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DYNAMICAL SYSTEMS

LARGE TIME BEHAVIOR OF EXCHANGE-DRIVEN GROWTH
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Endenicher Allee 60 (room 2.023), D-53115 Bonn, Germany

(Communicated by José A. Carrillo)

ABSTRACT. Exchange-driven growth (EDG) is a model in which pairs of clus-
ters interact by exchanging single unit with a rate given by a kernel K(j, k).
Despite EDG model’s common use in the applied sciences, its rigorous math-
ematical treatment is very recent. In this article we study the large time
behaviour of EDG equations. We show two sets of results depending on the
properties of the kernel (i) K(j,k) = bjar and (i) K(j,k) = jar +bj +eB;0y.
For type I kernels, under the detailed balance assumption, we show that the
system admits unique equilibrium up to a critical mass ps above which there
is no equilibrium. We prove that if the system has an initial mass below ps
then the solutions converge to a unique equilibrium distribution strongly where
if the initial mass is above ps then the solutions converge to cricital equilib-
rium distribution in a weak sense. For type II kernels, we do not make any
assumption of detailed balance and equilibrium is shown as a consequence of
contraction properties of solutions. We provide two separate results depending
on the monotonicity of the kernel or smallness of the total mass. For the first
case we prove exponential convergence in the number of clusters norm and for
the second we prove exponential convergence in the total mass norm.

1. Introduction. Exchange-driven growth (EDG) is a model for non-equilibrium
cluster growth in which pairs of clusters interact by exchanging a single unit of
mass (monomer) at a time. [1],[2]. In the recent years EDG has been used to model
several natural and social phenomena such as migration [3], population dynamics
[4] and wealth exchange [5]. EDG is also important mathematically for multiple
reasons. Firstly, it is a model of intermediate complexity between the classical
Becker-Doring (BD) model [6], [7], where the dynamics are well understood, and
the Smoluchowski coagulation model, where the existing mathematical questions are
much tougher. Secondly, EDG arises as the mean field limit of a class of interacting
particle systems (IPS) that includes models of non-equilibrium statistical physics
including zero-range processes [8], [9], [10], [11], [12], [13], [15], [16], [17], that
have been intensively studied for a range of condensation phenomena that they
exhibit. Despite its importance, rigorous results on the properties and behavior of
the corresponding equations (existence, uniqueness, asymptotic behavior etc.) are
few and have been obtained only very recently [18], [19]. It is the purpose of this
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article to continue the mathematical study of the EDG systems focusing on the
large time asymptotic properties of solutions with explicit convergence rates where
possible.

In EDG, the mathematical description of the mass exchange systems is given
at the mesoscopic level and one studies the mean field rate equations (hereafter
referred as EDG equations) ignoring fluctuations at the particle level. The main
mathematical object of study is ¢;(t), the cluster size density, describing the volume
fraction of the system which is occupied by clusters of size j > 1, where j = 0 corre-
sponds to the empty (available) volume fraction not occupied by any particle. The
rate of exchange from a j—cluster to a k—cluster is given by K(j, k). Symbolically,
the exchange process can be described in the following way. If < j >, < k > denote
the clusters of sizes j > 0, k > 0, then the rule of interaction is

<j>B<k>—><j—-1>®<k+1> (jkordered)

The fact that the second index k can have the value zero breaks the symmetry in the
interaction and is central to the paper. In general, K (3, k) need not be a symmetric
function (even for j, k > 0). This is another important difference between the EDG
and coagulation (Smoluchowski) models. Mathematically, the infinite network of
interactions are represented as a system of nonlinear ODEs

éo =01 ZK(l,k)ck—COZK(laO)ck, (1.1)

k=0 k=1
G =cip1 Y KG+1,k)er—¢; Y K(j k)ex (1.2)
k=0 k=0
—¢; Y Kk, j)ex+cj1 Yy K(k,j—1)ex (1.3)
k=1 k=1
Cj(O) = Cj,o {j = O, 1, 2, } (14)

In [18] one of the authors provided the first mathematical investigation of EDG
equations giving the fundamental properties such as global existence, uniqueness
and non-existence. In particular, for general non-symmetric kernels whose growth
is bounded as K(j,k) < Cjk (for large j, k), unique classical solutions were shown
to exist globally. Recently, these results for non-symmetric kernels were extended
in [19], in particular, moment boundedness assumptions for the uniqueness were
replaced with milder conditions. For symmetric kernels, it was shown in [18] that
the existence result can be generalized to kernels whose growth rate is lying in the
range K (j,k) < C(j*kY + jVk*), with p,v < 2, u+ v < 3. Uniqueness of solutions
was obtained under additional boundedness assumptions on the moments. On the
other hand, for sufficiently fast growing kernels it was shown that no solution can
exist provided that the initial distribution has a fat tail.

There exists a body of literature on the applications of EDG model in physical
and social sciences. In these classical treatments exchange interactions are only
defined among non-zero clusters and O-clusters have no use or meaning. One of the
key aspects of the current formulation of the EDG system given by (1.1)-(1.4) is the
inclusion of the O—clusters (or available volume) representing the non-zero volume
fraction accessible to particles. In this description volume or total number density,
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ie, > 506G =1 becomes a conserved quantity independently of the total mass
density (_denoted by p hereafter).

The presence of zero clusters influence the properties of the whole system most
distinctly by allowing the particles to detach from non-zero clusters and re-occupy
the available (free) volume. Effectively, this provides a ”fresh” source of 1—clusters
to the system and is equivalent to K (j,0) > 0 in mathematical terms. This behavior
was first demonstrated numerically in [20], where it was observed that the seemingly
innocuous change in the kernel (K (j,0) > 0) fundamentally alters the dynamical
behavior, driving the system, towards a unique equilibrium (BD-like) instead of
indefinite growth where the cluster densities eventually vanish (Smoluchowski-like
when K(j,0) = 0). For a large class of kernels this observation was recently proven
in [19].

In this article we study the large time behavior of the exchange-driven system
concentrating on the cases where the exchange interaction rate (i.e., the kernel K)
is separable and has either of the following forms

(I) K(j, k) = bjax, (1.5)

(II) K(j,k) = jar + bj + B (1.6)
where the b; (and ;) terms can be interpreted as ”export” rate and a; (and o)
terms as the ”import” rate of particles and £ > 0 is a small parameter.
For the type I separable kernels we show that, under a crucial balance assump-
. .. . o, o Q,-z(p,'r])j
tion, the equilibrium cluster densities take the form c; = m where z(p,n)

. . . . k=5 an_ . .
is a solution of a nonlinear equation and Q; = [[;Z} a’gk L are combinatorial factors.

The explicit form of the equilibria becomes useful in the analysis of behavior of so-
lutions. In particular, the feature that the equilibrium densities are the minimizers
of a certain (entropy) functional V(c) = )" ¢; ln(g) — ¢; on a chosen set

J

Xom = {(C)jil nej = O’chj :p,zcj =n}

enables us to use the well developed entropy dissipation methods for the large time
analysis. It is worth noting that, for this type of kernel, an equilibrium is possible
only for a range of initial mass p; satisfying p; < ps where ps is the critical mass.
In this case (hereafter referred to as subcritical case) individual cluster densities
can be explicitly obtained from a recursive relation. If ps < co and p; > ps, then,
there will be no admissible equilibrium, indicating a phase transition. For type IT
separable kernels we do not make any assumption on the structure of equilibrium
(no detailed balance assumption) and therefore no specific analysis of the forms of
equilibrium will be made or needed except for its existence. That we do not impose
any structural conditions on the equilibrium is one of the novelties in this paper.

The main goal of this article is to obtain rigorous results on the large time
behavior of the EDG system. Below we give a brief outline of arguments and main
findings. We provide two sets of results depending on the type of the kernel.

For type I kernels, we prove qualitative convergence results with mild assump-
tions on the kernel. In particular, we show that the time dependent system (1.1)-
(1.4) goes strongly to equilibrium if the total mass is below a threshold value p;.
Above this critical value, a dynamic phase transition occurs and the excess initial
mass p; — ps forms larger and larger clusters while the rest of the system approaches
to equilibrium weakly. This behavior is analogous to the simpler Becker-Doring sys-
tem whose dynamics has been well studied [14], [21], [22], [23], [24], [25], [26], [27].
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For the results, we first show that under the assumptions of [18] the system (1.1)-
(1.4) form a semi-group. Then one naturally seeks a Lyapunov function which is
decreasing in time and a suitable norm where the positive orbit is relatively compact
and the Lyapunov function is continuous. Since mass is an invariant of the motion
a first candidate for the suitable norm is the space X = {(¢)52; : >_jc; < oo},
The downside of this natural norm is that the positive orbit is not always compact.
Quite similar to the classical case in BD equations using a weaker topology comes
useful and the desired compactness result can be obtained even for the supercritical
case. The remaining condition is then to satisfy the continuity of the Lyapunov
function in the chosen metric. It turns out that the continuity does not generally
hold for the "bare” form of the Lyapunov function but holds for the modified version

V.y(c) =Viec) — lnszcj - lnchj.

