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Abstract

X-ray computed tomography can be used for defect detection in additive

manufacturing. Typically, several x-ray projections of the product at hun-

dreds of angles are used to reconstruct the object in 3D to look for any

defects. The process can be time-consuming. This thesis aims to investi-

gate if it is possible to conduct defect detection from a single projection to

speed up the process. An additive manufacturing test sample was created

with voids to see if they can be detected.

The uncertainty of the projection was modelled using a compound Pois-

son distribution. This arises from x-ray photon arrivals being a Poisson

process and each photon has random energy. This results in a linear rela-

tionship between the mean and variance of the grey values in the projec-

tion. Fitting of the compound Poisson distribution using the expectation-

maximisation algorithm was unsuccessful due to identifiability issues with

the model. Instead, a gamma-distributed generalised linear model was fit-

ted onto sample variance-mean data and used for variance prediction to

quantify the uncertainty.

Software, called aRTist, was used to simulate the projection and com-

pared with the experimental projection in the face of uncertainty by treating

each pixel as a hypothesis test. To overcome the imperfections of the simu-

lation, the empirical null filter was used to cater for model misspecification

so that sensible inference was achieved. This was done by locally normalis-

ing the test statistics using the mode. Voids with diameters in the order of

millimetres were detectable.

This thesis is a contribution to real-time quality control in additive

manufacturing.
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Chapter 1

Introduction

In the field of engineering, additive manufacturing is an emerging technology

and has uses in producing bespoke products. Because it is a new form of

technology, the process is not well understood and tolerances are not as

precise as other forms of manufacturing. As a result, there exist methods

for quality control of additive manufactured products. Typically, this is

done using x-ray computed tomography and requires hundreds of x-ray

projections, making this a slow process.

The main aim of this thesis is to investigate if it is possible to speed

up the quality control process of additive manufactured products by using

only a few x-ray projections. By using fewer x-ray projections, uncertainty

is introduced. This can be tackled by using statistics because it enables the

sensible handling of uncertainty from sources of error such as random error

and systematic error.

The analysis was done by comparing the experimental projection with

a simulated projection to look for areas with disagreement in the face of

uncertainty. Random error can arise from how x-ray photons are produced

in an x-ray tube and how they interact with the additive manufactured

product and the x-ray detector. This was modelled by using the compound

Poisson distribution. Incorrect simulation of the projection contribute to

systematic error and this was corrected using the empirical null filter. These

sources of error were considered in the comparison of the projections with
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the use of hypothesis testing.

The front cover shows the before and after of the statistical analysis.

The left-hand side shows an x-ray projection of an additive manufactured

cuboid. Its edges appeared curved due to spot and panel effects and this

can be fixed using shading correction. The right-hand side shows the p-

values of the resulting inference. Lighter colours show evidence of a defect

and they successfully highlighted voids put in there purposefully.

In Chapter 2, x-ray computed tomography and additive manufacturing

is reviewed. Sources of error were investigated and it was discussed how they

were handled. In Chapter 3, a test sample was additively manufactured and

the chapter describes how experimental x-ray projections were obtained.

Shading correction is explained here and it was used to remove sources of

systematic error in the projections. In Chapter 4, the compound Poisson

distribution is studied so that it can be used to model the detection of x-rays.

In Chapter 5, the uncertainty in the projection was quantified using the

variance and generalised linear models were used to predict it. In Chapter

6, novel statistical techniques were developed and implemented to look for

defects in the test sample in the face of uncertainty. This was done by

comparing the experimental projection with a simulated projection and

looking for any disagreement. The empirical null filter was used to cater

for any model misspecification so that sensible conclusions were made. The

thesis ends with an evaluation in Chapter 7.

The results presented in this thesis can be reproduced using the

source code in the GitHub repository https://github.com/shermanlo77/

oxwasp_phd.

https://github.com/shermanlo77/oxwasp_phd
https://github.com/shermanlo77/oxwasp_phd
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Chapter 2

Literature Review

One of the first methods of additive manufacturing (AM) is stereolithogra-

phy (Kodama, 1981; Hull, 1986; 3D Systems Inc., 2019a) which involves the

curing of a photosensitive resin using an ultraviolet laser. The technology

has evolved and AM is capable of manufacturing objects with complicated

internal and external geometries, some examples are shown in Figure 2.1.

However, there is a need for product inspection and in particular assessing

the quality of the internal structures.

Imaging using x-rays (Röntgen, 1896) has been used in the medical field.

In x-ray computed tomography (Cormack, 1973; Hounsfield, 1973, 1980),

the patient has an x-ray image taken at multiple angles. These x-ray images

are used to reconstruct what was taken in 3D to make a diagnostic.

X-ray computed tomography (XCT) can be used as a non-destructive

test for AM products. Various reviews on AM exist such as Kruth (1991);

Kruth et al. (1998); Pham and Gault (1998); Gibson et al. (2010); Wong

and Hernandez (2012); Ngo et al. (2018). For XCT used in manufacturing,

there are Cantatore and Müller (2011); Kruth et al. (2011); Sun et al. (2012).

Thompson et al. (2016) reviewed the applications of XCT on AM.

In this chapter, AM is reviewed followed by XCT. The latest research

for the use of XCT on AM is reviewed at the end of the chapter.
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Figure 2.1: Examples of additive manufactured parts: a) lattice structure,

b) toy, c) chain, d) model of a facial implant, e) spanner, f) ratchet mech-

anism, g) toy, h) series of rotatable gears, i) lattice structure. Republished

with permission of Springer New York, from Gibson et al. (2010); permis-

sion conveyed through Copyright Clearance Center, Inc.

2.1 Additive Manufacturing

Loosely, AM involves solidifying material onto a moving platform so that

the object is manufactured layer by layer. Typically, this is a slow and

expensive method compared to destructive methods such as computer nu-

merical control (CNC) machining for example. An advantage of AM is that

the setup cost is low, in particular, destructive methods require planning

and setting up various apparatus before the manufacturing stage (Gibson

et al., 2010). This makes it suitable to manufacture bespoke items which

achieves the goals of AM’s predecessor called rapid prototyping (Kruth,

1991).
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Various AM technologies were invented during the advancement of AM.

Because of this, there are various applications of AM, for example in medical

and biomedical sciences (Kang et al., 2016; Kourra et al., 2018), engineering

(Cooper et al., 2015), food engineering (Godoi et al., 2016) and art (Ornes,

2013; Grossman, 2019).

Additive Manufacturing Technologies

The different AM technologies can be classified based on the apparatus,

for example, liquid-based or powder-based, and/or on the method of man-

ufacturing, for example, point by point or layer by layer (Kruth, 1991).

The liquid-based AM technologies presented here are stereolithography (Ko-

dama, 1981; Hull, 1986; 3D Systems Inc., 2019a) and fused deposition mod-

elling (Crump, 1991, 1992; Stratasys Ltd., 2019). The following powder-

based technologies are presented here: 3D printing (Sachs et al., 1990), se-

lective laser sintering (Deckard, 1989; DTM Corp., 1990; 3D Systems Inc.,

2019a), electron beam melting (Larsson and Larsson, 2004; Arcam AB ,

2019), laser engineered net shaping (Atwood et al., 1998). Illustrations of

these technologies are shown in Figure 2.2.

Stereolithography is a liquid-based AM technology. It consists of a con-

tainer containing a liquid photo-hardening monomer or polymer as well as

a piston and platform which holds and moves the manufactured product up

and down. A laser with a specific wavelength, typically 300 nm to 400 nm

(Kodama, 1981), is emitted onto a point of the surface of the liquid and

solidifies. The laser is controlled by a computer to solidify specific parts of

the liquid surface. The platform is lowered and the cycle repeats, manufac-

turing the object layer by layer. Laser absorption happens a few tenths of

a millimetre which corresponds to the thickness of each layer (Kruth, 1991;

Pham and Gault, 1998).

Fused deposition modelling is another liquid-based AM technology. A

jetting head, or nozzle, deposits the molten material onto a platform or

on top of the previous layer. The material is usually plastic in the form

of a thin filament. It is heated to just above its melting points, typically
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(a) Stereolithography (b) Fused deposition modelling

(c) 3D printing

(d) Selective laser sintering

Figure 2.2: Diagrams of various AM technologies. Reprinted from Wang

et al. (2017a)©, with permission from Elsevier.
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1 ○C (Crump, 1992), so that it cools down within 0.1 s (Kruth, 1991). The

platform moves, and controlled by a computer, in the xy-plane, or left to

right and front to back, to produce a layer. The jetting head can move in

the z-axis, or up and down, to manufacture the next layer. In the original

patent by Crump (1992), the thickness can be as thin as 0.000 1 inches

(0.003 mm).

3D printing is a powder-based AM technology. A jetting head deposits

a binding agent in droplets onto a bed of powder of ceramic, metal or

polymer. The binding agent is cured via evaporation or heating which

glues the powder particles together. The jetting head can move in the xy-

plane and the object is manufactured layer by layer by moving the platform

in the z-axis and renewing the powder using a roller. The binding agent

must have a low viscosity so it can be deposited and may also be charged so

that it can be deflected using an electric field for precise deposition (Sachs

et al., 1990). The thickness of each layer is determined by the size of the

droplets of the binding agent, which can be as small as 15 µm in diameter

(Sachs et al., 1990). Sachs et al. (1990) reported a tolerance of 0.001 inches

(0.03 mm).

Selective laser sintering, electron beam melting and laser engineered

net shaping are powder-based AM technology. Selective laser sintering is

similar to 3D printing, but instead, a laser is used to sinter or fuse the

powder particles in a chamber heated just below the melting point of the

material (Wong and Hernandez, 2012). Various materials such as metals

and plastics can be used (Wong and Hernandez, 2012). Electron beam

melting is similar, but instead of a laser, an electron beam is used. This is

done in a high vacuum chamber to avoid oxidation (Wong and Hernandez,

2012). In laser engineered net shaping, a powder bed is not used; the

powder is deposited on the desired location and then melted using a laser,

as shown in Figure 2.3. This is a popular method to manufacture metal

objects (Gibson et al., 2010).

There are many more AM technologies but they can be found in nu-

merous review literature. A comparison of the mentioned AM technologies

available at the time was done by Pham and Gault (1998); Kim and Oh
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Figure 2.3: Laser engineered net shaping. Reprinted from (Wong and Her-

nandez, 2012) under the CC BY 3.0 license.

(2008). Factors such as material cost, mechanical properties and the reso-

lution of the manufacturing were considered. There are also safety aspects

to assess, for example, powder in powder-based methods can escape into

the environment and the liquid used in stereolithography is toxic, sticky

and has spilling risk (Kim and Oh, 2008). This makes fused deposition

modelling a popular choice and can be used in an office environment (Ngo

et al., 2018).

The strength of the manufactured object varies from geometry to ge-

ometry but also from direction to direction. Because the manufactured

object is made layer by layer, the strength varies if the load was applied

in the building direction (vertical) or the scanning direction (horizontal)

(Kim and Oh, 2008). Experimental results have shown that fused deposi-

tion modelling has superior strength in the scanning direction but weak in

the building direction (Kim and Oh, 2008).

The strongest manufacturing methods were found to be powder-based

methods and stereolithography, however, they are slow and material costs

are high (Kim and Oh, 2008). Fused deposition modelling has low costs

and high speeds but suffers from weak mechanical properties (Ngo et al.,

2018).

The materials available for each AM technology varies. The materi-

als used in stereolithography is limited because of the use of liquids with

photo-hardening properties (Ngo et al., 2018). Fused deposition modelling
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Figure 2.4: An example of a CAD model (left) converted to an STL file

(right). Republished with permission of Springer New York, from Gibson

et al. (2010); permission conveyed through Copyright Clearance Center,

Inc.

is limited to plastics (Ngo et al., 2018). Selective laser sintering and laser

engineered net shaping can manufacture objects using metals such as alu-

minium alloys, steel, titanium and titanium alloys (Herzog et al., 2016).

Pre/Post Processing

The blueprint of the object to be manufactured is called a computer-aided

design (CAD) model. For it to be processed by an AM apparatus, the CAD

model is converted to an STL file (3D Systems Inc., 1989, 2019b) which rep-

resent surfaces by a series of triangles, an example is shown in Figure 2.4.

STL stands for stereolithography but could also be called standard tessel-

lation language (Wong and Hernandez, 2012). Some accuracy is lost here

as the surface of the CAD model is represented approximately by triangles

(Gibson et al., 2010). The STL file is then sliced into layers (Jamieson and

Hacker, 1995; Vatani et al., 2009) so that the AM apparatus knows what

to build for each layer.

When the AM object is manufactured, post-processing techniques can

be done at this stage. For example, sanding may be done to smooth the

surfaces (Gibson et al., 2010). The manufactured object may be inspected

for pores or defects by comparing the x-ray projection of the object with

the CAD model (Lee and Tarbutton, 2015; Villarraga-Gómez et al., 2015;
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Kim et al., 2016).

As with any apparatus, regular maintenance is required (Bell, 2014).

Defects and Quality Control

There are various discontinuities in AM. In fused deposition modelling, a

staircase effect on the surface of the product arises from poor slicing meth-

ods of the CAD model (Weeren et al., 1995). Internal voids can be formed

due to insufficient material flow (Weeren et al., 1995). Other factors which

can cause defects include misalignment of the platform or nozzle, depletion

of material and lack of adhesion due to low temperatures (Günaydin and

Türkmen, 2018).

There are also problems in the manufacturing of metal parts (Everton

et al., 2016), for example, gas can become trapped during the manufacturing

process forming gas pores in the manufactured object (Thijs et al., 2010;

Tammas-Williams et al., 2015). These gas pores can be 5µm to 20 µm in

diameter (Everton et al., 2016).

Layers may not fuse and form elongated pores. This can be fixed by

increasing the energy of the beam but increasing it too much will cause

evaporation of the AM part (Mumtaz et al., 2008). These pores can be

50µm to 500 µm in size (Everton et al., 2016) and can be observed using a

scanning electron microscope as shown in Figure 2.5.

Low wetting ability of the melt pool can cause balling which is where

the sintered powder has poor contact on the existing layer causing spherical

particles to form on the surface of the AM part (Li et al., 2012; Gu and

Shen, 2009). The spherical particles can vary in size of 10µm to 500µm

(Li et al., 2012). The balling effect can be reduced by ensuring low oxygen

content in the environment (Niu and Chang, 1999) and using higher energy

beams (Gu and Shen, 2009). Some examples are shown in Figure 2.6 using

an electron scanning microscope.

Cracks can form due to extreme temperature changes and gradients

(Mercelis and Kruth, 2006; Zaeh and Branner, 2010).

The manufacturing process can be monitored, this is called online or
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Figure 2.5: A scanning electron microscope image of a) pores and b) elon-

gated pores from an electron beam melting manufactured object. Reprinted

from Tammas-Williams et al. (2015) under the CC BY 4.0 license.

Figure 2.6: A scanning electron microscope image of balling on a selective

laser melting manufactured object. Reprinted by permission from Springer

Nature: Li et al. (2012)©.
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in-situ process monitoring (Everton et al., 2016). The idea is that problems

during the manufacturing process are found as soon as possible before the

final product is spoiled (Cerniglia et al., 2015). Various methods are used

for in-situ process monitoring, for example, a high-speed camera can be in-

stalled to capture the various wavelengths in the electromagnetic spectrum

emitted by the melt pool (Berumen et al., 2010; Craeghs et al., 2011; Lott

et al., 2011). Various discontinuities and errors can be detected (Clijsters

et al., 2014) and be used to give feedback to the AM apparatus (Herzog

et al., 2013). Other methods include measuring the surface using a laser

(Cerniglia et al., 2015) and using an infrared camera to measure the tem-

perature of the melt pool (Rodriguez et al., 2012).

2.2 X-ray Computed Tomography

XCT started its use in the medical field but the advancement of the tech-

nology saw its use in manufacturing and metrology, the science of mea-

surement. Applications of XCT include the examination of acetabular hip

prosthesis cups (Kourra et al., 2018), skeletons (Appleby et al., 2014), bat-

teries (Taiwo et al., 2017) and materials (Zhang et al., 2016; Wang et al.,

2017b). XCT can be used to reverse engineer existing products and improve-

ments can be fabricated using AM, for example, it was used for improving

existing hollow engine valves (Cooper et al., 2015). However, the use of

XCT in metrology is not yet firmly established compared to other methods

of measurement (Thompson et al., 2016). This is because there are a lot

of inconsistencies in the setup of XCT apparatuses and on controlling the

sources of error.

Concepts from the Medical Field

The setup of XCT (Cormack, 1973; Hounsfield, 1973, 1980) in the medical

field involves the patient laying on a flatbed. An x-ray source and x-ray

detector pair rotate around and translate along the patient to get readings

of the x-rays after attenuating through the patient via different paths. X-
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Figure 2.7: In medical XCT, a fan-shaped x-ray beam is emitted and at-

tenuate through the patient and detected by a detector. The x-ray source

and detector rotate around and translate along the patient. By collecting

readings at different angles, the image of the patient can be reconstructed.

Reprinted from Michael (2001). © IOP Publishing. Reproduced with per-

mission. All rights reserved.

ray beams were pencil beams in the early versions of XCT (Michael, 2001).

To reduce scanning times, fan-shaped beams and arrays of detectors were

used and they can move in a spiral fashion along and around the patient

(Cierniak, 2011). These multiple x-ray readings can be used to reconstruct

a representation of the patient in 3D (Zeng, 2010). This is illustrated in

Figure 2.7.

The patient cannot be exposed to too much radiation, therefore the x-

rays used are of low power which can cause noisy readings from the detector.

The sources of noise are from the behaviour of the x-rays and the electronics

in the detector (Yang et al., 2010). In this realm of low signal to noise

ratio, the noise has a compound Poisson element to it (Whiting, 2002;

Whiting et al., 2006). Many reconstruction algorithms have been proposed

to consider the compound Poisson noise (Elbakri and Fessler, 2002, 2003;

Elbakri, 2003; Lasio et al., 2007; Xie, 2008).
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Figure 2.8: The setup of XCT used in metrology. Reprinted from Warnett

et al. (2016) under the CC BY 3.0 license.

Acquisition Process in Manufacturing

In manufacturing and metrology, high power x-rays can be used in XCT

because there is no consequence of the manufactured object absorbing the

radiation. As a result, the XCT setup is different. The object is held

by foam on a turntable and placed between an x-ray source and an x-ray

detector. X-ray projections are taken while the object rotates. Typically,

the x-ray is a cone-beam (Kruth et al., 2011). This is illustrated in Figure

2.8.

The acquisition process consists of the production of x-rays, x-rays at-

tenuating the object, the detection of x-rays and the reconstruction process.

X-rays (Röntgen, 1896) are produced in an x-ray tube, a diagram shown

in Figure 2.9. It consists of a vacuum tube containing a cathode and an

anode. Electrons are fired from the cathode to the anode due to an electric

potential. The cathode is usually tungsten and the anode contains a small

amount of tungsten, molybdenum or copper (Sun et al., 2012).

The electrons can interact with the anode in many ways. The electrons

can be deflected or decelerated due to the electric field from the nucleus

of the target anode material. The energy lost by the electrons is emitted
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Figure 2.9: An x-ray tube. Reprinted from Michael (2001). © IOP Pub-

lishing. Reproduced with permission. All rights reserved.

as bremsstrahlung radiation. The energy of the radiation depends on the

potential difference in the x-ray tube, as this determines the energy of the

fired electrons, and also the proton number of the anode target because this

affects the electric field produced by the nucleus in the anode target (Sun

et al., 2012). Another interaction is when the electrons may collide with

the nucleus in the anode target, exciting an inner shell electron and ionising

it. This produces a vacancy in the electron shell and emits a photon when

the excited electron drops down back to the ground state. This is known

as characteristic radiation and the energy emitted is discrete and depends

on the material in the anode target (Sun et al., 2012).

The efficiency of an x-ray tube is poor. Over 99% of the energy from

electrons is converted to heat, the rest to x-rays (Kruth et al., 2011).

Photons, making up the radiation, are emitted from the x-ray tube

which can be modelled as a Poisson process (Whiting et al., 2006; Cierniak,

2011). The rate of x-ray emission depends on the current, that is the rate

of charge between the cathode and anode. Sources of energy of each photon

come from bremsstrahlung radiation and characteristic radiation, making

the distribution of x-ray photons energy a mix of continuous and discrete
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Figure 2.10: An example of the distribution of energies a photon can have

emitted from an x-ray tube. Bremsstrahlung and characteristic radiation

contribute to the continuous and discrete components of the distribution.

Reprinted from Michael (2001). © IOP Publishing. Reproduced with

permission. All rights reserved.

energies (Sun et al., 2012). An example is shown in Figure 2.10.

The scanned object is exposed to x-ray photons which undergo atten-

uation when interacting with the object in several ways (Cantatore and

Müller, 2011). The object can absorb the photons via the photoelectric

effect. In the photoelectric effect, a photon transfer all of its energy to a

bounded electron and ejects it from the atom in the object (Millikan, 1916).

Photons can be scattered by the object by colliding inelastically with and

transfers its energy to an electron. This process is known as Compton scat-

tering (Compton, 1923). The photoelectric effect and Compton scattering

cause several photons to be undetectable. If some of the photons avoid

these processes, they are detected with their energy unaffected.

Beer’s law simplifies these quantum mechanistic process. Suppose the

x-ray beam with a rate of emission I0 is mono-energetic and travels in a

straight line in the x-axis. Let µ(x) be the attenuation coefficient of the

object and the x-ray beam has a rate of emission I after attenuation. A

differential equation can be set up to model the decay of photons as it
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attenuates through the object such that

dI

dx
= −Iµ(x) (2.1)

which can be solved

I = I0 exp [∫
x∈path of photon

−µ(x)dx] . (2.2)

However, the photoelectric effect and Compton scattering, thus the atten-

uation coefficient as well, depends on the energy of the photons (Elbakri

and Fessler, 2002). Therefore µ(x,E) should be made dependent on the

energy of the photons (Cantatore and Müller, 2011) and can cause some

inaccuracies in Beer’s law. In general, low energy photons are more likely

to be absorbed and scattered than high energy photons, which increases the

average energy of the detected photons (Sun et al., 2012). This is called

beam hardening.

After attenuation, the x-ray photons are detected by the x-ray detec-

tor. The detectors used in XCT are typically flatbed scanners made up

of a scintillator material (Curran, 1953; Greskovich and Duclos, 1997) and

photodiodes. The x-ray photons interact with the scintillator material and

produce visible light pulses (Rossner et al., 1993). These pulses are de-

tected by photodiodes and converted into an electrical signal (Nikl, 2006;

Ren et al., 2018). The electrical signal can be a quantum counter, counting

the number of photons detected, or an energy integrating detector, adding

up all of the energies of each detected photon (Nikl, 2006; Whiting et al.,

2006; Kruth et al., 2011; Ren et al., 2018). The electrical signals are subject

to sampling and quantisation to store these signals as an image (Cierniak,

2011). This image is known as a projection.

Not all of the visible light pulses are detected by the photodiodes, thus

not all the x-ray photons are detected. The ratio between the number of

x-ray photons detected by the detector and the number of x-ray photons

arriving at the detector is called the quantum efficiency (Cierniak, 2011; Ren

et al., 2018). This makes the detection a two-stage process, converting the

x-ray photons into visible light which are then detected (Cierniak, 2011).

There exist equipment which detects x-ray directly such as a xenon gas
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ionisation detector (Fuchs and Kachelrie, 2000) but this is unrivalled by

solid-state CT systems, such as scintillator-photodiodes detectors, which

have a high quantum efficiency of about 98% to 99.5% (Hsieh et al., 2000).

Once projections of the object have been acquired at multiple angles,

the reconstruction process can start. The objective of reconstruction is to

estimate the attenuation coefficient of the object at each point in space

µ(x, y, z) using the x-ray projections. This is done using the fact that

the projections are based on the line integral of the attenuation coefficient

along the path of photons. This problem was formed by Radon (1986)

as the ‘determination of functions from their integral values along certain

manifolds’.

A number of reconstruction algorithms in XCT have been developed

(Smith, 1990) such as the filtered back-projection (Brooks and Di Chiro,

1976) and the FDK algorithm (Feldkamp et al., 1984). Once the recon-

struction has been done, the shape or surface can be extracted by the use

of thresholding (Kruth et al., 2011). There are many software packages

available for the reconstruction stage of XCT (Reinhart, 2008; Sun et al.,

2012).

Metrology in Practice

XCT can be used to measure lengths and distances, making it useful for

measuring the dimensions of AM objects internally and externally. Nikon

offer products and services for XCT including features such as direct com-

parison to the CAD model (Nikon Metrology NV , 2015b, 2018b) and auto-

mated production line inspection (Nikon Metrology NV , 2015a, 2018a).

As with a lot of measurement apparatus, calibration is required. In

XCT, the scale of each voxel in the reconstruction can be obtained by

using XCT on an object with pre-determined lengths, these are known as

reference standards (Bartscher et al., 2007) but can have similar names.

Reference standards can vary in geometry such as a sphere on a cylinder

(Lifton et al., 2013), two spheres on a cylinder (Sun et al., 2016a), a cube

with cut-outs (Kiekens et al., 2011), a hollow cylinder, a step-cylinder and
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(a) Hollow cylinder (b) Step-cylinder

(c) Ball-bar

Figure 2.11: Various reference standards: a) aluminium hollow cylinder,

outer diameters 30 mm and 20 mm, b) aluminium step-cylinder with diam-

eter 300 mm, c) ceramic balls of diameter 30 mm on a carbon fibre rod, the

balls are separated by 100 mm. Reprinted from Bartscher et al. (2007)©

with permission from Elsevier.

a ball-bar (Bartscher et al., 2007); the latter three are shown in Figure 2.11.

There are many variables in XCT and a lot of them have to be controlled,

for example, XCT should be done in room temperature to avoid any thermal

variation (Bryan, 1990), however, this can be hard to do when the x-ray

tube is a heat source (Kruth et al., 2011).

