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Running title: Hydroxyquinol pathway in Rhodococcus jostii RHA1 16 

 17 

Abstract:  18 

Deletion of the pcaHG genes encoding protocatechuate 3,4-dioxygenase in Rhodococcus jostii RHA1 19 

gives a gene deletion strain still able to grow on protocatechuic acid as sole carbon source, indicating 20 

a second degradation pathway for protocatechuic acid. Metabolite analysis of wild-type R. jostii 21 

RHA1 grown on media containing vanillin or protocatechuic acid indicated the formation of 22 

hydroxyquinol (benzene-1,2,4-triol) as a downstream product. Gene cluster ro01857-ro01860 in 23 

Rhodococcus jostii RHA1 contains genes encoding hydroxyquinol 1,2-dioxygenase and 24 

maleylacetate reductase for degradation of hydroxyquinol but also putative mono-oxygenase 25 

(ro01860) and putative decarboxylase (ro01859) genes, and a similar gene cluster is found in the 26 
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 2 

genome of lignin-degrading Agrobacterium sp.. Recombinant R. jostii mono-oxygenase and 1 

decarboxylase enzymes were in combination found to convert protocatechuic acid to hydroxyquinol. 2 

Hence an alternative pathway for degradation of protocatechuic acid via oxidative decarboxylation 3 

to hydroxyquinol is proposed. 4 

 5 

Importance 6 

There is a well-established paradigm for degradation of protocatechuic acid via the -ketoadipate 7 

pathway in a range of soil bacteria. In this study we have found the existence of a second pathway 8 

for degradation of protocatechuic acid in Rhodococcus jostii RHA1, via hydroxyquinol (benzene-9 

1,2,4-triol), which establishes a metabolic link between protocatechuic acid and hydroxyquinol. The 10 

presence of this pathway in a lignin-degrading Agrobacterium sp. strain suggests a possible 11 

involvement of the hydroxyquinol pathway in metabolism of lignin degradation fragments. 12 

 13 

  14 
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Introduction 1 

Microbial metabolism of protocatechuic acid (3,4-dihydroxybenzoic acid) via the -2 

ketoadipate pathway is known to mediate the degradation of many substituted benzoic acids in a 3 

range of soil bacteria able to degrade aromatic compounds [1]. The -ketoadipate pathway has also 4 

recently emerged as an important central pathway for degradation of lignin fragments by lignin-5 

degrading bacteria such as Rhodococcus jostii RHA1 and Pseudomonas putida KT2440 [2], and has 6 

been exploited to generate bioproducts from lignin degradation [3-5]. 7 

In the course of metabolic engineering studies to generate pyridine-dicarboxylic acid products 8 

from lignin degradation via protocatechuic acid [5], a deletion of the pcaHG genes encoding 9 

protocatechuate 3,4-dioxygenase in Rhodococcus jostii RHA1 was made, which revealed to our 10 

surprise that this gene deletion mutant was still able to grow on protocatechuic acid as sole carbon 11 

source, hence that there is a second pathway for degradation of protocatechuic acid.  12 

Examination of the genome of Rhodococcus jostii RHA1 revealed that there is a gene cluster 13 

for conversion of hydroxyquinol (benzene-1,2,4-triol) via intradiol oxidative cleavage to 14 

maleylacetate, and reduction to -ketoadipate, encoded by genes ro01857-ro01860 (see Figure 1). 15 

The hydroxyquinol catabolic pathway has been observed in Burkholderia cepacia AC1100 [6], 16 

Sphingomonas wittichi RW1 [7], and Rhodococcus sp. PN1 [8]. Kasai et al have implicated R. jostii 17 

RHA1 genes ro01857-ro01861 in -resorcylate catabolism, via decarboxylation of gamma-18 

resorcylate (2,6-dihydroxybenzoic acid) and hydroxylation of resorcinol to form hydroxyquinol [9]. 19 

Transcription of genes ro01857-ro01860 was shown to be regulated by gene regulator TsdR, to which 20 

gamma-resorcylate binds as an effector [9]. The oxidative decarboxylation of vanillic acid to 2-21 

methoxyhydroquinone has been reported in extracts of Sporotrichum pulverulentum [10], hence the 22 

oxidative decarboxylation of protocatechuic acid to form hydroxyquinol has some biochemical 23 

precedent. Here we present evidence that conversion of protocatechuic acid to hydroxyquinol occurs 24 

in R. jostii RHA1, and is mediated by flavin-dependent mono-oxygenase (ro01860) and 25 

decarboxylase (ro01859) enzymes. 26 
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 1 