Here, the invariance of the total mass and volume is of crucial importance for
preserving the monotonicity property of the new Lyapunov function. This naturally
extends the approach taken in [14] where the only conserved quantity was total mass.
With this modification we can show that V, is weakly (defined more precisely
later) continuous at the special values z = zs, y = ys (defined later) and the
invariance principle can be applied to prove the weak convergence of solutions.
For the subcritical case we enforce stronger conditions on the initial data to prove
compactness and use the invariance principle to show the strong convergence.

Our second set of results with type I kernels on the large time behavior concern
the convergence to equilibrium solutions without detailed balance. Both the exis-
tence of general equilibrium and the convergence to equilibrium are consequences
of the key contraction properties (of solutions) arising from different assumptions
on the kernels. These lead to two separate results of convergence. For each result
we prove that solutions converge to the equilibrium exponentially fast in a suitable
norm.

The proofs of rate of convergence rely on analyzing the evolution of two non-
negative quantities which measure the distance of a solution from another solution
(distribution) having the same mass. The task here is to show that, in each measure,
this ”distance” shrinks in time (contraction property). To show the first contrac-
tion property we assume the kernel satisfies certain monotonicity conditions. With
this, one can show that solutions approach to equilibrium exponentially fast in the
"number of clusters” norm. For the second contraction property, one can remove
the monotonicity conditions on the kernel and impose a small mass condition on
the system. The second approach is along the lines of [24]. Though more restric-
tive, with such an assumption one can show that solutions converge to equilibrium
exponentially fast in the stronger ”mass norm”.

Part of the results of this paper, namely those in Section 3, overlap with some
of the results in [19] which were independently obtained. Actually the results in
[19] cover a class of kernels wider than those considered in Section 3 of this paper.
Nevertheless, given that the proofs of the convergence results are simpler and give a
clear intuition about properties of the kernels for the product kernels considered in
Section 3 we decided to keep them (see the discussion about ”export” and ”import”
tendencies). On the other hand, the analysis of the long time asymptotics for kernels
of type I, for which detailed balance is not satisfied, has not been considered, to
our knowledge, anywhere else. We consider this type of kernels in Section 4 of this
paper. Besides providing the first explicit rates of convergence, the results in this
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article are also valuable as they illustrate that the EDG system shows structural
similarities to the BD system and naturally generalizes it.

The organization of the rest of the paper is as follows. In Section 2 we recall some
of the basic results on the well posedness of the EDG system and give important
lemmas that will be used throughout. In Section 3, we study the form of the
equilibria with type I kernels and define and analyze some important functions
that will form the basis of arguments to prove the convergence to equilibrium (in
weak and strong senses). In Section 4, we study the EDG system with type 11
kernels without the detailed balance assumption and prove exponential convergence
to equilibrium in ”weak” and strong senses with explicit rates.

2. Fundamentals. In this section we give the setting of the problem and provide
some basic facts which will be used in the subsequent analysis. For the sequences
of functions that we are interested the appropriate spaces are X, = {z = (;vj);?';o,
zj € R;||z]|, < co}. We equip the space with the norm |z, = 3772, j*x; where
> 0. Similarly, we define X,I the subspaces of non-negative sequences as X, =
{z = (2;), z; = 0; |||, < oo}
Definition 1: We say the system (1.1)-(1.4) has a solution iff
(z) c;(t) - [0, oo) [0, 00) is continuous and sup,¢jg o) ¢j(t) < o0
(i1 fo Sore o K(j, k)erds < oo, fo Yooy K(k,j)exds < oo for all t € [0,T) (T <
00)
... t 00 . o] .
(iii) ¢;(t) = ¢;(0) + fo (Cjs1 > o K(G+ 1, k)er —¢j > pe o K(j, k)ey) ds
t oo . %) . .
+fo —¢j Zk 1 K (k, j)ek + i1 Zk:1 K(k,j—1)cx)ds {1 =1}
t 00
co(t) = co(0) + fo 1> oo K(1,k)ey — fo co Y ey K(k,0)ck.

In above and the rest of the paper, the cluster interaction kernel K(-,-) : RxR —
[0,00) is defined to be non-negative function. We also set K (0,5) =0 identically
Definition 2: For a sequence (¢;)I_;, we call the quantity M) (t) = ZJ 0 JPc;(t)
as the p**—moment of the sequence. If the sequence is infinite, then we denote the
p'"—moment with M, (t) = Z;'io JPe;i(t).

It is often useful to study the finite version of the infinite system where the
equations are truncated at some order, say, N < oo as below

O—clzKlk —COZKkOCk, (2.1)

N—1 N-1
N =N ST KGH LR = KGRl (2.2)
k=0 k=0
N N
— VY Kk e + el Y Kk j—De, {1<j<N -1}
k=1 k=1
N-—1 N
N=—cN YT KW k)el + N Y K(k,N —1)ch, (2:3)
k=0 k=1

with the initial conditions given by

N0)=cj0>0, {0<j<N} (2.4)
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The fundamental properties of solutions are well known from the standard ODE
theory. We also quote the following basic result from [18] whose proof we skip

Lemma 1. Let g; be a sequence of non-negative real numbers. Then,

N deN N N-1 N-1 N
S0 =Y =) Y KGR + Y (i + gian)e) DD Kk el
7=0 J=1 k=0 3=0 k=1

(2.5)

Two immediate results that one can draw from this lemma (by setting g; = 1
and g; = j) is the conservation of total number of clusters (volume) and total mass
which also extends to the infinite system. The finite system will be useful and
revisited when needed in order to gain further information on the original system.

Now, we state the some of the fundamental results on the solutions of the EDG
system (1.1)-(1.4) with kernels allowing particles to hop on to the available volume
(K(4,0) > 0), sometimes called as non-linear chipping. At this point, no assump-
tions are made on the kernel, but it is always assumed that the growth of the
kernels (with respect to the entries) is sublinear (see [18] for well-posedness results
for kernels growing faster than linear).

Theorem 1. Let K(j, k) be a general kernel satisfying K(j,k) < Cjk for large
enough j, k. Assume further that M,(0) < oo for some p > 1. Then the infinite
system (1.1)-(1.4) has a global solution c € X1 where c;(t) is continuously differen-
tiable. Moreover for any t < oo M,(t) < oo and

D ety = ¢(0), (2.6)
0 0

> dei(t) =Y je;(0). (2.7)
0 0

It can be shown that the global existence and conservation laws still hold if one
replaces the moment assumption (M,(0) < oo) with a slower growth assumption
on the kernels.

Theorem 2. Let K satisfy K(j,k) < Cbjar (with a;,b; = o(j)) and M;(0) <
00. Then the infinite system (1.1)-(1.4) has a global solution (c;) € X1 where c;(t)
is continuously differentiable.

While Theorem 1 shows that individual cluster size densities are continuous in
time, when studying the asymptotics we will need to treat the cluster size distribu-
tion as an element in the space X;. The following result is an immediate consequence
continuity of cluster densities and Dini’s uniform convergence theorem.

Proposition 1. Let ¢ be the solution of (1.1)-(1.4). Then ¢ : [0,T) = X; is
continuous and the series Z;i1 je;(t) is uniformly convergent on compact intervals
of [0,T).

When discussing the convergence to equilibrium, in addition to strong conver-
gence (in the X; norm) we will also make use of weakx convergence which has also
been frequently used in the analysis of the Becker-Doring equations.

Definition 3: We say that a sequence {z°} in X; converges weak to x € X;
(—*symbolically) if the following holds
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(1) Sup; > ||I”LH1 < 0,

(1) *% — ;j as i — oo for each j = 1,2, ...

The virtue behind using this concept of convergence is two-fold. First, as briefly
mentioned in the introduction, the positive orbit of the flow generated by EDG
equations are not generally compact in X;. In those cases it will be convenient to
consider a finite ball B, = {z € X, ||z|| < p} induced with the metric

oo
dist(z,y) = Z lz; — y,
j=0

where the B, is compact and the weak* convergence is equivalent to convergence
in this new metric. A second benefit of studying the weakx convergence is that one
can easily characterize the cases where weak convergence becomes equivalent to
strong convergence in X; thanks to the following lemma [14].

Lemma 2. If 2/ —* x in X1 and ||27|| — ||z||, then it follows that z7 — x.

In this new topology we frequently use the following definition of continuity.
Definition 4: Let S C X;. A function f : .S — R is said to be weak* continuous
iff 27 —* z implies f(27) — f(x) as j — oo.

A typical example of weakx continuous function in X; is the function W(z) =
Z?io g;x;. This function is weak* continuous if and only if the coefficients satisfy
g; = o(j) near infinity.

As the last item of this section we establish the link between the solutions gen-
erated by the EDG equations (under the setting of this paper) and the concept of
generalized flow introduced in [14] which is defined as below.

Definition 5: A generalized flow G on a metric space Y is a family of continuous
mappings ¢ : [0,00) — Y with the properties

(1) if € G and t > 0 then ¢; defined by ¢:(s) = ¢(t + s) belongs to G.

(#4) if y € Y there exists at least one ¢ € G with ¢(0) =y

(iii) if ¢* € G and ¢*(0) converges to y in Y, then there exists a subsequence
#'*) and an element of ¢ € G such that ¢*(®)(t) — ¢(t) uniformly on compact
intervals of [0,00) (with ¢(0) = y).