The potential difference and current of the x-ray tube can be adjusted to

control the contrast and brightness of the x-ray projection. The exposure

time is also a factor. These settings should be set high enough to avoid

beam extinction but low enough that there is a contrast where less material

is present (Kruth et al., 2011).

The magnification can be modified by altering the distances between the

x-ray tube, the object and the x-ray detector. Increasing the magnification

increases the image resolution but can cause blurry images, this is the result

of using an x-ray source with a finite spot size as shown in Figure 2.12
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Figure 2.12: The magnification can be tuned by adjusting the distances

between the x-ray source, the object and the x-ray detector. Because of a

finite x-ray spot size, blurry effects are produced using a magnification too

large. Reprinted from Kruth et al. (2011)© with permission from Elsevier.

(Kruth et al., 2011). Larger spot sizes cause more blurry results, this is

known as the penumbra effect (Kueh et al., 2016). However, spot sizes too

small can produce concentrated heat (Welkenhuyzen et al., 2009) and can

damage the x-ray tube.

There is also the question on how to orient the object on the turntable

(Corcoran et al., 2016) as well as how many angles to use (Kruth et al.,

2011). More angles produce a more accurate reconstruction but require

more acquisition time. Figure 2.13 shows an example of a reconstruction

using various numbers of angles.

All of the parameters of XCT discussed can be determined before the

XCT process by use of simulations (Reisinger et al., 2011; Reiter et al.,
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Figure 2.13: A reconstruction when scanning three aligned balls using a dif-

ferent number of angular projections. Reprinted from Kruth et al. (2011)©

with permission from Elsevier.

2011), however, there may be inconsistencies. For example, even though

the target material of the anode and power is specified, the energy spectrum

can still vary (Stumbo et al., 2004).

Problems can occur in the detector, for example, pixels in the acquired

projection can be defective or dead (Brettschneider et al., 2014), the panel

structure of the detector can be observed (Yang et al., 2009) and the cone-

beam appears as a spot. The x-ray spot could be fitted by using a mixture of

a Gaussian spot and a uniform spot (Kueh et al., 2016). Another problem is

that there exist spatially correlated noise within a projection which can be

detected experimentally (Sun et al., 2016c) as well as a correlation between

acquisitions, known as image lag (Yang et al., 2009). Precautions can be

taken to reduce the impact from image lag such as waiting for 20 minutes

between acquisitions (Yang et al., 2010).

Errors due to beam hardening can occur. Low energy photons are more

likely to be absorbed or scattered, which causes a few millimetres of the

surface of the object to absorb or scatter more photons than the interior.

This can cause artefacts (Sun et al., 2016b) such as flat surfaces to be
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(a) No filter (b) Al/Cu filter

Figure 2.14: A reconstruction of a hollow cylinder, outer diameter 6.0 mm

and inner diameter 0.6 mm. In a), no filter was used. In b) a filter was

placed in front of the x-ray tube. Reprinted from (Kruth et al., 2011)©

with permission from Elsevier

barrelled and edges rounded off (Kruth et al., 2011). Beam hardening can

be tackled by eliminating the low energy photons by placing a filter, a

thin metal plate, in front of the x-ray tube (Welkenhuyzen et al., 2009),

for example, copper. Figure 2.14 shows an example of reconstruction with

and without a filter. Without the filter, the interior of the object appears

less dense than it should be. A filter reduces the rate of photon emission

but this can be compensated by increasing the exposure time (Kruth et al.,

2011). Early reconstruction algorithms ignored beam hardening but modern

methods can take beam hardening into account (Elbakri and Fessler, 2001;

Sun et al., 2016b).

The most common reconstruction method is the FDK (Feldkamp et al.,

1984) algorithm because it caters for cone beams. However, it assumes a cir-

cular trajectory from the source which can cause artefacts if the trajectory

is not circular (Sun et al., 2016b).
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Latest Research

The most common use of XCT in AM is the investigation of pores in the

manufactured object (Thompson et al., 2016). Pores can be classified as

defects if the pores are larger than some volume threshold. This threshold

controls the probability of the detection of defects (Gandossi and Annis,

2010; Amrhein et al., 2014).

The porosity is defined by dividing the volume of all of the pores by the

volume of solid material (Taud et al., 2005). This can be used to quantified

the material’s strength and can be measured accurately using Archimedes’

method (Spierings et al., 2011). Studies have been done to link porosity

to stress concentration (Leuders et al., 2015; Siddique et al., 2015; Carlton

et al., 2016) and it was found the location of the pores is a good predictor

of fatigue strength (Leuders et al., 2015). XCT can be used to measure

porosity and has an advantage over Archimedes’ method because the loca-

tion of the pores can be visualised in XCT. An example of visualising pores

is shown in Figure 2.15 and the pores can be compared to the CAD model

(Lee and Tarbutton, 2015; Villarraga-Gómez et al., 2015; Kim et al., 2016).

In addition to pores, any surface deviation can be measured by aligning the

reconstruction with the CAD model and measuring any discrepancies (Lee

and Tarbutton, 2015; Villarraga-Gómez et al., 2015; Kim et al., 2016), an

example is shown in Figure 2.16.

One of the disadvantages of XCT is that it is a slow process. XCT is

not an instantaneous process so progress bars are usually featured in XCT

marketing such as Nikon Metrology NV (2015a)’s inline quality control.

The reconstruction can take between 5 minutes to several hours (Warnett

et al., 2016). More angular projections would take more time but will

improve the accuracy of the reconstruction (Kruth et al., 2011). Warnett

et al. (2016) improved the speed of XCT by sacrificing the accuracy of the

reconstruction. This was done by placing the object on a conveyor belt

surrounded by multiple x-ray source and detector pairs as shown in Figure

2.17. Fewer angular projections were taken but they can be obtained in one

go, speeding up the process.
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(a) Reconstruction (b) Sample from the reconstruction

Figure 2.15: The reconstruction can show pores in the manufactured object.

b) shows the reconstructed samples from the blue cubes in a). Reprinted

from Tammas-Williams et al. (2015) under the CC BY 4.0 license.

Instead of reconstructing the object, the analysis can be done on the

projections itself, or in projection space, by comparing it to a simulated

projection produced by a software called aRTist (Bellon and Jaenisch, 2007;

Jaenisch et al., 2008; Bellon et al., 2012). It can simulate projections of

the object given the specifications of the CT apparatus, such as the x-ray

source and the x-ray detector, and the CAD of the object (Bellon et al.,

2011; Deresch et al., 2012).

An algorithm was developed to adjust the parameters of the simulation

as well as aligning it so that it fits with the x-ray acquisition (Brierley

et al., 2018). However, it is very complicated as it is optimising over a very

large dimensional space (Brierley et al., 2018). Studies have been conducted

comparing simulated projections with each other, one with defects and the

other without, by looking at the contrast to noise ratio of the defects. This
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(a) External (b) Internal

Figure 2.16: The reconstruction was aligned and compared to the CAD

model. The surface heat map shows the surface deviation (or ‘variance’ in

the literature) externally (a) and internally (b). Reprinted from Warnett

et al. (2016) under the CC BY 3.0 license.

Figure 2.17: XCT can be done on a conveyor belt surrounded by x-ray

source and detector pairs. Reprinted from Warnett et al. (2016) under the

CC BY 3.0 license.
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is done at various projection angles as part of a large optimisation problem

(Brierley et al., 2018). Another method is to use machine learning methods

to classify defects from a projection (Rale et al., 2009).

It is however inevitable that accuracy is lost from the transition from

reconstruction space to projection space, for example, in the diagnostic

of pneumonia, a CT scan has superior performance compared to a chest

radiograph (Hayden and Wrenn, 2009).
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Chapter 3

Data Collection

The objective is to investigate if voids can be detected using a single pro-

jection. The quality control procedure can be sped up if defect detection

can be done in projection space rather than reconstruction space. An ex-

periment was conducted where a test sample was additively manufactured

with purposely designed voids. This was done by comparing a projection

of the test sample with the simulation of that projection as if the voids

were not there. The simulated projections were produced by using soft-

ware called aRTist (Bellon and Jaenisch, 2007; Jaenisch et al., 2008; Bellon

et al., 2012). Any disagreement in the comparison can suggest evidence of

a defect.

This chapter describes the apparatus used to manufacture the test sam-

ple and obtaining the projections. There is also a discussion, at the end

of the chapter, on shading correction which was used to remove panel and

x-ray spot effects from the projections.

Many figures presented here were given by engineers concerning the ex-

periment or by the manufacturer. Figures with no error bars were rounded

to an appropriate number of significant figures.
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Figure 3.1: The CAD model of the test sample. The scale is approximate.

3.1 Apparatus

The test sample is a cuboid (40.0 mm × 40.0 mm × 60.0 mm) with voids.

The voids were of diameters 2.4 mm, 1.2 mm, 0.6 mm and 0.3 mm. 6 voids

for each diameter were designed in the CAD model. Voids with diameters

2.4 mm and 0.6 mm were regularly arranged, the other ones were arranged

irregularly. The CAD model of the test sample is shown in Figure 3.1.

The Fortus 400mc (Stratasys, US) was used to manufacture the test

sample made of plastic (acrylonitrile butadiene styrene or ABS). The pre-

cision of the manufacturing was in the order of ±0.1 mm (Hanssen, 2013).

X-ray projections were obtained using the Nikon XT H LC 225/320 x-

ray CT scanner (Nikon Metrology, UK ) together with a Perkin Elmer XRD

1621 (Perkin Elmer, US) detector. The target material in the x-ray tube

was tungsten. A 0.35 mm copper filter was used to tackle beam hardening.

The detector was made up of 2 rows and 16 columns of panels and together

has dimensions of 409.6 mm×409.6 mm which produced a 16-bit projection

of 2048 px×2048 px in size (PerkinElmer Optoelectronics , 2006). Therefore,

the scale of each pixel is 200.0µm px−1. The projections were cropped to

2000 px × 2000 px to remove boundary effects. The gain and offset were

adjusted by the engineers to produce a projection with good contrast and
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negligible penumbra effect. Each pixel has a grey value in units of analogue

to digital units (ADU).

Greyscale projections were taken in addition to the projection of the

test sample. These are projections with nothing between the source and

the detector, obtained with the x-ray tube at different powers. The power

was varied by fixing the potential difference and varying the current. The

greyscale projections were used for calibration such as shading correction.

The greyscale projection with the x-ray turned off is called the black image.

The greyscale projection with the x-ray set up the same when obtaining the

test sample projection is called the white image.

Replicate test sample projections and greyscale projections were ob-

tained by repeating the acquisition. These replicated projections were used

to study the noise observed in the projections.

aRTist was used to simulate the test sample projection and all greyscale

projections except for the black image. The black image was simulated by

producing a uniform image with a grey value the mean over the obtained

black image. The engineers used numerical methods to align the simulated

projection with the obtained projection.

3.2 Datasets

Two datasets were collected and named AbsNoFilter and AbsFilter. They

contain replicate projections of the test sample at two different angles,

named 30° and 120°, as well as replicate greyscale projections. To investi-

gate the effects of beam hardening, no x-ray filter was used in AbsNoFilter

and a filter was used in AbsFilter.

The properties of each dataset are shown in Table 3.1. These include

the properties of the x-ray tube, the XCT apparatus and what powers were

used in the greyscale projections. A sample of the obtained, simulated and

greyscale projections from the datasets AbsNoFilter and AbsFilter are

shown in Figures 3.2 and 3.3 respectively.

The projections show the test sample, but, with panel and spot effects.

The structure of the 32 panels are predominate in the black image, in par-
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ticular, this was observed by Yang et al. (2009) as well. This is concerning

because systematic errors could be introduced as a result of the panel effects

in the black image. A black image should be flat because the detector is

exposed only to background radiation. The x-ray spot can be observed, in

particular, in the white image, and this is the result of using a cone beam.

3.3 Shading Correction

Shading correction, also known as flat field correction, aims to eliminate

any spatial variation in sensitivity, observed in the projections, as a result

from panel effects, spot effects and other artefacts. Shading correction is

done by using the greyscale projections and examining how the grey values

respond to different powers for different pixels. For example, the black and

white images can be used to correct the projections using

Ux,y =
Nx,y − blackx,y

whitex,y − blackx,y
×B +A (3.1)

where Nx,y is the obtained projection, Ux,y is the shading corrected pro-

jection and A and B are some user defined constants (Young, 2000;

Münzenmayer et al., 2003). This can be extended to include more greyscale

projections by modelling the grey value to respond linearly to the power of

the x-ray source (Seibert et al., 1998). More generally, shading correction

can be expressed as

Ux,y = βx,yNx,y + αx,y (3.2)

where αx,y and βx,y are some spatially varying functions (Münzenmayer

et al., 2003). This model has limitations because αx,y and βx,y may depend

on the energy of each photon, thus beam hardening could cause inaccura-

cies in shading correction (Davidson et al., 2003). Other methods include

minimising the entropy of the projection while constraining αx,y and βx,y

to be some parametric function (Likar et al., 2000) and using a low pass

filter to remove low spatial frequencies from the projections (Young, 2000;

Münzenmayer et al., 2003).

In this section, the shading correction in Seibert et al. (1998) is pre-

sented in a form without any user-defined constants. The shading correction
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Figure 3.2: AbsNoFilter projections at 30°. The colour scales are in units

of ADU.
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Figure 3.3: AbsFilter projections at 30°. The colour scales are in units of

ADU.
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was experimented to investigate its performance when shading correcting

greyscale projections.

Proposed Shading Correction

Let Sx,y(P ) be the greyscale projection when exposed to x-rays produced by

an x-ray tube with power P for some fixed time exposure τ . The projection,

Sx,y(P ), may be averaged over replications. Let x = 1,2,3, . . . ,W and y =

1,2,3, . . . ,H. Let Nx,y be the obtained projection of the test sample when

exposed to x-rays produced by an x-ray tube with power Pproj for some

fixed time exposure τ . The black and white images can be expressed as

blackx,y = Sx,y(0) and whitex,y = Sx,y(Pproj) respectively. The power was

varied by fixing the potential difference and varying the current of the x-

ray tube.

The shading free image is not known, but it is expected that the shading

corrected greyscale projection should be flat with some noise. In other

words, all pixels in a shading corrected greyscale projection should have

grey values with the same expectation µS(P ) and same variance σ2
S(P ).

Suppose µS(P ) was estimated using the within projection mean

S(P ) =
1

WH

W

∑
x=1

H

∑
y=1

Sx,y(P ) . (3.3)

Consider a pixel at (x, y), shading correction was done by fitting a linear

regression on

S(P ) = βx,ySx,y(P ) + αx,y (+ε) (3.4)

for P ∈ P where P = {0, P1, P2,⋯, Pproj} are the powers used for the greyscale

projections. ε is a random variable and an error term, it is included for

formality purposes. Let bx,y and ax,y be the estimated parameters of βx,y

and αx,y from the linear regression respectively. Given a projection Nx,y,

the shading corrected projection Ux,y is

Ux,y = bx,yNx,y + ax,y . (3.5)
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In full, the equations for bx,y and ax,y are given as

bx,y =
∑P ∈P(Sx,y(P ) − Sx,y)(S(P ) − S)

∑P ∈P(Sx,y(P ) − Sx,y)2
(3.6)

and

ax,y = S − bx,ySx,y (3.7)

where Sx,y is the between projection mean

Sx,y =
1

∣P∣ ∑P ∈P
Sx,y(P ) (3.8)

and S is the global mean

S =
1

∣P∣ ∑P ∈P
S(P ) . (3.9)

This type of shading correction shall be referred to as linear shading cor-

rection. Expressing shading correction in this way has the advantage that

there are no user defined constants.

An example of the linear regression is shown in Figure 3.4 where 3

random pixels were chosen for illustration. By plotting the within projection

mean versus the grey value for a particular pixel, a linear relationship can

be observed. The gradient varied for different pixels which correspond to

different sensitivities. The resulting shading correction for the AbsNoFilter

projection is shown in Figure 3.5. It can be observed that the shading

correction removed the panel and spot effects from the background and

test sample.

A variation of the shading correction which uses only the black and

white images such that P = {0, Pproj} shall be known as black/white (BW)

shading correction.

Exploratory Analysis

It was investigated if shading correction on a greyscale projection results in

an image which is flat with some noise. To avoid overfitting, one greyscale

projection from each power was held out and used to fit the parameters of
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Figure 3.5: Projection of AbsNoFilter at 30° with and without shading

correction. The colour scales are in units of ADU.
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Figure 3.6: Grey values in the greyscale projections before and after shading

correction using the AbsNoFilter dataset. The boxplots summarise all

2 000 × 2 000 pixels in a projection.

the shading correction. Shading correction was then used on the unused

greyscale projections in this exploratory analysis.

Figure 3.6 shows the grey values in each greyscale projections before and

after shading correction. The sensitivity of the pixels, which corresponds

to the gradient in units of ADU W−1, became more consistent with shading

correction. This should imply that pixels should respond similarly to each

other for varying power with shading correction

The AbsNoFilter black and white images before and after shading cor-

rection are shown in Figure 3.7. The flatness of the image can be shown

using a profile plot, this is a plot of the grey values along a column or row,

an example shown in Figure 3.8. The figure shows that the shading uncor-

rected black image was not flat but a remarkable structure was observed by

plotting the odd rows and even rows separately. Such a plot shows that the

grey values depend on neighbouring pixels, where the majority of pixels on

even rows have grey values larger than pixels above and below it. Perhaps

this is caused by the read-out structure in the detector.

The BW shading corrected black and white images appeared uniform

but there is some structure in the linear shading correction. By giving linear
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shading correction various greyscale projections, it attempts to generalise

to a range of powers, thus may struggle at shading correcting the black and

white images.

ANOVA

An experiment was conducted to quantify the performance of the different

types of shading correction. Applying shading correction on the greyscale

image should remove effects from the panels and the spot, leaving a flat

noisy image with no spatial structure. The variance within a pixel and

across replications should be similar to the variance between pixels within

a replication if shading correction flattens the greyscale images.

In each dataset, there are 20 replicated greyscale images for each power.

One randomly selected replication from each power was assigned to the

training set and used to calibrate the shading correction. The remaining

images were assigned to the test set and the shading correction was applied

to each image.

For each power, the within and between pixel variance was calculated.

Let U
(j)
x,y (P ) be the shading corrected greyscale image in the test set with

power P for j = 1,2, . . . ,m replicates. The within and between pixel vari-

ance are

s2w(P ) =
1

WH(m − 1)

W

∑
x=1

H

∑
y=1

m

∑
j=1

(U
(j)
x,y (P ) −Ux,y(P ))

2
(3.10)

and

s2b(P ) =
m

WH − 1

W

∑
x=1

H

∑
y=1

(Ux,y(P ) −U(P ))
2

(3.11)

respectively where

Ux,y(P ) =
1

m

m

∑
j=1

U
(j)
x,y (P ) (3.12)

and

U(P ) =
1

WH

W

∑
x=1

H

∑
y=1

Ux,y(P ) . (3.13)
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Figure 3.7: The black and white images before and after shading correction

from the AbsNoFilter dataset. The colour scales are in units of ADU.
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Figure 3.8: Left shows the profile plot of an AbsNoFilter black image at

(879, y) using various shading corrections. Right shows two curves for odd

and even y.
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In this specific experiment, W = 2000, H = 2000 and m = 19. The F statistic

is

F (P ) =
s2b(P )

s2w(P )
(3.14)

and it should be about one if the within and between pixel variances are

similar. The experiment was repeated 100 times by reallocating the training

and test set.

The results are shown in Figures 3.9 and 3.10 for the datasets

AbsNoFilter and AbsFilter respectively. With shading correction, the

within and between pixel variance became similar. A difference between

BW and linear shading correction was that for the black image, the F

statistic is closer to one for BW shading correction compared with linear

shading correction. For the rest of the powers, linear shading correction

outperformed BW shading correction. This shows that linear shading cor-

rection generalises to powers between zero and Pproj. Since beam extinction

is avoided, black grey values in the obtained projection should not be possi-

ble. As a result, the linear shading correction is recommended for its good

performance for various powers.

Using the F test from ANOVA was found to be too strict in this ex-

periment. Under the hypothesis that the grey values all have the same

mean and assume they are Normally distributed and i.i.d., then F (P ) ∼

FWH−1,WH(m−1). In this experiment, the 5% critical value is 1.001 to 3 dec-

imal places, this is too small for this analysis. This may be due to the grey

values of the greyscale projections not satisfying the assumptions for the F

test, for example, they may not be i.i.d.

Conclusion

Shading correction is important because it removes any panel and spot

effects from projections which may cause systematic errors in any statistical

analysis. Shading correcting the greyscale projections visually produced a

flat image but there was some spatial variation which was picked up by the

between pixel variances in ANOVA.
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Figure 3.9: One randomly selected greyscale image from each power was

used to train the shading correction which was then applied to the remain-

ing of the greyscale projections. The within and between pixel variance

were estimated and used to calculate a F statistic for each power. The

experiment was repeated by reselecting the greyscale projections used for

training the shading correction. The boxplots represent the 100 repeats.

The AbsNoFilter dataset was used here.
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Figure 3.10: One randomly selected greyscale image from each power was

used to train the shading correction which was then applied to the remain-

ing of the greyscale projections. The within and between pixel variance

were estimated and used to calculate a F statistic for each power. The

experiment was repeated by reselecting the greyscale projections used for

training the shading correction. The boxplots represent the 100 repeats.

The AbsFilter dataset was used here.
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Linear shading correction outperformed BW shading correction, in

terms of ANOVA, on all greyscale projections except for the black image.

This is because linear shading correction trains on greyscale projections of

various powers and generalises to these powers. Linear shading correction

is used throughout this thesis.

The variance of the greyscale projections was studied in this chapter.

This is straightforward because the greyscale projections are flat images.

The noise of a projection of a test sample is studied in the next chapter

and this was done by modelling the grey value of each pixel as a compound

Poisson random variable.
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Chapter 4

Compound Poisson

The grey value of each pixel in the detector can be modelled as a random

variable, due to the random behaviour of photons being produced, interact-

ing with the test sample and the scintillator in the detector. By modelling

using a random variable, the uncertainty can be quantified and considered

when conducting inference about any detected defects.

The compound Poisson distribution is studied here because of the com-

pound Poission-like behaviour from the detection of photons (Whiting,

2002; Elbakri and Fessler, 2003; Whiting et al., 2006). It is defined by

defining a latent variable Y ∼ Poisson(λ) with probability mass function

(p.m.f.) P(Y = y) = e−λ λ
y

y! for y = 0,1,2, . . ., where λ > 0 is the Poisson rate

parameter. Let Ui be some independent and identically distributed (i.i.d.)

latent random variables with probability density function (p.d.f.) pU(u) for

i = 1,2,3, . . .. Let X be a compound Poisson random variable where

X ∣Y =
Y

∑
i=1

Ui . (4.1)

The p.d.f. of X can be obtained by marginalising the joint p.d.f.

pX(x) =
∞

∑
y=0

pX ∣Y (x∣y)P(Y = y) for x ⩾ 0 . (4.2)

It should be noted that X = 0 if and only if Y = 0 and this happens with

probability P(Y = 0) = e−λ. This implies that X has probability mass at
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zero and probability density for positive numbers which results in the p.d.f.

pX(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

δ(x)e−λ for x = 0

∑
∞
y=1 pX ∣Y (x∣y)e−λ

λy

y! for for x > 0
(4.3)

where δ(x) is the Dirac delta function.

The compound Poisson distribution has applications in, for example,

modelling rainfall (Revfeim, 1984) and insurance claims (Jørgensen and

Paes De Souza, 1994; Smyth and Jørgensen, 2002).

This chapter starts with a literature review on the compound Poisson

distribution, how it is derived from the behaviour of photons, how its like-

lihood is evaluated and methods for fitting it onto data. A model was

proposed for the grey values and the expectation-maximisation (EM) algo-

rithm was implemented to fit the model onto data. It was found that for

high photon rates, there were identifiability issues. The chapter is concluded

on a discussion on why the EM algorithm failed.

4.1 Literature Review

Compound Poisson in X-ray Detection

In an x-ray tube, photons are emitted as a Poisson process (Whiting et al.,

2006; Cierniak, 2011) and each photon has some random energy due to

bremsstrahlung and characteristic radiation (Sun et al., 2012). This is sim-

ilar to the compound Poisson distribution. Let Y be the number of photons

emitted for some time exposure τ , then Y ∼ Poisson(λ). Each photon is as-

sumed to be i.i.d. with random energy Ui for i = 1,2,3, . . . with p.d.f. pU(u).

The random variables discussed here cover all the latent variables in the

compound Poisson.

Photons emitted from the x-ray tube undergo attenuation when propa-

gating through the test sample. Assuming no beam hardening, some pho-

tons are either absorbed or scattered, making them undetectable. Scattered

photons may be detected but it is very rare (Cantatore and Müller, 2011).

The energy of the attenuated photons remain unaffected so attenuation



4.1. LITERATURE REVIEW 47

decreases the parameter λ. The amount it decreases by depends on the

attenuation coefficient of the material and the amount of material the x-

ray attenuates. The density of the random variable Ui remains unchanged

because the energy of each photon remains the same after attenuation, as-

suming no beam hardening.

When the photons interact with the scintillator in the detector, they are

converted into visible light. The visible light photons are then detected and

converted into a digital signal or grey value. A quantum counter set the

digital signal to be linear with the number of photons detected (Whiting

et al., 2006). Let X be the grey value observed, then

X = bY + ε (4.4)

where ε ∼ N(a, κ), b and a are some constant and κ is the variance of

electronic noise. The mean and variance of the grey value are

E [X] = bλ + a (4.5)

and

Var [X] = b2λ + κ (4.6)

respectively. By eliminating λ

Var [X] = bE [X] + κ − ab , (4.7)

a linear relationship between the variance and expectation of the grey value

(Ma et al., 2012) is obtained.