Figure 1. Gene cluster (A) and hypothesis (B) for hydroxyquinol pathway in Rhodococcus jostii 2 

RHA1. 3 

 4 

Results 5 

Growth phenotypes of pcaHG gene knockout strain of Rhodococcus jostii RHA1  6 

 The pcaHG genes encoding protocatechuate 3,4-dioxygenase, the first step on the -7 

ketoadipate pathway, were deleted in Rhodococcus jostii RHA1, using the pk18mobsacB plasmid 8 

(See Supporting Information Figure S1), containing the sacB gene as a counter-selectable marker 9 

(Spence EM, Calvo-Bado L, Mines P, Bugg TDH, submitted for publication) [11]. The growth 10 

phenotypes of this mutant strains were investigated, using a range of different carbon sources in M9 11 

minimal media, as shown in Table 1. 12 

 13 

Table 1. Growth phenotypes of pcaHG gene deletion and gene replacement mutant strains. 14 

 15 

 As shown in Table 1, the pcaHG strain was unable to grow on 0.1% vanillic acid or 4-16 

hydroxybenzoic acid as carbon sources, consistent with their metabolism via the -ketoadipate 17 

pathway, but it was able to grow on solid or liquid M9 media containing 0.1-0.75% (w/v) 18 

protocatechuic acid as carbon source (see Supporting Information Figures S2, S3), implying that 19 

another pathway could be used by R. jostii RHA1 to metabolise protocatechuic acid. The lack of 20 

growth on 0.1% vanillic acid, which can be converted to protocatechuic acid, suggests that this 21 

alternative pathway is only induced at higher concentrations of protocatechuic acid. Growth on 0.1% 22 

protocatechuic acid was accompanied by a dark brown colouration, either on solid or liquid media, 23 

which was not observed when the wild-type strain was grown on M9/protocatechuic acid (see 24 

Supporting Information Figure S3). 25 

 26 



 5 

Metabolite analysis in Rhodococcus jostii RHA1  1 

 Wild-type R. jostii RHA1 was grown in either Luria-Bertani broth or M9 minimal media 2 

containing 0.1% (w/v) vanillin, vanillic acid, or protocatechuic acid, and after acidification, 3 

metabolites formed were extracted into ethyl acetate. The metabolites were then analysed by C18 4 

reverse phase HPLC, and by gas chromatography-mass spectrometry (GC-MS), and the observed 5 

peaks were compared with authentic standards. 6 

 The results are shown in Table 2. Consistent with the known vanillic acid degradation 7 

pathway [12], vanillin was converted into vanillic acid, and both vanillin and vanillic acid were 8 

converted into protocatechuic acid. Vanillin and protocatechuic acid were also converted into a new 9 

peak at retention time 11 min which matched an authentic sample of hydroxyquinol, consistent with 10 

an oxidative decarboxylation of protocatechuic acid to hydroxyquinol (see Supporting Information 11 

Figure S4).  Guaiacol was detected as a metabolite of vanillic acid by GC-MS, both in M9 minimal 12 

media, and by treatment of vanillic acid with cell extract of R. jostii RHA1 in the absence of cofactors, 13 

consistent with a decarboxylation of vanillic acid to guaiacol (see Supporting Information Figure S5). 14 

When cell-free extract was used in the presence of 0.1 mM NADH, catechol was also observed 15 

(Supporting Information Figure S5), but catechol was not observed as a metabolite from 16 

protocatechuic acid. Unexpectedly, the formation of vanillic acid as a metabolite was also observed 17 

by growth of R. jostii on M9 minimal media containing 0.1% protocatechuic acid (Supporting 18 

Information Figure S6), implying that methylation of protocatechuic acid can occur. 19 

 20 

Table 2. Metabolites detected by C18 reverse phase HPLC or GC-MS  21 

 22 

Growth of the pcaHG Rhodococcus jostii gene deletion mutant on M9 minimal media 23 

containing protocatechuic acid, as noted above, generated a dark brown coloration. Analysis of 24 

supernatant from this incubation by LC-MS at extracted ion m/z 127 corresponding to benzene-1,2,4-25 



 6 

triol gave a peak which matched the retention time of a commercial sample of hydroxyquinol (see 1 

Figure 2), verifying the conversion of protocatechuic acid into hydroxyquinol. 2 

 3 

Figure 2. LC-MS analysis for hydroxyquinol product (extracted ion m/z 127).  4 

 5 

 6 

Investigation of hydroxyquinol gene cluster in Rhodococcus jostii and Agrobacterium sp. 7 

