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Abstract. Magnetic Resonance (MR) protocols use several sequences
to evaluate pathology and organ status. Yet, despite recent advances,
the analysis of each sequence’s images (modality hereafter) is treated in
isolation. We propose a method suitable for multimodal and multi-input
learning and analysis, that disentangles anatomical and imaging factors,
and combines anatomical content across the modalities to extract more
accurate segmentation masks. Mis-registrations between the inputs are
handled with a Spatial Transformer Network, which non-linearly aligns
the (now intensity-invariant) anatomical factors. We demonstrate appli-
cations in Late Gadolinium Enhanced (LGE) and cine MRI segmenta-
tion. We show that multi-input outperforms single-input models, and
that we can train a (semi-supervised) model with few (or no) annota-
tions for one of the modalities. Code is available at https://github.com/
agis85/multimodal segmentation.
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1 Introduction

MR is non-invasive and offers high soft-tissue contrast suitable for numerous
applications. Multiple sequences are used in a single MR session, producing
images of different contrast (modalities), that are characterised by disparities
in overall image quality and signal-to-noise ratio, but also provide complemen-
tary information of anatomy and function. Developing methods to automatically
segment tissue from such multimodal data remains important: for example in
cardiac MR, cine and LGE needs to be jointly assessed to characterise myocar-
dial infarction [11], since cine contains high anatomical information, whereas
LGE focuses on nulling myocardial signal to detect hyper-intense infarct zones.
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To this date, processing of such multimodal data treats each modality in
isolation. Yet, jointly considering different modalities should be beneficial to
obtain information from another modality that better captures anatomy (see
Fig. 1 for a motivating example). Herein, we offer a step change: we propose
a model designed to overcome challenges presented by multimodal analysis in
cardiac MR solving the core problems of representation learning, cross-modal
registration, information fusion and segmentation all in a joint end-to-end fashion
in a semi-supervised setting, without requiring exhaustive annotations.

Deep learning has been successfully used for automating segmentation, how-
ever, most methods in the heart focus on single modalities. This is mainly
because of the high variability observed in signal intensity patterns across differ-
ent MR modality data and organ characteristics. While, in the brain, multimodal
images are commonly used together [6], in the heart, multi-input processing and
multimodal learning are substantially challenging due to inherent spatiotem-
poral and signal intensity differences (between modalities). These compromise
learning direct pixel-to-pixel correspondences.

Fig. 1. Cine-MR and LGE images with corresponding anatomical factors. Common and
unique information is marked with green and red boxes. Low tissue contrast (myocar-
dial nulling) in LGE leads to poor separation in distinct channels between myocardium
and surrounding tissues (e.g. ventricle). This can be corrected using the cine anatomy.
(Color figure online)

We address the above difficulties, for the first time, with disentangled rep-
resentations, i.e. mappings from multimodal images to corresponding anatom-
ical and imaging factors. Anatomical factors contain structure (multi-channel
binary maps); imaging factors contain input signal intensity characteristics. A
Spatial Transformer Network (STN) [9] co-registers the corresponding (intensity-
invariant) anatomical factors, avoiding the co-registration in image space (diffi-
cult in cardiac and other soft-tissue organs). We then combine (fuse) the aligned
anatomical factors to find complementary features useful for segmentation.

Contributions: (1) Multimodal learning based on disentangled representa-
tions, that combines information present in different modalities without the
explicit requirement for registered image pairs. (2) An application in cardiac
segmentation, in which we improve on the segmentation accuracy of single-input
(unimodal) models. (3) Semi-supervised learning: when few (or no) labels are



available, we transfer information from the other modality and use reconstruc-
tion costs.

2 Related Work

Disentangled Representations: Decomposing the feature space into spatial
and style-like factors has shown success in computer vision [7,13], and recently
in semi-supervised cardiac segmentation [2] and multimodal registration [17]. In
medical imaging, disentangled representations have more stringent requirements,
since the anatomical factors must have semantic and quantifiable meaning (e.g.
be useful for segmentation). Our proposed method thus differs significantly from
related multimodal methods; it strives for anatomical factors to be semantic and
geometrically consistent across modalities, as well as maintain the image dimen-
sions to allow a direct mapping to segmentations. These properties are essential
for anatomical registration and fusion, as well as semi-supervised learning.

