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ABSTRACT 

This paper investigates the possibility of decoding decision 

confidence from electroencephalographic (EEG) brain activity of 

human subjects during a multisensory decision-making task. In 

recent research we have shown that decision confidence correlates 

could be extracted from EEG recordings during visual or auditory 

tasks. Here we extend these initial findings by (a) predicting the 

confidence in the decision from EEG recordings alone, and (b) 

investigating the impact of multisensory cues on decision-making 

behavioral data. Our results obtained from 12 participants 

recorded at two different sites show that the decision confidence 

could be predicted from EEG recordings on a single-trial basis 

with a mean absolute error of 0.226. Moreover, the presence of a 

multisensory cue did not improve the performance of the 

participants, but rather distracted them from the main task. Overall, 

these results may inform the development of cognitive systems 

that could monitor and alert users when they are not confident 

about their decisions. 
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1. INTRODUCTION 
In every-day life humans are continuously challenged with 

situations that require instantaneous decision making. In some 

occasions, the outcome of such decisions may have life-

threatening consequences, for example for pilots, air traffic 

controller or soldiers. It is therefore important to understand 

which mental states are associated to high performance in critical 

decision-making tasks. 

Usually, mental states are estimated from behavioral measures. In 

decision-making, these measures include the decision confidence, 

which indicates how sure people are about their decisions [1], [2]. 

The better someone knows a task the more confident they will be, 

but also the more accurately they will estimate their confidence 

[3]. Still, the relationship between the confidence and the accuracy 

may vary depending on the subject, the task, or the conditions [4]. 

It has also been shown that the confidence correlates with reaction 

times (RT) [12]-[16] as well. A straightforward way to record 

decision confidence is asking directly to the participants after each 

decision. However, this approach is not viable in a real-world task 

as it would it would be time consuming. While it has already been 

shown that is possible to classify confidence in perceptual tasks 

[5]-[7], our proposed approach goes beyond binary confidence 

levels and focuses on continuous reporting featuring a more 

realistic task. The ability to predict the confidence in a decision 

using only the electroencephalographic (EEG), may be very useful 

in several applications. On one hand, predicting the confidence 

has a disadvantage compared to predicting the actual accuracy. 

While high levels of confidence in one's decisions are likely to 

indicate a high accuracy on that decision, very low levels of 

confidence indicate randomness in the decision (when talking 

about forced decision tasks, i.e. the answer cannot be "no answer") 

rather than being sure of being wrong. The predicted confidence is 

therefore more useful for high levels of confidence, while lower 

levels might not contain information about the task performance. 

On the other hand, being able to predict the confidence instead of 

the accuracy has the advantage that, in a forced decision with two-

option tasks, there is a 50% probability of being correct. Thus, by 

predicting the confidence we are predicting the actual state of the 

participant. Another advantage of predicting the confidence, is 

that the confidence does not depend on the actual task, but only on 

the user‟s meta-cognition, while the accuracy is strongly tied to 

the task itself. 

A second aim of this study was to investigate the effectiveness of 

cross-modal cues. It has been demonstrated that cross-modal cues 
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improve the accuracy [8]-[10], compared to unimodal cues, which, 

in turn, should alter other behavioral measurements. In this study, 

we analyze how different cross-modal cues altered accuracy, 

confidence and RTs. Moreover, we investigated whether the 

cross-modal cues affected the confidence prediction or if the 

prediction was independent of the cue.  

2. MATERIALS AND METHODS 

2.1 Participants 
Twelve participants with normal or corrected-to-normal vision 

took part in the experiment (4 males, mean age 29.1 years, SD 

11.4). Six participants were recruited at the University of Essex, 

UK, and the other six participants were recruited at the University 

of Southern California (USC), USA. 

All the participants signed a written, informed consent before 

taking part in the experiment. The research is part of a project 

funded by the UK‟s MoD through DSTL which received MoD 

and University of Essex ethical approval in 2017. 

2.2 System 
Participants sat comfortably during the whole experiment at about 

80 cm from an LCD screen. The EEG system (BioSemi 

ActiveTwo) was the same in both locations (Essex and USC). 

