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ABSTRACT

Series stacking is used as a means of implicitly raising DC bus voltages without additional

power processing and has been explored widely in the context of photovoltaic sources and

batteries in the past. More recently it has also been explored in the context of server loads

and microprocessor cores. Supplying power at a higher voltage supports a reduction in

conduction losses and reduces complexity in power supply design related to the high current

at low voltage nature of microprocessor loads.

However, series stacking of DC voltage domains forces the dc voltage domains to share

the same currents. In the context of series stacked loads, this would lead to failure of voltage

regulation of individual dc voltage domains. Additional power electronics, commonly referred

to as differential power processing (DPP) units are required to perform this vital task. The

idea is to let the DPP converters (which need to have bidirectional capability) process

the difference between currents of adjacent voltage domains, so that the load voltages are

regulated.

Although series stacking and DPP has been explored in significant detail, the importance

of light load efficiencies of these DPP converters has not been highlighted enough in the past.

In this document we discuss the importance of light load control in common series stacked

systems with DPP and propose a light load power management scheme for bidirectional

buck-boost converters (which is the building block of most DPP converter topologies). Ex-

tending efficient operation load range of converters (to process higher power in rare heavily

mismatched conditions and to maintain good light load efficiencies at the same time) with

multiphase converters and asymmetric current sharing is also discussed in the context of

DPP converters. We finally propose to build a series stacked system of low voltage loads

and DPP regulators to demonstrate the advantages of series stacking as opposed to the

conventional parallel connection.
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CHAPTER 1

INTRODUCTION

1.1 Series stacking of loads

Modern microprocessor loads need low voltage supplies (typically 0.7 V - 1.3 V after the

final power stage, which might be integrated on the microprocessor die itself) and at the

same time the currents sinked can be in excess of 100 A. These extreme high currents at

low voltages make voltage regulator design very difficult as PCB impedances start playing

a big part in determining output impedance of converters. Along with that, microprocessor

load transients can be very fast. Intel’s Voltage Regulator Module (VRM) [1] specifications

indicate that slew rates in excess of 300 A/µs can be encountered. To ensure that these

high slew rates (inductance limitations) and high load currents (resistance limitations) can

be supported, PCB impedances between the VRM and the actual microprocessor cores need

to be extremely low. This requires carefully designed power delivery networks to be placed

between the VRM and the microprocessor core to regulate the impedances. Fig 1.1 shows

a typical model of impedances between a VRM and the processor. The VRM itself has

some bulk capacitance (electrolytic) placed at its output. These bulk capacitances (several

millifarads) are capable of storing a lot of energy, but due to their build they have significant

parasitic inductance which make them slow to respond to load transients. The next stage in

the power delivery network is the bank of some high frequency multilayer ceramic capacitors

(MLCC) placed at the edge of the microprocessor mount on the motherboard. These ca-

pacitors are responsible for compensating the inductive effect of the PCB between the VRM

and the microprocessor. Some more capacitance is placed inside the microprocessor socket

itself to compensate for the effect of the PCB layer between the edge of the processor and

the processor pins.

The voltage regulator itself may be modeled as a controlled current source with limited

bandwidth due to limited slew rate of the inductor current. Processor specifications allow

for a slight droop in output voltage with load current and provide a target load line (ZLL) in

their datasheets. This load line is usually less than 1 mΩ (at 100 A load current, load voltage
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Figure 1.1: Typical voltage regulator parasitic impedances and capacitor distribution for
modern microprocessors. Figure adapted from [1].

Figure 1.2: Expected voltage regulator load line. The targeted ZLL is usually less than a
mΩ. Figure adapted from [1].

may not deviate below 10 mV of the set point). The inductor current cannot respond fast

enough if the load current perturbation occurs faster than the bandwidth of the VRM. For

those cases, voltage regulation is the responsibility of the capacitances in the power delivery

network. The bulk capacitances cannot respond to perturbations beyond 500 kHz due to

their parasitics. The MLCC capacitances placed in the socket and near the processor can

offer low impedances up to a few MHz. Beyond that frequency, it is not possible to regulate

the load line to be held below the target ZLL. Fig 1.2, from [1], shows a typical load line

expected from a VRM and power delivery network supplying a modern microprocessor. To

limit the effect of the socket inductance (Zpskt), often more than half of the pins connecting

the PCB and the microprocessors are dedicated to power supply and ground.

To counter PCB and socket impedance related problems, some microprocessors have added
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fully integrated voltage regulator (FIVR) modules to step down the core voltage internally

from a slightly higher voltage supplied from on board VRMs. Microprocessors that tend to

sink more than 100 A of current also tend to have a number of cores for improved processing

power. These cores may be supplied by separate integrated voltage regulators allowing

independent control over core voltages. This ensures that each core can be supplied from a

separate voltage rail and allows for optimization of power consumption by dynamic voltage

frequency scaling (DVFS) [2], [3], [4].

Some of Intel’s 4th generation of processors required a 1.8 V rail that was rated up to 200 A

[5], and highly paralleled FIVRs were implemented on the package and the die itself to step

down the 1.8 V rail to core voltage (0.7 V - 1.3 V). The FIVRs were designed to be capable

of delivering 400 A of current (700 A limited by thermal management and input power stage

[6]) by employing a massively paralleled system of hard switched buck converters. This was

implemented in the processors which consume excessive amounts of power (highest clock

rates and core counts) so that current ratings of on board voltage regulators do not exceed

efficient power delivery limits, and have more relaxed output impedance requirements. Inte-

grated voltage regulators tend to be inefficient due to hard switching at very high switching

frequencies. Even though efficiencies nearing 90% ([7], [8]) have been reported, this is not

nearly enough since the density at which these converters are integrated is too high. For a

chip that already dissipates 200 W of power, an additional 20 W of power dissipation due

to integrated voltage regulator inefficiencies might prove to be a thermal bottleneck.

Some of the processors in the later generations discarded the idea of integrated voltage
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regulators, and other measures such as power gating ([9], [10], [11]) were introduced to

reduce power consumption of processors. A single low voltage rail regulated by on board

voltage regulators supplies the cores of the processor, but power gates are introduced to

disconnect parts of the digital logic when they are not in use. The processor itself employs

DVFS by communicating with the on board VRMs, but independent optimization of core

voltages is not possible (and probably not necessary for most cases). However, this allows

for a reduction in static power consumption due to leakage in new semiconductor processes.

The general power delivery architecture for processors on a motherboard is shown in Fig

1.3. Recently there has been a significant amount of research on extreme duty ratio power

conversion such as 48 V - 1 V for high current systems. While it was previously expected that

such a step down conversion has to be done with two stages with a 12 V rail as an intermediate

bus, direct 48 V - 1 V conversion may soon become typical in most telecommunication

systems. Some of the proposed topologies for direct 48 V - 1 V conversion involve transformer

based step down [12], [13] or coupled inductor based step down conversion [14], [15]. These

topologies require bulky and complicated transformer or coupled inductor designs due to

high current ratings of the low voltage windings. Other solutions involve some type of

implicit step down using switched capacitor and switched inductor hybrid converters such

as the series capacitor buck converter [16] or the multi-inductor hybrid converter [17] or the

quadruple step down buck converter [18]. While these are inherently more power dense than

the magnetics based step down converters, they suffer from less than ideal PWM duty ratio

limitations or poor light-load power management, and in general more research is necessary

to make direct 48V-1V high current power supplies viable for deployment on motherboards.

The complexity and inefficiency of delivering power at a low voltage and high current

has inspired ideas that allow power delivery at a higher voltage, such as core unfolding [19]

and series stacking [20], [21], [22], [23]. Stacking the n processor cores in series instead of

the conventional parallel connection intrinsically increases supply voltage by n times and

the supplied currents decrease by the same factor. This supports an n2 order increase in

power supply impedance, which simplifies its design. Rating limitations on a semiconductor

process may prevent all n cores to be connected in series, but building an IC with m series

connected domains and placing the cores in an m× n
m

array is possible.

The idea is illustrated in Fig 1.4a. Depending on how many voltage levels can be reliably

stacked in a single chip, it might be possible to reduce the number of power conversion stages

in the system. For example, it might be possible to convert the rail supplying the stack of

cores into a 3.6 V rail (m = 4 for nominal core voltage of 0.9 V) and derive all other lower

power voltage rails (Rest of Platform) from there. The idea is illustrated in Fig 1.4b.

Conventional buck converter designs become inefficient at extremely low duty ratios and
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series stacking processor cores would simplify bulk power delivery to processors. If there

is some software overhead to match core power consumption in an average sense, series

stacking would lead to higher system level efficiencies. One of the reasons for a system level

efficiency improvement is that the converter supplying the stack does not need to process

power at an extreme duty ratio anymore. However, voltage regulation of the intermediate

domains adds complexity to the power delivery system. If there is mismatch between each

of the consecutive load domains, voltage regulation fails. Balancing remaining mismatches

is the responsibility of the balancing voltage regulators. The general architecture of the

balancing voltage regulators is shown in Fig 1.4c. The dynamics of the balancing action can

be described by:

C
d

dt
(vk+1 − vk) = idk + (ik − ik+1) (1.1)

where C is the net capacitance across each voltage domain and the current injected at each

node idk is considered a control input. Depending on the dependency of the load currents

ik on the domain voltages vk (resistive, constant current or constant power or a mix), a

stabilizing control law can be designed. Under stable operation at steady state,

Idk = Ik+1 − Ik (1.2)

This forms the essence of differential power processing. The balancing converters are

only required to process the difference between the currents of consecutive domains. If low

mismatches are ensured, the balancing regulators need to process only a fraction of the

total power delivered to the loads unlike the two stage power delivery scheme of Fig 1.3. It

should be noted that when the system operates at near peak power, the balancing converters

inherently process very little power. The efficiency of the stack is expected to be near unity

and overall system level efficiency is limited only by the efficiency of the converter that

processes bulk power and regulates the stack voltage (referred to as the stack converter).

Even if we consider that the efficiency of our balancing converters is at par or slightly lower

than that of the converter supplying the core in the architecture of Fig 1.3, we can expect

higher system level efficiencies from the series stacked system.

There has been research in the past on voltage regulation in series stacked digital loads.

Recently series stacking has been successfully attempted with loads such as servers, [24]

and hard drives [25]. The series stacked architecture allows direct power delivery from a

high voltage bus (48 V) to the servers (48 V to four 12 V series stacked domains) and the

hard disks (50 V to ten 5 V series stacked domains). DPP converters are used to provide

voltage regulation for individual loads. This has been shown to eliminate one or more power

6



conversion stages allowing improved system efficiencies. Given the opportunity to match

server loads, efficiencies beyond 99% have been reported. Series stacking has also been

explored in the context of microprocessor/core loads [21], [23], [26], [27].

The proposed series stacked architecture in [21] uses push-pull linear regulators for pro-

cessing the differential currents between series connected domains. Power delivery to a chip

with three 1.8 V domains from a 5.4 V rail was demonstrated [22]. Although linear reg-

ulators provide excellent regulation bandwidth, they are inefficient and would lead to low

system efficiencies if tight matching of core power is not ensured. The architectures in [28],

[27] show the use of a switched capacitor ladder converter for equating voltages of series

connected DC domains. In [27] a series stack of four 0.9 V domains was implemented in

an IC and core power balancing with dynamic frequency scaling was also demonstrated.

Switched capacitor DPP converters are very efficient at light loads, and light-load efficiency

is what we are going to discuss in the next subsections. However, in a stack with switched

capacitor voltage balancing converters, only domain voltage equalization (with a load line

dependent on mismatch) is possible [28]. Voltage equalization does not support localized

adaptive voltage for a series stacked microprocessor system. This problem might not be sig-

nificant enough to discard the idea of switched capacitor balancers entirely, since our main

assumption (motivation for series stacking) is that the load in each domain will be matched

for most of the time and localized voltage scaling for each domain might not be necessary.

Several different topologies for switched mode DPP regulators can be derived from ar-

chitectures proposed for charge equalization of series connected battery strings [29] and for

optimized photovoltaic power generation [30]. Of these architectures, transformer based

DPP topologies (such as load-to-virtual bus [24], or direct load-to-load [25]), although very

scalable, are not easily integrated on chip. The original bus-to-load architecture proposed

in [31] would have some DPP converters operating in extreme duty ratios, a scenario which

we are trying to avoid. The load-to-load architecture (Fig 1.5) is scalable, and also easily

integrable because of lower switch voltage ratings.

1.2 Switched inductor ladder topology

The switched inductor ladder converter [32] (or the buck-boost element-to-element topol-

ogy [31]), shown in Fig 1.5, is one possible option for balancing converter implementation

that allows independent voltage regulation of the domains. This topology has been widely

studied in literature in other applications where series stacking is important such as bat-

tery balancing [33], and photovoltaics [34], [35], [36]. Duty ratio control of individual DPP

7
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Figure 1.5: Switched inductor ladder topology for voltage regulation of a series stack.

converters allows independent domain voltage control. This topology has been popular in

recent research on the topic of series stacking of low voltage loads as well, the primary reason

being the modularity of the topology. The switch ratings required for the DPP converters

are low (double the maximum voltage of each domain), which makes it suitable for on chip

integration.

Consider stable steady state operation of the ladder converter in Fig 1.5. The steady state

inductor currents in this topology are

−D1 0 0 0 0 0 0 1

D′1 −D2 0 0 0 0 0 1

0 D′2 −D3 0 0 0 0 1

0 0 D′3 −D4 0 0 0 1

0 0 0 D′4 −D5 0 0 1

0 0 0 0 D′5 −D6 0 1

0 0 0 0 0 D′6 −D7 1

0 0 0 0 0 0 D′7 1





IL1

IL2

IL3

IL4

IL5

IL6

IL7

ILs


=



I1

I2

I3

I4

I5

I6

I7

I8


(1.3)
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where

Dk =
Vk+1

(Vk + Vk+1)
(1.4)

D′k =
Vk

(Vk + Vk+1)
(1.5)

and Vk are the steady state voltages of the dc domains. In continuous conduction mode

(CCM), it can be directly claimed that the Dk’s are the steady state duty ratios of the top

switches of each DPP unit. No such claim can be made about the Dk’s in discontinuous

conduction mode (DCM, or any kind of light-load mode where both switches remain open

during some periods). However, the relations in Equations (1.2) and (1.3) are still valid.

Considering a case where voltages are equalized, the relations between all inductor currents

and the load currents at steady state can be written as



IL1

IL2

IL3

IL4

IL5

IL6

IL7

ILs


=



−1.75 0.25 0.25 0.25 0.25 0.25 0.25 0.25

−1.5 −1.5 0.5 0.5 0.5 0.5 0.5 0.5

−1.25 −1.25 −1.25 0.75 0.75 0.75 0.75 0.75

−1 −1 −1 −1 1 1 1 1

−0.75 −0.75 −0.75 −0.75 −0.75 1.25 1.25 1.25

−0.5 −0.5 −0.5 −0.5 −0.5 −0.5 1.5 1.5

−0.25 −0.25 −0.25 −0.25 −0.25 −0.25 −0.25 1.75

0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125





I1

I2

I3

I4

I5

I6

I7

I8


(1.6)

For fast varying loads like processor cores, load balancing in software or by processor

architecture itself can be on a millisecond time scale at best. But core loads can change

much faster and load balancing cannot be ensured on the microsecond time scale (time scale

at which voltage balancers/regulators are expected to respond). The balancing converters

might need to operate such that they can process heavy mismatches for transient durations.

Considering a uniform distribution of load currents, the distribution of inductor currents can

be shown as in Fig 1.6.

The current and power processed by the DPPs are normalized to the maximum power of

each load. It should be noted that the DPP converters in the middle of the stack process

more power on an average than the converters at the beginning or the end of the stack. Also,

the worst case current ratings of all the DPP converters exceed the peak mismatch current.

DPP converters 1 and 7 need to be rated for 175% of the peak mismatch current. DPPs 2 and

6 need a 300% rating. DPPs 3 and 5 need a 375% rating while DPP 4 needs a 400% rating in

order to maintain voltage regulation in worst case scenarios. These conditions might rarely

occur, but the converters need to be rated to handle those conditions anyway. Under the

9



Figure 1.6: DPP inductor current distribution for the element-to-element topology under
uniform distribution of load currents.

assumption that core currents are not going to be heavily mismatched for a majority of the

time, the power processed by the balancing converters should still be lower in an average

sense compared to the conventional parallel topology [23].

In the context of dynamics, it has been shown that distributed control of the DPP con-

verters leads to unsatisfactory settling times as the stack size increases [37]. This is a direct

consequence of the coupled nature of inductor currents. From the relationship between DPP

currents and the load currents, it can be seen that in order to respond to any change in

one particular load current, all DPP inductor currents need to be reconfigured. A MIMO

feedforward controller has been suggested in [32] for improved control of the balancing and

the stack converters together in a stack of four low voltage loads. However, for high numbers

of loads in series, a nested/hierarchical architecture is expected to perform better dynami-

cally than the ladder topology. For a stack of eight loads, a three level nested/hierarchical

architecture is proposed in the next subsection.
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Figure 1.7: Hierarchical DPP topology for voltage regulation of a series stack.

1.3 Hierarchical topology

The hierarchical DPP topology in Fig 1.7 has several advantages compared to the switched

inductor ladder topology. The inductor current dynamics are less coupled in nature than

the element-to-element topology, allowing us to easily develop a distributed controller for

fast voltage regulation of the loads [37]. Moreover, the current ratings for the DPPs are easy

to determine in this case as they will never process more current than the maximum load

current of each element. The steady state DPP inductor currents can be written as

D1 D2 0 D4 0 0 0 −1

−D′1 D2 0 D4 0 0 0 −1

0 −D′2 D3 D4 0 0 0 −1

0 −D′2 −D′3 D4 0 0 0 −1

0 0 0 −D′4 D5 D6 0 −1

0 0 0 −D′4 −D′5 D6 0 −1

0 0 0 −D′4 0 −D′6 D7 −1

0 0 0 −D′4 0 −D′6 −D′7 −1





IL1

IL2

IL3

IL4

IL5

IL6

IL7

ILs


=



I1

I2

I3

I4

I5

I6

I7

I8


(1.7)
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where

Dk =



Vk
(Vk + Vk+1)

for k = 1, 3, 5 and 7

Vk−1 + Vk
(Vk−1 + Vk + Vk+1 + Vk+2)

for k = 2 and 6

V1 + V2 + V3 + V4

V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8

for k = 4

(1.8)

Considering a case where voltages are equalized, the relations between all inductor currents

and the load currents can be written as

IL1

IL2

IL3

IL4

IL5

IL6

IL7

ILs


=



1 −1 0 0 0 0 0 0

0.5 0.5 −0.5 −0.5 0 0 0 0

0 0 1 −1 0 0 0 0

0.25 0.25 0.25 0.25 −0.25 −0.25 −0.25 −0.25

0 0 0 0 1 −1 0 0

0 0 0 0 0.5 0.5 −0.5 −0.5

0 0 0 0 0 0 1 −1

0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125





I1

I2

I3

I4

I5

I6

I7

I8


(1.9)

and

D′k = 1−Dk (1.10)

Considering the same uniform current distribution as in the case of the switched inductor

ladder, the processed power and DPP converter current distribution are plotted in Fig 1.8.

It can be seen that DPP4 needs to be rated to process 4 times the power of each individual

domain, and the converters DPP2 and DPP6 need to be rated for twice the power of each

domain. However, all the DPP converters need to be rated to supply the same currents.

The current rating does not exceed the maximum mismatch current or the rated current of

each domain. Processing higher power at higher voltage and low current is an advantage

for this application, where we are delivering power with low-voltage high-current loads and

losses in power delivery are expected to be conduction loss dominant.

A second advantage of this topology is in the decoupled nature of the regulators. DPPs 1,

3, 5 and 7 are decoupled from each other (the dynamic equations of these DPP converters

are independent as will be elaborated in a later chapter). Similarly DPPs 2 and 6 can be

operated completely independent of each other. Consider, for example, a change in the

load current i3. To respond to this change, only DPPs 4, 2 and 3 need to reconfigure their

inductor currents, unlike in the switched inductor ladder converter where all DPPs need to

be reconfigured. This allows much easier distributed control to be designed for the balancing

regulator stack.
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With the hierarchical DPP architecture, fast voltage regulation of individual voltage do-

mains can be achieved. The DPP converters in Fig 1.7 can be operated with carefully

designed closed loop compensators with integral control to very accurately drive each do-

main voltage to a reference value. However, under the assumption that there is some software

overhead that regulates load mismatches in an average sense, a simple droop based control

can be sufficient. Our focus in this thesis is to build a series stacked system of eight 1.8 V

(nominal) domains. Each domain is capable of sinking 10 A of current. These specifica-

tions are significantly higher than that demonstrated before, both in the number of series

stacked domains and in terms of the power consumption of the loads. This is deemed as a

necessary step towards emulating a real world processor if series stacking of cores were to be

implemented.

The thesis is structured into three main sections which are briefly described in the following

subsections.

Figure 1.8: DPP inductor current distribution for the hierarchical topology under uniform
distribution of load currents.
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1.4 Light-load control

In Chapter 2 of this thesis we propose methods to improve light-load efficiency of DPP

converters. To highlight the importance of light-load control in DPP converters, let us

consider a simple but effective loss model. We assume a linear dependence between power

loss Ploss and processed power Ppr by the DPPs. This would give us an efficiency curve which

is flat over all processed power ranges. The DPP converters proposed in the hierarchical

topology are synchronous buck/boost converters. Since they need to be bidirectional, we

could simply operate the top and bottom switches in a complementary fashion. However,

as the differential current approaches zero, the average inductor current also approaches

zero. The losses remain more or less fixed, limited to the switching losses in the switches

and gate drivers, and AC losses in the inductor. To make this loss model more realistic,

we assume that the power losses are constant if the processed power is below a certain

limit. A square law power loss formula would be more accurate to incorporate conduction

losses at higher currents, but for generality (over different converter topologies and control

techniques) a linear loss model is sufficient to show the importance of light-load efficiency in

DPP systems. The model is

Ploss =

{
Ps for |Ppr| ≤ Pll

k |Ppr| for |Ppr| > Pll
(1.11)

In one case we assume a flat converter efficiency (a linear power loss vs power output

characteristic) over all values of processed power. We define light-load power Pll as the

value of processed power at which efficiency rolls off to 90% of its peak value. All power

expressions are normalized to maximum panel power. We consider peak efficiency ηpk to be

fixed for all simulations. Only variation is in Pll. Given different values for Pll the constants

Ps and k in Equation 1.11 can be evaluated as k = 1
ηpk
−1 and Ps = Pll

9ηpk
. The three cases are

shown in Fig 1.9a. The stack converter is assumed to have a flat 95% efficiency. Considering

uniformly distributed loads, the averaged system-level efficiency of the stacked system is

plotted as in Fig 1.9b.

In one case the DPP converters are assumed to have a 10x load range (a slightly optimistic

but an effective assumption for a converter operating in CCM at all loads). In the second

case we assume that the DPP converters have a 100x load range (an achievable load range

if a light-load power management technique is implemented). In a stack of 8 domains,

when each of the loads draws near peak power, the system-level efficiencies approach the

stack converter’s efficiency for both cases. This high system-level efficiency was our initial
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(a) Model efficiency profiles for converters with
infinite, 100x and 10x load range.

(b) Averaged system-level efficiencies for the
three cases.

Figure 1.9: System-level efficiencies for different load ranges of DPP converters.

motivation for series stacking processor loads. However, at light load, when each load only

sinks about 1% of peak power, the system-level efficiency obtained with 10x DPP converters

degrades to 50%, and no longer are we completely able to demonstrate the benefits of series

stacking processor cores.

Operation in discontinuous conduction mode (or any other form of light-load power man-

agement) is usually a requirement for most modern power supplies to reduce power losses

at light load to ensure good battery life (or just in general for lower energy consumption).

Intel VRM specifications require on board voltage regulator modules to have a flat efficiency

between at least 10% and full load. On board VRMs usually far exceed this load range

requirement to ensure low battery drain during sleep modes and long periods of inactivity.

Usually measures such as phase shedding in multiphase VRMs and pulse frequency modu-

lation (PFM) operation at ultra-light loads ensure that a flat efficiency is maintained over a

wide load range.

Light-load power management techniques for bidirectional DPP regulators are discussed
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in Chapter 2 of this thesis:

� A light-load power management technique that ensures variable frequency discontin-

uous conduction mode operation at light loads, for bidirectional DPP converters, is

developed. A single phase converter operating in burst mode at light loads and CCM

at heavy loads is demonstrated. Significant efficiency improvements at light loads is

observed.

� In an effort to further improve load range of the DPP converters beyond what is

achievable with PFM mode in a single phase converter, multiphasing is investigated.

A logarithmic current sharing 4-phase converter (phases sized in 1:1:2:4 current sharing

ratios) with phase shedding controls and PFM operation at light loads is then discussed

and a wide load range is demonstrated experimentally.

� An asymmetric current sharing 2-phase DPP converter with arbitrary current sharing

is developed (and proposed for use in the system). Different current sharing ratios

are considered and the impact of sharing ratios on system level efficiency is discussed.

Finally a 1:4 current sharing ratio is chosen. The 2-phase converter shows similar per-

formance to the 4-phase design and better performance than the single phase converter

design, and its implementation is discussed in Chapter 2.

1.5 Stack converter

The stack converter is the only converter in the system that is expected to process peak

power for significant amounts of time. The increased output voltage (14.4 V nominal) and

reduced load current requirements compared to the conventional VRM architectures make

it easier to achieve higher efficiencies while processing moderate to peak power. A two phase

synchronous buck converter is sufficient to meet our load current needs (10 A). However,

it needs to be ensured that the load range of the stack converter is higher than or almost

as high as that of the DPP converters regulating the domain voltages. Otherwise, a good

system level efficiency over a wide load range cannot be achieved. The stack converter can

be implemented as a unidirectional buck converter but synchronous rectification comes at

a very low cost, and control techniques such as PFM or burst mode can be implemented

improve light-load efficiency over a significant range.

In Chapter 3 of this thesis, we discuss a sensorless approach to current mode control

to achieve regulation of the stack voltage. The proposed sensorless current mode control

achieves satisfactory current sharing performance and closed loop performance comparable
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to peak current mode control. Small signal modeling of the sensorless current mode controller

is discussed in detail and we further incorporate a light-load power management control into

the sensorless current mode controller. The developed hardware setup for the stack converter

demonstrates over 90% efficiency over a load range between 100 mA and 10 A (100x). This

wide load range is extremely difficult to achieve for direct 48 V to 1 V conversion ratios

either due to high core losses in bulky magnetics in transformer coupled topologies or due

to the inability to shed phases with some switched capacitor hybrid topologies [18], further

highlighting the importance of power delivery at higher voltage.

1.6 Load design and dynamics

Power dissipation in digital circuit loads such as microprocessors is usually modeled as

Pdiss = αfclkCV
2
dd, where α is the activity factor of the digital circuit and represents the

fraction of CMOS elements that undergo switching while performing a particular operation,

fclk is the clock frequency, C is a measure of the capacitance at switching nodes and Vdd is

the supply voltage. The power dissipation model behaves like a resistor, as we can conclude

from the V 2
dd term. However, if additional integrated voltage regulators are incorporated

between the on-board voltage regulator and the actual digital core, a current source model

(or constant power model depending on the type of regulator and the control of the integrated

voltage regulator) might be deemed more appropriate for the digital loads. A constant

current model is usually the most commonly used model for on-board voltage regulator

designs, as shown in Fig 1.7. In an attempt to replicate the behavior of digital electronic

circuit loads that can sink 10 A of current from 1.8 V domains, an array of switching loads

based on charging and discharging capacitors is implemented. The currents drawn by the

implemented load circuits are controllable by a square wave of variable frequency.

