxylic group on C6 (glucose) or C5 (fructose).
The bold lines represent bonds facing towards the reader, dashed bonds opposite to reader. The
two corresponding forms are arranged as their own mirror images. It is obvious, that those
structures are chiral.

equilibrum of the solution is strongly shifted, and the resulting solution is composed mainly of
lactose β-anomers [115].

5.3 Modelling the chiral liquids

The Mueller matrix spectroscopic ellipsometer (Woollam RC2-DI) with the spectral range
from 193 nm to 1700 nm was set to the transmission configuration at normal angle of incidence
for all experiments involving the optically active liquids. The measurement technique involves
the solution of some optically active chemical compound poured in the glass cuvette with a cap.
The cuvette is placed between PSG and PSA to the sample holder, and as the light beam passes
through the optically active solution, the polarization plane rotation is detected.

The optical response is given by a Mueller matrix. If we take the rotation Jones matrix from
Eq. (2.12), and apply transformation (2.16), the transmission Mueller matrix for optically active
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solution is derived

M =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0
0 cos 2αobs sin 2αobs 0
0 − sin 2αobs cos 2αobs 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ . (5.8)

The angle αobs represents the observed angle of the polarization plane rotation. This quantity is
dependent on the ammount of the chemical dissolved (represented by a concentration c) and on
the length of the cuvette d – the longer the cuvette, the greater the observed rotation. Therefore,
the quantity specific rotatory power (comp. to Eq. [3.1]) is defined for each compound as

[α]Tλ = αobs
l c

(5.9)

at given wavelength λ and temperature T . The spectral dependence of αobs is given by

αobs = 2π
λ

(n2 − n1) , (5.10)

where the refractive indices n1,2 are defined in Eq. (5.5). Substituting from (5.5), the measured
quantities 2αobs in Mueller matrix (5.8) are given:

αobs = πG

2nλ, (5.11)

where G is the scalar gyration parameter for a particular chiral liquid and n is the refraction
index of the non-chiral solution. The dispersion model of solvent can be generally described
using Sellmeier dispersion model (comp. [3.3]),

n2(λ) = 1 +
N∑

i=1

Aiλ
2

λ2 −B2
i

. (5.12)

The dispersion of scalar gyration parameter (or gyration tensor component) was introduced by
Arteaga et al. in [116, 117, 118]:

gii(λ) = G(λ) = Aiλ
3(

λ2 − B2
i

)2 . (5.13)

Its derivation is based on a quantum-mechanical model of rotatory power dispersion developed
by Chandrasekar [119, 120]

αobs = A0λ
2

(λ2 − B2)2 , (5.14)

which was experimentally validated many times. Considering Eq. (5.11), the dispersion model
(5.13) is found easily from (5.14).
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5.4 Ellipsometric measurements of saccharide solutions

To demonstrate the viability of proposed method, the measurements of basic and well-known
chemical compounds were conducted. The simple saccharides – glucose (Glc), fructose (Fruf)
and sucrose (Sach) – belong among the best explorated compounds in terms of optical activity
and their specific rotatory powers (at λ = 589 nm) are commonly tabelated. This fact gives us
a good reference frame, whether our measurements are valid or not.

Distilled water from Verkon, 99% D-(+)-Glucose, 99% D-(−)-Fructose and 99% D-(+)-
Sucrose from Lachner were used for the experiment. For each sugar, concentration of c =
0.25 mol/dm3 ≡ 0.25 M was chosen, as it is a good compromise between getting a reasonable
optical response and avoiding the dispersion changes. The solutions were prepared according to
fundamental equation

m = cMV, (5.15)

where m is the mass of the saccharide, M is the saccharide molar mass, and V is the solution
volume. Prepared solutions were measured after at least 4 hours from the preparation to ensure
the termination of any eventual mutarotation effects. Note, that in practice, sugars are almost
infinitely miscible with water, and such a solutions are very dense and inhomogenous – an
example of such a natural solution is well known to everyone20. The high density could possibly
lead to the inhomogenity of the solution, and the gyration parameter could not be obtained
precisely.

From obtained Mueller matrix spectra, wavelength range from 350 nm to 1140 nm was
treated. UV region is cut short due to glass absorption and NIR region due to molecular
vibrations and signal losing. The calculations were performed on m23 and m32 elements only,
because at given relatively small concentrations of solutions, the observed polarization rotation
is not bigger then ±5◦. Therefore, m22 and m33 cosine elements are at their extremas, and are
insufficiently sensitive. On the contrary, m23 and m32 are at their inflex points and are therefore
very sensitive. The typical experimental Mueller matrix of chiral solution is showed in Fig. 5.2.
These experimental data are obtained from the measurements of extremely concentrated glucose
solution.

The spectra ofm23, m32 elements were fitted by a dispersion model given by (5.11) and (5.13).
The refractive index of water was taken tabelated (according to the laboratory temperature) from
[121] in the form of four-term Sellmeier dispersion model. Fitted parameters of G(λ) dispersion
for each compound are summarized in Tab. 5.1. Strictly speaking, the dispersion of the water
refractive index is changed with addition of the sugar regardless the chirality. It was shown [122],
that those changes are below 1 % for solutions up to 5 % analyte to solvent mass ratio. The
concentration of 0.25 M corresponds to approx. 4.5 % analyte to solvent mass ratio. Therefore,
it is justifiable to use tabelated water dispersion. From the models, the corresponding values of
[α]22

λ were calculated using (5.9). Figure 5.3 shows the fitted dispersion of G(λ) and calculated
20“Honey, do you love me, huh?” Hank Williams, Sr.
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Figure 5.2: Typical experimental transmission Mueller matrix of highly concentraed chiral liquid.

Table 5.1: Fitted parameters of G(λ) dispersion at 22◦C with λ in nanometers.

Compound A B

D-(+)-Glc 0.01173 0.12310
D-(−)-Fruf −0.01926 0.11140
D-(+)-Sach 0.02696 −0.11404

spefici rotatory powers [α]T22 for each sugar. Note, that the dispersion curves [α]22
λ (λ) for Glucose

and Sucrose show similar values of specific rotation. However, corresponding dispersion curves
of G(λ) show, that the response of Sucrose is approximately double as the Glucose response.
This is due to different M values of Glucose and Sucrose. To prepare 0.25 M solution of both
the saccharides, double ammount of Sucrose must be dissolved in comparison with Glucose. The
tabulated values of [α]22

λ are usually given for λ = 589 nm, therefore, values [α]22
589 are highlighted

and they are in a good match with the tabelated values, see Tab. 5.2. The slight missmatch
between the experimental and tabulated values is due to: First, experimental and tabulated
values were measured at mildly different temperatures. Second, the impact of an imperfect
preparation of the solution – concentration deviations originating in approximate reading of the
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volume values at volumetric flask together with the errors from weighing. We have already
showed these basic Mueller matrix spectroscopic measurements published in [127].
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Figure 5.3: Modelled spectral dependencies of the specific rotatory power [α]22
λ and scalar gyra-

tion parameter G of D-Glucose, D-Fructose, and D-Sucrose. To compare the fitted values with
the literature, the values for λ = 589 nm are shown.