However, the experiments done at the University of Essex were 

performed with an EEG cap of 64 electrodes, while the 

experiments performed at USC used a cap with 256 electrodes. It 

is important to note that the 64 electrodes are not a subset of the 

256. Thus, to make it possible to compare both datasets, the USC 

dataset was interpolated into the same positions of the 64-

electrode cap. First, we created a mesh using the theoretical 

position of the USC 256 electrodes (we will call them origin 

electrodes). Then, we located inside that mesh the theoretical 

position of each one of the Essex 64 electrodes (we will call them 

destination electrodes). For each one of the latter electrodes there 

were four possibilities: 

1) The destination electrode coincided with one of the origin 

electrodes, in which case the signal of the destination 

electrode was the same as the origin electrode. 

2) The destination electrode was exactly between two neighbor 

origin electrodes. In this case, the signal of the destination 

electrode was interpolated from the two origin electrodes 

using the bilinear method. 

3) The destination electrode was between three origin electrodes. 

In this case, the signal of the destination electrode was 

interpolated from the three origin electrodes using the bilinear 

method. 

4) The destination electrode was outside of the origin electrodes‟ 

mesh. In this case the electrode was removed from both 

datasets. 

There were four electrodes that were located outside of the mesh: 

AF7, P9, AF8, and P10. This means that all the preprocessing and 

analysis of the data was done on 60 electrodes. All the channels 

were re-referenced to the mean signal recorded from two 

electrodes placed on the earlobes. 

2.3 Task 
Participants were asked to undertake a perceptual decision-making 

task consisting of 16 blocks of 48 trials, for a total of 768 trials. 

The experiment started showing the participants two images 

representing a soldier with a hat and a soldier with a baseball cap 

(Figure 1). Each trial (Figure 1) started with a fixation cross, 

shown for 1000 ms, immediately followed by and image of an 

empty corridor with doors on each side for 500 ms. During this 

time, one out of four possible cues was presented (more details 

below). After the cue, the image of a soldier was presented in the 

corridor for 250 ms, followed by the message "Have you seen a 

HELMET (LEFT) or a CAP (RIGHT)?", where participants had 

to decide whether the soldier was wearing a helmet or a cap. They 

reported their decision by pressing the left or the right mouse 

buttons, controlled with their preferred hand. Finally, participants 

were asked to report the confidence in their decisions between 0% 

and 100% by scrolling the mouse wheel, which varied confidence 

in 10% steps. Participants were instructed to provide fast and 

accurate responses. 

          

____________________________________________ 

 

Figure 1 (Top) Examples of the two stimuli presented to the 

participants. The one in the right is the one considered target. 

(Bottom) Timeline of a single trial.  Since the response times 

varies trial by trial, the duration of each trial was not fixed. 

 

In each trial, the participant received one of the following cues: 

 No cue: There was no cue before the stimulus appeared. 

 Audio: 500 ms before the stimulus appeared, a voice saying 

either “right” or “left”, indicated at which side of the screen 

the stimulus would appear. 

 Silent Head (SH): 500 ms before the stimulus appeared, the 

figure of a head would appear and remained there until the 

stimulus disappeared. 

 Talking Head (TH): 500 ms before the stimulus appeared, the 

figure of a head would appear at the same time as a voice. The 

voice was the same as in the Audio condition. Differently 

from the SH condition, the head in this condition moved 

mimicking the motions of someone saying “right” or “left”. 

For a given block, all the trials had the same cue. For each 

participant, there were four blocks for every kind of cue. However, 

the order was randomized for each of them. The type of cue was 

presented to the participants before starting each block. Finally, 

after each block, the mean accuracy for that block was reported to 

the participants, so they would get feedback of their performance. 



At the beginning of the experiment, participants practiced the task 

by undertaking one block of 10 trials for each type of cue. 

2.4 Signal Processing 
The EEG preprocessing used in experiment is the same that we 

used in past experiments [4]. The original data was sampled at 

2048 Hz, then band-pass filtered between 0.15 and 40 Hz using a 

FIR filter resulted of convolving a low-pass filter with a high-pass 

filter. Then, the signal was downsampled by a factor of 16, 

resulting in a 128 Hz signal. In addition to this, a correction for 

eye-blink and other ocular movements was performed using a 

subtraction algorithm based on correlations to the average 

differences between FP1 and F1 and Fp2 and F2. [11] 

After the preprocessing, the data were split into two types of 

epochs:  

Stimulus Locked: Each epoch started at the onset of the cue and 

lasted 1.5 s. 