The generalized flow is related to semigroup in the following way.

Definition 6. We say that a generalized flow is a semigroup if for each y € Y, there
is a unique ¢(¢) with ¢(0) = y and the flow is given by a map T'(t) : Y — Y with
T satisfying the properties

(1) T(0) = identity

(i) T(s+1t) =T(s)T(¢)

(#41) the mapping (¢, $(0)) — T'(t)¢(0) is continuous from [0,00) X ¥ — Y.

The next results show that, depending on the growth properties of the kernel,
the EDG system generates a generalized flow in the strong or weak sense (of con-
vergence).

Proposition 2. Let the conditions in Theorem 1 hold (aj,b; = O(j)). Then the
system (1.1)-(1.4) generates a generalized flow on X

Proof. Properties (i) and (i) (in Definition 5) are clear from the definition of a
solution of (1.1)-(1.4). The continuity of ¢ : [0,00) — X is due to Proposition 1.
For property (i), consider the sequence ¢*(0) — ¢(0) in X;. For each j consider the
family {¢5(t)}52,, {(;5; (t)}52, which are uniformly bounded sinceK (j, k) < Cjk and
> i>1 J(#5)(t) < C. Then by Arzela-Ascoli theorem, for each j there is a subsequence
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i(k) such that (¢1(k))(t) — ¢;(t). We need to show that ¢ is the limit of ¢* in Xj.
For this, we use the conservation of mass from Theorem 1

A a0 = Jim 35600 = 3500 = X jes(0
§>1

which implies H(;Si(k) (t)”1 — [|¢(#)]|; - Then, by Lemma 2 we get ¢'*)(t) — #(t) in
Xj¢ proving the Proposition. O

Proposition 3. Assume the conditions of Theorem 2 hold (aj,b; = o(j)). Then
the system (1.1)-(1.4) generates a generalized flow on B;f.

Proof. Consider d(¢*(0),$(0)) — 0 in Bf. Then ¢§»(0) — ¢§»(0) in particular. By
Theorem 2 and following arguments similar to the previous proposition one can
construct a subsequence (bi(k)( t) which converges uniformly to some ¢,(t) for each
j and satisfies Z]>1]¢l(k)( ) < C uniformly in i. But this implies (¢?)Y: —* ¢’
which is equivalent to d(¢™i () (t), ¢(t)) — 0. O

Since one of the requirements for the generalized flow to be a semigroup is the
uniqueness we need the following uniqueness result from [18] for the EDG system.

Theorem 3. Let the conditions of Theorem 1 be satisfied with M,(0) < oo for some
p > 2. Then the ODE system (1.1)-(1.4) has a unique solution in X;.

With the theorem above and the arguments used in proof of the main existence
theorem one can show that the infinite system (1.1)-(1.4) actually forms a semi-

group.

Theorem 4. Let the conditions of Theorem 1 be satisfied with M,(0) < oo for some
p > 2. Then the ODE system (1.1)-(1.4) forms a semigroup.

Proof. Properties (i) and (ii) follow from the definition of solution and Theorem
1. Under the conditions of the theorem the uniqueness follows from Theorem 3.
Property (i) is a consequence of Proposition 1. O

Finally, we end the subsection with the following result from [18] which is a
straightforward computation.

Lemma 3. Let ¢;(t) be a solution of the EDG system (1.1)-(1.4). Then one has
the following identities

j icj /tml( (5))ds.
ij ch] / ds+m/ m—1(

3. Convergence to equilibrium with detailed balance.

3.1. Equilibria and minimizers. We say that c; is an equilibrium solution if
Cj(t) =41 — Ij =0 for allj Z 0 where

L= Kk jere; = Y K(j+ L k)cjrich (3.1)
k>1 k>0
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is the density current. We set /_; = 0. This implies I; = 0 for all j. Furthermore,
throughout this section we assume K (j, k) = bjar (type I kernel). This gives the
following recursive relationship between the cluster densities

-
aj B aj...ao B J
=g D= A0 (2 3.2
T T AT T b by (A) 0 (3:2)

where B = 2;11 bjc; and A = ZZOZO ajc;. Thanks to the separability assumption
of the kernel one can see that the detailed balance condition is satisfied, i.e., for
each j, k the forward and backward rates in the exchange reaction

<jHI>B<k>=2<ji>D<k+1>

are equal. Indeed, using the separability and the first equality in (3.2), one easily
verifies that

K(j+ 1, k)cjpier = K(E+ 1, j)cjcryr- (3.3)

In order for (¢)52, be a true equilibrium distribution, the set of equations for
¢j, A, B must be solved simultaneously. We show this by finding a unique dis-
tribution for a given the total number (density) n and total mass (density) p of
clusters.

Let Q?il = %=L and Qo = 1. Consider the forms for mass and number density,
J

Le, p=37",7Q; (%)j coand =327, Q; (%)j co. For the consistency of solu-

> QR
tions, we need to show there is a unique z(p,n) such that EZJ;I% = %. Let 2z,
g=0 @i

be the radius of convergence of for the series Z;io jQ;2z7 which is given by

' = lim (Q)"7. (3.4)
Jj—oo
Define the function F'
2 0iQi
F) = =09
D=0 @57

Proposition 4. The function F(z) is strictly increasing on 0 < z < z;.

Proof. For z < z, the series E;io Q;7’ and E;io jQ;2’ can be differentiated term
by term.

dF(z)  25205°Qi7 ™ 3opio Que® = 307007 Q527 3ol kQuz" !
dz o 0 2 '
Using the symmetry of the sum in the first term of the numerator one has
F(z) S0 0 QuQue (2 + 1) /2 - k)
dz n 00 2

Since (j2 + k2)/2 > jk holds for any j,k > 0 the numerator is positive and hence
dF(z)
dz

> 0, proving the proposition. O
Now, we define the critical mass density p; as

ps =1 sup F(z).

z2<zs
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Then, for a given p < ps there is a unique value of z(p,n) satisfying the equality
F(z(p,n)) = %. This therefore uniquely determines £ and cf as
B U

Z:Z(p’n)’ cO:y(pﬂ?):m'

Also, for p = ps, we denote ys = . Hence, we have proved

_n
Z]Oio Qj 2]
Proposition 5. Let p,n < co be given. Then, if p < ps the EDG system admits a
unique equilibrium distribution c© given by

(p,m) = Q;2(p, ) y(p,m).
If p > ps, then there is no equilibrium state with density p.

Next, we define some functions which will be useful in the analysis. Consider
the function G(c¢) = Z;io ¢j(In(cj) — 1) which has the form of entropy. We first
state an elementary result whose proof follows easily from the points made after
Definition 4 (see [14]).

Lemma 4. The function G(c) = 372 ¢;(In(c;) —1) is finite and weaks continuous
on X"

From the lemma, clearly G(c) is also bounded on the ball B, = {z € X : ||z||; <

p}. Now we define the relative entropy

V(e)=G(e) = Y je; (@) = ch(ln(%) —1).
Jj=1 j=0 J

It is assumed throughout the paper that zs > 0 which is equivalent to lim; e (Q;)*7 <
co. Hence V(c) is bounded from below. If we further assume liminf(Q;)'/7 > 0,
then V' (¢) becomes bounded from above also. Next, we define the modified relative
entropy

V.yle) =V(c) — lnszcj — lnchj
j=1 j=0
and the set - -
Xtrr={reXxt: ijj :p,ij =n}.
j=1 j=1

The next theorem shows the relationship between the equilibrium solutions and the
minimizers of the relative entropy and modified relative entropy functions.

Theorem 5. Assume that zs(p,n) < 0o and p < co. Then,

(i) If 0 < p < ps, then c(p,n) is the unique minimizer of V,(pm) y(pm) 00 X1~
and of V(c) on X{ """ Furthermore, every minimizing sequence ¢ of V. on X, *"
converges strongly to c¢(p,n) in X;.

(i) If ps < p < oo, then every minimizing sequence c¢' of V. (€) on X{F’p’"
converges weakly to c¢(ps,n) but not strongly in X1 and

inf V., y.(c) =Vz, y,(cs)

C€X1+

Proof. For (i), one first observes that the function ¢; — ¢; <ln(m) — 1)

has the unique minimum at ¢; = Q;2(p,n)’y(p,n). Hence the function V., ,).4(p.m) (€)
is minimized (over X;) exactly at the equilibrium distribution c$(p,n). Clearly,
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c$(p,n) is also the minimizer of V(c) on the set X;PP". Now, because ¢} is bounded
on X" and because c} — ¢§ for each j, one has ¢t — ¢°. Since, mass of the sequence
is constant on the set X{*", then by Lemma 2, one gets ¢! — ¢¢ in Xj.

For the proof of (ii), we take p > ps. By the first part of the theorem c¢(ps,n)
is the minimizer of V., , (¢) in X; and hence V., , (c) > V., 4, (c®(ps,n)). Now
consider a special sequence ¢! € X{" defined by

i = cS(ps,n) + 6ij(

It is clear that ¢ —* ¢®(ps,n). Also, it can be shown by a straightforward computa-
tion that V.,  (c') = V., 4, (c®(ps,n)). However the convergence cannot be strong

as |||, = p > ps =l (ps, )l - 0

In the sequel, it will be important to know the continuity property of V, ,(c). We
have the following.