 A gene cluster closely related to the ro01857-ro01860 gene cluster of R. jostii RHA1 was 8 

found in the genome sequence of a lignin-degrading Agrobacterium sp. strain identified from 9 

municipal waste soil [13]. The Agrobacterium sp. gene cluster (genes agro_00119-agro_00125) also 10 

contains a putative flavin reductase gene agro_00119 adjacent to flavin mono-oxygenase agro_00120, 11 

and an aromatic acid transporter gene (agro_00125). Gene agro_00121 is annotated as a putative 12 

decarboxylase (42.7% identity to DBD23_ASPOR Aspergillus oryzae 2,3-dihydroxybenzoate 13 

decarboxylase), within the PF04909.11 amidohydrolase superfamily. The Agrobacterium sp. genome 14 

also contained a gene cluster encoding the -ketoadipate pathway (genes agro_04310-agro_04320), 15 

and a DyP-type peroxidase (gene agro_00063), and a putative -etherase LigE (gene agro_01577), 16 

consistent with activity for lignin degradation (see Supporting Information Table S1). Related 17 

hydroxyquinol pathway gene clusters are also found on the genomes of Agrobacterium tumefaciens 18 

F2 (genes Agau_C100398-Agau_C100407), Agrobacterium sp. H13-3 (genes AgroH133_08581-19 

AgroH133_08584), and Rhizobium species such as Rhizobium sp. Kim5 (Kim5_PC00119-20 

Kim5_PC00122). 21 

 22 

Figure 3. Comparison of gene clusters for hydroxyquinol utilisation in Rhodococcus jostii RHA1 and 23 

Agrobacterium sp. 24 

 25 



 7 

 The putative mono-oxygenase and decarboxylase genes from R. jostii RHA1 and 1 

Agrobacterium sp. were cloned into expression vector pET-S vector and expressed in E. coli 2 

BL21(DE3) as N-His6 fusion proteins. The recombinant mono-oxygenase enzymes Ro01860 and 3 

Ag00120 both expressed strongly, and after purification on a Ni-NTA column, gave the expected 60 4 

kDa protein bands by SDS-PAGE (see Supporting Information Figure S7). The putative 5 

decarboxylase enzymes Ro01859 and Ag00121 both expressed weakly, giving weaker bands by SDS-6 

PAGE corresponding to the expected 44.7 and 50.1 kDa proteins respectively (see Supporting 7 

Information Figure S7). Western blots were carried out in order to confirm that the desired 8 

decarboxylase protein had been expressed, which confirmed that a protein of the correct size had been 9 

expressed at low levels (see Supporting Information Figure S8). 10 

 The purified recombinant enzymes were incubated with protocatechuic acid, in the presence 11 

of 10 µM FAD and 200 µM NADPH, in order to test for conversion to hydroxyquinol, and the 12 

reactions monitored by C18 reverse phase HPLC. Incubation of 1 mM protocatechuic acid with 100 13 

µg purified Ro01860 and Ro01859 enzymes gave no new product peak after 1 hr, however, addition 14 

of 100 µg purified mono-oxygenase Ro01860 and cell extract containing recombinant decarboxylase 15 

Ro01859 (100 µg protein) to 1 mM protocatechuic acid was found to generate a new peak at 10.7 16 

min corresponding to hydroxyquinol (see Figure 4A), but this peak was not formed by cell extract 17 

lacking Ro01859. Using 100 µg recombinant mono-oxygenase Ro01860 or Ag00120 alone, some 18 

consumption of protocatechuic acid was observed (35% & 77% respectively), but hydroxyquinol was 19 

not formed, although a new peak at retention time 12.8 min was generated which did not co-elute 20 

with hydroxyquinol (see Supporting Information Figure S9). Using purified recombinant 21 

decarboxylase enzymes Ro01859 or Ag00121 alone, no reaction with protocatechuic acid was 22 

observed. We hypothesise that purification of decarboxylase Ro01859 renders the enzyme inactive, 23 

perhaps due to loss of an essential cofactor, but that overexpressed decarboxylase Ro01859 and 24 

purified mono-oxygenase Ro01860 are together able to catalyse the conversion of protocatechuic 25 

acid to hydroxyquinol. 26 
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 1 

