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Abstract
Social networks on the Internet have seen an enor-
mous growth recently and play a crucial role in
different aspects of today’s life. They have facili-
tated information dissemination in ways that have
been beneficial for their users but they are often
used strategically in order to spread information
that only serves the objectives of particular users.
These properties have inspired a revision of clas-
sical opinion formation models from sociology us-
ing game-theoretic notions and tools. We follow
the same modeling approach, focusing on scenar-
ios where the opinion expressed by each user is
a compromise between her internal belief and the
opinions of a small number of neighbors among her
social acquaintances. We formulate simple games
that capture this behavior and quantify the ineffi-
ciency of equilibria using the well-known notion of
the price of anarchy. Our results indicate that com-
promise comes at a cost that strongly depends on
the neighborhood size.

1 Introduction
Opinion formation has been the subject of much research in
sociology, economics, physics, and epidemiology. Due to
the widespread adoption of the Internet and the subsequent
blossoming of social networks, it has recently attracted the
interest of researchers in AI (e.g., see [Auletta et al., 2016;
Schwind et al., 2015; Tsang and Larson, 2014]) and CS at
large (e.g., see [Bindel et al., 2015; Mossel and Tamuz, 2014;
Olshevsky and Tsitsiklis, 2009]).

An influential model that captures the adoption of opin-
ions in a social context has been proposed by Friedkin and
Johnsen [1990]. According to this, each individual has an in-
ternal belief on an issue and publicly expresses an opinion;
internal beliefs and public opinions are modeled as real num-
bers. In particular, the opinion an individual expresses fol-
lows by averaging between her internal belief and the opin-
ions expressed by her social acquaintances. Recently, Bindel
et al. [2015] show that this behavior can be explained through
a game-theoretic lens: averaging between the internal belief
of an individual and the opinions in her social circle is simply
a strategy that minimizes an implicit cost for the individual.

Bindel et al. [2015] use a quadratic function to define this
cost. This function is equal to the total squared distance of
the opinion expressed by the individual from her belief and
the opinions expressed in her social circle. In a sense, this be-
havior leads to opinions that follow the majority of her social
acquaintances.

Bindel et al. [2015] consider a static snapshot of the so-
cial network. In contrast, Bhawalkar et al. [2013] implicitly
assume that the opinion of an individual depends on a small
number of acquaintances only, her neighbors. So, in their
model, opinion formation co-evolves with the neighborhood
for each individual: her neighborhood consists of those who
have opinions similar to her belief. Then, the opinion ex-
pressed is assumed to minimize the same cost function used
by Bindel et al. [2015], taking into account the neighborhood
instead of the whole social circle.

We follow the co-evolutionary model of [Bhawalkar et
al., 2013], but we deviate from their cost definition and in-
stead consider individuals that seek to compromise with their
neighbors. Hence, we assume that each individual aims to
minimize the maximum distance of her expressed opinion
from her belief and each of her neighbors’ opinion. Like
[Bhawalkar et al., 2013], we assume that opinion forma-
tion co-evolves with the social network. The neighborhood
of each individual consists of the k players with the closest
opinions to her belief. Naturally, these modeling decisions
lead to the definition of strategic games, which we call k-
compromising opinion formation (or, simply, k-COF) games.
Each individual is a (cost-minimizing) player with the opin-
ion expressed as her strategy.
Technical contribution. We study questions related to the
existence, computational complexity, and quality of equilib-
ria in k-COF games. We show that there exist simple 1-COF
games that do not admit pure Nash equilibria and, further-
more, that even in games where equilibria exist, their quality
may be suboptimal, i.e., the price of stability (defined in [An-
shelevich et al., 2008]) is strictly greater than 1. We also
show that there is a representation of each 1-COF game as a
directed acyclic graph, in which every pure Nash equilibrium
corresponds to a path between two designated nodes. Hence,
the problems of computing the best or worst pure Nash equi-
librium (or even of computing whether such an equilibrium
exists) are equivalent to simple path computations that can
be performed in polynomial time. These results appear in
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Section 3. In Sections 4 and 5, we present upper and lower
bounds on the price of anarchy (introduced by Koutsoupias
and Papadimitriou [1999]) of k-COF games that suggest a
linear dependence on k. Our upper bound on the price of an-
archy exploits, in a non-trivial way, linear programming du-
ality in order to lower-bound the optimal social cost. For the
fundamental case of 1-COF games, we obtain a tight bound
of 3.
Related work. DeGroot [1974] proposed a framework that
models the opinion formation process, where each individ-
ual has a real number as opinion and updates it based on a
weighted averaging procedure. Subsequently, Friedkin and
Johnsen [1990] refined the model by assuming that each indi-
vidual has a private belief and expresses a (possibly different)
public opinion that depends on her belief and the opinions of
people to whom she has social ties. More recently, Bindel et
al. [2015] studied this model and proved that, again for the
setting where beliefs and opinions are reals, the repeated av-
eraging process leads to an opinion vector that can be thought
of as the unique equilibrium in a corresponding opinion for-
mation game.

