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ABSTRACT

Visual analytics has been widely used by data scientists to shed light on complex problems.

Despite the prevalence of many visual analytics tools that empower human decision making

with data-driven insights, challenges still exist that hinder users from genuinely capitalizing

on insights from visualizations. The two biggest challenges we identify are the lack of task

support and disconnected workflow. Visual analytics tools lack task support because they

do not actively suggest insights to the users, requiring users to pick each individual step

during exploration manually. These tools also suffer from disconnected workflows by keeping

interactive exploration via dashboards separate from data preparation and cleaning tools like

computational notebooks.

To address these challenges, we introduce Lux, a visualization recommendation library

that automatically generates useful insights for data exploration, and seamlessly integrates

into a user’s data exploration workflow by augmenting the Pandas library. In this thesis,

we document the design decisions made and the implementation details of Lux as well as

how users can easily unlock intelligent analytical capabilities by adding our library to their

code. Furthermore, we share how predecessor visual analytics tools such as Zenvisage that

we contributed to guided the development of Lux.

Keywords: Data analysis, Visualizations, Recommendations, Scientific Applications.
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CHAPTER 1: INTRODUCTION

In recent years, organizations can accredit their success to actionable decisions made using

data-driven insights. Whether it is forming business strategies from user behavioral data or

finding support for scientific hypothesis through experimental data, deriving value from data

has been crucial to these successes. Obtaining such valuable insights requires data scientists

to undergo the process of data exploration, where they manually search for patterns and

anomalies in datasets. This process becomes tedious and unwieldy, especially when the

dataset is large and complex. Not surprisingly, the number of visual analytics tools have

also boomed in recent years due to a higher demand for automation and assistance during

data exploration.

Traditional visual analytics systems fall into two major categories. They are either visual-

ization support libraries such as ggplot2 [1] in R and matplotlib [2] in Python, or stand-alone

data visualization platforms such as Tableau [3] and Spotfire [4]. These two forms of data

exploration fall short in many aspects. In both cases, users must explicitly specify the vi-

sualizations of interest, which is based on the assumption that users already know what

they want. Also, it is hard to generate and analyze collections of visualizations since these

systems usually operate on a single visualization at a time. This task of examining multiple

visualizations becomes overwhelming and error-prone as the number of visualizations scales

with the size and complexity of the dataset. Moving towards a solution for these shortcom-

ings, we focus on developing another flavor of visual analytics tools, namely visualization

recommendation systems (VRSs).

In contrast to traditional visual analytics tools, the goal of VRSs is to proactively suggest

potentially interesting patterns or insights about the dataset. Since the system delivers rec-

ommendations automatically, users can learn about their datasets without substantial effort

or background knowledge, and it is easy to iterate through the recommended visualizations

thanks to a system-computed ranking based on well-defined metrics. However, based on

our own experience from developing such systems, we found two major hurdles for people

to adopt VRSs in practice. One limitation of VRSs is the lack of features that support a

variety of analytical tasks that are useful to data scientists. For example, many existing

VRSs such as Zenvisage [5], Voyager [6], and SEEDB [7], are all different in terms of their

recommendation mechanisms and cannot be considered as a comprehensive solution for a

variety of use cases. Such limited task support for users means that recommendations from

VRSs only work for a small audience.

Furthermore, a significant difficulty stems from the gap that exists in the current landscape
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of analytics tools. On one end, data scientists use computational notebooks like Jupyter or

R studio to write code that performs operations such as data cleaning, data preparation,

or modeling. On the other end, many VRSs exist as standalone web or desktop-based

applications to support interactive analytics. The chore of importing and exporting data

every time from one system to another to perform data analytics slows down experimentation

and disrupts the workflow of data scientists. To address these challenges, we built Lux, a

novel VRS, which represents our first attempt at tackling all the aforementioned challenges.

To fix the problem of limited task support, Lux features a multi-purpose analytics framework

that is extensible to a variety of use cases. To bridge the gap between current tools, we are

bringing the power of visualization recommendations directly into Jupyter notebooks, a

popular platform among data scientists for interactive computing. We believe that Lux

is an important first step towards building VRSs that support the broader data science

community.

In this dissertation, we break down our research contributions into multiple milestones.

1. During the development of Zenvisage, a VRS developed by our research group, we

discovered various adoption challenges. We collaborated with participants over a year

to build an extensive set of features to address some of these challenges. We share the

barriers faced while developing and using Zenvisage, and how this experience guided

the development of Lux.

2. We defined a set of core features for Lux that resolves challenges faced by traditional

VRSs. In particular, we designed various types of recommendations that support more

use cases compared to existing tools. We also take a modular approach in designing

these features to encourage extensions that support new use cases.