Table 5.2: Comparison of specific rotations obtained by our experiment with tabelated values.

Compound Exp: [α]22
589 Tab: [α]20

589 [123]

D-(+)-Glc 55.34 52.70
D-(−)-Fruf −89.48 −92.00
D-(+)-Sach 66.21 66.37

According to the CompleteEASE manual [128], the Mueller matrix element sensitivity is
0.001. Assuming that in theory, the value of mij = 0.001 is the lowest value, at which the signal
can be distinguished from the noise, the theoretical minimal detectable concentration of chiral
compound in solution can be determined. The precision of the analytical scales is ±0.001 g, and
the volumetric flask is calibrated to 25 ml ± 0.01 ml. The ultimate sensitivity and precision of
proposed method for a particular chemical compound can be therefore determined. The minimal
concentrations cmin and corresponding errors ∆c caused by the preparation technique are given
in Tab. 5.3.
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Table 5.3: The theoretical ultimate sensitivity of the proposed method. Experimental errors are
raised due to the solution preparation technique.

Solution cmin ± ∆c (mmol/dm3)

D-(+)-Glc 12.0 ± 2.5
D-(−)-Fruf 6.8 ± 2.5
D-(+)-Sach 5.0 ± 2.5

5.5 Mutarotation kinetics

The kinetics of a chemical reaction is usually computed for concentrations of reactants. Since
we know, that the concentration c is proportional to specific rotatory power [α], the reaction
kinetics can be expressed in terms of [α]. Please make note, that for following purposes, the
symbol [α] will stand for a specific rotatory power of α-D-Glucose, and [β] for a specific rotatory
power of β-D-Glucose.

The mutarotation rate equation is described by the reverse reaction in the form

α-D-Glucose k⇒−−⇀↽−−
k⇐

β-D-Glucose, (5.16)

where k⇒ is the forward mutarotation rate constant and k⇐ is the reverse mutarotation rate
constant. The reaction kinetics is given by first-order differential equation [124, 125, 126]

d [α]
dt = −d [β]

dt = k⇒ [α] − k⇐ [β] , (5.17)

with boundary conditions

[β]t=0 = 0, (5.18a)

[α]t=0 = [α]0 . (5.18b)

In any time t, [β] = [α]0 − [α] is satisfied. Substituting into (5.17), we get

d [α]
dt = (k⇒ + k⇐) [α] + k⇐ [α]0 . (5.19)

If we assume an equilibrium state of the reaction (d [α] /dt = 0), the equilibrium rotatory power
of α-anomer can be directly calculated:

[α]eq = k⇐
k⇒ + k⇐

[α]0 . (5.20)
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Substituting back into (5.19), following equation is calculated straightforwardly:

d [α]
[α] − [α]eq

= (k⇒ + k⇐) dt. (5.21)

After integration and performing exponentiation, we get

[α] = Ce−(k⇒+k⇐)t + [α]eq , (5.22)

where the integration constant C can be directly determined from (5.18b), which provides us
with the resulting formula

[α] = [α]eq +
(
[α]0 − [α]eq

)
e−kt, (5.23)

where the total rate constant k
k ≡ k⇒ + k⇐, (5.24)

was introduced. By substituting (5.23) into (5.19) and assuming (5.24), relation between for-
ward, reverse and total rate constants are derived as follows:

k⇐ =
[α]eq
[α]0

k, (5.25a)

k⇒ = k − k⇐ =
(

1 −
[α]eq
[α]0

)
k. (5.25b)

Distilled water from Verkon and 96% α-D-Glucose from Sigma were used for the experiment.
The chemicals were left intact in well-tempered laboratory (t = 25 ◦C) to guarantee the tem-
perature stability. 1.126 g of α-D-Glucose was dissolved in 25 ml of distilled water. The freshly
prepared solution was poured into the 5.004 cm long glass cuvette with cap. The first measure-
ment was conducted after 5 minutes from the solution preparation. For the first 70 minutes, the
measurements were repeated within a 5 min span, and within a 10 min span after that. The last
measurement was performed 160 min after the solution preparation.

The spectral dependencies of calculated specific rotatory powers were fitted all together using
model given by Eq. (5.23). The comparison between data and model are showed in Fig. 5.4 for the
wavelength λ = 589 nm. The mutarotation rate constants were calculated using equations (5.24)
and (5.25). The obtained values are in a quite good agreement with literature [129, 130], see Tab.
5.4. Note, that in Ref. [129], the part of the discussion included the influence of wavelength used

Table 5.4: α-β Glucose mutarotation rate constant comparison.

Constant (s−1) This work (25 ◦C) Kendrew et al. (20 ◦C) [130] Lin et al. (22 ◦C) [129]

k 3.531 · 10−4 2.473 · 10−4 7.670 · 10−5

k⇒ 2.033 · 10−4 9.028 · 10−5 2.760 · 10−5

k⇐ 1.498 · 10−4 1.570 · 10−4 4.910 · 10−5
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Figure 5.4: The change in the concentration of α Glucose anomer over time. The mutarotation
rate constants are obtained from the exponential fit. The horizontal asymptote corresponds to
the equilibrium state between α and β anomer.

for the analysis. We would like to emphasize, that it really does not matter, what wavelength
of light (in non-absorbing region of the molecule) is chosed – the mutarotation kinetics must
remain the same. This is a huge strength of our ellipsometric method of this measurement. The
rate constants are calculated from a hundreds of spectral points and are therefore obtained with
much better precision in a contrast with a single wavelength measurements, which are, to our
knowledge, the only measurements, which have been conducted so far.

5.6 Temperature-dependent measurements

One important way of saccharide classification is whether they are reducing or non-reducing.
The majority of saccharides contains an aldehyde group (CH-O) or a ketone group (C=O) in its
structure. If those groups are present in an arbitrary chemical structure, it can be oxidized to
carboxylic acid, while other reactant is being reduced. Saccharides, that contain the carbonyle
group (aldehyde or ketone group) are called reducing, and sugars that does not contatin the
carbonyle group are called non-reducing. The carbonyle group is giving a possibility to open
the closed chain of the saccharide and thus the saccharide can switch between its α and β form
(see and compare with Sec. 5.2). These saccharides therefore undergo mutarotation effects. An
example of sucrose and lactose is given in Fig. 5.5.

For the temperature controlled measurements, we modified the sample holder of commercial
Woollam RC2-DI Mueller matrix ellipsometer using our homemade, partly 3D-printed appa-
ratus. The complete scheme is shown in Fig. 5.6 and the photography is shown in Fig. 5.7.
The experimental setup is based on the heating control of the cuvette, which is placed between
couple of Peltier devices. The heating power is controlled using 1 kW current generator with
the current range of ±20 A. The actual temperature of the solution is detected by the Platinum
temperature sensor PT100 connected to the digital thermometer with ±1 ◦C accuracy.
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Figure 5.5: Sucrose is a disaccharide condensated from Glucose and Fructose. The glycosidic
bond (–O–) attaches two rings together in such a manner, that there is no free hydroxyl OH
group close enough to oxygen atom able to reforms a carbonyle group. Therefore, sucrose is a
non-reducing sugar with no mutarotation. Lactose (Galactose-Glucose condensate) may exists
in its α and β form due to oxidizing properties of the carbonyle group.