Deviating from the assumption that opinions depend on
the whole social circle, Bhawalkar et al. [2013] consider
co-evolutionary opinion formation games, where as opinions
evolve so does the neighborhood of each person. This model
is conceptually similar to previous ones that have been stud-
ied by Hegselmann and Krause [2002] and Holme and New-
man [2006]. Both Bindel et al. [2015] and Bhawalkar et
al. [2013] show constant bounds on the price of anarchy of the
games they study. In contrast, the modified cost function we
use in order to model compromise yields considerably higher
price of anarchy.

A series of recent papers from the EconCS community con-
sider discrete models with binary opinions. Chierichetti et al.
[2013] consider discrete preference games, where beliefs and
opinions are binary and study questions related to the price
of stability. For these games, Auletta et al. [2015] char-
acterize the social networks where the belief of the minor-
ity can emerge as the opinion of the majority. Auletta et al.
[2016] generalize discrete preference games so that players
are not only interested in agreeing with their neighbors and
more complex constraints can be used to represent the play-
ers’ preferences. Bilò et al. [2016] extend co-evolutionary
formation games to the discrete setting. Other models assume
that opinion updates depend on the entire social circle of each
individual, who consults a small random subset of social ac-
quaintances; see the recent paper by Fotakis et al. [2016] and
the survey of Mossel and Tamuz [2014].

In spite of the extensive related literature in many different
disciplines, we believe that our model captures the tendency
to compromise more accurately.

2 Preliminaries
A compromising opinion formation game defined by the k
nearest neighbors (henceforth, called k-COF game) is played
by a set of n players whose beliefs lie on the line of real num-
bers. Let s = (s1, s2, . . . , sn) ∈ Rn be the vector containing
the players’ beliefs such that si ≤ si+1 for each i ∈ [n − 1].

Let z = (z1, z2, . . . , zn) ∈ Rn be a vector containing the (de-
terministic or randomized) opinions expressed by the players;
these opinions define a state of the game. We denote by z−i
the opinion vector obtained by removing zi from z. In an
attempt to simplify notation, we omit k from all relevant def-
initions.

Given vector z (or a realization of it in case z contains ran-
domized opinions), we define the neighborhood Ni(z, s) of
player i to be the set of k players whose opinions are the clos-
est to the belief of player i breaking ties arbitrarily (but con-
sistently). For each player i, we define Ii(z, s) as the shortest
interval of the real line that includes the following points: the
belief si, the opinion zi, and the opinion zj for each player
j ∈ Ni(z, s). Furthermore, let `i(z, s) and ri(z, s) be the
players with the leftmost and rightmost point in Ii(z, s), re-
spectively. For example, `i(z, s) can be equal to either player
i or some player j ∈ Ni(z, s), depending on whether the
leftmost point of Ii(z, s) is si, zi, or zj . In the following,
we present the relevant definitions for the case of possibly
randomized opinion vectors; clearly, these can be simplified
whenever z consists entirely of deterministic opinions.

Given a k-COF game with belief vector s and the opinion
vector z, the cost of player i is defined as

E[costi(z, s)] = E
[

max
j∈Ni(z,s)

{
|zi − si|, |zj − zi|

}]
= E

[
max

{
|zi − si|, |zri(z,s) − zi|, |zi − z`i(z,s)|

}]
.