In an energy integrating detector, the recorded grey value is linear to

the energy detected (Whiting et al., 2006). The grey value X is

X ∣Y =
Y

∑
i=1

Ui + ε . (4.8)

This is the compound Poisson distribution with Normal noise added to it.

The scale factor b is not included as this can be absorbed into U . Using the

result that E [X] = EE [X ∣Y ] and Var [X] = VarE [X ∣Y ] + EVar [X ∣Y ],

the mean and variance of the grey value are

E [X] = λE [U] + a (4.9)
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and

Var [X] = λE [U2] + κ (4.10)

respectively. Eliminating λ obtains

Var [X] =
E [U2]

E [U]
E [X] + κ − a

E [U2]

E [U]
. (4.11)

By assuming no beam hardening, E [U] and E [U2] remains constant, thus

there is a linear relationship between the variance and expectation of the

grey value (Yang et al., 2009). There are other types of detection schemes

(Whiting et al., 2006) but it shall not be considered here.

Experiments have been done to verify the compound Poisson nature of

the detector. This was done by investigating the variance of radiographs

of air (Hsieh et al., 2015) and a polyethene cylinder (Yang et al., 2009,

2010) using different exposures. It was found there were two components in

the noise, one was signal-dependent and comes from the compound Poisson

distribution, the other was signal independent and maybe electronic noise.

The electronic noise can be modelled using a Normal distribution (Xu and

Tsui, 2009).

Moment Generating Function

Returning to the compound Poisson distribution with no electronic noise

X ∣Y = ∑
Y
i=1Ui, let the moment generating function (m.g.f.) of X be MX(θ) =

E [eXθ]. It can be shown that the m.g.f. is

MX(θ) = exp [λ (MU(θ) − 1)] (4.12)

(Gatto, 2010). The derivation is shown in Appendix B.1. Moments of X

can be obtained from the m.g.f. by differentiating it and setting θ to zero.

In other words, E[Xr] =M
(r)
X (0). Then it can be shown that

E [X] = λE [U] (4.13)

Var [X] = λE [U2] (4.14)

E [(X −E[X])3] = λE [U3] (4.15)

which agrees with the expectation and variance results in the previous sec-

tion. The derivation is shown in Appendix B.1.
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Compound Poisson-Gamma Distribution

A special case of the compound Poisson distribution is when U ∼

Gamma (α,β) where α > 0 is the gamma shape parameter and β > 0 is

the gamma rate parameter. This was used for example in Xu and Tsui

(2009). The distribution is known as the compound Poisson-gamma distri-

bution and is denoted by X ∼ CPΓ(λ,α, β). The p.d.f. is

pX(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

δ(x)e−λ for x = 0
∞

∑
y=1

βyα

Γ(yα)
xyα−1e−βxe−λ

λy

y!
for x > 0

. (4.16)

Recall that X ∣Y = ∑
Y
i=1Ui which involves a sum of gamma random variables.

It can be shown that

X ∣Y ∼ Gamma (Y α,β) . (4.17)

The m.g.f. of U is MU(θ) = (
β

β − θ
)

α

, then the m.g.f. of X is

MX(θ) = exp [λ((
β

β − θ
)

α

− 1)] (4.18)

and moments can be obtained from it such as

E [X] =
αλ

β
(4.19)

Var [X] =
α(α + 1)λ

β2
(4.20)

and

E [(X −E[X])3] =
α(α + 1)(α + 2)λ

β3
. (4.21)

Generalised Linear Model

It can be shown that the compound Poisson-gamma distribution is in the

exponential family for fixed α (Jørgensen, 1987). To show this, the com-

pound Poisson-gamma distribution was parametrised using the following:

p =
2 + α

1 + α
, (4.22)
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µ =
λα

β
, (4.23)

φ =
α + 1

β2−p(λα)p−1
. (4.24)

The parameters p, µ and φ are called the index, mean and dispersion pa-

rameters respectively and take the values of 1 < p < 2, µ > 0 and φ > 0. It

can be shown that the p.m.f. at zero is

P(X = 0) = exp [−
µ2−p

φ(2 − p)
] (4.25)

and the p.d.f. for x > 0 is

pX(x) = exp [
1

φ
(x
µ1−p

1 − p
−
µ2−p

2 − p
)]

1

x

∞

∑
y=1

Wy(x, p, φ) (4.26)

where

Wy =Wy(x, p, φ) =
xyα

φy(1+α)(p − 1)yα(2 − p)yy!Γ(yα)
. (4.27)

The derivation is shown in Appendix B.2. This is in the form of a distri-

bution in the dispersive exponential family (Nelder and Wedderburn, 1972;

Nelder and Baker, 1972; McCullagh, 1984) for fixed p.

Parameter estimation for known p can be done via the generalised lin-

ear model framework and can be extended to include linear mixed models

(Zhang, 2013). Estimating p is difficult and various methods were discussed

(Zhang, 2013). One way is to estimate µ and φ on a grid of p’s and then

select the p which maximises the likelihood (Dunn and Smyth, 2005).

One special property of the compound Poisson-gamma distribution is

that it is in the Tweedie dispersion exponential family (Jørgensen, 1987).

It can be shown that it has a special variance-mean relationship

Var[X] = φµp (4.28)

where 1 < p < 2. This is derived in Appendix B.2. It should be noted

that this relationship is for fixed p and φ. This is different from the linear

variance-mean relationship found at the start of the chapter which was for

fixed α and β from assuming no beam hardening.
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Method of Moments

The method of moments is a simpler method to estimate the parameters

of a compound Poisson-gamma distribution. Suppose µ̂1 is an estimator

of E[X] and µ̂j is an estimator of E [(X −E[X])
j
] for j = 2,3, then the

estimators

λ̂ =
µ̂2
1µ̂2

2µ̂2
2 − µ̂1µ̂3

(4.29)

α̂ =
2µ̂2

2 − µ̂1µ̂3

µ̂1µ̂3 − µ̂2
2

(4.30)

β̂ =
µ̂1µ̂2

µ̂1µ̂3 − µ̂2
2

(4.31)

are method of moments estimators of λ, α and β respectively (Withers and

Nadarajah, 2011), this is shown in Appendix B.3. These estimators suffer

because estimation is not done through the sufficient statistics and can be

negative. This is a problem because the parameters do not take non-positive

values.

Normal Approximation

The evaluation of the p.d.f. of a compound Poisson-gamma distribution is

useful so that the likelihood can be obtained. The likelihood can be used to

find, for example, maximum likelihood estimators. A problem occurs when

dealing with the infinite sum in the p.d.f. because it cannot be simplified.

There are several approximations or computational methods to evaluate

the p.d.f. such as Fourier inverting the characteristic function (Dunn and

Smyth, 2008), using the saddlepoint approximation (Daniels, 1954) or clev-

erly sum over certain terms in the infinite sum (Dunn and Smyth, 2005).

Monte Carlo methods can be used to evaluate the p.d.f. by simulating com-

pound Poisson-gamma random variables.

The m.g.f. provides a starting point to what limiting distributions the

compound Poisson-gamma distribution converges to for large parameters.

These limiting distributions can be used to approximate the p.d.f. of the

compound Poisson-gamma distribution.
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It can be shown for large λ, the Normal approximation (Shevtsova, 2014)

is

X ∼ N(
λα

β
,
λα(α + 1)

β2
) . (4.32)

The solution is shown in Appendix B.4.

Saddlepoint Approximation

The saddlepoint approximation (Daniels, 1954) uses the approximate solu-

tion to inverting the Laplace transformation or the m.g.f. This has been

used in XCT (Elbakri, 2003; Elbakri and Fessler, 2003). Inverting the

Fourier transformation of the characteristic function also gives the p.d.f. us-

ing computational methods (Dunn and Smyth, 2008). The saddlepoint ap-

proximation will be studied here.

For a given m.g.f. MX(θ), the saddlepoint approximation (Daniels, 1954;

Butler, 2007) finds an approximate p.d.f. pX(x). The saddlepoint approxi-

mation is given as

pX(x) ≈ (2πK ′′
X(s))

−1/2
exp [KX(s) − sx] (4.33)

where KX(θ) = ln (MX(θ)) and s = s(x) is the solution to the saddle point

equation K ′
X(s) = x.

For the compound Poisson-gamma distribution, the saddle point ap-

proximation (Jensen, 1991) is given as

pX(x) ≈
(λαβα)

1
2(α+1) e−λ

√
2π(α + 1)

x−
α+2

2(α+1) e−xβ exp [x
α
α+1

(λβα)
1
α+1 (α + 1)

α
α
α+1

]

for x > 0 (4.34)

with the derivation shown in Appendix B.5. The approximation is not well

defined for x = 0.

The integral of the density approximation over the support may not

equal to one and it can be numerically re-normalised if necessary. Thus, it

may be more sensible to write the approximation up to a constant

pX(x)∝ x−
α+2

2(α+1) e−xβ exp [x
α
α+1

(λβα)
1
α+1 (α + 1)

α
α
α+1

] . (4.35)
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Series Evaluation

The infinite sum, ∑
∞
y=1Wy, can be computationally summed cleverly to

evaluate the p.d.f. This was done by summing only large terms in the sum

and ignoring small terms (Dunn and Smyth, 2005). Dunn and Smyth (2005)

approximated the sum by truncation

∞

∑
y=1

Wy ≈

yu

∑
y=yl

Wy (4.36)

where yl < ymax < yu and ymax is the value of y which maximises Wy. Dunn

and Smyth (2005) used Stirling’s approximation to find that

ymax ≈
x2−p

φ(2 − p)
(4.37)

by treating Wy as a continuous and differentiable function of y. The deriva-

tion is shown in Appendix B.6. Because values of y are positive integers, it

would be appropriate to round ymax accordingly

ymax = max [1, round(
x2−p

φ(2 − p)
)] . (4.38)

The limits, yl and yu, can be chosen such that Wyl and Wyu are less than

εWymax where ε is some small constant, for example, ε = e−37 will be better

than machine precision in 64 bits (Dunn and Smyth, 2005). To prevent

overflow problems, it is advised to calculate each term in the summation in

log scale (Dunn and Smyth, 2005) by using the equation

ln [

yu

∑
y=yl

Wy] = ln (Wymax) + ln
yu

∑
y=yl

exp [ln (Wy) − ln (Wymax)] . (4.39)

4.2 Simulation Studies on Density

Evaluation

Simulations of a compound Poisson-gamma random variable were con-

ducted to compare how well these density evaluation methods performed.

This was done by comparing the evaluated densities using the histogram
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of simulations and a Q-Q plot. The following compound Poisson-gamma

distributions were used in the simulations to capture the variety in the com-

pound Poisson-gamma family: CPΓ(1,1,1), CPΓ(1,100,1), CPΓ(10,1,1),

CPΓ(100,100,1). For each of these distribution, 1 000 random variables

were simulated. Varying β is not interesting as this only scales the random

variable.

There were a few technical problems with the histogram because the

compound Poisson has probability mass at zero and probability density for

positive numbers. To correctly represent the empirical density of a com-

pound Poisson random variable, a bar chart was used to show the frequency

of zeros and a histogram to show the frequency density of positive numbers.

However, the Normal approximation and the saddlepoint approximation

does not have mass support at zero. Therefore, to compare these approx-

imate densities to the empirical distribution fairly, a histogram containing

both zero and positive samples was used when appropriate.

The evaluation of the p.d.f. using the saddlepoint approximate required

a bit of caution to avoid over/underflow problems. Suppose realisations of

X were simulated {x1, x2, x3, . . . , xn}. The saddlepoint approximation was

computed up to a constant using

pX(x)∝ exp [−
α + 2

2(α + 1)
ln(x) − xβ + (

xβ

α
)

α
α+1

λ
1
α+1 (α + 1) − k] (4.40)

for 10 000 equally spaced points from and including the minimum non-zero

simulated value to the maximum simulated value. k is some constant which

was chosen to be

k = max
i∈{1,2,3,...,n}

[−
α + 2

2(α + 1)
ln(xi) − xiβ + (

xiβ

α
)

α
α+1

λ
1
α+1 (α + 1)] . (4.41)

The density was then normalised by numerically integrating it using the

trapezium rule using the 10 000 evaluated points.

A Q-Q plot is a plot which compares the empirical quantiles with the

theoretical quantiles. Let

FX(x) = P(X ⩽ x) (4.42)
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and

F̂X(x) =
1

n
⋅max [(

n

∑
i=1

I(xi ⩽ x)) − 0.5,0] , (4.43)

then a Q-Q plot is a parametric plot which plots F̂ −1
X (p) against F −1

X (p) for

p = 0.5
n ,

1.5
n ,

2.5
n , . . . ,

n−0.5
n . If FX(x) and F̂X(x) are similar, a Q-Q plot should

be a straight line with gradient 1, intercepting the origin. For the exact

method and the saddlepoint approximation, FX(x) was found numerically

by evaluating the p.d.f. at 10 000 equally spaced points from and including

the minimum to the maximum of the simulated samples, and then summing

the required trapeziums. For the saddlepoint approximation, it does not

support zero, thus the numerical integration started at a non-zero value.

F̂ −1
X (p) was then calculated by interpolation.

When plotting the probability of obtaining a zero or the p.d.f. for pos-

itive values, confidence intervals were plotted as well. Consider a bin in

a histogram, the confidence intervals were obtained by assuming that the

frequency in a bin ∼ Poisson(p.d.f. evaluated at the bin×1 000×bin width).

The 68% confidence interval was chosen because this is a typical choice in

physics (Cowan, 1998).

For low λ (Figures 4.1 to 4.4) there was a chance of simulating zeros.

The exact method has an advantage here because it can evaluate probability

mass at zero. The Normal approximation failed to capture the probability

mass at zero because the Normal distribution is symmetric and supports

negative values. The saddlepoint approximation improves on the Normal

approximation by capturing the skewness and kurtosis of the distribution

(Bedrick and Hill, 1992; Butler, 2007). As a result, it captured the proba-

bility mass at zero as shown by an increase in probability density towards

zero.

For CPΓ(1,100,1), the compound Poisson-gamma p.d.f. contained mul-

tiple peaks. Figure 4.4 shows that the saddlepoint approximation was not

flexible enough to capture them. In Figure 4.2, the Q-Q plot for the exact

method was quite sensitive at the tails of each peak, perhaps there were a

few inaccuracies in the exact evaluation of the p.d.f. or in the calculation

of the numerical calculation of the c.d.f. and its inversion.
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(a) Left: Observed and expected frequency of a zero. Right:

Histogram and p.d.f. of non-zero values.
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(b) Q-Q plot

Figure 4.1: 1 000 CPΓ(1,1,1) random variables were simulated and its em-

pirical density is compared to the p.d.f. evaluated using the exact method.

In a), the dotted red line shows the 68% confidence interval of the expected

frequency or frequency density.
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(a) Left: Observed and expected frequency of a zero. Right:

Histogram and p.d.f. of non-zero values.
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(b) Q-Q plot

Figure 4.2: 1 000 CPΓ(1,100,1) random variables were simulated and

its empirical density is compared to the p.d.f. evaluated using the exact

method. In a), the dotted red line shows the 68% confidence interval of the

expected frequency or frequency density.
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(a) Histogram - Normal approx.
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(b) Q-Q plot - Normal approx.
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(c) Histogram - Saddlepoint approx.
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(d) Q-Q plot - Saddlepoint approx.

Figure 4.3: 1 000 CPΓ(1,1,1) random variables were simulated and its em-

pirical density is compared to the approximate p.d.f. On the left, the dotted

red line shows the 68% confidence interval of the expected frequency density.

As λ increased (Figures 4.5 and 4.6), all 3 density evaluation methods

performed quite well. For CPΓ(10,1,1) in Figure 4.5, the Normal approx-

imation did not capture the skewness. In Figure 4.6, λ was high enough

where the compound-Poisson distribution started to converge to a Normal

distribution. All methods performed well in this realm.
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(a) Histogram - Normal approx.

-200 -100 0 100 200 300 400

theoretical quantiles

-400

-200

0

200

400

600

s
im

u
la

ti
o
n
 q

u
a
n
ti
le

s

(b) Q-Q plot - Normal approx.
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(c) Histogram - Saddlepoint approx.
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(d) Q-Q plot - Saddlepoint approx.

Figure 4.4: 1 000 CPΓ(1,100,1) random variables were simulated and its

empirical density is compared to the approximate p.d.f. On the left, the

dotted red line shows the 68% confidence interval of the expected frequency

density.

4.3 Proposed Model

The compound Poisson-gamma distribution can be used to model the grey

value of each pixel in a projection. Suppose a projection has N pixels and m

replicate projections were obtained. Let Xi,j and Yi,j be the grey value and

photon count, respectively, of the ith pixel in the jth replicate projection.

By assuming no beam hardening, the distribution of the photon energy

does not change with attenuation. As a result, all pixels will detect photons
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(b) Q-Q plot - Exact method
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(c) Histogram - Normal approx.
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(d) Q-Q plot - Normal approx.
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(e) Histogram - Saddlepoint approx.
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(f) Q-Q plot - Saddlepoint approx.

Figure 4.5: 1 000 CPΓ(10,1,1) random variables were simulated and its

empirical density is compared to the p.d.f. On the left, the dotted red line

shows the 68% confidence interval of the expected frequency density.
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(b) Q-Q plot - Exact method
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(c) Histogram - Normal approx.
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(e) Histogram - Saddlepoint approx.
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(f) Q-Q plot - Saddlepoint approx.

Figure 4.6: 1 000 CPΓ(100,100,1) random variables were simulated and its

empirical density is compared to the p.d.f. On the left, the dotted red line

shows the 68% confidence interval of the expected frequency density.
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Figure 4.7: Graphical model of the grey value Xi,j for each of the N pixels in

them replicate projections. Yi,j ∼ Poisson(λi) is the photon count. The grey

value has a compound Poisson gamma element Xi,j ∣Yi,j ∼ Gamma(Yi,jα,β)

and can be extended by adding electronic noise εi,j ∼ N(a, κ).

with identical energy distributions, thus, α and β are the same for all pixels.

Attenuation does affect the photon count, the more material a photon has

to attenuate, the lower the number of detectable photons. The amount of

attenuation depends on the specific path from the source to a pixel in a

detector, so λi varies from pixel to pixel. Electronic Normal noise εi,j ∼

N(a, κ) is added to model noise recorded by the x-ray detector when no

x-rays are exposed. This was observed in the black images in Chapter 3.

The graphical model in Figure 4.7 illustrates how all of these variables

are linked. a and κ are unknown parameters but can be estimated before-

hand from replicate black images. Care must be taken to use the replicate

black images for either shading correction or for estimating a and κ to

avoid using the data twice. The energy of each photon U ∼ Gamma(α,β)

was omitted in the graphical model because the conditional distribution

X ∣Y ∼ Gamma(Y α,β) encapsulates each detected photon energy already.

The assumption of a gamma-distributed x-ray photon energy and Nor-

mal electronic noise was applied to XCT by Xu and Tsui (2009). The

assumptions were verified by investigating the variance of radiographs for

different x-ray exposures. More statistically sound methods could use good-

ness of fit tests or Q-Q plots. The use of the gamma distribution will not
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be exactly correct because the sources of x-ray photon energy are charac-

teristic and bremsstrahlung radiation which does not behave like a gamma

random variable. However, characterisation of the density of the x-ray pho-

ton energy is difficult and usually involve more apparatuses and numerical

methods (Fewell and Shuping, 1977; Stumbo et al., 2004).

The model may be simplified by omitting the electronic noise and this

can be done by setting a = 0 and κ = 0. Further simplification can be done

by removing spatial variation by setting λ = λ1 = λ2 = . . . = λN . Parameter

estimation can be done using gradient methods because the likelihood of the

compound Poisson can be evaluated (Dunn and Smyth, 2005). However,

the EM algorithm is faster and the model is well set up for it.

4.4 EM Algorithm

The EM algorithm (Dempster et al., 1977) was proposed to estimate the

parameters of a X ∼ CPΓ(λ,α, β) random variable given a sample of mea-

surements of it {x1, x2, x3, . . . , xn}. The use of the EM algorithm for the

compound Poisson distribution in XCT have been studied in Elbakri (2003);

Xie (2008); Xu and Tsui (2009).

Let λ̂, α̂ and β̂ be estimators of λ, α and β respectively. The log-

likelihood is defined to be

lnL(λ,α, β;X) =
n

∑
i=1

[I(xi = 0) lnP(X = xi) + I(xi > 0) lnpX(xi)]

and using the results in Appendix B.2

lnL(λ,α, β;X) =
n

∑
i=1

[−I(xi = 0)λ +I(xi > 0)(−βxi − λ − lnx + ln
∞

∑
y=1

Wy)] .

(4.44)

Maximum likelihood estimators are values of λ, α and β which jointly max-

imise the log-likelihood.

The EM algorithm (Dempster et al., 1977) treats Y ∼ Poisson(λ) as a

latent variable. Let {Y1, Y2, Y3, . . . , Yn} be realisations of Y . Define the joint
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log-likelihood to be

lnL(λ,α, β;X,Y ) =
n

∑
i=1

[I(xi = 0) lnP(Y = 0)

+I(xi > 0) ln [pX ∣Y (xi∣Yi)P(Y = Yi)]]

so that

lnL(λ,α, β;X,Y ) =
n

∑
i=1

[−I(xi = 0)λ

+I(xi > 0) (Yiα lnβ − ln Γ(Yiα) + (Yiα − 1) lnxi − βxi

−λ + Yi lnλ − ln(Yi!))] . (4.45)

The estimators were found by optimising the joint log-likelihood. This was

done iteratively by estimating the Y ’s given the X’s and parameters (E

step), followed by estimating the parameters given the Y ’s and X’s (M

step) until some convergence conditions were met.

It will be shown that using some approximations, the E step and M step

can be implemented. However, simulations showed that these estimators

struggle for high λ.

E Step

In the E step, the realisations of Y are estimated using

yi = E [Y ∣X = xi] (4.46)

given the parameters λ, α and β. The conditional expectation is calculated

using

yi =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 for x = 0

∑
∞
y=1 yP(Y = y∣X = xi)

∑
∞
y=1 P(Y = y∣X = xi)

for x > 0
(4.47)

where

P(Y = y∣X = x) =
pX ∣Y (x∣y)P(Y = y)

pX(x)
.

Focussing on the x > 0 case for now

P(Y = y∣X = x) =
1

pX(x)

βyα

Γ(yα)
xyα−1e−βx

e−λλy

y!
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which is simplified to

P(Y = y∣X = x) =Wy
e−λ−βx

xpX(x)
. (4.48)

As a result, the conditional expectation is

yi =
∑
∞
y=1 yWy

∑
∞
y=1Wy

. (4.49)

As discussed before, the sum in the denominator can be evaluated using

the method by Dunn and Smyth (2005). A similar method for evaluating

the numerator can be obtained by truncating the sum and summing over

large terms.

Let

W
(r)
y = yrWy for r = 1,2,3, . . . (4.50)

so that

yi =
∑
∞
y=1W

(1)
y

∑
∞
y=1Wy

. (4.51)

Similarly,

ζi = Var[Y ∣X = xi] =
∑
∞
y=1W

(2)
y

∑
∞
y=1Wy

− (yi)
2
. (4.52)

The expectation terms, yi and ζi, are evaluated here so that they can be

used in the M step. The evaluation can be done by truncating the sum

∞

∑
y=1

W
(r)
y ≈

yu

∑
y=yl

W
(r)
y (4.53)

where yl < ymax < yu and ymax is the value of y which maximises W
(r)
y . This

term can be expressed as

lnW
(r)
y = r ln y + lnWy (4.54)

and taking the derivative with respect to y obtains

∂

∂y
lnW

(r)
y =

r

y
+
∂

∂y
lnWy . (4.55)
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Keep in mind that y = 1,2,3, . . . so for large y, an approximation can be

made r/y ≈ 0 so that

∂

∂y
lnW

(r)
y ≈

∂

∂y
lnWy . (4.56)

Therefore, the maximum of W
(r)
y is located at ymax =

x2−p

φ(2 − p)
for all r =

0,1,2, . . .. As a result, the same method for evaluating Wy can be used to

evaluate W
(r)
y . For a given r = 0,1,2, . . ., the limit of the sum ∑

yu
y=yl

W
(r)
y

were chosen such that W
(r)
yl and W

(r)
yu are less than εW

(r)
ymax where ε is some

small constant. The limits will be different for different values of r.

M Step

In the M step, the conditional expected joint log-likelihood is maximised

with respect to the parameters λ, α and β. The objective function is

T (λ,α, β) =
n

∑
i=1

E [−I(xi = 0)λ

+I(xi > 0) (Yiα lnβ − ln Γ(Yiα) + (Yiα − 1) lnxi − βxi

−λ + Yi lnλ − ln(Yi!)) ∣Xi = xi]

= − nλ

+
n

∑
i=1

I(xi > 0) [E[Yi∣Xi = xi]α lnβ −E[ln Γ(Yiα)∣Xi = xi]

+E[Yi∣Xi = xi]α lnxi − βxi +E[Yi∣Xi = xi] lnλ] + c

(4.57)

where c is some constant not dependent on λ, α or β.