Figure 4. Reverse phase HPLC analysis of incubations of (A) protocatechuic acid (PCA) (B) catechol 2 

and (C) hydroquinone (1,4-HQ) (D) gentisic acid with purified mono-oxygenase Ro01860 and 3 

overexpressed decarboxylase Ro01859.  4 

 5 

Several other potential substrates for the mono-oxygenase and decarboxylase enzymes were 6 

also tested. Formation of hydroxyquinol was also observed upon incubation of Ro01859/Ro01860 7 

with catechol (see Figure 4B), 1,4-hydroquinone (see Figure 4C), or gentisic acid (2,5-8 

dihydroxybenzoic acid, see Figure 4D), indicating that hydroxylation/decarboxylation of several 9 

compounds can be carried out by this pair of enzymes in vitro, as discussed below. The formation of 10 

a small amount of hydroxyquinol was also observed when catechol was treated with mono-oxygenase 11 

Ro01860 alone, approximately 2% of the product formed with Ro01859/Ro01860. No reaction of 12 

Ro01860 alone was observed with 1,4-hydroquinone, 2,3-dihydroxybenzoic acid, 2,4-13 

dihydroxybenzoic acid, or gentisic acid (2,5-dihydroxybenzoic acid). 14 

 15 

Discussion 16 

 The hydroxyquinol degradation pathway has been previously reported in Burkholderia 17 

cepacia AC1100 [6], Sphingomonas wittichi RW1 [7], and Rhodococcus sp. PN1 [8], as an aromatic 18 

catabolic pathway, and a hydroxyquinol degradation gene cluster has been observed in Cupriavidus 19 

necator JMP134 [14]. This pathway has been implicated in degradation of 4-nitrophenol in 20 

Arthrobacter chlorophenolicus A6 [15], and in -resorcylate catabolism in R. jostii RHA1 [9]. 21 

Following our initial observation that a pcaHG gene deletion mutant of R. jostii RHA1 was able to 22 

grow on minimal media containing protocatechuic acid, we hypothesised that protocatechuic acid 23 

could be converted via flavin-dependent mono-oxygenase (ro01860) and a decarboxylase (ro01859) 24 

into hydroxyquinol. We have shown by metabolite analysis that protocatechuic acid can be converted 25 

into hydroxyquinol by wild-type R. jostii RHA1 cells, by the pcaHG gene deletion strain, and in 26 



 9 

vitro using recombinant Ro01860/Ro01859 enzymes. These observations therefore establish a 1 

metabolic link between protocatechuic acid and hydroxyquinol in R. jostii, which can be used as an 2 

alternative pathway for metabolism of protocatechuic acid in this bacterium. 3 

 The catalytic mechanism of these two enzymes is likely to proceed as shown in Figure 5. 4 

Phenol hydroxylation ortho- or para- to a phenolic hydroxyl group is well precedented in the flavin 5 

mono-oxygenase family, via a flavin hydroperoxide reaction intermediate [16]. Several soil bacteria 6 

that can metabolise chlorinated phenols [17-19] or 4-nitrophenols [20,21] are known to express 7 

flavin-dependent mono-oxygenase enzymes that catalyse hydroxylation para to a phenolic hydroxyl 8 

group, followed by loss of either a 4-chloro or 4-nitro substituent. In this case, hydroxylation in the 9 

1-position would be catalysed by mono-oxygenase Ro01860, to give a diffusible intermediate, which 10 

is then decarboxylated by Ro01859, using the carbonyl group at C-4 as an electron sink to aid 11 

decarboxylation (see Figure 5). Such a mechanism would rationalise why a combination of both 12 

Ro01860 and Ro01859 are needed in order to effect this oxidative decarboxylation, and why no 13 

activity was observed using decarboxylase Ro01859 alone. Using mono-oxygenase Ro01860 alone 14 

the intermediate would be formed, leading to consumption of protocatechuic acid as observed, but 15 

the intermediate is likely to be chemically unstable, and could not be characterised. 16 

 17 

Figure 5. Proposed catalytic mechanism for mono-oxygenase Ro01860 and decarboxylase Ro01859 18 

 19 

 Formation of hydroxyquinol in vitro was also observed from catechol, 1,4-hydroquinone, or 20 

2,5-dihydroxybenzoic acid (gentisic acid). Only a small amount of hydroxylation of catechol by 21 

mono-oxygenase Ro01860 alone was observed, implying that the two enzymes are more active in 22 

combination, perhaps forming a complex. Kasai et al have shown that the R. jostii ro01859 and 23 

ro01860 gene products are able to convert 2,6-dihydroxybenzoic acid to hydroxyquinol: Ro01859 24 

decarboxylates -resorcylate to resorcinol, and Ro01860 converts resorcinol to hydroxyquinol [9]. 25 