Response Locked: Each epoch started 1.25 s before the response 

and lasted 1.5 s after. This representation is useful because, in a 

real-world application, the exact moment of the stimulus may not 

be available, while the time of response is usually known. 

For each method, the data from each channel were baseline-

corrected to the mean voltage of the same channel from 25 ms 

before to 25 ms after the zero. 

2.5 Methods 
The main goal of the experiment was to see if it was possible to 

predict the confidence using only EEG data. The reason for this is 

that, given that the task remains the same over time, changes in 

the confidence would indicate possible drops in attention or other 

performance-related processes. Being able to predict such changes 

would help to predict changes in the performance. 

2.5.1 Confidence correlation 
To see the correlation between the confidence and the accuracy, 

we grouped the responses into three confidence levels: low [0-0.3], 

medium [0.4-0.6], and high [0.7, 1]. Then, we calculated the mean 

accuracy and 95% confidence interval for each of the confidence 

levels, to see if they overlapped or not. 

2.5.2 Grand average 
For each participant, we calculated the mean EEG activity 

grouping the trials by the confidence level. Then, the mean 

activity across participants was calculated. The goal was to see if 

there was any significant EEG signal difference for the different 

confidence levels. A difference in EEG activity could mean that it 

is possible to extrapolate the participants confidence on their own 

decision from EEG alone without needing to ask them after each 

action. We performed this process using response locked epochs. 

We performed a second analysis in which the data were grouped 

according to the pre-stimulus cue. A difference in the EEG signal 

would indicate different mental processing for the cues. This 

analysis was done using stimulus locked epochs because the goal 

was, precisely, to compare different stimulus. 

2.5.3 Prediction 
As mentioned before, the final goal was to predict the confidence 

using only the EEG. To be able to test our method, we compared 

it to a baseline method that would predict always the same 

confidence. More specifically, the predicted confidence by the 

baseline method was the mean of the confidence during the 

training trials. On the other extreme, we compared our EEG-based 

method to another predictor that used as input the RT of each trial. 

As it has been mentioned before, the RT and the confidence are 

highly correlated. However, it is important to note that in a real-

world application the RT of an action may or may not be available.  

In the methods based only on EEG data, we extracted the features 

from response locked epochs. As features we extracted the Auto 

Regressive (AR) coefficients that model the epoch in an AR(1) 

process. A general AR(p) process is described as: 

 ( )     ∑   (   )

 

   

 

where p is the order of the process, and    are the coefficients 

that fit the model.  

The three methods used as predictor a linear regression. We 

performed the prediction and validation process using five 

different data sets. The first four contained only one of the 

conditions (No cue, Audio, TH, and SH), while the fifth contained 

all of them together. The goal of this approach was to see if any of 

the conditions presented and advantage/disadvantage to predict 

the confidence. Finally, to compare the accuracy of each method, 

we used the Mean Absolute Error (MAE) between the prediction 

and the prediction of each one of the predictors. 

3. RESULTS 

3.1 Behavioral 
Table 1 shows the results for the RT, accuracy, and confidence for 

the four different experimental conditions.  

 

Table 1. Behavioral results 

Condition RT Accuracy Confidence 

No Cue .487 .889 .743 

Audio .522 .888 .741 

SH .546 .828 .647 

TH .522 .846 .704 

Mean .519 .863 .709 

 

Table 2. Pairwise comparison p-values 

Conditions RT Accuracy Confidence 

No Cue vs SH <.001 <.001 <.001 

No Cue vs Audio .025 .959 .877 

No Cue vs TH .056 .065 .011 

TH vs Audio .91 .015 .004 

TH vs SH .46 .513 .011 

Audio vs SH .243 .003 <.001 

 

The ANOVA analysis showed significant main effects for the 

RTs (F=7.58, p < 001), accuracy (F=11.66, <.001) and 

confidence (F=29.90, <.001). Holm-Bonferroni corrected p-

values for the t-test comparing the conditions two-by-two are 

shown in  

Table 2.  



 

Figure 2. Stimulus locked grand averages comparing the four conditions for 12 different channels. Each colour line corresponds to 

one condition. The black line (that refers to the right y-axis), indicates the uncorrected p-value of the Kruskal-Wallis test 

comparing each individual point and channel. The horizontal dotted black line represents p=0.05 significant difference. 