Heatsink and fan

Cuvette

Waterblock
Peltier device

PT100

Peltier device

Waterblock ThermometerMotor unit

Stirring bar
Detector Source

A PCC

Figure 5.6: Mueller matrix ellipsometer experimental setup designed in our laboratoy for a
temperature control measurements of optically active solutions.

To ensure the stability and viability of the experimental system, a test measurement on D-
Sucrose was conducted. Sucrose is a non-reducing sugar with no mutarotation effects, therefore,
the specific rotatory power of the sucrose solution must remain the same, if the temperature is
changed. Concluding, the temperature-dependent measurements of the 0.25 M sucrose solution
are very sensitive to any possible leakage of the vapours from the sealed cuvette, because if the
concentration of the solution increases, specific rotatory power increases as well.

The temperature of the solution has been raising gradually with 5 A increment of the gen-
erator current. Figure 5.8 shows the spectral dependency of specific rotatory power over the
temperature. For the estimation of the experimental errors, we have to redraw this figure into
the special form. Figure 5.9 shows the Fig. 5.8 from the aerial view (bird’s eye perspective).
The values of [α]Tλ are divided into a few equi-wavelength segments. The values of [α]Tλ must
remain the same as the temperature increases (dashed black verticals), however small deviations
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Figure 5.7: Photo of the homemade experimental setup. The cuvette (A) is placed between the
couple of Peltier devices connected to the cooling waterblocks (B) to get rid of the junk heat
through the heatsink with fan (C). To keep the solution homogenous (esp. at high temperatures
and concentrations), the magnetic stirring bar is placed inside the cuvette and is rotated using
the motor unit (E) with permanent magnet. The temperature is controlled using PT100 sensor
(D) connected to digital thermometer (F).

are observed especially in the NIR region. This is due to a minor vapour leakage of the cuvette.
Nevertheless, the maximum error in [α]Tλ is less then 1 % and it was detected only for very high
temperatures close to the solution boiling point (rapid evaporation).

Wavelength (nm)

350500650 800 950 1140 Temperature ( C)

2535455565758593

D-
Su

cr
os

e 
[

]T

25
50
75
100
125
150
175
200

D-Sucrose [ ]T exp. stability under temp. changes

25
50
75
100
125
150
175
200

Figure 5.8: Specific rotatory power of non-reducing sucrose solution over the wavelength and
the temperature.

The proposed method of the temperature-dependent specific rotatory power measurements
seems to be a powerful and fast technique for the mutarotation kinetics determination. However,
the apparatus hull is mainly composed of 3D-printed fragile plastics with low life excpectancy and
together with the sealing imperfections, some experimental errors are raised. The manufacture
of more rigid (e.g. duralumin) hull and more effective design of the cuvette sealing may be the
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Figure 5.9: Specific rotatory power of non-reducing sucrose solution over the wavelength and
the temperature. The vertical segments (dashed line) represent an ideal measurement without
concentration changes. The experimental values of [α]Tλ are not constant with increasing tem-
perature especially within the NIR range, which indicates a vapour leakage from the cuvette.
The maximum experimental error in [α]Tλ is less then 1 %.

way, how to perform the chemical kinetics measurements reproducible way.
On the other hand, the proposed temperature control system offers unique and suitable way

of temperature controlled measurements using temperature not too much close to the boiling
point of used solution.
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6 Chirality in non-absorbing media of the trigonal point group
32

The particular form of a dielectric tensor ε defines the principal axes of corresponding
medium (crystal). The principal axes of a crystal are connected with the principal refraction
indices. If those refraction indices are different (n11 ̸= n22 ̸= n33), we call such a medium biaxial.
If n11 = n22 ̸= n33, the crystal is uniaxial. Usually, the z axis of the unaxial crystal is called
the optic axis, which is the unique direction in the crystal, in which no linear birefringence of
propagating light occurs. Other directions leads to the linear birefringence effect, which causes
the splitting of the incident monochromatic plane wave on the crystal boundary. Given a direc-
tion of the propagation in the medium, there exist two eigenwaves, each governed by a different
index of refraction. In biaxial crystals, two optic axes are present.

From now on, we will discuss the uniaxial crystals only. Those crystals belong to tetragonal,
trigonal and hexagonal crystal symmetries.

6.1 Propagating eigenmodes

The eigemodes propagating in uniaxial crystals must be evaluated with respect to the orien-
tation of the crystal and the direction of propagating wave. Figure 6.1 shows two configurations,
which will be evaluated next.

OA

OA

n n
θ = 90◦θ = 0◦

a) b)

xy
z

Figure 6.1: Two main configurations of the uniaxial crystal. The incident wave is given by the
vector n. The configuration a) shows the case, when light propagates parallel to the optic axis
(OA). Case b) corresponds to the configuration, when the light passes perpendicular to the optic
axis (angle between OA and n is given by θ = 90◦.)

6.1.1 Eigemnodes propagating parallel to optical axis

First, eigenmodes propagating parallel to optic axis will be derived. The material tensors
for (non-magnetic) uniaxial crystal are (using Tab. 4.2)

ε = diag [ε11, ε11, ε33] , α = diag [α11, α11, α33] , µ = diag [1, 1, 1] . (6.1)
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Eq. (4.24) with respect to (4.25) takes the form:(
ε + m×m× + i [gm]× − ααT

)
E0 = 0, (6.2)

where

[gm]× =

⎡⎢⎢⎣
⎡⎢⎢⎣
α11 + α33 0 0

0 α11 + α33 0
0 0 2α11

⎤⎥⎥⎦
⎡⎢⎢⎣

0
0
n

⎤⎥⎥⎦
⎤⎥⎥⎦

×

=

⎡⎢⎢⎣
0 −2nα11 0

2nα11 0 0
0 0 0

⎤⎥⎥⎦ . (6.3)

Solving the determinant of (6.2) leads to the biquadratic equation

(
ε33 − α2

33

) [(
ε11 − n2 − α2

11

)2
− 4n2α2

11

]
= 0, (6.4)

from which the calculated eigenmodes (k = {1, 2, 3, 4}) propagating in the uniaxial crystal
parallel to the optic axis nk, ∥ of the crystal are

nk, ∥ = ±n± α11. (6.5)

Note, that if we turn off the optical activity (α11 = 0), we get the solution for the isotropic
medium, which is a correct solution, since the wave propagation coincide with the direction of
the optic axis, and thus no birefringence occurs.