Hence it appears that these enzymes are able to catalyse several hydroxylation/decarboxylation 26 



 10 

reactions. Kasai et al reported that gene regulator TsdR negatively regulates the expression of these 1 

genes, and binds to -resorcylic acid (2,6-dihydroxybenzoic acid). The observation that the pcaHG 2 

deletion mutant can grow on M9/0.1% protocatechuic acid but not on 0.1% vanillic acid or 0.1% 4-3 

hydroxybenzoic acid suggests that the conversion of protocatechuic acid to hydroxyquinol takes place 4 

only at higher concentrations of protocatechuic acid, hence protocatechuic acid may bind more 5 

weakly to gene regulator TsdR. Kasai et al reported activity for resorcinol hydroxylation by Ro01860 6 

using NADH as cofactor [9], whereas we observed activity for protocatechuic acid conversion by 7 

Ro01860 and Ro01859 using NADPH as cofactor (NADH not tested), therefore it appears that 8 

Ro01860 can accept either NADH or NADPH for different transformations.  9 

 Our metabolite analysis also indicates two other transformations that can occur in R. jostii 10 

RHA1, as shown in Figure 6. Firstly, we have observed the conversion of vanillic acid to guaiacol 11 

via decarboxylation, followed by demethylation to catechol. Decarboxylation of vanillic acid to 12 

guaiacol is precedented in Bacillus megaterium and Streptomyces [22], a gene cluster responsible for 13 

this transformation has been identified in Streptomyces sp. D7 [23], and a vanillate decarboxylase 14 

enzymes has been purified from Nocardia sp. NRRL 5646 [24], however, there is no vanillic acid 15 

decarboxylase gene annotated on the R. jostii RHA1 genome, so the gene responsible for this 16 

transformation is not known. The decarboxylation of vanillate to guaiacol might explain an earlier 17 

observation where a R. jostii vanillate mono-oxygenase (ro04165) gene deletion strain failed to 18 

accumulate vanillic acid when grown on media containing wheat straw lignocellulose, whereas a 19 

vdh vanillate dehydrogenase gene deletion strain did accumulate vanillin [3]. We did not observe 20 

any conversion of protocatechuic acid to catechol, and there is no protocatechuic acid decarboxylase 21 

gene annotated on the R. jostii RHA1 genome, though such a decarboxylase gene has been identified 22 

in Klebsiella pneumoniae [25]. The formation of guaiacol is also consistent with the presence of a 23 

gene cluster for guaiacol metabolism in R. jostii RHA1 at ro08067/08068, containing a homologue 24 

for a P450-dependent guaiacol demethylase enzyme which has been characterised from 25 

Amycolatopsis sp. ATCC 39116 [26]. 26 
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 1 

Figure 6. Biochemical transformations of vanillic acid and protocatechuic acid in Rhodococcus jostii 2 

RHA1 observed in this work, and the transformation reported by Kasai et al [9]. 3 

 4 

 Secondly, a surprising observation was the conversion of protocatechuic acid to vanillic acid, 5 

via methylation of the 3-hydroxy group. There is a methyltransferase gene (ro04166) located in the 6 

gene cluster for vanillate mono-oxygenase (ro04165), which may be responsible for this methylation 7 

reaction. This reaction is surprising, as it would apparently set up a “futile cycle” between vanillic 8 

acid and protocatechuic acid, therefore expression of the methyltransferase and demethylase genes 9 

would need to be tightly regulated. 10 

 We have elsewhere observed 2-methoxyhydroquinone, the methylated form of 11 

hydroxyquinol, as a metabolite of lignin oxidation by lignin-degrading enzyme manganese 12 

superoxide dismutase from Sphingobacterium sp T2 [27]. A pathway for degradation of (+)-13 

pinoresinol, a component of lignin structure, via 2-methoxyhydroquinone has also recently been 14 

elucidated in Pseudomonas sp. SG-MS2 [28,29]. Hence it seems likely that hydroxyquinol can be 15 

generated from other lignin oxidation reactions involving aryl-C oxidative cleavage of the aryl-C3 16 

unit found in lignin. In a recent survey of the genomes of lignin-degrading bacteria [30], the 17 

hydroxyquinol gene cluster was only observed in Rhodococcus jostii RHA1 and Agrobacterium sp., 18 

but lignin-degrading Paenibacillus sp. and Ochrobactrum sp. strains also contained mhq genes 19 

thought to be involved in hydroquinone breakdown [31]. The pathways branching from vanillic acid 20 

and protocatechuic acid shown in Figure 6 will reduce metabolic flux through the -ketoadipate 21 

pathway, and hence an understanding of these pathways will underpin efforts to engineer R. jostii 22 