3. We iterated on a prototype design based on the features defined. With the goal of

creating a seamless workflow for data exploration, Lux was designed as a library that

augments a popular data science ecosystem. We designed Lux as an extension to

Pandas dataframes [8] supporting analytic capabilities to display visualizations and

visual recommendations, which are then rendered in a Jupyter notebook.

The rest of this thesis is organized as follows:

• Chapter 2 gives context on related work on VRSs. We spend considerable time on our

work on Zenvisage and how it motivated the design of Lux;

• Chapter 3 explains the core capabilities of Lux;
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• Chapter 4 documents the development process of Lux from design stages to prototype

implementation;

• Chapter 5 discusses future work pertaining to Lux;

• Chapter 6 concludes this thesis.
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CHAPTER 2: RELATED WORK

2.1 THE CURRENT LANDSCAPE OF VISUAL ANALYTICS TOOLS

A number of tools have been recently developed to help people visualize and understand

their data in intuitive ways. These tools, such as Spotfire [4], Polaris [9], and Tableau [3] are

useful for analyzing a single visualization. For instance, Tableau integrates Show Me [10],

a set of user interface defaults that automatically constructs a single visualization based on

graphical design principles. However, a limitation of these systems is that they usually do

not operate on multiple visualizations at a time. Since users often do not know what they

are looking for, this flaw is critical. A solution to this problem is to recommend a collec-

tion of visualizations that may contain information that is potentially interesting to data

scientists. For example, Voyager [6] is a system that recommends charts based on statisti-

cal and perceptual measures. SeeDB [7] shows views that highlight the difference between

two sets of data. Profiler [11] automatically detects anomalies and suggests visualizations

that provide valuable context. However, we believe that each attempt is fairly constrained

and lacks flexibility. In particular, each system is limited to a single or a few types of

recommendations, and the user has no control over which regions of the dataset or which

visualization collections to explore. Furthermore, all of the VRS examples described in this

chapter lack integration with the rest of the data science ecosystems to ease the burden of

context switching between systems during exploration.

2.2 VISUAL QUERY SYSTEMS

Visual Query Systems (VQSs) are a subset of VRSs that allow users to specify a desired

pattern via some high-level specification language or interface, with the system returning

visual recommendations that match the specified pattern [5]. These systems usually include

intuitive querying mechanisms like a sketchpad in their interface. Until the development of

Lux, our research focused on VQSs because of their promise as data exploration tools. We

felt that having an expressive querying mechanism that puts the user in control was the

most important factor in aiding adoption.

2.3 ZENVISAGE

Zenvisage is a VQS developed by our group to address the challenge of exploratory analysis.
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Figure 2.1: Zenvisage interface [12]

As shown in Figure 2.1, Zenvisage accepts various types of user input for generating vi-

sualizations. When a query is submitted in the frontend, Zenvisage computes the scores of

candidate visualizations based on the query to identify matches. Then, visual recommenda-

tions are ranked and displayed in the output pane ordered by the scores. Based on Figure

2.1, let us study how the user interface features multiple interactive components. First, the

user uploads a dataset using Panel A. Zenvisage then populates x, y, and z axis options based

on the dataset schema (Panel F). Once attributes are specified, representative patterns and

outliers are shown in Panel B. These particular visual recommendations can be generated in

the absence of a query aiding a bottom-up exploration approach [13]. That is, the system

automatically recommends visualizations from the data with the aim of provoking further

data-driven inquiries. In contrast, users can control the outcome of their queries in a more

fine-grained manner with a top-down approach, where users draw a pattern by hand or drag

these patterns to the sketching canvas (Panel C). Here, the user plays a more active role in

generating recommendations because they provide a high-level specification for how desired

patterns should look like via the visual query. In Zenvisage, a large portion of the interface

is dedicated to the top-down approach to support complex queries. For example, within

Panel D, many options exist such as different comparison metrics for query processing like

dynamic time warping (DTW) [14], Earth Mover’s distance [15], and interactive smoothing.

Finally, Panel E shows the ranked results of the query, listed from the highest to the lowest
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score.

Through a year-long user-centered development process of Zenvisage, we made incremental

improvements to the system and received feedback from domain experts. Our work concludes

that while VQSs support the capability of working with expressive visual queries and multiple

visualizations, and did receive enthusiasm, interest, and initial usage from domain experts,

VQSs such as Zenvisage are often not used for a sustained period of time due to several

adoption challenges.

The most visible challenges were akin to those faced in systems mentioned above. VQSs

still lack integration with the user’s typical flow of analysis, leading to difficulties in context

switching between two different systems. For example, our astronomy users could move

on to VQSs only after all data preparation and processing operations were performed in a

coding environment like a computational notebook or an IDE. In addition, the analytical

capabilities of the system are confined to what has been implemented and released by the

VQS developers, so there is no flexibility and room for extension by the users. Such a rigidity

in the feature set poses challenges for supporting a variety of user tasks.