6.1.2 Eigenmodes propagating perpendicular to optical axis

The idea, how to calculate the eigenmodes propagating perpendicular to the optic axis is
exactly the same, as in the case of the propagation parallel to the optic axis. Therefore, (6.2)
can be applied. The normal incidence remains the same (n = [0, 0, n]T), however, crystal
orientation must be evaluated. Using the rotation matrix from (4.38) in the form

R (φ = 0◦, θ = 90◦, ψ = 0◦) =

⎡⎢⎢⎣
1 0 0
0 0 1
0 −1 0

⎤⎥⎥⎦ , (6.6)

all tensors in (6.2) must be transformed. Note, that the transformation of [gm]× must be
evaluated properly. One possible way is to transform α and m× first, and use (4.25) then. The
other way is to use (4.2), so the transformation takes the form

R (0◦, 90◦, 0◦)
[
tr (α) I − αT

]
RT (0◦, 90◦, 0◦) . (6.7)
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Either way is leading to the solution of determinant (6.2) and to biquadratic equation(
ε11 − n2 − α2

11

) (
ε11 − α2

11

) (
ε33 − n2 − α2

33

)
− 4n2α2

11

(
ε11 − α2

11

)
= 0. (6.8)

The analytical solution of the biquadratic equation evaluated up to the second-order in α takes
the form

n2
k, ⊥ = 1

2

[
(ε11 + ε33) +

(
α2

11 − α2
33

)
±
√

(ε11 − ε33)2 + α2
11 (6ε11 + 10ε33) + 2α2

33 (ε11 − ε33)
]
.

(6.9)
If we turn off the optical activity (by setting α11 = α33 = 0), we get a standard set of eigenmodes
for common anisotropic non-gyrotropic uniaxial crystal:

n1,3 (α = 0) =
√
ε11 = nordinary, (6.10)

n2,4 (α = 0) =
√
ε33 = nextraordinary. (6.11)

6.2 Mueller matrix of gyrotropic uniaxial retarder

The most common uniaxial gyrotropic material is the quartz. The quartz crystals belong
to the trigonal symmetry of point group 32. It is very common, that precisely grown quartz
monocrystals are used for the retardation optical elements – waveplates. Waveplates are gen-
erally made from a slab of uniaxial optical materials of a certain thickness. Despite the fact,
that the quartz is optically active material, it has usually no impact on the performance of the
waveplate, because the optical axis of the quartz waveplate is oriented perpendicular to the
direction of the wave propagation, and the effect of optical activity is very small. However, if
this material is gyrotropic, this effect should be detectable and measurable anyway.

In the following text, we will reffer on our research, Equations, and Figures, which are shown
in the attached article in Appendix C. The article was published by us [131]. In this work [131],
see Appendix C, we studied quartz waveplates using spectral Mueller matrix ellipsometry in
the transmission configuration in the wide spectral range from 193 to 1700 nm. The waveplates
were analyzed in the configuration shown in Fig. 6.1b. In this study we have shown, that the
effect of non-zero circular birefringence (CB) is present (Fig. C.5, Eqs. [C.6], [C.7]) (using the
Lu-Chipman decomposition, Eq. [C.5]), which can be possible if and only if the material is
gyrotropic. Moreover, we have proved, that the non-zero CB could not arise from various other
effects as, for example, waveplate misalignement. The model of the studied waveplates was based
on the Mueller matrix for a linear retarder (Eq. [B.3], [C.1]). To properly fit measured data, we
modeled influence of the finite monochromator bandwidth, which in our case corresponds to the
spectral resolution of dispersion grating and finite pixel size of the CCD detector. The model is
based on an incoherent summation of the Mueller matrices with Gaussian spectral profile, see
Eqs. (C.3), (C.4). The fit on the experimental data is shown in Fig. C.1, and the fit stability is
demonstrated in Fig. C.3.
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However, in this study, the phenomenon of the optical activity wasn’t described using a
rigorous model of the Mueller matrix. In the following text, we propose the derivation of the
rigorous Mueller matrix model of uniaxial chiral media.

To derive the Mueller matrix of gyrotropic uniaxial retarder, related Jones matrix have to
be calculated in the first place. The transmission Jones matrix, which describes an arbitrary
non-depolarizing transmission optical system (A.15) is given as

T = 1
χe1 − χe2

[
χe1Ve2 − χe2Ve1 Ve1 − Ve2

−χe1χe2 (Ve1 − Ve2) χe1Ve1 − χe2Ve2

]
, (6.12)

where χe1,e2 are the eigenpolarizations of the optical system, and Ve1,e2 are the eigenvalues
associated with the eigenpolarizations, and are related by Eq. (A.13)

TJe = VeJe, (6.13)

where T is the transmission Jones matrix, and Je is the eigenpolarization Jones vector. This
equation shows, that if a pair of eigenpolarization is transmitted through an optical system
described by T, the eigenpolarizations remains the same except for the eigenvalue multiple. The
detailed derivation is showed in Appendix A. The transmission Jones matrix of elliptical retarder
is obtained by setting [2] χe1 = χef , χe2 = χes, Ve1 = ei∆/2, and Ve2 = ei∆/2. The eigenpolariza-
tion χe1 is phase-advanced by ∆/2, therefore χef represents the fast eigenpolarization, while the
eigenpolarization χe2 is phase-retarded by ∆/2, and χes represents the slow eigenpolarization.
The phase angle ∆ represents the retardance of the elliptic retarder, and is given by the relation

∆ = 2π
λ

(nEL+ − nEL–) d, (6.14)

where nEL+,EL– are the refractive indices of two mutually orthogonal elliptic eigenpolarizations,
and d is the thickness of the material. The eigenpolarizations χef,es are orthogonal, and are
therefore related by the orthogonality condition

χefχ
∗
es = χ∗

efχes = −1. (6.15)

Therefore, the Jones matrix for an elliptic retarder can be obtained from (6.12) as

T = 1
1 + χχ∗

⎡⎣ ei ∆
2 + χχ∗e−i ∆

2 2iχ∗
(
ei ∆

2 − e−i ∆
2
)

2iχ∗
(
e−i ∆

2 − ei ∆
2
)

χχ∗ei ∆
2 + e−i ∆

2

⎤⎦ = 1
1 + χχ∗

⎡⎣ei ∆
2 + χχ∗e−i ∆

2 2iχ∗ sin ∆
2

2iχ sin ∆
2 χχ∗ei ∆

2 + e−i ∆
2

⎤⎦ .
(6.16)

Every Jones vector can be represented by the complex polarization parameter χ as follows (see
(A.2)):

J =
[

1
χ

]
, (6.17)

70



The complex polarization parameter completely defines the polarization ellipse of the polarized
light. The Jones vector of elliptically polarized wave is

J =
[

cos ϵ
i sin ϵ

]
=
[

1
i tan ϵ

]
≡
[

1
iκ

]
, (6.18)

where tan ϵ = κ and it determines the ellipticity (see Fig. 6.2), therefore it determines the
polarization state of the wave.