RHA1 for efficient conversion of lignin to renewable chemicals [3-5]. 23 

 24 

Materials & Methods 25 

Bacterial strains, plasmids and chemicals 26 
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Rhodococcus jostii RHA1 was used as the ancestral strain [32]. pcaHG R. jostii contains a 1 

deletion in chromosomal pcaHG genes, as described herein. Agrobacterium sp. was isolated from 2 

municipal waste as described previously [13]. For routine growth and maintenance, R. jostii or 3 

Agrobacterium sp. cells were cultured in liquid or solid Luria-Bertani broth (LB) medium, or for R. 4 

jostii on M9 minimal media supplemented with 0.1% benzoic acid, at 30 C and with shaking at 180 5 

rpm if required. Bacterial growth was measured by absorbance at 595 or 600 nm.  6 

Expression vector pET-S is a derivative of pET151 topo (Invitrogen) in which a Sumo tag 7 

was amplified from pOPINS3C (http://www.oppf.rc-harwell.ac.uk/OPPF/protocols/cloning.jsp) 8 

using primers Pfor CCCCCCCATATGGCACACCATCACCACC (NdeI site) and Prev 9 

AAAAAAATCGATGGATTTAAATGGGCTAGCGGATCCACCGCTGCTGATCTGTTCG (ClaI, 10 

SwaI, NheI, BamHI sites), and cloned into NdeI/ClaI sites of pET151 topo. All chemicals were 11 

purchased form Sigma Aldrich unless otherwise stated.  12 

 13 

Construction of gene deletion mutants. 14 

The pcaHG gene deletion strain was constructed using the pk18mobsacB plasmid, which 15 

uses the sacB gene (confers sucrose sensitivity) as a counter-selectable marker [11]. PCR was used 16 

to amplify two 1 kb regions of chromosomal DNA on either side of the genes to be deleted. The 17 

amplified 1 kb upstream and downstream DNA sequences were ligated into pk18mobsac and the 18 

resulting construct (see Supporting Information Figure S1) was confirmed by DNA sequencing and 19 

restriction digestion. The recombinant plasmid was taken up into R. jostii by electroporation, and 20 

recombinant colonies selected by kanamycin resistance. Isolation of the double cross-over gene 21 

deletion was carried out using sucrose resistance counter-selection [11], and the markerless gene 22 

deletion was confirmed by internal and external PCR analysis. 23 

 24 

Metabolite analysis.  25 

http://www.oppf.rc-harwell.ac.uk/OPPF/protocols/cloning.jsp
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Cultures of R. jostii RHA1 were grown in either Luria-Bertani media or M9 minimal media 1 

containing 1 mM vanillic acid, vanillin or protocatechuic acid at 30 oC for 24-48 hr. 500 L aliquots 2 

of culture were removed and combined with 500 L of HPLC grade methanol/0.1% trifluoroacetic 3 

acid. Samples were vortexed and then centrifuged (microcentrifuge) for 15 minutes. 4 

Biotransformations using R. jostii cell-free extract contained 100 µg protein, 1 mM substrate, with or 5 

without addition of 0.1 mM NADH, in 50 mM Tris buffer pH 7.5, and were incubated at 20 oC for 1-6 

2 hours. The incubation was then acidified to pH 1 (1M HCl), and the products extracted into ethyl 7 

acetate, solvent evaporated at reduced pressure, and the sample re-dissolved in methanol. HPLC 8 

analysis of the supernatant was performed using a Hyperclone 5 µm C18 reverse phase column 9 

(Phenomenex), using an Agilent 1200 series HPLC analyser. The HPLC solvents were water/0.1% 10 

trifluoracetic acid (solvent A) and methanol/0.1% trifluoracetic acid (solvent B). The applied gradient 11 

was 10-30 % B over 5 min; 30-40 % B over 15 min; 40-70 % B over 10 min; 70-100 % B over 5 min; 12 

100-10 % B over 10 min, at a flow rate of 0.5 ml min-1. UV detection was at 270 nm. Samples for 13 