Finally, we share the results of a user study [13] conducted with domain experts. According

to the study, a limitation of VQSs is the focus on top-down approaches for exploration,

which are less relevant compared to bottom-up approaches. Our study shows that bottom-up

approaches correspond to roughly 70% of the operations performed in the study, much larger

than top-down approaches. The reason for this discrepancy is the necessity for preconceived

knowledge in a top-down approach. That is, data scientists often do not have a clear idea of

what desired patterns look like “in theory” to form an effective query. In contrast, bottom-

up approaches require no prior knowledge and provide users with initial ideas to guide their

search.

Next, we present two specific features of Zenvisage to provide context on the issues men-

tioned above.

2.3.1 Automatic Dataset Upload

In an earlier version of Zenvisage, a bottleneck caused by context switching occurred

when users uploaded their datasets along with a data type schema file. The burden of

maintaining a separate schema file was onerous from the user’s perspective. To this end, we

developed a dataset upload feature that automatically generates the schema to support a

smooth transition between systems. With automatic dataset upload, users can click on the

plus icon in Panel A of Figure 2.1 to upload a dataset. A dialog shown in Figure 2.2 will

pop up to allow users to select the dataset file.
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Figure 2.2: Dataset upload modal [12]

Figure 2.3: Automatic dataset schema detection [12]

The user can also enter a custom name for the dataset. Once the dataset is uploaded,

Zenvisage will automatically extract data types and axis channels for each attribute. This

process uses multiple heuristics to determine the correct type and channel. The results of

automatic detection are displayed in a new dialog that is shown in Figure 2.3. The dialog

includes checkboxes and dropdown menus, which are filled out based on detected values.

This feature allows the data uploading process to scale with the number of attributes in the

uploaded dataset because users do not have to manually select an option for each attribute.

The users still have the option to change settings for each individual attribute. Nevertheless,

we observed that users still faced difficulties due to a division in their workflow because the

use of Zenvisage assumes that data processing and cleaning is complete. Users were required

to clean the data and save it in a CSV format before uploading the dataset to Zenvisage for

further inspection.
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2.3.2 Sketch Queries

While developing Zenvisage, we put significant effort into supporting the top-down search

of visualizations via visual queries. The two types of top-down search are invoked by sketch

queries and scatter queries. A sketch query is used for searching for desired patterns in

time series data, while scatter queries are suited for finding scatter plots with high data

point density in specified areas. For both types of search, Zenvisage receives input from

a sketch board where users can draw visual queries. For a sketch based query, users draw

a time series trend line that is compared to candidate visualizations based on similarity.

Each candidate is then ranked by its similarity score and displayed to the user. A concrete

example is illustrated in Figure 2.4.

Figure 2.4: Time series sketch query for similarity search [12]

During our collaboration with material scientists, we learned that they prefer to work with

scatter plots instead of line charts since they were interested in the behavior of individual

solvents unaggregated. To support their analysis tasks, we developed a scatter querying

functionality to search for interesting scatter plots. For a scatter query, the sketch board

shows a scatter plot that contains the aggregation of points across all possible bivariate

charts. The data points are then binned into hexagons, where a darker color signals a higher

density of data points. The users can draw a polygon on the sketch board, and Zenvisage will

rank candidate charts based on the scatter plots with the most points within the polygon in

the sketch board. An example query is shown in Figure 2.5. While we expected these visual

queries to assist data scientists with their search for interesting visualizations, such queries

were seldom used due to the challenges of top-down queries alluded to earlier. In addition,

we learned the importance of building flexible analytics modules because supporting only

time series and scatter plot queries limited the number of use cases for Zenvisage.
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Figure 2.5: Scatter plot polygon query [12]

9



CHAPTER 3: LUX CAPABILITIES

In this chapter, we introduce the Lux interface, a Jupyter widget [16] that displays visual

recommendations targeted at extending the capabilities described in the previous chapter

and fixing the limitations thereof. Then, we describe features for generating visualization

collections and custom analytics modules.

3.1 LUX WIDGET INTERFACE

Jupyter Notebooks, an open-source web application for creating documents that contain

live code and visualizations, is our chosen medium for interacting with users. We leverage

the ubiquity of Jupyter in the data science community to serve a large audience, as well

as to provide a seamless interface with data scientists’ existing workflows. To describe how

the interface operates, we showcase a demonstration. Figure 3.1, 3.2 and 3.3 illustrates how

data scientists can explore the Cars dataset using Lux within Jupyter. This comprehensive

demonstration will be our reference for all Lux features moving forward.