The conditional expectation yi = E[Yi∣Xi = xi] and ζi = Var[Yi∣Xi = xi]

were calculated beforehand in the E step. The quantity E[ln Γ(Yiα)∣Xi = xi]

can be calculated using the approximation

E[ln Γ(Yiα)∣Xi = xi] ≈ ln Γ(αyi) +
1

2
ζiα

2ψ′(yiα) (4.58)



4.4. EM ALGORITHM 67

where ψ(n) is the digamma function. The objective function is then

T (λ,α, β) ≈ −nλ +
n

∑
i=1

I(xi > 0) [yiα lnβ − ln Γ(αyi) −
1

2
ζiα

2ψ′(yiα)

+yiα lnxi − βxi + yi lnλ] + c . (4.59)

Taking the derivative with respect to λ

∂T

∂λ
= −n +

∑
n
i=1 yi
λ

(4.60)

and setting it to zero

λ̂ =
∑
n
i=1 yi
n

(4.61)

obtains a M step estimator for λ. Taking the second-order derivative with

respect to λ
∂2T

∂λ2
= −
∑
n
i=1 yi
λ2

< 0 (4.62)

verifies that λ̂ maximises T . In addition,

∂2T

∂α∂λ
= 0 (4.63)

and
∂2T

∂β∂λ
= 0 . (4.64)

Maximising T with respect to α and β can be done numerically using

the Newton-Raphson method since derivatives up to the second-order can

be obtained. For the first-order derivatives, these are

∂T

∂α
=

n

∑
i=1

I(xi > 0) [yi lnβ − ψ(αyi)yi − ζiαψ
′(αyi)

−
1

2
ζiα

2ψ′′(αyi)yi + yi lnxi] (4.65)

and
∂T

∂β
=

n

∑
i=1

I(xi > 0) [
αyi
β

− xi] . (4.66)

The second-order derivatives are

∂2T

∂α∂β
=

n

∑
i=1

I(xi > 0) [
yi
β
] , (4.67)



68 CHAPTER 4. COMPOUND POISSON

∂2T

∂β2
=

n

∑
i=1

I(xi > 0) [−
αyi
β2

] , (4.68)

and

∂2T

∂α2
=

n

∑
i=1

I(xi > 0) [−y2iψ
′(αyi) − ζiψ

′(αyi) − ζiαyiψ
′′(αyi)

−ζiαψ
′′(αyi)yi −

1

2
ζiα

2ψ′′′(αyi)y
2
i ]

simplifying to

∂2T

∂α2
=

n

∑
i=1

I(xi > 0) [−(y2i + ζi)ψ
′(αyi) − 2ζiαyiψ

′′(αyi)

−
1

2
ζiα

2y2iψ
′′′(αyi)] . (4.69)

All the derivatives can be used in the Newton-Raphson iterative update

to update the estimators α̂ and β̂. The update is

⎛

⎝

α̂

β̂

⎞

⎠
←

⎛

⎝

α̂

β̂

⎞

⎠
− [∇α,β∇

T
α,β T ∣α=α̂,β=β̂]

−1
[∇α,β T ∣α=α̂,β=β̂] (4.70)

where

∇α,β =
⎛

⎝

∂/∂α

∂/∂β

⎞

⎠
. (4.71)

Since increasing T is sufficient for the EM algorithm (Dempster et al., 1977),

one step of the Newton-Raphson iterative update was chosen in the M step

to avoid implementing a convergence condition for the Newton-Raphson

method.

Simulations

An experiment was conducted to assess the performance on the EM al-

gorithm. For a given set of parameters, 1 000 samples of a CPΓ(λ,α, β)

random variable were simulated. The EM algorithm was initialised with its

parameters at the true values to investigate the convergence in that vicin-

ity. The log-likelihood lnL(λ,α, β;X) and the parameters were recorded

at every EM step. The experiment was repeated 10 times using different

simulated samples.
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The results for CPΓ(1,1,1), CPΓ(1,100,1), CPΓ(10,1,1) and

CPΓ(100,100,1) are shown in Figures 4.8, 4.9, 4.10 and 4.11 respectively.

Good performance was observed in the λ = 1 case with convergence of all

three parameters within a step or two. The Cramér-Rao lower bound cap-

tured the spread of the estimates well.

For λ = 10 and λ = 100, the estimates of α and β struggled to con-

verge and increased/decreased without bounds without affecting the log-

likelihood. It appeared that the EM algorithm failed for λ > 10 looking at

these particular examples.

4.5 Failure Evaluation

It should be convincing that the EM algorithm failed when the compound

Poisson-gamma random variable starts behaving Normally. In particular,

in Figure 4.11, estimates of λ were stable while estimates of α and β strug-

gled to converge. This could be because as the compound Poisson-gamma

distribution approaches the Normal distribution, the parameters (λ,α, β)

becomes degenerate because there is more than one way to represent a

two-parameter random variable N(µ,σ2) using three parameters (λ,α, β).

Determinant of the Hessian

One investigation is to look at the Newton-Raphson step in the M step, in

particular, the Hessian matrix ∇α,β∇
T
α,βT for high λ. The elements of the

Hessian matrix can be found in Equations (4.67), (4.68) and (4.69). Recall

that

∂2T

∂α2
=

n

∑
i=1

I(xi > 0) [−(y2i + ζi)ψ
′(αyi) − 2ζiαyiψ

′′(αyi)

−
1

2
ζiα

2y2iψ
′′′(αyi)] .

For high α and λ, and hence high yi’s, an approximation can be used for

the polygamma functions ψ(k)(n). Using Stirling’s approximation ln Γ(n) ≈
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Figure 4.8: The EM algorithm was used to estimate the parameters of a

CPΓ(1,1,1) random variable using 1 000 simulated samples. The graphs

show the log-likelihood and the estimated parameters at each EM step for

10 different simulations.
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Figure 4.9: The EM algorithm was used to estimate the parameters of a

CPΓ(1,100,1) random variable using 1 000 simulated samples. The graphs

show the log-likelihood and the estimated parameters at each EM step for

10 different simulations.
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Figure 4.10: The EM algorithm was used to estimate the parameters of a

CPΓ(10,1,1) random variable using 1 000 simulated samples. The graphs

show the log-likelihood and the estimated parameters at each EM step for

10 different simulations.
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Figure 4.11: The EM algorithm was used to estimate the parameters of

a CPΓ(100,100,1) random variable using 1 000 simulated samples. The

graphs show the log-likelihood and the estimated parameters at each EM

step for 10 different simulations.
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ln(n!) ≈ n lnn − n, then

ψ(n) =
∂ ln Γ(n)

∂n
≈ lnn . (4.72)

Differentiating further

ψ′(n) ≈ 1/n (4.73)

ψ′′(n) ≈ −1/n2 (4.74)

ψ′′′(n) ≈ 2/n3 . (4.75)

∂2T

∂α2
can be approximated

∂2T

∂α2
≈

n

∑
i=1

I(xi > 0) [−
y2i + ζi
αyi

+ 2
ζiαyi
α2y2i

−
1

2

2ζiα2y2i
α3y3i

]

to get
∂2T

∂α2
≈

n

∑
i=1

I(xi > 0) [−
yi
α
] . (4.76)

The Hessian matrix is, omitting the I(xi > 0) term,

∇α,β∇
T
α,βT ≈

n

∑
i=1

⎛

⎝

−yi/α yi/β

yi/β −αyi/β2

⎞

⎠
. (4.77)

The determinant of the Hessian matrix is

∥∇α,β∇
T
α,βT ∥ ≈ (

n

∑
i=1

−
αyi
β2

)(
n

∑
i=1

−
yi
α
) − (

n

∑
i=1

yi
β
)

2

≈ (
n

∑
i=1

n

∑
j=1

yiyj
β2

) − (
n

∑
i=1

yi
β
)(

n

∑
j=1

yj
β
)

≈ (
n

∑
i=1

n

∑
j=1

yiyj
β2

) − (
n

∑
i=1

n

∑
j=1

yiyj
β2

)

to obtain

∥∇α,β∇
T
α,βT ∥ ≈ 0 . (4.78)

This results in a few things. Firstly, ∇α,β∇
T
α,βT is singular thus its in-

verse cannot be evaluated which is needed for the Newton-Raphson method.

Secondly, the sufficient conditions to classify a stationary point as a maxi-

mum are that the diagonal elements of the Hessian matrix are negative and

the determinate is positive. For high λ and α, the second condition is not

met.
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Constrained Objective

The parameter β can be constrained for a given mean to be

β =
λα

µ̂
(4.79)

where

µ̂ =
1

n

n

∑
i=1

xi (4.80)

and it was investigated whenever a unique solution to
∂T

∂α
= 0 can be found

for high λ and α. The constrained objective function is

T (λ,α) = −nλ +
n

∑
i=1

I(xi > 0) [yiα ln(
λα

µ̂
) − ln Γ(αyi) −

1

2
ζiα

2ψ′(yiα)

+yiα lnxi −
λαxi
µ̂

+ yi lnλ] + c (4.81)

which can be approximated to

T (λ,α) ≈ − nλ +
n

∑
i=1

I(xi > 0) [yiα ln(
λα

µ̂
) − αyi ln(αyi) + αyi −

1

2

ζiα

yi

+yiα lnxi −
λαxi
µ̂

+ yi lnλ] + c

≈ −nλ +
n

∑
i=1

I(xi > 0) [yiα ln(
λ

yiµ̂
) + αyi −

1

2

ζiα

yi

+yiα lnxi −
λαxi
µ̂

+ yi lnλ] + c . (4.82)

Taking the derivative with respect to α

∂T

∂α
≈

n

∑
i=1

I(xi > 0) [yi ln(
λ

yiµ̂
) + yi −

1

2

ζi
yi
+ yi lnxi −

λxi
µ̂

] (4.83)

and this is not α dependent, thus there is no solution for α.

Log-Likelihood Plot

The log-likelihood, using a simulation of 100 compound Poisson-gamma

random variables, are plotted for fixed λ in Figure 4.12. These plots are con-

cerning because the likelihood appeared not convex and there is no unique

maximum for all λ investigated.
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(a) CPΓ(1,1,1) (b) CPΓ(1,100,1)

(c) CPΓ(10,1,1) (d) CPΓ(100,100,1)

Figure 4.12: Log-likelihood from a simulation of 100 compound Poisson-

gamma random variables. λ is fixed at the true value.

It was observed that there is a saddle point in the log-likelihood for the

CPΓ(1,100,1) case. This is when the log-likelihood increased and decreased

when varying α and β. This suggests the possibility of local maxima.

As a result, there is no unique maximum likelihood estimator and the

EM algorithm would be very sensitive to the starting position, including

for small λ.

4.6 Conclusion

The compound Poisson-gamma distribution was studied but it was found

there were identifiability issues when fitting the model onto simulated data,
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in particular for high λ. It was found that the log-likelihood was quite

flat because, by using numerous approximations, it was found that the

determinant of the Hessian is about zero. This cast doubts if a unique

maximum likelihood estimator exists. Tighter bounds for the Hessian is

beyond the scope of this thesis.

The problem with the EM algorithm is that it is sensitive to the initial

value and does not guarantee convergence to a global maximum (Moon,

1996). Another disadvantage is that the EM algorithm does not produce

uncertainty quantification for the estimators. Methods such as bootstrap-

ping (Efron, 1979) and Louis’ missing information principle (Louis, 1982)

can be used to obtain such uncertainty quantification.

There are methods to deal with flat likelihoods by extending the likeli-

hood to include penalising terms (Cole et al., 2014). Another approach is to

use Bayesian methods (Bishop, 2006) where a prior distribution is defined

for the parameters α, β, λ1, λ2, . . . , λN , a and κ where N is the number of

pixels and a and κ are the mean and variance terms for the Normal noise,

defined in Section 4.3. The prior distribution can reflect prior knowledge

of the model, for example, the statistical properties of the sample of black

images can be embedded into the priors of a and κ. Back of the envelope

calculations can be used to show that λi ∼ 107 photon px−1 which can be used

to aid in the creation of a prior distribution for λi. Poisson graphical mod-

els (Yang et al., 2013) and Gaussian processes (Williams and Rasmussen,

1996) can impose a spatial dependency on Yi,j and λi respectively as well.

Bayesian inference is done by studying the posterior distribution where

posterior ∝ likelhood × prior .

By multiplying the likelihood with the prior, the posterior should hopefully

be convex and enable better convergence. Studying the posterior distribu-

tion typically requires Markov chains using Monte Carlo methods (Brooks

et al., 2011) such as Metropolis-Hastings (Metropolis et al., 1953; Hast-

ings, 1970), Gibbs sampling (Geman and Geman, 1984), Hamiltonian Monte

Carlo (Neal, 2011; Hoffman and Gelman, 2014) and slice sampling (Neal,

2003; Murray et al., 2010).
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To keep the frequentist theme throughout this thesis, the next chap-

ter studies the linear relationship between the variance and mean of the

grey value in a pixel. The uncertainty can be predicted by using such a

relationship.
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Chapter 5

Variance Prediction

In the previous chapter, the grey values were modelled using a compound

Poisson distribution to reflect the science of x-rays. This model has a linear

relationship between the variance and the expectation. As a result, it would

be possible to predict the variance of the grey value, given the grey value.

This opens up new ways to predict the uncertainty of each pixel in an x-ray

projection.

In this chapter, generalised linear models (Nelder and Wedderburn,

1972; Nelder and Baker, 1972; McCullagh, 1984) with different link func-

tions and polynomial features were selected using forward stepwise selection.

These selected models were compared using cross-validation to find the best

model and verified using residual analysis.

5.1 Generalised Linear Models

The sample variance-mean data were obtained from the replicate projec-

tions. Let xi,j be the grey value of the ith pixel, ignoring any spatial

information, from the jth replicate projection for i = 1,2,3, . . . ,N and

j = 1,2,3, . . . ,m. The sample mean and sample variance grey value for

the ith pixel are

xi =
1

m

m

∑
j=1

xi,j (5.1)
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and

yi =
1

m − 1

m

∑
j=1

(xi,j − xi)
2

(5.2)

respectively. The symbol y should not be confused with the latent variable

in the previous chapter. Only pixels in the region of interest (ROI) were

considered here, that is, pixels which represent the test sample. The ROI

was created by manually segmenting the test sample from the projection.

The aim is to model and predict the grey value variance of a pixel given

its grey value by using a model fitted onto the sample variance-mean data.

The variance-mean data is denoted as (x1, y1), (x2, y2), . . . , (xN , yN) where

N is the area of the ROI or the size of the dataset. Let Y (x) be a random

variable and the sample variance given a grey value mean x. It was assumed

that the standard error from estimating the mean was negligible so that the

uncertainty is captured by the random variable Y . It was assumed that for a

given pixel, the grey values are Normal and i.i.d. Let σ2(x) be the variance

given a grey value x, then it can be shown that

(m − 1)Y (x)

σ2(x)
∼ χ2

m−1 (5.3)

which results in

Y (x) ∼ Gamma(α,
α

σ2(x)
) (5.4)

where α = (m− 1)/2 is the shape parameter. The expectation and variance

are

E [Y (x)] = σ2(x) (5.5)

and

Var [Y (x)] = (
σ2(x)

α
)

2

(5.6)

respectively.

This framework allows the use of generalised linear models (GLM)

(Nelder and Wedderburn, 1972; Nelder and Baker, 1972; McCullagh, 1984).

In the gamma distribution case, a GLM can be used to model

Y (x) ∼ Gamma(α,
α

g−1(η(x))
) (5.7)
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where g(y) is the link function and η(x) is a linear function called the

systematic component. It should be noted that

E [Y (x)] = g−1(η(x)) (5.8)

which shows how the link function and systematic component work to-

gether. Examples of link functions are the identity link

g(y) = g−1(y) = y (5.9)

and, for the gamma distribution case, the canonical link

g(y) = g−1(y) = 1/y . (5.10)

An example of a systematic component are polynomial features η(x) =

∑
p
r=0 βrx

r so that when used with the identity link, for example, E [Y (x)] =

∑
p
r=0 βrx

r. Iterative reweighted least squares (Friedman et al., 2001) can be

used to estimate the parameters β0, β1, . . . , βp given data for the model to

fit onto.

Once the parameters have been estimated, prediction of the variance

given a grey value x is done by using ŷ(x) = g−1(η̂(x)) where η̂(x) is the

systematic component using the estimated parameters.

5.2 Model Selection

This section describes how forward stepwise selection (Efroymson, 1960;

Friedman et al., 2001) was used to select which polynomial features to use

in the systematic component.

In summary, forward stepwise selection fits a basic model to the data

initially. A feature is added to make the model more complicated at each

step to improve the fit onto the data. This is continued until the model

cannot be improved subject to overfitting. The Akaike information criterion

(AIC) (Akaike, 1974; Friedman et al., 2001) and the Bayesian information

criterion (BIC) (Schwarz, 1978; Friedman et al., 2001) are criteria which

can be used to assess the fit of the model at each step without overfitting

to the data too much.



82 CHAPTER 5. VARIANCE PREDICTION

The AIC and BIC are given as

AIC = 2k − 2 lnL (5.11)

and

BIC = k lnN − 2 lnL (5.12)

respectively where k is the number of parameters in the systematic compo-

nent and lnL is the log-likelihood of the GLM. The model with the lowest

AIC or BIC is preferred. GLM aims to maximise the log-likelihood but the

additional terms in the criteria penalise models with too many terms. The

log-likelihood is given as

lnL =
N

∑
i=1

[α lnα − ln Γ(α) − α ln ŷi + (α − 1) ln yi −
αyi
ŷi

] . (5.13)

where ŷi = ŷ(xi). α = (m− 1)/2 was assumed to be known so does not need

to be estimated.

The procedure is as follows. A criterion and a link function were chosen

beforehand. In the initial step, a GLM with systematic component η(x) =

β0 was fitted and the criterion was recorded. In the next step, a polynomial

feature with one order higher was added to the systematic component η(x) =

β0 + β1x, fitted and the criterion recorded. Also, a polynomial feature with

one order lower was added β(x) = β−1x−1+β0 and fitted separately with the

criterion recorded. The model which decreased the criterion the most was

accepted. Adding higher and lower order polynomials to the systematic

component was repeated, for example, after accepting η(x) = β0 + β1x,

the following systematic components η(x) = β0 + β1x + β2x2 and η(x) =

β−1x−1+β0+β1x were fitted and assessed. The fitted parameters may change

when adding more terms. This is repeated until the criterion cannot be

decreased and the procedure is left with the final model.

Forward stepwise selection was conducted on the datasets AbsNoFilter

and AbsFilter. The procedure was repeated 10 times by using a random

permutation, with replacement, of the replicate projections to obtain a

different sample variance-mean data which introduced some variation to

the data (Efron, 1979). The procedure was also repeated using various
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shading corrections to investigate the effects of shading correction on the

variance-mean relationship.

The results are shown in Tables 5.1 and 5.2 for AbsNoFilter and Tables

5.3 and 5.4 for AbsFilter. The models selected are quite simple and all

have two features. Different shading corrections or different criteria had no

effect on the selected model. The method was quite robust to the variation

introduced to the dataset when repeating the experiment because all 10

repeats consistently selected the same model.

There was some variation to the selected models between datasets. For

example, when using the identity link, AbsNoFilter preferred η(x) = β0 +

β1x whereas AbsFilter preferred η(x) = β−1x−1 + β0. Using the canonical

link, both datasets selected η(x) = β−1x−1 + β0 which correspond to ŷ(x) =

(β−1x−1 + β0)
−1

.

Figures 5.1 and 5.2 shows the GLM fits for the datasets AbsNoFilter

and AbsFilter respectively. The prediction intervals were obtained using

the distribution Ŷ (x) ∼ Gamma(α,
α

g−1 (η̂(x))
). The fits all looked rea-

sonable except for AbsNoFilter at 120° where the fit did not capture the

inflection. The forward stepwise selection may not picked this up because

there were a lot of low grey values, causing a leverage towards these low

grey values. As a result, the inflection did not stand out to the method.

5.3 Cross-Validation

Instead of assessing the model fit using the AIC and BIC, the performance

on predicting the variance given a grey value was assessed using cross-

validation (Allen, 1974; Stone, 1974, 1977; Friedman et al., 2001). Cross-

validation assesses the model to make predictions on data it has not seen

before. This was done by randomly splitting the N data points into two

disjoint sets, the training set and the test set τ . The model was fitted onto

the training set. Afterwards, the fitted model predicts the variances given

the grey values in the test set which were then compared to the actual

variances.
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Figure 5.1: Log frequency density histogram of the sample variance-mean

data from AbsNoFilter with linear shading correction. The solid red line

shows the GLM fit along with the 68% prediction interval as dashed lines.

The colour scales are in units of log ADU−3.

It was chosen that the training and test set are of the same size, a 50:50

spilt. The sizes of the sets can be different, for example, a 75:25 spilt. A

50:50 spilt was chosen because a large training set is an overkill for a high

data and low dimensional problem. Here, a model with a few parameters

is fitted onto millions of pixels.

The mean scaled deviance was used to assess the performance of variance

prediction of the test set. The deviance is defined to be

D = 2 (lnLs − lnLτ) (5.14)
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+ β0 at 120°
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Figure 5.2: Log frequency density histogram of the sample variance-mean

data from AbsFilter with linear shading correction. The solid red line

shows the GLM fit along with the 68% prediction interval as dashed lines.

The colour scales are in units of log ADU−3.

where

lnLτ =∑
i∈τ

[α lnα − ln Γ(α) − α ln ŷi + (α − 1) ln yi −
αyi
ŷi

] (5.15)

is the log-likelihood of the test set given the fitted model and lnLs is the

saturated log-likelihood. This is obtained by replacing all ŷi with yi in lnLτ

so that

lnLs =∑
i∈τ

[α lnα − ln Γ(α) − ln yi − α] . (5.16)
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Figure 5.3: The scaled deviance loss function

Following from this, the deviance is

D = 2α∑
i∈τ

[
yi − ŷi
ŷi

− ln(
yi
ŷi

)] . (5.17)

The mean scaled deviance is obtained by removing the factor of α and

dividing by Nτ to get

Ds =
2

Nτ
∑
i∈τ

[
yi − ŷi
ŷi

− ln(
yi
ŷi

)] . (5.18)

The mean scaled deviance is a loss function which increases as yi/ŷi

deviates from one, this is shown in Figure 5.3 and it should be noted that

the x-axis is in log scale. Another way to show this is by letting ri = yi/ŷi and

di = 2 [ri − 1 − ln ri] be an element from the sum in the deviance. For ri ≈ 1,

ln(ri) ≈ (ri − 1)− (ri − 1)2/2 which implies that di ≈ (ri − 1)2 with minimum

at one. For ri deviate greatly from one, the loss function is asymmetric. For

example a ratio of ri = 101 has a greater penalty than ri = 10−1. This means

that in extreme cases, overestimates are penalised less than underestimates

relative to yi.

Assuming the model is correct, it is given that D ∼ χ2
Nτ−k

which implies

that for large Nτ ,

E [Ds] =
1

α
(5.19)

and

Var [Ds] =
2

α2Nτ

. (5.20)
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Because α = (m−1)/2, this shows that the number of replicated projections

used to obtain the sample variance-mean data has an influence on the mean

scaled deviance. This result can be used to estimate α if it is unknown.

Cross validation was performed on the datasets AbsNoFilter and

AbsFilter with various shading corrections. The models selected from

forward stepwise selection in the previous section were assessed. They

are y(x) = β0 + β1x and y(x) = β−1x−1 + β0 using the identity link and

y(x) = (β−1x−1 + β0)−1 using the canonical link. The analysis was repeated

100 times by using a random permutation with replacement of the replicate

projections to obtain a different sample variance-mean data which intro-

duced some variation to the data (Efron, 1979).

The results from the cross-validation is shown in Figure 5.4. The perfor-

mances of the three candidate models were very similar. One exception is

the model y(x) = β−1x−1 + β0 fitted onto the AbsNoFilter dataset because

the mean scaled deviance was significantly larger. This is expected from a

model not favoured in the forward stepwise selection in the previous section.

Shading correction did not have a significant effect on the analysis.

From these results, it is recommended that the relationship y(x) =

β0 + β1x should be used for its simple form, similar performance to other

candidate models and connections to the compound Poisson.

5.4 Residual Analysis

Residual analysis was conducted to study for anything overlooked. The

model y(x) = β0 + β1x was fitted onto the entire sample variance-mean

data. A residual plot plots ri = yi − ŷ(xi) for all xi in the dataset which was

done using a 2D histogram. Due to the gamma GLM, higher grey values

typically have bigger residuals in magnitude. A prediction residual interval

is included in the histogram to aid judging the residuals. This interval was

acquired by obtaining the prediction interval and subtracting it from the

fit.

The residual plots are shown in Figure 5.5. The residuals are all sensi-

ble and increased in magnitude with the grey value which is captured by
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(d) AbsFilter at 120°

Figure 5.4: Test mean scaled deviance from predicting variances in a test

set using a GLM fitted onto a training set. The different colours represent

different shading corrections. The boxplots represent the 100 repeats of the

analysis by bootstrapping the replicate projections.

the prediction residual interval. The inflection in AbsNoFilter at 120°, as

discussed previously, can be seen more clearly here.

Because no spatial information was used in modelling the variance, the

residuals were plotted on top of the projections to look for any spatial

structure, this is shown in Figure 5.6. Because of the geometry of the test

sample, lower grey values, thus smaller residuals, were found in the middle

of the projection. Similarly, higher grey values, thus bigger residuals, were

found on the edges of the test sample. Considering that, the residuals do not

show any striking spatial structure. Again, the inflection in AbsNoFilter
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(c) AbsFilter at 30°
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(d) AbsFilter at 120°

Figure 5.5: Log frequency density histogram of the residuals given the mean

grey value. The residuals are from fitting a gamma GLM of the form y(x) =

β0 + β1x onto the sample variance-mean data obtained from the replicate

projections. The dashed red line shows the 68% prediction residual interval.

The colour scales are in units of log ADU−3.
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Figure 5.6: Absolute value residuals from fitting a gamma GLM of the

form y(x) = β0+β1x onto the sample variance-mean data obtained from the

replicate projections. Highlighted in a dashed red box is an example of an

inflection. The colour scales are in units of ADU2.

at 120° can be seen more clearly here.

5.5 Conclusion

Various parametric models were investigated. A gamma GLM with iden-

tity and canonical link functions were looked at with different polynomial

features. In terms of cross-validation, most of the models looked at have

similar prediction performance when predicting the variance given a grey

value. Thus, the relationship ŷ(x) = β0 + β1x using the identity link is
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attractive for its simplicity and links with the compound Poisson model.

It was found that shading correction had little effect on the variance-

mean relationship.