� Design of the frequency controlled loads and their implementation details are discussed

in Chapter 4 of the thesis.

� Stability and dynamics of the hierarchical DPP topology are discussed in Chapter 4.

It is shown that a droop based distributed control of the inductor currents of the DPPs

is sufficient to maintain stability of the stack voltages.

� Finally, we demonstrate assembly and operation of the entire system of eight series

stacked voltage domains (efficiency over a wide load range and transient performance)

at the end of Chapter 4.

17



CHAPTER 2

LIGHT-LOAD POWER MANAGEMENT FOR DPP
CONVERTERS

2.1 Light-load control scheme

Let us consider the basic buck-boost converter block in the element-to-element or hierarchical

DPP topology shown in Fig 2.1. The DPP converter needs to be bidirectional, and the block

inherently supports that if the switches are operated in a complementary manner. The

converter operates in forced continuous conduction mode and inductor current can assume

an average positive or negative value in this mode of operation. At light loads, this leads

to inefficient operation. When no power is being processed the converter still has switching

losses, inductor core losses, and conduction losses. Usually synchronous buck converters,

widely used in low voltage power delivery, employ some sort of discontinuous conduction

mode at light loads so that the lower switch does not let current flow in the reverse direction

(diode emulation). Many different light-load power management techniques [38], [39], [40],

[41] have been studied and applied, and they have been shown to be highly effective in

improving light-load efficiencies in synchronous buck converters.

Our target is to implement a variable frequency discontinuous conduction mode (similar

to PFM or burst mode or pulse skipping control in synchronous buck converters) for the

bidirectional DPP converter block. With accurate sensing of the direction of the differential

current io, the DPP block can be operated in variable frequency light-load mode, by oper-

ating the lower switch as a “lossless” diode when the differential current is positive (buck

mode), and the top switch as a diode when the differential current is negative (boost mode).

However, even if we carefully design a current measurement circuit that is fast and accurate

to measure io’s, offset errors will be a problem for arbitrarily low values. This will cause the

controller to operate in variable frequency discontinuous mode either with positive average

inductor current at some arbitrary low negative differential current or the opposite, and

eventually cause voltage regulation to fail at arbitrarily light loads (here we assume that the

load currents are independent of load voltage).

Our solution to this problem involves the use of current mode control. Fig 2.1 shows
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Figure 2.1: Light-load controller for a buck-boost DPP converter block.

a hysteretic current mode controller. The components in the control schematic shown in

red form the basic hysteretic current mode control loop. The components shown in blue

are additional components needed for light-load control. Instead of sensing the differential

currents directly, current mode control uses an estimate, io,e, of the differential current

generated from the output voltage error. In this case, the estimator takes the form of a

simple proportional controller. The estimated differential current is then used to control the

inductor current for voltage regulation. The switching signals are enabled only when the

absolute value of estimated load current is above a certain limit, ipfm,max = ipfm+ih,pfm/2, and

disabled once the same is lower than ipfm,min = ipfm−ih,pfm/2. So, under light-load operation,

the inductor current is maintained at an average value of approximately (ipfm,max+ipfm,min)/2 =

ipfm whenever the converter is enabled and is zero when disabled. The frequency of the enable

signals decrease with decreasing load, and variable frequency discontinuous conduction mode

operation is achieved at light load.

Considering Vdd to be an ideal supply, the dynamic equation for vout can be written as:

2Cout
d

dt
vout = iL − (io,B − io,T ) (2.1)

The inductor current dynamics can be represented as:

L
d

dt
iL = u1Vdd − (u1 + u2) vout (2.2)
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where u1 and u2 are the switching signals to the top and bottom switches respectively. The

reference for the inductor current io,e is generated as

io,e = kp (vref − vout) (2.3)

During CCM operation the switches turn on and off in a complementary manner, leading

to u1 + u2 = 1. The inductor dynamic equation can be reduced to

L
d

dt
iL = u1Vdd − vout (2.4)

The dynamic equations of the converter represented by Equations (2.1) and (2.4) resemble

exactly the dynamics of a buck converter which has 2Cout capacitance at its output. To

determine the relationship between iL and io,e we should note that hysteretic current mode

control offers control of both the valley and peak inductor currents, and in general tracks the

reference current within two switching cycles. High frequency characteristics of the hysteretic

current loop have been studied in the past and it has been established that the inner current

loop is unconditionally stable and almost no tracking delay exists between average iL and

io,e [42], [43], [44]. So in a small signal sense, it is safe to assume that the relation 〈iL〉 = io,e

is valid. Even in a large signal sense, the relation 〈iL〉 = io,e can be considered to be valid

to a certain extent due to the sliding mode nature of the inner current loop as shown in

[45]. The limited slew rate of the inductor current is a nonlinear phenomenon and it has

been modeled in the past as an additional pole in [46]. However, it has to be noted that

the additional pole frequency is inversely proportional to the magnitude of a transient load

(nonlinear phenomenon) and becomes relevant only when a large load transient is applied.

So it is safe to conclude that in CCM operation,

2Cout
d

dt
vout = 〈io,e〉 − (io,B − io,T ) (2.5)

〈io,e〉 = kp (vref − vout) (2.6)

adequately define the dynamics of the DPP converter.

In discontinuous conduction mode, the relation 〈iL〉 = io,e no longer remains valid. Instead,

to incorporate the effect of the enable action we can introduce a new variable e. When the

converter is enabled, the inductor current tracks the reference current.
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2Cout
d

dt
vout = e 〈io,e〉 − (io,B − io,T ) (2.7)

〈io,e〉 = kp (vref − vout) (2.8)

The hysteretic enable and disable action during operation in light-load mode always main-

tains the value of io,e within [ipfm − ih,pfm/2, ipfm + ih,pfm/2] for positive differential currents

and within [−ipfm − ih,pfm/2,−ipfm + ih,pfm/2] for negative differential currents. There is no

further scope for studying the dynamics of the converter in light-load mode. The output

voltage consequently is maintained at an average value of Vref − ipfm/kp for light positive dif-

ferential currents and at Vref + ipfm/kp for light negative differential currents. The light-load

output voltage ripple can be evaluated as ihpfm/kp. An PLECS simulation is set up for a 7.2 V

to 3.6 V DPP converter illustrating the light-load control of Fig 2.1. The simulation setup

is shown in Fig 2.2. This simulated DPP converter is expected to fit a converter in the sec-

ond level of our hierarchical stack. The simulation parameters are as follows: Vdc = 7.2 V,

Vref = Vdc/2, L1 = 1 µH, rL = 10 mΩ, Cb = Ct = 100 µF, gi = 100 = 1/rL, kp = 100,

RsCs = L/rL, hysteresis for the PWM relay ih = 1 A, hysteresis for enable relay ih,pfm = 1 A

and ipfm = 1.5 A. The simulation results are detailed in Figs 2.3 and 2.4.
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Figure 2.2: PLECS simulation circuit for single phase DPP unit.
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Differential and Inductor Currents

Output Voltage

Reference Inductor Current and Enable

(A
)
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i_diff

V_out

i_ref
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Figure 2.3: PLECS simulation showing bidirectional light-load operation with a slow ramp
of differential current. The switching operations are enabled whenever the
reference current reaches 2 A. This causes the output voltage error to reduce in
magnitude, causing the reference current to decrease. The switching actions
are disabled when the reference current is lower than 1 A.

Differential and Inductor Currents
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Figure 2.4: PLECS simulation showing the load line of the DPP converter with respect to
differential current. Initially during light-load operation (up to 1.5 A of
differential current), the average output voltage does not change with load. In
CCM operation, a constant load line is maintained.
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Figure 2.5: Annotated photograph of the single phase DPP hardware prototype.

Table 2.1: 1 Phase DPP Converter components

Component Part Number Specifications

Switch CSD17304Q3D 30 V, rDS,on = 5 mΩ, Qg = 5.1 nC
Inductor XEL4030 2× 1.0 µH, rL = 9.89 mΩ
Cout GRM21BR61E226ME44K 7× 22 µF, Resr = 3 mΩ
Cin GRM21BR61E226ME44K 3× 22 µF, Resr = 3 mΩ

Gate Driver TPS28225 7.2 V, 2 A source, 4 A sink

To validate the light-load performance improvement obtained with the control scheme, a

hardware prototype of DPP2 was built with following specifications: Vin,nominal = 7.2 V,

Vout,nominal = 3.6 V, |Idpp,max| = 10 A. The chosen components for the converter are shown

in Table 2.1. An annotated photograph of the hardware prototype is shown in Fig 2.5. The

same hardware prototype is used for an improved two phase DPP converter discussed later

in this chapter and details of the hardware implementation of the converter is discussed

there. The transitions between different modes of operation for changing differential load

currents can be seen in the oscilloscope captures shown in Fig 2.6.

If the ESR of the output capacitor is neglected, the light-load ripple value is determined

by the value of kp and ih,pfm and is not dependent on ipfm. The parameter kp is primarily

determined from transient performance and target load line. If the highest value of kp

that ensures non-oscillatory behavior for the worst case load transient does not provide a
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(a) Transients from negative light-load to
positive light-load mode.

(b) Transients from negative light-load mode
to positive CCM.

(c) Transients from positive light-load mode
to negative CCM.

(d) Transients from negative to positive CCM.

Figure 2.6: Single phase DPP converter transient performance waveforms. It should be
noted here that the inductor currents settle much faster than the output
voltage. This is because the converter is configured to track half of the input
voltage. The source voltage of the DPP unit is a slow-responding bench power
supply which droops significantly whenever it is loaded. Horizontal time scale
for (a) = 200 µs/div, for (b), (c) and (d) = 100 µs/div.
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(a) Converter efficiency and power loss variation with
light-load voltage ripple.

(b) Output voltage ripple = 22 mV.

(c) Output voltage ripple = 36 mV.

(d) Output voltage ripple = 44 mV.

Figure 2.7: Single phase DPP converter, light-load performance. Waveforms under
different ih,pfm settings. Load current for the three waveforms = 200 mA. For
oscilloscope captures: Channel 1 shows output voltage with a 3.6 V offset and
100 mV/div, Channel 3 shows differential current at 1 A/div and Channel 4
shows inductor current at 1 A/div. Horizontal time scale = 20 µs/div.
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satisfactory load line, then both the output capacitance and kp need to be increased until a

satisfactory load line is achieved [46]. Hence the preferred way to vary the light-load ripple

of the converter would be to vary the hysteretic limit ih,pfm. Fig 2.7 shows efficiency plots

for a few different values of light-load ripple. For these plots, the transition points from

PFM mode to CCM mode were tuned to be approximately the same (around 1 A) and the

hysteresis band ih,pfm was varied. It can be seen that approximately 2% efficiency is gained

by doubling the light-load output voltage ripple from 22 mV to 44 mV. This might not be

significant for our case where the converter efficiency around the 100 mA range is less than

85%, but it could be significant for more efficient setups.

The parameter ipfm has a less significant impact on light-load ripple. It primarily controls

the peak value of the inductor current at light load and the point at which PFM to CCM

mode transition occurs. Choosing too low an ipfm value may cause the inductor current

to reverse direction for brief durations before the converter gets disabled and could cause

slightly higher conduction losses. Choosing a value too high would cause large spikes in the

inductor current at light load. These increase input filtering requirements and also induce

more core losses in the inductor. Moreover, choosing a value too high for ipfm would also

cause an increase in the light-load ripple because of the effect of output capacitor ESR. Fig

2.8 shows efficiency plots and waveforms of the single phase converter under the same values

of light-load ripple but with varying values of ipfm. It can be seen that choosing a higher

value of ipfm can improve efficiency of the converter at intermediate loads (in the 1 A load

region). At lighter loads, however, the losses are dominated by the static losses due to the

control circuit and quiescent currents. Since we have not made any active effort to reduce

those losses and used off-the-shelf ICs to implement controls in this research, those losses

are higher than quiescent power losses of off-the-shelf DC-DC converter controllers [47].

To summarize, we observe that there is a tradeoff between light-load ripple and light-load

efficiency. If we allow higher light-load ripple then it is possible to achieve slightly higher

light-load efficiencies. Light-load ripple is a function of both ih,pfm and kp and the preferred

way to increase light-load ripple to achieve significant gain in light-load efficiency is to

reduce kp. However, with our low complexity control scheme, kp and transient performance

are coupled together. Increasing light-load ripple and efficiency is possible by decreasing the

value of kp which in turn slows down transient response of the and degrades the load line of

the converter. A different method to further reduce light-load power losses is discussed in

the next sections.
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(a) Converter efficiency and power loss variation with
PFM transition current.

(b) Light-load operation at 200 mA
differential current , ipfm = 0.6
A.

(c) Light-load operation at 200 mA
differential current, ipfm = 0.8 A.

(d) Light-load operation at 200 mA
differential current, ipfm = 1.0 A.

Figure 2.8: Single phase DPP converter, light-load performance. Waveforms under
different ipfm settings. Output voltage ripple at light load kept constant at
around 35 mV. Load current for the three waveforms = 200 mA. Horizontal
time scale = 20 µs/div.
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2.1.1 Light-load power loss model

A simple model for light-load power losses is proposed in this subsection. The losses consid-

ered in the efficiency data from the previous section can be broadly distributed into three

groups: the gate driver power losses, power losses in the converter itself and the power losses

in the control circuit. As such, for these experiments, minimizing control circuit power was

not a target for our research (although reducing quiescent power is one of the most crucial

aspects of light-load power management in power management IC designs). The control

power losses included in measurements were only the direct losses from our power train,

i.e. losses from the resistor dividers used for output voltage feedback and the losses from

the switching node for dc resistive (DCR) current sensing. These losses were estimated from

LTspice simulations to be around 40 mW. Efficiency plots for the converter after subtracting

the resistor divider power losses are shown in Fig 2.9. It can be seen that without these fixed

power losses, the light-load efficiency remains flat over a significant load range (seen more

clearly in the power loss curve as power loss varies linearly with output current). Based on

this, a simple power loss model for light-load operation can be formulated as

Ploss = Pfixed + Ploss (ipfm)
iload
ipfm

(2.9)

i.e. the power losses in the drive train scale down linearly from the value at the PFM to

CCM transition current. This is not an accurate approximation since the pulse count at

every enable action does not remain constant with load. At extremely light loads around

the 30 mA mark, the enable signal remains on for only one switching action to take place,

while around the current at which PFM to CCM transition takes place the enable signal

remains on for several switching actions. The associated conduction and switching losses (in

switches) can be modeled in detail, but the behavior of inductor core and AC losses with

respect to pulse count are more difficult to model.

Light-load efficiency improvement by introducing variable frequency discontinuous conduc-

tion mode is demonstrated. Significant reduction in power losses at light load was observed.

Further improvements can be achieved by optimizing the converter design itself. It is com-

mon knowledge that a higher inductance is preferable for improving converter efficiencies at

light load (inductor core volume remaining constant, i.e. the lower and higher inductances

in this argument are not expected to have the same current ratings). This is supported

by converter loss modeling results shown in Fig 2.10. Various inductors from the XEL4030

series are paired with a small switch (CSD17484F4) and switching frequency was varied.

Data for AC losses in the inductors were gathered from Coilcraft’s online tools [48] and an
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accurate loss model for switching and conduction losses in switches was formulated. Effi-

ciency at critical current can be assumed to be a qualitative estimate of efficiency at light

load. The plots show that using a higher inductance can offer significant light-load efficiency

improvements at critical current both on account of having to switch at a lower switching

frequency and lower core losses of higher valued inductors.

However, using a higher inductance for the converter implies lowering the bandwidth and
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Figure 2.9: DPP converter efficiencies for different values of PFM current and light-load
ripple after subtracting 40 mW of power losses in resistor divider for feedback
and DCR current sensing.
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slew rate of the converter. Also since the inductors are of the same sizes (from the same

series), the saturation current ratings of higher inductances would be lower than design re-

quirements. An approach to designing converters which counter these limitations is discussed

in the next two sections.
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Figure 2.10: Converter efficiencies at critical current with different inductances from the
XEL4030 series. The switch (CSD17484F4) sizes and inductor volumes are
the same in all cases. The switching frequency was varied for these
simulations to obtain efficiencies at different critical currents.
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2.2 Four-phase DPP converter - logarithmic current sharing

At light loads, power losses are dominated by switching losses and core losses in the inductor.

Reducing switching frequency serves to reduce both of these losses. However, reducing

switching frequency also implies that a higher inductance value has to be used, and if we are

using a single phase converter, a higher inductance value with the same current rating implies

using a larger inductor in terms of volume (which counters the argument that reducing

switching frequency will reduce core losses). Also, a higher inductance value will deteriorate

dynamic performance of the DPP converter which could be critical to the system of series

stacked processors we are considering. In order to ensure that we can switch at a lower

frequency while operating at light load while still not having to compromise on dynamic

performance and current rating, a multiphase converter is proposed in this subsection.

Multiphasing and shedding phases when not required, can lead to relatively flat power

supply efficiency over a wide load range [49]. Previously multiphasing has been used to

improve current output of converters when load current requirements are too high for a

single converter to handle. Interleaving the switching actions of different phases leads to

reduction in overall ripple current and output voltage ripple. However, even for relatively low

current applications, splitting a supply into multiple lower current phases can be beneficial

for light-load efficiency.

Many modern applications of multiphase buck converters (specially power delivery to

laptop processors and mobile system on chips) have low peak load duty cycles, i.e. the

maximum current capacity of the converters is utilized only for short intervals. In our

application, where we expect the DPPs to process low mismatch currents most of the time,

it would be inefficient to devote extensive board area to a high phase count multiphase buck

converter just to improve light-load performance. For this reason, we discuss a multiphase

design with asymmetric current sharing. Asymmetric multiphase converters retain good

efficiency over a wide load range by using phases optimized for different current ranges [50]

or with general approaches such as logarithmic scaling [51].

Our design approach for an asymmetric multiphase converter is to condense phases. Let

us start from a 8-phase symmetric converter with each phase having an inductance L. The

maximum load current is 10 A, and the 8-phase design was made solely for the purpose

of obtaining a flat efficiency profile over a wide load range by phase shedding. Since our

current requirement is not very high for on board designs and we can expect that the high

phase count will only be required for short durations, we can combine 4 phases of the

converter into one phase with inductance L/4. We can combine another two phases into one

phase with inductance L/2. This reduces the 8-phase symmetric converter to the 4-phase
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Figure 2.11: 4-phase DPP converter with logarithmic current sharing.

equivalent asymmetric converter shown in Fig 2.11, while retaining the same maximum

slew rate possible for the combined inductor currents (so that dynamic performance is not

compromised). However, it does not retain the ripple cancellation benefits of the original

symmetric design.

Appropriate switching frequencies for the various phases are chosen such that the output

voltage ripple contributions of the individual phases are the same. This implies that higher

current phases should use a higher switching frequency, which may seem counterintuitive for

efficiency improvement. However, the higher current phases are only active at higher load

currents, where conduction losses dominate over switching losses. Since the inductances of

the higher current phases are progressively lower, their series resistances are also progressively
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Figure 2.12: Hardware prototype of the proposed multiphase converter with asymmetric
phases. Note that the relative sizes of the phases with different rated currents
are nearly the same.

lower. Although the efficiency of the new composite phase will be slightly lower than that

of the 4-phase equivalent, the board area benefit is much larger (Fig 2.12).

2.2.1 Phase shedding and adding control

Our phase shedding and adding strategy is to emulate the behavior of the baseline 8-phase

converter as closely as possible with a 4-phase equivalent asymmetric converter. To accom-

plish this, we develop a similar 8-step phase shedding and adding controller. The entire

controller schematic is shown in Fig 2.11.

A PI controller generates the reference current (Ie) from the output voltage error. A

4-bit quantizer similar to the one described in [51] is then used to generate phase enable

signals (EN2, EN3, EN4) from the reference current. The quantizer has hysteretic limits

for each phase-shedding or adding operation, which helps avoid unstable behavior during

phase shedding or adding. A switched gain stage then generates the current reference for

the phases, IL,ref (according to Table 2.2). The current sensing gains of the third and fourth

phases are respectively 1/2 and 1/4 of that of the first two phases. Accordingly, under current

hysteretic control the third and fourth phases will track 2IL,ref and 4IL,ref , respectively,

when enabled.

The light-load controller discussed before is implemented on one of the two low current

phases of the multiphase converter. In light-load operation the controller switches between
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Table 2.2: Phase shedding scheme

Mode abs(Ie) EN1 EN2 EN3 EN4 IL,ref

0 (0, IPFM,lim) 0 0 0 0 Ie
1 (IPFM,lim, Imax/8) 1 0 0 0 Ie
2 (Imax/8, Imax/4) 1 1 0 0 Ie/2

3 (Imax/4, 3Imax/8) 1 0 1 0 Ie/3

4 (3Imax/8, Imax/2) 1 1 1 0 Ie/4

5 (Imax/2, 5Imax/8) 1 0 0 1 Ie/5

6 (5Imax/8, 3Imax/4) 1 1 0 1 Ie/6

7 (3Imax/4, 7Imax/8) 1 0 1 1 Ie/7

8 (7Imax/8, Imax) 1 1 1 1 Ie/8

mode 0 and mode 1 to ensure that the output voltage (error) is within hysteretic limits. But

at any point other than light-load operation, the switched gain stage in the controller enables

us to keep track of the actual load current irrespective of how many phases are on at a certain

time (the controller maintains a constant load line). This is helpful in reducing spurious phase

shedding and adding behavior common in hysteretic phase shedding and adding controllers.

The switched gain stage also ensures that a constant load line is maintained (constant dc load

line if a simple proportional controller is used for generating Ie), which could be desirable.

The control is similar to the one described in [51]. The idea in [51] was to develop

logarithmically sized phases which are optimized for operation at one particular value of

load current. When those phases are enabled, they provide a portion of the load current

in the most efficient way possible from the setup. The lowest current phase was supposed

to balance the difference between load current and the sum of currents provided by the

highly optimized phases. Our implementation is slightly different: the average currents in

phases 3 and 4 are always 2 and 4 times that of the first two phases whenever they are

enabled. This allows the currents in phases 2, 3 and 4 to vary slightly around the point of

operation they are optimized for. This adds more complexity to the controller but allows us

to share transient currents logarithmically among the phases (Fig 2.13b). Also, scaling the

phases in this manner allows the high current phases to respond to transients faster than

the low current phases (due to slew rate of the inductor currents). Simulations performed in

MATLAB/Simulink using the PLECS blockset to demonstrate light-load and phase shedding

and adding behavior are shown in Fig 2.13a. Note the narrow range of the inductor currents

when each of the phases are enabled. The inductances in the various phases are 4.7 µH,

2.2 µH and 1 µH, sufficiently close enough to the 4:2:1 ratio that is ideal. The hysteretic

current boundaries for switching operations were set such that at no load the phases operate

at 500 kHz, 750 kHz and 1 MHz, respectively.
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(a) Phase shedding and adding behavior.

(b) Load transient response.

Figure 2.13: Transient simulations of proposed 4-phase converter.
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Table 2.3: 4-phase converter components

Component Part Number Specifications

Phase 1/2 Switch CSD16301Q2 30 V, rDS,on = 5 mΩ, Qg = 5.1 nC
Phase 1/2 Inductor XEL4030 4.7 µH, rL = 40 mΩ

Phase 1/2 Gate Driver LM5113 1 A source/5 A sink, 5 V supply
Phase 3 switch CSD87333Q3D (DrMOS) rDS,on = 5 mΩ, Qg = 5.1 nC

Phase 3 Inductor XEL4030 2.2 µH, rL = 19 mΩ
Phase 4 switch CSD87334Q3D (DrMOS) rDS,on = 5 mΩ, Qg = 5.1 nC

Phase 4 Inductor XEL4030 1.0 µH, rL = 9.89 mΩ
Cout GRM21BR61E226ME44K 7 × 22 µF, Resr = 3 mΩ
Cin GRM21BR61E226ME44K 3 × 22 µF, Resr = 3 mΩ

A hardware setup to validate the operation of the proposed controller was prepared with

the components shown in Table 2.3. The goal was to create a converter with as wide load

range as possible operating from a 5 V input and regulating a 2.5 V output. The maximum

load current to be encountered was 10 A. The PI controller was implemented with an analog

opamp circuit; the phase shedding and adding control and hysteretic PWM generation were

performed using a C2000 digital signal processor (DSP). Current sensing was done using the

DCR sensing method shown in Fig 2.14a. Accurate pole-zero cancellation of the inductor

parameters and the sensing parameters will give an exact current waveform; however, this

is not possible due to parameter variations. Both inductance and dc resistance change with

current and temperature. It is therefore useful to ensure that leading or lagging behavior of

the sensed inductor current with respect to the actual inductor current is preserved over all

inductor current and temperature ranges. In this design RsCs ≈ L/2rL was chosen. This gives

twice the ripple/average current ratio that would appear with resistive current sensing. The

dc value of the sensed inductor current is a fixed multiple of the drop across the inductor

and remains preserved as long as there is limited (or known) DCR variation with current

and temperature.

Although in principle there should be no switching action when the converter is not loaded,

activation of the low-side switch is necessary to maintain charge in the bootstrap capacitor. If

charge is not maintained, the converter fails to turn on when the load current takes a positive

value after a long interval of operating at no load. To solve this problem, a timer was used

to generate short enable pulses at 500 Hz. These low-frequency pulses have negligible effect

on light load efficiency. Light-load waveforms at various positive and negative loads are

shown in Figs 2.15a, 2.15b, 2.15c and 2.15d. Efficiency measurements were performed and

are shown in Fig. 2.14b.

The bootstrap capacitor charging issue is also encountered during phase-shedding or
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adding control operations. Although short enable pulses to the different inactive phases

at 500 Hz can solve this problem, care must be taken so that transients due to the 500 Hz

pulses are well damped by the control loop. The analog PI controller output was sampled

at 1 MHz (with 12 bit resolution) and a first order low pass IIR filter was used to obtain

a clean estimated current value. The four most significant bits could directly be used to

control the phase enable signals but some hysteresis is required for each phase transition to

ensure jitter-free operation at currents near the phase transitioning currents. One possible

solution is to incorporate the hysteresis directly into the comparators of the quantizer. An-

other solution is to use a state-machine controller. A state machine which sequences through

all the phases between the initial phase and the final phase (in the event of a transient) was

implemented on the C2000 controller. Phase transitions with low jitter were obtained by

tuning the hysteretic limits. The low pass IIR filter also helps reduce spurious phase transi-

tions, although it also adds a significant delay between a load transient and a corresponding

phase transition. Some critical phase transitions are shown in Figs 2.15d 2.16a and 2.16b.

Fig 2.16c shows the controller’s response to an 8 A load transient. The sequential transi-

tion between phases can clearly be seen. The delays in the initial phase transitions were

significant enough to cause a 0.7 V drop in the output voltage (for reference Fig. 2.16d

shows an 8 A transient response when no phase transitioning is involved). To obtain faster

phase transitions when there are multiple phases between the initial and final phase counts,

a state machine which skips between modes can be built. However, the complexity of the

(a) DCR current sensing. (b) Efficiency of hardware prototype.

Figure 2.14: Hardware results.
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(a) Switching at (near) zero load. (b) Positive light-load mode.

(c) Negative light-load mode.
(d) Negative light-load mode to positive

2-phase mode transition.

Figure 2.15: Light-load operation in 4-phase DPP converter.

state machine increases substantially if skipping phases is incorporated, and as such was

unsuitable for implementation on a C2000 microcontroller.