Figure 3.1: Lux setup, data Ingestion, and data overview actions
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Figure 3.2: Actions with specifications

Figure 3.3: Visual recommendations after data cleaning
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In Jupyter Notebooks, code cells allow data scientists to enter and run Python code.

A typical workflow includes data ingestion, data cleaning, analysis, and visualization. An

example of data ingestion is illustrated in panel B (code line 2, denoted as In[2]), where the

data scientist loads the Cars dataset before starting analysis.

Sometimes, running commands in code cells generate data to standard output. The stan-

dard output streams are displayed in the output area such as panel B (code line 2, denoted

as Out[2]). For these output panels, Jupyter also supports the Jupyter widget framework

which allows developers to build displays that can be customized for rich representations

of Python objects. For Lux, we take advantage of such custom widget displays to visualize

recommendations in the output cells. Panel C (code line 3 denoted as In[3]) is an example

of visual recommendations rendered in Jupyter using custom rendering logic.

To summarize, Lux receives user input in code cells, generates helpful visualizations in

the background based on the input, and displays the visualizations as recommendations in

the output cells.

Overall, Lux strives to be a one-stop solution for a diverse set of visual data exploration

needs. To achieve this, Lux is deeply integrated into the common tasks of data scientists

in Jupyter. Analysts can start using Lux with a simple import statement to our library.

Lux also exposes its API with language constructs that are simple and unobtrusive to the

users existing code. Such seamless integration is made possible because Lux is built as

an extension to Pandas [17], a popular Python library that enables users to work with

relational-like data through a data structure called dataframes. Pandas dataframes are

widely adopted by data scientists for data loading, wrangling, cleaning, and analysis. Lux

extends the notion of a dataframe by augmenting them with visualizations based on the

current state of the data and optional inputs. Specifically, if the user is unclear about what

to visualize, Lux visualizes all univariate and bivariate visualizations from the data to give

an overview of the dataset. However, if the user chooses to dig deeper into a specific set

of visualizations, the augmented dataframes from Lux can receive specification inputs to

generate recommendations that target the user’s interest. When rendered as visualizations,

these recommendations are ranked by metrics that capture their likelihood to be potentially

interesting to the user. Armed with the knowledge of how the Lux interface works at a high

level, we explain each step that the analyst takes in our Cars demonstration.

• Figure 3.1 A: The user imports Lux to augment Pandas dataframes with automatic

visualization capabilities. After the import, all dataframes include Lux capabilities to

generate visual recommendations.

• Figure 3.1 B: The user reads data from a CSV file into a dataframe object. The initial
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lines of the dataframe are printed to validate that the data read is successful.

• Figure 3.1 C: The user is not ready to dive into detailed analysis yet. For now, the user

simply calls the “show” function to request visualizations that give an overview of the

dataset. The outputs are visualized into two tabs that represent different statistics.

• Figure 3.2 D: Based on the information mined from visualizations in step C, the analyst

decides on a specific area of interest for further exploration. This area of interest is

expressed as input specifications to the “setContext” call that sets context for what

the user may be interested in. After running “setContext”, the output of “show”

differs from that of step C. In contrast to step C, the output has a current view

which represents the user’s specification input. The generated visualizations also differ

because the recommendations are now based on the current view.

• Figure 3.2 E: User repeats step D, but also performs data inspection and data cleaning

with Pandas operations before visualization. The procedures highlight that all existing

Pandas related operations are unaltered by Lux and proceed as before. Furthermore,

we observe that Pandas and Lux work together to provide continuous visualization

capabilities.

3.2 SEARCH SPACE ENUMERATION

Similar to existing mixed-initiative interfaces for visualization recommendations [18] [6] [19],

Lux allows users to specify the visualization sets that they intend to explore. The freedom

to generate an arbitrary group of visualizations is useful across various scenarios. In a simple

use case, data scientists can browse through visualization collections to find interesting re-

lationships within the data. For example, an analyst who wants to explore the relationships

of the “Miles per Gallon” attribute with respect to other attributes can use the command

below to generate a collection of scatter plots that meet the specifications.

ldf.setContext(lux.Spec(attribute = "MilesPerGallon"),lux.Spec("?"))

Here, the question mark denotes a wild card attribute that signals the system to generate a

visualization collection with all possible attributes that can replace the wildcard.

In an advanced use case, users can specify desired patterns so that the system auto-

matically traverses all candidate visualizations to find matching results. We showcase this

application by re-implementing the similarity search functionality of Zenvisage in Lux. We
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can adapt our Cars dataset demonstration to run a similarity search for car brands that

match the trend line of “Displacement” for the brand “Pontiac”.

Figure 3.4: Similarity search functionality originally implemented in Zenvisage. The example

search identifies car brands with similar displacement trends to Pontiac.

In Figure 3.4 we outline the sequence of commands required to run the similarity search.