As discussed in the compound Poisson chapter, a linear relationship can

be derived by assuming no beam hardening, then it should be expected

that a linear relationship is observed in the dataset AbsFilter. In the

forward stepwise selection, AbsNoFilter consistently selected the linear

model, given the identity link function. AbsFilter did not select the linear

model but in terms of cross-validation, the linear model was just as good

as the other models.

It was unusual to see an inflection in the sample variance-mean data in

AbsNoFilter at 120° which was not captured by the GLM. A good expla-

nation was not found but perhaps the absence of an x-ray filter may have

contributed to this. As a result, the AbsNoFilter dataset was discarded in

favour of the AbsFilter dataset from the next chapter.

There exist model selection methods such as lasso and elastic net (Tib-

shirani, 1996; Zou and Hastie, 2005; Friedman et al., 2010) but they are

catered for high dimensional problems involving hundreds of parameters.

In this problem, only a few parameters were needed to find a good model

thus forward stepwise selection was sufficient. More flexible models such as

non-parametric and machine learning methods may be used, however, they

are slow and are unnecessary in a low dimensional problem with a large

number of data points.

With the ability to predict the variance given a grey value of a pixel,

the uncertainty can be quantified. In the next chapter, the projection is

compared to a simulated projection in the face of that uncertainty.
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Chapter 6

Inference

Disagreements between the obtained and the aRTist simulated projections

can be found by subtracting one projection from the other. Any values too

big in magnitude can be considered as a defect. However, in the previous

chapters, it was found that x-ray photons behave randomly and differences

in the comparison can be due to chance. Thus, the comparisons should be

done in the face of uncertainty.

A pixel by pixel hypothesis test was proposed to do defect detection.

To illustrate this method of inference, the projections from the dataset

AbsFilter at 120° was used. To recap, 20 replicate projections of a test

sample, with purposefully manufactured voids, were obtained. aRTist was

used to create a simulation of that projection but as if the voids were not

there. Thus, the method should pick these voids up.

Beforehand, linear shading correction was applied to the projec-

tions. The aRTist projections were shading corrected using the simulated

greyscale projections. The 20 replicate projections were split into two. 19

randomly selected projections were used for the variance-mean model to fit

onto. The remaining projection was compared with the aRTist projection.

This remaining projection and the aRTist projections are shown in Figures

6.1a and 6.1b respectively.

A gamma GLM, with a basic linear relationship, was used for the

variance-mean model, as described in Chapter 5. The variance was pre-
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dicted using the grey value in the aRTist simulation as the predictor vari-

able.

The test statistic, for the pixel located at (x, y), is

Zx,y =
projectionx,y − aRTistx,y

√
ŷ [aRTistx,y]

(6.1)

where ŷ [aRTistx,y] is the predicted grey value variance. The test statistic

was calculated for each pixel in the ROI, that is, pixels which represent the

test sample. The ROI was created by manually segmenting the test sample

from the projection.

It is important to identify which quantities are random and which are

not. For high photon rates, it was shown in the previous chapters that the

grey values in the projection can be modelled using a Normal distribution.

Thus, projectionx,y is a random quantity. The simulation aRTistx,y is not

random because this was obtained through computer software. Given the 19

selected projections used for training the variance-mean model, the variance

prediction ŷ [aRTistx,y] is not random because the variance-mean model

was fitted before encountering the remaining projection to be compared

with aRTist. The variance-mean model can be made random if a different

set of 19 projections was used to train the model each time this inference

was conducted, but this shall not be considered here.

If there are no significant differences between the obtained and aRTist

projections, then the randomness of the test statistics can be approximately

quantified as

Zx,y ∼ N(0,1) . (6.2)

As with usual statistical convention, an upper case Z denotes a random

variable. A lower case z denotes a realisation or an observation of that

random variable.

For each pixel, a test statistic was calculated, which forms a z image.

A test statistic too large in magnitude, relative to the anticipated variance,

will classify that pixel as a positive result. In two-tailed hypothesis testing

(Pearson, 1900; Neyman and Pearson, 1933; Fisher, 1970), p-values can be
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Figure 6.1: The obtained projection of the test sample (a), from the

AbsFilter at 120° dataset, was compared to the aRTist projection (b)

to detect purposefully manufactured voids. The p-values (c) obtained were

used for hypotheses testing. Pixels detected as positive are shown in red

in d) using the Benjamini and Hochberg (1995) procedure at the 5% false

discovery rate level.

used to represent the test statistics in a different way

px,y = 2(1 −Φ(∣zx,y ∣)) (6.3)

which can takes values 0 ⩽ px,y ⩽ 1. A p-value too small is considered a

positive result. The p-values are shown in Figure 6.1c.

The resulting p-values are concerning. This is because the p-values are

not very smooth on the surfaces of the sample. It should be expected that
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Figure 6.2: a) The histogram of the test statistics, from the AbsFilter

projection at 120°, is compared with the standard Normal distribution.

The standard Normal distribution is known as the null distribution in this

scenario. b) The p-values are ordered and plotted. The critical region

corresponds to controlling the false discovery rate at the 5% level using

the Benjamini and Hochberg (1995) procedure. The dotted line shows the

result if the p-values were uniformly distributed.

small p-values are in areas of the defects. Pixels were tested positive or

considered to be evidence of a defect, when ∣zx,y ∣ > 2.48 to 2 decimal places.

This value was chosen by controlling the false discovery rate at 5% using

the Benjamini and Hochberg (1995) (BH) procedure. The positive pixels

are shown in Figure 6.1d.

This proposed method for defect detection failed because too many false

positives were detected. These false positives appeared to have some struc-

ture, for example, clustering in the corners or on surfaces. Also, false neg-

atives were detected because not all of the defects were detected.

Model misspecification appeared to be the main source of error. The test

statistics and p-values were inspected in Figure 6.2. It can be seen that the

test statistics were not compatible with the standard Normal distribution.

Also, the majority of the p-values did not look uniformly distributed. This

seems to suggest that the assumption of Zx,y ∼ N(0,1) is incorrect.

This chapter recaps hypothesis testing, for a single test and then for
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multiple tests, treating each pixel as a test. Assumptions used in the hy-

potheses testing can be relaxed by using the empirical null (Efron, 2004),

which is reviewed here. The empirical null is then extended to an image

filter, called the empirical null filter. This filter adjusts each test statistic

according to its neighbours, ironing out false positive results. Simulations

and results are shown towards the end of the chapter.

6.1 Literature Review

Consider a test statistic Z from a pixel. If there are no defects, then the

statistic is null and has the null distribution Z ∣H0 ∼ N(0,1). This can be

described by specifying the random variable as Z ∼ N(µ,1) and the null

hypothesis as H0 ∶ µ = 0. A hypothesis test can judge how much Z deviates

from 0 by defining the alternative hypothesis H1 ∶ µ ≠ 0. A statistic which

does not has the null distribution is known as non-null.

In two-tailed hypothesis testing (Pearson, 1900; Neyman and Pearson,

1933; Fisher, 1970), the p-value can be compared with the user-defined size

of the test α, also known as the significance level in this specific example.

A positive result is declared when p < α, else it is a negative result. Correct

and incorrect testing of the statistics can occur. For example, testing a null

statistic as positive is known as a false positive. It can be shown that α

controls the false positive rate. α = 5.0% is a typical choice (Wasserstein

et al., 2019) and is used throughout this thesis.

Multiple hypotheses testing occurs when there are more than one hy-

potheses to test. For example, N pixels can be tested where the test statis-

tics are Z1, Z2, . . . , ZN and Zi ∼ N(µi,1) for i = 1,2, . . . ,N . The null hy-

potheses are H0,i ∶ µi = 0 and are tested against the alternative H1,i ∶ µi ≠ 0

for i = 1,2, . . . ,N . Let the corresponding p-values be p1, p2, . . . , pN .

The uncorrected test classify any pi < α as positive. This is flawed

because the possibility of obtaining at least one false positive increases as

the number of tests increases (Shaffer, 1995). This method does control

the per-comparison error rate (PCER) (Benjamini and Hochberg, 1995).

PCER is the proportion of false positives out of all tests. The notation for
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Negative Positive Total

Null U V N0

Non-null T S N −N0

N −R R N

Table 6.1: Random variable definitions for the number of true/false posi-

tives/negatives made in multiple hypotheses testing

the number of true/false positive/negatives obtained are defined in Table

6.1. Using the notation, the PCER is defined as

PCER =
1

N
E[V ] . (6.4)

It can be seen that if the uncorrected test controls the false positive rate

such that E[V ]/N0 = α, then it controls the PCER such that

PCER ⩽ α . (6.5)

The Bonferroni correction (Shaffer, 1995; Bland and Altman, 1995; Per-

neger, 1998) controls the family-wise error rate (FWER) (Shaffer, 1995)

where

FWER = P(V ⩾ 1) . (6.6)

This is done by adjusting the size of the test to be α/N . By using the

adjusted size, then FWER = 1 − [(1 − α/N)N]. Using the approximation

(1 − α/N)N ≈ 1 − α then FWER ≈ α. This shows that the Bonferroni

correction controls the family-wise error rate such that

FWER ⩽ α . (6.7)

In practice, the Bonferroni correction is not very powerful (Perneger, 1998),

meaning it gives too many false negatives. This is because the correction

traded too many false positives for false negatives.

The Benjamini and Hochberg (1995) (BH) procedure controls the false

discovery rate (FDR) (Benjamini, 2010) rather than the PCER or FWER.
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The FDR is the proportion of false positives out of all positive results, that

is

FDR = E [
V

R
] . (6.8)

It is defined that V /R = 0 when R = 0.

The BH procedure adjusts the size of the test between the Bonferroni

correction and the uncorrected test. It adapts to the data and chooses

different sizes for different data. The procedure is as follows, the p-values

are ordered such that p(1) ⩽ p(2) ⩽ . . . ⩽ p(N). Suppose a size α is provided

beforehand. The size is adjusted to

αBH =
αk

N
(6.9)

where

k is the largest i for which p(i) ⩽
i

N
α . (6.10)

This test the statistics with p-values p(1), p(2), . . . , p(k) as positive. For the

case where p(1) > α/N then k = 1 so that the Bonferroni correction is used

when there are no positive results, this is only for illustration purposes. For

example in Figure 6.2b, the p-values were plotted against their order so that

the critical boundary was shown by a linear curve with gradient α/N .

The BH procedure comes from the fact that if all the statistics are null

and independent, then the p-values are uniformly distributed (Simes, 1986).

However, it can be shown that the BH procedure works for many scenarios

of dependencies (Benjamini and Yekutieli, 2001). It can be shown that the

BH procedure controls the FDR such that

FDR ⩽ α (6.11)

(Benjamini and Hochberg, 1995).

In summary, the uncorrected, Bonferroni and BH correction controls for

different error rates according to the threshold α, summarised in Table 6.2.

Consider a small example where a 200 px×200 px section of the z image

was investigated, as shown Figure 6.3. The distribution of the test statistics

appeared Normal but not centred at zero. By using the BH procedure to

obtain a critical region of ∣Z ∣ > 2.29 to 2 decimal places, almost half of
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Correction Controls for

No correction PCER ⩽ α

Bonferroni FWER ⩽ α

BH FDR ⩽ α

Table 6.2: Different types of corrections for multiple hypotheses testing are

listed here, along with what they control for.
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Figure 6.3: The resulting test statistics for the AbsFilter projection at

120° are shown in a). A 200 px × 200 px sub-image was taken shown by the

dashed lines. A histogram of the test statistics in the sub-image is shown

in b). The critical region corresponds to the 5% FDR level.

the pixels were tested positive at the 5% FDR level. It is questionable

whether such many positive results are sensible, in particular, in an area

where defects were not expected.

This problem commonly occurs in large scale multiple hypotheses testing

(Efron, 2004) such as in microarrays (Hedenfalk et al., 2001; Efron and

Tibshirani, 2002; Efron et al., 2003). It appeared that the null distribution

was misspecified as Zi∣H0,i ∼ N(0,1) when in reality they are distributed as

Zi∣H0,i ∼ N(µ0, σ2
0), where µ0 and σ0 are the null mean and null standard

deviation respectively.

In practice, µ0 and σ0 are unknown. The empirical null (Efron, 2004)

replaces the parameters of the null distribution with its estimate. Sup-
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pose µ̂0 and σ̂0 are the estimated null mean and null standard deviation

respectively. The statistics are specified by Zi ∼ N(µi, σ̂2
0) so that the fol-

lowing null hypotheses H0,i ∶ µi = µ̂0 are tested against H1,i ∶ µi ≠ µ̂0 for

i = 1,2, . . . ,N .

In Efron (2004), a few assumptions were made in order to obtain the

estimators µ̂0 and σ̂0. Let the test statistic Z have the p.d.f.

pZ(z) = π0pZ∣H0
(z) + π1pZ∣H1

(z) (6.12)

where 0 ⩽ π0 ⩽ 1 and π1 = 1 − π0. In addition, the null distribution is

pZ∣H0
(z) =

1
√

2πσ0
exp [−

1

2
(
z − µ0

σ0
)
2

] (6.13)

as it was assumed to be Normal. The non-null distribution pZ∣H1
(z) does

not need to be specified. Assume that the majority of the data are null

and non-null test statistics are rare, say π0 > 0.9 (Efron, 2004), then around

the mode, the probability density function would be dominated by the null

distribution. This implies that

pZ(z) ≈ π0pZ∣H0
(z) (6.14)

for values of z around the mode. Finding the mode for pZ(z) and pZ∣H0
(z)

should yield the same solution. This justify the use of the mode for the

empirical null mean (Efron, 2004)

µ̂0 = argmax p̂Z(z) (6.15)

where p̂Z(z) is the density estimation of pZ(z), for example it could be a

smoothing spline fitted onto the histogram (Efron, 2004).

The null standard deviation is estimated from the log density (Efron,

2004). For values of z at and around the mode

lnpZ(z) = ln [
π0

√
2πσ0

] −
1

2
(
z − µ0

σ0
)
2

. (6.16)

Taking derivatives

∂

∂z
lnpZ(z) = −(

z − µ0

σ2
0

) (6.17)

∂2

∂z2
lnpZ(z) = −

1

σ2
0

(6.18)
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which motivates the estimator (Efron, 2004)

σ̂0 = [−
∂2

∂z2
ln p̂(z)∣

z=µ̂0

]

−1/2

. (6.19)

The evaluation of z = µ̂0 is used because at the mode, it was assumed that

the null test statistics would dominate and non-null test statistics would

not contribute much to the density estimate.

This method does not need estimations of π0 which makes it quite con-

venient. Estimations of π0 are discussed in literature such as Benjamini and

Hochberg (2000); Pounds and Morris (2003); Storey and Tibshirani (2003);

Pounds and Cheng (2004); Langaas et al. (2005); Durnez et al. (2014).

Efron (2004) motivated the use of the empirical null by investigating vari-

ous types of false discovery rates (Storey, 2002, 2003; Efron and Tibshirani,

2002; Efron, 2007) which will not be discussed here.

The empirical null is used widely, including in neuroimaging (Schwartz-

man et al., 2008a, 2009) and has been extended to include non-Normal null

distributions (Schwartzman et al., 2008a,b). There exist various methods

for the empirical null, for example, Schwartzman et al. (2008b) used Pois-

son regression on the histogram counts in regions where the null statistics

dominate. The empirical characteristic function was used in Jin and Cai

(2007).

6.2 Empirical Null

Returning to the sub-image example in Figure 6.3. The histogram was

smoothed using a kernel density estimate (Parzen, 1962; Friedman et al.,

2001) as shown in Figure 6.4. The kernel density estimate (Parzen, 1962)

is

p̂Z(z) =
1

nh

n

∑
i=1

φ(
zi − z

h
) (6.20)

where h is the bandwidth, φ(x) is the standard Normal density and n = N

is number of terms in the summation. The bandwidth was chosen such that

h = (0.9n−1/5 + 0.16) ×min (sz, IQRz/1.34) (6.21)
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Figure 6.4: The density of the test statistics, from Figure 6.3, was estimated

using a kernel density estimate. The dot-dashed line shows the empirical

null distribution multiplied by some constant, this is to illustrate that the

two densities have the same curvature at the mode.

where sz and IQRz are the sample standard deviation and sample interquar-

tile range. This bandwidth is justified later on in this section.

The null mean was estimated by numerically finding the mode of the

density estimate. The null standard deviation was estimated using Equa-

tion (6.19). This resulted in the empirical null density to have the same

curvature as the density estimate at the mode, this is illustrated in Figure

6.4. In this particular example, it was found that µ̂0 = 2.14 and σ̂0 = 1.09

to 2 decimal places.

The use of the kernel density estimate has its advantages. The only

tuning parameter is the bandwidth h and the density estimate is simple

enough to do calculus on it. Speed may be an issue as an evaluation of the

density estimate requires the sum over the n test statistics.

The test statistics were normalised to T1, T2, . . . , TN by using

Ti =
Zi − µ̂0

σ̂0
(6.22)

for i = 1,2, . . . ,N . The normalised p-values were obtained by using

pi = 2(1 −Φ(∣ti∣)) (6.23)

and were used in the BH procedure. The critical region was found to be

∣t∣ ⩾ 4.85 at the 5% FDR level. In terms of the original units, the critical
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Figure 6.5: Histogram and p-values of the test statistics from the sub-image

in Figure 6.3. The critical regions were adjusted using the empirical null

and correspond to the 5% FDR level.

region was z ⩽ −3.16 and 7.43 ⩽ z, all to 2 decimal places. The critical

region and the normalised p-values are shown in Figure 6.5.

No positive results were found and the p-values were sensible as they

resemble the uniform distribution. This demonstrated that the empirical

null adjusted the parameters of the null distribution to fit onto the majority

of the data to make a sensible inference.

Another example is shown in Figure 6.6 where a 200 px × 200 px sub-

image containing a defect was used. It can be seen that the null distribution

was not centred at zero which can be taken into account by using the

empirical null. The estimation of the empirical null parameters was robust

as it depends on the density estimate at the mode only, it should not be

affected by non-null test statistics.

The BH procedure was conducted using the normalised p-values. 389

pixels were tested positive at the 5% FDR level. The majority of the positive

pixels were found to be clustered together which highlighted the defect. The

entire area of the defects was not tested positive but a good portion of them

are. This should be enough to raise suspicion in that particular area. Only a

few pixels were falsely tested as positive, however, they are typically isolated

single pixels. Isolated positive pixels should be discarded as they are more
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Figure 6.6: The resulting test statistics for the AbsFilter projection at

120° are shown in a). A 200 px × 200 px sub-image was taken shown by

the dashed lines. Positive pixels are shown in red in b). The histogram of

the test statistics in the sub-image are shown in c) along with the critical

region. The p-values are shown in d). The critical regions were adjusted

using the empirical null and correspond to the 5% FDR level.



110 CHAPTER 6. INFERENCE

than likely to be tested positive by random chance.

This section describes the empirical null implementation in detail, in

particular, the numerical and computational aspects. The empirical prop-

erties of the sampling distribution of the null parameter estimators were

studied.

Mode Finding

The mode was found by solving µ̂0 = argmax p̂Z(z) numerically. This was

done by using the Newton-Raphson method to solve

∂

∂z
ln p̂Z(z) = 0 (6.24)

for z which finds stationary points. The method is an iterative algorithm

and requires an initial value z(0). The iterative step is

z(r+1) = z(r) −

∂

∂z
ln p̂Z(z)∣

z=z(r)

∂2

∂z2
ln p̂Z(z)∣

z=z(r)

(6.25)

for r = 0,1,2,3, . . . until some convergence condition is met. The derivatives

for the log density were obtained via the following. Recall the kernel density

estimate in Equation (6.20), the log density is

ln p̂Z(z) = ln(
1

nh
) + ln [

n

∑
i=1

φ(
zi − z

h
)] . (6.26)

Taking the first-order derivative

∂

∂z
ln p̂Z(z) =

1

∑
n
i=1 φ(

zi − z

h
)

×
n

∑
i=1

φ′ (
zi − z

h
)(−

1

h
) .

Using the fact that φ(z) = (2π)−1/2 exp(−z2/2), then φ′(z) = −zφ(z). This

is used to simplify the equation to be

∂

∂z
ln p̂Z(z) =

∑
n
i=1 φ(

zi − z

h
)(

zi − z

h
)

h∑
n
i=1 φ(

zi − z

h
)

. (6.27)
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Taking the derivative again

∂2

∂z2
ln p̂Z(z) = [h

n

∑
i=1

φ(
zi − z

h
)]

−2

× {h [
n

∑
i=1

φ(
zi − z

h
)]

×
n

∑
i=1

[φ′ (
zi − z

h
)(−

1

h
)(

zi − z

h
) + φ(

zi − z

h
)(−

1

h
)]

− [
n

∑
i=1

φ(
zi − z

h
)(

zi − z

h
)] [h

n

∑
i=1

φ′ (
zi − z

h
)(−

1

h
)]} .

Using the fact that φ′(z) = −zφ(z), then it is simplified to

∂2

∂z2
ln p̂Z(z) = [h

n

∑
i=1

φ(
zi − z

h
)]

−2

× {[
n

∑
i=1

φ(
zi − z

h
)]

× [
n

∑
i=1

φ(
zi − z

h
)((

zi − z

h
)
2

− 1)] − [
n

∑
i=1

φ(
zi − z

h
)

(
zi − z

h
)]

2

} . (6.28)

The convergence criteria were met when either 10 update steps were

taken or when

log [∣
∂

∂z
ln p̂Z(z)∣

z=z(r)
∣] < −5 (6.29)

at the current step. This was chosen arbitrary to speed up the algorithm

without losing too much accuracy. At the end of the algorithm, for a suc-

cessful convergence it was required, in addition, that

∂2

∂z2
ln p̂Z(z)∣

z=z(r)
< 0 . (6.30)

Following a successful convergence, the estimator σ̂0 was calculated straight

away.

The algorithm does depend on the initial value so using different initial

values were used. Further initial values were generated by sampling from

N(z(0), s2z). This was done multiple times until three valid solutions were

obtained. The best solution, the one with the largest ln p̂Z (µ̂0), out of

all the different initial values was used as the final answer. The Newton-

Raphson method may converge to a local maximum.

It can be noted that this mode finding method can be applied to other

distributions in general.
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Bandwidth Tuning

The bandwidth h controls how smooth the kernel density estimator is,

higher values produce smoother curves (Friedman et al., 2001). Cross-

validation methods to select h do exist (Bowman, 1984; Sheather, 2004)

but they can be computationally expensive. Rules of thumb (Silverman,

1986; Sheather, 2004) can be used instead and are usually of the form

h = bn−1/5 ×min (sz, IQRz/1.34) (6.31)

where b = 0.9 (Silverman, 1986). This rule of thumb was developed with

consideration of bimodal Normal distributions (Silverman, 1986). Other op-

tions include b = 1.06 and b = 1.144 to produce smoother curves (Silverman,

1986; Sheather, 2004).

The kernel density estimator was only used to obtain values of µ̂0 and

σ̂0. Thus, a good bandwidth, in the context of the empirical null, is one

which has good properties of µ̂0 and σ̂0 rather than the density estimate.

Exact properties of these estimators based on the kernel density estimators

can be rather complicated. For example, numerous approximations were

needed to show that σ̂2
0 is an unbiased estimator of σ2

0 to the first-order

and higher-order terms are functions of (µ̂0 − µ0)
2 and h. This is shown in

Appendix C.

An experiment was conducted to investigate how the estimators, µ̂0 and

σ̂0, varied with h and n. This was done on a simulated dataset of n standard

Normal random variables. For a given h and n, 100 values of µ̂0 and σ̂0 were

obtained by repeating the simulation of the dataset. The median squared

error was obtained by taking the median over all the squared errors from

the 100 estimates. 300 values of n from 10 to 106 and 30 values of h from

0.09 to 1.5 were investigated. Figure 6.7 shows the resulting median squared

errors with the rules of thumb.

µ̂0 has a low median squared error for large bandwidths. For low n,

large bandwidths are particularly useful because smoother curves prevent

any false bimodal features appearing, making it easier to find the mode.

A smooth valley can be seen for the median squared error for σ̂0. It

appeared for a given n, there exist a bandwidth which minimises the median
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(a) µ0 (b) σ0

Figure 6.7: The median squared error of the estimates of the empirical null

parameters over 100 repeats of n simulated standard Normal data. Lines

represent the rule of thumb for various values of b.

(a) Heatmap

Figure 6.8: Median value of σ̂0 over 100 repeats of n simulated standard

Normal data. The true value is σ0 = 1 which is represented by a horizontal

plane.

squared error. The rules of thumb did not optimise for σ̂0 and undershot it.

Figure 6.8 shows the median of the estimates of σ0. The true value in this

simulation is σ0 = 1 which is represented as a horizontal plane. Bandwidths

too small underestimated σ0, bandwidths too big overestimated σ0.

Overestimates and underestimates are both dangerous and it can affect

the false positive and false negative rate. This is because σ̂0 was used to
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Estimate

Intercept (1.586 ± 0.027) × 10−1

Gradient (9.68 ± 0.11) × 10−1

Table 6.3: The estimated and standard error of the gradient and intercept

from the linear relationship in Figure 6.10.

rescale the test statistics accordingly. Recall that the normalised test statis-

tics are ti =
zi − µ̂0

σ̂0
. Low values of σ̂0 produce large values, in magnitude, of

ti, potentially testing more of these test statistics as positive. High values

of σ̂0 do the opposite. A large number of positives can lead to more false

positives and vice versa.

The optimal bandwidth for a given n was found numerically. Figure

6.9 shows the log squared error against the bandwidth for various h given

n. A smoothing spline (Friedman et al., 2001) was fitted and this was

optimised to find the bandwidth which minimises the log squared error for

a given n. MATLAB ’s fit(x,y,’smoothingspline’) function was used

to fit the smoothing spline which has inbuilt cross validation procedures.

The optimisation was done using MATLAB ’s gradient free fminsearch

function, using h = 0.9n−1/5 as the initial value.