Proposition 6. V, ,(c) is weaks continuous on X" if lim;_,oo(Q;)'/7 exists and
zZ = 2.

Proof. Recall that a function W(c) = ZJOO:1 gjc; is weak+ continuous if and only
if g; = o(j). Recall also that V; ,(c) = G(c) — 372, In(Qj)e; — In 2372 ey —
1111/2;10 ¢;. Since G(c) is weaks continuous by Lemma 4, for V, ,(c) to be weaks

continuous, one needs In @Q;+j In(z)+In(y) = o(j) or equivalently lim;_, o m(%ﬂ =

0. But this follows if and only if lim;_,(Q;)7 2z = 1, that is, z = z,. O

Remark: Recall from the earlier discussions that z is the radius of convergence of
the series Y2, Qx2". A more direct way to compute the radius of convergence is
the ratio test which gives z5 = limg 00 (Qr/Qr+1) = lim b;—:l So, the behavior of
the equilibria (and the conditions for the dynamic phase transition as shown in the
next section) is decided by the competition in the tendency of exchange favoring
"export” against ”import” of monomers (K (j,k) = bjay). This leads to following
scenarios

(7) lim b’;% = 00, (exporting particle wins over importing and the cluster growth
is impeded): In this case z5 = co. Hence, for any initial mass the system can support
equilibrium.

(i) limb’;% = «a > 0 (exporting and importing are comparable): In this case
zs = a and whether or not the system can support an equilibrium depends on the

oo k
comparison of p and ps = Zé’“;l% If p > ps then there will be no equilibrium.
k=0 s

(4i1) hmb’;% = 0 (importing particle wins over exporting and clusters grow in
time): In this case z; = 0 and hence there is no equilibrium irrespective of the
initial mass.

3.2. Lyapunov functions and asymptotic behavior. In this section we show
the convergence of solutions to equilibrium in the strong or weaks senses. The
approach is similar to [14]. The main instrument is the relative entropy V' (c¢) whose
minimization was discussed in the previous section. We anticipate that, evolving
in time, ¢(t) becomes the minimizing sequence for V. It is therefore important to
know how V will behave in time.

We first quote a preliminary result from [18] that guarantees the positivity of the
cluster densities.
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Proposition 7. Let ¢V solve the truncated EDG system (2.1)-(2.4) and ¢} (0) > 0
for some 7. Thenc (t) >0 for any t > 0.

Note that the same result holds for the solution ¢(t) of the original infinite system
(1.1)-(1.4). Next we need need the following lemma which will be needed to show
that the relative entropy is non-increasing.

Lemma 5. Let a;,bj,c; be a sequence of non-negative numbers with j > 0. Let,
for a given integer N > 1, ANT1 = Z;.VZO ajcj and BNTL = ZNHb ¢j. Define
IJNH = ajc;BNT! — b1 1¢j01 ANTY for 0 < j < N and zero otherwise. Then one
has the inequality

N+1
.
DN(¢) == > (I - IJN“)ln(Q—{) > 0.
=0 !

Proof. We prove this by recursively summing the terms. Let I Jj\l I N+L RN 1

From the definitions, we can relate Ré-v and RJN *1 For the ”lower boundary term
(J=0),

Rév+1 = Rév +0-— (aocobN+1CN+1 blclaNcN) ln( ) 7 =0. (35)

Qo
The middle terms are related by

N+1 N
R =R} + [(aj-1cj—1bnien+1 — bjcjanen) — (ajciby 1N

Q; ). (3.6)

The "upper boundary” j = N, N + 1 are then related by

—bjt1cj11aNCN) In(—-

R%H = RN + [(GN—ICN—leJrlCNJrl —byenanen) — (ayen BN T - bN+1CN+1AN+1>} lﬂ( ) (3.7)
N+1 _ N+1 N+1 CN+1

RNJFI = (CLNCNB +1_ bN+1CN+1A )ln(i) (38)
N+1

Now, for adjacent indices 7,7 + 1 we combine the second term (in bracket) of jt*
equation with the first term (j + 1)*" equation which gives

¢it1 Qj

— ), 3.9
(@2, (5.9)
Next, we expand the AN BN+ terms in equations (3.7), (3.8) noting that

anenBN T —by ey 1 AN = anyen BY —byiien g1 AN . Combining the (54 1)
and terms in (3.7), (3.8) (inside the bracket) we get

(ajcjbnyien+1 — bjicitianen)In

cn+1 QN
(aNCij+1Cj+1 — bN+1CN+1ajCj) hl( ). (310)
QnNy1 eN
Now, summing over the index j and recalling QJ“ = b’ - the desired sum in
the statement of the lemma can be written as
NZ-H RNHL In( ¢ ) i RN In( i ) NZ_H(a cib c bjticjrianen) In( CN+1bN+1a;¢
j —) = j —) - jCibN+1CN+1 — b j+1aNCN —
frd J Qj = J Qv = VA +1 +1 j+1C5+1 chij+1cj+1

<ZR c’)



EXCHAGE-DRIVEN GROWTH AT LARGE TIMES 13

The second line followed since (z —y) ln(g) > 0 for any real number pairs z,y > 0.
Repeating the arguments for ;7 < N and reducing the index number we find

o Cj c1 b
> RY*' (L) < (ageg — bier) In(——) < 0.
= oF co g
which completes the proof. O

Theorem 6. Letaj,b; = O(j/1Inj) and c;(t) be the solution of (1.1)-(1.4). Assume
that ¢;(0) > 0 for some j and 0 < lim;_,+(Q;)'/7 < oo holds. Then

V(c(t)) =V (c(0)) —/0 D(c(s))ds, (3.11)

where D(c) > 0 and is given by

= a;c;
D(c) := iciB—b; i11A4)1 A 3.12
(c) ;(G’jc] j+1Ci+1A) n(bj+1cj+1 ( )
Proof. Consider the truncated sum
N .
V¥ =3 e n() - 1),
— Qj
J
Let In(c) = ayenB(c) — bysieny1A(c). Differentiating V'V (c) we get
. N Ci Cc
V() = ¢In(-) = —DN"Y(e) — In(c) In(~-) (3.13)
= Qj QN
= —DN(c) — In(c)In(=2*L), (3.14)
QN1
where DN=1(c) = Z;.\[;Ol (ajejB — bjr1cj41A) ln(cjff;“ ). Since —Iylney <
—BaneyIn(ey) and —IyInengq > Abyiieny1 In(ey 1) rearranging (3.13) gives
—VN(¢) > DN7Y(¢) + Bayen In(en) — In(c) In(Qn) (3.15)

—VN(e) < DN(e) — AbyyrensiIn(engr) — In(€) In(Qn1).

We first observe that, since a; < C%, then aycey In(en) and byyien41 In(eni1)
go to zero uniformly as N — oo. Indeed, one has

lanven In(en)| < laneny In(Nen)| + lanen In(N)]

and the first tern on the right hand side above goes to zero since Ncy — 0 for
N — 0o. The second term goes to zero by the assumption in the theorem (the bound
on ay). Similarly one finds limy o0 by11¢n+11In(cy11) = 0. Now, integrating the
first inequality in (3.15) we have

/ DN1(c)ds + / Baxex In(ex)ds — / In () In(Qn)ds < VN (e(0)) — VY (e(t)
0 0 0

(3.16)
Now, we already showed that the second term on the left hand side of 3.16 goes
to zero for large N. For the third term, using the Lemma 3 and noting 0 <
limNﬁoo(QN)l/N < C, one has

t
/IN(c)ln(QN)ds%O as N — oo.
0
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Repeating these arguments for the term after the second inequality in (3.15) we find

t
/ DN (e)ds + o(1) < VN (e(0)) — V(e / DN (e)ds + o(1).
0
Finally, using monotone convergence theorem the result follows. O

Remark: By adding and subtracting the term ABIn(£) to D(c) one can put D(c)

in a more convenient
oo

.D(C) = Z(ajch — bj+1Cj+1A) ln(
0

ajch
bj+1 Cj_;,_lA
where each term in the summation is non-negative.

For the integral equality (3.11) the bounds on the export and import rates a;,b; =
O(j/In j) were needed while they are not essential for the well posedness as discussed
in Section 2. It would be nice, therefore, to have a similar result for V(c) in the
more general case when a;,b; = O(j). The following corollary provides that.

Corollary 1. Let a;,b; = O(j). Let ¢;(t) be a solution of (1.1)-(1.4) as in Theorem
1. Assume that ¢;(0) > 0 and 0 < lim;_,+(Q;)'/7 < oo holds. Then

Vic(t)) < V(e(0)) — /0 D(c(s))ds. (3.17)

Proof. Take the truncated system (2.1)-(2.4) and the approximation V¥

N
C; 1b i+1
VY (N (1) = / Z g BN () — byl AV (V) (L),
]
(3.18)
Fix n € N and consider the subsequence N (k) > n which converges to the solution
of the original EDG system. By Lemma 5 DN®)=1(¢N(F)) > Dn (N (k) Then, since

n is finite one has
lim inf/DN(k)_l(cN(k)) > /D"(c).
Also, by Lemma 4 and condition 0 < lim;_,..(Q;)'/? < oo one has

< lim  inf V(NP (@),
Vie) < N(kl)rgooln Ve (1))

Lastly, one has V(cV®*)(0)) — V(c(0)) and we arrive at
< ; ; N (k)
V(e(t)) < N(}cl)nl>oo inf V("™ ()

= N(Eng(cN(k)(O)) — N(E)Igoo inf/DN(k)_l(cN(k)(s))ds

- /0 "D (e(s))ds

Passing to the limit n — oo yields the result.