• Figure 3.4 F: The dataframe receives input specifications to define a search space.

• Figure 3.4 G: The dataframe calls a similarity search with a query object. The query

object represents a single visualization that contains a pattern of interest.

• Figure 3.4 H: The result set ranks visualizations by their similarity to the query visu-

alization.

Similarity search shows how visualization enumeration is useful for sophisticated analytics.

Also, the feature highlights Lux as a versatile tool that can be customized to support a diverse

set of tasks.

3.3 AUTOMATIC ENCODING

Lux is built on the foundation that visual exploration should be accessible, even for those

who do not have expertise in data visualization. In order to support this, Lux users can

visualize and explore anything they specify without having to worry about how the visual-

izations should look like. Similar to existing encoding-based visualization recommendation

systems [10], Lux uses a set of heuristics to automatically determine the appropriate visual
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encoding for a given visualization. For example, it takes only a few lines of code in Lux to

plot a bar chart of “Average Horsepower” by “Origin”. This is because Lux automatically

determines that a bar chart should be visualized given that “Horsepower” is a quantita-

tive variable and “Origin” is a categorical variable. In contrast, other visualization libraries

such as Plotly [20] and matplotlib [2] require additional specification details to plot the same

charts. While BI tools like Tableau [3] often support similar features, the level of automation

Lux brings to users does not exist in other visualization libraries.

3.4 LUX QUERY LANGUAGE SYNTAX

As seen in our demonstration, data scientists steer their exploration by interacting with

the dataframe context, i.e., a specification of the attribute or values that they are interested

in. Lux supports a simple syntax for specifying the context so that users can explore all parts

of the dataset. A basic usage of Lux syntax is specifying the context with one specification.

Specifying only “Horsepower” means that the user is interested in one attribute, and the

visual recommendations will be generated based on “Horsepower” alone.

ldf.setContext(["Horsepower"])

In the previous example, specifying the attribute name (“Horesepower”) was sufficient be-

cause Lux automatically populates underspecified arguments for generating visualizations.

In contrast, users can provide explicit specifications by providing Lux Spec objects as argu-

ments for the context. The next example shows the user forcing the “MilesPerGal” attribute

to be the x axis of the output visualizations by providing a Spec object.

ldf.setContext(["Horsepower", lux.Spec("MilesPerGal",channel="x")])

For categorical attributes, users can apply a filter to the output visualizations by specifying

a value for the attribute. To apply the filter, the user inputs a string which is the attribute

name, followed by an equal sign and the filter value.

ldf.setContext(["Horsepower", "Origin=USA"])

Lux allows multiple attributes and values to be specified at once so that users can express

interest in visualizations with more than one attribute or filter. For example, the bar sign

denotes a logical OR which can be used to specify multiple attributes or filters.

ldf.setContext(["Horsepower", "Origin=USA|Japan"])

ldf.setContext(["Horsepower|MilesPerGal|Weight", "Origin=USA"])
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For those who are more familiar with Python syntax, multiple attributes can also be

specified as a list of strings.

ldf.setContext([["Horsepower", "MilesPerGal", "Weight"], "Origin=USA"])

Finally, since it may be difficult for users to specify all possible attributes or values at once,

we support question marks as wild card queries. The wildcard signals Lux to automatically

populate the context with all possible unique attributes or filter values.

ldf.setContext(["Horsepower", "Origin=?"])

ldf.setContext([lux.Spec("?")])

3.5 ANALYTICS ACTION MODULES

Working off of a system that allows users to specify a group visualizations, we can perform

analytics on top of the selected displays. We define such operations on visualizations as

actions, where each action represents different analytical intents or user goals. The goal of

organizing analytics into discrete user actions is to build a system that can flexibly support

a plethora of tasks.

Lux currently supports a set of most popular operations based on existing research in the

visualization recommendation literature. The action classes include Correlation, Distribu-

tion, Enhance, Filter, and Generalize. Next, we describe each action class with supporting

examples.

3.5.1 Actions without Input Specifications

We depicted in the Cars demonstration that the easiest way to learn about a dataset is

by initializing a dataframe and calling the “show” function. This simple two-step process is

significant for a few reasons. First and foremost, data scientists who want an overview of

the dataset can use Lux before closer inspection via subsequent analysis. Second, it allows

beginner users to interact with Lux without the overhead of learning new syntax. When a

user does not provide any specification, we generate all visual recommendations under action

classes that can be computed without any user input. Such actions are intended to provide

useful information despite minimal effort from the user. Currently, we have implemented

Correlation and Distribution for these types of actions.
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3.5.2 Correlation

Figure 3.5: Example of Correlation action

Displayed in Figure 3.5, the Correlation action scores visualizations based on how corre-

lated two quantitative variables are. When the action is invoked, Lux generates bivariate

visualizations that represent all pairwise relationships in the dataset. Then, each visual-

ization is scored by the Spearman’s correlation to show the visualizations in ranked order.