A relationship between the optimal bandwidth and n was attempted to

be found. It was assumed such a relationship has the linear form

hoptimal = bn
−1/5 + a (6.32)

where b and a are parameters to be fitted. This was chosen to establish a

simple relationship with the rules of thumb. Figure 6.10 show the fitting of

an identity link gamma GLM in order to estimate b and a. The estimated

parameters are shown in Table 6.3.

The rules of thumb can be improved if a small bias is added to it. This is

because an intercept was found when fitting a linear relationship between

the optimal bandwidth and n−1/5. Adding this bias should improve the

performance of the estimator σ̂0. The gradient is similar to the rules of

thumb in the literature (Sheather, 2004).
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Figure 6.9: A smoothing spline was fitted on the log squared error, for

estimating σ0 on n simulated standard Normal random variables, versus

bandwidth. The experiment was repeated by simulating the standard Nor-

mal random variables again. The boxplots represent the 100 repeats. The

red dashed line shows the bandwidth which minimised the fitted spline.



116 CHAPTER 6. INFERENCE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

n
-1/5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
o

p
ti
m

a
l 
b

a
n

d
w

id
th

Figure 6.10: An identity link gamma GLM was fitted onto the relationship

between the optimal bandwidth and n−1/5 from the experiment. The dashed

lines show the 68% prediction interval.

The GLM fit in Figure 6.10 appeared to underfit, which suggest there

may be a more complicated relationship between the optimal bandwidth

and n, for example, a quadratic term can be added to the GLM fit. The

method used in fitting the smoothing spline could contribute to the under-

fitting. For example, if the smoothing spline was not smooth enough so

that multiple local minima appeared, it would add variance to the optimal

bandwidth if the optimisation algorithm converges to a local minimum. A

basic linear relationship was chosen to avoid overfitting and to keep the

rule of thumb simple. It would also choose a large bandwidth for small n

which would improve the performance µ̂0 by working on a smoother density

estimate for the price of a less optimal σ̂0.

In conclusion, a small bias added to the rule of thumb improved the per-

formance of the estimator σ̂0. Silverman (1986) pointed out that a smaller

bandwidth should be used when, in particular, the distribution is bimodal.

This is why Silverman (1986) suggested the use of b = 0.9. Following from
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this, it was chosen that the intercept was added to Silverman’s rule of thumb

for the use in the empirical null h = (0.9n−1/5 + 0.16) ×min (sz, IQRz/1.34).

Comparison with Other Robust Estimators

The empirical null mean is effectively the mode and the empirical null stan-

dard deviation is a measure of dispersion. It was investigated how they

compare with various estimates of central tendency and dispersion for vary-

ing sample sizes n. The empirical sampling distribution of these estimators

was observed to look for properties such as bias, variance and robustness.

The central tendency estimates looked at were the median, the mean

and Tukey’s biweighted mean (Beaton and Tukey, 1974). In summary, the

biweighted mean weighs each data point using a smooth function of its

residual and ignores any data points with residuals greater than a certain

value. MATLAB ’s robustfit function was used for the biweighted mean

and selects any tuning parameters.

The dispersion estimates looked at were the interquartile range (IQR)

÷1.349, the standard deviation and the median absolute deviation around

the mode (MADA-mode) ×1.483. The normalisation constants were used so

that MADA-mode and IQR can be compared directly to the standard de-

viation. MADA-mode was considered to investigate how estimators, which

depends on the mode, perform.

In the next section, these estimators are used on a circular kernel with

radius r containing πr2 pixels. To make results comparable, the sample size

n may be represented using r =
√
n/π.

A sample of standard Normal random variables was simulated to obtain

estimates of central tendency and dispersion. This was repeated 100 times

to obtain a sampling distribution. The results are shown in Figures 6.11

and 6.12. The mode and empirical null standard deviation both suffered

from high variance, much higher than typical robust estimators.

The empirical null standard deviation had some positive bias and it was

found that this bias was quite sensitive to the bandwidth. Further fine-

tuning on the bandwidth would be required for the empirical null standard
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deviation to be unbiased. For example, it appeared there was a consistent

positive bias for all r investigated, perhaps suggesting the bandwidth pa-

rameter a should be decreased ever so slightly. The source of bias could

come from the fact that the bandwidth was tuned to minimise the log

squared error rather than the squared bias.

It is interesting to compare the empirical null standard deviation with

MADA-mode, in Figure 6.12, because they both depend on the mode. The

mode suffered from high variance which may affect dispersion estimators us-

ing the mode. The figure shows that MADA-mode had less variance than

the empirical null standard deviation. This suggests that using the curva-

ture of the density estimate at the mode was the main source of variance

for the empirical null standard deviation.

To test for robustness, a sample of mixture of Gaussian random variables

were simulated with the following distribution: N(0,1) with probability

90%, N(3,1) with probability 10%. The N(3,1) component acts as non-null

statistics and robust estimators should be unaffected by it. The results are

shown in Figures 6.13 and 6.14. The empirical null estimators are robust to

the non-null component but still suffers from high variance. The rest of the

estimators were affected by the non-null statistics, making them unsuitable

to estimate parameters of the null parameters.

6.3 Empirical Null Filter

Returning to the example at the start of the chapter, the empirical null

could be used on the histogram shown in Figure 6.2. The resulting empirical

null distribution is shown in Figure 6.15. The critical boundary, adjusted

using the empirical null, which corresponds to the 5% FDR level was found

to be z ⩽ −11.34 and 13.39 ⩾ z to 2 decimal places. This would test all

pixels as negative which is incorrect.

The problem was that the empirical distribution of all of the test statis-

tics looked like it did not come from a Normal distribution. It appeared

that the test statistics varied spatially, suggesting that the empirical null

varied spatially as well. To account for the spatial variability of the null
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(b) Bisquare weighted mean
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(d) Mean

Figure 6.11: Different types of central tendency estimators were used on πr2

standard Normal random variables. The boxplots represent the sampling

distributions over 100 estimates. The dashed lines show the 95% confidence

interval for the sample mean.
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Figure 6.12: Different types of statistical dispersion estimators were used

on πr2 standard Normal random variables. The boxplots represent the

sampling distributions over 100 estimates. The dashed lines show the 95%

confidence interval for the sample variance.
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(a) Mode
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(b) Bisquared weighted mean
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(c) Median
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Figure 6.13: Different types of central tendency estimators were used on πr2

mixture of Gaussian random variables. The random variable has distribu-

tion N(0,1) with probability 0.9 and N(3,1) with probability 0.1. The box-

plots represent the sampling distributions over 100 estimates. The dashed

lines show the 95% confidence interval for the sample mean.
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(b) MADA-mode
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Figure 6.14: Different types of statistical dispersion estimators were used

on πr2 mixture of Gaussian random variables. The random variable has

distribution N(0,1) with probability 0.9 and N(3,1) with probability 0.1.

The boxplots represent the sampling distributions over 100 estimates. The

dashed lines show the 95% confidence interval for the sample variance.
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parameters, one possible extension to the empirical null is to spilt the z

image into a grid and conduct inference in each section separately. There

are problems with this though. The first problem is that how the grid is

overlaid can be arbitrary, for example, the grid can be translated to produce

different sections. Secondly, it is not clear how to combine the results from

each section together (Efron, 2008).

The empirical null filter extends the empirical null to images. The pa-

rameters of the null distribution varies spatially, slowly and smoothly. Let

the test statistic of the pixel at position (x, y) be

Zx,y ∼ N(µ0,x,y, σ̂
2
0,x,y) (6.33)

for x = 1,2, . . . ,W and y = 1,2, . . . ,H. µ0,x,y and σ0,x,y are the null mean

and null standard deviation at position (x, y) respectively. Define the null

hypotheses to be

H0,x,y ∶ µ0,x,y = µ̂0,x,y (6.34)

which are tested against

H1,x,y ∶ µ0,x,y ≠ µ̂0,x,y . (6.35)

The empirical null filter aims to estimate the parameters µ0,x,y and σ0,x,y

for all x and y.

The empirical null filter uses the empirical null on neighbouring pixels

to estimate the null parameters. To estimate µ0,x,y and σ0,x,y, a circular

kernel Cr(x, y) of radius r was centred at (x, y). All the pixels captured by

the circular kernel and the ROI were used for the empirical null to obtain

µ̂0,x,y and σ̂0,x,y, in other words

µ̂0,x,y = argmax p̂Zx,y(z) (6.36)

σ̂0,x,y = [−
∂2

∂z2
ln p̂Zx,y(z)∣

z=µ̂0,x,y

]

−1/2

(6.37)

where

p̂Zx,y(z) =
1

nh
∑

i,j∈Kx,y

φ(
zi,j − z

h
) , (6.38)
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Figure 6.15: The resulting test statistics for the AbsFilter projection at

120° are shown in a). The density estimate of the statistics is shown in b).

The empirical null distribution multiplied by some constant is also plotted

in b); this is to illustrate the curvature is the same as the density estimate

at the mode.

Kx,y = Cr(x, y) ∩ROI and n = ∣Kx,y ∣, not to be confused with N . A band-

width of h = (0.9n−1/5 + 0.16) × min (sx,y, IQRx,y/1.34) was used where

sx,y and IQRx,y are the sample standard deviation and sample interquartile

range of the test statistics in Kx,y.

After obtaining the estimates of the empirical null parameters, the test

statistics were normalised using

Tx,y =
Zx,y − µ̂0,x,y

σ̂0,x,y
(6.39)

and only the normalised test statistics were used in hypotheses testing. It

should be noted that because the kernels can overlap, correlation between

Tx,y for different (x, y) is introduced.

The parameter of choice is the kernel radius r. A radius too small will

treat defects as the null and will not detect them, too big can also cause

problems as well. The empirical null filter assumes that the null parameters

vary smoothly and slowly so that the null test statistics captured by the

kernel is somewhat Normal. If the radius is too big, the kernel will capture

distanced test statistics with very different null distributions. If all of these
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test statistics are pulled together into a histogram, the null distribution may

not look Normal at all which can cause problems when fitting a Normal null

distribution. Furthermore, if r → ∞, then this is just using the empirical

null on all pixels.

The radius controls the proportion of pixels which are null captured by

the kernel, denoted as π0. It should be selected so that π0 is of sensible

value, for example, > 90%. In practice, the defects are unknown so various

kernel radiuses should be tried out. The kernel radius should be much larger

than the size of the defect.

There exist similar filters, for example the local normalisation filter

(Sage and Unser, 2003; Sage, 2018) uses a Gaussian filter to obtain µ̂0,x,y.

σ̂2
0,x,y was obtained by applying another Gaussian filter on the (zx,y − µ̂0,x,y)

2

image. The purpose of this filter was to normalise images with uneven il-

lumination. The disadvantage of using this filter, for estimating the null

parameters, is that it uses a Gaussian filter. This is a type of weighted

mean which is not robust to non-null statistics. Also, the two Gaussian

filters can have different radiuses, it is not clear how to set them.

Design and Implementation

The empirical null filter was implemented using open-source software called

ImageJ (Abràmoff et al., 2004; Schneider et al., 2012; Mateos-Pérez and

Pascau, 2013) by modifying the existing class RankFilters, available on

GitHub (ImageJ, 2018). This class implemented filters, such as the mean

filter and median filter, using a circular kernel, making this a suitable frame-

work for the empirical null filter. Figure 6.16 shows the graphical user inter-

face of the empirical null filter in Fiji (Schindelin et al., 2012), a distribution

of ImageJ.

As a test, the empirical null filter with r = 5 px was used on a ImageJ

sample image bridge.gif, as shown in Figure 6.17. It is meaningless to use

the empirical null filter on an arbitrary image, however, it did verify that the

filter coped with it with some computational considerations. The empirical

null images µ̂0,x,y and σ̂0,x,y could be of interest, in particular, the empirical



126 CHAPTER 6. INFERENCE

Figure 6.16: The graphical user interface of the empirical null filter in Fiji.

The user can adjust the kernel radius as well as other advanced options

relating to the Newton-Raphson method and the kernel density estimate.

By-products such as the empirical null parameters can be shown after the

filtering as well.
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(a) Before filtering (b) After filtering

Figure 6.17: The empirical null filter, with kernel radius r = 5 px, was used

on the sample image bridge.gif.

null mean image could be interpreted as the result of a mode filter (Griffin,

2000). Figure 6.18 compares the empirical null mean with other averaging

filters. The empirical null mean has an impasto effect and preserved edges

which are similar to the result in Griffin (2000). Dispersion filters such

as the standard deviation filter can be used to detect edges. Figure 6.19

compares the standard deviation filter with the empirical null standard

deviation. The resulting images were similar but it was notable that the

edges in the empirical null standard deviation were sharper, suggesting that

the empirical null standard deviation is a more robust measure of dispersion

compared to the standard deviation.

When using the empirical null filter in ImageJ or Fiji, the user is pre-

sented with a menu, as shown in Figure 6.16. The user can input the kernel

radius, the filter then modifies the currently selected image zx,y to tx,y for

all x and y using a circular kernel with the specified radius. The menu also

has options for by-product images to be shown: the empirical null mean

µ̂0,x,y, the empirical null standard deviation σ̂0,x,y, the standard deviation

filter, quartile filters. Advanced options are available to the user, for ex-
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(a) No filter (b) Mean filter

(c) Median filter (d) Empirical null mean

Figure 6.18: Various averaging filters, with kernel radius r = 5 px, were used

on the sample image bridge.gif.
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(a) Standard deviation filter (b) Empirical null standard deviation

Figure 6.19: Various dispersion filters, with kernel radius r = 5 px, were

used on the sample image bridge.gif.

ample, the number of initial values set the number of valid solutions to be

found when using the Newton-Raphson method to find the mode of the

density estimate. The user can also set the maximum number of steps and

tolerance for the Newton-Raphson method. The bandwidth parameters for

the kernel density estimate can also be adjusted here.

Line filtering was done from left to right. At the start on the far left,

an initial value of the median over the pixels in the kernel was used. Also,

various initial values were randomly tried out until a requested number of

valid solutions were found. For the following pixel to the right, the empirical

null mean of the neighbouring left pixel was used as the initial value. This

was chosen as it was assumed the empirical null mean would vary slowly

and smoothly spatially. The implementation uses multiple threads, each

thread filters a row in parallel.

When the kernel captures pixels outside the boundary of the image or

ROI, RankFilters uses nearest pixel padding which fills in pixels outside

the ROI with values to the nearest pixels. Figure 6.20a shows an example

of nearest pixel padding on the top left corner of a rectangle ROI. This is
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⋱ ⋮ ⋮ ⋮ ⋮ ⋰

. . . z1,1 z1,1 z1,1 z1,2 . . .

. . . z1,1 z1,1 z1,1 z1,2 . . .

. . . z1,1 z1,1 z1,1 z1,2 . . .

. . . z2,1 z2,1 z2,1 z2,2 . . .

⋰ ⋮ ⋮ ⋮ ⋮ ⋱

(a) Nearest pixel padding

⋱ ⋮ ⋮ ⋮ ⋮ ⋰

. . . NaN NaN NaN NaN . . .

. . . NaN NaN NaN NaN . . .

. . . NaN NaN z1,1 z1,2 . . .

. . . NaN NaN z2,1 z2,2 . . .

⋰ ⋮ ⋮ ⋮ ⋮ ⋱

(b) NaN padding

Figure 6.20: When a kernel contains pixels outside the ROI, as shown by

the solid line, the pixels can either be extrapolated using the nearest pixel

or completely ignored by filling in the missing pixels with NaN.

not suitable for the empirical null filter as this will cause bias in the density

estimation. The empirical null filter uses NaN padding which fills pixels

outside the ROI with NaN. This indicates that these pixels are outside the

ROI and are ignored. The number of non-NaN captured by the kernel was

kept track for calculations such as the bandwidth.

When filtering arbitrary images such as bridge.gif, a few computa-

tional considerations were needed. bridge.gif is an 8-bit image so values

were represented as integers. This opened up opportunities for the in-

terquartile range and the standard deviation to be zero. This caused prob-

lems as this would set the bandwidth to zero. When the standard deviation

is zero, it was set to 0.289 which corresponds to the standard deviation

of a uniform random variable. When the inter-quartile range is zero, the

inter-quartile range was set to the standard deviation ×1.34.

When the number of initial values is too few, poor solutions to µ̂0 are

possible which then can propagate to the pixel to the right and used as its

initial value. Poor initial values could cause the Newton-Raphson method

to never converge. If the Newton-Raphson method failed to converge too

many times, the median, over pixels in the kernel, is used as the new initial

value. Should it fail too, the program gives up and puts a NaN in that pixel.
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Filtering an Image with No Defects

An experiment was conducted to demonstrate the effects of the empirical

null filter on a simulated 256 px×256 px Gaussian image, where all the pixels

have value distributed as standard Normal. The purpose is to simulate test

statistics which are null and few positive results, subject to the FDR, should

be detected. The test statistics after filtering should preserve its original

distribution, or at least close to it. The statistical moments before and after

filtering should be the same and were investigated. Because the empirical

null mean and empirical null standard deviation are random variables, the

filtered pixels will never be Normal and any normality tests would be too

strict for this experiment.

Contamination is defined as some smooth and slowly varying function

added and/or multiplied to an image. Conducting hypotheses testing on

a contaminated Gaussian image may cause errors if the null distributions

were incorrectly specified as standard Normal. In this experiment, the

contamination was a gradient such that the pixel at position (x, y) has a

value distributed as Zx,y ∼ N(µ0,x,y, σ2
0,x,y) where

µ0,x,y = 0.01(x − x0) + 0.01(y − y0) , (6.40)

(x0, y0) is the centre of the image and σ0,x,y = 2 for all (x, y).

A caveat is that some bias to the null standard deviation estimation

would be introduced because of the contamination. This is because sources

of variance captured by the kernel are from σ0,x,y and also from the variabil-

ity of µ0,x,y. This can be shown with an example. Let Zx,y be the value of

the pixels captured by the circular kernel, centred at the origin, for integer

values of (x, y) such that x2 + y2 ⩽ r2. Suppose that Zx,y ∼ N(ax + by, σ2).

The quantities of interest are the expectation and variance of all the val-

ues contained in the kernel because this is the quantity the estimators are

estimating.

The calculations of the expectation and variance of Zx,y can be approx-

imated by treating x and y as uniformly distributed within a circle centred
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at the origin with radius r. The expectation is

E[ZX,Y ] = EE[ZX,Y ∣X,Y ] = 0 . (6.41)

The variance is given as Var[ZX,Y ] = EVar[ZX,Y ∣X,Y ] +

VarE[ZX,Y ∣X,Y ]. From the distribution of ZX,Y , EVar[ZX,Y ∣X,Y ] = σ2

and VarE[ZX,Y ∣X,Y ] = Var[aX + bY ]. This is worked out to be

Var[aX + bY ] =
1

πr2 ∫
ρ=r

ρ=0
∫

θ=2π

θ=0
ρ3(a cos θ + b sin θ)2dθdρ

=
1

4
(a2 + b2)r2 (6.42)

thus

Var[ZX,Y ] =
1

4
(a2 + b2)r2 + σ2 . (6.43)

This shows that when estimating the null variance on a contaminated Gaus-

sian image, there may be a (a2+b2)r2/4 bias. If the contamination is slowly

varying, that is a and b are small, then the bias should be small.

An example of a Gaussian image with/without contamination be-

fore/after filtering are shown in Figures 6.21 and 6.22. In the contami-

nated example, the filter managed to estimate the null mean, picking up

the gradient. This enabled the filtered image to look flat and removed the

contamination. The p-values after filtering are shown in Figure 6.23. A

quick inspection suggests that the filtered pixels appeared reasonably Nor-

mal for this particular example.

For a given kernel radius r, 100 different Gaussian images were filtered

to investigate the within image mean, standard deviation and kurtosis of

the filtered statistics. Various other filters for normalisation were used as

well such as the MADA-mode null filter, median IQR null filter and the

mean variance null filter. They use different estimators to estimate the null

parameters as their name suggests, Table 6.4 clarifies them.

The results for the filtered images are shown in Figures 6.24, 6.25 and

6.26. For the filtered contaminated images, they are in Figures 6.27, 6.28

and 6.29. The filtered test statistic means did agree with zero as expected,

showing that the filters centred the statistics when normalising. When using
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Figure 6.21: A 256 px×256 px Gaussian image before and after filtering with

kernel radius 20 px. Also shown are the empirical null mean and empirical

null standard deviation.

Filters Null mean Null standard deviation

MADA-mode null Mode MADA-mode ×1.483

Median IQR null Median IQR ÷1.349

Mean variance null Mean Standard deviation

Table 6.4: Various filters using different estimators to estimate the null

parameters are described here.
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Figure 6.22: A 256 px × 256 px contaminated Gaussian image before and

after filtering with kernel radius 20 px. The contamination was such that

the null distribution is Zx,y ∣H0,x,y ∼ N(µ0,x,y, σ2
0) where µ0,x,y = 0.01(x −

x0) + 0.01(y − y0) and σ0 = 2. Also shown are the empirical null mean and

empirical null standard deviation.
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(a) No contamination (b) With contamination

Figure 6.23: p-values from a filtered 256 px × 256 px Gaussian image with

kernel radius 20 px. In b), the Gaussian image was contaminated be-

fore filtering. The contamination was such that the null distribution is

Zx,y ∣H0,x,y ∼ N(µ0,x,y, σ2
0) where µ0,x,y = 0.01(x−x0)+0.01(y−y0) and σ0 = 2.

The p-values were obtained from the images in Figures 6.21b and 6.22b. The

critical region corresponds to the 5% FDR level. The dotted lines shows

the p-values if they were uniformly distributed.

the empirical null filter, there was some negative bias with the standard

deviation of the filtered test statistics. The negative bias comes from a

positive bias when estimating the null standard deviation.

When filtering the contaminated image, all estimators suffered from

negative bias in the standard deviation of the filtered statistics, in particular

when the kernel radius increased. This is shown in Figure 6.28. As discussed

before, the kernel captured the variation due to the contamination and this

added bias to the estimation of the null standard deviation.

The kurtosis in Figures 6.26 and 6.29 showed that the empirical null

filter caused the filtered statistics to have heavy tails, in particular, for

small kernel radiuses. This could cause problems in hypotheses testing

because heavy tails could be misinterpreted as a contribution from non-null

statistics. The source of the kurtosis inflation is from the estimation of the

null standard deviation. This can be seen by comparing the empirical null

filter with the MADA-mode null filter because the only difference between
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(a) Empirical null filter
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(b) MADA-mode null filter
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(c) Median IQR null filter
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(d) Mean var null filter

Figure 6.24: The within image sample mean of a filtered Gaussian image of

size 256 px × 256 px. The boxplots summarise the 100 repeated simulations

of the image. The dashed lines show the 95% confidence interval using

standard tests and assuming independence.
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(a) Empirical null filter
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(b) MADA-mode null filter
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(c) Median IQR null filter
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Figure 6.25: The within image sample standard deviation of a filtered Gaus-

sian image of size 256 px×256 px. The boxplots summarise the 100 repeated

simulations of the image. The dashed lines show the 95% confidence interval

using standard tests and assuming independence.
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(a) Empirical null filter
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(b) MADA-mode null filter
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(c) Median IQR null filter
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(d) Mean var null filter

Figure 6.26: The within image sample kurtosis of a filtered Gaussian image

of size 256 px×256 px. The boxplots summarise the 100 repeated simulations

of the image. The dashed lines show the 95% confidence interval using

standard tests and assuming independence.
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(a) Empirical null filter
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(b) MADA-mode null filter
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(c) Median IQR null filter
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(d) Mean var null filter

Figure 6.27: The within image sample mean of a filtered contaminated

Gaussian image of size 256 px × 256 px. The contamination was such that

the null distribution is Zx,y ∣H0,x,y ∼ N(µ0,x,y, σ2
0) where µ0,x,y = 0.01(x −

x0) + 0.01(y − y0) and σ0 = 2. The boxplots summarise the 100 repeated

simulations of the image. The dashed lines show the 95% confidence interval

using standard tests and assuming independence.
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(a) Empirical null filter
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(b) MADA-mode null filter
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(c) Median IQR null filter
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Figure 6.28: The within image sample standard deviation of a filtered

contaminated Gaussian image of size 256 px × 256 px. The contamina-

tion was such that the null distribution is Zx,y ∣H0,x,y ∼ N(µ0,x,y, σ2
0) where

µ0,x,y = 0.01(x − x0) + 0.01(y − y0) and σ0 = 2. The boxplots summarise

the 100 repeated simulations of the image. The dashed lines show the 95%

confidence interval using standard tests and assuming independence.
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(a) Empirical null filter
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(b) MADA-mode null filter
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(c) Median IQR null filter
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Figure 6.29: The within image sample kurtosis of a filtered contaminated

Gaussian image of size 256 px × 256 px. The contamination was such that

the null distribution is Zx,y ∣H0,x,y ∼ N(µ0,x,y, σ2
0) where µ0,x,y = 0.01(x −

x0) + 0.01(y − y0) and σ0 = 2. The boxplots summarise the 100 repeated

simulations of the image. The dashed lines show the 95% confidence interval

using standard tests and assuming independence.
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the two filters is in the estimation of the null standard deviation.

Detection of Simulated Defects

The empirical null filter was tested to see if it can assist in detecting simu-

lated defects from an image with/without contamination. A defect assigns

pixels to have a value not distributed under the null distribution, but in-

stead, under an alternative, or non-null, distribution. For example, suppose

Zx,y ∣H0,x,y ∼ N(0,1), then a defect assign certain pixels to have a value dis-

tributed as Zx,y ∣H1,x,y ∼ N(µ1,1) where µ1 ≠ 0.

To recap, contamination is the result of a linear transform of the test

statistics Zx,y. For example, in this experiment, the image was multiplied

by 2 and a gradient was added to it. The resulting null and alternative

distributions are

Zx,y ∣H0,x,y ∼ N(µ0,x,y,2
2) (6.44)

Zx,y ∣H1,x,y ∼ N(2µ1 + µ0,x,y,2
2) (6.45)

respectively where µ0,x,y = 0.01(x−x0)+0.01(y−y0) and (x0, y0) is the centre

of the image. This was used in this experiment to simulate a contaminated

image with defects.