 

Those p-values considered significant (p-values < 0.05) are shown 

in boldface. The „No Cue‟ condition showed the fastest RT, with 

the higher accuracy and confidence. This difference was 

statistically significant only compared to the „SH‟ condition (the 

slowest one, with the lowest accuracy and confidence). The 

„Audio‟ condition had a significant higher accuracy than the „TH‟ 

and the „SH‟ conditions, however, this difference was not 

significant in the RT. The variable that showed the greatest 

number of statistical differences was confidence, where all the 

comparison were statistically different except for the No Cue vs 

Audio. 

3.2 Grand Averages 
In Figure 2, the grand averages for stimulus locked analysis are 

presented for 12 channels, which cover from the frontal to the 

occipital area in the central line, as well as both laterals from the 

frontal to the parietal areas. In addition, the p-values of the 

Kruskal-Wallis analyses comparing the four conditions are shown. 

The response locked results were not presented in this paper,  as 

there were no consistent significant differences for any of the 

electrodes or times.  

Figure 3 (top) shows the differences in the EEG activity before the 

decision for the three confidence levels. The low p-values (in 

some cases <.0001) of the Kruskal-Wallis test, and both the 

temporal and spatial consistency of these values (the differences 

are not localized in a very specific point of time or space), confirm 

that the differences in the figures were not due to chance. 

3.3 Confidence Prediction 
The results presented in Figure 4 (Top) show a strong relationship 

between confidence and accuracy. This shows the ability of the 

participants to correctly self-evaluate their decisions. It is 

interesting to note how the interpretation and use of the level '0' 

for the confidence changes across participants (no indication was 

given to the participants about the meaning of “0” confidence). 

For 7 out 12 of them, a confidence of '0' had a mean accuracy of 

around 50%, suggesting that for them the lowest confidence 

meant random choice, or that they did not know the answer 

(however, they were forced to provide an answer). On the other 

hand, for the remaining five participants, a confidence of '0' had a 

mean accuracy of 0%, suggesting that these five participants used 

the lowest level to report that they knew that they had made a 

mistake. This difference makes that the 95% confidence interval 

for the confidence level „0‟ so big compared to the other 

confidence levels. 

MAEs of confidence prediction using the three different methods 

and the five sets of data can be seen in Figure 4 (Bottom). First, 

we performed a Kruskal-Wallis analysis comparing the four 

conditions (No Cue, Audio, SH, and TH) to see if there was a 

difference predicting the confidence for each one of the conditions. 

The result of this analysis resulted in a p-value of >.5. Next, we 

performed the Kruskal-Wallis analysis comparing the three 

methods using the complete set of data. This resulted in a p-value 

< 0.001. The MAEs of this data set were .229, .207, and .245 for 

AR, RT, and Baseline methods respectively. The paired Wilcoxon 

test analysis with Bonferroni correction showed that all the 

methods were significantly different between them (p-value 

<0.001 in every case). 

4. DISCUSSION 

4.1 Behavioral 
In terms of accuracy, the behavioral results showed that the No 

Cue condition was the best one closely followed by the Audio 

condition, while the TH was worst than both conditions (even if 

only significantly different than the No cue condition), but still 

better than the SH condition. This suggest that the presence of the 

head is a distractor, while the audio information provides some 

useful information that can balance the negative effect of the head 

to some extent. Regarding the confidence, we can see that the 

results followed a similar pattern, with the No cue being the 



condition with the highest confidence closely followed by the 

Audio condition, the SH condition being the worst condition with 

only .647 confidence, and the TH somewhere in between. 

Differently from the accuracy, the p-value of the paired t-tests 

showed statistical difference in all the comparison except for the 

No cue vs Audio test. Finally, in terms of RTs, the data showed 

something slightly different. The No Cue condition was still better 

than any other condition (with no significant difference with the 

TH), however instead of the Audio's RT being similar to the No 

Cue condition, it was similar to the TH condition, again the SH 

condition is the worse of them with the slowest responses. This 

would suggest, that the time required to process the audio signal is 

interfering with the processing of the stimulus. Then, comparing 

the grand averages in Figure 2, we can see that in those parts that 

the Kruskal-Wallis test indicates bigger differences, the No Cue 

and the SH behave in a similar way and different to the TH and 

the Audio conditions. This behavior is probably showing the 

semantic processing of the audio cue, which requires some time.  