Without considering controller power dissipation, it can be seen that the converter main-

tains a fairly flat efficiency between 100 mA and 10 A (which is a 100x load range). However,

the efficiency curves obtained show that the phases themselves were not entirely optimized

for the current ranges in which they are operational. Smaller inductors and switches were

required for optimized efficiencies in the system where peak Iout is only 10 A. The Dr-

MOS switches used for higher current phases were too big for efficient operation at the high

switching frequencies attempted. To improve performance (by optimizing component sizes

in a more streamlined manner suitable for on board converters) and to reduce the com-

plexity of a single DPP converter a two phase asymmetric design is proposed in the next
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(a) 4-phase mode to 5-phase mode transition. (b) 6-phase mode to 7-phase mode transition.

(c) light-load to 8-phase mode transition (8A).
(d) 8-phase mode transient response without

phase-enabling (8A).

Figure 2.16: Phase shedding/adding operations in 4-phase DPP converter.
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subsection. The two phase converter allows operation of the phases over a wider range of

load currents more suitable for on board converter designs. It also allows us to investigate

arbitrary current sharing ratios and their impact on overall system efficiency.

2.3 Two-phase DPP converter - asymmetric current sharing

An asymmetric current sharing two-phase DPP converter is proposed in this subsection.

Instead of following a logarithmic current sharing approach as in the previous subsection,

we start with the assumption that the current sharing ratio between the two phases can

be arbitrary and is a subject for optimization. The general converter structure and con-

trol is described in Fig 2.17. We maintain the same design specifications as for the single

phase converter discussed in a previous section. To choose a particular current sharing ratio

we consider several converter designs subjected to two main constraints. The board area

dedicated to the converters being considered is the same in all cases. The overall inductor

current slew rate for a large load transient should be the same for all designs.

First we take the case of a two phase converter with equal current sharing as a baseline

for the board area. We consider the typical switch model for a commercial NMOS transistor

(CSD17484F4) and assume that we are going to use a particular non-integer multiple of

these switches as the switches for our two phase converter (to apply scaling laws on Rds,on

and other parasitic components associated with switching loss calculations). Consider m1
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Figure 2.17: 2-phase DPP converter with 4:1 current sharing.
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as the size of the switch used in the first phase (low current phase) and m2 as the size of

the switch to be used for the second phase. Of course, for the baseline case of equal current

sharing, m1 = m2 = m.

The XEL4030 series of inductors was chosen since it was appropriate for our design specifi-

cations. Also, well defined power loss (DCR and AC losses) data was available for the series,

and the inductance values offered allowed several current sharing ratios to be evaluated in

simulations. Current sharing ratios of 1:1, 1:2, 1:4 and 1:8 are considered. The switching

frequencies are chosen in manner similar to that for the converter in the previous section:

all designs of phases are such that they contribute equal output voltage ripple, so fsw is

inversely proportional to
√
L. The multiplicity of the low current phase, m1, is optimized

for highest efficiency at critical current for ensuring good PFM mode efficiencies. m2 is then

calculated as m2 = 2m−m1 so that same switch area is maintained for all converters. The

MATLAB script for the optimization of switch sizes, converter loss and efficiency calculations

are provided in Appendix A.

The efficiency curves obtained for the four different sharing ratios are shown in Fig 2.18.

The modeled efficiency curves show that significant efficiency improvements can be obtained

from transitioning from a symmetric two phase design to an asymmetric design. Also, while

the improvement is very significant between 1:1 ratio and 1:2 ratio, it is less so as we go

for higher current sharing ratios. In these simulations, we have assumed a 5mA of constant

current draw (for fixed power loss) from the output voltage rail. Output voltage ripple at

light load can be estimated as shown in Fig 2.19.

2.3.1 Current sharing ratios and stack efficiency

To evaluate the impact of DPP converters with different current sharing ratios on the ef-

ficiency of the stack, Monte Carlo simulations were performed on a stack of eight voltage

domains, each domain rated at 1.8 V. The efficiency models developed in the previous sec-

tion were for a 7.2 V to 3.6 V DPP converter, which are the converters in the middle of

the hierarchy in the hierarchical DPP topology (DPP2 and DPP6). We assume that the

efficiency curves for the other DPP converters in the DPP stack are similar. If we define a

loss function for the DPP2 and DPP6 as loss (|iL|) then the overall losses in the DPP stack

are

Ploss (io) =
1

2
(Ploss (|iL1|) + (Ploss (|iL3|) + (Ploss (|iL5|) + (Ploss (|iL7|))

+ (Ploss (|iL2|) + (Ploss (|iL6|) + 2Ploss (|iL4|) , (2.10)
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Figure 2.18: Efficiency comparison between two phase converter designs with different
current sharing ratios. Note that even though the converters do not share
current equally, the optimal switching point between 1 phase and two phase
mode was observed to be around 2A in all cases.
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Figure 2.19: Light-load ripple comparison between different low current phase designs.
Note that all the phases have been designed so that their individual
contributions to output voltage ripple are the same while operating in
continuous conduction mode.
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where io = [io,1, io,2, io,3, io,4, io,5, io,6, io,7, io,8]′ is the vector of load currents limited to 10 A.

The steady state inductor currents of the DPP converters are as follows:

iL1 = i2 − i1 (2.11)

iL3 = i4 − i3 (2.12)

iL5 = i6 − i5 (2.13)

iL7 = i8 − i7 (2.14)

iL2 =
1

2
(i4 + i3 − i2 − i1) (2.15)

iL6 =
1

2
(i8 + i7 − i6 − i5) (2.16)

iL4 =
1

4
(i8 + i7 + i6 + i5 − i4 − i3 − i2 − i1) (2.17)

Monte Carlo simulations were performed to obtain averaged stack efficiencies for the DPP

converters of different current sharing ratios. A uniform distribution of load currents was

considered and four constraints were studied. As can be observed form the DPP stack

efficiency simulations in Fig 2.20, all of the asymmetric current sharing cases offer improved

light-load efficiencies for the whole stack over the symmetric DPP converter. It can even

be seen that the 1:2 current sharing converter offers better average efficiency than the 1:1

current sharing converter in the unconstrained mismatch case (over the entire range of stack

currents). The 1:4 current sharing converter matches the 1:1 converter in efficiency when

mismatches are constrained to 50%. And the 1:8 converter offers better stack efficiencies

than the 1:1 converter when mismatches are constrained to 25%. It is to be noted that

all the DPP converter designs approach very high efficiency in the 98/99% range when the

stack operates at near peak load and converter efficiencies almost become irrelevant. In the

following section we discuss the implementation of a 1:4 current sharing DPP converter and

present some hardware results.
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2.3.2 Hardware Implementation

The specifications of the 1:4 current sharing DPP converter are the same as for the single

phase design discussed before (7.2 V input - 3.6 V input, 10 A peak load current). These

specifications are for the DPP converters in the middle of the hierarchy. The components

used are listed in Table 2.4. The overall inductor current slew rate is approximately the

same as for the single phase converter, and the output capacitance is also the same. So for

hysteretic current mode control, the proportional output voltage regulation loop gain can

also be kept the same for equivalent transient response and stability. The overall schematic
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Figure 2.20: DPP converter stack efficiencies for varying stack current.
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of the controller is shown in Fig 2.17. Simulations of the DPP converter were performed in

LTSpice. Implementations of the converter and the control scheme of Fig 2.17 are shown in

Fig 2.21.

The output capacitor voltage dynamics can be represented as:

iL1 (en1) + iL1 (en1) = C
d

dt
(v2 − v1) + (io,2 − io,1) (2.18)

The sensed currents of the two phases are in the ratios of the DC resistances of the two

phases and can be represented as:

iL1,s = grL1iL1
1 + s (L1/rL1)

1 + srsCs
(2.19)

iL2,s = grL2iL2
1 + s (L2/rL2)

1 + srsCs
=
(grL1

4

) 1 + s (L1/rL1)

1 + srsCs
(2.20)

where rs, Cs and g are the components of the DCR current sensing circuit described in the

previous section. For current hysteretic control, a fast inner current loop imposes iL1,s = iref

and iL2,s = iref . For a proportional controller that equalizes the voltages of the two domains

regulated by the DPP, iref = kp (v1 − v2). The dynamics of the fast inner current loop for

hysteretic current control are assumed to be very fast. The hysteretic current controller

sets the average inductor current to the reference current always in less than two switching

cycles, and as long as a converter bandwidth close to the switching frequency is not targeted,

this assumption is very realistic (even in a large signal sense [45]).

iL1 =
kp
grL1

(
1 + sCsrs

1 + s (L1/rL1)

)
(v1 − v2) (2.21)

iL2 =
kp
grL2

(
1 + sCsrs

1 + s (L2/rL2)

)
(v1 − v2) =

4kp
grL1

(
1 + sCsrs

1 + s (L1/rL1)

)
(v1 − v2) (2.22)

Denoting v2− v1 = ∆v and i1− i2 = ∆i, the transfer function ∆v(s)/∆i(s) can be derived as

∆v(s)

∆i(s)
=

1 + s (L1/rL1)

ksw + s (Co + kswCsrs) + s2 (CoL1/rL1)
(2.23)

where the gain term ksw = kp/grL1 [en1 + 4en2] is dependent on the number of phases enabled

and is a parameter for design. Denoting ωL = rL1/L1 and ωs = 1/rsCs. The transfer function

can be rewritten as
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(a) Power circuit implementation of DPP2.

(b) Implementation of hysteretic current mode control with DCR current sensing.

(c) Implementation of bidirectional PFM and phase shedding controller.

Figure 2.21: Implementation of the second stage DPP converters (LTspice).
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∆v(s)

∆i(s)
=

1 + s/ωL

ksw + s
(
Co + ksw

ωs

)
+ s2 (Co/ωL)

(2.24)

The system is always small signal stable. For ωs ≤ ωL it can be shown that the poles of

the system are always placed on the real axis and no oscillatory behavior is encountered.

An imaginary component of the poles may appear for low values ksw when ωs > ωL. Since

the controller’s phase shedding operation is coupled with the current sensing amplifier, it

is necessary that the sensed current is an accurate representation of the actual inductor

current. So, in our design we keep ωs = ωL and design ksw for an appropriate time constant

(fraction of the switching time period of the lower current phase).

SPICE simulations in Fig 2.22 shows the operation of the converter in PFM mode at light

load. The reference current iref increases when en1 is low during a light positive differential

current load. At this point en2 is low, so the gain of the switched gain amplifier is set to 1

and ic = iref . When ic hits the upper hysteretic limit, en1 goes high and the low current

phase tracks the reference current. This causes iref to decrease, and eventually when ic

hits the lower hysteretic limit en1 is turned low. Phase addition operation during a slow

ramp of differential current is shown in Fig 2.23. When the droop in voltage becomes too

high for the low current phase and ic reaches the upper hysteretic limit for phase addition,

en2 is turned high. This causes the switched gain amplifier to operate at a gain of 5. The

control current ic, which is supposed to be a measure of the total differential current load,

is now set to 5 × iref . This prevents the high current phase from turning off immediately

after turning on and avoids jittering. SPICE simulation results for a transient from light

load to maximum differential current load are shown in Fig 2.24. A transient response from

medium positive differential load to a medium negative load is shown in Fig 2.25. Both these

transient responses show that there is significant delay in phase addition operation due to

the hysteretic nature of the controller that determines phase addition. The delay can be

lowered by increasing the gain of the error amplifier that generates iref but it is a tradeoff

against transient stability.

The hardware prototype is shown in Fig 2.26. The controller schematic shown in Fig 2.17

is implemented in analog domain using the parts shown in the SPICE simulation setup of

Fig 2.21. The same prototype is used to validate the single phase design discussed before;

the second phase was desoldered and instead the first phase was populated with compo-

nents corresponding to Table 2.1. Efficiency data obtained from this two phase prototype is

compared with that from the single phase converter in Fig 2.28. Fig 2.27 show a close cor-
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Figure 2.22: Light-load operation at 50 mA differential current (SPICE simulations).

Figure 2.23: Phase addition during a slow ramping load (SPICE simulations).
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Figure 2.24: Response to a positive differential current transient (SPICE simulations).

Figure 2.25: Response to a negative differential current transient (SPICE simulations).
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DPP converter 
power components

Hysteretic 
control

Enable 
control logic

Current Sense 
Amplifier

Error Amplifier/
Switched gain stage

7.2 V Gate drive power 
supply (isolated)

5 V LDO for 
control power

References

Digital isolator
Refresh pulses/
PWM reference

Bootstrap capacitor
charge refresh logic

Figure 2.26: Hardware prototype of the two-phase asymmetric current sharing DPP
converter.

Table 2.4: Two-Phase DPP converter components

Component Part Number Specifications

Switch (Phase 1) CSD17308Q3D rDS,on = 9mΩ, Qg = 3.9 nC
Inductor (Phase 1) XEL4030 2× 4.7 µH, rL = 40 mΩ
Switch (Phase 2) CSD17304Q3D rDS,on = 5 mΩ, Qg = 5.1 nC

Inductor (Phase 2) XEL4030 2× 1.2 µH, rL = 11 mΩ
Cout GRM21BR61E226ME44K 7× 22 µF, Resr = 3mΩ
Cin GRM21BR61E226ME44K 3× 22 µF, Resr = 3mΩ

Gate Driver TPS28225 7.2 V, 2 A source, 4 A sink

respondence between simulated and experimental efficiencies. Figs 2.29, 2.30 and 2.31 show

experimental transient responses of the DPP converter for several types of load transients.

Fig 2.31 shows some heavy load transients where the second phase needs to be enabled. The

current sharing ratio observed in the experimental waveforms shows a slight deviation from

the targeted 1:4 ratio. This is due to the additional resistance of the wiring introduced for

inductor current observation. The apparent heavy droops in output voltage (500 mV for

a 10 A differential load) are due to the input voltage drooping at heavy loads as can be

confirmed from Fig 2.31d. The droops encountered in the fully assembled system (with a PI

controlled stack converter) are much lower as will be shown in Chapter 4.
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Figure 2.27: Efficiency of 7.2 V - 3.6 V DPP converter. Blue shows hardware efficiency and
red shows modeled efficiency.
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(a) Transient response of two-phase converter - light-load mode
(200 mA) to light-load mode (400 mA).

(b) Transient response of two-phase converter - negative light-load mode
(-200 mA) to positive light-load mode (200 mA).

Figure 2.29: Light-load operation transients. Channel 1: Output voltage (3.6 V offset).
Channel 2: Low current phase inductor current. Channel 3: High current
phase inductor current. Channel 4: Differential load current.
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(a) Transient response of two-phase converter - negative single phase
CCM mode (-1 A) to positive single phase CCM mode (1 A).

(b) Transient response of two-phase converter - negative two-phase mode
(-2.5 A) to positive two-phase mode (2.5 A).

Figure 2.30: Intermediate/heavy load operation transients. Channel 1: Output voltage
(3.6 V offset). Channel 2: Low current phase inductor current. Channel 3:
High current phase inductor current. Channel 4: Differential load current.
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(a) Light-load mode (100 mA) to two-phase
CCM mode (2 A).

(b) Light-load mode (100 mA) to two-phase
CCM mode (5 A).

(c) Light-load mode (100 mA) to two-phase
CCM mode (10 A).

(d) Light-load mode (100 mA) to two-phase
CCM mode (5 A). Input voltage droop.

Figure 2.31: Intermediate/heavy load operation transients. For subfigures (a), (b) and (c):
Channel 1 shows output voltage (3.6 V offset, 50 mV/div), Channel 2 shows
low current phase inductor current (1 A/div), Channel 3 shows high current
phase inductor current (1 A/div) and Channel 4 shows differential load
current. For subfigure (d): Channel 2 shows sum of inductor currents and
Channel 3 shows input voltage. Horizontal time scale = 20 µs/div.
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CHAPTER 3

STACK CONVERTER

3.1 Design of the stack converter

The converter supplying the stack of eight loads is to be powered from a 48 V bus. It is

to be rated for the full stack current 10 A at 14.4 V output. Since the input voltage is

considerably higher than for the DPP converter designs, switching at a high frequency like

the DPP converters is not a viable option. We propose a two-phase interleaved buck converter

design for the stack converter for its ripple cancelling properties. The stack converter needs

to be efficient at light loads as the system’s overall efficiency is the product of the efficiency

of the stack converter and the efficiency of the DPP converter stack (not referring to the

individual DPP converter efficiency). To achieve a wide load range we propose a phase

rotating light-load pulse skipping control scheme. The converter is shown to maintain above

90% efficiency without phase shedding over nearly a 100x load range. It also needs to provide

fast load transient response (not nearly as stringent as it would be for the original parallel

connected system), since the voltage regulation of the intermediate nodes can only be as

fast as the stack converter’s load transient response is. This requirement would recommend

the use of current mode control as it has been known to ensure faster and stabler closed

loop control designs in dc-dc converters in general. Current mode control also has the added

advantage of offering near ideal line transient response (audio susceptibility) which may be

important for slow 48 V buses.

A variant of sensorless current mode control [52], [53] is proposed in this section. Instead

of directly sensing the inductor current with a shunt resistor or sensing switch currents as

in conventional current mode control implementations, an observer is used to estimate the

inductor current (or flux) as shown in Fig 3.1a. Sensorless current mode control scheme pro-

vides load regulation to some extent in open loop (current mode control itself is not operable

without an outer voltage control loop) like a conventional PWM duty ratio controller. It has

the additional advantage of achieving near ideal line regulation (like current mode control)

while operating in open loop. To compensate for the voltage drops or optimize load tran-
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sient responses, an additional error compensation term could be included in the controller

as shown in Fig 3.1b. However, with sensorless current mode control in its original form,

only ac information of the inductor current is observed. The modified sensorless current

mode control scheme is designed to retain the dc information of the inductor currents, which

facilitates multiphase designs and light load control.

The modified sensorless current mode controller shown in Fig 3.1d has some similarities

with a conventional current mode control loop in that the voltage error provides a load

current estimate. The scheme for the inductor current observer from sensorless current

mode control is the same. A peak current mode type of modulator with slope compensation

is then used to compare the estimated inductor current to a reference current (generated by

an output voltage feedback loop) to generate the switching pulses for the individual phases

for generating interleaved switching pulses.
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(a) Sensorless current mode control (SCM).
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(b) SCM with voltage compensation loop.
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(c) Peak current mode control (PCM).
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(d) Modified SCM used in this thesis.

Figure 3.1: Current mode control. (vL and vLe are the sensed and estimated inductor
currents). The outer voltage compensation loop is repositioned so that a dc
estimate of the load current can be obtained and used for light load control.
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Figure 3.2: Schematics of 2-phase converter and inductor current observer.

3.2 Small signal modeling and control design

The schematics for the inductor current estimator for the two phases of the stack converter

is shown in Fig 3.2. The switching node voltage can be directly used to estimate the voltage

across the inductor. The observed inductor current is

vLe =
Rs (vsw − vref )

R1 (1 + sRsCs)
(3.1)

=iL

(
rLRs

R1

)(
1 + s (L/rL)

1 + sRsCs

)
+

(
Rs

R1

)
vo − vref

1 + sRsCs

=iLRi

(
1 + s (L/rL)

1 + sRsCs

)
+

(
Rs

R1

)
vo − vref

1 + sRsCs
(3.2)

Similar to the DCR current sensing method applied in the last chapter, the time constants

L/rL and RsCs can be matched to obtain a simplified expression for the estimated inductor

current. Considering Ri as the DC gain of the current sensing system, the inductor current

observer can be expressed as

G(s) =

(
1 + s (L/rL)

1 + sRsCs

)
= 1 (3.3)

vLe = Ri

(
iL +

vo − vref
ZL

)
G(s) = Ri

(
iL +

vo − vref
ZL

)
(3.4)

The peak current mode type of modulator with slope compensation is shown in Fig 3.3a.
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When the inductor current is directly controlled by this type of modulator, the small signal

model in general can be represented as

îL = Gvgv̂in +Gvov̂o +Gvcv̂c (3.5)

In the case of the observer based controller we directly control the observer instead of the

actual inductor current. The same modulator model can be used in case of the observer

based controller with a small adaptation. The output voltage does not play any part in the

computation of the inductor current observer and is replaced by vref .

ˆiLe =
vLe
Ri

= Gvgv̂in +Gvo ˆvref +Gvcv̂c (3.6)

Modeling of peak current mode control in multiphase buck converters has been studied in

great detail in the last few decades, and small signal models of the peak current mode modu-

lator of various degrees of accuracy exist in literature. Averaged modeling based approaches,

although accurate over low frequencies, fail to accurately predict converter behavior at higher

frequencies (nearing half the switching frequency) [54]. Sampled data modeling of convert-
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Figure 3.3: Sensorless current mode control modulator and small signal model.
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ers, [55], yields much more accurate control to output models for current mode control and

ultimately leads to one of the most popular models of the peak current mode modulator [56].

Other than frequency domain approaches to modeling of the peak current mode modulator

there have also been time domain modeling approaches such as [57] and [58]. The models

that we utilize here are elaborated in [59] and [60] because of their accuracy and proven

extendability to multiphase converters.

From the expression of estimated inductor current vLe in Equation 3.4, we can see that

there is a current component with sensing gain and an additional output voltage feedback

term which is modulated by the peak current mode modulator shown in Fig 3.3a. The small

signal equivalent model of the peak current mode controller is shown in Fig 3.3b, where the

transfer functions Gvg, Gvo and Gvc are given as

Gvc =
îL
v̂c

=

[
(sn + sf )

(
1− e−sTsw

)
(sn + se) + (sf − se) e−sTsw

]
fs
Ris

(3.7)

Gvg =
îL
v̂g

=

[
D −

(sn + sf )
(
1− e−sDTsw

)
(sn + se) + (sf − se) e−sTsw

fs
s

]
1

Ls
(3.8)

Gvo =
îL
v̂o

=

[
(sn + sf )

(
1− e−sTsw

)
(sn + se) + (sf − se) e−sTsw

fs
s
− 1

]
1

Ls
(3.9)

where sn is the rising slope of the sensed inductor current, sf is the falling slope of the sensed

inductor current and se is the slope of the compensation ramp. The sensorless current mode

controller introduced above has form very similar to that of peak current mode control

with Gref introduced due to the additional term in the expression derived for the estimated

inductor current. Gref is given by

Gref =
1

Ls+ rL
(3.10)

The validity of this analytical small signal model is tested by simulating four closed loop

performance parameters, loop gain, output impedance, audio susceptibility and reference

tracking, and comparing them with actual switching models. A simple PI controller that

offered a 25 kHz bandwidth and 70° phase margin for both peak and sensorless current mode

controllers was used to close the output voltage control loop (Fig 3.4). The compensated

loop gain for the peak current mode controller is shown in Fig 3.4. With peak current mode

control, the inherent double pole of the output filter of the buck converter gets separated

because of the fast inner current loop, and improved phase margin is obtained with respect

to conventional voltage mode control. The loop gain of the sensorless current mode control
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looks similar to loop gain of voltage mode control loops with unseparated double poles.

However, the additional Gref component in case of the sensorless current mode control loop

is responsible for placing a low frequency zero in the control loop which improves phase

margin. Comparable phase margins are obtained by the two methods using the same outer

voltage loop controller in both cases. Different values of slope compensation have similar

effects on phase margin for both these cases. Moreover, it is possible to obtain near null

audio susceptibility from peak and sensorless current mode controls with se = sf/2, [61]. This

is true for the modified version of sensorless current mode control as well. The PI controller

output was sampled at the switching frequency and it was modeled to have a time delay

of half the switching time period. The continuous time domain transfer function of the PI

controller used in the simulations is given by

Gcomp =

(
kp +

ki
s

)
e−s

Tsw/2

(
1− e−sTsw

)
sTsw

(3.11)

For Vin = 48 V, Vref = 14.4 V, L = 22 µH, rL = 20 mΩ, C = 100 µF, rc = 1 mΩ and

fsw = 250 kHz, values kp = 10 and ki = 150000 were chosen (based on peak current mode loop

gain plots). For slope compensation se = sf/4, the analytical models for the output impedance

Zo (s), audio susceptibility Gvin (s) and reference tracking Gvref (s) transfer functions for

peak current mode and sensorless current mode controlled two-phase buck converters are

compared. Along with the analytical models, frequency responses obtained from actual

switching models are shown in Figs 3.5, 3.6 and 3.7. The MATLAB scripts for simulating the

analytical models and generating the frequency responses of the actual switching models are

provided in Appendix B. Note that near identical closed loop performance can be obtained

from sensorless current mode control compared to peak current mode control without sensing

the inductor current.

3.3 Light-load control

The stack converter needs to be efficient over a wide load range. Unlike the DPP converters,

where light-load efficiency was the priority, the stack converter has to maintain good efficien-

cies at both heavy and light loads. We have already chosen a symmetric two-phase converter

for the purpose of achieving good efficiency at peak load conditions. Light-load efficiency

needs to be improved by implementing a variable frequency discontinuous conduction mode

scheme. Instead of the previously adopted scheme of operating only one phase in CCM at

intermediate loads and operating one phase in PFM at lighter loads, a simple rotating pulse
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Figure 3.4: Compensated loop gain with a PI voltage loop for peak current mode and
sensorless current mode controllers. The slope compensation used is se = sf/4.
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Figure 3.5: Comparison of peak and sensorless current mode controllers in closed loop,
analytical model and switching model, output impedance.
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Figure 3.6: Comparison of peak and sensorless current mode controllers in closed loop,
analytical model and switching model, audio susceptibility.
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Figure 3.7: Comparison of peak and sensorless current mode controllers in closed loop,
analytical model and switching model, reference tracking.
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Figure 3.8: Light-load operation at 500 mA load (PLECS simulation).

skipping control is implemented for light loads. If the reference current evaluated after each

sampling operation is below a light-load threshold, the set pulse to next phase is suppressed

for the next cycle. This helps to reduce phase adding delay during load transients. PLECS

simulations for light-load operation and transients from light load to heavy load are shown

in Fig 3.8, Fig 3.9 and Fig 3.10.

3.4 Hardware prototype

The outer voltage loop controller implemented is a PI controller similar to the one described

before, designed to offer a closed loop bandwidth of 25 kHz. The controller, implemented

in a C2000 TMS320F28379 launchpad evaluation board, samples the output voltage error

at both the set pulses of the two phases (samples twice in a period). The sample taken

during the set pulse of one phase is responsible for setting the inductor current reference

point for the other phase. This implementation provides a constant control loop delay of

half a switching period which is higher than the 500 ns delay of the interrupt service routine

that performs the PI control computations. However, since the write operations to the

comparator DAC (for peak current mode) of the TI DSP can be performed when the PWM

set or reset actions occur, this rotating DAC update process offers the least overall control
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Figure 3.9: Transient from light load to heavy load (PLECS simulation).
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Figure 3.10: Transient from heavy load to light load (PLECS simulation).
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Table 3.1: Stack converter components

Component Part Number Specifications

Phase 1/2 Switch BSC340N08NS3 80 V, rDS,on = 34 mΩ, Qg = 6.8 nC
Phase 1/2 Inductor IHLP-6767GZ-11 22 µH, rL = 20 mΩ, Isat = 9.5 A

Phase 1/2 Gate Driver LM5106 1 A source/1 A sink, 12 V supply
Cout GRM21BR61E226ME44K 10× 22 µF, Resr = 3 mΩ, 25 V, 0805
Cin GRM32EC72A106KE05L 7× 10 µF, Resr = 3 mΩ, 100 V, 1210

Error amplifier and 
current estimation

Power stage

Figure 3.11: Hardware prototype of the stack converter.

loop delay.