The empirical null filter aims to estimate the null distribution param-

eters from Zx,y to normalise it to form Tx,y. By normalising it, Tx,y ∣H0,x,y

should be approximately standard Normal and hypotheses testing can be

used to detect defects.

Various defects were investigated. Speckle defect with density π1 assign

all test statistics to be non-null with probability π1 and are null otherwise.

This was chosen because the proportion of null statistics captured by the

kernel should be the same for all kernel radiuses. A line defect assigns

columns of pixels to be non-null, a kernel would only capture a section of

the defect. A square defect was also investigated and a kernel can capture

the entire defect only if its radius is large enough.

An example of a speckle defected image is shown in Figure 6.30, the

figure also shows the image contaminated and then filtered. Without filter-
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Figure 6.30: A 256 px×256 px Gaussian image with speckle defect is shown

in a). The image was contaminated in b) and then filtered with kernel radius

20 px in c). Non-null pixels have the distribution N(3,1). The speckle defect

has density π1 = 0.1. The contamination was such that the null distribution

is Zx,y ∣H0,x,y ∼ N(µ0,x,y, σ2
0) where µ0,x,y = 0.01(x − x0) + 0.01(y − y0) and

σ0 = 2. In a), c) and d), highlighted in red are pixels tested as positive at

the 5% FDR level.
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Figure 6.31: A 256 px × 256 px Gaussian image with a line defect is shown

in a). The image was contaminated in b) and then filtered with kernel

radius 20 px in c). Non-null pixels have the distribution N(3,1). The line

defect is 5 px thick. The contamination was such that the null distribution

is Zx,y ∣H0,x,y ∼ N(µ0,x,y, σ2
0) where µ0,x,y = 0.01(x − x0) + 0.01(y − y0) and

σ0 = 2. In a), c) and d), highlighted in red are pixels tested as positive at

the 5% FDR level.
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Figure 6.32: A 256 px×256 px Gaussian image with a square defect is shown

in a). The image was contaminated in b) and then filtered with kernel radius

20 px in c). Non-null pixels have the distribution N(3,1). The square defect

is 30 px×30 px in size. The contamination was such that the null distribution

is Zx,y ∣H0,x,y ∼ N(µ0,x,y, σ2
0) where µ0,x,y = 0.01(x − x0) + 0.01(y − y0) and

σ0 = 2. In a) and c), highlighted in red are pixels tested as positive at the

5% FDR level.
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Figure 6.33: A 256 px×256 px Gaussian image with a square defect is shown

in a). The image was contaminated in b) and then filtered with kernel radius

40 px in c). Non-null pixels have the distribution N(3,1). The square defect

is 30 px×30 px in size. The contamination was such that the null distribution

is Zx,y ∣H0,x,y ∼ N(µ0,x,y, σ2
0) where µ0,x,y = 0.01(x − x0) + 0.01(y − y0) and

σ0 = 2. In a) and c), highlighted in red are pixels tested as positive at the

5% FDR level.
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(a) Speckle defect, r = 20 px (b) Line defect, r = 20 px

(c) Square defect, r = 20 px (d) Square defect, r = 40 px

Figure 6.34: A 256 px × 256 px contamined defected Gaussian image was

filtered using the empirical null filter with kernel radius r. Shown are the

p-values converted from the filtered images. Non-null pixels have the dis-

tribution N(3,1). The speckle defect has density π1 = 0.1. The line defect

is 5 px thick. The square defect is 30 px × 30 px in size. The contamina-

tion was such that the null distribution is Zx,y ∣H0,x,y ∼ N(µ0,x,y, σ2
0) where

µ0,x,y = 0.01(x − x0) + 0.01(y − y0) and σ0 = 2. The critical region corre-

sponds to the 5% FDR level. The dotted lines shows the p-values if they

were uniformly distributed.
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ing, the top-left and bottom-right of the contaminated image have large, in

magnitude, test statistics. In these areas, a lot of pixels would be tested

as falsely positive. By using the empirical null filter, the resulting filtered

image reassemble the uncontaminated image and appropriate inference can

be done on the filtered image. However, some statistical power was lost

when conducting hypotheses testing on the filtered image because, in areas

of high empirical null standard deviation, the normalised statistics became

too small which then decreased the detection power. This cannot be avoided

as areas of high empirical null standard deviation was due to the random-

ness in sampling. Similar comments can be made for the line defect as

shown in Figure 6.31.

The square defected images, including the contaminated ones, are shown

in Figures 6.32 and 6.33. Figure 6.32 filtered the contaminated image using

a kernel radius of r = 20 px, while Figure 6.33 used a kernel radius of r =

40 px. With r = 20 px, the kernel is smaller than the square defect, therefore,

the defect was treated as the null. This is evident because the empirical null

mean captured the defect. This resulted in difficulty detecting the defect.

With r = 40 px, the kernel is bigger than the defect and treated the defect

as non-null. In this scenario, the empirical null filter recovered the gradient

in the empirical null which was then used for normalisation.

The empirical null mean in Figure 6.32 demonstrated the multi-thread

nature of the implementation of the empirical null filter. It can be seen that

there were horizontal streaks where the defect is. This is the result of each

thread filtering a row and jumping from one mode, the null, to the other,

the non-null, at different times. The horizontal streaks can be removed by

using more initial values so that the Newton-Raphson method can pinpoint

which mode is greater. However, this would be at a computational cost.

Figure 6.34 shows the p-values after filtering a contaminated defected

image. The FDR can be estimated in these figures by dividing the number

of null statistics in the critical region by the number of statistics in the

critical region. With a sensible kernel radius, some of the defects can be

detected. False negatives are common but this is inevitable to control for

the FDR. The figure shows that using a kernel radius of r = 20 px, for



6.3. EMPIRICAL NULL FILTER 149

the square defect, failed to capture the defect. This, again, emphasise the

importance of a good kernel radius.

The receiver operating characteristic (ROC) curves (Green and Swets,

1966; Metz, 1978; Hanley and McNeil, 1982; Friedman et al., 2001; Cook,

2007) are shown in Figure 6.35 for the various defects and filters. The

ROC curve is a parametric plot, plotting the true positive rate (sensitivity)

against the false positive rate (1 − specificity) for varying thresholds. The

area under the ROC curve (AUC) is a commonly used statistic to quantify

the performance of the test (Friedman et al., 2001). Interpretations of

the area do exist (Metz, 1978; Hanley and McNeil, 1982) and discussed

thoroughly in Cook (2007).

In terms of the AUC, the empirical null filter improved the performance

of hypotheses testing compared with using the unfiltered contaminated im-

age. The performance before contamination cannot be recovered but it was

an improvement. For kernel radiuses too small, such as Figure 6.35c, the

empirical null filter deteriorated the performance and it would be better off

using the contaminated image.

Speckle Defect Experiment

The ROC curves consider all thresholds or specificities used in the hypothe-

ses testing. In the previous experiment, it was found that the variance of

the test statistics was different before and after filtering. As a result, for a

given threshold, such as the 5% FDR level, the specificity may change ever

so slightly after filtering.

An experiment was conducted to investigate how filtering affects hy-

potheses testing. A 256 px × 256 px Gaussian image with speckle defect,

with density π1 = 0.1, and various values of µ1 were investigated. The

AUC, type 1 error, type 2 error and FDR were measured when testing on

an image with a defect before and after contamination and then after fil-

tering with the contamination. The AUC was obtained by integrating the

ROC curve. A kernel radius of r = 20 px was used and was repeated 100

times by simulating another image.
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(a) Speckle defect, r = 20 px
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(b) Line defect, r = 20 px
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(c) Square defect, r = 20 px
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(d) Square defect, r = 40 px

Figure 6.35: ROC curves for various defected 256 px × 256 px Gaussian im-

ages. The upper/lower dot-dashed lines show the resulting ROC curve

when testing on an image without/with contamination respectively. The

different curves are the resulting ROC curves after filtering a contaminated

image. The speckle defect has density π1 = 0.1. The line defect is 5 px

thick. The square defect is 30 px × 30 px in size. Defected pixels have the

distribution N(3,1). The contamination was such that the null distribution

is Zx,y ∣H0,x,y ∼ N(µ0,x,y, σ2
0) where µ0,x,y = 0.01(x − x0) + 0.01(y − y0) and

σ0 = 2.
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Figure 6.36: AUC and various errors obtained when conducting hypotheses

testing on an empirical null filtered contaminated speckle defected Gaussian

image of size 256 px×256 px. In a), the upper/lower dot-dashed lines shows

the resulting mean AUC when testing on a defected image before/after

contamination respectively. In b), c) and d), the dashed lines show the

95% empirical confidence interval of the resulting error when testing the

defected image before contamination. The filter used a kernel radius of

20 px. Defected pixels have the distribution N(µ1,1) where µ1 was varied

in this experiment. The speckle defect has density π1 = 0.1. The contami-

nation was such that the null distribution is Zx,y ∣H0,x,y ∼ N(µ0,x,y, σ2
0) where

µ0,x,y = 0.01(x − x0) + 0.01(y − y0) and σ0 = 2. The test was done at the 5%

FDR level. The boxplots summarise the 100 repeated simulations of the

image.
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The results are shown in Figure 6.36. The AUC quantified showed that

using the filter improved the performance of the test from the contamina-

tion. The type 1 error, or specificity, did decrease after filtering. However,

the results illustrated that the FDR is controlled quite well at around 5%

after filtering. This meant that in this particular example, FDR control is

consistent after filtering. At situations with low detection power, the FDR

can fluctuate between 0 and 1 and can take only so many values. For exam-

ple, if 3 positive pixels were detected, then the FDR can only take values

of multiples of 1/3 between and including 0 and 1.

Optimal Kernel Radius Experiment

There is the question of what kernel radius to choose for a given defect.

Literature, such as Efron (2004) and Schwartzman et al. (2008b), suggest

that, as a rule of thumb, the proportion of non-null statistics should not

be larger than π1 = 0.1 to satisfy some assumptions made for the empirical

null. Given the size of the defect, one could work out the minimum kernel

radius by setting a threshold for the maximum proportion of the area of

the kernel which contains a defect to 10%. In other words, for a kernel with

radius r

0.1 >
maximum area of defect captured by the kernel

area of kernel
. (6.46)

For a d × d square defect, this is r > d
√

10/π. In the example of d = 30 px,

this is about r > 54 px. For the line defect with thickness 5 px, the radius is

about r > 32 px. These are rules of thumb because the kernel is not perfectly

circular when used on a grid of pixels. It should be pointed out that the

implementation can accept non-integer radiuses if desired.

An experiment was conducted where a contaminated defected Gaussian

image, of size 256 px × 256 px, was filtered using various kernel radiuses for

a fixed alternative distribution N(3,1). Hypotheses testing was done on

the uncontaminated defected and filtered contaminated defected images.

The AUC and various errors were recorded. This was repeated 100 times

by simulating the image again. The AUC was obtained by integrating the
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Figure 6.37: AUC and various errors obtained when conducting hypotheses

testing on a filtered contaminated line defected Gaussian image, of size

256 px × 256 px, using various kernel radiuses. The dashed lines show the

resulting 95% empirical confidence interval when the hypotheses testing

was done on the uncontaminated defected image. Defected pixels have the

distribution N(3,1). The line defect is 5 px thick. The contamination was

such that the null distribution is Zx,y ∣H0,x,y ∼ N(µ0,x,y, σ2
0) where µ0,x,y =

0.01(x − x0) + 0.01(y − y0) and σ0 = 2. The test was done at the 5% FDR

level. The boxplots summarise the 100 repeated simulations of the image.
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(b) Type 1 error
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Figure 6.38: AUC and various errors obtained when conducting hypotheses

testing on a filtered contaminated square defected Gaussian image, of size

256 px×256 px, using various kernel radiuses. The dashed lines show the re-

sulting 95% empirical confidence interval when the hypotheses testing was

done on the uncontaminated defected image. Defected pixels have the dis-

tribution N(3,1). The square defect is 30 px×30 px pixels in size. The con-

tamination was such that the null distribution is Zx,y ∣H0,x,y ∼ N(µ0,x,y, σ2
0)

where µ0,x,y = 0.01(x − x0) + 0.01(y − y0) and σ0 = 2. The test was done at

the 5% FDR level. The boxplots summarise the 100 repeated simulations

of the image.
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ROC curve. The results of the uncontaminated defected image were all

pooled together to obtain the empirical distribution of the AUC and errors

without contamination. Results for the line and square defect are shown in

Figures 6.37 and 6.38 respectively.

The results showed that the AUC increased with kernel radius. This

highlighted that a kernel with a good radius can perform almost as though

there was no contamination. It also appeared that the optimal AUC was

achieved when using the kernel radius from the rule of thumb, making these

results consistent with the literature.

For large enough kernel radius, the FDR was controlled at around 5%.

It appeared that a large kernel radius helped preserve FDR control after

filtering in these examples. It was observed that there exist a kernel radius

which minimised the type 2 error. So a large kernel radius is required for

FDR control but too large can lose statistical power. It was noticed that

filtering using large kernel radiuses is computationally slower.

Application to Real Projections

The empirical null filter was applied to the AbsFilter projection at 120°.

Figures 6.39 and 6.40 shows the resulting inference when using a kernel

radius of r = 10 px and r = 130 px respectively. With a small radius, the

empirical null treated the voids as the null which is shown by the empirical

null mean capturing the features of the voids. When a large enough radius

was used, the larger voids were highlighted by the hypotheses test and the

empirical null mean became smoother. This is evidence that this method

ironed out false positives observed at the start of the chapter.

False positives were detected on the bottom right of the test sample.

When placing the kernel on the bottom right corner, the null distribution

is bimodal because each face has a different distribution. Figure 6.41 illus-

trates this. The geometry of the faces and the kernel used was such that

it resulted in one of the faces to be treated as non-null and then tested

positive, falsely so.

The false positives were tackled by manually segmenting the image fur-
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Figure 6.39: Resulting inference when using the empirical null filter on the

AbsFilter projection at 120°. A kernel radius of r = 10 px was used. a)

Highlighted in red are positive pixels at the 5% FDR level. b) p-values on

the log scale. c) and d) Empirical null mean and empirical null standard

deviation.
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Figure 6.40: Resulting inference when using the empirical null filter on the

AbsFilter projection at 120°. A kernel radius of r = 130 px was used. a)

Highlighted in red are positive pixels at the 5% FDR level. b) p-values on

the log scale. c) and d) Empirical null mean and empirical null standard

deviation.
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Figure 6.41: A section of the bottom right of an unfiltered z image is shown

in a). The z statistics in it are shown as a histogram in b) and indicates a

bimodal distribution.
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Figure 6.42: The z image was segmented further into 7 segments shown by

the dotted red lines.



6.4. CONCLUSION 159

ther as shown in Figure 6.42. It was segmented using the edges of the z

image. The empirical null filter was then used on each segment, or ROI,

independently, ignoring any pixels outside the ROI the filter is working on.

The resulting filtered segments were stitched together to form the resulting

filtered image. By using this method, the resulting inference is shown in

Figure 6.43. It can be seen that the empirical null mean did change face

to face, resulting in a clear boundary set by the edges. Most of the false

positives around the corners and edges have been eliminated.

The same procedure was done on the projection at 30°, as shown in

Figure 6.44, with similar results.

6.4 Conclusion

The empirical null filter demonstrated that it can adjust the null hypotheses

according to the data to make a sensible inference. In the simulations, it

was found that the FDR level is preserved after filtering. Also, the empirical

null filter outperformed other methods based on quantiles, as suggested by

Efron (2004). A sensible kernel radius is required to avoid treating defects

as the null.

In the experiment, the larger voids of diameter 2.4 mm were detected in

the test sample. False positives do occur but this is unavoidable because

tests were done at the 5% FDR level. Typically in the experiments, false

positives were isolated single pixels and probably occurred due to random

chance. Clusters of positive pixels should raise suspicion so it would be a

good idea to borrow strength from neighbouring pixels. For example, one

could create a binary image, assigning a Boolean value whether that pixel

was tested positive or not. A binary image filter, such as erode followed

by a dilate, can be used to remove isolated positive pixels to emphasise the

cluster of positive pixels.

The assessment of the inference could be improved if the location of the

defects were known in the projections. This would allow identifying which

positives are true and false positives so that the analysis can be quantified

using a ROC curve.
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Figure 6.43: Resulting inference when using the empirical null filter on the

AbsFilter projection at 120° and on each segment independently. A kernel

radius of r = 130 px was used. a) Highlighted in red are positive pixels at

the 5% FDR level. The test statistics from all segments were combined in

the BH procedure. b) p-values on the log scale. c) and d) Empirical null

mean and empirical null standard deviation.
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Figure 6.44: Resulting inference when using the empirical null filter on the

AbsFilter projection at 30° and on each segment independently. A kernel

radius of r = 130 px was used. a) Highlighted in red are positive pixels at

the 5% FDR level. The test statistics from all segments were combined in

the BH procedure. b) p-values on the log scale. c) and d) Empirical null

mean and empirical null standard deviation.
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For good results, the faces of the test sample were segmented. This

was necessary because the empirical null filter assumes that the null pa-

rameters varied spatially smoothly and slowly. Manual segmentation was

easy to do because a cuboid has 6 faces. However, segmentation of faces

cannot be generalised well to AM samples with complicated geometry and

curved surfaces. Automatic segmentation may be possible with geometrical

information from the CAD model.

The main issue with implementing this method onto the production line

was how slow the filter was. The main bottleneck is the evaluation of the

density estimate. Each step in the Newton-Raphson required the evaluation

of πr2 data points. As a result, increasing the kernel radius slows down the

filter. There may be faster methods for density estimation such as fitting

a smoothing spline on the histogram (Efron, 2004), however, that would

require tuning the histogram bins as well as the tuning parameters for the

spline. On the other hand, the method in Schwartzman et al. (2008b), which

uses the histogram count, found that the estimation of the null parameters

was insensitive to the histogram binning.

There are a few strategies to accelerate the filter. The empirical null

filter may be accelerated using GPUs (Yang et al., 2008; Hwu, 2011; Eklund

et al., 2013), however, efforts to implement the filter in CUDA and C++ is

fruitless if there may exist a faster method. Instead, accuracy may be sacri-

ficed for speed by only estimating the null parameters for several regularly

spaced pixels, the remaining pixels are interpolated. This requires the null

parameters to be slowly varying, otherwise, the interpolation may underfit.

This may cause problems because of the face to face transition observed in

the experiments. It was found that if a bad solution was found for a point,

then that solution would spread its bad solution to neighbouring pixels due

to the interpolation.

Estimation of the null parameters is essentially robust statistics, esti-

mating the parameters of the null distribution without being affected by

non-null statistics. Potential faster methods compared to the empirical

null could exist in the literature for robust statistics such as Hampel et al.

(1986); Rousseeuw and Leroy (1987); Maronna et al. (2006); Huber and
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Ronchetti (2009); Jewson et al. (2018). The use of density estimation for

robust estimation is also featured when using loss functions derived from

the Hellinger-divergence (Beran, 1977; Jewson et al., 2018) or the beta-

divergence (Basu et al., 1998; Jewson et al., 2018) which bears similarities

to the empirical null. However, numerical methods are still required to find

the mode. Exact estimation of the mode using Bayesian methods is impos-

sible (Heinrich, 2013) which suggest avoiding the use of numerical methods

can be difficult.

The EM algorithm (Dempster et al., 1977) could be used to fit a mixture

of Gaussians to identify the null distribution and estimate its parameters.

However, the power of hypothesis testing and the empirical null comes from

the fact that the alternative distribution does not need to be specified.
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Chapter 7

Conclusion

To summarise the thesis, Figure 7.1 shows a flowchart of the process of

the experiment. An ABS test sample, with purposefully designed voids,

was created using a CAD model and manufactured using fused deposition

modelling. Replicate x-ray projections were taken of the test sample with

voids as well as a simulation of that projection without the voids using

aRTist. The obtained projections were used to help align the simulated

projection. The experiment aimed to develop a statistical method to detect

the designed voids.

Shading correction was required to remove spot and panel effects from

the obtained projections. This was done by using the greyscale projections

at different exposures. By assuming each pixel has a linear response to the

power of the x-ray tube, a linear regression was used. This is discussed in

Chapter 3.

In Chapter 4, it was attempted to fit a compound Poisson distribution

onto the grey values of a projection to quantify the noise. Unfortunately, the

model suffered from identifiability issues for high photon counts. However,

it was found that the grey value variance has a linear relationship with the

grey value. In Chapter 5, various GLM were fitted onto the variance-mean

data and it was verified a linear relationship is a good model. The model

was used as a tool to predict the variance of a grey value.

In Chapter 6, the replicated projections were split into two. 19 randomly
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Figure 7.1: Flowchart showing the process of obtaining and comparing a

projection of the test sample with the simulated projection. This results in

pixels being highlighted as positive for defects.
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selected projections were used for the variance-mean model to fit onto. The

remaining projection was compared with the simulated projection in the

face of uncertainty. The uncertainty was predicted using the variance-mean

model. Hypotheses testing was done on the test statistics, one for each pixel

in a projection. Unfortunately, the simulation was not perfect which led to

model misspecification, thus, false positives. The empirical null filter was

developed and used to smooth the test statistics. This allows the hypotheses

test to pick out areas which are unusual and unlike its neighbours. The

filtered test statistics were converted to p-values so that hypotheses testing

can be done to detect the voids.

The main statistical novelty was extending the empirical null (Efron,

2004) to a filter where it can be applied to images. This has been imple-

mented in ImageJ (Abràmoff et al., 2004; Schneider et al., 2012; Mateos-

Pérez and Pascau, 2013). A by-product is the empirical null mean, effec-

tively the mode filter, which can be used to smooth images.

Two angular projections were looked at in this thesis. The angles were

selected by the engineers, in calibration with this experiment, so that all of

the voids were visible in a single projection. Defect detection can be tough

if a difficult projection angle was used. This experiment could be improved

by analysing more angular projections independently to pick up voids which

may be hidden at a particular projection angle. Another possible exten-

sion is to integrate aRTist into the inference, for example, the simulated

projection could be realigned to minimise the number of positives. This

will help eliminate sources of error due to aRTist. A problem with this

suggestion is that aligning the simulated projection is a high dimensional

problem (Brierley et al., 2018).

Voids in the order of millimetres were detectable using this method.

Further work could include test samples made from materials such as tita-

nium alloys (Ti-6Al-4V). This can be challenging because artefacts, such as

streaks, can appear when using XCT for metal parts (De Man et al., 1999;

Nawaz et al., 2014). Another problem is that because titanium products

are created using a power-based method, the powder may become trapped

(Brierley et al., 2018) in designed voids. This results in voids appearing with
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less contrast in the projections, making it harder to detect. Different types

of challenging defects could be investigated, for example, the orientation of

cracks can affect the detectability of it (Wooldridge et al., 1997).