O

For the asymptotic behavior we study the positive orbit of the flow O*(¢) =
Ui>0¢(t) where ¢(t) = T'(t)c(0). We define the w—limit set by w(¢) = {z € X :
¢(tj) — z for some sequence t;}. Also, we say that the set S C OT(¢) is quasi-
invariant iff for ¢(0) € S, ¢(t) € S for every t > 0. We quote the following result
from the general theory which is standard.
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Proposition 8. Suppose that OV (¢) is relatively compact. Then w(g) is non empty,
quasi-invariant and lim;_,o dist(¢(t),w(¢)) = 0.

We can now prove the main theorems of this section. In the sequel let ¢” denote
c¢(p,n) for brevity. The first theorem below shows the weak# convergence under
fairly general conditions.

Theorem 7. Consider the system (1.1)-(1.}) with K(j,k) = bjag. Let a;,b; =
O(j/Inj) for large j. Let the initial density be given py = Y poy kcx(0) < 0o and
assume also that lim;_, o % = zs (0 < zs < 00). Then c(t) =* ¢” for some p with
0 < p < min(po, ps)- '

Proof. The EDG system under the conditions of the theorem generates a general-
ized flow on B/ . Consider the function V;_,, (c). From Proposition 6 it is continu-
ous on Bf . Also since total mass density Y.~ kc(t) and total number densities
> e, ¢ (0) are conserved by Theorem 6 we have

Ve g (et)) = Ve (c(0)) / D(c(s))ds

Boundedness of Y7, ke (t) also implies that O (c) is relatively compact in B,,.
By the invariance principle w(c) is non empty and consists of points V. . (¢) = const
which implies that, for any element in ¢ € w(c), D(¢) = 0 and hence ¢ has the
form ¢, = Q; (%)J o(t) for some &(t) € w(c). But, this is exactly the form of
equilibrium solutions. Since the mass density cannot increase and an equilibrium
is admissible, at most, up to the critical mass ps, it follows that w(c) consists of
equilibria ¢”" with 0 < p < min(po, ps). Actually, w consists of a single point since

P
P\ — o Cj _ p: . . .
Voo () =251 ¢ ln(szgyS) > j>1 ¢fis strictly decreasing in p as can be seen
from direct computation

dp ~dp s dp Zs
where we used conservation of mass and volume multiple times. Then by Proposi-
tion 8 dist(c(t),c”) — 0 as t — oo, completing the proof. O

We can strengthen the theorem for the subcritical case by making further as-
sumptions on the strength of ”export” tendency over the ”import” in the system.
More precisely, let

(H1) lim -2 =0 (3.19)
j—o0 bj+1
hold. Then we can prove the following strong convergence result.
Theorem 8. Let c;(t) solve the system (1.1)-(1.4) as in Theorem 8 with an initial
mass py = Z;iojcj(O). Assume that a;,b; = O(j) and (3.19) (Hypothesis H1)
holds. Then c(t) — ¢ strongly in X;.
Proof. H1 implies that the radius of convergence of the series z; = oo which is

equivalent to lim;_,+(Q;)!/7 = 0. By the monotonicity of V'(c) one has V (c(t)) <
V(c(0)). Also, by Proposition 4 372 ¢;(t) In(c;) < co. Hence we have

- chj(t) In(Q;)Y7 < C.
=0
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Since —1In ((Q;)/7) — oo by H1, it follows that OF(c) is relatively compact in

X;. By the invariance principle the limit set has the form ¢;(t) = Q; (A(C)) Zo(t)

where ¢;(0) = limy, o0 ¢;(t;) for some sequence t;. Hence ¢;(t) has the form of
equilibrium solutions. By the conservation of number and mass density in time, i.e.,
Z;C:o ¢i(t) =n, E;‘;l J&;(t) = po and the uniqueness of equilibrium solutions, one
concludes that w(c) consists of a single point, that is, the equilibrium solutions that
correspond to the pair (po,n). By Proposition 8 ¢(t) converges strongly to ¢?°. [

If the exporting and importing tendencies are comparable as in Remark 1 Case
(i), then the above argument does not work and we need extra conditions to secure
the strong convergence. We will need to control the moments of the initial distri-
bution and crucially make use of a uniform comparison of b;,a; which will replace

(H1) ie.,

(H2) %z 2 forj> 1 (3.20)
J
Theorem 9. Let ¢;(t) solve the system (1.1)-(1.4) and py < ps. Let bj > Cj*
(-1 < A<1) and Zjooojch(O) < 00 for some p > 2 — \. Assume further that
(3.20) (Hypothesis H2) holds and aj,b; = O(j/Inj). Then c(t) — ¢” strongly in
Xi.

Proof. The main line of argument, as in the previous theorem, is to show that
O™ (c) is relatively compact in X;. This will follow by showing that M,,(t) < C
for some m > 1. Consider the p"* moment of the system M, := Y% j7¢;(t) with
(2 =X < p < 2). By Theorem 1, Mp(t) < oo for any t < co. Now, choose m < p
such that m > 2 — A still holds. By Lemma 1, one has

M, = Z((] —1)"™ —j")bjc; A+ Z ((G+1)™—=j")ajc;B.

i>1 >0

Taylor expanding the (j — 1)™ and (j + 1)™ terms up to second order we find

M, < — Z mj™ e A+ ijm_lajch + CAB.
jz1 i>1

Note that A, B depend on time. By Theorem 7 d(c(t),c®) — 0, or in particular
c(t) =" ¢® as t — oo. Then one has lim; 0 3 ;5 gj¢5(t) — ZJ>1g] ¢ for any

gj = o(j). Therefore, since a;,b; = o(j), it follows that Bg 833 — ﬁg;g = z(p) < zs

as t — oo.
Now, since Z—J > zs by the assumption in the theorem, there is a ¢, and § > 0
J

such that —ggigg; + Z—j < —§ for t > t, and

M,, < C—l—mZ(—bjch—i—ajch)]m 1< C’—i—mz —= —|—
jz1 j>1

bj) ™1 Bbjc;.

By the fact that B(c(t)) > € for some ¢ > 0 for ¢, large enough (since lim;_,oc B(c(t) =
B(c?) > 0) and the condition b; > Cj* (=1 < A < 1) we find

My, < C—CoeYy_jm e
jz1
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Integrating both sides and noting M,,_14+ < M,, we get
t
Mpyp—142(t) < C(t — ti) + My (ts) — C’/ My—142(8)ds.
t

Comparing this to the solution of z(t) = C'(¢t — t.) + My, (ts) — C’f:* z(s)ds we find
Mp—142(t) < C for all t > t,. Since m > 2 — X by our choice, it follows that the tail
of the distribution jc; uniformly approaches to zero giving the relative compactness
of the orbit in X;. Arguing similarly as in Theorem 8 one sees that ¢(t) — ¢
strongly. O

Remark: Without essentially changing the proof, the hypothesis (H2) could be
replaced with % < z; for finitely many j values.
J

4. Convergence to equilibrium without detailed balance. In this section
we extend the study of convergence of time dependent solutions to equilibrium
without imposing a structure condition on the equilibria. Our goal is to obtain
explicit convergence rates to equilibrium. We assume, throughout this section, the
following

(H3) K(j, k)= jar +bj +epjoy with a; > a for some a > 0. (4.1)

Depending on the type of assumptions for the system we obtain two different con-
vergence results. Fach result relies on a key contraction property of the time de-
pendent solution. The first contraction property is a consequence of the mono-
tonicity of the a;, b; functions which leads to exponentially fast convergence in the
"weak” metric (dist(c,d) = [lc—d[l; = > ;5¢lc; —dj|). The second contraction
property follows from the total mass of the system being sufficiently small and is
used to show exponentially fast convergence in the ”strong” metric (||c —d|; =
>_j>1Jl¢; —djl). Such a contraction property was first shown to hold for the
coagulation-fragmentation systems under a similar small mass assumption [24].

4.1. Exponentially fast weak convergence to equilibrium. Here our approach
is partly motivated by that, in the EDG equations, a; represents the import rate
of particles (and hence causes growth of clusters) and b; represents the export rate
(and hence causes breakdown of clusters). In this interpretation one would ex-
pect that for monotonically increasing b; (in j) and monotonically decreasing a;
the dynamics favor the approach to equilibrium which would be manifested in the
convergence rates. The following theorem supports this interpretation.