The components used for the hardware prototype are listed in Table 3.1. A photograph of

the stack converter is provided in Fig 3.11. The output voltage was sensed remotely by means

of a difference amplifier, and an error amplifier drives the ADCs of the TMS320F28379D

DSP. The inductor current estimator is built as in Fig 3.2. An additional amplification stage

provides the estimated inductor current inputs to the comparators of the DSP. Figs 3.12 and

3.13 show transient response of the converter to different load transients. It can be seen that

the converter settles within 60 µs and very good current sharing is achieved. Efficiency of

the stack converter along with all DPP converters operating at no load is plotted in Fig 3.14.

In this case the electronic load is directly connected to the stack voltage rails. The DPP

converters process only the power necessary to regulate all intermediate voltage domains

at 1.8 V. The input capacitors of the DPP converters provide significant load capacitance

to the stack converter and were necessary for stable operation of the stack converter. The

measured efficiency shown in Fig 3.14 can be considered an upper limit to achievable system

level efficiencies with this setup.
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(a) Light-load mode transient (200 mA to
2 A loading). Ch 1: Output voltage
(14.4 V offset, 1 V/div), Ch 2: Load
current (1 A/div), Ch 3/4: Inductor
currents (1 A/div).

(b) Light-load mode transient (200 mA to
2 A dumping). Ch 1: Output voltage
(14.4 V offset, 1 V/div), Ch 2: Load
current (1 A/div), Ch 3/4: Inductor
currents (500 mA/div).

(c) Light-load mode to heavy loading
transient (200 mA to 7 A loading).
Ch 1: Output voltage (14.4 V offset,
1 V/div), Ch 2: Load current (1 A/div),
Ch 3/4: Inductor currents (1 A/div).

(d) Light-load mode to heavy loading
transient (200 mA to 7 A dumping).
Ch 1: Output voltage (14.4 V offset,
1 V/div), Ch 2: Load current (2 A/div),
Ch 3/4: Inductor currents (1 A/div)

Figure 3.12: Stack converter load transients. Channel 1 shows output voltage, Channel 2
shows load current, Channel 3 and 4 show inductor currents of phases 1 and 2
respectively. Horizontal time scale for (a), (b) and (d) = 100 µs/div, for (c) =
40 µs/div.
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(a) Load transient (200 mA to 5 A loading). (b) Load transient (200 mA to 7 A loading).

Figure 3.13: Additional stack converter load transients. Channel 1: Output voltage
(14.4 V offset, 1 V/div), Channel 2: Load current (1 A/div), Channel 3/4:
Inductor currents (1 A/div). Horizontal time scale = 40 µs/div.

Figure 3.14: Stack converter efficiency plot. The efficiency plot includes all power train
losses from the stack converter and the DPP converters regulating individual
low voltage domains (under zero mismatch).
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CHAPTER 4

VOLTAGE REGULATION OF A SERIES STACK OF
LOW VOLTAGE LOADS

4.1 Distributed control in the cascaded/hierarchical DPP topology

The DPP converter control scheme from Chapter 2 has been designed such that interaction

between different DPP converters for voltage regulation of the stack is not necessary. In

this Chapter we analyze the stability of the stack voltages in the hierarchical DPP archi-

tecture (Fig 4.1) under the distributed current mode droop control that is used in the DPP

converters.

4.1.1 Large signal model under distributed current mode control

As has been discussed before in Chapter 2, regulation of the voltage difference in case of the

buck/boost DPP converters is similar to regulation of the output voltage of a conventional

buck converter. So our target is to regulate the differences between the voltages of the

domains that the DPP converters are connected to. Instead of directly regulating the eight

voltages of the individual domains [v1, v2, v3, ..., v8], we choose a transformation of variables:

vd1 = v1 − v2

vd2 = v1 + v2 − v3 − v4

vd3 = v3 − v4

vd4 = v1 + v2 + v3 + v4 − v5 − v6 − v7 − v8

vd5 = v5 − v6

vd6 = v5 + v6 − v7 − v8

vd7 = v7 − v8

vs = v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 (4.1)

For simplifying the formulation of the state variable equations, a similar transformation
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Figure 4.1: The hierarchical DPP topology.

is used for the load currents,

id1 = i1 − i2
id2 = i1 + i2 − i3 − i4
id3 = i3 − i4
id4 = i1 + i2 + i3 + i4 − i5 − i6 − i7 − i8
id5 = i5 − i6
id6 = i5 + i6 − i7 − i8
id7 = i7 − i8
is = i1 + i2 + i3 + i4 + i5 + i6 + i7 + i8 (4.2)

Under this transformation, DPPk is assumed to be responsible for regulating vdk and

the stack converter regulates vs. The eight voltage state variables in the system remain
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preserved. For simplicity, we also introduce variables:

vs1 = v1 + v2 =
vs
4

+
vd4

4
+
vd2

2

vs2 = v1 + v2 + v3 + v4 =
vs
2

+
vd4

2

vs3 = v3 + v4 =
vs
4

+
vd4

4
− vd2

2

vs4 = v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 = vs

vs5 = v5 + v6 =
vs
4
− vd4

4
+
vd6

2

vs6 = v5 + v6 + v7 + v8 =
vs
2
− vd4

2

vs7 = v7 + v8 =
vs
4
− vd4

4
− vd6

2
(4.3)

which are the input voltages of the seven DPP converters. These variables can be expressed

as a linear combination of vdk’s and vs.

Let us start analyzing the dynamics with the innermost DPP converters. DPP1 is shown

in Fig 4.2. The large signal dynamic equations of the converters in the inner hierarchy are

represented by the following equations:

L0
d 〈iLk〉
dt

= dk (vk + vk+1)− vk (4.4)

C0
d

dt
(vk+1 − vk) = −〈iLk〉 − (ik+1 − ik) (4.5)

for k = 1, 3, 5 and 7. Referring to Fig 4.2, the large signal averaged input currents of these
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DPP units can be described by the following equation:

〈isk〉 = dk 〈iLk〉+ C0
dvk+1

dt
+ ik+1

= − (1− dk) 〈iLk〉+ C0
dvk
dt

+ ik

for k = 1, 3, 5 and 7. With the help of Equation 4.4 we can eliminate the duty ratio dk from

the above equations and arrive at the following equation:

vsk 〈isk〉 = vkik + vk+1ik+1 +
d

dt

[
L0 〈iLk〉2

2
+
C0v

2
k

2
+
C0v

2
k+1

2

]
(4.6)

= vsk

[
ik + ik+1

2

]
+
vdkidk

2
+
d

dt

[
L0 〈iLk〉2

2
+
C0v

2
sk

4
+
C0v

2
dk

4

]
(4.7)

Elimination of the duty ratio from the equations was necessary since we are using current

mode control for controlling the DPP converters and the inductor current can be directly

considered a control input instead of another state variable. Equation 4.6 is intuitive, as it

claims that the power going into the DPP-load unit is equal to the power dissipated in the

loads and the rate of change of energy stored in the inductor and the capacitors. Although

the equation refers to the averaged input and inductor currents, it should be noted that 4.6

is valid for instantaneous input and inductor currents as well (irrespective of operation in

CCM or DCM). The following can be written without any loss of accuracy:

vskisk = vsk

[
ik + ik+1

2

]
+
vdkidk

2
+
d

dt

[
L0i

2
Lk

2
+
C0v

2
sk

4
+
C0v

2
dk

4

]
(4.8)

Considering DPP units in the next level of the hierarchy (DPP2 and DPP6 for reference

in Fig 4.3) equations similar to Equation 4.6 can be derived.

vs2is2 =vs1is1 + vs3is3 +
d

dt

[
L1i

2
L2

2
+
C1Xv

2
s1

2
+
C1Xv

2
s3

2

]
(4.9)

vs6is6 =vs5is5 + vs7is7 +
d

dt

[
L1i

2
L6

2
+
C1Xv

2
s5

2
+
C1Xv

2
s7

2

]
(4.10)
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With the simplifying assumption that C1 = C1X+C0/2 and using Equation 4.6 from before,

vs2is2 =vs2

[
i1 + i2 + i3 + i4

4

]
+
vd1id1

2
+
vd2id2

4
+
vd3id3

2

+
d

dt

[
C1v

2
s2

4
+
C0v

2
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4
+
C1v

2
d2

4
+
C0v

2
d3

4
+
L0i

2
L1

2
+
L1i

2
L2

2
+
L0i

2
L3

2

]
(4.11)

vs6is6 =vs6

[
i5 + i6 + i7 + i8

4

]
+
vd5id5

2
+
vd6id6

4
+
vd7id7

2

+
d

dt

[
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2
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4
+
C0v

2
d5

4
+
C1v

2
d6

4
+
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2
d7

4
+
L0i

2
L5

2
+
L1i

2
L6

2
+
L0i

2
L7

2

]
(4.12)

Finally considering the last DPP converter in the hierarchy, DPP4 (shown in Fig 4.3), the

following equation can be written:

vsis =vs2is2 + vs6is6 +
d

dt

[
L2i

2
L4

2
+
C2Xv

2
s2

2
+
C2Xv

2
s6

2

]
With the substitution C2 = C2X + C1/2 and substitutions from the expressions of input

power of DPP2 and DPP6:

vsistack =
vsis
8

+
vd1id1

2
+
vd2id2

4
+
vd3id3

2
+
vd4id4

8
+
vd5id5

2
+
vd6id6

4
+
vd7id7

2

+
d

dt
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2
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+
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]
(4.13)

With the expressions for input currents of the DPPs formulated, it is now possible to
formulate the differential equations governing the state variables. The differential equations
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Figure 4.3: DPP2 with DPP1 and DPP3 as loads. DPP4 with DPP2 and DPP6 as loads.
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governing the state voltages are:

C0
dvd1
dt

=iL1 − id1 (4.14)

C0
dvd3
dt

=iL3 − id3 (4.15)

C0
dvd5
dt

=iL5 − id5 (4.16)

C0
dvd7
dt

=iL7 − id7 (4.17)

C1
dvd2
dt

=iL2 −
id2
2
− vd1id1

2vs1
+

vd3id3
2vs3

− 1

vs1

d

dt

[
C0v

2
d1

4
+

L0i
2
L1

2

]
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1

vs3

d

dt

[
C0v

2
d3

4
+

L0i
2
L3

2

]
(4.18)

C1
dvd6
dt

=iL6 −
id6
2
− vd5id5
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+

vd7id7
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dt

[
C0v

2
d5

4
+

L0i
2
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4
+
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2
L7

2

]
(4.19)

C2
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dt
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id4
4
− 2vd1id1 + vd2id2 + 2vd3id3
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+

2vd5id5 + vd6id6 + 2vd7id7
4vs6

− 1

vs2

d

dt

[(
C0v

2
d1

4
+

L0i
2
L1

2

)
+

(
C1v

2
d2

4
+

L1i
2
L2

2

)
+

(
C0v

2
d3

4
+

L0i
2
L3

2

)]
+

1

vs6

d

dt

[(
C0v

2
d5

4
+

L0i
2
L5

2

)
+

(
C1v

2
d6

4
+

L1i
2
L6

2

)
+

(
C0v

2
d7

4
+

L0i
2
L7

2

)]
(4.20)
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=iLs −
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d4

4
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L2i
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L4
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C0v
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d5
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4
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L7

2

)]
(4.21)

where C3 = C3X + C2

2
. Equations 4.14 through 4.21 are valid even when the instantaneous

inductor currents iLk are replaced with their averaged values 〈iLk〉. As discussed in Chapter

2, under current hysteretic control, a reference current is generated based on the output

voltage error of the converter. Our target here is equalization of the voltages of the two

domains to which the respective DPPs are connected. For that purpose the following droop

control is proposed for the balancing and stack regulators:

iL1,ref = −g0vd1, iL3,ref = −g0vd3, iL5,ref = −g0vd5, iL7,ref = −g0vd7,

iL2,ref = −g1vd2, iL6,ref = −g1vd6, iL4,ref = −g2vd4, iLs,ref = gs (vref − vs)

It is a common assumption that under current hysteretic control, the average inductor

current 〈iL〉 = iL,ref , and is a valid approximation even in a large signal sense as long as the

slew rate of the reference current does not exceed the maximum slew rate of the inductor

current. This assumption loses its validity under discontinuous conduction mode; however,

in some manner of droop control, 〈iL1〉 = g (v2 − v1) still remains valid (where g and g0 might

not be the same gains). For simplicity, we assume that the droop control gains under CCM
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and DCM operation remains the same. With this assumption, we are essentially converting

the inductor dynamics from Equations 4.4 to algebraic equations.
Furthermore, for simplicity, we assume that the dynamics of the stack converter are also

similar. Even though the assumption 〈iL〉 = iL,ref has been proven to be inadequate for
high performance peak current mode control loops (loses accuracy at high frequencies), we
can still derive some insights into the stability of the stack by using an approximate control
equation: iLs = gs (vref − vs). The resulting dynamic equations of the differential and the
stack voltages are given as

C0
dvd1
dt

=− g0vd1 − id1 (4.22)

C0
dvd3
dt

=− g0vd3 − id3 (4.23)

C0
dvd5
dt

=− g0vd5 − id5 (4.24)

C0
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dt

=− g0vd7 − id7 (4.25)
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+
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where the factors k0, k1 and k2 are given as

k0 = 1 +
2L0g

2
0

C0

, k1 = 1 +
2L1g

2
1

C1

, k2 = 1 +
2L2g

2
2

C2

4.1.2 Stability under distributed droop control - small signal

From the nonlinear differential equations it can be observed that, vd1, vd3, vd5 and vd7 are

inherently bounded and stable due to the control. Assuming vs1, vs3, vs5 and vs7 are stable

as well (do not converge to zero), the disturbance terms in Equations 4.26 and 4.27 remain

bounded as well. Due to the control, the differential Equations 4.26 and 4.27 are also bounded

input stable, ensuring stability of vd2 and vd6 (which in turn validates the assumption that

vs1, vs3, vs5 and vs7 are bounded and don’t converge to zero). Similarly, the stability of vd4

can be intuitively established under the assumption that the stack converter (vs) is stable.
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To formally establish stability with droop control, a small signal analysis is performed.

Firstly we ignore perturbations in the load currents (assume they are constant current

type loads without any perturbations or voltage dependence). This leads to: idk = IDk,

for k = 1, ..., 7 and is = Is. Then we separate the DC and perturbation terms of the

state voltages: vdk = VDk + v̂dk for k = 1, ..., 7 and vs = Vs + v̂s. Corresponding DC and

perturbation term separations are also done for the input voltages vsk = VSk + v̂sk. The

perturbation terms vsk can then be represented in terms of the state voltages according to

equations 4.2. Proceeding with the linearization the following state equations are obtained:

C0
d ˆvd1

dt
=− g0 ˆvd1 = g11 ˆvd1 (4.30)

C0
d ˆvd3

dt
=− g0 ˆvd3 = g33 ˆvd3 (4.31)

C0
d ˆvd5

dt
=− g0 ˆvd5 = g55 ˆvd5 (4.32)

C0
d ˆvd7

dt
=− g0 ˆvd7 = g77 ˆvd7 (4.33)

C1
d ˆvd2

dt
=−

[
g11VD1

2VS1
(1 + k0)

]
ˆvd1 −

[
g1 −

g11V 2
D1

4V 2
S1

−
g33V 2

D3

4V 2
S3

]
ˆvd2 +

[
g11VD3

2VS3
(1 + k0)

]
ˆvd3

+

[
g11V 2

D1

8V 2
S1

−
g33V 2

D3

8V 2
S3

]
ˆvd4 +

[
g11V 2

D1

8V 2
S1

−
g33V 2

D3

8V 2
S3

]
v̂s (4.34)

=g21 ˆvd1 + g22 ˆvd2 + g23 ˆvd3 + g24 ˆvd4 + g28v̂s (4.35)

C1
d ˆvd6

dt
=−

[
g55V 2

D5

8V 2
S5

−
g77V 2

D7

8V 2
S7

]
ˆvd4 −

[
g55VD5

2VS5
(1 + k0)

]
ˆvd5 −

[
g1 −

g55V 2
D5

4V 2
S5

−
g77V 2

D7

4V 2
S7

]
ˆvd6

+

[
g77VD7

2VS7
(1 + k0)

]
ˆvd7 +

[
g55V 2

D5

8V 2
S5

−
g77V 2

D7

8V 2
S7

]
v̂s (4.36)

=g64 ˆvd4 + g65 ˆvd5 + g66 ˆvd6 + g67 ˆvd7 + g68v̂s (4.37)

C2
d ˆvd4

dt
=−

[
ID1 + k0g11VD1 + k1g21VD2

2VS2

]
ˆvd1 −

[
ID2 + 2k1g22VD2

4VS2

]
ˆvd2

−
[
ID3 + k0g33VD3 + k1g23VD2

2VS2

]
ˆvd3 −

[
g2 +

PD1

4V 2
S2

+
PD2

4V 2
S6

+
k1g24VD2

2VS2
−
k1g64VD6

2VS6

]
ˆvd4

+

[
ID5 + k0g55VD5 + k1g65VD6

2VS6

]
ˆvd5 +

[
ID6 + 2k1g66VD6

2VS6

]
ˆvd6

+

[
ID7 + k0g77VD7 + k1g67VD6

2VS6

]
ˆvd7 +

[
PD1

4V 2
S2

−
PD2

4V 2
S6

−
k1g28VD2

2VS2
+
k1g68VD6

2VS6

]
v̂s (4.38)

=g41 ˆvd1 + g42 ˆvd2 + g43 ˆvd3 + g44 ˆvd4 + g45 ˆvd5 + g46 ˆvd6 + g47 ˆvd7 + g48v̂s (4.39)

C3
dv̂s

dt
=−

[
ID1 + k0g11VD1 + k1g21VD2 + k2g41VD4

2Vs

]
ˆvd1 −

[
ID2 + 2k1g22VD2 + 2k2g42VD4

4Vs

]
ˆvd2

−
[
ID3 + k1g23VD2 + k0g33VD3 + k2g43VD4

2Vs

]
ˆvd3 −

[
ID4 + 4k1g24VD2 + 4k2g44VD4 + 4k1g64VD6

8Vs

]
ˆvd4

−
[
ID5 + k2g45VD4 + k0g55VD5 + k1g65VD6

2Vs

]
ˆvd5 −

[
ID6 + 2k2g46VD4 + 2k1g66VD6

4Vs

]
ˆvd6

−
[
ID7 + k2g47VD4 + k1g67VD6 + k0g77VD7

2Vs

]
ˆvd7 −

[
gs −

PD

8V 2
s

+
k1g28VD2 + k2g48VD4 + k1g68VD6

2Vs

]
v̂s (4.40)

=g81 ˆvd1 + g82 ˆvd2 + g83 ˆvd3 + g84 ˆvd4 + g85 ˆvd5 + g86 ˆvd6 + g87 ˆvd7 + g88v̂s (4.41)
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where the differential power terms PD1, PD2 and PD are

PD1 = 2VD1ID1 + VD2ID2 + 2VD3ID3 (4.42)

PD2 = 2VD5ID5 + VD6ID6 + 2VD7ID7 (4.43)

PD = 4VD1ID1 + 2VD2ID2 + 4VD3ID3 + VD4ID4 + 4VD5ID5 + 2VD6ID6 + 4VD7ID7 (4.44)

The linearized equations can be represented in the form of a state transition matrix (with-

out inputs, as we have ignored perturbations in load currents),

C0
d ˆvd1
dt

C1
d ˆvd2
dt

C0
d ˆvd3
dt

C2
d ˆvd4
dt

C0
d ˆvd5
dt

C1
d ˆvd6
dt

C0
d ˆvd7
dt

C3
dv̂s
dt


=



g11 0 0 0 0 0 0 0

g21 g22 g23 g24 0 0 0 g28

0 g33 0 0 0 0 0 0

g41 g42 g43 g44 g45 g46 g47 g48

0 0 0 0 g55 0 0 0

0 0 0 g64 g65 g66 g67 g68

0 0 0 0 0 0 g77 0

g81 g82 g83 g84 g85 g86 g87 g88





v̂d1

v̂d2

v̂d3

v̂d4

v̂d5

v̂d6

v̂d7

v̂s


(4.45)

The state matrix of this linearized system has all negative diagonal components of the

form −gxx +
∑
g
V n
D

V n
S

and the non-zero off diagonal components are all of the form
∑
g
V n
D

V n
S

.

By design, under any steady state, the differential voltages (VD’s) are expected to be much

lower than the input voltages (VS’s) since our goal is voltage equalization. So it is relatively

easy to construct the gains g0, g1, g2 and gs so that the state matrix is diagonal dominant,

with all negative diagonal components. The eigenvalues of such a matrix are always negative

and leads to a stable system.

At this point, it should be noted that the system can be stabilized more easily (with lower

control gains) if the loads are resistive. Resistive loads would add an additional stabilizing

component to the diagonal components of the state transition matrix. For example, with

resistances rk connected at each voltage domain vk, Equation 4.22 can be denoted as,

C0
dvd1

dt
=− g0vd1 − id1 = −g0vd1 −

v1

r1

+
v2

r2

=−
(
g0 +

1

2r1

+
1

2r1

)
vd1 −

(
1

2r1

− 1

2r2

)(vs
4

+
vd4

4
+
vd2

2

)
(4.46)

However, the complexity in formulating the state transition matrix increases as the number

of off-diagonal components increases in state transition matrix.
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4.2 Stacking of the DPP converters - Hardware

In order to find a low inductance layout for the DPP converters which have been designed

to operate in a modular fashion, the inner DPP converters, DPP1, DPP3, DPP5 and DPP7

have been laid out on one PCB shown in Fig 4.4. DPP2 and DPP6 are laid out on a second

board. A third board contains layouts of the stack converter and DPP4. Converters for

auxiliary power (48 V - 12 V for stack converter gate drive, and 12 V - 5 V for control),

voltage and current sensing circuits for the loads are also placed on the same board as the

stack converter. Figs 4.4, 4.5 and 4.6 show the three populated PCBs.

vstack

n7

n6

n5

n4

n3

n2

n1

pgnd

DPP3

DPP1

DPP5

DPP7

Figure 4.4: PCB with inner DPP converters.
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Figure 4.5: PCB with DPP converters in the middle of the hierarchy.
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Figure 4.7: Series stacked low voltage loads with switched capacitor units.

4.3 Design of the load stack

The nominal input voltage for each load element is 1.8 V. The loads have to be designed

so that they can sink 10 A of current when supplied with 1.8 V including droops due to

load lines and current sense resistors. The loads can be realized with switched capacitor

circuits. The proposed design is shown in Fig 4.7. Each load is designed as a parallel stack

of inverters to be controlled with a variable frequency square wave. The inverters in each

load are to be switched in an interleaved pattern to reduce the ripple on the sinked load

current. The power dissipation of each load is supposed to emulate a digital circuit load and

can be derived as P = kfswCV
2, where fsw is the frequency of the square wave pulses to

each inverter. Controlling fsw allows us to change the load current at a fixed supply voltage.

To estimate the number of inverter units needed to achieve a reasonable current ripple

ratio we consider a load with n interleaved inverter units as shown in Fig 4.8. Ignoring the
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Figure 4.8: Load unit with n interleaved inverter loads.

drop across the input impedance formed of Lcon and Rsense, the currents drawn from the

units at t = 0+ are

iin1

(
t = 0+

)
=

Vdd

2R
(

1 + e−
Tsw
4RC

)
iin2

(
t = 0+

)
=

Vdd

2R
(

1 + e−
Tsw
4RC

)e− (n−1)Tsw
2nRC

iin3

(
t = 0+

)
=

Vdd

2R
(

1 + e−
Tsw
4RC

)e− (n−2)Tsw
2nRC

...

iinn
(
t = 0+

)
=

Vdd

2R
(

1 + e−
Tsw
4RC

)e− Tsw
2nRC

The total current drawn by the load at t = 0+ is

iin
(
t = 0+

)
=

Vdd

2R
(

1 + e−
Tsw
4RC

) ( 1− e− Tsw
2RC

1− e− Tsw
2nRC

)
(4.47)
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and at t = 0− is

iin
(
t = 0−

)
=

Vdd

2R
(

1 + e−
Tsw
4RC

) ( 1− e− Tsw
2RC

1− e− Tsw
2nRC

)
e−

Tsw
2nRC (4.48)

The ripple current ∆iin is

∆iin =
Vdd

2R
(

1 + e−
Tsw
4RC

) (1− e−
Tsw
2RC

)
=
Vdd
2R

(
1− e−

Tsw
4RC

)
(4.49)

The input current during 0 < t < Tsw/n is

iin
(
t = 0+

)
=
Vdd
2R

(
1− e− Tsw

4RC

1− e− Tsw
2nRC

)
e−

t
2RC (4.50)

The average input current 〈iin〉 can be evaluated as

〈iin〉 =
nCVdd
Tsw

(
1− e−

Tsw
4RC

)
(4.51)

The expression for average input current shows that for clock frequencies significantly

below the RC time constant of the circuit, the load behaves like the resistive model for

digital loads as expected. For higher frequencies the load tends to saturate. The ripple

current to average current ratio is Tsw
2nCR

. It can be inferred that increasing the number of

paralleled inverters will serve to improve both the linearity of the load and the ripple to

average current ratio. However, generating interleaved clock signals for the inverter units

becomes a problem as we increase the number of paralleled loads. To accurately generate

n interleaved clock signals of frequency fsw we need a master clock signal whose frequency

is at least nfsw. In our design we use a Johnson’s counter to generate n interleaved clock

signals from a higher frequency clock signal of frequency fclk = nfsw. The load current and

ripple current expressions can be modified as

〈iin〉 = CVddfclk

(
1− e−

n
4RCfclk

)
(4.52)

∆iin =
Vdd
2R

(
1− e−

n
4RCfclk

)
(4.53)

Load units with 220 mΩ resistance and 4.7 µF capacitance were built. With six modules

in parallel and a load current sense resistance of 25 mΩ, a maximum current of 6.7 A could

be drawn by the loads at fclk = 2 MHz, as can be verified from the plots in Fig 4.9. This
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Figure 4.9: Loads without input impedance, behavior with respect to master clock
frequency with varying number of units.

frequency was the upper limit of what could be achieved with the setup. The gate drive

of the DrMOS used for building the loads was supplied by isolated 5 V power supplies

(ISOW7840F) which were limited to a 650 mW power output. Increasing fclk beyond 2 MHz

caused the isolated supplies to start throttling and shut down (the isolated 5 V supplies the

integrated gate drivers and the interleaved clock generation logic circuit, both of which draw

increasing power with increasing frequency). A second load board could be populated and

paralleled with the first load board, and this would allow us to draw up to the targeted 10 A

load from the 1.8 V domains (taking into account the droop of the balancing regulators and

the drop in the sense resistors). However, this would only be necessary if we intended to test

the voltage regulation of the stack up to 100% mismatch. Instead, we used an electronic load

to provide an offset load current for efficiency measurements in the higher current range, as

shown in Fig 4.10.

Different sense resistor and passive components were used to build the loads for testing

at light loads and lighter loads. Increasing the sense resistor value for measurements at

light loads allowed for reducing the current ripple at light loads and as well as in improving

measurement accuracy. The values of the components used for building the loads are shown

in Table 4.1. This allowed satisfactory measurement of experimental data presented in the

next section.
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Table 4.1: Load board components.