This would explain why the RTs of these two conditions were 

similar, even if the accuracy and the confidence are significantly 

different. This led us to consider that a longer interval between 

cue and stimulus presented should therefore increase both the 

accuracy and the RT of the „Audio‟ and „TH‟ conditions. 

 

 

 

Figure 3. (Top) response-locked grand averages of EEG for Low, Medium and High levels of confidence. The colored lines 

correspond to the mean activity for all participants and epochs for the three levels of confidence defined. The shaded areas 

correspond to the range of the mean when the EEG activity is grouped by confidence levels and condition, i.e. the mean of each one 

of the four conditions for a given level would be inside the shaded area. The black line refers to the right y-axis, and indicates the p-

values resulting from the Kruskal-Wallis test for each individual point and channel. The dotted black line represents the 

significant-difference level at p-value 0.05. Each panel represents one channel. (Bottom) p-value scalp maps for response-locked 

epochs. Each scalp map corresponds to one-time sample. Blue colors correspond to lower p-values. Note that the scale for the p-

values is logarithmic. 



4.2 Confidence 

4.2.1 Grand averages 
The grand averages of the three confident levels in Figure 3, show 

that there is a clear and statistically significant difference in the 

EEG activity before making the decision. This supports the idea 

that the confidence is integrated in an online way [17]. These 

differences are consistent across time and space. The biggest 

differences are between 800 and 600 ms before the decision, with 

a stronger effect on the left and parietal areas of the brain. The 

right hemisphere also shows some of these differences, especially 

in the parietal/occipital area and, to some extent, in the central 

area. The frontal area does not show any significant difference. It 

is interesting to note as well, that the EEG activity shows a 

coherent shift on the grand average activity correlated with the 

confidence level. We can see that the low confidence has the 

highest EEG activity followed by the medium confidence and the 

high confidence level show the lowest activity the three levels.  

In addition to this, the fact that there is a difference between the 

means when grouped only by confidence levels but not when 

grouped by condition, suggest that the effect of the confidence 

level is bigger than the differences due to the four different cues, 

making it possible to analyze the confidence as a whole without 

taking into consideration the four different cues. 

4.2.2 Prediction 

 

 

Figure 4 (Top) Mean accuracy and 95% confidence interval 

for each of the confidence level as for the three defined 

confidence ranges. (Bottom) MAE and 95% confidence 

interval for the three methods proposed to calculate the 

confidence, for each one of the five data-sets used for the 

training and validation. 

The upper panel in Figure 4 shows that there are big differences 

(p-value < 0.0001) in the accuracy not only between the different 

confidence ranges, but also in the 11 confidence levels. This 

results expand previous studies where it was shown the difference 

in terms of accuracy of binary confidence levels [5]–[7], by 

showing that this difference happens also when using graded 

confidence levels.  

The lower panel in Figure 4 (in addition to the statistical analysis 

performed), shows that the error of predicting the confidence 

when dividing the data by the cue condition is independent from 

the condition. Thus, making it possible to use all the data samples 

together to predict the confidence. Interestingly, merging the four 

conditions results in a significant decrease of the error when using 

the AR model (this doesn't occur with the other approaches). The 

most likely reason lies within the number of parameters that need 

to be fitted by the model. Each one of the conditions has only a 

fourth of the data samples to train the linear regression. In the case 

of the RT, only two parameters need fitting (the RT and the bias). 

In the case of the AR model, the number of parameters is 

substantially bigger as it is two times the number of electrodes 

(120 in total) plus the bias. The lower accuracy for separated 

conditions, suggests that there were not enough samples to fit 

appropriately the model to each of the conditions. 

5. CONCLUSIONS 
In this paper, we showed that there was a strong relationship 

between accuracy, RTs, and confidence in a multisensory 

decision-making task. Moreover, providing unisensory or 

multisensory cues does not increase the accuracy nor decrease the 

confidence of the participants, but it may increase the RTs. This 

suggests that multisensory cues increase the cognitive load and, in 

our experiment, they did not provide any help to the participant to 

increase the task performance. Future studies should investigate 

whether longer cues or cue-to-stimulus intervals could change 

these results. 

We also validated our hypothesis that EEG signals carry enough 

information for machine learning algorithms to estimate the 

decision confidence of the participant. However, RTs provide 

better estimates of the decision confidence than the EEG alone. 

Future studies should investigate whether combining these two 

measures could further increase the accuracy of the confidence 

estimates. 
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