
applied  
sciences

Article

Advanced Methods for Point Cloud Processing
and Simplification

Pavel Chmelar 1, Lubos Rejfek 1 , Tan N. Nguyen 2,* and Duy-Hung Ha 3

1 Faculty of Electrical Engineering and Informatics, University of Pardubice,
532 10 Pardubice, Czech Republic; pavel.chmelar@student.upce.cz (P.C.); Lubos.Rejfek@upce.cz (L.R.)

2 Wireless Communications Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang
University, Ho Chi Minh City 700000, Vietnam

3 Faculty of Electrical Engineering and Computer Science, VSB—Technical University of Ostrava, 17,
Listopadu 2172/15, 708 00 Ostrava, Czech Republic; haduyhung@tdtu.edu.vn

* Correspondence: nguyennhattan@tdtu.edu.vn; Tel.: +84-283-775-5028

Received: 9 March 2020; Accepted: 30 April 2020; Published: 12 May 2020
����������
�������

Abstract: Nowadays, mobile robot exploration needs a rangefinder to obtain a large number of
measurement points to achieve a detailed and precise description of a surrounding area and objects,
which is called the point cloud. However, a single point cloud scan does not cover the whole area,
so multiple point cloud scans must be acquired and compared together to find the right matching
between them in a process called registration method. This method requires further processing and
places high demands on memory consumption, especially for small embedded devices in mobile
robots. This paper describes a novel method to reduce the burden of processing for multiple point
cloud scans. We introduce our approach to preprocess an input point cloud in order to detect planar
surfaces, simplify space description, fill gaps in point clouds, and get important space features. All of
these processes are achieved by applying advanced image processing methods in combination with
the quantization of physical space points. The results show the reliability of our approach to detect
close parallel walls with suitable parameter settings. More importantly, planar surface detection
shows a 99% decrease in necessary descriptive points almost in all cases. This proposed approach is
verified on the real indoor point clouds.

Keywords: point cloud; image processing; planar surface detection; simplification; visualization

1. Introduction

The main remote sensing task is to obtain a large number of measurement points to achieve a
detailed and precise description of a surrounding area and objects in a scanned space. The inseparable
part constitutes their processing to obtain desired input data for the purpose of the application which
the scanning was used for. There are many different applications where the processing of remote
sensing is important; see the following subsections for how to deal and process point clouds.

The main issue of our research is point cloud processing and simplification with the focus on
the detection, statistical description, vectorization, and visualization of basic space features. This
will allow the decreased memory consumption of physical data storage. For example, individual
points of a planar surface composed of a thousand points are not so important for the subsequent
processing. We rather look for vertices of the analyzed planar surface. Our contribution in point
cloud processing is to show a different alternative way of processing. The main advantages of our
approach lie in the combination of the physical space points quantization with image processing
methods. This connection allows: obtaining important space features such as the area, perimeter
and volume; the space and statistical descriptions of planar surfaces, including the descriptive point
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amount decreasing by the vectorization of vertices; the correction and recovery of missing space data;
and a planar surface presented as the image allows the alternative way of the physical points storage,
including its visualization. It also serves to other researchers as the extension to the used methods
presented in the following subsection. Moreover, the presented approach is usable not only for point
clouds but also as the general processing and analysis of different levels for any 3D data.

This paper is focused on the presentation of several new methods for point cloud processing
such as the outlier points removal, estimation of the initial point cloud rotation, point cloud data
correction and recovery, and the vertices detection of a planar surface. In the Introduction section is a
survey about different point cloud processing methods for basic object detection and segmentation,
the planar surface and space features estimation, and their typical application. The paper further
includes the description of our developed point cloud processing pipeline and the presentation of
the new methods in detail to give a comprehensive overview of our developed approach, including
verification on real space data. In the results part, the processing of the complex point cloud with
several rooms is presented. The results and algorithms are evaluated also in terms of precision against
the physical space dimensions and comparison with the convex hull results. The recommendations for
this processing approach are stated.

1.1. Related Works

A wide survey of 3D surface reconstruction methods is provided in reference [1]. The authors
accurately and in a well-arranged way evaluated the state-of-the-art methods with their advantages
and disadvantages. The survey includes a table of all methods, where the main features and the
possibility of use are summarized.

Valuable work is presented by the authors in reference [2]. The paper deals with the automatic
reconstruction of the fully volumetric 3D building models from oriented point clouds. The proposed
method can process the large complex real-world point clouds from the unfiltered form into the
separated room model, including suppressing of undesired objects inside a room. Several methods for
3D modelling an indoor environment relying explicitly on the prior knowledge of scanner positions
are in reference [3]. In many software products provided by a manufacturer of scanners, the scanning
position is irretrievably lost. Therefore, the authors propose a method for the reconstruction of the
original position of the scanners. The presented method can determine these positions also under very
unfavorable conditions. The next research focuses on the estimation of surface geometries directly
from a point cloud as in reference [4]. It introduces the 3D surface estimation method of the household
objects inside the area. The authors developed a Global Principal Curvature Shape Descriptor (GPCSD)
for the categorization of objects into groups. The main purpose is to improve the manipulation
planning for a robotic hand.

Researchers in reference [5] introduced a point cloud segmentation method for urban environment
data. Their method is based on the robust normal estimation by the construction of an octree-based
hierarchical representation for input data. The achieved results prove the concept of usability for
the urban environment point clouds even if there is space for improving the detection of some
regular objects with curved surfaces. The octree-based approach, with a combination of PCA analysis,
is presented in reference [6]. Results are compared with other detection algorithms such as a 3D
Kernel-based Hough Transform (3D-KHT) or the classical Random Sample Consensus (RANSAC). This
method provides accurate results, robustness to noise, and the possibility to detect planes with small
angle variations. The similar research in reference [7] focuses on the plane segmentation of building
point clouds. The proposed Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
method also respects the curvatures to provide the final fine segmentation. The DBSCAN clustering
for surface segmentation is used also in reference [8]. A part, in which the results are presented, shows
the desired surface segmentation, but only in a simple point cloud, which is not a real-world case.
The surfaces can be extracted also from the RGBD images (see reference [9]). The proposed split and
merge approach produces interesting visual results. The planes are detected from depth images by the
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Depth-driven Plane Detection (DPD) algorithm based on a region grooving (see reference [10]). The
Hough transformation (HT) approach called D-KHT can be used for a plane segmentation from these
images, as it is shown in reference [11]. Due to the properties of the HT, this method can detect the
planes with discontinuities. The ground plane detection using the depth maps captured by a stereo
camera is presented in reference [12]. The camera is moving, and the system deals with the elimination
of their roll angle for the correct plane segmentation.

The growing topical issue of deep learning in recent years is used for point cloud segmentation.
One case of use is indoor boundary estimation (see reference [13]). The described method relies on the
depth estimation and wall segmentation to generate the exterior point cloud. The deep supervised
clustering helps to fit the wall planes to obtain the resulting boundary map. In a different research
work, the deep learning method called PCPNet is used to estimate local 3D shape properties in point
clouds (see reference [14]). The main purpose is to classify the objects and shapes or do semantic
labeling. The presented results show good estimation ability for the normals and the curvatures,
even in the noisy point clouds. The deep learning approach is likewise used on automatic building
detection and segmentation from the aerial images or the point clouds (see reference [15]). The main
focus lies in improving and preparing high-quality training data, which allows better segmentation
of the detected objects. The presented results show the high detection accuracy (higher than 90%)
with the RGB-lidar and the fused RGB-lidar data of the urban scenes. The next research (shown in
reference [16]) presents the new topology-based global 3D point cloud descriptor called Signature of
Topologically Persistent Points (STPP). The topological grouping improves the detection robustness
and increases the resistance against a noise. The complementary information also improves deep
learning performance. The different topological method TopoLAB described in reference [17], that no
longer uses neural networks, focuses on a pipeline to recover the broken topology of planar primitives
during the reconstruction of complex building models. Due to the scanning difficulties and a variable
point cloud density, some parts of a model can be missing. The proposed method allows the recovery
of these parts, including to visualize the different levels of the details.