Component Part Number Specifications

DrMOS CSD95379Q3M 20 V, 20 A
R (light load) RL1632R-R750-F 0.75 Ω
C (light load) 06035C333JAT2A 0.33 µF, 25 V, 0603

Rsense (light load) 0.5 Ω (2 × 1 Ω parallel)
R (int-light load) RL1632R-R750-F 0.75 Ω
C (int-light load) CL10F334ZA8NNNC 1 µF, 25 V, 0603

Rsense (int-light load) RL1632R-R750-F 0.075 Ω
R (heavy-int load) RCWE1210R470FKEA 2 × 0.47 Ω (parallel), 1 W
C (heavy-int load) LMK107BJ475KA-T 4.7 µF, 10 V, 0603

Rsense (heavy-int load) FCSL110R025FER 0.025 Ω, 4320 wide
Cfilt CC0603ZRY5V6BB225 6 × 2.2 µF, 10 V, 0603

Digital Isolator ISOW7840F 4 channel isolator, integrated power
D flip-flop (Counter) SN74ALS174NSR Hex D-type flip-flop with clear

Current sense amplifier AD8218BRMZ Current monitor (g = 20)
Voltage sense amplifier INA149AID Differential voltage sense (g = 1)
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4.4 System level efficiency measurements

For measurement of system level efficiencies at light loads, the load board was populated with

components from Table 4.1 labeled “light load”. Varying clock frequency between 250 kHz

and 2.5 MHz allowed for varying the average current of each load between 50 mA and 500 mA.

The 0.5 Ω current sensing resistance, and six paralleled 2.2 µF filter capacitances placed at

the input of the DrMOS half bridges, helped in maintaining low current ripple for satisfactory

measurement accuracy. For measurement of system level efficiencies at intermediate-light

loads, the load board was populated with components from Table 4.1 labeled “int-light

load”. Varying clock frequency between 250 kHz and 2.5 MHz allowed for varying the

average current of each load between 200 mA and 2.5 A. At intermediate-heavy and heavy

loads, the load boards were populated with the components labeled “heavy-int load”. These

values allowed the load to be varied up to 7 A (for a clock frequency of 2 MHz). For

capturing system level efficiencies beyond istack = 7 A, an Agilent 6060B electronic load was

used to provide an offset load current. Under an offset current of 3 A, if the load currents

of the switched capacitor loads are varied between 2 A and 7 A, system level efficiencies

for istack upto 10 A can be captured (limiting mismatches up to 50%). Yokogawa WT310

power meters were used to capture the input and offset powers. An Agilent 34970a Data

Acquisition Card was used to capture power dissipated in the switched capacitor loads. The

setup for efficiency measurements has been shown in detail in Fig 4.10.

The loads were ramped up in small steps by stepping the clock frequencies of each load.

The step size of each frequency change determines the percentage mismatch at which the

system-level efficiencies are being measured. An example of the ramping of the loads is

shown in Fig 4.21. System level efficiency measurements were performed for different load

step sizes (allowing for measurements at 5%, 10%, 20% and 40% mismatches).

The order in which the loads are stepped up has an influence on the differential power

processed by the DPP converters. For example, stepping up the loads in the order [1,

2, 3, 4, 5, 6, 7, 8] would ensure that all of the DPP converters process the maximum

mismatch currents for some instances. While, following the order [1, 8, 2, 7, 3, 6, 4, 5]

limits the mismatch current processed by DPP4 to 25%, and mismatch currents processed

by DPP2 and DPP6 to 50% of the maximum mismatch current during the course of the entire

profile. System-level efficiency data under a few different stepping orders was captured. The

efficiency of the DPP stack regulator was estimated by subtracting interpolated losses of the

stack converter from the system losses and shown in Fig 4.11. The captured data was mapped

with respect to total output power and differential power processed and the corresponding

efficiency and loss distribution are shown as the contour plots in Figs 4.12 and 4.13.
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Figure 4.11: Efficiency of the system under mismatch power processed limited to 40%.
Red: Efficiencies under zero mismatch with electronic load attached to the
vstack rail and none of the switched capacitor loads operational.
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Figure 4.12: Efficiency map of the system with respect to output power and processed
differential power. Differential power processed limited to 40%.
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Figure 4.13: System and DPP stack losses with respect to output power and processed
differential power. Differential power processed limited to 40%.
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4.5 Load transients

Some transient load profiles are used to test stability and voltage regulation of the hierar-

chical DPP regulator. An Agilent 6060B electronic load was used to emulate load transients

at different points in the series stack. The load transients shown in Figs 4.14 through 4.20

show load transients and the DPP currents that change in order to maintain voltage regu-

lation. The achievable load current slew rates with the Agilent 6060B electronic load were

considerably slower (slightly lower than 0.5 A/µs) than that typically encountered while

powering microprocessor loads. However, testing load transients with multiple voltage do-

mains enables us to emulate a situation where multiple cores are stepping up their power

dissipation at the same time. For example, the load transient scenario depicted in Fig 4.15

emulates a scenario where three of the cores step up the load from up to 5 A at the same

time. The equivalent load current slew rate for the parallel power delivery system would be

three times of what we have tested here. For each of these load transients, we note that the

DPP converters respond much faster than the stack converter (the DPP inductor currents

settle much faster than the node voltages monitored).

Improving the load transient responses would be possible by improving the settling time

of stack converter itself (either by switching faster, or by improved control methods). These

load transients represent some heavily mismatched conditions, verifying stability and voltage

regulation well within 10% limits. Also to be noted is that the delayed phase shedding/adding

operations of the DPP converters themselves propagate and add to the response time with

respect to the load transients. For example, in the load transient scenario of Fig 4.15, the

second phase of DPP3 is enabled with minimal delay (10 µs). But the second phases of DPP2

and DPP4 are enabled after another 20 µs (seen as the voltage of the node monitored on

Channel 1 starts to rise up to 5.4 V). These additional delays can be minimized by lowering

the values additional capacitances at the outputs of the inner DPP converters.

Some load profiles are tested under lower mismatched conditions. Similar to the efficiency

measurement setup, the variable switching frequency loads were used. The loads are ramped

up in 20%steps from light load to intermediate load (4 A). The eight load currents and eight

domain voltages are captured with a 16 channel 125 kHz sampling rate ADC evaluation

board (AD7616P). These load profiles captures are shown in Fig 4.21 and Fig 4.22. The

steady state voltages are verified to be well within 10% regulation limits for these lightly

mismatched conditions.
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Figure 4.14: Load transient response 1: A 5 A load transient at the node n2 causes DPP2

to enable both its phases to deliver 5 A of differential current. DPP4 also has
to enable both its phases to deliver 2.5 A of differential current. The stack
converter delivers 1.25 A and remains in light-load operation. The droop at
node n2 is approximately 100 mV. Horizontal time scale: 20 µs/div.
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Figure 4.15: Load transient response 2: A 5 A load transient at the node n3 causes DPP3

to enable both its phases to deliver 5 A of differential current. DPP2 also has
to enable both its phases to deliver 2.5 A of differential current. DPP4

delivers 3.75 A of differential current. The stack converter delivers 1.9 A and
remains in light-load operation. The droop at node n3 is approximately
400 mV (7.4%), which would be the worst percentage droop of all the nodes
in the stack. Horizontal time scale: 20 µs/div.
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Figure 4.16: Load transient response 3: A 5 A load transient at the node n4 causes only
DPP4 to enable both its phases to deliver 5 A of differential current. The
stack converter delivers 2.5 A and remains in light-load operation. The droop
at node n4 is approximately 600 mV (8.3%), which would be the worst
percentage droop of all the nodes in the stack. Horizontal time scale:
20 µs/div.
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Figure 4.17: Load transient response 4: A 5 A load transient at the node n5 causes DPP5

to enable both its phases to deliver 5 A of differential current. DPP6 also has
to enable both its phases to deliver 2.5 A of differential current. DPP4

delivers 3.75 A of differential current. The stack converter delivers 3.2 A and
operates in CCM. The droop at node n5 is approximately 800 mV (8.8%),
which would be the worst percentage droop of all the nodes in the stack.
Horizontal time scale: 20 µs/div.
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Figure 4.18: Load transient response 5: A 5 A load transient at the node n6 causes DPP6

to enable both its phases to deliver 5 A of differential current. DPP4 also has
to enable both its phases to deliver 2.5 A of differential current. The stack
converter delivers 3.75 A and operates in CCM. The droop at node n6 is
approximately 600 mV (5.5%), which would be the worst percentage droop of
all the nodes in the stack. Horizontal time scale: 20 µs/div.
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Figure 4.19: Load transient response 6: A 5 A load transient at the node n7 causes DPP7

to enable both its phases to deliver 5 A of differential current. DPP6 also has
to enable both its phases to deliver 2.5 A of differential current. DPP4

delivers 1.25 A of differential current with its low current phase in CCM. The
stack converter delivers 4.4 A and operates in CCM. The droop at node n7 is
approximately 1 V (7.9%), which would be the worst percentage droop of all
the nodes in the stack. Horizontal time scale: 20 µs/div.
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Figure 4.20: Load transient response 7: Load transient at the input of the stack only
engages the stack converter. The stack voltage droop is approximately 0.75 V
(5.2%). The stack converter’s voltage droop propagates through the stack to
all the domain voltages and gets distributed proportionally. Horizontal time
scale: 20 µs/div.
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Figure 4.21: Voltage regulation of the eight 1.8 V domains under transients within 20% of
average current. Load currents ramping up in 20% steps every 2.5 ms.
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Figure 4.22: Voltage regulation of the eight 1.8 V domains under transients within 20% of
average current. Load currents ramping down in 20% steps every 2.5 ms.

102



CHAPTER 5

CONCLUSION

The advantages of series stacked power delivery for low voltage loads compared to the con-

ventional parallel connected power delivery system were discussed, and a differential power

processing based architecture was proposed for power delivery for a series stack of eight low

voltage high current domains. The series stacked architecture enables more efficient power

delivery due to lower current requirements. For maintaining high efficiency over a wide

load range, a light load control scheme suitable for bidirectional converters was proposed

and demonstrated in Chapter 2 of this thesis. A single phase bidirectional converter was

capable of achieving near 100x load range, while maintaining good transient response and

voltage droop characteristics. For improving load range, a bidirectional two phase converter

with asymmetric current sharing was proposed and demonstrated in Chapter 2. This con-

verter employs the light-load control developed previously at light loads and also uses phase

shedding to maintain over 90% efficiency over more than a 100x load range.

Bulk power for the series stacked loads needs to be supplied from a 48 V bus through a step-

down converter. Step-down conversion of 48 V to 14.4 V (eight series stacked 1.8 V domains)

was achieved with a two-phase interleaved buck converter, demonstrated in Chapter 3. With

relaxed output impedance requirements due to series stacking of the low voltage domains,

a two-phase converter was sufficient to meet 10% transient regulation limits. The designed

two-phase converter employs a sensorless current mode control. Small signal analytical

models for the sensorless current-mode-controlled two-phase buck converter were developed

and verified against switching models in simulations. The sensorless current mode control

also achieves excellent current sharing, on a par with that of conventional peak current

mode controllers which are common for power delivery to microprocessor loads. Further,

the controller is also augmented for operation in burst mode at light loads, which suited our

target for achieving high system level efficiency over a wide load range.

Stability of the series stacked domain voltages with a distributed droop current mode

control was discussed in Chapter 4. A frequency dependent switched capacitor load was

designed for emulating digital circuit loads and system-level efficiency measurements were

performed, for a wide range of mismatched conditions. Better than 85% system-level effi-
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ciency (averaged over mismatched conditions up to 40%) was demonstrated over an output

power range of 1.44 W to 144 W. The power delivery system also achieved satisfactory tran-

sient performance, although transient performance at extreme load current slew rates was

not tested. However, the tested load current slew rates were significantly higher than the

response times of the regulating converters. It was demonstrated that even under heavily

mismatched conditions, it is possible to maintain excellent voltage regulation for all stacked

voltage domains with droop controlled balancing converters and a bulk power converter with

reasonable output impedance.

5.1 Future work

Equalization of voltages of series connected domains with fast varying loads has been demon-

strated in the research presented in this thesis. One of the initial motivations for using a

switched inductor topology in this research was that voltage regulation is possible by oper-

ating the converters at different duty ratios. While the hierarchical topology is capable of

driving each domain voltage to a particular desired reference value, dynamic voltage scaling

(and related analysis of inrush currents associated with voltage reference tracking) has not

been demonstrated, and would be a valuable addition for completeness of this research.

The general idea of nested or hierarchical DPP is very suitable and would be preferred for

applications where a large number of series stacked domains are needed - such as battery

packs in electric vehicles or grid level energy storage systems. It seems to have an advantage

over the more generally accepted switched inductor ladder in terms of distributed control

and amount of differential power processed, at the cost of modularity. The current mode

control approach developed in this thesis is easily adapted to a battery management system

where regulation of charging current to each battery is the end goal.
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APPENDIX A

LOSS-MODELING OF DIFFERENT CURRENT
SHARING RATIOS

The switch power losses are calculated as described in [62]. The loss models provide a good

estimate of power losses in on board synchronous buck converters. However, they do not

include the effects of inductor current saturation (increased ripple at higher loads). The

inductor losses are generated from Coilcraft’s inductor loss data available at [48]. This loss

data also does not accommodate for saturation effects at higher currents, so the converter

losses evaluated in the following code are inaccurate as the loads get closer to the saturation

current limits of the inductors. Moreover, switching frequency is assumed to be held constant,

which is generally not true for hysteretic current mode control. However, these models

provide a good estimate of losses at light loads, in which we are more interested. The

MATLAB script for optimizing converter switch sizes for different current sharing ratios is

provided.

1 % XEL4030 inductor l o s s data

2 f sw = [1500 ,1000 , 900 , 800 , 700 , 600 , 500 , 400 , 350 , 300 , 250 , 200 , 150 ] ' *1 e3 ;

3 L = [ 0 .64 , 0 .9 , 1 .2 , 1 .5 , 2 .2 , 3 .3 , 4 .7 , 6 . 8 ]*1 e - 6 ;

4 Co = 100e - 6 ;

5

6 p ac = [ 28 20 18 15 10 5 4 2 ;

7 56 38 32 24 17 9 7 4 ;

8 66 44 37 28 20 10 8 4 ;

9 79 53 42 32 23 12 8 5 ;

10 96 63 50 38 26 14 10 6 ;

11 121 78 60 46 32 16 11 8 ;

12 158 100 74 57 39 20 14 9 ;

13 217 134 95 74 49 26 18 12 ;

14 264 159 111 86 55 29 21 14 ;

15 330 191 131 103 64 33 24 16 ;

16 429 236 158 124 74 38 28 20 ;

17 590 296 195 156 85 43 32 24 ;

18 880 371 243 200 91 43 35 31 ]*1 e - 3 ;

19

20 r d c r = [ 5 .90 8 .80 9 .78 11 . 5 16 . 6 22 . 1 28 . 6 44 . 1 74 . 1 ]*1 e - 3 ;

21

22 ipk = 10 ;

23 npk = 1 ;

24 i ou t = logspace ( -3 , 0 , 1000) * ipk ;
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25 r ipv = ze ro s (1000 ,1 ) ;

26

27 % parameters f o r CSD17484F4

28 Qgs = 0 .28e - 9 ;

29 Qgd = 0 .075e - 9 ;

30 Rdson = 107e - 3 ;

31 Qg = 0 .9e - 9 ;

32 Qrr = 0 .45e - 9 ;

33 Coss = 45e - 1 2 ;

34 Vsd = 0 .73 ;

35 Rg = 8 ;

36 tdead = 20e - 9 ;

37 Rdrv = 1 . 2 ;

38 Vdrv = 7 ;

39 Vin = 7 . 2 ;

40 vout = 3 . 6 ;

41 c s i = 1e - 9 ;

42 Vpl = 2 . 2 ;

43 p s t a t i c = 0 .001 *3 . 6 ;

44 r c i n = 0 .001 ;

45 xp = 0 . 1 ;

46

47

48 %% l i g h t load phase f requency opt imiza t i on

49 Lcs i = .01e - 9 ;

50 fq = l i n s p a c e (1 .5e5 , 1 .5e6 , 10000) ;

51 f i g u r e (1 )

52 c l f

53 f o r j = 1 : 1 : l ength (L)

54 pac = in t e rp1 ( f sw , p ac ( : , j ) , fq , ' cubic ' ) ;

55 f o r i = 1 : 1 : l ength ( fq )

56 fsw = fq ( i ) ;

57 d i l = 2 . 5 /L( j ) *1/(2* fsw ) ;

58 i c r i t ( i ) = d i l /2 ;

59 l o s s L = pac ( i )+r d c r ( j ) * i c r i t ( i ) ˆ2 ;

60 i o = i c r i t ( i ) ;

61

62 a = Lcs i *Coss*Vin/Qgdˆ2 ;

63 b = Rg+Rdrv ;

64 c = Vdrv - Vpl ;

65 Ig1on = c /(Rg+Rdrv+Lcs i *( io - d i l /2) /Qgs ) ;

66 Ig2on = ( - b+s q r t (bˆ2+4*a*c ) ) /(2* a ) ;

67 Pswon = 0 . 5 *Vin *( io - d i l /2) * fsw *(Qgs/ Ig1on+Qgd/ Ig2on ) ;

68

69 a = Lcs i *Coss*Vin/Qgdˆ2 ;

70 b = Rg+Rdrv ;

71 c = Vpl ;

72 I g 1 o f f = c /(Rg+Rdrv+Lcs i *( i o+d i l /2) /Qgs ) ;

73 I g 2 o f f = ( - b+s q r t (bˆ2+4*a*c ) ) /(2* a ) ;

74 Pswoff = 0 . 5 *Vin *( i o+d i l /2) * fsw *(Qgs/ I g 1 o f f+Qgd/ I g 2 o f f ) ;

75

76 Pcond = ( i o ˆ2+ d i l ˆ2/12) *Rdson ;

77 Pgate = 2*Qg*Vdrv* fsw ;

78 Pdt = 2*Vsd* i o * fsw* tdead ;
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79 Prr = Qrr*Vin* fsw ;

80 Poss = 0 . 5 *Coss*Vinˆ2* fsw ;

81 l o s s s w = (Pswon+Pswoff+Pcond+Pgate+Pdt+Prr+Poss ) ;

82 l o s s n e t = l o s s L+l o s s s w ;

83 n c r i t ( i ) = i c r i t ( i ) *2 . 5 /( i c r i t ( i ) *2 . 5+l o s s n e t ) ;

84 end

85

86 subp lot ( 2 , 1 , 1 )

87 h1x ( j ) = semi logx ( i c r i t , n c r i t ) ;

88 hold on

89

90 subp lot ( 2 , 1 , 2 )

91 h2x ( j ) = semi logx ( fq /1000 , n c r i t ) ;

92 hold on

93

94 l x { j } = s p r i n t f ( '%s \\muH ' , num2str (L( j ) *1 e6 ) ) ;

95 [M, I ] = max( n c r i t ) ;

96 f opt ( j ) = fq ( I ) ;

97 end

98

99 subplot ( 2 , 1 , 1 )

100 x t i c k s ( [ 0 . 1 0 . 2 0 . 3 0 . 5 0 . 7 1 2 3 4 5 7 10 2 0 ] )

101 x l a b e l ( ' C r i t i c a l cur r ent (A) ' )

102 y l a b e l ( ' E f f i c i e n c y at c r i t i c a l cur rent ' )

103 g r id minor

104 l egend ( h1x , l x ) ;

105

106 subplot ( 2 , 1 , 2 )

107 x t i c k s ( [ 1 . 5 e2 2e2 3e2 5e2 1e3 1 . 5 e3 ] )

108 x l a b e l ( ' Switching f requency (kHz) ' )

109 y l a b e l ( ' E f f i c i e n c y at c r i t i c a l cur rent ' )

110 g r id minor

111 l egend ( h2x , l x ) ;

112

113 f i g u r e (2 )

114 s c a t t e r (L*1e6 , fopt , 'k ' )

115 x t i c k s (L*1 e6 ) ;

116 g r id minor

117 t i t l e ({ ' Switching f requency f o r low cur rent phase ' , ' Optimized f o r h i ghe s t ...
e f f i c i e n c y at c r i t i c a l cur r ent ' })

118 x l a b e l ( ' Inductance \muH ' ) ;

119 y l a b e l ( ' Switching f requency ' )

120

121 f i g u r e (3 )

122 c l f

123 f i g u r e (4 )

124 c l f

125 k = 1 ;

126

127 Lcs i = c s i ;

128 %% 1:1 shar ing r a t i o

129 L1 = 2*L(5) ;

130 L2 = 2*L(5) ;

131 fsw1 = 1e6* s q r t (2 e -6/ L1) ;

107



132 fsw2 = 1e6* s q r t (2 e -6/ L2) ;

133 I c r i t = 1 . 8 /( fsw1*L1) ;

134 l o s s L 1 = ze ro s (1000 ,0) ;

135 l o s s L 2 = ze ro s (1000 ,0) ;

136

137 r = round (L1/L2) ;

138 i sw = 2 ;

139 f l a g = 0 ;

140 rsw = 0 . 5 ;

141 m1 = 1 ;

142 m1p = m1;

143 m2 = 1 ;

144 e f f = ze ro s (1000 ,1) ;

145

146 f o r i = 1 : 1 : 1000

147 i f i ou t ( i ) < i sw

148 iL1 ( i ) = iou t ( i ) ;

149 iL2 ( i ) = 0 ;

150 en1 ( i ) = 1 ;

151 en2 ( i ) = 0 ;

152 nsw = i ;

153 e l s e

154 iL1 ( i ) = iou t ( i ) *1/( r+1) ;

155 iL2 ( i ) = iou t ( i ) * r /( r+1) ;

156 en1 ( i ) = 1 ;

157 en2 ( i ) = 1 ;

158 end

159 l o s s L 1 ( i ) = 2* i n t e rp1 ( f sw , p ac ( : , 5 ) , fsw1 , ' cubic ' ) *( Vin /5)ˆ2+iL1 ( i ) ˆ2* r d c r (5 ) ;

160 l o s s L 2 ( i ) = 2* i n t e rp1 ( f sw , p ac ( : , 5 ) , fsw2 , ' cubic ' ) *( Vin /5)ˆ2+iL2 ( i ) ˆ2* r d c r (5 ) ;

161 i f ( i ou t ( i ) < I c r i t )

162 n c r i t = i ;

163 end

164 end

165

166 f o r i =1:1 : n c r i t

167 r ipv ( i ) = 1/(Co* fsw1 ) *( I c r i t - i ou t ( i )+iou t ( i ) * i ou t ( i ) /(2* I c r i t ) ) /vout ;

168 end

169

170 f i g u r e (5 )

171 c l f

172 semi logx ( i ou t ( 1 : n c r i t ) , r ipv ( 1 : n c r i t ) / r ipv ( n c r i t ) )

173 x l a b e l ( ' I {out} ' )

174 y l a b e l ( ' Light Load Ripple ( mu l t ip l e o f r i p p l e at c r i t i c a l cur r ent ) ' )

175 g r id minor

176 hold on

177

178 count = 0

179 whi le ( f l a g==0 && count<10000)

180 count = count +1;

181 l o s s s w 1 = ze ro s (1000 ,0 ) ;

182 l o s s s w 2 = ze ro s (1000 ,0 ) ;

183 m2 = m1;

184 f o r i =1:1:1000

185 i o = iL1 ( i ) ;
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186 fsw = fsw1 ;

187 d i l = 2 . 5 /L1/(2* fsw ) ;

188

189 a = Lcs i /m1*(m1*Coss ) *Vin /(m1*Qgd) ˆ2 ;

190 b = Rg/m1+Rdrv ;

191 c = Vdrv - Vpl ;

192 Ig1on = c /(Rg/m1+Rdrv+Lcs i /m1*( io - d i l /2) /(m1*Qgs ) ) ;

193 Ig2on = ( - b+s q r t (bˆ2+4*a*c ) ) /(2* a ) ;

194 Pswon = Vin *( io - d i l /2) * fsw * ( (m1*Qgs ) / Ig1on+(m1*Qgd) / Ig2on ) /2 ;

195

196 a = Lcs i /m1*(m1*Coss ) *Vin /(m1*Qgd) ˆ2 ;

197 b = Rg/m1+Rdrv ;

198 c = Vpl ;

199 I g 1 o f f = c /(Rg/m1+Rdrv+Lcs i /m1*( i o+d i l /2) /(m1*Qgs ) ) ;

200 I g 2 o f f = ( - b+s q r t (bˆ2+4*a*c ) ) /(2* a ) ;

201 Pswoff = Vin *( i o+d i l /2) * fsw * ( (m1*Qgs ) / I g 1 o f f +(m1*Qgd) / I g 2 o f f ) /2 ;

202

203 Pcond = ( i o ˆ2+ d i l ˆ2/12) *Rdson/m1;

204 Pgate = 2*m1*Qg*Vdrv* fsw ;

205 Pdt = 2*Vsd* i o * fsw* tdead ;

206 Prr = m1*Qrr*Vin* fsw ;

207 Poss = 0 . 5 *m1*Coss*Vinˆ2* fsw ;

208 l o s s s w 1 ( i ) = (Pswon+Pswoff+Pcond+Pgate+Pdt+Prr+Poss ) ;

209

210 i o = iL2 ( i ) ;

211 fsw = fsw2 ;

212 d i l = vout/L2/(2* fsw ) ;

213

214 a = Lcs i /m2*(m2*Coss ) *Vin /(m2*Qgd) ˆ2 ;

215 b = Rg/m2+Rdrv ;

216 c = Vdrv - Vpl ;

217 Ig1on = c /(Rg/m2+Rdrv+Lcs i /m2*( io - d i l /2) /(m2*Qgs ) ) ;

218 Ig2on = ( - b+s q r t (bˆ2+4*a*c ) ) /(2* a ) ;

219 Pswon = Vin *( io - d i l /2) * fsw * ( (m2*Qgs ) / Ig1on+(m2*Qgd) / Ig2on ) /2 ;

220

221 a = Lcs i /m2*(m2*Coss ) *Vin /(m2*Qgd) ˆ2 ;

222 b = Rg/m2+Rdrv ;

223 c = Vpl ;

224 I g 1 o f f = c /(Rg/m2+Rdrv+Lcs i /m2*( i o+d i l /2) /(m2*Qgs ) ) ;

225 I g 2 o f f = ( - b+s q r t (bˆ2+4*a*c ) ) /(2* a ) ;

226 Pswoff = Vin *( i o+d i l /2) * fsw * ( (m2*Qgs ) / I g 1 o f f +(m2*Qgd) / I g 2 o f f ) /2 ;

227

228 Pcond = ( i o ˆ2+ d i l ˆ2/12) *Rdson/m2;

229 Pgate = 2*m2*Qg*Vdrv* fsw ;

230 Pdt = 2*Vsd* i o * fsw* tdead ;

231 Prr = m2*Qrr*Vin* fsw ;

232 Poss = 0 . 5 *m2*Coss*Vinˆ2* fsw ;

233 l o s s s w 2 ( i ) = (Pswon+Pswoff+Pcond+Pgate+Pdt+Prr+Poss ) ;

234 end

235 l o s s = ( l o s s L 1+l o s s s w 1 ) . *en1+( l o s s L 2+l o s s s w 2 ) . *en2 + r c i n *0 . 5 *( i o u t . * i ou t ) ;

236 f o r j =1:1 : n c r i t

237 l o s s ( j ) = l o s s ( n c r i t ) * i ou t ( j ) / i ou t ( n c r i t ) ;

238 end

239 l o s s = p s t a t i c + l o s s ;
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240 pout = iout *vout ;

241 e f f = pout . /( pout+l o s s ) ;

242

243 c r i t e f f = e f f ( n c r i t )

244 i f ( count==1)

245 c r i t e f f d = c r i t e f f -0 . 01 ;

246 end

247

248 i f ( abs ( c r i t e f f - npk )<0.001 )

249 f l a g ==1;

250 e l s e i f ( abs ( c r i t e f f - npk )>abs ( c r i t e f f d - npk ) )

251 i f (m1p≤m1) %m1 was i n c r e a s e d

252 m1 = m1-0 .001

253 e l s e

254 m1 = m1+0.001

255 end

256 e l s e

257 i f (m1p≤m1) %m1 was i n c r e a s e d

258 m1 = m1+0.001

259 e l s e

260 m1 = m1-0 .001

261 end

262 end

263 c r i t e f f d = e f f ( n c r i t )

264 m1p = m1;

265 c l c

266 end

267

268 m=m1+m2;

269

270 l o s s 1 1 = [ p s t a t i c l o s s ] ;

271

272 l {k} = s p r i n t f ( ' 1:% s , L 1 = %s uH, f {sw1}=%s kHz , L 2 = %s uH, f {sw2}=%s kHz , ...
m1=%s , m2=%s ' , . . .