LC-MS analysis were suspended in 1:1 MeOH/water, and were separated on a Phenomenex Luna C18 14 

column (5 µm, 100 Å, 50 mm, 4.6 mm) on an Agilent 1200 analyzer and Bruker HCT Ultra mass 15 

spectrometer, flow rate 0.5 mL/min, monitoring at 270 nm. Solvent A water/ 0.1% formic acid, 16 

solvent B MeOH/0.1% formic acid. Gradient: 15% solvent B for 5 min; 15-25% B from 5-15 min; 17 

25-70% B from 15-23 min; 70-100% from 23-30 min. GC-MS analysis (ion-trap analyzer) was 18 

performed using a Varian 4000 gas chromatograph-mass Spectrometer, with a Varian Factor Four 19 

column (length 30m, i.d 0.25 mm, thickness 0.25 μm). Electron-impact mass spectra (EI-MS) were 20 

recorded at an ionization energy of 70eV. 21 

 22 

Expression & purification of R. jostii and Agrobacterium mono-oxygenase and decarboxylase 23 

enzymes  24 

R. jostii ro01859 (decarboxylase) and ro01860 (mono-oxygenase) genes and Agrobacterium 25 

agro_00120 (mono-oxygenase) and agro_00121 (decarboxylase) genes were amplified from genomic 26 
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DNA using polymerase chain reaction, using the oligonucleotide primers given below, and ligated 1 

into the pET-S expression vector, using XbaI and ClaI restriction sites, resulting in the expression of 2 

an N-His6 fusion protein. Oligonucleotide primers for PCR:  3 

ro01859: forward AAAAAAGCTAGCCAGGGCAAGATCGCACTGG;  4 

reverse AAAAAAATCGATTCACCGGTCGAGTTTGAACAAC 5 

ro01860: forward AAAAAAAGCTAGCATGTCTGCCTTCGCACAG;  6 

reverse AAAAAAATCGATAGGTGTTTGTCGGTGGTG 7 

ag00120: forward AAAAAAAGCTAGCATGAACGATATGAGCCATGCG;  8 

reverse AAAAAAATCGATTCAATATTGGCCCTTGGGTTC 9 

ag00121: forward AAAAAAAGCTAGCATGCAAGGCAAGGTCGCTC;  10 

reverse AAAAAAATCGATTCAGTTCCCGTCGAGTTTGAAC. 11 

Recombinant plasmids were expressed in E. coli BL21(DE3). For protein purification, 12 

constructs were grown in Luria Bertani broth (500 mL) in the presence of ampicillin (50 µg/mL), and 13 

protein expression induced by addition of IPTG (250 µM) at OD600 = 0.6. Expression of mono-14 

oxygenases Ro01860 and Ag00120 was carried out the presence of 1 mM riboflavin, in order to 15 

achieve reconstitution of the flavin cofactor. Cultures were grown for 16 hr at 16 oC, and then cells 16 

harvested by centrifugation (4,000 g, 20 min). Cells were resuspended in 50 mM sodium phosphate 17 

buffer pH 8.0 containing 300 mM NaCl, and sonicated in a Constant Systems Cell Disruptor (20000 18 

psi), then cell debris removed by centrifugation (20,000 g, 20 min). Cell extract was applied to a His 19 

Gravitrap column (GE Healthcare), washed with 50 mM sodium phosphate buffer pH 8.0 containing 20 

300 mM NaCl and 20 mM imidazole, and then protein eluted with 50 mM sodium phosphate buffer 21 

pH 8.0 containing 300 mM NaCl and 250 mM imidazole. Purified protein was then desalted using a 22 

PD-10 desalting column (GE Healthcare). 23 

SDS-PAGE was carried out using a Thermo Fisher Scientific Invitrogen Mini Gell Tank, 24 

using a 10% Bis-Tris protein gel, according to manufacturer’s instructions. Thermo Fisher Scientific 25 

PageRuler prestained protein ladder was used for molecular weight markers. Western bolt was carried 26 
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on using a Thermo Fisher Scientific InvitrogenTM NovexTM iBlotTM 2 Nitrocellulose Transfer 1 