With respect to the safety and health of the persons, the laser scanning plays an important role
in exploring abandoned or dangerous places like various mines (see reference [18]). Similar to this
use is the scanning of rock masses (see reference [19]). The proposed method for the planar surface
extraction is able to deal with rough and complex surfaces.

For the Mobile Laser Scanning (MLS), the new method Planes detection and Segmentation is
proposed based on the Planarity values of Scan profile groups (PSPS) (see reference [20]). The presented
results prove the quality of this method in comparison with other state-of-the-art algorithms for these
types of spare point clouds, for example, the segmented planar surfaces stand out by their compactness.

The 3D point cloud processing is important not only to get physical shapes, but also it can
be used to quantitatively characterize the height, width, and volume of shrub plants. Authors in
reference [21] analyze point clouds of different blueberry genotype groups to improve the mechanical
harvesting process. For comparison of different shrubs, the correlation is used. In the study described
in reference [22], the researchers focus on the filtering method of leaves based on the manifold distance
and the normal estimation. The scanned leaves contain the outliers and the noise. The precise
estimation of the shape and area of a leaf is important to obtain the tree growth index. Moreover, also
the ground plane segmentation plays an important role in the analysis of asparagus harvesting (see
reference [23]). The asparagus stems are scanned by a modern time-of-flight camera, which ranks as
the fastest scanning device. The proposed Hyun method outperformed the classical RANSAC method
in a scene with high clutter. Similar to the previous works is a parametrization of the forest stand
described in reference [24]. The researchers propose to use, instead of leaf area index, other space
characteristics such as the stand denseness, canopy density, crown porosity, and others. In the practical
part, they discovered a high correlation index between each other. The geometric characterization of
vines from 3D point clouds is important in the agronomy sector (see reference [25]). The convex hull
method is used for calculating the volume of these plants. The recent research in reference [26] deals
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also with this method in the aim to find the shortest path in 2D complexes with non-positive curvatures.
The convex hull method is often used for the determination of an area and perimeter in 2D shapes.

Point cloud processing, object detection and segmentation are widely used in various research
areas for different purposes as is shown above. The right processing method choice helps with the
extraction of desired information. Input data transformation into the different forms allows the easy
obtaining of an unknown feature.

1.2. Our Point Cloud Processing Contribution

The first work of object detection, which we proposed, was the algorithm for point cloud unfolding
into a single plane with height preservation, as in reference [27]. The presented method works correctly
for rectangular rooms with four walls, a known scanner position, and walls not occupied by many
objects. The aim of this work was to unfold all walls with objects into a single plane. The single plane
representation allows the removal of walls close to zero and analyzing of the remaining objects. Finally,
this method proved to be a dead-end for follow-up utilization. The unfolding of the objects placed
on the corner splitting line caused their division into two parts. The global position of the object is
also lost.

Many researchers are using depth images in their work (as shown in references [9–13]). The
depth images contain the real physical sizes and distances which are possible to utilize further. We
had a point cloud without depth information, so we decided to develop the algorithm for the depth
map construction, which we described in reference [28]. The main advantage of this algorithm lies
in the possibility to create a depth map from any point cloud with the arbitrary camera position and
arbitrary camera orientation. The concept of space quantization has shown to be useful for further
space data processing. Moreover, we can process these images by image processing methods and for
example, transform depth pixels back into the point cloud by using the reverse process. The depth
image includes space information about the structure and the quality of an analyzed surface. The depth
image offers to detect surfaces or other objects (see references [9–13]). A depth camera covers only the
area, which is seen by the camera itself. This is the main disadvantage for global object detection and
segmentation. Some objects cover the other objects and areas present in a scene. For this reason, a
depth image is not suitable for global space segmentation and description, but the space quantization
into the image with a connection of image processing methods offers wide possibilities for basic object
detection and detailed space description.

In the papers [29,30], we introduced a novel algorithm called the Level Connected Component
Labeling (LCCL) for global 3D data analysis in terms of detecting global levels with high data
concentration in selected space dimensions. A planar surface presence is indicated mainly by the
high concentration of points in the particular dimension at the specific level. To find the high point
concentration at the specific level is not sufficient for planar surface detection. Several planar surfaces
can be present in one of the detected levels. Thus, we are using space quantization into an image for this
purpose. This allows the use of classically connected labeling to separate individual planar surfaces. A
planar surface is presented by the tool called Level Image (LI), which is described in references [29–32].
For each LI, its origin and rotation angle are known. The surface selected dimension is calculated as
the average of the points on this surface. From the LCCL output, the statistical parameters, such as the
mean value, variance, standard deviation, and data mode, are also known. These parameters describe
the quality of the detected planar surface.

The connection of a LI with image processing methods allows expression of a planar surface area
and perimeter [30] or interactive visualization [31], including color presentation when available. One
of our last research works [32] deals with fine plane range estimation. In this paper, we will present
the next methods for point cloud preprocessing and processing, which we did not publish yet, helping
to decrease a point amount for the planar surface description, fill the gaps in the point clouds, and
obtain other important space features.
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2. Point Cloud Processing Approach

Following Figure 1 shows the processing diagram of a point cloud in the form of how it is
introduced in this paper. Each block is marked by the section where a method is described or at least
mentioned. This paper is mainly focused on four parts of our proposed processing approach, which
we did not present before, concretely the outlier elimination; estimation of initial point cloud rotation;
possible point cloud correction, such as fill gaps in detected planar surfaces; and vectorization of basic
detected shapes for the purpose of decreasing the number of points.
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Figure 1. Proposed point cloud processing block diagram.

The aim of this paper is to present the methods on how to process point cloud data from a 3D
scanner to achieve the desired segmentation, visualization and physical space description. The main
contribution of our proposed approach is the connection of algorithms with image processing, which
allows correction of scanned data; obtaining important space features easily; or even making color
space visualization possible. Moreover, for planar surface detection, we can use any of the described
methods from Section 1 to get segmented parts of a point cloud and apply the proposed approach
in this paper for their further processing. The following sections describe the developed methods in
detail. For their description, the point cloud model depicted in Figure 2 is used.
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The point cloud is the real edge of a room with the radiator. This simple model nicely illustrates
the environment with several planar surfaces of different sizes and origins in a space.
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3. Outlier Points Elimination

Due to the rangefinder measurement errors, a final point cloud may contain outlying points.
These points have an unfavorable influence on the overall details during the point cloud visualization,
but mainly they caused problems with point cloud registration. Figure 3a illustrates the visualization
of the influence of several outlying points. To illustrate this issue, the five outlying points were added
into the model in Figure 2. The problem is that only one outlying point will cause the same undesired
visual look. The histograms of the measurement point concentrations of all coordinate axes are shown
in Figure 3b.
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Outlying points caused mainly problems in point cloud registration. Our presented processing
pipeline in Figure 1 entails in more iteration steps of the algorithms. The method for far point
elimination uses just these histograms and concentration of points in a specific level of coordinate
axes. Histograms are marked as hX, hY, and hZ. The proposed method uses the user defined threshold
hT defining the minimal concentration of points. The histogram of the axis is marked as hd, and this
is used for the definition of the general equation, where d denotes the coordinate axis. Then, the
histogram is described by the following equation:

hd(n) = #X(vd(n, 1) : vd(n, 2), d), (1)

where X is the input point cloud, the symbol # denotes the number of selected points by the individual
density ranges of the histogram vd. The value n ∈ [1, 2, . . . , Nd] is the actual range index of the total
count of the values defined from the equation.