273 num2str ( r ) , num2str (L1*1 e6 ) , num2str ( round ( fsw1 /1000) ) , . . .

274 num2str (L2*1 e6 ) , num2str ( round ( fsw2 /1000) ) , . . .

275 num2str (m1) , num2str (m2) ) ;

276

277 f o r i =1:1 : n c r i t

278 r ipv ( i ) = 1/(Co* fsw1 ) *( I c r i t - i ou t ( i )+iou t ( i ) * i ou t ( i ) /(2* I c r i t ) ) /vout ;

279 end

280

281 f o r i=n c r i t +1:1 : nsw

282 r ipv ( i ) = r ipv ( n c r i t ) ;

283 end

284

285 f o r i=nsw+1:1:1000

286 r ipv ( i ) = 0 .1584 /0 .125 * r ipv ( n c r i t ) ;

287 end

288

289 f i g u r e (5 )

290 c l f

291 h5 ( k ) = semi logx ( i ou t ( 1 : nsw) , r ipv ( 1 : nsw) / r ipv ( n c r i t ) )

292 x l a b e l ( ' I {out} ' )

110



293 y l a b e l ( 'Output Voltage Ripple ( mu l t ip l e o f r i p p l e at c r i t i c a l cur r ent ) ' )

294 g r id minor

295 hold on

296

297 f i g u r e (3 )

298 subplot ( 2 , 1 , 1 )

299 h1 ( k ) = p lo t ( i ou t ( 1 : 1000 ) , e f f ( 1 : 1000 ) ) ;

300 hold on

301 subplot ( 2 , 1 , 2 )

302 h2 ( k ) = p lo t ( i ou t ( 1 : 1000 ) , l o s s ( 1 : 1000 ) ) ;

303 hold on

304

305 f i g u r e (4 )

306 subplot ( 2 , 1 , 1 )

307 h3 ( k ) = semi logx ( i ou t ( 1 : 1000 ) , e f f ( 1 : 1000 ) ) ;

308 hold on

309 subplot ( 2 , 1 , 2 )

310 h4 ( k ) = l o g l o g ( i ou t ( 1 : 1000 ) , l o s s ( 1 : 1000 ) ) ;

311 hold on

312

313 l o s s 1 1 = l o s s ;

314 n c r i t 1 1 = n c r i t ;

315

316 k = k+1;

317 L1 = 2*L(6) ;

318 L2 = 2*L(4) ;

319 fsw1 = 1e6* s q r t (2 e -6/ L1) ;

320 fsw2 = 1e6* s q r t (2 e -6/ L2) ;

321 I c r i t = 1 . 8 /( fsw1*L1) ;

322 l o s s L 1 = ze ro s (1000 ,0) ;

323 l o s s L 2 = ze ro s (1000 ,0) ;

324

325 r = round (L1/L2) ;

326 i sw = 2 ;

327 f l a g = 0 ;

328 rsw = 0 . 5 ;

329 m1 = 1 ;

330 m1p = m1;

331 e f f = ze ro s (1000 ,1) ;

332

333 f o r i = 1 : 1 : 1000

334 i f i ou t ( i ) < i sw

335 iL1 ( i ) = iou t ( i ) ;

336 iL2 ( i ) = 0 ;

337 en1 ( i ) = 1 ;

338 en2 ( i ) = 0 ;

339 nsw = i ;

340 e l s e

341 iL1 ( i ) = iou t ( i ) *1/( r+1) ;

342 iL2 ( i ) = iou t ( i ) * r /( r+1) ;

343 en1 ( i ) = 1 ;

344 en2 ( i ) = 1 ;

345 end

346 l o s s L 1 ( i ) = 2* i n t e rp1 ( f sw , p ac ( : , 6 ) , fsw1 , ' cubic ' ) *( Vin /5)ˆ2+iL1 ( i ) ˆ2* r d c r (6 ) ;
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347 l o s s L 2 ( i ) = 2* i n t e rp1 ( f sw , p ac ( : , 4 ) , fsw2 , ' cubic ' ) *( Vin /5)ˆ2+iL2 ( i ) ˆ2* r d c r (4 ) ;

348 i f ( i ou t ( i ) < I c r i t )

349 n c r i t = i ;

350 end

351 end

352

353 count = 0

354 whi le ( f l a g==0 && count<10000)

355 count = count +1;

356 l o s s s w 1 = ze ro s (1000 ,0 ) ;

357 l o s s s w 2 = ze ro s (1000 ,0 ) ;

358 m2 = m-m1;

359 f o r i =1:1:1000

360 i o = iL1 ( i ) ;

361 fsw = fsw1 ;

362 d i l = 2 . 5 /L1/(2* fsw ) ;

363

364 a = Lcs i /m1*(m1*Coss ) *Vin /(m1*Qgd) ˆ2 ;

365 b = Rg/m1+Rdrv ;

366 c = Vdrv - Vpl ;

367 Ig1on = c /(Rg/m1+Rdrv+Lcs i /m1*( io - d i l /2) /(m1*Qgs ) ) ;

368 Ig2on = ( - b+s q r t (bˆ2+4*a*c ) ) /(2* a ) ;

369 Pswon = Vin *( io - d i l /2) * fsw * ( (m1*Qgs ) / Ig1on+(m1*Qgd) / Ig2on ) /2 ;

370

371 a = Lcs i /m1*(m1*Coss ) *Vin /(m1*Qgd) ˆ2 ;

372 b = Rg/m1+Rdrv ;

373 c = Vpl ;

374 I g 1 o f f = c /(Rg/m1+Rdrv+Lcs i /m1*( i o+d i l /2) /(m1*Qgs ) ) ;

375 I g 2 o f f = ( - b+s q r t (bˆ2+4*a*c ) ) /(2* a ) ;

376 Pswoff = Vin *( i o+d i l /2) * fsw * ( (m1*Qgs ) / I g 1 o f f +(m1*Qgd) / I g 2 o f f ) /2 ;

377

378 Pcond = ( i o ˆ2+ d i l ˆ2/12) *Rdson/m1;

379 Pgate = 2*m1*Qg*Vdrv* fsw ;

380 Pdt = 2*Vsd* i o * fsw* tdead ;

381 Prr = m1*Qrr*Vin* fsw ;

382 Poss = 0 . 5 *m1*Coss*Vinˆ2* fsw ;

383 l o s s s w 1 ( i ) = (Pswon+Pswoff+Pcond+Pgate+Pdt+Prr+Poss ) ;

384

385 i o = iL2 ( i ) ;

386 fsw = fsw2 ;

387 d i l = vout/L2/(2* fsw ) ;

388

389 a = Lcs i /m2*(m2*Coss ) *Vin /(m2*Qgd) ˆ2 ;

390 b = Rg/m2+Rdrv ;

391 c = Vdrv - Vpl ;

392 Ig1on = c /(Rg/m2+Rdrv+Lcs i /m2*( io - d i l /2) /(m2*Qgs ) ) ;

393 Ig2on = ( - b+s q r t (bˆ2+4*a*c ) ) /(2* a ) ;

394 Pswon = Vin *( io - d i l /2) * fsw * ( (m2*Qgs ) / Ig1on+(m2*Qgd) / Ig2on ) /2 ;

395

396 a = Lcs i /m2*(m2*Coss ) *Vin /(m2*Qgd) ˆ2 ;

397 b = Rg/m2+Rdrv ;

398 c = Vpl ;

399 I g 1 o f f = c /(Rg/m2+Rdrv+Lcs i /m2*( i o+d i l /2) /(m2*Qgs ) ) ;

400 I g 2 o f f = ( - b+s q r t (bˆ2+4*a*c ) ) /(2* a ) ;
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401 Pswoff = Vin *( i o+d i l /2) * fsw * ( (m2*Qgs ) / I g 1 o f f +(m2*Qgd) / I g 2 o f f ) /2 ;

402

403 Pcond = ( i o ˆ2+ d i l ˆ2/12) *Rdson/m2;

404 Pgate = 2*m2*Qg*Vdrv* fsw ;

405 Pdt = 2*Vsd* i o * fsw* tdead ;

406 Prr = m2*Qrr*Vin* fsw ;

407 Poss = 0 . 5 *m2*Coss*Vinˆ2* fsw ;

408 l o s s s w 2 ( i ) = (Pswon+Pswoff+Pcond+Pgate+Pdt+Prr+Poss ) ;

409 end

410 l o s s = ( l o s s L 1+l o s s s w 1 ) . *en1+( l o s s L 2+l o s s s w 2 ) . *en2 + r c i n *0 . 5 *( i o u t . * i ou t ) ;

411 f o r j =1:1 : n c r i t

412 l o s s ( j ) = l o s s ( n c r i t ) * i ou t ( j ) / i ou t ( n c r i t ) ;

413 end

414 l o s s = p s t a t i c + l o s s ;

415 pout = iout *vout ;

416 e f f = pout . /( pout+l o s s ) ;

417

418 c r i t e f f = e f f ( n c r i t )

419 i f ( count==1)

420 c r i t e f f d = c r i t e f f -0 . 01 ;

421 end

422

423 i f ( abs ( c r i t e f f - npk )<0.001 )

424 f l a g ==1;

425 e l s e i f ( abs ( c r i t e f f - npk )>abs ( c r i t e f f d - npk ) )

426 i f (m1p≤m1) %m1 was i n c r e a s e d

427 m1 = m1-0 .001

428 e l s e

429 m1 = m1+0.001

430 end

431 e l s e

432 i f (m1p≤m1) %m1 was i n c r e a s e d

433 m1 = m1+0.001

434 e l s e

435 m1 = m1-0 .001

436 end

437 end

438 c r i t e f f d = e f f ( n c r i t )

439 m1p = m1;

440 c l c

441 end

442

443 c l c

444 l o s s 1 2 = [ p s t a t i c l o s s ] ;

445

446 l {k} = s p r i n t f ( ' 1:% s , L 1 = %s uH, f {sw1}=%s kHz , L 2 = %s uH, f {sw2}=%s kHz , ...
m1=%s , m2=%s ' , . . .

447 num2str ( r ) , num2str (L1*1 e6 ) , num2str ( round ( fsw1 /1000) ) , . . .

448 num2str (L2*1 e6 ) , num2str ( round ( fsw2 /1000) ) , . . .

449 num2str (m1) , num2str (m2) ) ;

450 f o r i =1:1 : n c r i t

451 r ipv ( i ) = 1/(Co* fsw1 ) *( I c r i t - i ou t ( i )+iou t ( i ) * i ou t ( i ) /(2* I c r i t ) ) /vout ;

452 end

453
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454 f o r i=n c r i t +1:1 : nsw

455 r ipv ( i ) = r ipv ( n c r i t ) ;

456 end

457

458 f o r i=nsw+1:1:1000

459 r ipv ( i ) = 0 .1584 /0 .125 * r ipv ( n c r i t ) ;

460 end

461

462 f i g u r e (5 )

463 h5 ( k ) = semi logx ( i ou t ( 1 : nsw) , r ipv ( 1 : nsw) / r ipv ( n c r i t ) )

464

465 f i g u r e (3 )

466 subplot ( 2 , 1 , 1 )

467 h1 ( k ) = p lo t ( i ou t ( 1 : 1000 ) , e f f ( 1 : 1000 ) ) ;

468 hold on

469 subplot ( 2 , 1 , 2 )

470 h2 ( k ) = p lo t ( i ou t ( 1 : 1000 ) , l o s s ( 1 : 1000 ) ) ;

471 hold on

472

473 f i g u r e (4 )

474 subplot ( 2 , 1 , 1 )

475 h3 ( k ) = semi logx ( i ou t ( 1 : 1000 ) , e f f ( 1 : 1000 ) ) ;

476 hold on

477 subplot ( 2 , 1 , 2 )

478 h4 ( k ) = l o g l o g ( i ou t ( 1 : 1000 ) , l o s s ( 1 : 1000 ) ) ;

479 hold on

480

481 l o s s 1 2 = l o s s ;

482 n c r i t 1 2 = n c r i t ;

483

484 k = k+1;

485

486 %% 1:4 shar ing r a t i o

487 % inductor l o s s e s 0 .64uH high cur rent phase and 3.3uH low cur rent phase

488 L1 = 2*L(7) ;

489 L2 = 2*L(3) ;

490 fsw1 = 1e6* s q r t (2 e -6/ L1) ;

491 fsw2 = 1e6* s q r t (2 e -6/ L2) ;

492 I c r i t = 1 . 8 /( fsw1*L1) ;

493 l o s s L 1 = ze ro s (1000 ,0) ;

494 l o s s L 2 = ze ro s (1000 ,0) ;

495

496 r = round (L1/L2) ;

497 i sw = 2 ;

498 f l a g = 0 ;

499 rsw = 0 . 5 ;

500 m1 = 1 ;

501 m1p = m1;

502 e f f = ze ro s (1000 ,1) ;

503

504 f o r i = 1 : 1 : 1000

505 i f i ou t ( i ) < i sw

506 iL1 ( i ) = iou t ( i ) ;

507 iL2 ( i ) = 0 ;
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508 en1 ( i ) = 1 ;

509 en2 ( i ) = 0 ;

510 nsw = i ;

511 e l s e

512 iL1 ( i ) = iou t ( i ) *1/( r+1) ;

513 iL2 ( i ) = iou t ( i ) * r /( r+1) ;

514 en1 ( i ) = 1 ;

515 en2 ( i ) = 1 ;

516 end

517 l o s s L 1 ( i ) = 2* i n t e rp1 ( f sw , p ac ( : , 7 ) , fsw1 , ' cubic ' ) *( Vin /5)ˆ2+iL1 ( i ) ˆ2* r d c r (7 ) ;

518 l o s s L 2 ( i ) = 2* i n t e rp1 ( f sw , p ac ( : , 3 ) , fsw2 , ' cubic ' ) *( Vin /5)ˆ2+iL2 ( i ) ˆ2* r d c r (3 ) ;

519 i f ( i ou t ( i ) < I c r i t )

520 n c r i t = i ;

521 end

522 end

523

524 f o r i =1:1 : n c r i t

525 r ipv ( i ) = 1/(Co* fsw1 ) *( I c r i t - i ou t ( i )+iou t ( i ) * i ou t ( i ) /(2* I c r i t ) ) /vout ;

526 end

527

528 f i g u r e (5 )

529 semi logx ( i ou t ( 1 : n c r i t ) , r ipv ( 1 : n c r i t ) / r ipv ( n c r i t ) )

530

531 count = 0

532 whi le ( f l a g==0 && count<10000)

533 count = count +1;

534 l o s s s w 1 = ze ro s (1000 ,0 ) ;

535 l o s s s w 2 = ze ro s (1000 ,0 ) ;

536 m2 = m-m1;

537 f o r i =1:1:1000

538 i o = iL1 ( i ) ;

539 fsw = fsw1 ;

540 d i l = 2 . 5 /L1/(2* fsw ) ;

541

542 a = Lcs i /m1*(m1*Coss ) *Vin /(m1*Qgd) ˆ2 ;

543 b = Rg/m1+Rdrv ;

544 c = Vdrv - Vpl ;

545 Ig1on = c /(Rg/m1+Rdrv+Lcs i /m1*( io - d i l /2) /(m1*Qgs ) ) ;

546 Ig2on = ( - b+s q r t (bˆ2+4*a*c ) ) /(2* a ) ;

547 Pswon = Vin *( io - d i l /2) * fsw * ( (m1*Qgs ) / Ig1on+(m1*Qgd) / Ig2on ) /2 ;

548

549 a = Lcs i /m1*(m1*Coss ) *Vin /(m1*Qgd) ˆ2 ;

550 b = Rg/m1+Rdrv ;

551 c = Vpl ;

552 I g 1 o f f = c /(Rg/m1+Rdrv+Lcs i /m1*( i o+d i l /2) /(m1*Qgs ) ) ;

553 I g 2 o f f = ( - b+s q r t (bˆ2+4*a*c ) ) /(2* a ) ;

554 Pswoff = Vin *( i o+d i l /2) * fsw * ( (m1*Qgs ) / I g 1 o f f +(m1*Qgd) / I g 2 o f f ) /2 ;

555

556 Pcond = ( i o ˆ2+ d i l ˆ2/12) *Rdson/m1;

557 Pgate = 2*m1*Qg*Vdrv* fsw ;

558 Pdt = 2*Vsd* i o * fsw* tdead ;

559 Prr = m1*Qrr*Vin* fsw ;

560 Poss = 0 . 5 *m1*Coss*Vinˆ2* fsw ;

561 l o s s s w 1 ( i ) = (Pswon+Pswoff+Pcond+Pgate+Pdt+Prr+Poss ) ;
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562

563 i o = iL2 ( i ) ;

564 fsw = fsw2 ;

565 d i l = vout/L2/(2* fsw ) ;

566

567 a = Lcs i /m2*(m2*Coss ) *Vin /(m2*Qgd) ˆ2 ;

568 b = Rg/m2+Rdrv ;

569 c = Vdrv - Vpl ;

570 Ig1on = c /(Rg/m2+Rdrv+Lcs i /m2*( io - d i l /2) /(m2*Qgs ) ) ;

571 Ig2on = ( - b+s q r t (bˆ2+4*a*c ) ) /(2* a ) ;

572 Pswon = Vin *( io - d i l /2) * fsw * ( (m2*Qgs ) / Ig1on+(m2*Qgd) / Ig2on ) /2 ;

573

574 a = Lcs i /m2*(m2*Coss ) *Vin /(m2*Qgd) ˆ2 ;

575 b = Rg/m2+Rdrv ;

576 c = Vpl ;

577 I g 1 o f f = c /(Rg/m2+Rdrv+Lcs i /m2*( i o+d i l /2) /(m2*Qgs ) ) ;

578 I g 2 o f f = ( - b+s q r t (bˆ2+4*a*c ) ) /(2* a ) ;

579 Pswoff = Vin *( i o+d i l /2) * fsw * ( (m2*Qgs ) / I g 1 o f f +(m2*Qgd) / I g 2 o f f ) /2 ;

580

581 Pcond = ( i o ˆ2+ d i l ˆ2/12) *Rdson/m2;

582 Pgate = 2*m2*Qg*Vdrv* fsw ;

583 Pdt = 2*Vsd* i o * fsw* tdead ;

584 Prr = m2*Qrr*Vin* fsw ;

585 Poss = 0 . 5 *m2*Coss*Vinˆ2* fsw ;

586 l o s s s w 2 ( i ) = (Pswon+Pswoff+Pcond+Pgate+Pdt+Prr+Poss ) ;

587 end

588 l o s s = ( l o s s L 1+l o s s s w 1 ) . *en1+( l o s s L 2+l o s s s w 2 ) . *en2 + r c i n *0 . 5 *( i o u t . * i ou t ) ;

589 f o r j =1:1 : n c r i t

590 l o s s ( j ) = l o s s ( n c r i t ) * i ou t ( j ) / i ou t ( n c r i t ) ;

591 end

592 l o s s = p s t a t i c + l o s s ;

593 pout = iout *vout ;

594 e f f = pout . /( pout+l o s s ) ;

595

596 c r i t e f f = e f f ( n c r i t )

597 i f ( count==1)

598 c r i t e f f d = c r i t e f f -0 . 01 ;

599 end

600

601 i f ( abs ( c r i t e f f - npk )<0.001 )

602 f l a g ==1;

603 e l s e i f ( abs ( c r i t e f f - npk )>abs ( c r i t e f f d - npk ) )

604 i f (m1p≤m1) %m1 was i n c r e a s e d

605 m1 = m1-0 .001

606 e l s e

607 m1 = m1+0.001

608 end

609 e l s e

610 i f (m1p≤m1) %m1 was i n c r e a s e d

611 m1 = m1+0.001

612 e l s e

613 m1 = m1-0 .001

614 end

615 end

116



616 c r i t e f f d = e f f ( n c r i t )

617 m1p = m1;

618 c l c

619 end

620

621 c l c

622 l o s s 1 4 = [ p s t a t i c l o s s ] ;

623

624 l {k} = s p r i n t f ( ' 1:% s , L 1 = %s uH, f {sw1}=%s kHz , L 2 = %s uH, f {sw2}=%s kHz , ...
m1=%s , m2=%s ' , . . .

625 num2str ( r ) , num2str (L1*1 e6 ) , num2str ( round ( fsw1 /1000) ) , . . .

626 num2str (L2*1 e6 ) , num2str ( round ( fsw2 /1000) ) , . . .

627 num2str (m1) , num2str (m2) ) ;

628 f o r i =1:1 : n c r i t

629 r ipv ( i ) = 1/(Co* fsw1 ) *( I c r i t - i ou t ( i )+iou t ( i ) * i ou t ( i ) /(2* I c r i t ) ) /vout ;

630 end

631

632 f o r i=n c r i t +1:1 : nsw

633 r ipv ( i ) = r ipv ( n c r i t ) ;

634 end

635

636 f o r i=nsw+1:1:1000

637 r ipv ( i ) = 0 .1584 /0 .125 * r ipv ( n c r i t ) ;

638 end

639

640 f i g u r e (5 )

641 h5 ( k ) = semi logx ( i ou t ( 1 : nsw) , r ipv ( 1 : nsw) / r ipv ( n c r i t ) )

642

643 f i g u r e (3 )

644 subplot ( 2 , 1 , 1 )

645 h1 ( k ) = p lo t ( i ou t ( 1 : 1000 ) , e f f ( 1 : 1000 ) ) ;

646 hold on

647 subplot ( 2 , 1 , 2 )

648 h2 ( k ) = p lo t ( i ou t ( 1 : 1000 ) , l o s s ( 1 : 1000 ) ) ;

649 hold on

650

651 f i g u r e (4 )

652 subplot ( 2 , 1 , 1 )

653 h3 ( k ) = semi logx ( i ou t ( 1 : 1000 ) , e f f ( 1 : 1000 ) ) ;

654 hold on

655 subplot ( 2 , 1 , 2 )

656 h4 ( k ) = l o g l o g ( i ou t ( 1 : 1000 ) , l o s s ( 1 : 1000 ) ) ;

657 hold on

658

659 l o s s 1 4 = l o s s ;

660 n c r i t 1 4 = n c r i t ;

661

662 k = k+1;

663

664 %% 1:8 shar ing r a t i o

665 % inductor l o s s e s 0 .64uH high cur rent phase and 3.3uH low cur rent phase

666 L1 = 2*L(8) ;

667 L2 = 2*L(2) ;

668 fsw1 = 1e6* s q r t (2 e -6/ L1) ;
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669 fsw2 = 1e6* s q r t (2 e -6/ L2) ;

670 I c r i t = 1 . 8 /( fsw1*L1) ;

671 l o s s L 1 = ze ro s (1000 ,0) ;

672 l o s s L 2 = ze ro s (1000 ,0) ;

673

674 r = round (L1/L2) ;

675 i sw = 2 ;

676 f l a g = 0 ;

677 rsw = 0 . 5 ;

678 m1 = 1 ;

679 m1p = m1;

680 e f f = ze ro s (1000 ,1) ;

681

682 f o r i = 1 : 1 : 1000

683 i f i ou t ( i ) < i sw

684 iL1 ( i ) = iou t ( i ) ;

685 iL2 ( i ) = 0 ;

686 en1 ( i ) = 1 ;

687 en2 ( i ) = 0 ;

688 nsw = i ;

689 e l s e

690 iL1 ( i ) = iou t ( i ) *1/( r+1) ;

691 iL2 ( i ) = iou t ( i ) * r /( r+1) ;

692 en1 ( i ) = 1 ;

693 en2 ( i ) = 1 ;

694 end

695 l o s s L 1 ( i ) = 2* i n t e rp1 ( f sw , p ac ( : , 8 ) , fsw1 , ' cubic ' ) *( Vin /5)ˆ2+iL1 ( i ) ˆ2* r d c r (8 ) ;

696 l o s s L 2 ( i ) = 2* i n t e rp1 ( f sw , p ac ( : , 2 ) , fsw2 , ' cubic ' ) *( Vin /5)ˆ2+iL2 ( i ) ˆ2* r d c r (2 ) ;

697 i f ( i ou t ( i ) < I c r i t )

698 n c r i t = i ;

699 end

700 end

701

702 f o r i =1:1 : n c r i t

703 r ipv ( i ) = 1/(Co* fsw1 ) *( I c r i t - i ou t ( i )+iou t ( i ) * i ou t ( i ) /(2* I c r i t ) ) /vout ;

704 end

705

706 f i g u r e (5 )

707 semi logx ( i ou t ( 1 : n c r i t ) , r ipv ( 1 : n c r i t ) / r ipv ( n c r i t ) )

708

709 count = 0

710 whi le ( f l a g==0 && count<10000)

711 count = count +1;

712 l o s s s w 1 = ze ro s (1000 ,0 ) ;

713 l o s s s w 2 = ze ro s (1000 ,0 ) ;

714 m2 = m-m1;

715 f o r i =1:1:1000

716 i o = iL1 ( i ) ;

717 fsw = fsw1 ;

718 d i l = 2 . 5 /L1/(2* fsw ) ;

719

720 a = Lcs i /m1*(m1*Coss ) *Vin /(m1*Qgd) ˆ2 ;

721 b = Rg/m1+Rdrv ;

722 c = Vdrv - Vpl ;
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723 Ig1on = c /(Rg/m1+Rdrv+Lcs i /m1*( io - d i l /2) /(m1*Qgs ) ) ;

724 Ig2on = ( - b+s q r t (bˆ2+4*a*c ) ) /(2* a ) ;

725 Pswon = Vin *( io - d i l /2) * fsw * ( (m1*Qgs ) / Ig1on+(m1*Qgd) / Ig2on ) /2 ;

726

727 a = Lcs i /m1*(m1*Coss ) *Vin /(m1*Qgd) ˆ2 ;

728 b = Rg/m1+Rdrv ;

729 c = Vpl ;

730 I g 1 o f f = c /(Rg/m1+Rdrv+Lcs i /m1*( i o+d i l /2) /(m1*Qgs ) ) ;

731 I g 2 o f f = ( - b+s q r t (bˆ2+4*a*c ) ) /(2* a ) ;

732 Pswoff = Vin *( i o+d i l /2) * fsw * ( (m1*Qgs ) / I g 1 o f f +(m1*Qgd) / I g 2 o f f ) /2 ;

733

734 Pcond = ( i o ˆ2+ d i l ˆ2/12) *Rdson/m1;

735 Pgate = 2*m1*Qg*Vdrv* fsw ;

736 Pdt = 2*Vsd* i o * fsw* tdead ;

737 Prr = m1*Qrr*Vin* fsw ;

738 Poss = 0 . 5 *m1*Coss*Vinˆ2* fsw ;

739 l o s s s w 1 ( i ) = (Pswon+Pswoff+Pcond+Pgate+Pdt+Prr+Poss ) ;

740

741 i o = iL2 ( i ) ;

742 fsw = fsw2 ;

743 d i l = vout/L2/(2* fsw ) ;

744

745 a = Lcs i /m2*(m2*Coss ) *Vin /(m2*Qgd) ˆ2 ;

746 b = Rg/m2+Rdrv ;

747 c = Vdrv - Vpl ;

748 Ig1on = c /(Rg/m2+Rdrv+Lcs i /m2*( io - d i l /2) /(m2*Qgs ) ) ;

749 Ig2on = ( - b+s q r t (bˆ2+4*a*c ) ) /(2* a ) ;

750 Pswon = Vin *( io - d i l /2) * fsw * ( (m2*Qgs ) / Ig1on+(m2*Qgd) / Ig2on ) /2 ;

751

752 a = Lcs i /m2*(m2*Coss ) *Vin /(m2*Qgd) ˆ2 ;

753 b = Rg/m2+Rdrv ;

754 c = Vpl ;

755 I g 1 o f f = c /(Rg/m2+Rdrv+Lcs i /m2*( i o+d i l /2) /(m2*Qgs ) ) ;

756 I g 2 o f f = ( - b+s q r t (bˆ2+4*a*c ) ) /(2* a ) ;

757 Pswoff = Vin *( i o+d i l /2) * fsw * ( (m2*Qgs ) / I g 1 o f f +(m2*Qgd) / I g 2 o f f ) /2 ;

758

759 Pcond = ( i o ˆ2+ d i l ˆ2/12) *Rdson/m2;

760 Pgate = 2*m2*Qg*Vdrv* fsw ;

761 Pdt = 2*Vsd* i o * fsw* tdead ;

762 Prr = m2*Qrr*Vin* fsw ;

763 Poss = 0 . 5 *m2*Coss*Vinˆ2* fsw ;

764 l o s s s w 2 ( i ) = (Pswon+Pswoff+Pcond+Pgate+Pdt+Prr+Poss ) ;

765 end

766 l o s s = ( l o s s L 1+l o s s s w 1 ) . *en1+( l o s s L 2+l o s s s w 2 ) . *en2 + r c i n *0 . 5 *( i o u t . * i ou t ) ;

767 f o r j =1:1 : n c r i t

768 l o s s ( j ) = l o s s ( n c r i t ) * i ou t ( j ) / i ou t ( n c r i t ) ;

769 end

770 l o s s = p s t a t i c + l o s s ;

771 pout = iout *vout ;

772 e f f = pout . /( pout+l o s s ) ;

773

774 c r i t e f f = e f f ( n c r i t )

775 i f ( count==1)

776 c r i t e f f d = c r i t e f f -0 . 01 ;
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777 end

778

779 i f ( abs ( c r i t e f f - npk )<0.001 )

780 f l a g ==1;

781 e l s e i f ( abs ( c r i t e f f - npk )>abs ( c r i t e f f d - npk ) )

782 i f (m1p≤m1) %m1 was i n c r e a s e d

783 m1 = m1-0 .001

784 e l s e

785 m1 = m1+0.001

786 end

787 e l s e

788 i f (m1p≤m1) %m1 was i n c r e a s e d

789 m1 = m1+0.001

790 e l s e

791 m1 = m1-0 .001

792 end

793 end

794 c r i t e f f d = e f f ( n c r i t )

795 m1p = m1;

796 c l c

797 end

798

799 c l c

800 l o s s 1 8 = [ p s t a t i c l o s s ] ;

801

802 l {k} = s p r i n t f ( ' 1:% s , L 1 = %s uH, f {sw1}=%s kHz , L 2 = %s uH, f {sw2}=%s kHz , ...
m1=%s , m2=%s ' , . . .