Multiple Inputs in Cardiac: Level sets have been applied for cine-MR and
LGE segmentation given shape constraints, generated by convolutional networks
[14]. In [8], unannotated data were translated into a modality with annota-
tions using “style transfer”. However, this relies on learning good pixel-wise
transformations, which is not always possible [23]. Also the lack of an explicit
fusion mechanism may be problematic when images exhibit low contrast-to-noise
between different organs. Non-deep learning approaches include multimodal
atlases [25], whereas simultaneous segmentation and registration of multimodal
cardiac MR images has been proposed with Multivariate Mixture Models [24].

Multimodal Learning: In medical imaging, e.g. brain MRI, most multimodal
approaches assume perfect alignment between the inputs. Many methods have
been proposed for synthesis [10], and segmentation, for example with concate-
nated multi-channel inputs [5,6]. To aid the learning process, in [20] they use
cross-modal convolutions and convolutional LSTMs, whereas in [4] they propose
densely connected streams (one per modality) to fuse high and low level features.

One approach to handle unregistered multimodal data is to treat them sep-
arately and share parts of single-input models. An empirical study of different
sharing options [22] concluded that a common feature space connected with indi-
vidual encoders and decoders has the best performance. Small mis-registrations
have been previously handled with an affine STN [10]. Our method is able to
fuse multimodal information, and differently from [10], uses a non-linear STN.

3 Proposed Approach

Multimodal Spatial Decomposition Network (MMSDNet) consists of multiple
components (see Fig. 2), described in Sects. 3.1 and 3.2. At inference time, MMS-
DNet can take as input a 2D image (of either modality) or two images (of differ-
ent modalities) simultaneously. One encoder per modality extracts anatomical
factors, which are used for segmentation or input reconstruction. If multimodal



image pairs are available, anatomical factors are aligned by a STN, and combined
to produce a fused anatomy, which is used for the final segmentation mask.

Fig. 2. MMSDNet components. Top left: anatomy encoders (one per modality) extract
anatomical factors from images. Top right: misalignments are corrected with a STN;
aligned factors are then fused to produce one factor. Bottom left: imaging factors
are extracted by a modality encoder. Bottom right: the anatomical factor produces a
segmentation; anatomical and imaging factors together reconstruct an image.

3.1 Model

Encoding: Assuming two input modalities, and image samples xi (of height
H and width W ), where i ∈ {1, 2}, the anatomy factor is derived from an
encoder fanatomy with parameters θi: si = fanatomy(xi|θi). Anatomy encoders
are fully convolutional networks (architecture is shown in Fig. 3), which output
si ∈ {0, 1}H×W×8, a one-hot encoding (in the channel dimension), 8-channel
binary feature map of the same spatial dimension as the input (each channel rep-
resents a different anatomical area). These two restrictions encourage a semantic
representation, since each tissue will be present only in one channel. They also
disentangle anatomy from imaging, since a binary image does not encode any
modality information in gray levels.

Alignment: The two anatomical factors are aligned using a Spatial Trans-
former Network (STN) [9] (architecture is shown in Fig. 3), which, through non-
rigid registration, generates two deformed anatomies sdeformed

1 = stn(s1, s2) and
sdeformed
2 = stn(s2, s1). The STN learns a matrix of 5 × 5 control points that

define the displacement field, which registers the second to the first anatomi-
cal factor. Thin plate spline [1] is applied to interpolate the surface that passes
through each control point.

Fusion: The deformed anatomy sdeformed
1 is an approximation of the anatomy

s2 corresponding to image x2. Thus, it can be fused with s2 to produce a single
representation of x2 that preserves the encoded multimodal anatomical features.
We require the union of the aligned features, and thus use the pixel-wise max:
sfused1 = max(sdeformed

1 , s2). Accordingly, sfused2 is also generated.

Segmentation: The previous steps produce six anatomical factors, namely s1,
s2, sdeformed

1 , sdeformed
2 , sfused1 and sfused2 , which are used as input (one at a

time) to a convolutional network h(.) (architecture is shown in Fig. 3) to obtain
the final segmentation masks. Depending on the inference task, we can get a



Fig. 3. Architectures of the MMSDNet components. Top left: the anatomy encoder fol-
lows a U-Net [18] architecture and maps an image to an anatomical factor s. Downsam-
pling and upsampling are performed with max pooling and nearest neighbour interpo-
lation respectively. Bottom left: the segmentation network is a small fully convolutional
network that given s, produces a segmentation mask. Top right: the spatial transformer
network consists of three convolutional and one fully connected layers and predicts the
interpolation parameters used to register s1 to s2. Middle right: the modality encoder is
a convolutional network that predicts the modality factor z. Bottom right: the decoder
is a convolutional network that modulates an anatomy factor s with a modality factor
z to generate an image.

segmentation using the appropriate anatomy, as also demonstrated in Sect. 4. If
only xi is available, the segmentation is obtained from si, whereas if both x1, x2

are available the fused anatomy sfusedi produces the most accurate result.