For the special case of 1-COF games, we denote by σi(z, s)
(or σ(i) when z and s are clear from context) the player (other
than i) whose opinion is closest to the belief si of player i, i.e.,
σ(i) is the only member of Ni(z, s). In this case, the cost of
player i can be simplified as

E[costi(z, s)] = E
[
max

{
|zi − si|, |zσi(z,s) − zi|

}]
.

We say that an opinion vector z consisting entirely of de-
terministic opinions is a pure Nash equilibrium if no player
i has any incentive to unilaterally deviate to a deterministic
opinion z′i in order to decrease her cost, i.e.,

costi(z, s) ≤ costi((z
′
i, z−i), s),

where by (z′i, z−i) we denote the opinion vector in which
player i chooses the opinion z′i and all other players choose
the opinions they have according to vector z. Similarly, a
possibly randomized opinion vector z is a mixed Nash equi-
librium if for any player i and any deviating deterministic
opinion z′i we have

E[costi(z, s)] ≤ Ez−i
[costi((z

′
i, z−i), s)].

The social cost of the opinion vector z is defined as the
total cost experienced by all players, i.e.,

E[SC(z, s)] =
n∑
i=1

E[costi(z, s)].

Let z∗ be a deterministic opinion vector that minimizes the
social cost; we will refer to it as the optimal opinion vector.
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The price of anarchy (PoA) of a k-COF game over pure Nash
equilibria is defined as the ratio between the social cost of its
worst (in terms of the social cost) pure Nash equilibrium and
the optimal social cost, i.e.,

PoA(s) = sup
z∈PNE

SC(z, s)
SC(z∗, s)

,

where PNE denotes the set of pure Nash equilibria. The price
of stability (PoS) over pure Nash equilibria is defined as the
ratio between the social cost of the best pure equilibrium (in
terms of social cost) and the optimal social cost, i.e.,

PoS(s) = inf
z∈PNE

SC(z, s)
SC(z∗, s)

.

Similarly, the price of anarchy and the price of stability
over mixed Nash equilibria are defined as

PoA(s) = sup
z∈MNE

E[SC(z, s)]
SC(z∗, s)

, PoS(s) = inf
z∈MNE

E[SC(z, s)]
SC(z∗, s)

where MNE denotes the set of mixed Nash equilibria.
Then, the price of anarchy and the price of stability of k-

COF games, for a fixed k, are defined as the supremum of
PoA(s) and PoS(s) over all belief vectors s.

We now state useful properties of pure Nash equilibria.
Lemma 1. In any pure Nash equilibrium z of a k-COF game
with belief vector s,

a. zi lies in the middle of interval Ii(z, s), for each player i;
b. zi ≤ zi+1, for any i ∈ [n− 1];
c. Ni(z, s) = {j, ..., j + k} \ {i} with i− k ≤ j ≤ i;
d. s`i(z,s) ≤ zi ≤ sri(z,s), for each player i.
The first property follows trivially by the definition of the

cost function. Below, we give the proof of the second prop-
erty of Lemma 1; the remaining proofs (as well as many
proofs in the following) are omitted due to lack of space.

Proof of Lemma 1b. To simplify notation, we abbreviate
`i(z, s) and ri(z, s) by `(i) and r(i), respectively. For the
sake of contradiction, let us assume that zi+1 < zi for a
pair of players i and i + 1. Then, it cannot be the case that
the leftmost endpoint of the interval Ii(z, s) of player i is at
the left of (or coincides with) the leftmost endpoint of inter-
val Ii+1(z, s) of player i + 1 and the rightmost endpoint of
Ii(z, s) is at the left of (or coincides with) the rightmost end-
point of Ii+1(z, s). In other words, it cannot be the case that
min{si, z`(i)} ≤ min{si+1, z`(i+1)} and max{si, zr(i)} ≤
max{si+1, zr(i+1)} hold simultaneously. Since, by the first
property, points zi and zi+1 lie in the middle of the corre-
sponding intervals, we would have zi ≤ zi+1, contradicting
our assumption.

So, at least one of the two inequalities between the in-
terval endpoints above must not hold. In the following, we
assume that min{si, z`(i)} > min{si+1, z`(i+1)} (the case
where max{si, zr(i)} > max{si+1, zr(i+1)} is symmetric).
Our assumption implies that z`(i+1) < si ≤ si+1, and, sub-
sequently, that z`(i+1) < z`(i). Hence, the opinion at the left-
most endpoint of interval Ii+1(z, s) cannot belong to player
i+ 1, i.e., `(i+ 1) 6= i+ 1; see also Figure 1.

z`(i+1) z`(i) si zi+1 zi si+1

Ii+1(z, s) · · ·

Ii(z, s) · · ·

Figure 1: Example of the argument used in the proof of Lemma 1b.
An arrow connects the belief of a player to her opinion.