803 num2str ( r ) , num2str (L1*1 e6 ) , num2str ( round ( fsw1 /1000) ) , . . .

804 num2str (L2*1 e6 ) , num2str ( round ( fsw2 /1000) ) , . . .

805 num2str (m1) , num2str (m2) ) ;

806 f o r i =1:1 : n c r i t

807 r ipv ( i ) = 1/(Co* fsw1 ) *( I c r i t - i ou t ( i )+iou t ( i ) * i ou t ( i ) /(2* I c r i t ) ) /vout ;

808 end

809

810 f o r i=n c r i t +1:1 : nsw

811 r ipv ( i ) = r ipv ( n c r i t ) ;

812 end

813

814 f o r i=nsw+1:1:1000

815 r ipv ( i ) = 0 .1584 /0 .125 * r ipv ( n c r i t ) ;

816 end

817

818 f i g u r e (5 )

819 h5 ( k ) = semi logx ( i ou t ( 1 : nsw) , r ipv ( 1 : nsw) / r ipv ( n c r i t ) )

820 l egend ( h5 , l )

821

822 f i g u r e (3 )

823 subplot ( 2 , 1 , 1 )

824 h1 ( k ) = p lo t ( i ou t ( 1 : 1000 ) , e f f ( 1 : 1000 ) ) ;

825 hold o f f

826 g r id minor

827 l egend ( h1 , l )

828 subplot ( 2 , 1 , 2 )

829 h2 ( k ) = p lo t ( i ou t ( 1 : 1000 ) , l o s s ( 1 : 1000 ) ) ;
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830 hold o f f

831 g r id minor

832 l egend ( h2 , l )

833

834 f i g u r e (4 )

835 subplot ( 2 , 1 , 1 )

836 h3 ( k ) = semi logx ( i ou t ( 1 : 1000 ) , e f f ( 1 : 1000 ) ) ;

837 hold o f f

838 g r id minor

839 l egend ( h3 , l )

840 subplot ( 2 , 1 , 2 )

841 h4 ( k ) = l o g l o g ( i ou t ( 1 : 1000 ) , l o s s ( 1 : 1000 ) ) ;

842 hold o f f

843 g r id minor

844 l egend ( h4 , l )

845

846 l o s s 1 8 = l o s s ;

847 n c r i t 1 8 = n c r i t ;

848 i o u t = [ 0 i ou t ] ;

The loss data generated for different current sharing ratios was used to perform Monte

Carlo simulations to obtain averaged system level efficiencies for the DPP converter stack.

Uniform distribution with unlimited mismatch, 50% mismatch and 25% mismatch are sim-

ulated. The script for plotting averaged system level efficiencies is provided below.

1 i l o a d = logspace ( -2 , 1 , 100 ) ;

2 npts = 1000 ;

3 e f f 1 1 = ze ro s ( npts , 1 ) ;

4 e f f 1 2 = ze ro s ( npts , 1 ) ;

5 e f f 1 4 = ze ro s ( npts , 1 ) ;

6 e f f 1 8 = ze ro s ( npts , 1 ) ;

7 i s t a c k = ze ro s ( npts , 1 ) ;

8 a v g e f f 1 1 = ze ro s ( l ength ( i l o a d ) ,1 ) ;

9 a v g e f f 1 2 = ze ro s ( l ength ( i l o a d ) ,1 ) ;

10 a v g e f f 1 4 = ze ro s ( l ength ( i l o a d ) ,1 ) ;

11 a v g e f f 1 8 = ze ro s ( l ength ( i l o a d ) ,1 ) ;

12

13 x = 0 .25 ;

14

15 f o r k =1:1 : l ength ( i l o a d ) ;

16 k

17 f o r j =1:1 : npts

18 i = max(0 , min (10 , i l o a d ( k ) *(1 - x/2+x* rand (8 , 1 ) ) ) ) ;

19 i l 1=i (1 ) - i ( 2 ) ;

20 i l 3=i (3 ) - i ( 4 ) ;

21 i l 5=i (5 ) - i ( 6 ) ;

22 i l 7=i (7 ) - i ( 8 ) ;

23 i l 2 =1/2*( i ( 1 )+i (2 ) - i ( 3 ) - i ( 4 ) ) ;

24 i l 6 =1/2*( i ( 5 )+i (6 ) - i ( 7 ) - i ( 8 ) ) ;

25 i l 4 =1/4*( i ( 1 )+i (2 )+i (3 )+i (4 ) - i ( 5 ) - i ( 6 ) - i ( 7 ) - i ( 8 ) ) ;

26
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27 l o s s 1 1 = 1/2* i n t e rp1 ( i out , l o s s 1 1 , abs ( i l 1 ) , ' pchip ' ) . . .

28 + 1/2* i n t e rp1 ( i out , l o s s 1 1 , abs ( i l 3 ) , ' pchip ' ) . . .

29 + 1/2* i n t e rp1 ( i out , l o s s 1 1 , abs ( i l 5 ) , ' pchip ' ) . . .

30 + 1/2* i n t e rp1 ( i out , l o s s 1 1 , abs ( i l 7 ) , ' pchip ' ) . . .

31 + inte rp1 ( i out , l o s s 1 1 , abs ( i l 2 ) , ' pchip ' ) . . .

32 + inte rp1 ( i out , l o s s 1 1 , abs ( i l 6 ) , ' pchip ' ) . . .

33 + 2* i n t e rp1 ( i out , l o s s 1 1 , abs ( i l 4 ) , ' pchip ' ) ;

34

35 l o s s 1 2 = 1/2* i n t e rp1 ( i out , l o s s 1 2 , abs ( i l 1 ) , ' pchip ' ) . . .

36 + 1/2* i n t e rp1 ( i out , l o s s 1 2 , abs ( i l 3 ) , ' pchip ' ) . . .

37 + 1/2* i n t e rp1 ( i out , l o s s 1 2 , abs ( i l 5 ) , ' pchip ' ) . . .

38 + 1/2* i n t e rp1 ( i out , l o s s 1 2 , abs ( i l 7 ) , ' pchip ' ) . . .

39 + inte rp1 ( i out , l o s s 1 2 , abs ( i l 2 ) , ' pchip ' ) . . .

40 + inte rp1 ( i out , l o s s 1 2 , abs ( i l 6 ) , ' pchip ' ) . . .

41 + 2* i n t e rp1 ( i out , l o s s 1 2 , abs ( i l 4 ) , ' pchip ' ) ;

42

43 l o s s 1 4 = 1/2* i n t e rp1 ( i out , l o s s 1 4 , abs ( i l 1 ) , ' pchip ' ) . . .

44 + 1/2* i n t e rp1 ( i out , l o s s 1 4 , abs ( i l 3 ) , ' pchip ' ) . . .

45 + 1/2* i n t e rp1 ( i out , l o s s 1 4 , abs ( i l 5 ) , ' pchip ' ) . . .

46 + 1/2* i n t e rp1 ( i out , l o s s 1 4 , abs ( i l 7 ) , ' pchip ' ) . . .

47 + inte rp1 ( i out , l o s s 1 4 , abs ( i l 2 ) , ' pchip ' ) . . .

48 + inte rp1 ( i out , l o s s 1 4 , abs ( i l 6 ) , ' pchip ' ) . . .

49 + 2* i n t e rp1 ( i out , l o s s 1 4 , abs ( i l 4 ) , ' pchip ' ) ;

50

51 l o s s 1 8 = 1/2* i n t e rp1 ( i out , l o s s 1 8 , abs ( i l 1 ) , ' pchip ' ) . . .

52 + 1/2* i n t e rp1 ( i out , l o s s 1 8 , abs ( i l 3 ) , ' pchip ' ) . . .

53 + 1/2* i n t e rp1 ( i out , l o s s 1 8 , abs ( i l 5 ) , ' pchip ' ) . . .

54 + 1/2* i n t e rp1 ( i out , l o s s 1 8 , abs ( i l 7 ) , ' pchip ' ) . . .

55 + inte rp1 ( i out , l o s s 1 8 , abs ( i l 2 ) , ' pchip ' ) . . .

56 + inte rp1 ( i out , l o s s 1 8 , abs ( i l 6 ) , ' pchip ' ) . . .

57 + 2* i n t e rp1 ( i out , l o s s 1 8 , abs ( i l 4 ) , ' pchip ' ) ;

58

59 pout = 1 . 8 *sum( i ) ;

60 e f f 1 1 ( j ) = pout /( pout+l o s s 1 1 ) ;

61 e f f 1 2 ( j ) = pout /( pout+l o s s 1 2 ) ;

62 e f f 1 4 ( j ) = pout /( pout+l o s s 1 4 ) ;

63 e f f 1 8 ( j ) = pout /( pout+l o s s 1 8 ) ;

64 i s t a c k ( j ) = sum( i ) /8 ;

65 end

66 a v g e f f 1 1 ( k ) = sum( e f f 1 1 ) / l ength ( e f f 1 1 ) ;

67 a v g e f f 1 2 ( k ) = sum( e f f 1 2 ) / l ength ( e f f 1 2 ) ;

68 a v g e f f 1 4 ( k ) = sum( e f f 1 4 ) / l ength ( e f f 1 4 ) ;

69 a v g e f f 1 8 ( k ) = sum( e f f 1 8 ) / l ength ( e f f 1 8 ) ;

70 a v g i l o a d ( k ) = sum( i s t a c k ) / l ength ( i s t a c k ) ;

71

72 c l c

73 end

74

75 f i g u r e (1 )

76 c l f

77 h (1) = semi logx ( avg i l oad , a v g e f f 1 1 )

78 l {1} = s p r i n t f ( 'DPP conve r t e r s with 1 :1 shar ing r a t i o ' ) ;

79 hold on

80 h (2) = semi logx ( avg i l oad , a v g e f f 1 2 )
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81 l {2} = s p r i n t f ( 'DPP conve r t e r s with 1 :2 shar ing r a t i o ' ) ;

82 h (3) = semi logx ( avg i l oad , a v g e f f 1 4 )

83 l {3} = s p r i n t f ( 'DPP conve r t e r s with 1 :4 shar ing r a t i o ' ) ;

84 h (4) = semi logx ( avg i l oad , a v g e f f 1 8 )

85 l {4} = s p r i n t f ( 'DPP conve r t e r s with 1 :8 shar ing r a t i o ' ) ;

86 l egend (h , l )

87 x l a b e l ( ' I { s tack } (A) ' )

88 y l a b e l ( ' \ e t a { s tack } ' )

89 g r id minor
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APPENDIX B

ANALYTICAL AND SWITCHING MODELS FOR
SENSORLESS CURRENT MODE CONTROL

The following MATLAB script was used to perform frequency response of switching models

of the two phase stack converter under peak and sensorless current mode control.

1 c l e a r

2 ts im = 4 .01e - 2 ;

3 dt = 1e - 8 ;

4 nw = 1000 ;

5 npts = round ( tsim /dt ) ;

6 t = l i n s p a c e (0 , tsim , npts ) ;

7 dt = t (2 ) - t (1 ) ;

8

9 %parameters

10 L = 22e - 6 ;

11 r l = 20e - 3 ;

12 C = 100e - 6 ;

13 rc = 0 .001 ;

14 kp = 10 ;

15 k i = 150000;

16 Ts = 4e - 6 ;

17 f s = 1/Ts ;

18 Ri = 1 ;

19 M2 = 14 . 4 /L ;

20 Ma = M2/4 ;

21 s = t f ( [ 1 0 ] , [ 1 ] ) ;

22 Vin = 48 ;

23 Vout = 14 . 4 ;

24 sn = Ri *( Vin - Vout ) /L ;

25 s f = Ri *( Vout ) /L ;

26 se = s f /4 ;

27 D = Vout/Vin ;

28 zc = rc+1/s /C;

29 z l = r l+s *L ;

30

31 %i n i t i a l i z a t i o n

32 vin = 48* ones (1 , npts ) ;

33 v r e f = 14 . 4 * ones (1 , npts ) ;

34 i o = ze ro s (1 , npts ) ;

35 iL1 = ze ro s (1 , npts ) ;

36 iL2 = ze ro s (1 , npts ) ;

37 vc = ones (1 , npts ) * v r e f (1 ) ;
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38 vo = ones (1 , npts ) * v r e f (1 ) ;

39 iLe1 = ze ro s (1 , npts ) ;

40 iLe2 = ze ro s (1 , npts ) ;

41 u1 = 1 ;

42 u2 = 0 ;

43 i n t e r r = 0 ;

44 s1 = ze ro s (1 , npts ) ;

45 s1 (1 ) = 1 ;

46 s2 = ze ro s (1 , npts ) ;

47 r1 = ze ro s (1 , npts ) ;

48 r2 = ze ro s (1 , npts ) ;

49 ramp1 = 0 . 5 * ones (1 , npts ) ;

50 ramp2 = 0 . 5 * z e ro s (1 , npts ) ;

51 ns = round (Ts/dt ) ;

52 ncyc = round ( npts /ns ) ;

53 i L r e f 1 = 0 ;

54 i L r e f 2 = 0 ;

55 f o r k = 1 : 1 : npts -1

56 i f ( f l o o r ( ( k+1)/ns )> f l o o r ( k/ns ) )

57 s1 ( k+1) = 1 ;

58 ramp1 ( k+1) = 0 . 5 ;

59 e l s e

60 ramp1 ( k+1) = ramp1 ( k ) -1/ ns ;

61 end

62 i f ( f l o o r ( ( k+1)/ns+0. 5 )> f l o o r ( k/ns+0. 5 ) )

63 s2 ( k+1)=1;

64 ramp2 ( k+1) = 0 . 5 ;

65 e l s e

66 ramp2 ( k+1) = ramp2 ( k ) -1/ ns ;

67 end

68 end

69 ramp1 = Ma*ramp1*Ts ;

70 ramp2 = Ma*ramp2*Ts ;

71

72 f i g u r e (4 )

73 c l f

74

75 f o r k =1:1:10

76 se = s f /k ;

77 gvc = f s /Ri/ s *(1 - exp ( - s *Ts) ) / ( ( sn+se ) /( sn+s f )+( s f - se ) /( sn+s f ) *exp ( - s *Ts) ) ;

78 gvg = ...
(D- f s / s *(1 - exp ( - s *D*Ts) ) / ( ( sn+se ) /( sn+s f )+( s f - se ) /( sn+s f ) *exp ( - s *Ts) ) ) /(L* s ) ;

79 gv r e f = ( (1 - exp ( - s *Ts) ) / ( ( sn+se ) /( sn+s f )+( s f - se ) /( sn+s f ) *exp ( - s *Ts) ) * f s /s - 1 ) /(L* s ) ;

80 gc = ( exp ( - s *Ts/2) ) *( kp+k i / s ) *(1 - exp ( - s *Ts/2) ) /( s *Ts/2) ;

81 f = 2 ;

82

83 LG pcm = gc*gvc *( f * zc ) /(1 - f * zc * gv r e f ) ;

84 LG scm = gc*gvc *( f * zc ) /(1+ f * zc / z l ) ;

85 f i = 2 . 5 * l og space (0 ,4 .69897 ,nw) ;

86 w i = 2* pi * f i ;

87 ana LG pcm = f r e q r e s p (LG pcm , w i ) ;

88 ana LG scm = f r e q r e s p (LG scm , w i ) ;

89

90 subp lot ( 2 , 1 , 1 )
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91 semi logx ( f i , 20* l og ( abs ( squeeze ( ana LG scm ) ) ) , 'b ' )

92 hold on

93 semi logx ( f i , 20* l og ( abs ( squeeze ( ana LG pcm ) ) ) , ' r ' )

94

95 subp lot ( 2 , 1 , 2 )

96 semi logx ( f i , unwrap ( ang le ( squeeze ( ana LG scm ) ) ) *180/ pi , 'b ' )

97 hold on

98 semi logx ( f i , unwrap ( ang le ( squeeze ( ana LG pcm ) ) ) *180/ pi , ' r ' )

99 end

100

101 subplot ( 2 , 1 , 1 )

102 p lo t ( f i , z e r o s (1 ,nw) )

103 g r id minor

104 x l a b e l ( ' Frequency (Hz) ' )

105 y l a b e l ( ' | Loop Gain | ' )

106 xlim ( [ min ( f i ) , max( f i ) ] )

107

108 subplot ( 2 , 1 , 2 )

109 p lo t ( f i , -180* ones (1 ,nw) )

110 x l a b e l ( ' Frequency (Hz) ' )

111 y l a b e l ( 'Loop Gain ( phase ) ( degree ) ' )

112 g r id minor

113 xlim ( [ min ( f i ) , max( f i ) ] )

114

115 se = s f /4 ;

116 gvc = f s /Ri/ s *(1 - exp ( - s *Ts) ) / ( ( sn+se ) /( sn+s f )+( s f - se ) /( sn+s f ) *exp ( - s *Ts) ) ;

117 gvg = (D- f s / s *(1 - exp ( - s *D*Ts) ) / ( ( sn+se ) /( sn+s f )+( s f - se ) /( sn+s f ) *exp ( - s *Ts) ) ) /( s *L) ;

118 gv r e f = ( (1 - exp ( - s *Ts) ) / ( ( sn+se ) /( sn+s f )+( s f - se ) /( sn+s f ) *exp ( - s *Ts) ) * f s /s - 1 ) /( s *L) ;

119 gc = ( exp ( - s *Ts/2) ) *( kp+k i / s ) *(1 - exp ( - s *Ts) ) /(1 - exp ( - s *Ts/2) ) /2 ;

120 f = 2 ;

121

122 %% load t r a n s i e n t

123 % ttran = tsim /2 ;

124 % i t r a n = 10 ;

125 % ntran = round ( t t ran / tsim *npts ) ;

126 % f o r k=ntran : 1 : npts

127 % i o ( k ) = i t r a n ;

128 % end

129 %

130 % f o r k =2:1 : npts

131 % iL1 ( k ) = iL1 (k - 1 ) + ...
1/L*( vin ( k ) *u1 - ( r l+rc ) * iL1 (k - 1 ) - rc * iL2 (k - 1 ) - vc (k - 1 )+rc * i o ( k ) ) *dt ;

132 % iL2 ( k ) = iL2 (k - 1 ) + 1/L*( vin ( k ) *u2 - rc * iL1 ( k ) ...
- ( r l+rc ) * iL2 (k - 1 ) - vc (k - 1 )+rc * i o ( k ) ) *dt ;

133 % vc ( k ) = vc (k - 1 ) + 1/C*( iL1 ( k )+iL2 ( k ) - i o ( k ) ) *dt ;

134 % vo ( k ) = vc ( k ) + rc *( iL1 ( k )+iL2 ( k ) - i o ( k ) ) ;

135 % iLe1 ( k ) = iLe1 (k - 1 ) + 1/L*( vin ( k ) *u1 - r l * iLe1 (k - 1 ) - v r e f ( k ) ) *dt ;

136 % iLe2 ( k ) = iLe2 (k - 1 ) + 1/L*( vin ( k ) *u2 - r l * iLe2 (k - 1 ) - v r e f ( k ) ) *dt ;

137 % i f ( s1 ( k )==1)

138 % e r r = v r e f ( k ) - vo ( k ) ;

139 % i n t e r r = i n t e r r + e r r *Ts /2 ;

140 % i L r e f 1 = kp* e r r + k i * i n t e r r ;

141 % e l s e i f ( s2 ( k )==1)

142 % e r r = v r e f ( k ) - vo ( k ) ;
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143 % i n t e r r = i n t e r r + e r r *Ts /2 ;

144 % i L r e f 2 = kp* e r r + k i * i n t e r r ;

145 % end

146 % i c 1 = i L r e f 1 + ramp1 ( k ) ;

147 % i c 2 = i L r e f 2 + ramp2 ( k ) ;

148 %

149 % i f ( iLe1 ( k )> i c 1 )

150 % r1 ( k ) = 1 ;

151 % e l s e

152 % r1 ( k ) = 0 ;

153 % end

154 %

155 % i f ( iLe2 ( k )> i c 2 )

156 % r2 ( k ) = 1 ;

157 % e l s e

158 % r2 ( k ) = 0 ;

159 % end

160 %

161 % i f ( u1==0 && s1 ( k )==1)

162 % u1 = 1 ;

163 % e l s e i f ( u1==1 && r1 ( k )==1)

164 % u1 = 0 ;

165 % end

166 %

167 % i f ( u2==0 && s2 ( k )==1)

168 % u2 = 1 ;

169 % e l s e i f ( u2==1 && r2 ( k )==1)

170 % u2 = 0 ;

171 % end

172 % end

173

174 %% output impedance t e s t

175

176 f i = 2 . 5 * l og space (1 , 5 ,nw) ;

177 T i = round ( (1 . / f i ) * round (1/ dt ) ) *dt ;

178

179 % a n a l y t i c a l model

180 zo pcm = - zc /(1+ f * zc *( gc*gvc - g v r e f ) ) ;

181 zo scm = - zc /(1+ f * zc / z l+f * zc *gvc*gc ) ;

182

183 w i = 2* p i . / T i ;

184 ana Z pcm = f r e q r e s p ( zo pcm , w i ) ;

185 ana Z scm = f r e q r e s p ( zo scm , w i ) ;

186 % switch ing model

187 f o r j =1:1 :nw

188 j

189 i op = i o+0. 1 * s i n (2* pi * t / T i ( j ) ) ;

190 i oq = i o+0. 1 * cos (2* pi * t / T i ( j ) ) ;

191 i f ( T i ( j )≥4e - 3 )

192 n c y c f o u r i e r = 1 ;

193 e l s e i f ( T i ( j )≥4e - 4 )

194 n c y c f o u r i e r = 10 ;

195 e l s e i f ( T i ( j )≥4e - 5 )

196 n c y c f o u r i e r = 100 ;
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197 e l s e

198 n c y c f o u r i e r = 1000 ;

199 end

200 t c y c f o u r i e r = n c y c f o u r i e r *T i ( j ) ;

201 n w i n f o u r i e r = round ( t c y c f o u r i e r /dt ) ;

202

203 %numerica l i n t e g r a t i o n SCM

204 f o r k =2:1 : npts

205

206 iL1 ( k ) = iL1 (k - 1 ) + ...
1/L*( vin ( k ) *u1 - ( r l+rc ) * iL1 (k - 1 ) - rc * iL2 (k - 1 ) - vc (k - 1 )+rc * i op ( k ) ) *dt ;

207 iL2 ( k ) = iL2 (k - 1 ) + 1/L*( vin ( k ) *u2 - rc * iL1 ( k ) ...
- ( r l+rc ) * iL2 (k - 1 ) - vc (k - 1 )+rc * i op ( k ) ) *dt ;

208 vc ( k ) = vc (k - 1 ) + 1/C*( iL1 ( k )+iL2 ( k ) - iop ( k ) ) *dt ;

209 vo ( k ) = vc ( k ) + rc *( iL1 ( k )+iL2 ( k ) - iop ( k ) ) ;

210 iLe1 ( k ) = iLe1 (k - 1 ) + 1/L*( vin ( k ) *u1 - r l * iLe1 (k - 1 ) - v r e f ( k ) ) *dt ;

211 iLe2 ( k ) = iLe2 (k - 1 ) + 1/L*( vin ( k ) *u2 - r l * iLe2 (k - 1 ) - v r e f ( k ) ) *dt ;

212 e r r = v r e f (max(1 , k - round ( ns /2) ) ) - vo (max(1 , k - round ( ns /2) ) ) ;

213 i n t e r r = i n t e r r + e r r *dt ;

214

215 i f ( s1 ( k )==1)

216 i L r e f 1 = kp* e r r+k i * i n t e r r ;

217 e l s e i f ( s2 ( k )==1)

218 i L r e f 2 = kp* e r r+k i * i n t e r r ;

219 end

220

221

222 i c 1 = i L r e f 1 + ramp1 ( k ) ;

223 i c 2 = i L r e f 2 + ramp2 ( k ) ;

224

225 i f ( iLe1 ( k )> i c 1 )

226 r1 ( k ) = 1 ;

227 e l s e

228 r1 ( k ) = 0 ;

229 end

230

231 i f ( iLe2 ( k )> i c 2 )

232 r2 ( k ) = 1 ;

233 e l s e

234 r2 ( k ) = 0 ;

235 end

236

237 i f ( u1==0 && s1 ( k )==1)

238 u1 = 1 ;

239 e l s e i f ( u1==1 && r1 ( k )==1)

240 u1 = 0 ;

241 end

242

243 i f ( u2==0 && s2 ( k )==1)

244 u2 = 1 ;

245 e l s e i f ( u2==1 && r2 ( k )==1)

246 u2 = 0 ;

247 end

248
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249 end

250

251 i n t i p w i n = sum( iop ( npts - n w i n f o u r i e r : npts ) . *( vo ( npts - n w i n f o u r i e r : npts ) - . . .