3.2 Additional Networks and Losses

Our end-to-end strategy enables the model to learn from multimodal data to
separate anatomy from imaging characteristics, whilst doing good segmenta-
tion, registration and reconstruction. Critically, reconstruction enables semi-
supervised learning, aided via adversarial objectives on segmentation masks.
Below we detail the breakdown of the overall training loss, L = λ1LKL+λ2Lseg+
λ3Ladv + λ4Lrec + λ5Lzrec . (The λ’s are set to 0.1, 10, 1, 10, 1 respectively.)

LKL and Lzrec : Given an image xi, from modality i, then a corresponding
anatomy s can either be the encoded si = fanatomy(xi|θi), or the deformed
sdeformed
j and fused anatomies sfusedj if xi has a paired slice xj in modality j.

Key is the disentanglement of the latent space into anatomical si and imag-
ing factors zi (8-dimensional vector), which requires a modality encoder,



zi = fmodality(xi, si), and a decoder. The decoder reconstructs the input,
x̂i = g(s, zi), using FiLM [16], by modulating s with scaling and offset param-
eters β and γ, that are learned from zi. The network architectures of both the
modality encoder and the decoder are shown in Fig. 3. The posterior distribu-
tion given the inputs q(z|x, s) is modelled after the Variational Autoencoder
[12] to follow a Gaussian prior p(z) = N (0, 1), by minimising the KL-divergence
between q and p: LKL = DKL(q(z|x, s)‖p(z)). The representation disentan-
glement is further encouraged by a z−reconstruction cost using the �1 loss:
Lzrec = ‖z − fmodality(x̂i, fanatomy(x̂i|θi))‖1, where x̂i is produced by a z that is
sampled from the Gaussian prior.

Lrec: Image reconstruction between the input and synthetic image is trained with
Lrec =

∑
s∈{si,sdeformed

j ,sfused
j } ‖xi − g(s, zi)‖1. Essential for disentanglement is

the cross-reconstruction between modalities by properly mixing the anatomical
and modality factors. In addition, the reconstruction error is back-propagated
to the STN and provides the learning signal for aligning anatomical factors.

Lseg: When segmentation masks mi, corresponding to the input xi, are avail-
able, then a supervised cost is defined using differentiable Dice between real and
predicted masks: Lseg =

∑
s∈{si,sdeformed

j ,sfused
j } Dice(mi, h(s)).

Ladv: Finally, an unsupervised cost with least-squares adversarial loss [15] is
defined, Ladv =

∑
s∈{si,sdeformed

j ,sfused
j }[DM (h(s))2 + (DM (m) − 1)2], using a

discriminator over masks DM . Here, the encoder fanatomy and segmentor h are
trained to minimise Ladv adversarially against DM which maximises it.

Fig. 4. Two segmentation examples from LGE+cine dataset. Each row shows a
paired cine-MR and LGE with their respective ground truth masks (mcine and
mLGE); the MMSDNet predicted mask (mfused); and finally, the absolute difference
of mLGE with mcine and mfused respectively. Row-wise: Dice(mcine,mLGE)=0.51,
Dice(mfused,mLGE)=0.81, Dice(mcine,mLGE)=0.77, Dice(mfused,mLGE)=0.89.

4 Experiments and Discussion

Data: We evaluate MMSDNet in LGE segmentation using a private dataset
acquired at Edinburgh Imaging Facility QMRI with image pairs of 28 patients
from cine-MR and LGE [19]. Myocardial contours are provided for the end



diastolic frame of the cine-MR and the LGE data. The spatial resolution is
1.562 mm2 per pixel, and the slice thickness is 9 mm. The dataset contains 358
expertly paired cine-MR and LGE images and their corresponding segmentation
masks. The image resolution is 208 × 208 pixels.

Baselines: A lower-bound is obtained from the Dice between the real masks of
both modalities, referred as “copy masks”. This is repeated after affine image reg-
istration using mutual information, followed by symmetric diffeomorphic using
cross-correlation [21]. We also consider uni- and multi-modal single-input U-
Nets by mixing training data. The uni-modal UNet is trained only with the
LGE images (UNet-single), whereas the multi-modal UNet is trained with both
LGE and cine images (UNet-both). Finally, we compare with DualStream [22]
setup of two encoders and decoders, the most recent deep learning method for
unpaired multimodal segmentation.