Since `(i+1) does not belong to Ii(z, s), there are at least k
players different than i+1 and i that have opinions at distance
strictly less than si− z`(i+1) from belief si. All these players
are also at distance strictly less than si+1−z`(i+1) from belief
si+1. This contradicts the fact that the opinion of player `(i+
1) is among the k closest opinions to si+1.

3 Existence, Complexity, and Quality of
Equilibria

In this section, we focus entirely on 1-COF games. We first
warm up with a negative statement: pure Nash equilibria may
not exist. The construction in the proof of the next statement
is inspired by [Bhawalkar et al., 2013].

Theorem 2. There exists a 1-COF game with no pure Nash
equilibria.

We continue to present a polynomial-time algorithm that
determines whether a 1-COF game admits pure Nash equi-
libria, and, in case it does, allows us to compute the best
and worst pure Nash equilibrium with respect to the social
cost. We do so by establishing a correspondence between
pure Nash equilibria and source-sink paths in a suitably de-
fined directed acyclic graph.

Assume that we are given neighborhood information ac-
cording to which each player i has either player i−1 or player
i + 1 as neighbor. From Lemma 1c, such a neighborhood
structure is necessary in a pure Nash equilibrium. We claim
that this information is enough in order to decide whether
there is a consistent opinion vector that is a pure Nash equi-
librium or not. All we have to do is to use Lemma 1a and
obtain n equations that relate the opinion of each player to
her belief and her neighbor’s opinion. These equations have a
unique solution which can then be verified whether it indeed
satisfies the neighborhood conditions or not. So, the main
idea of our algorithm is to cleverly search among all possible
neighborhood structures that are not excluded by Lemma 1c
for one that defines a pure Nash equilibrium.

For integers 1 ≤ a ≤ b < c ≤ n, let us define the
segment C(a, b, c) to be the set of players {a, a + 1, ..., c}
together with the following neighborhood information for
them: σ(p) = p + 1 for p = a, ..., b and σ(p) = p − 1
for p = b + 1, ..., c. See Figure 2 for an example. It can be
easily seen that the neighborhood information for all players
at a pure Nash equilibrium can always be decomposed into
disjoint segments. Importantly, given the neighborhood in-
formation in segment C(a, b, c) and the beliefs of its players,
the opinions they could have in any pure Nash equilibrium
that contains this segment is uniquely defined using Lemma
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s1 z1 s2 z2 z3 s3 z4 s4

Figure 2: Graphical representation of a segment C(1, 2, 4).

1a (as zi = (si + zσ(i))/2). This opinion vector is not neces-
sarily consistent to the given neighborhood structure. We call
segment C(a, b, c) legit if a 6= 2, c 6= n− 1 (so that it can be
part of a decomposition) and the uniquely defined opinions
are consistent to the neighborhood information of it.

A decomposition of neighborhood information for all
players will consist of consecutive segments C(a1, b1, c1),
C(a2, b2, c2), ..., C(at, bt, ct) so that a1 = 1, ct = n,
a` = c`−1 + 1 for ` = 2, ..., t. Such a decomposition will
yield a pure Nash equilibrium if it consists of legit segments
and, furthermore, the uniquely defined opinions of players in
consecutive segments is consistent to the neighborhood infor-
mation in both of them.

Now, consider the directed graph G that has two special
nodes designated as the source and the sink, and a node
for each legit segment C(a, b, c). Note that G has O(n3)
nodes. The source node is connected to all segment nodes
C(1, b, c) while all segment nodes C(a, b, n) are connected
to the sink. An edge from segment node C(a, b, c) to seg-
ment node C(a′, b′, c′) exists if a′ = c + 1 and the uniquely
defined opinions of players in the two segments are consis-
tent to the neighborhood information in both of them. By the
definition of segments and of its edges, G is acyclic.