Theorem 10. Consider the EDG system (1.1)-(1.4). Let the hypotheses of Theo-
rem 1 be satisfied with M,(0) = p and M,(0) < oo (for some p > 2). Let the kernel
have the form in (4.1) (Hypothesis H3) with a; non-increasing, b; non-decreasing,
o, B; bounded and € > 0 small. Then the solutions of (1.1)-(1.4) converge to a
unique equilibrium in the sense that

S Jest) — | < dpe (4.2)

Jj=1

where v > 0 can be computed explicitly (and depends on a,e and the bounds of

o, Bj)-
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The main idea of the theorem (covered in the next lemma) is based on defining
an appropriate time dependent quantity which is positive and measures the distance
between two solutions (of the same mass) and showing that this distance contracts
in time, i.e., the two solutions approach to each other. It will then be shown that
the limit solution is actually an equilibrium.

To prove the contraction, one focuses on the evolution of the tail of the distri-
butions defined by C;(t) = >, j ¢ (t). This approach proved useful in studying
Becker-Doring systems [14],[23],[26] and were also recently adopted to prove some
of the key properties of the EDG system such as nonexistence of solutions [18] and
uniqueness without additional moment assumptions [19].

Lemma 6. Under the conditions of Theorem 1 consider two solutions c;,d; of the
system (1.1)-(1.4) with the same initial mass and the same initial volume. Let
M,(0) < oo (for some p > 2) and (4.1) hold (Hypothesis H3). Assume further
that a; is non-increasing, b; non-decreasing, o, B; are bounded and € > 0 is small
enough. Then the solutions approach to each other exponentially fast as

> lej(t) = dj(t)] < 4pe".

Jj=1

Proof. We first consider the dynamics for Cj, the tail of (¢;)32;. By direct compu-
tation the evolution equation for Cj is

Cj = Z K(k,j—1)crcj—1 — Z K(j, k)exe;

k>1 k>0
= E (kaj,1 + bk)Cij,1 — E (jak + bj)Cij
k>1 k>0
+e E Braj_icpcj—1 — € g Bjaxcrc;.
E>1 k>0

Taking the sum over "k” and denoting, as before, A(c) = >7;5,a;¢;, B(c) =
ZjZI bjc; and defining fl(c) = Z;‘io a;cj, B(c) = 2;11 Bjc; one gets
Cj = paj_1cj_1+ B(c)ej_1 — jejAlc) — bjej +eaj_1cj_1B(c) — eBic; Ac),

where we used p =35, jcj and 1= 3" ¢;. Similarly, for the other solution d;,
one has B -

Dj = paj,ldj,1 + B(d)dj,1 — ]de(d) — bjdj + €aj,1dj,13(d) — 66jd]A~(d)
Now define the difference of terms e; = ¢; — d; and E; = C; — D;. One can write
Ej = paj_1ej_1 + (B(c)ej—1 — B(d)d;j_1) — (je; A(c) — jd; A(d)) — bje;

+eaj_1(B(e)ej1 — B(d)dj-1) — efj(cjA(c) — djA(d)).

Then, since e; = E; — Ej41, for the difference terms in the parenthesis, one can
write

cjA(c) = d;A(d) = ej A(c) + d;j(A(c) — A(d)) = (Ej — Ej41)A(c) + d;(A(c) — A(d)),

B(c)ej—1—B(d)dj-1 = ej—1B(c)+d;j-1(B(c)=B(d)) = (Ej—1—E;)B(c)+d;-1(B(c)—-B(d)).
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Denoting, for brevity, A(c) — A(d) = A(e) and B(c) — B(d) = B(e) (similarly for
A, B) we find that the tail of the difference of solutions evolves according to
Ej = paj1(Ej—1 — Ej) + (Ej_1 — Ej)B(c) + dj—1B(e)
—J(Ej — Ej11)A(e) — jd; Ale) — b (Ej — Ejy1)

+ 0yt (BB -1 = By) +d;-1B(0) — 28, (AQ(E; = Bjsa) + d,A(c)).

Now we show that the tail of the difference, £, goes to zero. For this purpose,
consider the absolute value of the tail density |E;|. Taking the time derivative we
get

% = sgn(E;)E;
= sgn(Ej) (paj-1(Ej-1 — Ej) + (Ej-1 — E;)B(c) + dj-1B(e))
+ sgn(E;) (—j(E; — Ej41)Alc) — jd;Ale) — bj(Ej — Ejva))
+esgn(B;) (ag-1 (B)(By—1 = By) + dy1 B(e)) = B; (AQ(E; = Byn) + d;A(e)) ).
Since sgn(E;)E; = |E;| and Ej+1 < |Ej+1|, summing over j in both sides gives
3 B < 3™ (pay 1By 1l = By + (1B 1] — 1B, DB(@) + s [Be)) (1)

<
Il
ot

<.
Il
_

+
Mz

G Ej+| = [E;NA(e) + 3dj |A(e)| + b (|1 Ej 41| — | E5])) (4.4)

<.
Il
—

+eajo1 (BB 1| = |B;|) + dj—1B(e)) +B; (A1 By | — |E;]) + djA(e)) . (4:5)

Now, let S1, 52,53 denote the sum of the three sums on the right hand side of
(4.3), S4, S5, Se denote the three sums in (4.4) and Sy, Ss, Sg, S1p denote the four
terms in (4.5). We treat each S; separately. For the first term, we have

S1=pY_a;1(|Ej-1| = |Ej)p = pao |Eo| + p Y _(aj — a;_1) | Ej]
Jj=1 j=1

where the term ag |Ep| is zero by the conservation of total volume, that is, Ey =
Z(;C:o cj — Z?io d; = 0. For the second term S, we find

oo

)Y (|Bja| —|E;)) =0

j=1

For S3 we first observe, since Z;’;l d;—1 =1 (total volume),

Sy = Zdjq [B(e)| = [B(e)],

while |B(e)| can be written as

B(e)| = D> _bjes| = > bj(E; — Eja)| <bu| B+ | (b —b;-1)E;

j=1 j=1 j=2

<bi B+ [by — b1l B
=2
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Next we compute the terms in (4.4), Sy, S5, Sg. For the Sy term we find

54—23 |Ej1|—| B A(c) = —A(0) [ Er|=A(e) Y (1-1-4) |Bj| = —A(e) > |E)|.
=2 j=1
The 55 term reads

Y id;|A(e)l = plAe)]
j=1
where the |A(e)| term can be, using Ey = 0, written as

o0 oo oo
[A(c) = A(d)| = D aje;| = | a;(E; — Bjya)| < ao | Eo| + Z —aj-1)
=0 =0 =1
oo
<D laj —aj-a] Bl
Next, shifting the indices, the Sg term can be written as
o0
> bi(— B + |Ej]) = —bi | By +Z 1= b) By
j=1
Now, we notice that, by the non-increasing property of aj, aj—a;_1 = —la; —a;_1|
and hence S; and Sy are opposite of each other and cancel out. Similarly, by the
non-decreasing property of b;, b;_1 —b; = —|b; — b;_1| and therefore S3 and Sg

also cancel each other in the sum. Then, since S; = 0 by computation, we are left

with the following

(C)Z‘EJ’|+S7+S8+S9+510. (4.6)
j=1

Finally, we treat the S7, ..., S1¢ terms. Setting Sy = 0 and repeating the manipula-
tions done for S, ..., Sg we find

S7+ Sy <eBl(c Zlaj aj-1]|Ej| +eA(d Z\B; Bj-1l|E;,

Jj=1 j=1
Sy + S10 < eA(e i 5]’1||Ej|+€B(d)i|Oéj—aj1|Ej-
Now, since |o; — 1], |Bj:— Bj—1| < 2L for some L > 0, we have
Sz + Ss + S9 + S1o < 85L2i|Ej|.

j=1
Adding all terms in (4.6) and using A(c) = Z;io a;c; > Z;io ac; = a gives

; 7 gfa;wjus SL ;|Ej| gf(afSLe);|Ej|.

By Lemma 3 it can be seen that Y °o A5 _ 4 (Z]oil |Eg|) from which we get

Jj=1 dt dt
S B ()] < 3202 [E5(0)] e~(a=<8L)t Ty finish the proof we observe

lej| < [Ej] + [ Ejial,
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and then taking the sum we arrive at

oo o0 oo ~ 2
Do legl <2 B <2 | Y |E;(0)] | em T (4.7)
j=0 j=1 j=1

Finally, we recall that E;(0) = >, er(0) and the sum >, |E;(0)| can be
bounded as -

DB OIS fer(0 |—ZZ|61<: )= klew(0)
j=1 k=1

J=1k>j k=1j=1

oo
SZ (cr +di) < 2p,
k=1

where in the first line we changed the order of summation. Using this in (4.7)
completes the proof. O

Although the result is obtained only for non-decreasing b; and non-increasing
aj, the involvement of the monotonicity gives a clear sign that the result should
generalize (see the Conclusion section).

As a consequence of this lemma, all solutions having the same mass go to the
equilibrium solution exponentially fast which is embedded in Proposition 9. Next,
we show the following lemma which uniformly bounds the moments.

Lemma 7. Let the conditions of Theorem 1 be satisfied with M,(0) < oo (p > 2).
Then for any solution of (1.1)-(1.4) one has My(t) < oo fort > 0.