Training and Evaluation: We train, using data augmentations of rotation,
translation and scaling in Keras [3], with the Adam optimiser and a learning rate
of 0.0001. Results are produced by held-out test sets on 3-fold cross-validation,
where the training, validation and test sets are split using 70%, 15% and 15% of
the dataset subjects, respectively.

4.1 Multi-input vs. Single-input Segmentation

Initially, we test whether multiple inputs benefit LGE segmentation, compared to
single-input models. Two experimental scenarios are considered: LGE masks are
available during training or not. Table 1 compares the performance of MMSDNet
with the baselines and presents the mean test Dice score of Left Ventricle (LV)
and myocardium (MYO) segmentation, as well as their average.

Given fully annotated LGE data (100% column of Table 1), the highest Dice
is achieved when using multiple inputs at inference time (MMSDNet-multi),
confirming knowledge transfer from source to target modality. The effect of mul-
timodal registration is qualitatively demonstrated in Fig. 4, which shows the
improvement achieved by MMSDNet compared with the cine segmentation.
MMSDNet, which is trained with multiple inputs, outperforms a single-input
U-Net, even when at inference time the paired cine-MR image is not available
(referred to as MMSDNet-single in Table 1). Most importantly, when LGE masks
are not available during training, but only images (0% column of Table 1), the
U-Net and DualStream baselines fail to achieve accurate LGE segmentation
since they are only trained on cine-MR data. MMSDNet, with the use of its
unsupervised objectives, can still learn multimodal features and outperforms
the registration baseline. The achieved Dice scores are comparable with the ones
reported in related works [14,24].

4.2 Segmentation with a Varying Number of Annotations

Here we vary the amount of LGE annotations during training to demonstrate
the unique capabilities of semi-supervised learning in our approach. In this
experiment a fixed number of annotated cine-MR images is used, that is equal



Table 1. Average myocardium and left ventricle test Dice results when training with a
varying amount of masks. Best results are underlined; * denotes statistical significance
at 0.05 compared to the best baseline. Number of cine-MR masks is always at 100%.

LGE masks: 100% 50% 25% 0%

MYO LV avg MYO LV avg MYO LV avg MYO LV avg

Copy masks 5005 8106 676 5005 8106 6706 5005 8106 676 5005 8106 6706

Registration 5108 8007 6807 5108 8007 6807 5108 8007 6807 5108 8007 6807

UNet-single 6607 8703 7804 6411 8313 7612 5110 7515 6614 - - -

UNet-both 6902 8902 8103 6410 8408 7608 5609 7912 7110 2717 4427 3823

DualStream 6501 8603 8006 6405 8404 7603 4808 6917 6113 2717 4427 3823

MMSDNet-single 6902 8604 8004 6408 8110 7508 6107 8406 7506 5607 8304 7206

MMSDNet-multi 6903 8902 8102 6504 8504 7704 63∗
03 87∗

04 77∗
03 59∗

05 84∗
03 74∗

04

Fig. 5. LGE segmentations when training with varying amounts of LGE annotations.

Fig. 6. LGE segmentations when training with varying amounts of LGE annotations.
Observe that the baselines did not produce any segmentation mask when trained only
with cine-MR data, i.e. for the 0% case.



to the number of LGE images at 100%. Qualitative testing set examples in Fig. 5
and Fig. 6, show the predictions of baseline and MMSDNet models with varying
amount of training data. Observe how our approach offers more consistency.

Table 1 reinforces these observations quantitatively on segmentation accuracy
for MMSDNet and various baselines. When the number of images is high (above
50%), all methods perform on par. However, as they decrease, the performance
of the baselines also decreases. MMSDNet though is consistent and maintains
a good performance even when training with no LGE masks. The performance
of MMSDNet-multi is always higher than MMSDNet-single, suggesting that our
method can leverage information from cine-MR to improve segmentation.

5 Conclusion

We demonstrated multimodal segmentation using input images of different
modalities. We devise representation disentanglement to extract the individ-
ual anatomical factors, and then use these factors to fuse common and unique
information. Our results show that accurate segmentation can be achieved when
combining multimodal images, even when no annotations of the target modality
are available (during training). We used two MR modalities with expert pairing
of the inputs. Our methodology can be extended for additional modalities, by
adding new encoders and by accordingly learning a pairing mechanism. Both are
under investigation, along with further applications in other organs.
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