Based on the discussion above, there is a bijection between
pure Nash equilibria and source-sink paths in G. In addition,
we can assign a weight to each node of G that is equal to the
total cost of the players in the corresponding segment. Then,
the total weight of a source-sink path is equal to the social
cost of the corresponding pure Nash equilibrium.

Hence, standard algorithms for computing shortest or
longest paths in directed acyclic graphs can be used not only
to detect whether a pure Nash equilibrium exists, but also to
compute the equilibrium of best or worst social cost.
Theorem 3. Given a 1-COF game, deciding whether a pure
Nash equilibrium exists can be done in polynomial time. Fur-
thermore, computing a pure Nash equilibrium of highest or
lowest social cost can be done in polynomial time as well.
Example 1. Consider a 1-COF game with four players with
belief vector s = (0, 3, 4, 7). According to the discussion
above, there are 10 segments of the form C(a, b, c) with
1 ≤ a ≤ b < c ≤ 4, but it can be shown that only 3 of
them are legit; these are C(1, 1, 2), C(3, 3, 4), and C(1, 2, 4).
For example, segment C(1, 1, 4) corresponds to the opinion
vector (1, 2, 3, 5) which is not consistent to the neighborhood
information σ(2) = 1 in the segment. The resulting directed
acyclic graph G, appears in Figure 3 and implies that there
exist two pure Nash equilibria for this 1-COF game, namely
the opinion vectors (1, 2, 5, 6) and ( 53 ,

10
3 ,

11
3 ,

16
3 ).

We conclude this section by stating that even the best equi-
librium can be inefficient. Inefficiency of (worst) equilibria
will be the subject of the upcoming two sections.
Theorem 4. The price of stability of 1-COF games is at least
17/15.

source sink

C(1, 1, 2) C(3, 3, 4)

C(1, 2, 4)

Figure 3: The directed acyclic graph G for Example 1.

4 Upper Bounds on the Price of Anarchy
In the proof of the upper bound on the price of anarchy of
k-COF games, we relate the social cost of any deterministic
opinion vector, including the optimal one, to a quantity that
depends only on the beliefs of the players and can be thought
of as the cost of the truthful opinion vector (in which the opin-
ion of every player is equal to her belief).

Consider an n-player k-COF game with belief vector s =
(s1, ..., sn). For player i, we denote by `∗(i) and r∗(i) the
integers in [n] that are such that `∗(i) ≤ i ≤ r∗(i), r∗(i) −
`∗(i) = k, and |sr∗(i)−s`∗(i)| is minimized. The proof of the
next lemma exploits linear programming and duality.

Lemma 5. Consider a k-COF game and let s = (s1, . . . , sn)
denote the belief vector and z be any deterministic opinion
vector. Then, SC(z, s) ≥ 1

2(k+1)

∑n
i=1 |sr∗(i) − s`∗(i)|.

Furthermore, we can show that for any pure Nash equi-
librium z of a k-COF game, we have that SC(z, s) ≤
2
∑n
i=1 |sr∗(i) − s`∗(i)|. By combining this statement with

Lemma 5, we obtain the following theorem.

Theorem 6. The price of anarchy of k-COF games over pure
Nash equilibria is at most 4(k + 1).

For the case of 1-COF games we can prove a stronger
statement using a similar proof roadmap but simpler (and
shorter) arguments. We denote by η(i) the player (other
than i) that minimizes the distance |si − sη(i)|; note that
η(i) ∈ {i− 1, i+ 1}.
Lemma 7. Consider a 1-COF game and let s = (s1, . . . , sn)
denote the belief vector and z be any deterministic opinion
vector. Then, SC(z, s) ≥ 1

3

∑n
i=1 |si − sη(i)|.

Proof. We call a player i with zi /∈ [si−1, si+1] a kanga-
roo player and associate the quantity excessi with her. If
zi ∈ [sj , sj+1] for some j > i, we say that the players in
the set Ci = {i+ 1, ..., j} are covered by player i and define
excessi = zi − sj . Otherwise, if zi ∈ [sj−1, sj ] for some
j < i, we say that the players in the set Ci = {j, ..., i − 1}
are covered by player i and define excessi = sj − zi.

LetK be the set of kangaroo players and C the set of players
that are covered by a kangaroo; these need not be disjoint. We
now partition the players not in K ∪ C into the set L of large
players i with costi(z, s) ≥ 1

3 (|si − sη(i)|) and the set S that
contains the remaining small players. See Figure 4.