Proof. We make the proof for n = 2 and the general proof is inferred by induction.
Consider the truncated system (2.1)-(2.4). Using Lemma 1 we have

=

-1 N
MY (1) =D > (G +1)7 = 57)(ka + b+ eBray)e) o

Il
-

k
N—

_|_

M 114

(5= 1% =) (ak + bj + eBjan)cy cpy .
1 k=0

J

Expanding the terms in the parenthesis we find

N-1 N-1 N-1
MN@t) < (2j—|—la,3cjp —|—Z 2j+1) NBN-i-EZ 2]—|—1)04JBNN
Jj=0 Jj=0 Jj=0
N N N
+) (1= 2§) AN + > (1= 2)bief +e > (1-25)8;ANCY,
j=1 Jj=1 j=1

where pV = Zjvzl jcé-\', AN = ZN 01 a;c j , BN = Zjvzl bjcév (and similarly for
AN,BN). Using 0 < a < a; < ag, by <bj < b] and the bound «;, 3; < L we get
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the inequality

My (t) < (20 + Daop + b(2p + 1)p + L (20" + 1) (4.8)
N N
+ Va0 —2a() e (0) My () + (b — 2b1p") + &(L? = 2Bmincmin(D_ ci (0))p™)
g=1 =
S C(P7 a07b1567 ﬂmin, , € —2CL ch 2M2

where, in the second line, we used the conservation of volume for the truncated
system Ejvzl eN(t) = Zjvzl ¢,(0) and chose N > N* large enough such that

Zj\g ¢ (0) > 0. By Gronwall inequality we see that M3 (¢) is uniformly bounded.
Hence we can pass to the limit N — oo and hence

My(00) < C(p, ag, bmin, b, Bunin, L,€) /(20 Y _ cx(0))

By induction and following similar steps of computations it can easily be shown
that M,,(¢) is finite for any n > 2. O

Now we can show the existence of equilibrium solutions.

Proposition 9. Let the hypotheses of Theorem 1 be satisfied with M,(0) < oo
(p > 2) and (4.1) (hypothesis H3) hold. Assume further that a; is non-increasing,
b; is non-decreasing and o, B; are bounded and € > 0 is small. Then for any solution
satisfying (1.1)-(1.4) one has

Jim |é5(0)] =0 (for j > 0).

Proof. Let d(t) = c(t + §). Then, by the contraction property (Lemma 6) we have
z‘cﬂ’f” —atl —vtz'cﬂ w01 (19)

To take the lirmt 0 — 0 we first observe that the term in the right hand side can be

written as (s 0
5@ =GO _ 1)) (1.10)

by the mean value theorem. Now, since ¢; € C* and K (j, k) < Cjk (for j,k large)
we have

Z|éj(5j)| SZZK(]+1 k)ck(5 )CJ+1 "’ZZK 3(53)
j=0 j=0 k=0 j=0k=0
+ > > Kk i)en(d;)e;(85) + DD Kk, j = Dew(d;)ej-1(6;)
j=1k=1 j=1lk=1
<CY (G +1)e(0;)+C > jei(65)
Jj=0 Jj=1

where we used ¢ < C/kP by the previous lemma (uniform in time). Then, it
follows that 3772 [¢;(d;)] < C, showing that the sum on the right hand side of
(4.9) is bounded. Therefore we can pass to the limit 6 — 0 in (4.9). Finally, we let
t — oo to finish the proof of lemma. O
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After all the preparatory lemmas, the proof of Theorem 10 now becomes clear.

Proof. (of Theorem 10) By Proposition 9, for any solution of (1.1)-(1.4) with the
same mass, ¢;(t) approaches to zero exponentially fast. This implies that ¢;(¢) has
a limit. Indeed, consider for arbitrary ¢1,¢ and ¢t > ¢; the difference |(c;(t) — ¢;(t1)] -
By Proposition 9 (and by Lemma 6), one has |(¢;(t) — ¢;(t1)| < Ce™7"* implying
that the c;(t) values are bounded and get closer (uniformly in time). Hence the
infinite time limit exists and by Proposition 9 the limit is an equilibrium (denoted
by ¢). Now, this equilibrium is also a trivial solution of (1.1)-(1.4) and have
the same mass with original time dependent solution (by Lemma 7). Hence, c(t)
converges to ¢¢ exponentially fast as in (4.2). Finally, we argue that the equilibrium
is unique. This is because if there was any other equilibrium d¢, going through the
algebra of Lemma 6 for the nonlinear equations C¢ and D¢, we would obtain

0<—(a—8L%)> |Cs - D
j=1

from which we would conclude C¥ = Df implying c§ = dj. O

Remark: The exponential convergence in the ||-||, norm in Theorem 10 shows, in
particular, that c(t) —=* ¢¢. By Lemma 7 we also have ||c(t)|| — ||c°||. Then, by
Lemma 2 one actually has c(t) — ¢¢ in X1, though we do not know how fast this
convergence is in the strong mass norm.

Remark: It can be seen from the proof of Lemma 6 that the boundedness as-
sumption on «j, 3; can be replaced with milder conditions such as |a; — aj—1] < C,
|8; — Bj—1| < C which includes unbounded kernels.

4.2. Exponentially fast strong convergence to equilibrium. Theorem 10 re-
lied heavily on the monotonicity properties of aj;,b; functions. It is desirable to
relax these conditions. In our next result, we show that when the total mass is
sufficiently small, the monotonicity assumption can be dropped and exponential
convergence to equilibrium is achieved in the mass norm. More precisely we prove
the following.

Theorem 11. Consider the (1.1)-(1.4) system. Let the hypothesis of Theorem 1
be satisfied with M1(0) = p and M2(0) < co. Let the Hypotheses H3 (4.1) and HY
(4.11) hold. Assume further that the mass of the system is sufficiently small. Then
the solutions of (1.1)-(1.4) converge to a unique equilibrium in the sense that

Zj |e;(t) — c;| < 2pe
i>1

for some v > 0.

The growth conditions on the kernels stated in the theorem are as follows.

0<amin§aj§djand0<bmin§bj§l_)jforj21

D 0 < apin < 0y < aj and 0 < Bin < f < j for j > 1

(4.11)
We first need a lemma showing the boundedness of the moments of solutions. As
in Section 4.1, we do not assume detailed balance. But, differently from the pre-
vious subsection, due to the faster growth rate in the a; functions, we cannot, in
general, show finiteness of all moments for small mass uniformly. However, with a
modification of Lemma 7, we can show that the second moment is bounded.
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Lemma 8. Let, for the system (1.1)-(1.4), the conditions of Theorem 1 be satisfied
with M2(0) < oo and assume that the Hypotheses H3 (4.1) and H{ (4.11). Then
for small enough mass p the system has bounded second moment.

Proof. We show this by formal computations which can be made rigorous by trun-
cated solutions in just the same way as in Section 4.1. Setting g; = j2 in Lemma 1
we get

> 3% =Y (G +1)?=35°) (a;p + Ble) +£a; B(c))c;
§>1 >0
+) (= 1) = 5%) (JA(0) + bj + eB;A(c))e;

j>1

=D (2 + Dlajp + Be) +ea;B(e)e; + ) _(=2j + 1)(A(e) + bj + B A(e)e;

j=0 j>1
<2ap Y j%c; + plao + ap) + 2pB(c) + B(c) + 2cafBp Y _ j’¢; + (o + ap)Bp
j=0 j>0
- QaZj c;—2 Zybmmcj 252]6,,“0] )+ pA(c) + B(c) + eBpA(c),
j>1 j>1 j>1

where, in the fourth and fifth lin?s, we used A(c) = >i>0 a;c; <ag+ ) s a6 <
ap+ap and B(c) = 3,5, bjc; < bp (similarly for A(c) and B(c)). After rearranging
the terms we have

> 5% < 2ap+2eaBp—a) Yy j7c; + p (2a0 + 2ap + 2bp + 2b + 2eB(v0 + Ap) — 2bmin) -

j>1 j>1
If p < - +2 aT2:ap then the differential inequality yields that the second moment is
bounded and in particular
(2a0 + 2ap + 2bp + 2b + 2e3(c + @p) — bumin)
2(a — ap — 2eafBp) '

Mz(o0) < p

O

Remark. It is worth saying that the result is not specific to Ms.The proof can be
extended to higher moments so long as the total mass p is small enough, that is,
for any given p > 0, i.e., Mp(c0) < C'. However, the smallness requirement will
depend on the value of p.

Next, as in Section 4.1 we show the contraction property of solutions.

Lemma 9. Let the conditions of Theorem 1 be satisfied and c; and d; be two solu-
tions of the system (1.1)-(1.4) with the same initial mass and same initial volume.
Assume that M2(0) < oo and the Hypotheses H3 (4.1) and H{ (4.11) hold with the
total mass (density) p and € small enough. Then the two solutions approach to each
other in the sense that

Y dlei(t) = di(t)] < 20e7".

j>1

The general idea of proof is similar to the contraction result in Section 4.1.
However, in this case it is more convenient to use difference of individual cluster
densities (not the tail) to measure the difference of time dependent solutions, i.e.,
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> j>171ej(t) —d;(t)]. The goal is to show that its derivative satisfies a differential
inequality which yields the result.