This action serves as a launchpad for data scientists trying to understand the relationships

between attributes in their dataset.

3.5.3 Distribution

Figure 3.6: Example of Distribution action

Another aspect of the dataset that Lux can visualize is the data distribution. Depicted in

Figure 3.6, the Distribution action provides an overview of the data by generating univariate
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count distributions of different attributes in the dataset. The distributions are ranked by

a skewness coefficient to identify histograms that deviate from a normal distribution. In

general, skewed distributions will have more weight in the left or right tail of the distribution.

The Distribution action is useful when little is known about the dataset because it finds

visualizations with interesting distributions.

3.5.4 Actions for data navigation

Visualizing relevant data is essential when exploring for insights. Unfortunately, data

scientists often overlook parts of the data that may hold valuable information when the

number of attributes in the dataset increases. Figuring out which exact attributes and

values to visualize is difficult when certain attributes are left out, or when visualizations

contain too much noise to hinder the viewers’ focus. Hence, Lux implements actions that

allow users to navigate through the data by dynamically adjusting their context.

3.5.5 Enhance

Figure 3.7: Example of Enhance action

Sometimes, including additional attributes in a visualization can show hidden information.

Lux can reveal such details with the Enhance action, which takes in a set of visualizations

and generates all possible views that include one additional attribute. Data scientists can

use the Enhance action when they want to see the effects of an extra variable in their visu-

alizations. For example, in Figure 3.7, the Enhance action shows the relationship between

“Horsepower”and “Acceleration” broken down by either “Origin” or by “Cylinders”.
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3.5.6 Filter

Figure 3.8: Example of Filter action

The Filter action iterates over all possible values of a categorical variable and generates

visualizations where each categorical value filters the data in various ways. The goal is to

visualize different data subsets that exist in the dataset. Example visualizations with applied

filters are illustrated in Figure 3.8.

3.5.7 Generalize

Figure 3.9: Example of Generalize action

The opposite of an Enhance action is the Generalize action. In the Generalize action, we

remove an attribute to observe a general trend. The Generalize action is helpful when users

want to step back and see an overall trend of their data.
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CHAPTER 4: LUX DESIGN AND IMPLEMENTATION

Up to this section, we described all user-facing aspects of Lux. Next, we discuss how Lux

works under the hood by explaining important design choices and implementation details

for building our system.

4.1 LUX ARCHITECTURE

The Lux architecture is composed of modules that have distinct responsibilities. The

architecture can be described in layers: the user interface layer, the user input validation

and parsing layer, the query processing layer, the data execution layer, and finally the

analytics layer. From a software engineering standpoint, the principle behind our design is

to take advantage of the extensibility of loosely coupled modules. We hope the modular

architecture supports easy integration of new optimizations to any part of the existing code.

Figure 4.1: Architecture diagram that shows interactions between different components in

the Lux ecosystem.
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4.1.1 User Interface Layer

As explained earlier, we output visualizations to Jupyter via custom widgets. These

widgets act as a framework for creating custom HTML representations of Python objects

within Jupyter. The benefit of displaying the output through widgets is that we can make

visualizations interactive, a crucial component in building VRSs. Developing these widgets

requires two steps.

The first step is to set up a communication layer between widget objects in the Python

kernel (backend) and the Javascript objects represented in the browser (frontend). Estab-

lishing this connection allows the synchronization of visualization information between the

Lux backend and the Jupyter frontend. Data about visualizations can now flow from Lux to

Jupyter because the Python backend generates visualizations that are available immediately

to Jupyter via the widgets. Information can also transmit in the opposite direction be-

cause the Python objects update in real-time based on the changes made to their Javascript

counterparts [16].

The second step is extending the Jupyter interface so that widgets can display visualiza-

tions and receive user input. Precisely, we must add HTML elements and Javascript logic

that can take care of displaying interactive visualizations. The React framework [21], a

well-suited tool for building interactive user interfaces, was chosen for implementing these

frontend elements. The advantage of React is its component-based structure. In React,

different frontend elements are organized into encapsulated components that manage their

own state. Based on changes in the state, a component responds by re-rendering to keep

the interface up to date. Therefore, React’s component based state management allows Lux

visualizations to re-render whenever recommendations should be updated based on changes

in the context.

4.1.2 Lux Data Structures

We made progress in developing the Lux backend over two iterations of system design

and implementation. The first design was a proof-of-principle prototype, where we validated

our hypothesis that the system can assist user tasks with Lux capabilities. Our current

design is a functional prototype that supports an accessible API and extensible analytics

modules. Over the two development cycles, we designed data structures that are necessary

abstractions for each stage in the system pipeline. We introduce these essential building

blocks to provide background information before going over the rest of the system.
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4.1.3 The Lux Dataframe

Dataframes have become incredibly popular data models that are well suited for analytics.