Stack and a Thermo Fisher Scientific iBlotTM 2 Gel Transfer Device, according to manufacturer’s 2 

instructions, using Thermo Fisher Scientific 6x-His Tag Monoclonal Antibody. 3 

 4 

Biotransformation using mono-oxygenase Ro01860 and decarboxylase Ro01859  5 

 Biotransformations using recombinant Ro01860 and Ro01859 were carried out using 100 µg 6 

of each protein, in PBS buffer (1.0 mL) containing 1 mM substrate, in the presence of 10 µM FAD 7 

and 200 µM NADPH, incubated for 60 min at 25 oC. Aliquots (100 L) were removed and combined 8 

with 100 L of HPLC grade methanol/0.1% trifluoracetic acid. Samples were vortexed and then 9 

centrifuged (microcentrifuge) for 15 minutes, and analysed by HPLC using a Zorbax Eclipse plus 10 

(Agilent) C18 reverse phase column, using the gradient and conditions described above. Control 11 

incubations lacking enzyme were also carried out, which showed no substrate conversion. 12 

 13 

Accession numbers 14 

R. jostii enzymes: ro01859 decarboxylase ABG93670; ro01860 flavin-dependent mono-oxygenase 15 

ABG93671. Agrobacterium sp. enzymes: agro_00120 flavin-dependent mono-16 

oxygenase WP_149145897.1; agro_00121 decarboxylase WP_149145898.1. 17 

 18 
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Construct M9/vanillic 

acid 

M9/vanillin M9/4-

hydroxy-
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catechuic acid 
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 2 

Table 1. Growth phenotypes of wild-type R. jostii RHA1 and pcaHG gene deletion strains, grown 3 

with 0.1% carbon source in liquid M9 minimal media. Phenotypes: +++, strong growth (OD600 > 0.6) 4 

after 48 hr; ++, growth (OD600 0.3-0.6) after 48 hr; +, weak growth (OD600 0.2-0.3) after 48 hr; -, no 5 

growth. OD600 0.15-0.2 at start of culture. 6 

  7 
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 1 

Substrate Media Metabolites observed 

Vanillic 

acid 

Protocatechuic 

acid 

Hydroxyquinol Guaiacol Catechol 

Vanillin LB 

M9 

++ 

++ 

++ +   

Vanillic acid LB 

M9 

Extracta 

  + NADHb 

 ++ 

 

 

++ 

  

+ (GC) 

+ (GC) 

 

 

 

+ 

Protocatechuic 

acid 

M9 +  +   

 2 

Table 2. Metabolites detected by C18 reverse phase HPLC or GC-MS after growth of R. jostii RHA1 3 

in either Luria-Bertani broth (LB) or M9 minimal media containing 0.1% (w/v) carbon source, or 4 

treatment with R. jostii RHA1 cell extract. Key: +, metabolite observed; ++, strong formation of 5 

metabolite; GC, metabolite detected by GC-MS; a, cell-free extract contained 100 µg protein in 50 6 

mM Tris buffer pH 7.5 (5 mL); b, with addition of 0.1 mM NADH. Retention times and gradients are 7 

described in Materials & Methods section. 8 
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Figure Legends 1 

Figure 1. Gene cluster (A) and hypothesis (B) for hydroxyquinol pathway in Rhodococcus jostii 2 

RHA1. 3 

 4 

Figure 2. LC-MS analysis for hydroxyquinol product (extracted ion m/z 127). A. Analysis of 5 

incubation of pcaHG R. jostii deletion mutant with protocatechuic acid. B. Analysis of commercial 6 

sample of hydroxyquinol (benzene-1,2,4-triol). 7 

 8 

Figure 3. Comparison of gene clusters for hydroxyquinol utilisation in Rhodococcus jostii RHA1 and 9 

Agrobacterium sp. 10 

 11 

Figure 4. Reverse phase HPLC analysis of incubations of (A) protocatechuic acid (PCA), (B) 12 

catechol, (C) hydroquinone (1,4-HQ), and (D) gentisic acid with purified mono-oxygenase Ro01860 13 

and overexpressed decarboxylase Ro01859. Biotransformations contained 100 µg of each protein, in 14 

PBS buffer (1.0 mL), containing 1 mM substrate, 10 µM FAD and 200 µM NADPH, and were 15 

incubated for 60 min at 25 oC. Hydroxyquinol product is marked with blue box, other substrates are 16 

labelled, gentisic acid substrate elutes at >15 min.  17 

 18 

Figure 5. Proposed catalytic mechanism for mono-oxygenase Ro01860 and decarboxylase Ro01859 19 

 20 

Figure 6. Biochemical transformations of vanillic acid and protocatechuic acid in Rhodococcus jostii 21 

RHA1 observed in this work, and the transformation reported by Kasai et al [9]. 22 
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Figure 2 2 
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Figure 6 3 