Nd = (max(X(∀, d)) −min(X(∀, d))) · 1e3. (2)

Equation (2) is multiplied by the constant 1e3 expressing the millimeter resolution, denoted as
histogram step hSt. The vd values are step ranges of the histogram obtained from the range of the
analyzed axis hRd, defined as:

hRd = [min(X(∀, d)), max(X(∀, d))]; (3)
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total count of values Nd from Equation (2); and its step hSt. Values of vd consist of Nd rows and two
columns marked as 1 and 2 in Equation (1) define starts and ends of the individual ranges of the
histogram. The threshold value hT for the elimination outliers is set by the user. It is applied on both
sides of the histogram hd as the first value higher than the threshold.

hd(n) ≥ hT. (4)

Following Figure 4 gives the point cloud from Figure 3 with removed outliers and threshold value
hT = 2. The new narrower range of the histograms is marked by two red dots in Figure 4b.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 27 

 

Figure 4. Removal outliers result: (a) Resultant point cloud; (b) New range of histograms. 

The final point clouds are suitable for the registration process and further processing. The initial 
point cloud rotation is important for some object segmentation algorithms, like our algorithm for 
surface detection. The known initial rotation substantially speeds-up the detection process. Next, 
Section 4 deals with the initial rotation estimation of a point cloud. 

4. Correction of Initial Point Cloud Rotation 

A space 3D scanner is usually placed into a scanned space on several positions sequentially. 
Each scanner positioning can be influenced by the wrong heading of the scanner even in a few angle 
degrees. This fact is negligible for the registration process but, for example, when the first point cloud 
is influenced by this error, the composed final point cloud is rotated in the same way. The knowledge 
of an initial point cloud rotation angle is necessary for the best results and the speed assurance of our 
proposed methods. We can also rotate by the point cloud in a prescribed range of angles (see reference 
[29]) and find the best match of points in the detected planar surfaces, but this is time-consuming and 
inefficient. We developed the following approach for the purpose of finding the initial rotation angle 
of a point cloud. 

A density histogram of the points in the individual axes is also possible to use for the correction 
of a point cloud rotation. This correction can be likewise applied before the registration process on 
individual point clouds. It improves the registration success probability. The known orientation angle 
of the point cloud significantly improves the processing time in our proposed methods for point 
cloud processing. 

The main assumption for its success lies in the presence of flat surfaces in the input point cloud, 
which is true in most cases of indoor space. The point cloud with correct orientation in the X and Y 
axes is shown in Figure 5a. Its bottom planar surface is parallel to the zero level in the Z-axis. The 
unknown parameter is the rotation in the Z-axis. Figure 5b gives constructed histograms of all 
coordinate axes with a resolution of 1 mm. 

The developed method for the estimation of the initial rotation is able to determine the rotation 
angle of one coordinate axis from the two others. The one main maximum is noticeable in the 
histogram of the Z-axis, as is shown in Figure 5b. Its position marks the floor of the edge. In the case 
of the X and Y axes, the maxima of histograms represent the walls of the model and the radiator. The 
proposed method analyzes these maxima in the prescribed range of the rotation angles to estimate 
the correction angle of the initial rotation. 

Figure 4. Removal outliers result: (a) Resultant point cloud; (b) New range of histograms.

The final point clouds are suitable for the registration process and further processing. The initial
point cloud rotation is important for some object segmentation algorithms, like our algorithm for
surface detection. The known initial rotation substantially speeds-up the detection process. Next,
Section 4 deals with the initial rotation estimation of a point cloud.

4. Correction of Initial Point Cloud Rotation

A space 3D scanner is usually placed into a scanned space on several positions sequentially.
Each scanner positioning can be influenced by the wrong heading of the scanner even in a few angle
degrees. This fact is negligible for the registration process but, for example, when the first point
cloud is influenced by this error, the composed final point cloud is rotated in the same way. The
knowledge of an initial point cloud rotation angle is necessary for the best results and the speed
assurance of our proposed methods. We can also rotate by the point cloud in a prescribed range of
angles (see reference [29]) and find the best match of points in the detected planar surfaces, but this is
time-consuming and inefficient. We developed the following approach for the purpose of finding the
initial rotation angle of a point cloud.

A density histogram of the points in the individual axes is also possible to use for the correction
of a point cloud rotation. This correction can be likewise applied before the registration process on
individual point clouds. It improves the registration success probability. The known orientation angle
of the point cloud significantly improves the processing time in our proposed methods for point
cloud processing.

The main assumption for its success lies in the presence of flat surfaces in the input point cloud,
which is true in most cases of indoor space. The point cloud with correct orientation in the X and Y axes
is shown in Figure 5a. Its bottom planar surface is parallel to the zero level in the Z-axis. The unknown
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parameter is the rotation in the Z-axis. Figure 5b gives constructed histograms of all coordinate axes
with a resolution of 1 mm.
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The developed method for the estimation of the initial rotation is able to determine the rotation
angle of one coordinate axis from the two others. The one main maximum is noticeable in the histogram
of the Z-axis, as is shown in Figure 5b. Its position marks the floor of the edge. In the case of the X and
Y axes, the maxima of histograms represent the walls of the model and the radiator. The proposed
method analyzes these maxima in the prescribed range of the rotation angles to estimate the correction
angle of the initial rotation.

In the following example, shown in Figure 6, the rotation estimation of the Z-axis from the X
and Y axes is shown. The flat surfaces in the analyzed point cloud may occur in different levels. It is
necessary to analyze all local maxima from this reason, and not only the biggest. Their values may
also vary depending on a concentration of points. To get these maxima from a histogram, we use
the modified algorithm for the connected components searching, which respects gaps between two
components. If a gap iz is smaller than the user-defined threshold, then these two components are
considered as one bigger one. For the better separation of local maxima, we recommend applying the
threshold of a histogram defined as:

hd(hd < (µ(hd) + σ(hd))) = 0, (5)

where d marks the selected dimension as in Equation (1). The values of constructed histogram hd
lower than its mean value µ(hd) with the added standard deviation σ(hd) are set to zero. After using
Equation (5), the modified algorithm for the connected component labeling with iZ = 0.05Nd is applied.
The value iz denotes 5% of the total count of the histogram elements Nd. The result with marked local
maxima by the red points and numbered components is shown in Figure 6b, presenting the histogram
of the X-axis.
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The sum of all local maxima found by the modified version of the connected component labeling
algorithm with respect to small gaps, is expressed in the following equation:

∑
hd(k) =

LN∑
n=1

max(hd(L = n)) = 0, (6)

where LN is the count of found components in the index accumulator L. Figure 7 describes k-th step of
the algorithm, where

∑
hd(k) is estimated for one rotation given by the index k. The histograms of the

X and Y axes are shown in Figure 7a for the initial angle 0 degrees and for the angle 4.3 degrees in
Figure 7b. This serves for a better illustration of different

∑
hd(k) values. The different local maxima

are noticeable from the analysis of both histograms in Figure 7.
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The algorithm rotates the input point cloud by the angle of one rotation step sR in the range
Rϕ

〈
ϕRs,ϕRe

〉
. We recommend using a smaller rotation step as 0.1 degrees for better resolution. The

analyzed point cloud is firstly rotated to the start angle ϕRs. The rotation matrix of one iteration step
R(sR) is then constructed. The sum of all local maxima is evaluated in each rotation step and the actual
point cloud is multiplied by R(sR) until the end angle ϕRe is reached. Figure 7a gives a sum curve∑

hX for the X-axis and Figure 7b for the Y-axis. In this example, the Rϕ〈0, 8〉 and sR = 0.1 are used.
Positions of both maxima are somewhat different. The searched orientation angle ϕ[◦] is the

average value of both maxima positions. For this example, the maximum for X-axis in Figure 8a is 3.5
degrees and the maximum for the Y-axis in Figure 8b is 4.7 degrees. Then, the orientation angle is ϕ[◦]
= 4.1 degrees. Figure 9 shows the corrected point cloud from Figure 5 including the final histograms.
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The new histograms in Figure 9b are sharper and have several bigger local maxima in the X and Y axes
in comparison to Figure 5b. The histogram in the Z-axis is the same.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 27 
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The range of the rotation interval Rϕ is not possible to select arbitrarily. When a point cloud is
rotated in an angle of 90 degrees, then, the X-axis becomes the Y-axis. The universal solution is to
determine the initial point cloud rotation as the 0 degrees and the rotation range Rϕ = ±45 degrees.
This algorithm is also fast because it uses a classical histogram, which its ways depend on the number
of steps. The algorithm estimated the rotation angle ϕo in 10 ms for the used range of angles Rϕ. As
was mentioned above, this algorithm allows the finding of the point cloud rotation of one coordinate
axis from the other two. The assumptions for its success are the presence of flat surfaces, which is
typically valid for indoor spaces.

5. Planar Surface Detection Algorithm

The known orientation angle of a point cloud allows the detection of planar surfaces in all
coordinate axes directly by using only three passes for each axis. More details about the LCCL
algorithm are described in papers [29,30,32]. In short, there are two important parameters: the lvlS as
the maximal deviation from a level value and the lvlRS multiplier denoting the new level searching
range. The algorithm scans a selected coordinate axis by the global virtual plane, which covers the
whole horizontal range of the selected axis. The following figures (Figures 10–12) illustrate the planar
surface detection by using the LCCL algorithm and level image in the X, Y and Z axes respectively.
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Figure 12. Planar surface detection in Z-axis: (a) 1st level selection in the Z-axis; (b) Segmented point
cloud; (c) Resulting level image; (d) Morphologically closed and opened image.

The width of the analyzed data is defined as the lvlS · lvlRS and from the selected range, a level
dL with the highest concentration is found by using the histogram. The range of the detected level
is defined as dL ± lvlS. We also developed the algorithm for finding the fine range described in
reference [32]. The Figure 10c,d nicely illustrates the planar surface detection of the radiator and the
erasing of the selected undesired points by the morphological open. The thickness of the undesired
points is smaller than the used element.

The range for the next level estimation is selected from the last dL + lvlS and the same range
lvlS · lvlRS used above. This way of selection and using the histogram for finding the highest point
concentration allows finding all uniformly distributed flat surfaces in the analyzed point cloud.

The LCCL algorithm itself is not sufficient for planar surface detection. As in Figures 10c, 11c
and 12c, from each founded level dL, the IL is created by using the point space quantization parameter
qD. For this testing purpose, qD = 4 cm, lvlS = 5 cm and lvlRS = 2.5 are selected. The IL is firstly
processed by the morphological operations and the all planar surfaces are found by the level connected
component labeling algorithm. Searching of all levels in all coordinate axes took about 80 ms. The main
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advantage of IL is the definite physical position determination of each pixel in space. The processing IL

allows the filling of these missing data. The proposed method is described in the next section.

6. Fill Gaps in Measurement Data

During the planar surface detection process, there can be a requirement for the area determination
including the inner holes. This situation occurs mainly when we process the floor or the ceiling areas.
The point cloud with missing points on the floor is shown in Figure 13. This example describes the
first level estimation in the Z-axis. During the point cloud analysis, there can be the assumption, that
the floor is compact and we have a requirement to estimate the area of the floor. The use of IL for point
cloud processing offers the application of wide range image processing algorithms, which help with
the important unknown parameter determination in the analyzed point cloud.
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The IL in Figure 13c contains undesired holes, which are possible to fill easily by the use of image
processing methods. We used the binary image and connected component labeling algorithm for the
filling of the presented holes. The pseudo-code of the proposed algorithm is shown in Algorithm 1.

Algorithm 1. Fill Element Area

Input: Image level element ILEx

Output: Filled element IE f ill
1 ExB = ElementBorderPositions (ILEx)
2 ExBe = Extend ExB borders about 1 px
3 Ione = true(size(ExBe))
4 Ione(ExBe > 0) = false
//find separate areas (1 - surroundings, 2 - filled element)
5 L = ConnectedComponentLabeling(Ione, 4)
//add edges back
6 IE f ill = (L = 2) | ExBe

7 IE f ill = Narrow IE f ill borders about 1 px

The level image consists of several elements representing individual planar surfaces in general.
The analyzed element index is marked as ILEx. By using the algorithm for the element borders detection,
presented in our previous work [30], the borders of the element ExB are extracted. The algorithm uses
erasing of the eroded element by about one pixel from the original element for the border finding. It is
necessary to extend the binary image borders by at least about one pixel ExBe for the preserving of the
indexing elements expected in further processing. Then, the second image Ione of the same size with
all values equal to one is created. On the detected border, positions are set to zeros, as shown in the
following equation:

Ione(ExBe = 1) = 0. (7)
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The connected component algorithm with the connection of four is applied to the obtained image.
The connection of eight is not possible to use because the border width is only one pixel thin and in the
diagonal directions the algorithm may cross the borders. The result of labeling L is two areas with
different indexes. Index 1 is the surroundings, and index 2 is the desired filled area without borders.
By adding the borders of the analyzed element to the labeled area by the index 2, the original filled
area is obtained as:

IE f ill = (L = 2)∨ ExBe (8)

The extension of one pixel is erased for the getting of the original level image size. Figure 13d
gives the final filled area, which is calculated from the original floor elements with the holes. The
filled planar surface allows estimation of the real floor area or the space volume like in Section 8 with
the results. We can reconstruct the missing points by the reverse process from the fixed floor planar
surface. Moreover, from the difference of Figure 13c,d, it is possible to reconstruct only the missing
parts and with the knowledge of planar surface statistical parameters, we can generate the missing
points with the same statistical distribution.

7. Vectorization of Basic Space Features

One of the point cloud processing aims is the decreasing of descriptive points. The meaning of
the term vectorization is to describe a shape by the vertices points. For example, the knowledge of all
border positions of pixels is unnecessary, only the vertices points are important for reconstruction of
the shape, as is shown in Figure 13d.