1

ε

ϕκ
x

y

Figure 6.2: The polarization ellipse. Without loss of generality, we can set the length of the main
half-axis to be unit. The ellipticity of the polarization ellipse can be defined using tan ϵ = κ

1 .

The Jones matrix of elliptical retarder can be derived by setting χ = iκ:

T = 1
1 + κ2

⎡⎣ei ∆
2 + κ2e−i ∆

2 2κ sin ∆
2

−2κ sin ∆
2 κ2ei ∆

2 + e−i ∆
2

⎤⎦ . (6.19)

Now, the Mueller matrix of elliptical retarder can be derived using (2.16). We will show the
Mueller matrix linearly approximated in κ:

MR,EL(∆, κ) =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1 2κ sin ∆ 4κ sin2 ∆

2
0 −2κ sin ∆ cos ∆ sin ∆
0 4κ sin2 ∆

2 − sin ∆ cos ∆

⎤⎥⎥⎥⎥⎥⎦ (6.20)

Using the Mueller rotation matrix R from (B), the Mueller matrix of elliptical retarder at
different azimuthal rotation φ is given by

MR,EL(φ, ∆, κ) = RT(φ) MR,EL(∆, κ) R(φ). (6.21)
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The general expression of the matrix MR,EL(φ, ∆, κ) can be separated into two parts as

MR,EL(φ, ∆, κ) = MR,LIN(φ, ∆) + NOA(φ, κ), (6.22)

where

MR,LIN(φ, ∆) =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0
0 cos2 2φ+ cos ∆ sin2 2φ (1 − cos ∆) sin 2φ cos 2φ − sin 2φ sin ∆
0 (1 − cos ∆) sin 2φ cos 2φ sin2 2φ+ cos ∆ cos2 2φ cos 2φ sin ∆
0 sin 2φ sin ∆ cos 2φ sin ∆ cos ∆

⎤⎥⎥⎥⎥⎥⎦ ,
(6.23)

is the Mueller matrix for a non-gyrotropic linear retarder, and

NOA(φ, κ) =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0
0 0 −2κ sin ∆ 4κ cos 2φ sin2 ∆

2
0 2κ sin ∆ 0 4κ sin 2φ sin2 ∆

2
0 4κ cos 2φ sin2 ∆

2 4κ sin 2φ sin2 ∆
2 0

⎤⎥⎥⎥⎥⎥⎦ , (6.24)

is the perturbation matrix describing the linear effect of the optical activity separately. Note,
that the matrix NOA(φ, κ) is not the Mueller matrix, because it does not satisfy the physical
conditions, which every Mueller matrix must fulfil. However, the separability of the gyrotropic
and non-gyrotropic properties of the proposed Mueller matrix MR,EL(φ, ∆, κ) will be advanta-
geous in the understanding and in the physical interpretation of measured samples. Moreover,
if we turn the optical activity off (κ = 0), we will obtain equality MR,EL(φ, ∆, κ = 0) =
MR,LIN(φ, ∆), and the resulting Mueller matrix will stand for a description of linear retarder,
which is a correct limit exampple.

The only quantity, which must be evaluated now is the parameter κ describing the chirality.
The quantity κ describes the polarization properties of the light. Therefore, it is convenient
to use the displacement vector D instead of E, because D is always perpendicular to the
propagation direction. Also, it is convenient to use Born-Landau material constitutive relations
(4.1) and to define the inverse permittivity tensor ε−1. The Eq. (4.1a) is then rewriten as

E = ε−1D + iD × G. (6.25)

It can be shown [101, 111], that we can solve the eigenvalue problem (4.28) with respect to the
particular form of the constitutive relation in the coordinate system (D1, D2, z), so that z ⊥
D1 ∧ z ⊥ D2. If we solve the eigenvalue problem (4.28), the ellipticity of the eigenpolarizations
can be calculated as the ratio between the polarizations D1 and D2. The ellipticity parameter
κ is then defined as

κ = 1
2G

[(
n2

2 − n2
1

)
−
√(

n2
2 − n2

1
)2 + 4G2

]
, (6.26)
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where n1,2 are the eigenmodes of the uniaxial medium and G is the scalar gyration parameter.
From (4.39) and using Tab. 4.2, the gyration scalar parameter for quartz crystal (of point group
32) is given as

G = g11 sin2 θ + g33 cos2 θ. (6.27)

The gyration tensor components g11 and g33 can be modeled using the dispersion model (5.13),
and the angle θ is known from the configuration of the experiment (see Fig. 6.1).

We hope, that the proposed method of modelling the Mueller matrix for chiral uniaxial
media, will be a suitable tool for the rigorous description of the experimental data of a quartz
waveplate, which will be a logic continuation of our work published in [131] and which is attached
in Appendix C.
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7 Conclusion and perspective

The original contribution of the author of the thesis:

• We have proposed a novel technique, how to measure the effect of the optical activity
in the chiral liquids (glucose, fructose, sucrose solutions) using the spectroscopic Mueller
matrix ellipsometry. The huge advantage of our method is the broad spectral range over
which the values of specific rotatory power are calculated (Fig. 5.3).

• We are able to determine the angles of arbitrary polarization plane rotation absolutely,
which is in a contrast with the single wavelength measurements [127]. The theoretical limits
of the concentration detection and the measurement precision were determined (Tab. 5.4).

• The mutarotation rate constants for the mutarotation reaction of Glucose anomers were
obtained (Fig. 5.4) with high precision (Tab. 5.3). The results, together with the mutaro-
tation kinetics of fructose, lactose, and tartaric acid, are planned to be published.

• We developed an unique temperature control system (Figs. 5.6, 5.7) with high stability for
the specific rotatory power measurements (Fig. 5.9).

• Optical activity of uniaxial quartz used for compensator plates was determined. We cal-
culated a theoretical model of Mueller matrix (Eqs. [6.22]–[6.24]) for a quartz waveplate
elliptic retarder assuming the effect of the optical activity.

• We discussed various effects arising in Mueller algebra and we connected them with the
experiments. Those include mainly:

– Experimental demonstration of the components of purity for Mueller matrix of wire-
grid polarizer and composed quartz waveplate, Fig. 2.4, see Appendix C.

– We discussed effects of the sum decomposition on the ideal thin film system designed
for the SPR measurements, Fig. 2.2

Perspectives for future work:

• To gain a deep understanding of the theoretical Mueller algebra and connect the theoretical
quantities with a proper experiment to demonstrate their meaning.

• To measure and model the temperature-dependent mutarotation kinetics of various chiral
molecules (monosaccharides, lactose, tartaric acid) in order to obtain the hysteresis loop
of the specific rotatory power.

• To validate the theoretical description of the elliptic retarder Mueller matrix including the
chirality using the experimental data of quartz waveplate. In the next step, the model
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will be fitted to the experimental data and the influence of the optical activity will be
calculated.