We proceed to prove five useful claims.

Claim 8. Let i ∈ S such that σ(i) ∈ K. Then, costi(z, s) +
excessσ(i) ≥ 1

3 |si − sη(i)|.

Proof. We assume that σ(i) > i (the other case is symmet-
ric). If zσ(i) > sσ(i), then costi(z, s) = max{|si − zi|, |zi −
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s1 s2 z1 z3 s3 z2 z4 s4 z5 s5

Figure 4: Kangaroos, covered, large, and small players: 1 ∈ K,
2 ∈ K ∩ C, 3 ∈ C, 4 ∈ S, and 5 ∈ L.

zσ(i)|} ≥ 1
2 (zσ(i) − si) >

1
2 (sσ(i) − si) ≥ 1

3 |si − sη(i)|,
which contradicts the fact that i is a small player. Hence,
zσ(i) ∈ [si, sσ(i)], otherwise player i would be covered. Let j
be the player with the leftmost belief that is covered by player
σ(i). Then, excessσ(i) = sj − zσ(i). We have costi(z, s) +
excessσ(i) = max{|si − zi|, |zi − zσ(i)|} + sj − zσ(i) ≥
1
2 (zσ(i)−si)+

1
2 (sj−zσ(i)) ≥

1
3 (sj−si) ≥

1
3 |si−sη(i)|.

Claim 9. Let i ∈ S such that σ(i) ∈ L or σ(i) ∈ C\K. Then,
costi(z, s)+costσ(i)(z, s) ≥ 1

3 (|si−sη(i)|+|sσ(i)−sη(σ(i))|).

Proof. We assume that σ(i) > i (the other case is symmet-
ric). If zσ(i) > sσ(i), then costi(z, s) = max{|si − zi|, |zi −
zσ(i)|} ≥ 1

2 (zσ(i) − si) >
1
2 (sσ(i) − si) ≥ 1

3 |si − sη(i)|,
which contradicts the fact that i is a small player. Hence,
zσ(i) ∈ [si, sσ(i)], otherwise player i would be covered.
Then, costi(z, s) + costσ(i)(z, s) = max{|si − zi|, |zi −
zσ(i)|} + max{|sσ(i) − zσ(i)|, |zσ(i) − zσ(σ(i))|} ≥ zσ(i) −
zi+ sσ(i)− zσ(i) = sσ(i)− zi. Since i is small, we have zi <
si +

1
3 (sσ(i) − si) and we get costi(z, s) + costσ(i)(z, s) ≥

2
3 (sσ(i) − si) ≥

1
3 |si − sη(i)|+

1
3 |sσ(i) − sη(σ(i))|.

Claim 10. Let i ∈ K. Then, costi(z, s)− excessi ≥ 1
3 (|si −

sη(i)|+
∑
j∈Ci

|sj − sη(j)|).

Proof. We assume that zi > si (the other case is symmetric).
Let ` be the player with the rightmost belief that is covered by
i. Then, excessi = zi − s`. We have costi(z, s)− excessi =
max{|si − zi|, |zi − zσ(i)|} − (zi − s`) ≥ s` − si =∑`−1
j=i (sj+1−sj) ≥ 1

3 (|si−sη(i)|+
∑
j∈Ci

|sj − sη(j)|).

Let N(S) = {j ∈ [n] : σ(i) = j for i ∈ S}.

Claim 11. N(S) does not contain small players.

Proof. Assume otherwise that σ(i) ∈ S for some player i ∈
S. Without loss of generality σ(i) > i. If zσ(i) ≥ sσ(i), then
costi(z, s) ≥ 1

2 |zσ(i) − si| ≥
1
2 |sσ(i) − si| ≥

1
3 |si − sη(i)|

contradicting the fact that i ∈ S. So, zσ(i) < sσ(i). Also,
zσ(i) ≥ si (since neither i is covered nor σ(i) is kangaroo).
Since σ(i) is small, sσ(i) − zσ(i) <

1
3 |sσ(i) − sη(σ(i))| ≤

1
3 (sσ(i)−si), i.e., zσ(i) > 2

3sσ(i)+
1
3si. Hence, costi(z, s) ≥

1
2 (zσ(i) − si) >

1
3 (sσ(i) − si), which contradicts i ∈ S.