The proposed method for finding the vertices points is based on our presented method for the
perimeter estimation (see reference [30]). Figure 14 illustrates the way how to determine the perimeter
of a shape.
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The perimeter is not possible to determine as simply as the area by multiplication of the count of
border pixels. Borders are extracted in the same way as in Algorithm 1. The additional analysis of these
borders is necessary for precise perimeter estimation. We need to determine the direct and diagonal
path of the perimeter. This mentioned problem solves the modified connected component algorithm
for the determination of these borders, including the record of the searching direction of connected
pixels, the perimeter path Pp. The algorithm uses a different mechanism of searching connected pixels,
see Figure 14b. When the first border pixel n is found, the neighbor pixel (n + 1) is searched in the
direction denoting the numbers in Figure 14b. When the neighbor pixel (n + 1) is found, the actual
searching ends. The pixel (n + 1) becomes the pixel n and the searching continues in the same way
until all pixels of the border are found. For the direct pixel path, there are numbers 1, 3, 5 and 7 and
their length is pixel size. Numbers 2, 4, 6 and 8 are used for the diagonal direction and their length
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is equal to the diagonal of one pixel. We also watch the score function in the Y-axis determining the
position of the last pixel of the round perimeter against the first pixel of the perimeter. For more
details, see paper [30]. Figure 14a gives the example of all possible occurrences of directions during the
perimeter pixels searching. The optimal perimeter is marked by the light red color line. The number
in the corner is the border pixel order and the bigger numbers are directions of their detection. The
difference of the perimeter estimation in this simple example with consideration of diagonal direction
against the simple pixel multiplication is 10%.

We developed the algorithm for the shape vertices points extraction represented by a level image
from the known history of the searching path Pp, the score function Ys and round perimeter condition.
The pseudo-code is shown in Algorithm 2.

Algorithm 2. Element Vertices Extraction

Input: Perimeter path Pp;
Score function in the Y axis Ys

Condition of circle perimeter cirP
Output: Vertices of element cPos
1 cPi = 0
2 cPos(cPi++,∀) = [Pp(1), 1]
3 for each Pp(n) ∈ Pp from n = 2 do
4 if(cPos(cPi, 1) , Pp(n)) then
5 //last position before change
6 cPos(cPi++,∀) = [Pp(n − 1),n − 1]
7 //actual position
8 cPos(cPi++,∀) = [Pp(n),n]
9 end
10 end
11 Exclude repeated items in cPos
12 if (cirP && YS > 0) then
13 Remove cPos(end, ∀)
14 end

The vertices positions are stored in the array cPos. The first found border direction is written into
this array. The next step is searching through the whole history of the direction path Pp from the index
n = 2. The algorithm focuses on indexes with a change of path direction against the last found vertex
cPi. When the direction change is detected, the actual path direction on n position is stored including
the border position index. The corresponding values on position (n− 1) are stored too. The reason for
this is obvious in Figure 14a. For example, the direction change from 5 to 6 of the 9th pixel is detected on
pixel 10, but the vertex is just pixel 9. After the Pp searching, the doubled directions occur in cPos array,
for example, the pixels 7 and 9 or 10 and 11. The first position of doubled directions is removed. The
last step of the algorithm is the decision about the last position of Pp. The last pixel position against the
first has to be determined for the round border defined by cirP. When the score function Ys is higher or
equal to one, the last pixel connection with the first is diagonal. Then, the last item Pp is added. The
last item Pp is excluded for the diagonal direction longer than one pixel. The detection of vertices for
the test images of Figures 14a and 13d are illustrated in Figure 15a and in Figure 15b respectively.
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The red pixels are detected vertices of the input level image. The compact version of the level
image in Figure 14a is created from 39 pixels and only 13 pixels describe vertices of the shape. The
origin image in Figure 13d is composed of 961 pixels and 67 vertices were found. The presented
method is valid for the compact level images. When some holes are present in an image, the image can
be binary inverted. The complete vertices description of a shape (including the holes) is available if we
determine also the vertices of the holes.

8. Results

Our previous papers [29–31] usually show the point cloud processing only of a single room. In this
paper, we decide to show processing of the entire flat. All blocks from the processing scheme in Figure 1
were used. This section is divided into four subsections: in the first, our optical rangefinder is briefly
described; the second focused on the used input point cloud representing the real flat with three rooms
and one corridor, this subsection also describes its scanning process and the complex output point
cloud construction; the next subsection presents obtained results by using the developed processing
pipeline; and the last evaluates the algorithms in detail in terms of the precision and possibilities
of using.

8.1. Optical Rangefinder for Space Scanning

As the remote sensing device for space scanning, we used our developed optical rangefinder. The
described 3D range scanning system is part of a bigger project called ARES (Autonomous Research
Exploration System), which is described in references [33,34]. The rangefinder sweeps a laser point
into the vertical line and in each point of this line, it is possible to estimate the point position in the
space. The measurement principle is based on the triangle similarity described in reference [35]. For
detailed information on how to determine a 3D point in a scanned space, see references [35,36]. The
whole measuring device consists of a tripod; a high-quality Basler color camera with a resolution of
2590 × 1942 pixels; a green 200 mW laser diode; an optical filter with an angle of 90 degrees for vertical
swapping of the laser beam; and a fast and powerful stepping motor for 360 degrees rotation. The
following figure shows the practical measurement Figure 16a with measurement frame Figure 16b.Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 27 
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We replaced the used camera lens with a lower focal length to cover a higher range in the height
during the development of this device. The lower focal length caused the undesired barrel distortion
effect. This effect elimination is described in reference [37]. In one of our recent papers ([38]), we
developed the automatic algorithm for the best undistortion parameter estimation. The laser line is
segmented from a static measurement frame by the HSV GMM (Gaussian Mixture Model). The HSV
color model best covers the intensity range of the used laser (see references [39,40]). The intensity of
laser pixels in the measurement image depends on the distance from a scanning object and its reflection
of the laser spectrum. Nevertheless, in the measured frames, pixels with a low and high intensity
similar to the spectrum of a laser or reflected laser light can occur. For the robustness of the position
determination and distinguishing from a laser colored object, it is important to analyze, the laser pixel
intensity as well as the laser element shape. A statistical analysis of both parameters offers to detect the
main laser line intensity correctly. More details about the best laser element selection and the main laser
intensity estimation is described in references [41,42]. We also implemented the fusion of image data
from the camera with points in space to achieve a colored point cloud by using a template matching
method in two measurement frames (see reference [36]). The measurement system can determine the
vertical laser line with a half-pixel accuracy. The accuracy of the distance determination for the actual
rangefinder configuration is shown in Figure 17.
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The maximal error is 3.5% in the range of 15 m. In the bigger distances, the laser line is closer to a
measurement frame center, and the change of position of about one pixel causes a bigger change in the
measurement distance. This dependency is non-linear and causes bigger measurement errors. More
about this non-linearity and calibration of the optical rangefinder is described in reference [43]. In
comparison with the present expensive professional laser scanners, our rangefinder can be labeled as a
home 3D scanner.