• To extend the spectral range out of the scope of the RC2-DI Woollam Mueller matrix
ellipsometer (193 nm to 1700 nm) to infrared and terahertz spectral range, and to model
the chirality of the media within this range.
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SPIE 10976, 21st Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects
of Contemporary Optics, 2018, 109760A,
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A Generalized Jones calculus

A.1 Polarization and Complex-Amplitude Transfer Functions

Equation (2.11) in arbitrary u, v coordinate system defined by unit vectors û, v̂ can be
expressed as [

Eo
u

Eo
v

]
=
[
T11 T12

T21 T22

] [
Ei

u

Ei
v

]
, (A.1)

and represents the system of two linear equations. Introducing complex polarization parameter
χ = f(θ, ϵ)

χ = Ev

Eu
, (A.2)

the system can be recasted into

Eo
v

Eo
u

= T21 + T22
(
Ei

v/E
i
u

)
T11 + T12 (Ei

v/E
i
u) , (A.3)

and using (A.2), into

χo = T21 + T22χ
i

T11 + T12χi
≡ PTF(χi). (A.4)

The Equation (A.4) is called Polarization Transfer Function and shows, that the polarization
state of the wave is transformed independently of the wave amplitude and absolute phase.
Substituting (A.2) into (2.9) and using (2.10), we get normalized Jones vectors

J i, o = 1√
1 + χi, o (χi, o)∗

[
1
χi, o

]
, (A.5)

which can be further expressed as

J i, o = Ai, o
c√

1 + χi, o (χi, o)∗

[
1
χi, o

]
, (A.6)

where Ai, o
c is a complex number with its amplitude and phase. Ai, o

c is in the particular form of

Ai, o
c = Ei, o

u

√
1 + χi, o (χi, o)∗, (A.7)

in which it fulfills J†J = A∗
cAc. Therefore, Jones vector introduced by Eq. (A.6) represents a

form, in which the information of the polarization state is separated from the information about
the wave amplitude and phase. Substituting (A.6) into (A.1), we obtain the Complex-Amplitude
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Transfer Function representing the change in Ac upon transformation of J,

Ao
c =

[√
1 + χo (χo)∗

1 + χi (χi)∗

(
T11 + χiT12

)]
Ai

c ≡ CATF
(
χi, χo

)
Ai

c. (A.8)

A.2 Eigenpolarizations of transmission media, Jones matrix

Eigenpolarizations are particular polarization states of the wave, which are not changed
during the propagation in medium characterized by defined Jones matrix. Therefore, χo = χi.
Two cases may occur. First, from known transmission Jones matrix T, the eigenstates can be
calculated. Second, from known eigenstates, matrix T can be reconstructed.

• We obtain eigenpolarizations of matrix T by setting χo = χi = χ. PTF (A.4) is then

χ = T21 + T22χ

T11 + T12χ
, (A.9)

which provides a quadratic equation in χ with the roots

χe1, e2 = 1
2T12

[
(T22 − T11) ±

√
(T22 − T11)2 + 4T12T21

]
. (A.10)

Similarly, by setting χo = χi = χ in CATF, we obtain a set of linear equations

CATF (χe1,2) = T11 + χe1,2T12, (A.11)

and substituting (A.10) into (A.11), we get the eigenvalues Ve1,2 associated with the eigen-
polarizations χe1,2

Ve1, e2 = 1
2

[
(T11 + T22) ±

√
(T22 − T11)2 + 4T12T21

]
. (A.12)

Therefore, the eigenstates of the system desribed with transmission Jones matrix T are
fully characterized. Note, that the eigenpolarizations with associated eigenvalues are linked
together via

TJe = VeJe. (A.13)

• The solution of the inverse problem is rather straightforward. Using equations (A.11) and
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(A.12), we obtain a system of four linear equations with variables Tij :

Ve1 = T12χe1 + T11, (A.14a)

Ve2 = T12χe2 + T11, (A.14b)

Ve1 = 1
2

[
(T11 + T22) +

√
(T22 − T11)2 + 4T12T21

]
, (A.14c)

Ve2 = 1
2

[
(T11 + T22) −

√
(T22 − T11)2 + 4T12T21

]
. (A.14d)

Sum of the later two equations gives Ve1 +Ve2 = T11 +T22, what makes the solution of the
rest trivial. Solved values of Tij define the transmission Jones matrix T, which describes
any non-depolarizing transmission system with preset eigenstates, so the Eq. (A.13) is not
violated:

T = 1
χe1 − χe2

[
χe1Ve2 − χe2Ve1 Ve1 − Ve2

−χe1χe2 (Ve1 − Ve2) χe1Ve1 − χe2Ve2

]
. (A.15)
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B Mueller matrices of basic polarizing components

• General anisotropic depolarizer: The anisotropic coefficients a, b, c affect the depolarization
power of the system along S1, S2, S3 components of the Stokes vector S (Eq. (2.13)). For
a = b = c = 0, the matrix stands for an ideal depolarizer, which is independent of the
input intensity, and any input polarization state of the light is totally depolarized [27].

M∆ =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0
0 a 0 0
0 0 b 0
0 0 0 c

⎤⎥⎥⎥⎥⎥⎦ (B.1)

• Linear polarizer: The orientation of the polarizer axis is given by the angle φ.

MP(φ) =

⎡⎢⎢⎢⎢⎢⎣
1 cos 2φ sin 2φ 0

cos 2φ cos2 2φ sin 2φ cos 2φ 0
sin 2φ sin 2φ cos 2φ sin2 2φ 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ (B.2)

• Linear Retarder: The retarder fast axis orientation is given by the angle φ and the total
retardation of the system is given by the retardation angle ∆.

MR,LIN(φ, ∆) =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0
0 cos2 2φ+ cos ∆ sin2 2φ (1 − cos ∆) sin 2φ cos 2φ − sin 2φ sin ∆
0 (1 − cos ∆) sin 2φ cos 2φ sin2 2φ+ cos ∆ cos2 2φ cos 2φ sin ∆
0 sin 2φ sin ∆ cos 2φ sin ∆ cos ∆

⎤⎥⎥⎥⎥⎥⎦
(B.3)

• Rotation matrix: The coordination system is rotated about the angle φ using the matrix

R(φ) =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0
0 cos 2φ sin 2φ 0
0 − sin 2φ cos 2φ 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ . (B.4)

The transformation of the arbitrary Mueller matrix M is given by

M(φ) = RT(φ) M R(φ). (B.5)
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C Full text Article: Mueller matrix ellipsometry of waveplates
for control of their properties and alignment

The full text of the article starts on the following page. The connection with this thesis is given
in Section 6.2.

Contribution of the author of this thesis to the article:

The full text of the paper is given in following pages. The article was written by Pierre Koleják
and author of this thesis (Daniel Vala). I have written part of the Introduction and Chapter IV.
I performed all experimental Mueller matrix ellipsometry measurements of studied samples. I
also performed Lu-Chipman decomposition on the experimental data (Eq. [C.5]), and from the
decomposed matrices, I obtained the effect of the circular birefrience (see Fig. C.5 and Eqs.
[C.6], [C.7]). Further, I discussed the effects of the optical activity in the studied waveplates.