Claim 12. For every two players i, i′ ∈ S, σ(i) 6= σ(i′).

Proof. Assume otherwise and let σ(i) = σ(i′) = j with
i < i′. If zj 6∈ [si, si′ ], then the cost of either i or i′ is at
least 1

2 (si′ − si), contradicting the fact that both players are
small. Hence, zj ∈ [si, si′ ]. Notice that sj ∈ [si, si′ ] as well,
otherwise either i or i′ would be covered by j. Now the fact
that i and i′ are small implies that costi(z, s)+costi′(z, s) <

1
3 |si − sη(i)|+

1
3 |si′ − sη(i′)| ≤

1
3 (sj − si) +

1
3 (si′ − sj) =

1
3 (si′ − si). On the other hand, costi(z, s) + costi′(z, s) ≥
1
2 (zj − si) +

1
2 (si′ − zj) =

1
2 (si′ − si), a contradiction.

Using T as an abbreviation of L ∪ (C \ K), we have

SC(z, s) =
n∑
i=1

costi(z, s)

≥
∑

i∈S:σ(i)∈K

(
costi(z, s) + excessσ(i)

)
+

∑
i∈S:σ(i)∈T

(
costi(z, s) + costσ(i)(z, s)

)
+
∑
i∈K

(costi(z, s)− excessi) +
∑

i∈L\N(S)

costi(z, s)

≥ 1

3

∑
i∈S:σ(i)∈K

|si − sη(i)|

+
1

3

∑
i∈S:σ(i)∈T

(
|si − sη(i)|+ |sσ(i) − sη(σ(i))|

)

+
1

3

∑
i∈K

|si − sη(i)|+ ∑
j∈Ci

|sj − sη(j)|


+

1

3

∑
i∈L\N(S)

|si − sη(i)|

≥ 1

3

n∑
i=1

|si − sη(i)|,

as desired. The first inequality follows by the player classifi-
cation and due to Claims 11 and 12. The second one follows
by Claims 8, 9, and 10, and by the definition of large players.
The third one follows since the players enumerated in the first
two sums at its left cover the whole set S (by Claim 11).

Theorem 13. The price of anarchy of 1-COF games over
pure Nash equilibria is at most 3.

Proof. Let us consider a 1-COF game with n players and be-
lief vector s. Let z∗ be an optimal opinion vector and recall
that η(i) is the player that minimizes the distance |si− sη(i)|.
By Lemma 7, we have

SC(z∗, s) ≥ 1

3

n∑
i=1

|si − sη(i)|. (1)

Now, consider any pure Nash equilibrium z of the game.
We will show that

SC(z, s) ≤
n∑
i=1

|si − sη(i)|. (2)

The theorem will then follow by (1) and (2).
In particular, we will show that costi(z, s) ≤ |si − sη(i)|

for each player i. Let us assume that η(i) = i − 1; the case
η(i) = i+1 is symmetric. We distinguish between four cases.
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• Case I: σ(i) = i − 1. By Lemma 1d, we have si−1 ≤
zi ≤ si. Then, clearly, costi(z, s) = |si − zi| ≤ |si −
si−1| as desired.

• Case II: σ(i) = i+ 1 and σ(i− 1) = i. By Lemmas 1b
and 1d, we have si−1 ≤ zi−1 ≤ si ≤ zi. Since player
i has player i + 1 as neighbor, we have |zi+1 − si| ≤
|si−zi−1|. Hence, costi(z, s) = |zi−si| ≤ |zi+1−si| ≤
|si − zi−1| ≤ |si − si−1|.
• Case III: σ(i) = i + 1, σ(i − 1) = i − 2, and
costi(z, s) ≤ costi−1(z, s). By the definition of the
function σ and Lemma 1b, we have zi−2 ≤ zi−1 ≤
si−1 ≤ si ≤ zi ≤ zi+1. We have

costi(z, s) ≤ 2 costi−1(z, s)− costi(z, s)

= |si−1 − zi−2| − |zi − si|
≤ |zi − si−1| − |zi − si|
= |si − si−1|.

The second inequality follows since player i−2 (instead
of i) is the neighbor of player i− 1.