8.2. Input Point Cloud

As a scanning space, we selected an indoor space, a flat. There are three rooms and one corridor in
this flat. To cover the whole space, we placed our optical rangefinder on eight measurement positions.
Individual positions are marked in the top view flat scheme in Figure 18b. The room with positions 3
and 4 is the kitchen. All constructed output point clouds are shown in Figure 18a. The green numbers
in brackets are equal to the measurement positions. Differences in the color intensity in Figure 18a are
caused by the different light conditions during the scanning process. The complete composed point
cloud of the flat is shown in Figure 18c.



Appl. Sci. 2020, 10, 3340 17 of 26

Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 27 

8.2. Input Point Cloud 

As a scanning space, we selected an indoor space, a flat. There are three rooms and one corridor 
in this flat. To cover the whole space, we placed our optical rangefinder on eight measurement 
positions. Individual positions are marked in the top view flat scheme in Figure 18b. The room with 
positions 3 and 4 is the kitchen. All constructed output point clouds are shown in Figure 18a. The 
green numbers in brackets are equal to the measurement positions. Differences in the color intensity 
in Figure 18a are caused by the different light conditions during the scanning process. The complete 
composed point cloud of the flat is shown in Figure 18c. 

For the register of the individual point clouds, we used the NTD (Normal Distribution 
Transform) registration algorithm, which is implemented in the PCL (Point Cloud Library) described 
in reference [44]. This colored point cloud provides an overview of the scanned space, and from 
coordinate axes, we can estimate the basic size. However, to obtain the important features of the other 
space, further processing is needed. The presented point clouds in Figure 18a are clear of outlier 
points. These points have an influence on the registration process and their removing must be done 
before the registration process. For their elimination, we proposed the algorithm based on the 
histogram of a point density in the individual coordinate axes. The algorithm is described in Section 
3. 

The outlier points were removed from each scan after the scanning from the eight measurement 
positions. Then, the output point cloud of the flat was composed by the NDT registration process. 
The initial angle rotation of −3.15 degrees was detected by the algorithm presented in Section 4 from 
the final point cloud. The algorithm estimated the initial rotation angle in 3.35 s. 

 

Figure 18. Input point cloud of the flat with marked scan positions: (a) Individual 3D scans, green 
number in bracket is equal with the scanning positions in (b); (b) Flat top view scheme with marked 
measurement positions; (c) Composed final point cloud. 

The preprocessed space data can be analyzed further in terms of the object detection and 
physical space description described in Sections 7–9. The knowledge of the initial rotation angle 
allows the detection of the planar surfaces in all coordinate axes by our proposed LCCL algorithm 

Figure 18. Input point cloud of the flat with marked scan positions: (a) Individual 3D scans, green
number in bracket is equal with the scanning positions in (b); (b) Flat top view scheme with marked
measurement positions; (c) Composed final point cloud.

For the register of the individual point clouds, we used the NTD (Normal Distribution Transform)
registration algorithm, which is implemented in the PCL (Point Cloud Library) described in
reference [44]. This colored point cloud provides an overview of the scanned space, and from
coordinate axes, we can estimate the basic size. However, to obtain the important features of the other
space, further processing is needed. The presented point clouds in Figure 18a are clear of outlier points.
These points have an influence on the registration process and their removing must be done before the
registration process. For their elimination, we proposed the algorithm based on the histogram of a
point density in the individual coordinate axes. The algorithm is described in Section 3.

The outlier points were removed from each scan after the scanning from the eight measurement
positions. Then, the output point cloud of the flat was composed by the NDT registration process. The
initial angle rotation of −3.15 degrees was detected by the algorithm presented in Section 4 from the
final point cloud. The algorithm estimated the initial rotation angle in 3.35 s.

The preprocessed space data can be analyzed further in terms of the object detection and physical
space description described in Sections 7–9. The knowledge of the initial rotation angle allows the
detection of the planar surfaces in all coordinate axes by our proposed LCCL algorithm with only three
passes. The point cloud rotation in a prescribed range of angles and finding the best match of points in
detected planar surfaces for the complex plane detection with all possible orientation angles can be
realized according to [29]. Searching of all levels in all coordinate axes took about 1.5 s.

8.3. Processing Results

Table 1 summarizes the used detection parameters for all coordinate axes. The detection parameter
selection depends on the quality of a used 3D scanner.
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Table 1. Detection parameter for all coordinate axes.

Axis lvlS lvlRS qD

X 0.1 m 2.5 4 cm
Y 0.1 m 2.5 4 cm
Z 0.2 m 1.5 4 cm

In our case, due to the worse scanner calibration, the range lvlS is higher. We can choose a bigger
value of lvlS and lvlRS, if we do not expect parallel surfaces close to each other in the selected range
lvlS · lvlRS. The level dL detection by the histogram will always find the highest point concentration.
In following Figure 19, the visualization of the flat by our proposed processing is shown with the
utilization of the level image, allowing also the plane visualization (see reference [31]). The orientation
of the planar surfaces is marked by three colors according to the surface orientation (X, Y, and Z).
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The detected planar surfaces with their physical parameters are described in the following tables
(Tables 2–4). Presented planes in the X- and Y-axis have an area bigger than 5 m2. The attributes denote
from the left side: Idx—the detection level index; dL—the detected level in the scanned dimension;
Pos—the coordinates of the image level origin in the space; AE the area of the planar surface plane;
PE the perimeter of the plane; σ—the standard deviation of the points forming the planar surface;
PC p.—the number of points representing the planar surface; IL px—the count of level image pixels;
V—vertices of the plane; and P. decr.% expressing the decrease between the number of found vertices
and the original points of the plane.

Table 2. Detected planes with the physical description in the X-axis.

Idx dL (m) Pos (m) AE (m2) PE (m) σ (m) PC p. IL px. V P. decr.%

2 0.313 0.313, 3.935, 3 7.174 19.33 0.0008 7306 4420 92 98.74
4 3.521 3.52, 3.926, 3 9.862 18.177 0.0018 15,211 6148 71 99.53
5 3.687 3.687, 2.581, 2.88 11.645 21.41 0.0006 14,460 7166 92 99.36

14 7.162 7.162, 2.56, 2.96 13.278 20.833 0.0006 10,687 8112 87 99.19
16 7.371 7.371, 4.454, 2.8 8.754 11.96 0.001 16,025 5450 43 99.73
22 8.917 8.917, 0.291, 2.72 7.15 15.443 0.001 7424 4452 81 98.91
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Table 3. Detected planes with the physical description in the Y-axis.

Idx dL (m) Pos (m) AE (m2) PE (m) σ (m) PC p. IL px. V P. decr.%

1 0.081 3.926, 0.081, 2.88 13.334 15.226 0.0013 22,161 8270 82 99.63
7 2.647 3.653, 2.647, 2.92 9.7856 12.4 0.0008 13,456 6054 49 99.64

10 3.949 0.135, 3.949, 2.96 10.026 12.69 0.0007 14,802 6192 39 99.74
14 4.497 7.115, 4.497, 2.80 7.7008 16.89 0.0009 9847 4748 85 99.14
29 7.819 0.271, 7.819, 3.12 21.661 35.236 0.0018 26,529 13840 162 99.39

Table 4. Detected planes with the physical description in the Z-axis.