83



Mueller matrix ellipsometry of waveplates for
control of their properties and alignment

Cite as: J. Vac. Sci. Technol. B 38, 014006 (2020); doi: 10.1116/1.5129615

View Online Export Citation CrossMark
Submitted: 30 September 2019 · Accepted: 25 November 2019 ·
Published Online: 18 December 2019

Pierre Koleják,1,a) Daniel Vala,1 Kamil Postava,1,b) Pavlína Provazníková,2 and Jaromír Pištora1

AFFILIATIONS

1Nanotechnology Centre and IT4Innovations, VŠB-Technical University of Ostrava, 17. listopadu 15, 70800 Ostrava-Poruba,

Czech Republic
2Meopta-Optika s.r.o., Kabelíkova 1, 750 02 Přerov, Czech Republic

Note: This paper is part of the Conference Collection: 8th International Conference on Spectroscopic Ellipsometry 2019, ICSE.
a)Electronic mail: pierre.kolejak@vsb.cz
b)Electronic mail: kamil.postava@vsb.cz

ABSTRACT

In this paper, the authors characterize high-order quartz waveplates in the wide spectral range (from 193 to 1700 nm) using a commercial
Mueller matrix ellipsometer RC2-DI-Woollam. They demonstrate that Mueller matrix ellipsometry is a powerful tool to obtain the waveplate
retardation in a wide spectral range together with azimuthal angles of optical axes with good accuracy. Moreover, they deal with depolarization
caused by a finite monochromator bandwidth, which is included in the model using incoherent averaging of Mueller matrices. The application
of Lu–Chipman Mueller matrix decomposition to extract depolarization from data is also demonstrated. Finally, Lu–Chipman decomposition
is used to demonstrate the presence of the optical activity in quartz, which one may misinterpret with incorrect alignment of the waveplate
azimuth angle.

Published under license by AVS. https://doi.org/10.1116/1.5129615

I. INTRODUCTION

Waveplates are important optical polarization components
used in polarimetry.1–4 Waveplates are usually made from a slab of
uniaxial optical materials of a certain thickness. The waveplate
retardation is obtained as the difference between phases of modes
polarized along two perpendicular directions. Waveplates of higher
order that are designed for manufacturing exhibit high chromatic
dispersion. Therefore, broadly used zero-order waveplates are com-
posed by the higher order plates with crossed optical axes. High
accuracy fabrication is crucial for waveplate applications in the
semiconductor industry, particularly for operation with ultraviolet
light. It requires advanced measurement and control of their
parameters and fine adjustment.

Typical industrial inspection of waveplates uses a single-
wavelength method based on two crossed polarizers, with the wave-
plate being placed between them. The method gives orientation of the
waveplate axis and its single-wavelength retardation. Nevertheless,
methods based on two crossed polarizers for only one wavelength
seem to be insufficient for recent quality control requirements.

It is well known that, for the waveplate analysis, the Jones cal-
culus5,6 represents a convenient description to acquire an exact
quantitative and a qualitative analysis of a waveplate, for example,
by the meaning of the null ellipsometry measurements. However,
the analysis based on the Jones calculus cannot offer proper treat-
ment of various effects such as depolarizations. The Mueller calcu-
lus appears to be particularly favorable in the waveplate analysis,7

since one obtains complete ellipsometric and polarimetric informa-
tion about the sample, especially in a wide spectral range. It is a
powerful tool for the characterization of anisotropic samples in a
wide spectral range including the ultraviolet region,8 which, fur-
thermore, could include depolarization phenomena.9,10

In this paper, we apply the Mueller matrix transmission spec-
troscopic ellipsometry to investigate high-order quartz waveplates.
We demonstrate that a correct data processing requires proper
incorporation of depolarization effects. The correction can be
directly added to the model rigorously, or the depolarization phe-
nomena may be separated from the experimental Mueller matrix.
For this purpose, Lu–Chipman polar decomposition seems to be a
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suitable tool. We further demonstrate the numerical stability of
obtained parameters.

The article is structured as follows: In Sec. II, the experimental
setup and notation are introduced and the analytical form of the
Mueller matrix is shown. Section III describes the experiments on
single waveplates. The model description is divided into two parts: First,
the rigorous solution including depolarization effects is given, and,
second, a Lu–Chipman depolarization separated alternative is offered.

II. MUELLER MATRIX ELLIPSOMETRY

Mueller matrices describe complete polarization properties of
the investigated sample also including depolarization in contrast

with the coherent Jones description. We applied spectral ellipso-
metric measurements by the dual rotating compensator Mueller
matrix ellipsometer RC2-DI from Woollam company, which mea-
sures a full Mueller matrix in the spectral range from 0.74 to
6.42 eV (wavelength ranging from 193 to 1700 nm). The waveplates
are measured in the normal-incidence transmission geometry.

A. Single waveplate model

The reduced Mueller matrix of a single waveplate consisting of
a uniaxial anisotropic material with the optical axis parallel to the
waveplate surface at the normal incidence is used in this paper in
the form3,4

M(δ, α) ¼
1 0 0 0
0 cos2 2α þ cos δ sin2 2α cos 2α sin 2α � cos 2α sin 2α cos δ � sin 2α sin δ
0 cos 2α sin 2α � cos 2α sin 2α cos δ cos δ cos2 2α þ sin2 2α cos 2α sin δ
0 sin 2α sin δ � cos 2α sin δ cos δ

0
BB@

1
CCA, (1)

where α is the azimuthal angle describing the optical axis direction
with respect to the x-axis of the ellipsometer and δ is the waveplate
retardation, which could be expressed as a function of wavelength,

δ(λ) ¼ 2π
λ
d [ne(λ)� no(λ)], (2)

where λ, d, ne, and no are the wavelength, the waveplate thickness,
the extraordinary refractive index, and the ordinary refractive
index, respectively. Note that the reduced Mueller matrix is
obtained by dividing all matrix elements by M11. According to the
structure of the matrix (1), we will be focused fully on the 3� 3
submatrix M22 � � �M44. Note that element M44 includes only
dependence on retardation (2), it can be directly recalculated to the
retardation δ(λ) ¼ arccos(M44). In this paper, we investigate quartz
waveplates, where refractive index spectra are taken from Refs. 11
and 12 described by Sellmeier terms.

