OBSERVATION OF THE $\mathrm{C}_{6}\mathrm{H}_{7}$ RADICAL IN AN ARGON MATRIX USING MATRIX ISOLATION INFRARED SPECTROSCOPY

JAY C. AMICANGELO, LIA TOTLEBEN, JACOB OSLOSKY, YEN JUI SU, NICOLE ORWAT, School of Science (Chemistry), Penn State Erie, Erie, PA, USA.

The cyclohexadienyl radical (C_6H_7) was observed in a low temperature argon matrix with matrix isolation infrared spectroscopy. The C_6H_7 radical was produced from the reaction of H atoms with benzene (C_6H_6) in the argon matrices. The H atoms were produced by vacuum ultraviolet (VUV) photolysis of H_2S , which was co-deposited with the C_6H_6 in the argon matrices. The most intense peak of the C_6H_7 radical was observed at 621.0 cm⁻¹, with several other weaker peaks observed at 865.9, 910.9, 961.2, 973.7, 1290.3, 1390.2, 1394.9, 1425.9, 2758.7, and 2781.3 cm⁻¹. The experiments were performed with various concentrations of H_2S and C_6H_6 and at deposition temperatures of 10 K, 15 K, and 20 K. The largest yield of the C_6H_7 radical was for VUV photolysis co-deposition of 1:200 H₂S:Ar with 1:200 C_6H_6 :Ar at 15 K. The identification and assignment of the C_6H_7 radical peaks was accomplished by comparisons to spectra without VUV photolysis, the H_2S and C_6H_6 monomer spectra both with and without VUV photolysis, filtered (400 – 900 nm) Hg-Xe lamp photolysis, and 35 K annealing spectra. Experiments were also performed in which H atoms were reacted with C_6D_6 producing the C_6D_6H radical, with peaks observed at 460.0, 747.8, 759.3, 830.0, 1245.6, 1246.7, and 2791.9/2797.0 cm⁻¹. Quantum chemistry calculations for the C_6H_7 radical were also performed using density functional theory at the B3LYP/aug-cc-pVTZ level to obtain the theoretical structure and theoretical infrared spectrum to support the assignments. The peaks of the C_6H_7 radical observed in argon matrices are in good agreement with the values reported in xenon matrices^a and *para*-hydrogen matrices^b.

^aV. I. Feldman, F. F. Sukhov, E. A. Logacheva, A. Y. Orlov, I. V. Tyulpina, and D. A. Tyurin, Chem. Phys. Lett. <u>437</u>, 207 (2007)

^bM. Bahou, Y. J. Wu, and Y. P. Lee, J. Chem. Phys. <u>136</u>, 154304 (2012)