Idx dL (m) Pos (m) AE (m2) PE (m) σ (m) PC p. IL px. V P. decr.%

1 0.023 0.262, 0.018, 0.023 55.835 45.643 0.006 14,223 34,897 270 98.1
4 0.987 0.091, 3.936, 0.987 0.76 4.61 0.010 2673 475 36 98.65
6 0.942 4.415, 7.593, 0.942 0.739 4.537 0.014 1710 462 21 98.77
8 0.926 8.013, 5.763, 0.926 1.845 9.8 0.012 6629 1153 58 99.13

12 1.353 10.129, 5.853, 1.353 0.773 4.96 0.009 2555 483 22 99.14
21 2.956 0.102, 0.012, 2.672 59.246 39.319 0.019 16,173 37,029 162 99

We can notice from the analysis of the tables, that indexes 4, 5 and 14, 16 in Table 2 show the
ability of the scanning algorithm to detect parallel walls. The last row in all tables shows how many
percentages of storage can be saved if we present a planar surface only by their vertices. The first
planar plane surface in Table 3 is the floor of the flat. We can express the volume of the flat as the
known area multiplied by the height of the flat. The planar surface 21, detected in the level 2.956 m, is
the ceiling in Table 3. Then, the volume of the flat is approximately 165 m3.

The obtained results show the advantages of the proposed processing. By using the level image, it
is possible to easily express the statistical parameters of the represented planar surface, process plane
visualization, and decrease the number of points necessary for the planar surface description. The
presented algorithms were tested on the CPU i5-2410M 2,3 GHz. The input point cloud consists of
219,216 points and the detection time of all planar surfaces is not higher than three seconds.

The mentioned algorithms in Section 1 can be used for the detection of planar surfaces. Then, the
segmented raw point cloud of a planar surface can be processed by our proposed approach utilizing
a level image with the connection of image processing methods. This concept allows us to easily
get the important physical space properties, decrease the descriptive point amount, or visualize the
planar surface.

The following tables (Tables 5–7) give the percentage difference between the real physical area
and perimeter in each coordinate axis. Columns marked by phys determine the physical values. The
estimated values directly reflect the level image content which depends mainly on the objects covering
by measurement points.

Table 5. Physical area and perimeter, difference in percent (X-axis).

Idx AE (m2) A phys (m2) ∆ A (%) PE (m) P phys (m) ∆ P (%)

2 7.174 6.97 2.84 19.33 18.95 1.97
4 9.862 8.976 8.98 18.177 16.856 7.27
5 11.645 11.728 0.71 21.41 21.68 1.26
14 13.278 13.489 1.59 20.833 21.34 2.43
16 8.754 8.28 5.41 11.96 11.22 6.19
22 7.15 6.95 2.80 15.443 15.133 2.01



Appl. Sci. 2020, 10, 3340 20 of 26

Table 6. Physical area and perimeter, difference in percent (Y-axis).

Idx AE (m2) A phys (m2) ∆ A (%) PE (m) P phys (m) ∆ P (%)

1 13.334 12.45 6.63 15.226 14.92 2.01
7 9.7856 10.26 4.85 12.4 12.76 2.90
10 10.026 10.12 0.94 12.69 12.78 0.71
14 7.7008 7.43 3.52 16.89 16.27 3.67
29 21.661 22.3 2.95 35.236 36.44 3.42

Table 7. Physical area and perimeter, difference in percent (Z-axis).

Idx AE (m2) A phys (m2) ∆ A (%) PE (m) P phys (m) ∆ P (%)

1 55.835 54.32 2.71 45.643 44.28 2.99
4 0.76 0.79 3.95 4.61 4.86 5.42
6 0.739 0.712 3.65 4.537 4.33 4.56
8 1.845 1.765 4.34 9.8 9.45 3.57
12 0.773 0.81 4.79 4.96 5.15 3.83
21 59.246 56.392 4.82 39.319 38.507 2.07

When we compare the percentage values, it is noticeable that some planar surfaces were segmented
correctly, where the error is lower than 3%. Few planar surfaces have the difference between the
estimated and physical value close to 10%. These cases indicate a worse covering by the measurement
points. As it will be shown in the next subsection, our developed approach reflects the real input
data content.

For the robust results evaluation, we also compared the physical results with the convex hull
method. The next tables (Tables 8–10) give the percentage difference form the real physical values.
Columns marked by CH determine the area and perimeter by the convex hull.

Table 8. Physical area and perimeter, difference in percent from convex hull (X-axis).

Idx ACH (m2) A phys (m2) ∆ A (%) PCH (m) P phys (m) ∆ P (%)

2 11.461 6.97 39.19 13.338 18.95 42.08
4 11.425 8.976 21.44 13.38 16.856 25.98
5 14.121 11.728 16.95 15.343 21.68 41.30
14 14.948 13.489 9.76 15.632 21.34 36.51
16 9.1922 8.28 9.92 11.919 11.22 5.86
22 8.3255 6.95 16.52 11.031 15.133 37.19

Table 9. Physical area and perimeter, difference in percent from convex hull (Y-axis).

Idx ACH (m2) A phys (m2) ∆ A (%) PCH (m) P phys (m) ∆ P (%)

1 13.494 12.45 7.74 14.693 14.92 1.54
7 9.8345 10.26 4.33 12.294 12.76 3.79
10 10.231 10.12 1.08 12.342 12.78 3.55
14 9.5068 7.43 21.85 11.878 16.27 36.98
29 29.797 22.3 25.16 25.862 36.44 40.90
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Table 10. Physical area and perimeter, difference in percent from convex hull (Z-axis).

Idx ACH (m2) A phys (m2) ∆ A (%) PCH (m) P phys (m) ∆ P (%)

1 69.044 54.32 21.33 32.062 44.28 38.11
4 0.938 0.79 15.78 5.07 4.86 4.23
6 0.789 0.712 9.76 4.60 4.33 5.80
8 4.033 1.765 56.24 8.40 9.45 12.52
12 0.948 0.81 14.56 4.92 5.15 4.61
21 71.703 56.392 21.35 32.786 38.507 17.45

The comparison of both tables (Tables 5–7) with (Tables 8–10) shows that in several cases the
percentage difference is in units of percent. Even in four cases, the convex hull method overcomes our
method in the determination of at least one compared value. However, in many cases, the difference is
even more than 15%. This is caused by the convex hull nature to find the smallest convex polygon that
has no corner bent inwards, as shown in following Figure 20. For simple compact planar shapes as
squares, rectangles, triangles, and similar shapes without corners bent inwards, this method gives
precise results. This assumption is not usually valid in real environments.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 21 of 27 

Table 9. Physical area and perimeter, difference in percent from convex hull (Y-axis). 

Idx ACH (m2) A phys (m2) Δ A (%) PCH (m) P phys (m) Δ P (%) 
1 13.494 12.45 7.74 14.693 14.92 1.54 
7 9.8345 10.26 4.33 12.294 12.76 3.79 

10 10.231 10.12 1.08 12.342 12.78 3.55 
14 9.5068 7.43 21.85 11.878 16.27 36.98 
29 29.797 22.3 25.16 25.862 36.44 40.90 

Table 10. Physical area and perimeter, difference in percent from convex hull (Z-axis). 

