A MICROWAVE STUDY OF THREE BROMINE-CONTAINING MOLECULES: CBr₂F₂, AgBr, and H₂ AgBr

JOSHUA A. SIGNORE, CHRISTOPHER FALLS, Department of Chemistry, Wesleyan University, Middletown, CT, USA; DANIEL A. OBENCHAIN, FS-SMP, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany; COREY J EVANS, Department of Chemistry, University of Leicester, Leicester, United Kingdom; WALLACE C. PRINGLE, Department of Chemistry, Wesleyan University, Middletown, CT, USA; S. A. COOKE, Natural and Social Science, Purchase College SUNY, Purchase, NY, USA; STEWART E. NOVICK, Department of Chemistry, Wesleyan University, Middletown, CT, USA.

In preparation for our FTMW study of the complex between hydrogen and silver bromide, H_2 AgBr, we have investigated the microwave spectra of our source of bromine, dibromodifluoromethane, CBr_2F_2 . Previous sources of bromine to produce AgBr proved either too damaging to the instrumentation in the long term (Br₂), or did not produce enough AgBr to be useful (CHBr₃). In addition, silver bromide, originally studied by Hoeft, Lovas, Tiemann, and Torring in 1971,^{*a*} and remeasured by Evans and Gerry in 2000,^{*b*} was remeasured once more. We plan to produce H_2 AgBr, using laser ablation of a silver rod within a supersonic expansion of an argon carrier gas containing H_2 and CBr_2F_2 . This is part of our ongoing study of hydrogen complexed with metal halides which include H_2 CuF,^{*c*} H_2 AgCl,^{*d*} and H_2 AuCl.^{*e*} These molecules are "models" of the molecular hydrogen storage in the cavities of metal organic frameworks (MOFs).

^aJ. Hoeft, F. J. Lovas, E. Tiemann, T. Torring, Z. Naturforsch. 25a, 35 (1970).

^bC. J. Evans, M. C. L. Gerry, J. Chem. Phys. 112, 1321 (2000).

^cD. J. Frohman, G. S. Grubbs II, Z. Yu, S. E. Novick, Inorg. Chem. 52, 816 (2013).

^dG. S. Grubbs II, D. A. Obenchain, H. M. Pickett, S. E. Novick, J. Chem. Phys. 141, 114306 (2014).

^eD. A. Obenchain, G. S. Grubbs II, H. M. Pickett, S. E. Novick, J. Chem. Phys. 146, 204302 (2017).