This thesis is a contribution to real-time quality control for AM and

perhaps inverse problems in imaging (Bertero and Boccacci, 1998) and ro-

bust statistics. A powerful multi-core computer could be used to conduct

the statistical analysis on a few x-ray projections of AM products on a con-

veyor belt. This could be competitive with other conveyor belt inspection

methods, for example Warnett et al. (2016), by using fewer projections and

hopefully less computational time. By using fewer projections, quality con-

trol can be faster which advances the development and increases the scope

of applications of AM.
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Appendix A

Abbreviations

3D Three dimensions

ABS Acrylonitrile butadiene styrene

ADU Analogue to digital units

AIC Akaike information criterion

AM Additive manufacturing

ANOVA Analysis of variance

Approx. Approximate

AUC Area under the receiver operating characteristic curve

BH Benjamini and Hochberg

BIC Bayesian information criterion

BW Black/white

CAD Computer-aided design

CC BY Creative Commons Attribution

CPΓ Compound Poisson-gamma

EM Expectation maximisation

Expec. Expected

FDK Feldkamp-Davis-Kress

FDR False discovery rate

FWER Family-wise error rate

Freq. Frequency

GLM Generalised linear models
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GPU Graphics processing unit

i.i.d. Independent and identically distributed

IOP Institute of Physics

IQR Interquartile range

MADA-mode Median absolute deviation around the mode

m.g.f. Moment generating function

Obs. Observed

PCER Per-comparison error rate

p.d.f. Probability density function

px Pixels

Q-Q Quantile-quantile

ROC Receiver operating characteristic

ROI Region of interest

Std Standard deviation

STL Sterolithography or Standard tessellation language

Var Variance

XCT X-ray computed tomography
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Appendix B

Compound Poisson

B.1 Moment Generating Function

Let Y ∼ Poisson(λ), U1, U2, U3, . . . be i.i.d. random variables and X ∣Y =

∑
Y
i=1Ui. Let the m.g.f. of X be MX(θ) = E [eθX]. This can be computed

using the result for conditional expectations MX(θ) = EE [eXθ∣Y ]. This

results in

MX(θ) = EE [exp (θU1 + θU2 + . . . + θUY ) ∣Y ]

= EE [eθU1 ⋅ eθU2 ⋅ . . . ⋅ eθUY ∣Y ] . (B.1)

Because Ui, for i = 1,2,3, . . ., are i.i.d. and each Ui has a m.g.f. MU(θ) =

E [eUθ], then

MX(θ) = E (E [eθU1 ∣Y ] ⋅E [eθU2 ∣Y ] ⋅ . . . ⋅E [eθUY ∣Y ])

= E [(MU(θ))
Y
]

= E [eY ln(MU (θ))]

=MY (ln(MU(θ)) (B.2)

where MY (θ) = E [eY θ] is the m.g.f. of Y . It can be shown that the m.g.f. of

Y is MY (θ) = exp [λ (eθ − 1)], hence

MX(θ) = exp [λ (MU(θ) − 1)] . (B.3)
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Moments of X can be obtained from the m.g.f. by differentiating it and

setting θ to zero

M ′
X(θ) = exp [λ (MU(θ) − 1)] ⋅ λM ′

U(θ)

=MX(θ)λM ′
U(θ) (B.4)

M ′
X(0) = λE [U] (B.5)

which results in

E [X] = λE [U] . (B.6)

Conducting the same procedure

M ′′
X(θ) =M ′

X(θ)λM ′
U(θ) +MX(θ)λM ′′

U(θ)

= λMX(θ) [λ (M ′
U(θ))

2
+M ′′

U(θ)] (B.7)

M ′′
X(0) = λ [λ (E[U])

2
+E [U2]] (B.8)

the variance can be obtained

Var [X] =M ′′
X(0) − [M ′

X(0)]
2

= λ [λ (E[U])
2
+E [U2]] − [λE [U]]

2

= λE [U2] . (B.9)

Differentiating the m.g.f. one more time

M ′′′
X (θ) = λM ′

X(θ) [λ (M ′
U(θ))

2
+M ′′

U(θ)]

+ λMX(θ) [2λM ′
U(θ)M

′′
U(θ) +M

′′′
U (θ)]

= λ2MX(θ)M ′
U(θ) [λ (M ′

U(θ))
2
+M ′′

U(θ)]

+ λMX(θ) [2λM ′
U(θ)M

′′
U(θ) +M

′′′
U (θ)]

= λMX(θ) [λ2 (M ′
U(θ))

3
+ 3λM ′

U(θ)M
′′
U(θ) +M

′′′
U (θ)] (B.10)

M ′′′
X (0) = λ [λ2 (E[U])

3
+ 3λE[U]E [U2] +E [U3]] (B.11)

and the third moment about the mean is

E [(X −E[X])
3
] =M ′′′

X (0) − 3M ′′
X(0)M ′

X(0) + 2 (M ′
X(0))

3

= λ [λ2 (E[U])
3
+ 3λE[U]E [U2] +E [U3]]

− 3λ [λ (E[U])
2
+E [U2]]λE[U] + 2 (λE[U])

3

= λE [U3] . (B.12)
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B.2 Tweedie Dispersion Exponential

Family

Let X ∼ CPΓ(λ,α, β) and have p.d.f.

pX(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

δ(x)e−λ for x = 0

e−xβ−λ

x

∞

∑
y=1

βyα

Γ(yα)
xyα

λy

y!
for x > 0

. (B.13)

Jørgensen (1987) uses the following parametrisation: p =
2 + α

1 + α
, µ =

λα

β
,

φ =
α + 1

β2−p(λα)p−1
. The parameters can be rearranged

λ =
µ2−p

φ(2 − p)
(B.14)

α =
2 − p

p − 1
(B.15)

β =
1

φ(p − 1)µp−1
. (B.16)

Substituting these parameters into Equation (B.13), the p.m.f. at zero is

P(X = 0) = exp [−
µ2−p

φ(2 − p)
] (B.17)

and the p.d.f. for x > 0 is

pX(x) = exp [
−x

φ(p − 1)µp−1
−

µ2−p

φ(2 − p)
]

1

x
∞

∑
y=1

[
1

φ(p − 1)µp−1
]

yα
1

Γ(yα)
xyα [

µ2−p

φ(2 − p)
]

y
1

y!

= exp [
1

φ
(x
µ1−p

1 − p
−
µ2−p

2 − p
)]

1

x
∞

∑
y=1

xyαµy[2−p−α(p−1)]

φy(1+α)(p − 1)yα(2 − p)yy!Γ(yα)
.

It should be noted that 2 − p − α(p − 1) = 2 − p − 2−p
p−1(p − 1) = 0 so that

pX(x) = exp [
1

φ
(x
µ1−p

1 − p
−
µ2−p

2 − p
)]

1

x

∞

∑
y=1

Wy(x, p, φ) (B.18)
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where

Wy(x, p, φ) =
xyα

φy(1+α)(p − 1)yα(2 − p)yy!Γ(yα)
. (B.19)

This is in the form of a distribution in the exponential family

pX(x) =
exp (xθ) g(x)

Z(θ)
(B.20)

where Z(θ) is the partition function and θ is the natural parameter. The

partition function has some useful properties. It is a normalisation constant

Z = Z(θ) = ∫
∞

0 exp(xθ)g(x)dx. The derivative of the log-partition function

is

∂ lnZ

∂θ
=

1

Z

∂Z

∂θ

=
1

Z

∂

∂θ ∫
∞

0
exp(xθ)g(x)dx

=
1

Z ∫
∞

0
x exp(xθ)g(x)dx

which results in

E[X] =
∂ lnZ

∂θ
. (B.21)

The second-order derivative of the log partition function is

∂2 lnZ

∂θ2
=
Z ∂2Z

∂θ2 − (∂Z
∂θ

)
2

Z2

=
1

Z

∂2Z

∂θ2
− (

1

Z

∂Z

∂θ
)

2

=
1

Z

∂2

∂θ2 ∫
∞

0
exp(xθ)g(x)dx − (E [X])

2

=
1

Z ∫
∞

0
x2 exp(xθ)g(x)dx − (E [X])

2

= E [X2] − (E [X])
2

thus

Var [X] =
∂2 lnZ

∂θ2
. (B.22)

For the compound Poisson-gamma distribution, the natural parameter

is

θ = θ(µ) =
µ1−p

φ(1 − p)
(B.23)
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and the partition function is

Z(θ) = exp [
µ2−p

φ(2 − p)
] .

Rearranging the natural parameter µ = (θφ(1−p))1/(1−p), the partition func-

tion is

Z = exp

⎡
⎢
⎢
⎢
⎢
⎣

φ
1

1−p ⋅ θ
2−p
1−p ⋅

(1 − p)
2−p
1−p

2 − p

⎤
⎥
⎥
⎥
⎥
⎦

. (B.24)

The log-partition function is

lnZ = φ
1

1−p ⋅ θ
2−p
1−p ⋅

(1 − p)
2−p
1−p

2 − p
. (B.25)

Taking the first-order derivative

∂ lnZ

∂θ
= φ

1
1−p ⋅

2 − p

1 − p
⋅ θ

2−p
1−p

−1
⋅
(1 − p)

2−p
1−p

2 − p

= φ
1

1−p ⋅ θ
1

1−p ⋅ (1 − p)
1

1−p . (B.26)

Taking the second-order derivative

∂2 lnZ

∂θ2
= φ

1
1−p ⋅

1

1 − p
⋅ θ

1
1−p

−1
⋅ (1 − p)

1
1−p

= φ
1

1−p ⋅ θ
p

1−p ⋅ (1 − p)
p

1−p . (B.27)

Substitute in Equation (B.23)

∂2 lnZ

∂θ2
= φ

1
1−p [

µ1−p

φ(1 − p)
]

p
1−p

(1 − p)
p

1−p

= φµp

and using the result from Equation (B.22)

Var[X] = φµp (B.28)

shows that the compound Poisson-gamma distribution is in the Tweedie

dispersion exponential family with 1 < p < 2.
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B.3 Method of Moments

Let X ∼ CPΓ(λ,α, β). Suppose µ̂1 is an estimator of µ1 = E[X] and µ̂j is

an estimator of µj = E [(X −E[X])
j
] for j = 2,3. It is given (see Section

4.1) that

µ1 =
αλ

β
(B.29)

µ2 =
α(α + 1)λ

β2
(B.30)

µ3 =
α(α + 1)(α + 2)λ

β3
. (B.31)

The ratios µ2/µ1 and µ3/µ2 are

µ2

µ1

=
α + 1

β
(B.32)

and
µ3

µ2

=
α + 2

β
. (B.33)

Subtracting µ3/µ2 from µ2/µ1 obtains

µ3

µ2

−
µ2

µ1

=
1

β

and rearranging

β =
1

µ3

µ2

−
µ2

µ1

β =
µ1µ2

µ1µ3 − µ2
2

(B.34)

gets a justification for the estimator

β̂ =
µ̂1µ̂2

µ̂1µ̂3 − µ̂2
2

. (B.35)

Rearranging Equation (B.32)

α =
µ2

µ1

β − 1 (B.36)
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and substituting in Equation (B.34)

α =
µ2

µ1

×
µ1µ2

µ1µ3 − µ2
2

− 1

=
µ2
2 − µ1µ3 + µ2

2

µ1µ3 − µ2
2

=
2µ2

2 − µ1µ3

µ1µ3 − µ2
2

(B.37)

obtains the estimator

α̂ =
2µ̂2

2 − µ̂1µ̂3

µ̂1µ̂3 − µ̂2
2

. (B.38)

Finally, rearranging Equation (B.29)

λ =
βµ1

α

and substituting in Equations (B.34) and (B.37)

λ =
µ1µ2

µ1µ3 − µ2
2

×
µ1µ3 − µ2

2

2µ2
2 − µ1µ3

× µ1

=
µ2
1µ2

2µ2
2 − µ1µ3

(B.39)

which leads to

λ̂ =
µ̂2
1µ̂2

2µ̂2
2 − µ̂1µ̂3

. (B.40)

B.4 Normal Approximation

Let X ∼ CPΓ(λ,α, β) with m.g.f. MX(θ) = exp [λ ((
β
β−θ)

α
− 1)]. The

m.g.f. in this form is not useful because when considering λ→∞ or α →∞

then MX(θ) → ∞. Also for β → ∞, then MX(θ) → 1 which is not useful

either.

The compound Poisson-gamma random variable X can be standardised

to obtain useful limiting results from the m.g.f. Let

Z =
X −E[X]
√
Var[X]

(B.41)
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then in the form of Z = bX + a,

b =
β

√
α(α + 1)λ

(B.42)

and

a = −

√
αλ

α + 1
. (B.43)

The m.g.f. of Z is

MZ(θ) = E [eZθ]

= E [e(bX+a)θ]

= eaθMX(bθ) . (B.44)

Substituting in a and b

MZ(θ) = exp
⎛

⎝
−θ

√
αλ

α + 1

⎞

⎠
exp

⎡
⎢
⎢
⎢
⎢
⎢
⎣

λ
⎛
⎜
⎝

⎛
⎜
⎝

β

β − βθ
√
α(α+1)λ

⎞
⎟
⎠

α

− 1
⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= exp
⎛

⎝
−θ

√
αλ

α + 1

⎞

⎠
exp

⎡
⎢
⎢
⎢
⎢
⎣

λ
⎛

⎝

⎛

⎝

√
α(α + 1)λ

√
α(α + 1)λ − θ

⎞

⎠

α

− 1
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= exp
⎛

⎝
−θ

√
αλ

α + 1

⎞

⎠
exp

⎡
⎢
⎢
⎢
⎢
⎣

λ
⎛

⎝

⎛

⎝
1 −

θ
√
α(α + 1)λ

⎞

⎠

−α

− 1
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

. (B.45)

Using the binomial expansion

⎛

⎝
1 −

θ
√
α(α + 1)λ

⎞

⎠

−α

= 1 +
∞

∑
r=1

θr∏
r
s=1(α + s − 1)

(α(α + 1)λ)r/2r!

for
∥θ∥

√
α(α + 1)λ

< 1 . (B.46)

obtains

MZ(θ) = exp
⎛

⎝
−θ

√
αλ

α + 1

⎞

⎠
exp [λ

∞

∑
r=1

θr∏
r
s=1(α + s − 1)

(α(α + 1)λ)r/2r!
] . (B.47)

Writing in full the r = 1,2 terms

MZ(θ) = exp
⎛

⎝
−θ

√
αλ

α + 1

⎞

⎠
exp

⎡
⎢
⎢
⎢
⎢
⎣

θ

√
αλ

α + 1
+
θ2

2
+ λ

∞

∑
r=3

θr∏
r
s=1(α + s − 1)

(α(α + 1)λ)r/2r!

⎤
⎥
⎥
⎥
⎥
⎦
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and a term cancels out

MZ(θ) = exp [
θ2

2
+

∞

∑
r=3

θr∏
r
s=1(α + s − 1)

(α(α + 1))r/2r!
λ1−r/2] . (B.48)

For large λ

lim
λ→∞

MZ(θ) = exp [
θ2

2
] (B.49)

which is the same as the m.g.f. of a standard Normal distribution, therefore

lim
λ→∞

Z ∼ N(0,1) . (B.50)

This should make sense as for high λ, the Poisson random variable has a

high expectation, increasing the number of gamma random variables in a

summation. Increasing the number of terms in a summation will trigger

the central limit theorem.

For high α

lim
α→∞

∏
r
s=1(α + s − 1)

(α(α + 1))r/2
= lim
α→∞

∏
r
s=1α

αr

= 1 . (B.51)

As a result

lim
α→∞

MZ(θ) = exp [
θ2

2
+

∞

∑
r=3

θr

r!
λ1−r/2] . (B.52)

This shows that taking the limit α → ∞ is not enough to get a Normal

limiting distribution. The limit must be accompanied with the limit λ→∞

to obtain

lim
λ→∞

lim
α→∞

Z ∼ N(0,1) . (B.53)

It should be noted that MZ(θ) is independent of β. Thus β does not

affect the limiting distribution.

The above results justify the use of the approximation

X ∼ N(
λα

β
,
λα(α + 1)

β2
) (B.54)

for large λ. The limiting case where λ → 0, α → 0 and β → 0 will not be

discussed here.
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B.5 Saddlepoint Approximation

Let X ∼ CPΓ(λ,α, β) with m.g.f. MX(θ) = exp [λ ((
β
β−θ)

α
− 1)]. Let the

cumulant generating function of X be KX(θ) = lnMX(θ). The saddlepoint

approximation is

pX(x) ≈ (2πK ′′
X(s))

−1/2
exp [KX(s) − sx] (B.55)

where s = s(x) is the solution to the saddle point equation K ′
X(s) = x.

The cumulant generating function is

KX(θ) = λ [(
β

β − θ
)

α

− 1] . (B.56)

Taking the derivative with respect to θ

K ′
X(θ) =

λαβα

(β − θ)α+1
(B.57)

and this is known as the saddlepoint equation. The quantity s = s(x) is the

solution to the equation K ′
X(s) = x, that is

λαβα

(β − s)α+1
= x

with solution

s = β − (
λαβα

x
)

1
α+1

. (B.58)

The second-order derivative of the cumulant generating function is

K ′′
X(θ) =

λα(α + 1)βα

(β − θ)α+2
. (B.59)

Substituting Equations (B.56) and (B.59) into Equation (B.55)

pX(x) ≈
1

√
2π

[
(β − s)α+2

λα(α + 1)βα
]

1/2

exp [λ((
β

β − s
)

α

− 1) − sx] .

Substituting in Equation (B.58)

pX(x) ≈
1

√
2π

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(β − β + (
λαβα

x
)

1
α+1)

α+2

λα(α + 1)βα

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1/2

exp

⎡
⎢
⎢
⎢
⎢
⎢
⎣

λ
⎛
⎜
⎝

⎛
⎜
⎝

β

β − β + (
λαβα

x
)

1
α+1

⎞
⎟
⎠

α

− 1
⎞
⎟
⎠
− x

⎛

⎝
β − (

λαβα

x
)

1
α+1⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦
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simplifying further

pX(x) ≈
1

√
2π

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(
λαβα

x
)
α+2
α+1

λα(α + 1)βα

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1/2

exp [λ(βα (
x

λαβα
)

α
α+1

− 1) − xβ + (λαβα)
1
α+1x1−

1
α+1 ]

≈
1

√
2π(α + 1)

x−
α+2

2(α+1) (λαβα)
(α+2
α+1

−1)/2

exp [λ(βα (
x

λαβα
)

α
α+1

− 1) − xβ + (λαβα)
1
α+1x

α
α+1 ]

≈
(λαβα)

1
2(α+1)

√
2π(α + 1)

x−
α+2

2(α+1)

exp [−λ − xβ + x
α
α+1 (

λβα

(λαβα)
α
α+1

+ (λαβα)
1
α+1)]

≈
(λαβα)

1
2(α+1) e−λ

√
2π(α + 1)

x−
α+2

2(α+1) e−xβ

exp [x
α
α+1 ((λβα)1−

α
α+1α−

α
α+1 + (λαβα)

1
α+1)]

≈
(λαβα)

1
2(α+1) e−λ

√
2π(α + 1)

x−
α+2

2(α+1) e−xβ

exp [x
α
α+1 ((λβα)

1
α+1α−

α
α+1 + (λαβα)

1
α+1)]

≈
(λαβα)

1
2(α+1) e−λ

√
2π(α + 1)

x−
α+2

2(α+1) e−xβ

exp [x
α
α+1 (λβα)

1
α+1 (α−

α
α+1 + α

1
α+1)] .

The expression α−
α
α+1 +α

1
α+1 can be simplified by putting the two terms

over a common denominator

α−
α
α+1 + α

1
α+1 = α

1
α+1 +

1

α
α
α+1

=
α

1
α+1α

α
α+1 + 1

α
α
α+1

=
α + 1

α
α
α+1

(B.60)
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so that the saddlepoint approximation is

pX(x) ≈
(λαβα)

1
2(α+1) e−λ

√
2π(α + 1)

x−
α+2

2(α+1) e−xβ exp [x
α
α+1

(λβα)
1
α+1 (α + 1)

α
α
α+1

] . (B.61)

B.6 Series Evaluation

Let X ∼ CPΓ(λ,α, β) with p.d.f.

pX(x) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

δ(x) exp [−
µ2−p

φ(2 − p)
] for x = 0

exp [
1

φ
(x
µ1−p

1 − p
−
µ2−p

2 − p
)]

1

x

∞

∑
y=1

Wy(x, p, φ) for x > 0

where p =
2 + α

1 + α
, µ =

λα

β
, φ =

α + 1

β2−p(λα)p−1
and

Wy =Wy(x, p, φ) =
xyα

φy(1+α)(p − 1)yα(2 − p)yy!Γ(yα)
. (B.62)

Dunn and Smyth (2005) approximated the sum by truncation

∞

∑
y=1

Wy ≈

yu

∑
y=yl

Wy (B.63)

where yl < ymax < yu and ymax is the value of y which maximises Wy. Dunn

and Smyth (2005) treated Wy as a continuous and differentiable function

of y.

It is easier to differentiate ln(Wy) where

ln(Wy) = yα ln(x) − y(1 + α) ln(φ) − yα ln(p − 1)

− y ln(2 − p) − ln(y!) − ln Γ(yα)

= y ln(
xα

φ1+α(p − 1)α(2 − p)
) − ln(y!) − ln Γ(yα) . (B.64)

Using Stirling’s approximation ln(n!) ≈ ln Γ(n) ≈ n ln(n!) − n

ln(Wy) ≈ y ln(
xα

φ1+α(p − 1)α(2 − p)
) − y ln(y) + y − yα ln(yα) + yα . (B.65)
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Taking the derivative with respect to y

∂ ln(Wy)

∂y
≈ ln(

xα

φ1+α(p − 1)α(2 − p)
) − ln(y) − 1 + 1

− α ln(yα) − α + α

≈ ln(
xα

φ1+α(p − 1)α(2 − p)
) − ln(y) − α ln(yα) . (B.66)

Setting the derivative to zero

0 ≈ ln(
xα

φ1+α(p − 1)α(2 − p)y1+αmaxα
α
)

1 ≈
xα

φ1+α(p − 1)α(2 − p)y1+αmaxα
α

y1+αmax ≈
xα

φ1+α(p − 1)α(2 − p)αα

ymax ≈
1

φ
(

x

(p − 1)α
)

α
1+α

(2 − p)
−1
1+α .

This can be simplified using the fact that α =
2−p
p−1 , 1

1+α = p−1 and α
1+α = 2−p

then

ymax ≈
1

φ
(

x

2 − p
)
2−p

(2 − p)1−p

and finally

ymax ≈
x2−p

φ(2 − p)
. (B.67)

To verify that ymax is a maximum, the second-order derivative can be

investigated
∂2 ln(Wy)

∂y2
≈ −

1

y
(α + 1) (B.68)

to see that
∂2 ln(Wy)

∂y2
< 0 for y = 1,2,3, . . . (B.69)

therefore ymax is a maximum.
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Appendix C

Expectation of σ̂20

It can be shown that the null variance estimator σ̂2
0 is approximately unbi-

ased when estimating using n samples of N(µ0, σ2
0) random variables. Sup-

pose the random variables are Z1, Z2, . . . , Zn and are i.i.d. with probability

density function f(z). Recall that

σ̂0 = [−
∂2

∂z2
ln p̂(z)∣

z=µ̂0

]

−1/2

(C.1)

where

∂2

∂z2
ln p̂Z(z) = [h

n

∑
i=1

φ(
Zi − z

h
)]

−2

× {[
n

∑
i=1

φ(
Zi − z

h
)]

× [
n

∑
i=1

φ(
Zi − z

h
)((

Zi − z

h
)

2

− 1)] − [
n

∑
i=1

φ(
Zi − z

h
)

(
Zi − z

h
)]

2

} . (C.2)

Apply an approximation such that

E [−σ̂−20 ] ≈ [h
n

∑
i=1

E [φ(
Zi − z

h
)]]

−2

× {[
n

∑
i=1

E [φ(
Zi − z

h
)]]

× [
n

∑
i=1

E [φ(
Zi − z

h
)((

Zi − z

h
)

2

− 1)]] − [
n

∑
i=1

E [φ(
Zi − z

h
)

(
Zi − z

h
)]]

2

} . (C.3)
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The following function of Z was studied

gt(Z) = φ(
Z − z0
h

)(
Z − z0
h

)

t

. (C.4)

The expectation is

E [gt(Z)] = ∫

∞

−∞
φ(

z − z0
h

)(
z − z0
h

)
t

f(z)dz . (C.5)

By substituting u = (z − z0)/h then

E [gt(Z)] = ∫

∞

−∞
hφ(u)utf(z0 + uh)du (C.6)

which a Taylor series can be used to expand f(z0 + uh)

E [gt(Z)] = ∫

∞

−∞
hφ(u)ut

∞

∑
r=0

f (r)(z0)

r!
(uh)rdu (C.7)

to get

E [gt(Z)] =
∞

∑
r=0

f (r)(z0)hr+1

r!
M (t+r)(0) (C.8)

where M(θ) = ∫
∞

−∞
eθuφ(u)du is the moment generating function of the

standard Normal distribution. It is left as an exercise to show that

M(0) = 1 (C.9)

M (1)(0) = 0 (C.10)

M (2)(0) = 1 (C.11)

M (3)(0) = 0 (C.12)

M (4)(0) = 3 (C.13)

M (5)(0) = 0 (C.14)

M (6)(0) = 15 . (C.15)

Then for t = 0,1,2

E [g0(Z)] = f(z0)h +
f (2)(z0)h3

2
+

3f (4)(z0)h5

4!
+O(h7) (C.16)

E [g1(Z)] = f (1)(z0)h
2 +

3f (3)(z0)h4

3!
+O(h6) (C.17)

E [g2(Z)] = f(z0)h +
3f (2)(z0)h3

2
+

15f (4)(z0)h5

4!
+O(h7) . (C.18)
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The derivatives of f(z) are

f (1)(z) =
f(z)

σ2
0

[−(z − µ0)] (C.19)

f (2)(z) =
f(z)

σ2
0

[
(z − µ0)

2

σ2
0

− 1] (C.20)

f (3)(z) =
f(z)

σ4
0

[3(z − µ0) −
(z − µ0)

3

σ2
0

] (C.21)

f (4)(z) =
f(z)

σ4
0

[3 −
6(z − µ0)

2

σ2
0

+
(z − µ0)

4

σ4
0

] . (C.22)

Then substituting these into Equations (C.16), (C.17) and (C.18) obtains

E [g0(Z)] = f(z0)h +
h3

2

f(z0)

σ2
0

[
(z0 − µ0)

2

σ2
0

− 1]

+
3h5

4!

f(z0)

σ4
0

[3 −
6(z0 − µ0)

2

σ2
0

+
(z0 − µ0)

4

σ4
0

] +O(h7) (C.23)

E [g1(Z)] = −h2
f(z0)

σ2
0

(z0 − µ0) +
h4

2

f(z0)

σ4
0

[3(z0 − µ0) −
(z0 − µ0)

3

σ2
0

]

+O(h6) (C.24)

E [g2(Z)] = f(z0)h +
3h3

2

f(z0)

σ2
0

[
(z0 − µ0)

2

σ2
0

− 1]

+
15h5

4!

f(z0)

σ4
0

[3 −
6(z0 − µ0)

2

σ2
0

+
(z0 − µ0)

4

σ4
0

] +O(h7) . (C.25)

The definition for E [gt(Z)] can be used to simplify Equation (C.3) to

E [σ̂2
0] =

− (hE [g0(Z)])
2

E [g0(Z)] [E [g2(Z)] −E [g0(Z)]] − (E [g1(Z)])
2 . (C.26)

Substituting in Equations (C.23), (C.24) and (C.25) and setting z0 = µ̂0

obtains

E [σ̂2
0] =

σ2
0 + h

2 [
(µ̂0 − µ0)

2

σ2
0

− 1] +O(h4)

1 + h2 [
(µ̂0 − µ0)

2

σ4
0

−
2

σ2
0

] +O(h4)

(C.27)
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where the following may be useful

E [g0(Z)] [E [g2(Z)] −E [g0(Z)]] = h4
f 2(z0)

σ2
0

[
(z0 − µ0)

2

σ2
0

− 1]

+ h6
f 2(z0)

σ4
0

[2 −
4(z0 − µ0)

2

σ2
0

+
(z0 − µ0)

4

σ4
0

] +O(h8) . (C.28)

The result implies that σ̂2
0 is an unbiased estimator of σ2

0 up to the first-order

approximation. Higher-order terms consist of at least even-order polynomi-

als of (µ̂0 − µ0) and h. As a result, any bias in µ̂0 would contribute to the

bias of σ̂2
0. It is not clear if σ̂2

0 is a consistent estimator because h depends

on n and the result for Var [σ̂2
0] is difficult to obtain.
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