• Case IV: σ(i) = i+1, σ(i−1) = i−2, and costi(z, s) >
costi−1(z, s).

costi(z, s) < 2 costi(z, s)− costi−1(z, s)

= |zi+1 − si| − |si−1 − zi−1|
≤ |si − zi−1| − |si−1 − zi−1|
= |si − si−1|.

The second inequality follows since player i+1 (instead
of i− 1) is the neighbor of player i.

This completes the proof.

5 Lower Bounds on the Price of Anarchy
We now present lower bounds on the price of anarchy over
pure and mixed Nash equilibria. We provide full proofs for
the case of pure Nash equilibria in 1-COF games only.

Theorem 14. The price of anarchy of 1-COF games over
pure Nash equilibria is at least 3.

Proof. Let λ ∈ (0, 1) and consider a 1-COF game with 6
players and belief vector s = (−10−λ,−10−λ,−2−λ, 2+
λ, 10+λ, 10+λ). This game is depicted in Figure 5. We can
show that the opinion vector z = (−10 − λ,−10 − λ,−6 −
λ, 6+λ, 10+λ, 10+λ) is a pure Nash equilibrium with social
cost SC(z, s) = 8. The first two players suffer zero cost as
they follow each other and their opinions coincide with their
beliefs; the same holds also for the last two players. For the
third player, it is σ(3) ∈ {1, 2} since |z1 − s3| = |z2 −
s3| = 8 < |z4 − s3| = 8 + 2λ and z3 is in the middle of the
interval [−10−λ,−2−λ]; hence, cost3(z, s) = 4. Similarly,
we have σ(4) ∈ {5, 6}, z4 lies in the middle of the interval
[2+λ, 10+λ] and cost4(z, s) = 4. Hence, z is indeed a pure
Nash equilibrium.

Now, consider the opinion vector

z̃ =

(
−10− λ,−10− λ, −2− λ

3
,
2 + λ

3
, 10 + λ, 10 + λ

)

−10− λ

[2]

−2− λ

[1]

2 + λ

[1]

10 + λ

[2]

Figure 5: The 1-COF game that is used to derive the lower bounds
on the price of anarchy over pure and mixed Nash equilibria. Each
point corresponds to a belief and [x] denotes that x players have a
particular belief.

which yields a social cost of SC(z̃, s) = 8+4λ
3 ; here, again,

the first and last two players have zero cost, but players 3 and
4 now each have cost 4+2λ

3 since they follow each other. The
optimal social cost is at most SC(z̃) and, hence, the price of
anarchy is at least SC(z,s)

SC(z̃,s) = 3
1+λ/2 . The theorem follows by

setting λ arbitrarily close to 0.

We now consider the case of mixed Nash equilibria and we
remark that the next lower bound is greater than the upper
bound of Theorem 13 on the price of anarchy over pure Nash
equilibria. Hence, allowing randomized strategies may lead
to more inefficient outcomes and, therefore, there is a clear
separation between the classes of pure and mixed Nash equi-
libria. The proof relies again on the 1-COF game presented
in Figure 5.
Theorem 15. The price of anarchy of 1-COF games over
mixed Nash equilibria is at least 6.

We conclude this section with lower bounds on the price of
anarchy of k-COF games, with k ≥ 2.
Theorem 16. The price of anarchy of k-COF games over
pure Nash equilibria is at least k + 1 for k ≥ 3, and at least
18/5 for k = 2.
Theorem 17. The price of anarchy of k-COF games over
mixed Nash equilibria is at least k+2 for k ≥ 3, and at least
24/5 for k = 2.

6 Conclusion and Open Problems
We have introduced the class of k-COF games. Our findings
indicate that the quality of their equilibria grows linearly with
the neighborhood size k. Still, there exists a gap between our
lower and upper bounds for k ≥ 2 and closing this gap is a
challenging technical task. Furthermore, we know that mixed
equilibria are strictly worse for 1-COF games but we have
been unable to prove upper bounds on their price of anarchy.
Is their price of anarchy still linear? Also, whether the price
of stability depends on k or is at most a (small) constant is
an interesting and wide open question. Another natural ques-
tion is about the complexity of pure Nash equilibria in k-COF
games for k ≥ 2. We conjecture that there exists a polyno-
mial time algorithm for computing them, but finding such an
algorithm remains elusive.
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