Its success can be attributed to multiple features including induced schemas, label-based

indexing, and matrix-like operations. To benefit from the convenience of Pandas dataframes,

Lux is designed with a focus on a tight integration with Pandas. To this end, we follow

the instructions from the Pandas documentation [8] for extending Pandas data structures,

which recommends subclassing. We define the central piece to Lux’s data model as the Lux

Dataframe (LDF), a subclassed Pandas dataframe that supports all dataframe operations

while housing other variables and functions for generating visual recommendations.

There are strong motivations for choosing this design. First, we can preserve Pandas

dataframe functionalities with subclassing, meaning all code written using Pandas dataframes

will also work with Lux. Second, Lux syntax becomes elegant because all API endpoints

can be directly called from the dataframe instead of an external Lux object.

4.1.4 Spec/Context

The Spec object represents a single unit of user specification. These specifications can be

attributes that designate columns or filter values that specify rows in the dataset. The LDF

stores these objects in a list named the Context, which holds all current specifications for

generating recommendations. An essential job of the LDF is to maintain the Specs within

the Context, so that generated visual recommendations are up to date with the user’s input.

4.1.5 View/ViewCollection

Since Lux maintains sets of visualizations, we require a data structure that encapsulates

each visualization and its properties so that we can score, rank and display them later. Hence,

we define a View object for each visualization as a representation of all information required

for data fetching and rendering. The LDF stores multiple Views in a View Collection, which

is a list that represents a set of visualizations to display to the user. Since data fetching for a

View is an expensive operation in VRSs [7], we designed the View to be decoupled from the

data, so that the View can be easily modified or transferred during query processing stages.

4.1.6 System overview

Based on established definitions of the data structures used in Lux, we overview the system

with a focus on each module. At a high level, the following sections describe the life cycle of
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how Lux interprets the user’s analytical intent, fetches the relevant data, and finally performs

analytics to generate visualizations.

4.1.7 The Lux Parser and Validator: Standardizing input specification

Before any processing happens, Lux interprets user inputs to transform strings into Spec

objects for the Context. All syntax rules are applied to parse user input in this stage. In

addition, input validation catches inconsistencies between the Specs and the dataset. With

this feature, data scientists can discover mistakes early on in their exploration and make

corrections. For example, if the input is a filter specification where the attribute “Origin” is

equal to “USA”, the validation stage checks whether the value “USA” exists for the attribute

“Origin” in the dataset.

4.1.8 The Lux Compiler: Creating a full specification

Lux allows users to provide the bare minimum in terms of input specifications. Therefore,

Spec objects often require additional processing before they are used for creating Views.

Underspecified information for Specs within the Context are inferred during the compilation

stage. The transformation of these Specs into Views is a three-step process.

1. View Collection generation. The system generates list of Views for visualization.

These Views are created from Specs in the Context that are fully or partially specified.

In the fully defined case, there is no ambiguity in which attributes the user wants to

visualize. For partially specified instances, the system locates any Spec objects that

include wildcard characters that are denoted by a question mark. These wildcard

Specs are further processed to enumerate all candidate Views that hold explicit Specs.

Ultimately, Lux creates a list of Views that correspond to each visualization that will

be displayed in the frontend.

2. Infer data type and data model information. The system auto-fills missing

details for each View. Each View holds Specs that correspond to the attributes for a

visualization. For each of the attributes, we populate the Specs with corresponding

data type information. These bits of information are necessary for encoding data into

the correct visual elements.

3. Visual encoding. The final step in the compilation is an automatic encoding process

that determines visualization mappings. The system automatically infers type, marks,
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channels and additional details that can be left underspecified in the input specifica-

tions. We have implemented a set of visualization encoding rules that automatically

determines marks and channels of each visualization based on data properties deter-

mined in step 2, as shown in table 4.1. This mechanism of automatic presentation

has already seen success in commercial BI software, such as Tableau [3]. Therefore,

encoding rules in Lux draw inspiration from the Show Me rules introduced by Mackin-

lay [10].

Number of Dimensions Number of Measures Mark Type

0 1 Histogram

1 (ordinal) 0,1 Line chart

1 (categorical) 0,1 Bar chart

2 (ordinal) 0,1 Line chart

2 (categorical) 0,1 Line chart

0 2 Scatter plot

1 2 Scatter plot

0 3 Scatter plot

Table 4.1: Encoding rules for automatically inferring visualization mappings.

4.1.9 The Lux Execution Engine: Data fetching and processing

With all View properties defined, the final missing piece for visualization is the data.