III. SINGLE WAVEPLATE MEASUREMENTS

We have investigated c-cut right-handed synthetic α-quartz
high-order waveplates measured in the normal incident transmission
configuration for all azimuthal angles from 0� to 360� by an angle
step of 5�. Figure 1 shows typical spectra (black curves) of the
Mueller 3� 3 submatrix (excluding the first row and the first
column) for the waveplate of thickness around 0.5 mm. Rapid oscil-
lations correspond to the wavelength dependence of retardation (2).
The decreasing oscillation amplitude with increasing photon energy
originates from the rising density of oscillations and its averaging
due to the finite monochromator bandwidth. The decrease does not
come from the absorption of the quartz waveplate, which was proved
by transmission measurement, and does not show attenuation due to
absorption. To properly fit measured data, we model influence of the
finite monochromator bandwidth,13,14 which in our case corresponds

to the spectral resolution of dispersion grating and finite pixel size
of the CCD detector. The equivalent monochromator bandwidth
is critical, especially for high-order waveplates. The model is
based on an incoherent summation of the Mueller matrices (1)
with the Gaussian spectral profile15 described by the averaging
function Gn,

�Mij(λ) ¼
PN

n¼�N Mij(λþ n δλ)GnPN
n¼�N Gn

, (3)

where

Gn ¼ exp �ln 2
n δλ
Δλ

� �2
" #

, (4)

where N , Δλ, and δλ are the integer of points on the right and left
side from the central wavelength included in the averaging, the
monochromator bandwidth, and the spectral step in the averaging
(we use δλ ¼ 1 nm), respectively.

The model including spectral averaging (3) is compared to the
experimental data in Fig. 1. Waveplate properties obtained from
the fit are the spectral retardation, the waveplate thickness, and
the axis azimuth. Moreover, high-order waveplates are the ideal
sample to fit and determine the monochromator bandwidth of the
ellipsometer setup. The broad spectral range allows us to determine
the waveplate order, and waveplate retardation in the whole spectral
range is shown in Fig. 2. Note that the absolute retardation is
obtained (including the waveplate order), in contrast to single-
wavelength measurement. The fitted parameters of whole 360�

rotation are d ¼ 518:55 μm, α0 ¼ 224:766�, and Δλ ¼ 1:0534 nm,
where α0 is the azimuthal angle of the initial position.
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Figure 3 demonstrates the fit stability. The Mueller matrices
for arbitrary azimuthal rotation angle with a step of 5� were fitted
separately with arbitrary initial parameters, where the monochro-
mator bandwidth, the azimuthal angle, and the thickness are fitted
together. Figure 3(a) demonstrates the thickness stability with
accuracy better than one-tenth of a micrometer, which is less than

FIG. 1. Model and data Mueller submatrix of single high-order waveplates with an azimuthal angle of α ¼ 234:766� are compared. Averaging of high density oscillations
due to the finite monochromator bandwidth is visible as oscillation attenuation at higher frequencies.

FIG. 2. Retardation of the high-order waveplate is plotted in (a). The dispersion
of quartz causes increasing density of oscillations. Subplot (b) shows corre-
sponding wavelength dependence of the waveplate order.

FIG. 3. Fit stability of achieved thickness (a), monochromator bandwidth (b),
and initial azimuthal angle (c) for each waveplate rotation is demonstrated.
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the common mechanical methods to determine the thickness.
Figure 3(b) shows fitted values of the monochromator bandwidth,
with respect to the azimuthal angle rotation, determined with
precision less than one hundredth of a nanometer. This well
established parameter can be used to model data affected by the
depolarization influence. Figure 3(c) shows the initial azimuthal
angle of waveplates obtained from the fitted waveplate azimuthal
angle with subtracted the rotation angle. Despite the fit sensitivity
to parameters depending on azimuthal angle of waveplate, we
obtain stable and precise solution. Moreover, parameters achieved
from full 360� rotation shown above converge to mean values of
parameters in the stability test shown in Fig. 3.

IV. LU–CHIPMAN DECOMPOSITION

Another way to process experimental data without necessity
to include the finite monochromator bandwidth is the application
of the Lu–Chipman product decomposition, which deals
with separating the main sample polarization effects accursed into
the confused entirety of particular Mueller matrix. Each Mueller
matrix contains information about its depolarizing properties MΔ,
diattenuation effects (dependence of transmission upon the inci-
dent polarization state) MD, and the retardation properties of the
sample MR. Lu and Chipman have addressed16,17 that, for an
arbitrary Mueller matrix, there exists an equivalent product of
another three Mueller matrices, each describing one of the

mentioned properties,

M ¼ MΔMRMD: (5)

The retardation matrix MR obtained directly from the measured
Mueller matrix of the high-order waveplate is purified from depola-
rization caused by the finite monochromator bandwidth. Figure 4
compares the retardation matrix MR of data shown in Fig. 1 with the
model based on (1) and fitted with values d ¼ 518:63 μm and
α0 ¼ 224:764�, which agree well with previous results. Figure 4 shows
components of the retardation matrix obtained by using (5) from
Lu–Chipman decomposition. In general, the Mueller matrix of a
linear retarder shows symmetry MR23 ¼ MR32 [see Eq. (1)]; however,
for a circular retarder, it exhibits symmetry MR23 ¼ �MR32. In a case
of the general retarder, the matrix is not symmetric in these elements.
The matrix of our case (MR23 � MR32) is close to a linear retarder as
expected.

Figure 5(a) shows the MR32 (depolarization-free) elements of
the retardation Mueller matrix obtained from (5) upon particular
azimuthal rotations α ¼ �0:7�, 0:0�, and þ0:7�. For these cases,
spectral oscillations are present, which are caused by the linear
birefringence ne � no [see Eq. (1)] of the waveplate. In the case of
the ideal linear retarder, the element MR23 corresponding to the
waveplate with the optical axis aligned vertically (α ¼ 0:0�) should
remain zero over the whole spectral range; however, minor

FIG. 4. Retardation Mueller matrix compounds (black curves) obtained using Lu–Chipman decomposition are compared with a single waveplate model (red dashed
curves) introduced in (1).
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oscillations are present. These oscillations could be explained with
the optical activity phenomenon sufficiently. To exclude the effects
of the waveplate misalignment or miscut, circular birefringence
(CB) corresponding to each sample azimuthal rotation was calcu-
lated18 using the formula

CB ¼ R
2 sinR

MR23 �MR32ð Þ, (6)

where

R ¼ arccos
tr MRð Þ

2
� 1

� �
, (7)

and is shown in Fig. 5(b). For each azimuthal rotation, the CB exhib-
its the same spectral dependence, as the optical activity is affected by
the thickness of the waveplate only. Note that a miscut or misalign-
ment error would cause oscillations, which would change its ampli-
tude as a function of the rotation angle α, and its effect would not be
observed in CB. Further investigation of the optical activity effects
will be the focus of our subsequent research.19

V. CONCLUSION

In summary, we studied waveplates using spectral Mueller
matrix ellipsometry in the wide spectral range from 193 to 1700 nm.
The measurements of single high-order waveplates affected by depo-
larization originating from the finite monochromator bandwidth

have been shown. This depolarization influence was included in the-
oretical description in the form of incoherent summation of Mueller
matrices. The Lu–Chipman decomposition of the experimental
Mueller matrix was performed to eliminate the depolarization effects
directly from the measured data. In this case, when α � 0�, the mea-
surement high sensitivity allows us to observe the second-order fine
oscillations within particular Mueller matrix elements. These effects
were explained with the optical activity phenomenon. Moreover, we
have demonstrated the stability of the method to fit measured data
for the arbitrary angle position. It was shown that the thickness,
monochromator bandwidth, and azimuthal angle were determined
with high precision.
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