Idx ACH (m2) A phys (m2) Δ A (%) PCH (m) P phys (m) Δ P (%) 
1 69.044 54.32 21.33 32.062 44.28 38.11 
4 0.938 0.79 15.78 5.07 4.86 4.23 
6 0.789 0.712 9.76 4.60 4.33 5.80 
8 4.033 1.765 56.24 8.40 9.45 12.52 

12 0.948 0.81 14.56 4.92 5.15 4.61 
21 71.703 56.392 21.35 32.786 38.507 17.45 

The comparison of both tables (Tables 5–7) with (Tables 8–10) shows that in several cases the 
percentage difference is in units of percent. Even in four cases, the convex hull method overcomes 
our method in the determination of at least one compared value. However, in many cases, the 
difference is even more than 15%. This is caused by the convex hull nature to find the smallest convex 
polygon that has no corner bent inwards, as shown in following Figure 20. For simple compact planar 
shapes as squares, rectangles, triangles, and similar shapes without corners bent inwards, this 
method gives precise results. This assumption is not usually valid in real environments. 

 

Figure 20. Planar surface area with a hole: (a) Level image; (b) Convex hull. 

Figure 20b shows the problem of finding the convex polygon that has no corner bent inwards. 
Additionally, the convex hull does not detect holes as Figure 20a illustrating the detection by the level 
image. Instead of the area and perimeter determination, the level image has also features to detect 
holes, segment all planar surfaces in one detected level and express statistical properties of a planar 
surface. The precision of the level image depends mainly on the suitable selection of quantization 
parameter qD . The most important advantage of a level image is the planar surface representation 
in the different form, allowing the using of image processing methods. This offers to use the wide 
range methods to get important planar surface properties. The mathematical solution for complex 
shapes can be difficult. The image presentation offers to analyze also the depth information, which 
can be used to detect 3D shapes in the future. 
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Figure 20b shows the problem of finding the convex polygon that has no corner bent inwards.
Additionally, the convex hull does not detect holes as Figure 20a illustrating the detection by the level
image. Instead of the area and perimeter determination, the level image has also features to detect
holes, segment all planar surfaces in one detected level and express statistical properties of a planar
surface. The precision of the level image depends mainly on the suitable selection of quantization
parameter qD. The most important advantage of a level image is the planar surface representation in
the different form, allowing the using of image processing methods. This offers to use the wide range
methods to get important planar surface properties. The mathematical solution for complex shapes
can be difficult. The image presentation offers to analyze also the depth information, which can be
used to detect 3D shapes in the future.

8.4. Evaluation of Processing Algorithms

Following Figure 21 shows the planar surfaces visualization by using the level images from
Figure 13c,d. The level images were achieved by the LCCL algorithm. For a better illustration, the
segmented points are also included. From both visualizations, it is obvious the good covering of all
points. From this follows that the results of the developed algorithms strongly depend on the quality
of an input point cloud.
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Figure 21. Planar surface visualization: (a) Point cloud with a hole; (b) Normal surface.

The results of the planar surface segmentation can be improved by the fine segmentation, as
we introduced in reference [32]. Figure 22 gives an example of the usage for the level detection in
Figure 10. For the processing of the final point cloud composing the flat, we did not use this fine
ranging. Figure 22d shows the problematic case. The noisy curve is the histogram of the points
representing a level in the scanning dimension dims. The green line is the moving average of the
histogram with the selected window size 1 cm. From the filtered curve, it is possible to surely estimate
positions of both elbows, where the derivation is smaller than the desired threshold. For example, due
to measurement errors and the worse result of the registration process, points from two scans covering
one wall can be slightly shifted and two local maxima of points concentration can be close to each
other. When this situation occurs, the algorithm ends with a similar result as in Figure 22d. This can
lead to the detection of double walls.
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For this reason, it is better to not use this approach on data with measurement errors. Prior
information about the point cloud data quality or the demands on the planar surface detection is
desirable. We are focusing on the two main parameters, the expected standard point deviation from
a detected planar surface and the minimal distance between two planar surfaces in the direction of
analyzing individual levels. This reflects the selection of the parameters lvlS and lvlRS. The lvlS value
also expresses the expected standard point deviation from a planar surface. If this parameter is set too
high, the two close planar surfaces can be detected as one. The higher lvlRS value selection is always
recommended, as this ensures the sufficient data range selection in the scanning dimension and the
histogram of points concentration will find the best probability of a level position for a planar surface
presence. To ensure the probability that a point belongs to the best planar surface, we can follow the
statistical parameters of all planar surfaces.

Next, Figure 23 shows the possibility of using the level image for the point cloud segmentation.
For a level image, its physical origin in space, orientation angle, and quantization parameter are known.
From this, we can easily extract desired points as shown in this example.
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The next advantage lies in the extensibility of well known point cloud processing methods
mentioned in Section 1. A segmented planar surface can be further processed by our developed
algorithms. Following Figure 24 shows the segmentation of different planar surfaces. When we are
processing data, we can also focus only on planar surfaces with the desired parameters as the area,
perimeter, shape, or for example a planar surface variance, see Figure 24. It is necessary to mention
that the flat from Figure 19 is empty of furniture except for the kitchen units. Even if some furniture is
present in the scanning scene, we can detect all present planar surfaces. The presented point cloud
processing pipeline detects, presents, and reflects all what it is physically present in input data. The
use of this proposed processing concept is wide.
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9. Conclusions

In this paper, we presented several methods for point cloud processing from basic preprocessing,
such as removing outlier points, initial rotation angle estimation against base coordinate axis to the
point cloud simplification, and global space parameter estimation. The main assumption for its success
depended on planar surface presence in analyzed data, which is highly probable and almost every time
fulfilled in an indoor space. The results of these methods are summarized in the following three points:

• Outliers and rotation—The simple point concentration histogram offers to remove outliers. This
improved the result of the final point cloud composition by the registration process. Moreover,
the thoroughly selected processing of histograms in the two axes allows the relatively fast finding
of the initial point cloud orientation against the third coordinate axis. This is mainly important for
the decreasing processing time. Only three passes of the scanning algorithms allow finding of all
planar surfaces in each coordinate axis as documented in the tables of results.

• Holes removing—The composed point cloud from several scans may lack of points in some part of
the presented surfaces. The filling of holes in a level image representing a planar surface makes it
possible to reconstruct the missing points. The filled holes allow the estimation of the real surface
area. It makes even it possible to estimate the volume of a space when its height is known in the
case of the floor or ceiling.
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• Simplification of objects—The proposed approach showed the successful planar surface detection
in the desired coordinate axes. It offers alternative point cloud processing and extends the
possibilities of the present methods. The scanning algorithm for the planar surface detection
allows the description of these planar surfaces by the statistical parameters. The standard deviation
of the detected planar surfaces is small, which indicates their precise detection, as was shown
in the capture results. We can see that thanks to this, it is easy to possibly detect the parallel
walls. The presentation of planar surfaces by the level images offers to estimate important space
properties as the area and perimeter. The image processing methods allow easy determination
of these parameters against the difficult mathematical solution for the irregular shapes. All the
detected properties make it possible to classify each planar surface. The results also show the
ability of the algorithm for the descriptive point decreasing. All the planar surfaces presented
only by their vertices showed a 99% decrease in points almost in all cases.

Moreover, all features of the proposed processing pipeline are usable not only for point clouds,
but they are valid for the detection and analysis of different levels for any 3D data in general. Future
research will focus on object detection and tracking. The planar surfaces representation allows removal
of the scanned space boundary and extracts only the desired objects. The analysis of the level of image
shape can be used to categorize objects into groups. The extension of the level image content in more
depth can offer the categorization of 3D objects. The next possible way is to create the simulator based
on the measured data, which will create the training spaces with some targets, and this can be used for
neural networks training.
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