252 sum( vo ( npts - n w i n f o u r i e r : npts ) ) / l ength ( vo ( npts - n w i n f o u r i e r : npts ) ) ) ) ;

253 i n t op win = sum( ioq ( npts - n w i n f o u r i e r : npts ) . *( vo ( npts - n w i n f o u r i e r : npts ) - . . .

254 sum( vo ( npts - n w i n f o u r i e r : npts ) ) / l ength ( vo ( npts - n w i n f o u r i e r : npts ) ) ) ) ;

255 i n t i p 2 w i n = sum( iop ( npts - n w i n f o u r i e r : npts ) . * i op ( npts - n w i n f o u r i e r : npts ) ) ;

256 i n t i q 2 w i n = sum( ioq ( npts - n w i n f o u r i e r : npts ) . * i oq ( npts - n w i n f o u r i e r : npts ) ) ;

257 Zip = i n t i p w i n / i n t i p 2 w i n ;

258 Ziq = int op win / i n t i q 2 w i n ;

259 cmp Z scm ( j ) = Zip+Ziq* i ;

260

261 %numerica l i n t e g r a t i o n PCM

262 f o r k =2:1 : npts

263

264 iL1 ( k ) = iL1 (k - 1 ) + ...
1/L*( vin ( k ) *u1 - ( r l+rc ) * iL1 (k - 1 ) - rc * iL2 (k - 1 ) - vc (k - 1 )+rc * i op ( k ) ) *dt ;

265 iL2 ( k ) = iL2 (k - 1 ) + 1/L*( vin ( k ) *u2 - rc * iL1 ( k ) ...
- ( r l+rc ) * iL2 (k - 1 ) - vc (k - 1 )+rc * i op ( k ) ) *dt ;

266 vc ( k ) = vc (k - 1 ) + 1/C*( iL1 ( k )+iL2 ( k ) - iop ( k ) ) *dt ;

267 vo ( k ) = vc ( k ) + rc *( iL1 ( k )+iL2 ( k ) - iop ( k ) ) ;

268 e r r = v r e f (max(1 , k - round ( ns /2) ) ) - vo (max(1 , k - round ( ns /2) ) ) ;

269 i n t e r r = i n t e r r + e r r *dt ;

270

271 i f ( s1 ( k )==1)

272 i L r e f 1 = kp* e r r+k i * i n t e r r ;

273 e l s e i f ( s2 ( k )==1)

274 i L r e f 2 = kp* e r r+k i * i n t e r r ;

275 end

276

277 i c 1 = i L r e f 1 + ramp1 ( k ) ;

278 i c 2 = i L r e f 2 + ramp2 ( k ) ;

279

280 i f ( iL1 ( k )> i c 1 )

281 r1 ( k ) = 1 ;

282 e l s e

283 r1 ( k ) = 0 ;

284 end

285

286 i f ( iL2 ( k )> i c 2 )

287 r2 ( k ) = 1 ;

288 e l s e

289 r2 ( k ) = 0 ;

290 end

291

292 i f ( u1==0 && s1 ( k )==1)

293 u1 = 1 ;

294 e l s e i f ( u1==1 && r1 ( k )==1)

295 u1 = 0 ;

296 end

297

298 i f ( u2==0 && s2 ( k )==1)

299 u2 = 1 ;

300 e l s e i f ( u2==1 && r2 ( k )==1)
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301 u2 = 0 ;

302 end

303

304 end

305

306 i n t i p w i n = sum( iop ( npts - n w i n f o u r i e r : npts ) . *( vo ( npts - n w i n f o u r i e r : npts ) - . . .

307 sum( vo ( npts - n w i n f o u r i e r : npts ) ) / l ength ( vo ( npts - n w i n f o u r i e r : npts ) ) ) ) ;

308 i n t op win = sum( ioq ( npts - n w i n f o u r i e r : npts ) . *( vo ( npts - n w i n f o u r i e r : npts ) - . . .

309 sum( vo ( npts - n w i n f o u r i e r : npts ) ) / l ength ( vo ( npts - n w i n f o u r i e r : npts ) ) ) ) ;

310 i n t i p 2 w i n = sum( iop ( npts - n w i n f o u r i e r : npts ) . * i op ( npts - n w i n f o u r i e r : npts ) ) ;

311 i n t i q 2 w i n = sum( ioq ( npts - n w i n f o u r i e r : npts ) . * i oq ( npts - n w i n f o u r i e r : npts ) ) ;

312 Zip = i n t i p w i n / i n t i p 2 w i n ;

313 Ziq = int op win / i n t i q 2 w i n ;

314 cmp Z pcm ( j ) = Zip+Ziq* i ;

315

316 c l c

317 end

318

319 f i g u r e (1 )

320 c l f

321

322 subplot ( 2 , 1 , 1 )

323 l o g l o g (1 . /T i , abs ( cmp Z scm ) )

324 hold on

325 l o g l o g (1 . /T i , abs ( cmp Z pcm ) )

326 l o g l o g (1 . /T i , abs ( squeeze ( ana Z scm ) ) )

327 l o g l o g (1 . /T i , abs ( squeeze ( ana Z pcm ) ) )

328 g r id minor

329 x l a b e l ( ' Frequency (Hz) ' )

330 y l a b e l ( ' | Z {out } | (\Omega) ' )

331 xlim ( [ min (1 . / T i ) , max(1 . / T i ) ] )

332

333 subplot ( 2 , 1 , 2 )

334 semi logx (1 . /T i , unwrap ( ang le ( cmp Z scm ) ) *180/ p i )

335 hold on

336 semi logx (1 . /T i , unwrap ( ang le ( cmp Z pcm ) ) *180/ p i )

337 p lo t (1 . /T i , unwrap ( ang le ( squeeze ( ana Z scm ) ) ) *180/ p i )

338 p lo t (1 . /T i , unwrap ( ang le ( squeeze ( ana Z pcm ) ) ) *180/ p i )

339 x l a b e l ( ' Frequency (Hz) ' )

340 y l a b e l ( ' Z {out} ( phase ) ( degree ) ' )

341 g r id minor

342 xlim ( [ min (1 . / T i ) , max(1 . / T i ) ] )

343

344 %% audio s u s c e p t i b i l i t y t e s t

345 f i = 2 . 5 * l og space (2 , 5 ,nw) ;

346 T i = round ( (1 . / f i ) * round (1/ dt ) ) *dt ;

347

348 % a n a l y t i c a l model

349 audio pcm = f *gvg /(1/ zc+f *( gc*gvc - g v r e f ) ) ;

350 audio scm = f *gvg /(1/ zc+f / z l+f *gc*gvc ) ;

351

352 w i = 2* p i . / T i ;

353 ana audio pcm = f r e q r e s p ( audio pcm , w i ) ;

354 ana audio scm = f r e q r e s p ( audio scm , w i ) ;
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355

356 f o r j =1:1 :nw

357 j

358 vgp = vin+0. 5 * s i n (2* pi * t / T i ( j ) ) ;

359 vgq = vin+0. 5 * cos (2* pi * t / T i ( j ) ) ;

360 i f ( T i ( j )≥4e - 3 )

361 n c y c f o u r i e r = 1 ;

362 e l s e i f ( T i ( j )≥4e - 4 )

363 n c y c f o u r i e r = 10 ;

364 e l s e i f ( T i ( j )≥4e - 5 )

365 n c y c f o u r i e r = 100 ;

366 e l s e

367 n c y c f o u r i e r = 1000 ;

368 end

369 t c y c f o u r i e r = n c y c f o u r i e r *T i ( j ) ;

370 n w i n f o u r i e r = round ( t c y c f o u r i e r /dt ) ;

371

372 %numerica l i n t e g r a t i o n SCM

373 f o r k =2:1 : npts

374

375 iL1 ( k ) = iL1 (k - 1 ) + ...
1/L*( vgp ( k ) *u1 - ( r l+rc ) * iL1 (k - 1 ) - rc * iL2 (k - 1 ) - vc (k - 1 )+rc * i o ( k ) ) *dt ;

376 iL2 ( k ) = iL2 (k - 1 ) + 1/L*( vgp ( k ) *u2 - rc * iL1 ( k ) ...
- ( r l+rc ) * iL2 (k - 1 ) - vc (k - 1 )+rc * i o ( k ) ) *dt ;

377 vc ( k ) = vc (k - 1 ) + 1/C*( iL1 ( k )+iL2 ( k ) - i o ( k ) ) *dt ;

378 vo ( k ) = vc ( k ) + rc *( iL1 ( k )+iL2 ( k ) - i o ( k ) ) ;

379 iLe1 ( k ) = iLe1 (k - 1 ) + 1/L*( vgp ( k ) *u1 - r l * iLe1 (k - 1 ) - v r e f ( k ) ) *dt ;

380 iLe2 ( k ) = iLe2 (k - 1 ) + 1/L*( vgp ( k ) *u2 - r l * iLe2 (k - 1 ) - v r e f ( k ) ) *dt ;

381 e r r = v r e f (max(1 , k - round ( ns /2) ) ) - vo (max(1 , k - round ( ns /2) ) ) ;

382 i n t e r r = i n t e r r + e r r *dt ;

383

384 i f ( s1 ( k )==1)

385 i L r e f 1 = kp* e r r+k i * i n t e r r ;

386 e l s e i f ( s2 ( k )==1)

387 i L r e f 2 = kp* e r r+k i * i n t e r r ;

388 end

389

390 i c 1 = i L r e f 1 + ramp1 ( k ) ;

391 i c 2 = i L r e f 2 + ramp2 ( k ) ;

392

393

394 i f ( iLe1 ( k )> i c 1 )

395 r1 ( k ) = 1 ;

396 e l s e

397 r1 ( k ) = 0 ;

398 end

399

400 i f ( iLe2 ( k )> i c 2 )

401 r2 ( k ) = 1 ;

402 e l s e

403 r2 ( k ) = 0 ;

404 end

405

406 i f ( u1==0 && s1 ( k )==1)
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407 u1 = 1 ;

408 e l s e i f ( u1==1 && r1 ( k )==1)

409 u1 = 0 ;

410 end

411

412 i f ( u2==0 && s2 ( k )==1)

413 u2 = 1 ;

414 e l s e i f ( u2==1 && r2 ( k )==1)

415 u2 = 0 ;

416 end

417

418 end

419

420 i n t v g i p w i n = ...
sum ( ( vgp ( npts - n w i n f o u r i e r : npts ) -48) . *( vo ( npts - n w i n f o u r i e r : npts ) - . . .

421 sum( vo ( npts - n w i n f o u r i e r : npts ) ) / l ength ( vo ( npts - n w i n f o u r i e r : npts ) ) ) ) ;

422 in t vgop win = ...
sum ( ( vgq ( npts - n w i n f o u r i e r : npts ) -48) . *( vo ( npts - n w i n f o u r i e r : npts ) - . . .

423 sum( vo ( npts - n w i n f o u r i e r : npts ) ) / l ength ( vo ( npts - n w i n f o u r i e r : npts ) ) ) ) ;

424 in t vgp2 win = ...
sum ( ( vgp ( npts - n w i n f o u r i e r : npts ) -48) . *( vgp ( npts - n w i n f o u r i e r : npts ) -48) ) ;

425 i n t vgq2 win = ...
sum ( ( vgq ( npts - n w i n f o u r i e r : npts ) -48) . *( vgq ( npts - n w i n f o u r i e r : npts ) -48) ) ;

426 gvgp = i n t v g i p w i n / int vgp2 win ;

427 gvgq = int vgop win / int vgq2 win ;

428 audio sw scm ( j ) = gvgp+i *gvgq ;

429

430 %numerica l i n t e g r a t i o n PCM

431 f o r k =2:1 : npts

432

433 iL1 ( k ) = iL1 (k - 1 ) + ...
1/L*( vgp ( k ) *u1 - ( r l+rc ) * iL1 (k - 1 ) - rc * iL2 (k - 1 ) - vc (k - 1 )+rc * i o ( k ) ) *dt ;

434 iL2 ( k ) = iL2 (k - 1 ) + 1/L*( vgp ( k ) *u2 - rc * iL1 ( k ) ...
- ( r l+rc ) * iL2 (k - 1 ) - vc (k - 1 )+rc * i o ( k ) ) *dt ;

435 vc ( k ) = vc (k - 1 ) + 1/C*( iL1 ( k )+iL2 ( k ) - i o ( k ) ) *dt ;

436 vo ( k ) = vc ( k ) + rc *( iL1 ( k )+iL2 ( k ) - i o ( k ) ) ;

437 e r r = v r e f (max(1 , k - round ( ns /2) ) ) - vo (max(1 , k - round ( ns /2) ) ) ;

438 i n t e r r = i n t e r r + e r r *dt ;

439

440 i f ( s1 ( k )==1)

441 i L r e f 1 = kp* e r r+k i * i n t e r r ;

442 e l s e i f ( s2 ( k )==1)

443 i L r e f 2 = kp* e r r+k i * i n t e r r ;

444 end

445

446 i c 1 = i L r e f 1 + ramp1 ( k ) ;

447 i c 2 = i L r e f 2 + ramp2 ( k ) ;

448

449

450 i f ( iL1 ( k )> i c 1 )

451 r1 ( k ) = 1 ;

452 e l s e

453 r1 ( k ) = 0 ;

454 end
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455

456 i f ( iL2 ( k )> i c 2 )

457 r2 ( k ) = 1 ;

458 e l s e

459 r2 ( k ) = 0 ;

460 end

461

462 i f ( u1==0 && s1 ( k )==1)

463 u1 = 1 ;

464 e l s e i f ( u1==1 && r1 ( k )==1)

465 u1 = 0 ;

466 end

467

468 i f ( u2==0 && s2 ( k )==1)

469 u2 = 1 ;

470 e l s e i f ( u2==1 && r2 ( k )==1)

471 u2 = 0 ;

472 end

473

474 end

475

476 i n t v g i p w i n = ...
sum ( ( vgp ( npts - n w i n f o u r i e r : npts ) -48) . *( vo ( npts - n w i n f o u r i e r : npts ) - . . .

477 sum( vo ( npts - n w i n f o u r i e r : npts ) ) / l ength ( vo ( npts - n w i n f o u r i e r : npts ) ) ) ) ;

478 in t vgop win = ...
sum ( ( vgq ( npts - n w i n f o u r i e r : npts ) -48) . *( vo ( npts - n w i n f o u r i e r : npts ) - . . .

479 sum( vo ( npts - n w i n f o u r i e r : npts ) ) / l ength ( vo ( npts - n w i n f o u r i e r : npts ) ) ) ) ;

480 in t vgp2 win = ...
sum ( ( vgp ( npts - n w i n f o u r i e r : npts ) -48) . *( vgp ( npts - n w i n f o u r i e r : npts ) -48) ) ;

481 i n t vgq2 win = ...
sum ( ( vgq ( npts - n w i n f o u r i e r : npts ) -48) . *( vgq ( npts - n w i n f o u r i e r : npts ) -48) ) ;

482 gvgp = i n t v g i p w i n / int vgp2 win ;

483 gvgq = int vgop win / int vgq2 win ;

484 audio sw pcm ( j ) = gvgp+i *gvgq ;

485

486 c l c

487 end

488

489 f i g u r e (2 )

490 c l f

491

492 subplot ( 2 , 1 , 1 )

493 l o g l o g (1 . /T i , abs ( audio sw scm ) )

494 hold on

495 l o g l o g (1 . /T i , abs ( audio sw pcm ) )

496 l o g l o g (1 . /T i , abs ( squeeze ( ana audio scm ) ) )

497 l o g l o g (1 . /T i , abs ( squeeze ( ana audio pcm ) ) )

498 g r id minor

499 x l a b e l ( ' Frequency (Hz) ' )

500 y l a b e l ( ' |G {vg } | ' )

501 xlim ( [ min (1 . / T i ) , max(1 . / T i ) ] )

502

503 subplot ( 2 , 1 , 2 )

504 semi logx (1 . /T i , unwrap ( ang le ( audio sw scm ) ) *180/ p i )
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505 hold on

506 semi logx (1 . /T i , unwrap ( ang le ( audio sw pcm ) ) *180/ p i )

507 semi logx (1 . /T i , unwrap ( ang le ( squeeze ( ana audio scm ) ) ) *180/ p i )

508 semi logx (1 . /T i , unwrap ( ang le ( squeeze ( ana audio pcm ) ) ) *180/ p i )

509 x l a b e l ( ' Frequency (Hz) ' )

510 y l a b e l ( 'G {vg} ( phase ) ( degree ) ' )

511 g r id minor

512 xlim ( [ min (1 . / T i ) , max(1 . / T i ) ] )

513

514 %% r e f e r e n c e t ra ck ing t e s t

515 f i = 2 . 5 * l og space (2 ,4 .69897 ,nw) ;

516 T i = round ( (1 . / f i ) * round (1/ dt ) ) *dt ;

517

518 % a n a l y t i c a l model

519 re f t pcm = ( f * zc *gc*gvc ) /(1 - f * zc * gv r e f+f * zc *gc*gvc ) ;

520 r e f t s cm = ( f * zc *gc*gvc+f * zc * gv r e f+f * zc / z l ) /(1+ f * zc / z l+f * zc *gvc*gc ) ;

521

522 w i = 2* p i . / T i ;

523 ana re f t pcm = f r e q r e s p ( reft pcm , w i ) ;

524 ana re f t s cm = f r e q r e s p ( re f t scm , w i ) ;

525

526 f o r j =1:1 :nw

527 j

528 vre fp = v r e f+0.01 * s i n (2* pi * t / T i ( j ) ) ;

529 vre fq = v r e f+0.01 * cos (2* pi * t / T i ( j ) ) ;

530 i f ( T i ( j )≥4e - 3 )

531 n c y c f o u r i e r = 1 ;

532 e l s e i f ( T i ( j )≥4e - 4 )

533 n c y c f o u r i e r = 10 ;

534 e l s e i f ( T i ( j )≥4e - 5 )

535 n c y c f o u r i e r = 100 ;

536 e l s e

537 n c y c f o u r i e r = 1000 ;

538 end

539 t c y c f o u r i e r = n c y c f o u r i e r *T i ( j ) ;

540 n w i n f o u r i e r = round ( t c y c f o u r i e r /dt ) ;

541

542 %numerica l i n t e g r a t i o n SCM

543 f o r k =2:1 : npts

544

545 iL1 ( k ) = iL1 (k - 1 ) + ...
1/L*( vin ( k ) *u1 - ( r l+rc ) * iL1 (k - 1 ) - rc * iL2 (k - 1 ) - vc (k - 1 )+rc * i o ( k ) ) *dt ;

546 iL2 ( k ) = iL2 (k - 1 ) + 1/L*( vin ( k ) *u2 - rc * iL1 ( k ) ...
- ( r l+rc ) * iL2 (k - 1 ) - vc (k - 1 )+rc * i o ( k ) ) *dt ;

547 vc ( k ) = vc (k - 1 ) + 1/C*( iL1 ( k )+iL2 ( k ) - i o ( k ) ) *dt ;

548 vo ( k ) = vc ( k ) + rc *( iL1 ( k )+iL2 ( k ) - i o ( k ) ) ;

549 iLe1 ( k ) = iLe1 (k - 1 ) + 1/L*( vin ( k ) *u1 - r l * iLe1 (k - 1 ) - v re fp ( k ) ) *dt ;

550 iLe2 ( k ) = iLe2 (k - 1 ) + 1/L*( vin ( k ) *u2 - r l * iLe2 (k - 1 ) - v re fp ( k ) ) *dt ;

551 e r r = vre fp (max(1 , k - round ( ns /2) ) ) - vo (max(1 , k - round ( ns /2) ) ) ;

552 i n t e r r = i n t e r r + e r r *dt ;

553

554 i f ( s1 ( k )==1)

555 i L r e f 1 = kp* e r r+k i * i n t e r r ;

556 e l s e i f ( s2 ( k )==1)

134



557 i L r e f 2 = kp* e r r+k i * i n t e r r ;

558 end

559

560 i c 1 = i L r e f 1 + ramp1 ( k ) ;

561 i c 2 = i L r e f 2 + ramp2 ( k ) ;

562

563

564 i f ( iLe1 ( k )> i c 1 )

565 r1 ( k ) = 1 ;

566 e l s e

567 r1 ( k ) = 0 ;

568 end

569

570 i f ( iLe2 ( k )> i c 2 )

571 r2 ( k ) = 1 ;

572 e l s e

573 r2 ( k ) = 0 ;

574 end

575

576 i f ( u1==0 && s1 ( k )==1)

577 u1 = 1 ;

578 e l s e i f ( u1==1 && r1 ( k )==1)

579 u1 = 0 ;

580 end

581

582 i f ( u2==0 && s2 ( k )==1)

583 u2 = 1 ;

584 e l s e i f ( u2==1 && r2 ( k )==1)

585 u2 = 0 ;

586 end

587

588 end

589

590 i n t v r i p w i n = ...
sum ( ( vre fp ( npts - n w i n f o u r i e r : npts ) -14 . 4 ) . *( vo ( npts - n w i n f o u r i e r : npts ) - . . .

591 sum( vo ( npts - n w i n f o u r i e r : npts ) ) / l ength ( vo ( npts - n w i n f o u r i e r : npts ) ) ) ) ;

592 i n t v rop win = ...
sum ( ( v r e fq ( npts - n w i n f o u r i e r : npts ) -14 . 4 ) . *( vo ( npts - n w i n f o u r i e r : npts ) - . . .

593 sum( vo ( npts - n w i n f o u r i e r : npts ) ) / l ength ( vo ( npts - n w i n f o u r i e r : npts ) ) ) ) ;

594 i n t v rp2 win = . . .

595 sum ( ( vre fp ( npts - n w i n f o u r i e r : npts ) -14 . 4 ) . *( v re fp ( npts - n w i n f o u r i e r : npts ) -14 . 4 ) ) ;

596 i n t v rq2 w in = . . .

597 sum ( ( v r e fq ( npts - n w i n f o u r i e r : npts ) -14 . 4 ) . *( v r e fq ( npts - n w i n f o u r i e r : npts ) -14 . 4 ) ) ;

598 g r e fp = i n t v r i p w i n / in t v rp2 win ;

599 g r e f q = int v rop win / in t v rq2 w in ;

600 r e f t sw scm ( j ) = gre fp+i * g r e f q ;

601

602 %numerica l i n t e g r a t i o n PCM

603 f o r k =2:1 : npts

604

605 iL1 ( k ) = iL1 (k - 1 ) + ...
1/L*( vin ( k ) *u1 - ( r l+rc ) * iL1 (k - 1 ) - rc * iL2 (k - 1 ) - vc (k - 1 )+rc * i o ( k ) ) *dt ;

606 iL2 ( k ) = iL2 (k - 1 ) + 1/L*( vin ( k ) *u2 - rc * iL1 ( k ) ...
- ( r l+rc ) * iL2 (k - 1 ) - vc (k - 1 )+rc * i o ( k ) ) *dt ;
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607 vc ( k ) = vc (k - 1 ) + 1/C*( iL1 ( k )+iL2 ( k ) - i o ( k ) ) *dt ;

608 vo ( k ) = vc ( k ) + rc *( iL1 ( k )+iL2 ( k ) - i o ( k ) ) ;

609 e r r = vre fp (max(1 , k - round ( ns /2) ) ) - vo (max(1 , k - round ( ns /2) ) ) ;

610 i n t e r r = i n t e r r + e r r *dt ;

611

612 i f ( s1 ( k )==1)

613 i L r e f 1 = kp* e r r+k i * i n t e r r ;

614 e l s e i f ( s2 ( k )==1)

615 i L r e f 2 = kp* e r r+k i * i n t e r r ;

616 end

617

618 i c 1 = i L r e f 1 + ramp1 ( k ) ;

619 i c 2 = i L r e f 2 + ramp2 ( k ) ;

620

621

622 i f ( iL1 ( k )> i c 1 )

623 r1 ( k ) = 1 ;

624 e l s e

625 r1 ( k ) = 0 ;

626 end

627

628 i f ( iL2 ( k )> i c 2 )

629 r2 ( k ) = 1 ;

630 e l s e

631 r2 ( k ) = 0 ;

632 end

633

634 i f ( u1==0 && s1 ( k )==1)

635 u1 = 1 ;

636 e l s e i f ( u1==1 && r1 ( k )==1)

637 u1 = 0 ;

638 end

639

640 i f ( u2==0 && s2 ( k )==1)

641 u2 = 1 ;

642 e l s e i f ( u2==1 && r2 ( k )==1)

643 u2 = 0 ;

644 end

645

646 end

647

648 i n t v r i p w i n = ...
sum ( ( vre fp ( npts - n w i n f o u r i e r : npts ) -14 . 4 ) . *( vo ( npts - n w i n f o u r i e r : npts ) - . . .

649 sum( vo ( npts - n w i n f o u r i e r : npts ) ) / l ength ( vo ( npts - n w i n f o u r i e r : npts ) ) ) ) ;

650 i n t v rop win = ...
sum ( ( v r e fq ( npts - n w i n f o u r i e r : npts ) -14 . 4 ) . *( vo ( npts - n w i n f o u r i e r : npts ) - . . .

651 sum( vo ( npts - n w i n f o u r i e r : npts ) ) / l ength ( vo ( npts - n w i n f o u r i e r : npts ) ) ) ) ;

652 i n t v rp2 win = . . .

653 sum ( ( vre fp ( npts - n w i n f o u r i e r : npts ) -14 . 4 ) . *( v re fp ( npts - n w i n f o u r i e r : npts ) -14 . 4 ) ) ;

654 i n t v rq2 w in = . . .

655 sum ( ( v r e fq ( npts - n w i n f o u r i e r : npts ) -14 . 4 ) . *( v r e fq ( npts - n w i n f o u r i e r : npts ) -14 . 4 ) ) ;

656 g r e fp = i n t v r i p w i n / in t v rp2 win ;

657 g r e f q = int v rop win / in t v rq2 w in ;

658 re f t sw pcm ( j ) = gre fp+i * g r e f q ;
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659

660 c l c

661 end

662

663 f i g u r e (3 )

664 c l f

665

666 subplot ( 2 , 1 , 1 )

667 l o g l o g (1 . /T i , abs ( r e f t sw scm ) )

668 hold on

669 l o g l o g (1 . /T i , abs ( re f t sw pcm ) )

670 l o g l o g (1 . /T i , abs ( squeeze ( ana re f t s cm ) ) )

671 l o g l o g (1 . /T i , abs ( squeeze ( ana re f t pcm ) ) )

672 g r id minor

673 x l a b e l ( ' Frequency (Hz) ' )

674 y l a b e l ( ' |G { v r e f } | ' )

675 xlim ( [ min (1 . / T i ) , max(1 . / T i ) ] )

676

677 subplot ( 2 , 1 , 2 )

678 semi logx (1 . /T i , unwrap ( ang le ( r e f t sw scm ) *180/ p i ) )

679 hold on

680 semi logx (1 . /T i , unwrap ( ang le ( re f t sw pcm ) *180/ p i ) )

681 semi logx (1 . /T i , unwrap ( ang le ( squeeze ( ana re f t s cm ) ) *180/ p i ) )

682 semi logx (1 . /T i , unwrap ( ang le ( squeeze ( ana re f t pcm ) ) *180/ p i ) )

683 x l a b e l ( ' Frequency (Hz) ' )

684 y l a b e l ( 'G { v r e f } ( phase ) ( degree ) ' )

685 g r id minor

686 xlim ( [ min (1 . / T i ) , max(1 . / T i ) ] )
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