Proof. Let c¢; and d; and be the time dependent and equilibrium solutions and
e; = ¢; — d; be the difference. Setting g; = jsgn(e;) in Lemma 1 (with N — o)
one gets

> dsgnle;)e; =Y (G + D)sgnlejia) — jsgn(e;)) (ajp + B(e) + £a;B(c))e
i>1 >0

+ Y (G = Dsgnlej_1) — jsgnle;)) (GA(e) + b; + B, A(c))e;,
i>1

Subtracting from above the equation for Zj21jsgn(ej)dj and noting A(c)c; —
A(d)d; = ejA(c) + d;A(e) and B(c)e; — B(d;)d; = e;B(c) + d;jB(e) (and using
similar notations for A and B) we get

Zj é;] = Z (7 +1)sgn(ej1) — jsgnle;)) (paje; +e;B(c) +d;B(e)) (4.12)
j>1 7>0

+ Y ((G = Dsgnlej—1) — jsgn(e;)) (jesAle) + jd;Ale) + bjej)  (4.13)

+e Y (G + Dsgnlej1) — jsgn(e;)) aj(e;B(c) + d;B(e)), (4.14)
320

+e> ((G—1)sgn(e;—1) — jsgnle;)) Bi(e;Ac) + d;Ae)), (4.15)
i>1

where in (4.12) we implicitly used p = > ,5qj¢; = 3 j504dj and 1 =37 ¢; =
> j>0d;. Upon distributing the (j £ 1)sgn(e;j+1) — jsgn(e;) over the terms inside
the parenthesis in each line on the right hand side of (4.12), we produce a total of
10 terms which we denote by Sy, ..., S1p respectively. For each S; term we obtain an
inequality.

For Sy, using |sgn(e;+1)| <1 and sgn(e;)e; = |e;|, we write

S1 =Y ((F+ Dsgnlejr1) — jsgnle;)) paje; < p > ajlej]
>0 >0

<p> (a;+ao)lejl,

Jj=1

where in the second line we used |eo| < ;- |e;| which follows from 3, ,e; =0
(conservation of volume). Similarly, for S, one has

Sy = ((j + V)sgn(ej1) — jsgnle;)) e;B(c) < 2B(c) Y lesl.
720 Jj=1
For S3 we observe [B(e)| < >_,-, bj|e;| and obtain

Sz =Y ((j +1)sgn(eji1) — jsgn(e;)) d;B(e)
Jj=0

<D 25+ 1)d; Y b lex].

§>0 k>1
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For S, term we again use |sgn(ej_1)| <1 and find

S1=)_ ((j = Dsgnlej_1) — jsgn(e;)) je; Alc)

Jj=1

< —Zj lej| A(e)

Jj=1

The S5 term, using |A(e)| < >_,5pa5lej| < 32551 (a; +ao) lej|, gives

Ss =D ((j — Dsgn(ej—1) — jsgn(e;)) jd; Ale)

jz1
< (25 = 1)jd; Y (ax + ao) |ex| .
j>1 E>1

And, Sg reads
Ss = ((j — Dsgnlej—1) — jsgnle;)) bie; < — > by lej].
j>1 j>1

Looking at the terms one notices that Sg cancels part of the term on the right
hand side of S3 since 3, d; = 1 which leaves . (27)d;j > ;51 bk [ex| . Similarly,
S1 cancels the negative part on the right hand 51de of S5 since Z]>1jd p.
Combining with the rest of the terms in (4.12) we get

D dleil <2B(e) Y el + D (25)d; > bi el (4.16)

jz1 j>1 j>0 k>1
—Z]\e]|A +22]]d2ak+ao lex]
J>1 >1 E>1
+ S7+ Sg + Sy + S1o. (4.17)

We now estimate the perturbation terms Sy, ..., S19 in a similar fashion. S7 and
Sg are given by

Sr=e> ((j+ Dsgnlej1) — jsgn(e;)) aje;B(c) <€y (oo + aj) lej] B(e),
Jj=0 jz1

Ss == 30 (G + Dsgnlesn) — jsgn(es)) agd; Ble) < =37 (2] + 1) ajd; | Ble)|

>0 320
<& (2% +aj+ao)d; Y Brlexl,
§>0 k>1

where we used . le;| < 3o (aj+ao) lej] (since |eo| < 37, |ej]). Similarly,
S9 and S10 are given by B B

So =23 (G = Vsgnle; 1) — jsgn(e;)) Bies Alc) < —¢ S B leg] Ale
Jj=1 j>1
S0 = sz ((5 — V)sgn(e;_1) — jsgn(e;)) BijdjA(e) < sz (25 —1)d;B; Zak lek] -
i>1 i>1 k>0

By the bounds given in the theorem B(c) <3~ bjc; < bpand A(c) > doj>1 a0 >
a. Also, ZjZI lej] < ZjZIj lej| and Zk21(ak+a0) lex] < (ap+a) ZkZI k |ex| . Then
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using [eg| < >, |ej| several times (4.16) reduces to
> dlésl <26p> glesl+ 200> dlesl = amin Y jles| +2Ma(ao +a) Y klex|
Jj=1 Jj=1 j=1 j=1 k=1

+e ((ao + d)pB +2afMs + aoBdo + dBp) Z klex| + sZBMz(ao + @) Z k ek -

k>1 k>1

From Lemma 8 we know

My =" j%c; < P(p) =

p (2a + 2ap + 2bp + 2b + 2e3(cp + @p) — buin)

= 2(a —ap — 2eafp)
Hence one gets the differential inequality
> léil < (4bp +2(a0 + @) P(p) — amin) D j le| (4.18)
Jj=1 Jj=1
42 (a0 +20)p +2(20 + a0) P(p) + aodo +0p) Y g les] . (419)
j>1

It is then clear that, for p and ¢ small enough, the parenthesis on the right hand
side of (4.18) has a negative value (say —y < 0) giving

Sl <3160 e < 3 e (0) + dy (0)e " < 2pe

Jj=21 Jj21 Jj=21

which proves the lemma. O

As the last ingredient for the theorem, we have the existence of the equilibrium
solutions which is analogous to Proposition 9. The proof follows similar steps to
Proposition 9, hence we skip it.

Proposition 10. Assume the conditions of Theorem 1 with M2(0) < oo. Let
Hypotheses H3 (4.1) and HJ (4.11) hold and the total mass be small enough. Then
for any solution satisfying (1.1)-(1.4) one has

Jim |é5(0)| =0 (for j > 0).
Collecting all of the results we can now prove the main theorem of this subsection.

Proof. (of Theorem 11). For mass sufficiently small, by Lemma 9 any two solutions
of (1.1)-(1.4) with the same mass approach to each other exponentially fast. In
particular the infinite time limit exists and by Lemma 8 and Proposition 10 this
limit is an equilibrium and has the same mass. It can also be argued, as in Theorem
10, that the equilibrium is unique. Hence all time dependent solutions with equal
mass converge to the unique equilibrium solution. O

5. Conclusion. In this article, we studied the large time behavior of the EDG
system, particularly the convergence of solutions to equilibrium with explicit con-
vergence rates where possible. Due to the complexities arising in a fully general
kernel form we focussed on two special but fairly general classes of separable ker-
nels (in product and sum forms).

For the first class of kernels (K (j, k) = bjax) that we considered, we showed the
existence of equilibria under the assumption of detailed balance. The crucial finding
is that not all initial mass values can support equilibrium solutions. Much like in
the Becker-Doring system, above a critical mass p., the EDG system undergoes a
dynamic phase transition. By employing a well known entropy method we proved
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the strong convergence of solutions to unique equilibrium distribution for initial
masses below the critical mass and weak convergence of solutions to the critical
equilibrium distribution for initial masses above the critical mass. The question of
how fast these convergences occur in each case is left for future investigations.

For the second class of kernels given by K (j, k) = jar + b; + £8;a4, we proved,
as a by-product of a contraction property, the existence of a unique equilibrium
and convergence of solutions to this equilibrium in the ("weak”) number of cluster
norm. The property followed from the monotonicity of b;,a; an assumption mo-
tivated by the heuristic interpretations that a; b; represent the import/growth and
export/fragmentation. While these analogies (between the a;, b; of BD systems and
EDG systems) are appealing and acceptable to a certain extent, one should bear
in mind that, in the exchange systems the dynamics is so intertwined that a;, b;
should not be regarded too simplistically or being mere copies of coagulation and
fragmentation rates as in the BD system. Nevertheless, the arguments suggest that
the result should generalize which we state as a conjecture
Conjecture. Consider the EDG system (1.1)-(1.4) system. Let the conditions of
Theorem 1 be satisfied. Assume for the kernel K(j, k) that it is non-decreasing in
the first component and non-increasing in the second component. Then the solutions
of (1.1)-(1.4) converge to equilibrium exponentially fast in the sense of Theorem 10.

For second class of kernels it was shown that the monotonicity assumption can be

replaced with a bound condition on the total mass of the system. With this alterna-
tive condition we proved exponential convergence of solutions to unique equilibrium
in the mass ("strong”) norm. We do not know, if this condition is only a technical
assumption or an intrinsic requirement.
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