The data executor populates each View with a subset of the dataframe based on View

specifications. The data executor invokes dataframe operations supported by the Pandas

library to execute the selection and filter operations. After data fetching, each View data

may require additional processing based on its chart type. For the scatter plot case, selection

is sufficient for visualization. If the View is a bar or line chart, Lux performs data aggregation

on an axis. Finally, if the View is a histogram, Lux computes appropriate bins and counts of

data points. To show output of the data execution engine, we provide example visualizations

and their underlying data in Figures 4.2, 4.3, and 4.4.
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Figure 4.2: Scatter plot data generated by dataframe selection operations for the context

query [lux.Spec(attribute = “Acceleration”),lux.Spec(attribute = “Horsepower”)]

Figure 4.3: Bar chart data generated by dataframe selection and aggregation operations for

the context query [lux.Spec(attribute = “Horsepower”),lux.Spec(attribute = “Origin”)]

Figure 4.4: Histogram data generated by dataframe selection and binning operations for the

context query [lux.Spec(attribute = “Horsepower”)]
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CHAPTER 5: FUTURE WORK

Building our most recent prototype allowed us to establish the foundations of the VRS

we envisioned. While many of our goals were brought to fruition, multiple options exist for

improving our current system to reach a level of maturity that is on par with the expectations

of data scientists. Here, we share the paths in our future roadmap that we believe can take

Lux to the next level.

5.1 USER INTERACTIONS

A critical feature of a successful VRS is an interactive interface. While users should be

able to access all Lux capabilities programmatically, unlocking interactive queries speeds up

and simplifies the user’s experience. It may also flatten the learning curve for users who are

not proficient with Lux syntax. For instance, Zenvisage had a dedicated user interface for

interactive queries that provided an intuitive user experience. Based on our success from

Zenvisage, we plan to build interactive components for Lux.

Currently, the user interface of Lux only supports programmatic input and output display

of visualizations. However, Lux was designed with an expectation from day one to support

an interactive user interface in the future. For example, it was described that Jupyter

widgets allow two-way communication between objects in the Python kernel and Javascript

frontend. Using this capability, we can build widgets that update states of objects in the

backend according to changes made to the Javascript in the frontend.

Another consideration is deciding on which types of interactive queries to support. We

can start experimenting with existing query types from Zenvisage, such as drag-and-drop

queries or sketch queries. Another approach is to design new kinds of queries based on the

user’s needs. In either case, building an effective interactive interface will require thorough

research and design.

5.2 MODULE EXTENSION CAPABILITIES

Throughout this thesis, we emphasized Lux to be an extensible tool that is flexible in terms

of supporting different types of analytics. We believe the process of adding new analytical

modules to Lux should be extensible and accessible. We consider two initiatives for improving

Lux extensibility. First, a dedicated documentation for users who aim to customize Lux

should exist to onboard beginners. This documentation is vital to encourage and streamline
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the process of extending Lux. The second initiative is to build Lux as a framework that

allows users to add new analytics capabilities easily. We believe that providing a systematic

way of creating custom features enables Lux to scale with the number of different user

workflows.

5.3 SCALABILITY

For Lux to generate insightful visualizations, it must handle large amounts of data. Un-

charted territory for Lux is a definitive plan on how it will scale to bigger datasets. The

challenge to consider is that the interactive nature of the interface must be preserved while

scaling. We have discussed possible solutions such as finding optimizations in our data execu-

tion model or using external libraries like Modin [22] to speed up our dataframe operations.

However, it is not clear which method is best suited for scaling up.

5.4 USER STUDIES

The ultimate goal of Lux is to become integral to the success of data scientists. After the

Lux project reaches a certain level of maturity, we believe it is necessary to conduct a user

study targeting the data science community. Gathering usage data and user feedback will

allow us to fine-tune the tool and plan our next steps.
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CHAPTER 6: CONCLUSION

In recent years, the impact of data analytics tools have increased in tandem with the rise

of big data. Among these tools, data scientists have favored Jupyter and Pandas dataframes

for a variety of tasks such as data loading, wrangling, cleaning, and analysis. However, we

believe that these tools can offer more with additional capabilities for data exploration. This

thesis outlines our work in integrating adaptive visualizations into Jupyter and Pandas to

assist data exploration.

Developing effective data exploration systems requires a deep understanding of challenges

that users face. To this end, we studied Zenvisage to identify critical user challenges. Based

on the lessons learned, we designed Lux, a novel system that augments Pandas dataframes

via in-situ visualizations. New features in Lux such as interactive widget displays, dataframe

integration, and flexible analytics modules highlight our attempts to address issues in tra-

ditional systems. Hence, we believe that Lux brings the data science community one step

closer to unlocking powerful insights with the help of automatic visual recommendations.
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