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Abstract 

Existing works on diffusion fail to account for the incapacitating effects conflict events may 
have on the operational capability of the combatant sides and how these effects may determine 
the evolution a conflict. I hypothesize that it is those events with losses on the state side that 
are likely to be associated with geo-temporal spillovers whereas events with insurgency losses 
are less likely to be associated with future mayhem in their vicinity.  To test my arguments, I 
first introduce a new, comprehensive and detailed event dataset on the long-running civil 
conflict in Turkey. The Turkey-PKK Conflict Event Database (TPCONED) includes the exact 
date and county level location for the fatal events of the armed conflict between the Turkish 
state and the rebel organization PKK since its very beginning in 1984 with detailed information 
on combatant casualties.  I then employ a split population biprobit model which allows me to 
comprehensively depict the geotemporal evolution of the conflict by acknowledging, 
estimating and accounting for the variation in the underlying conflict proneness across locations 
as a latent variable that shapes the diffusion of events. The results of the statistical analyses 
offer support for my hypotheses and reveal that how events evolve over space and time is 
conditioned by the damages suffered by the combatant sides. I demonstrate the robustness of 
these results on a matched sample I obtain by employing the Coarsened Exact Matching (CEM) 
on the data. 
 
Keywords: civil conflict, spatial analysis, conflict event dataset, split population model 
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Introduction 

How do civil conflicts evolve over time and space? Are they chaotic episodes of armed 

violence in fragile states or is there a predictable pattern to the diffusion of events that we can 

decipher? Given the prevalence and destructiveness of civil conflicts it is imperative that we 

answers these questions, because if we can figure out the spatial and temporal dynamics, we 

can then hope to devise pre-emptive actions and policies to prevent or at least contain these 

humanitarian disasters.  

The literature on conflict diffusion is dominated by works on international contagion and 

focuses on the factors that facilitate the spread of civil conflicts between countries (Ward & 

Gleditsch, 2010; Buhaug & Gleditsch, 2008; Cederman, Girardin & Gleditsch, 2009; Cederman 

et al., 2013; Lake & Rothchild, 1998; Lane, 2016; Salehyan & Gleditsch, 2007; Weidmann, 

2015). Compared to this rich literature on cross-country diffusion, the literature on diffusion of 

events within conflicts is still in its early stages. Nevertheless, existing studies have already 

firmly established that conflict events exhibit spatial and temporal interdependencies 

(Townsley, Johnson & Ratcliffe, 2008; Hegre, Ostby, & Raleigh, 2009; Lyall, 2009; Raleigh et 

al., 2010; Weidmann & Ward, 2010; Schutte & Weidmann, 2011; O’Loughlin & Witmer, 

2012). This strong result has then led scholars to explore the mechanisms that explain this 

spatio-temporal clustering of violence. Recent works have theorized about and provided 

empirical evidence for the role played by the relative capabilities of combatants (Holtermann, 

2016; Beardsley, Gleditsch & Lo, 2015), accessibility of locations via road networks (Zhukov, 

2012), environmental conditions (Carter & Veale, 2015), and retaliatory motives (Braithwaite 

& Johnson, 2012; Linke, Witmer & O’Loughin, 2012) in determining the time and location of 

conflict events.  Surprisingly however, none of these works pays any attention to the 

incapacitating effects these events may have on the warring factions and how these effects may 

determine the evolution of the conflict. Even those studies that emphasize the tit-for-tat nature 

of conflicts seem to have forgotten what Machiavelli reminded Lorenzo Di Pierro De Medici 

400 years ago: ‘(men) can avenge themselves of lighter injuries, of more serious ones they 

cannot’ (p.7). 

In this study, I argue that how an insurgency spreads within a country is associated with 

how conflict events affect the operational capabilities of the warring sides, or in Machiavelli’s 

words, with the amount of injury each side suffers as a result of each event. Employing a split 

population bi-probit model I test my arguments on a new event dataset I introduce on the long 

running civil conflict in Turkey. The results offer support for my arguments. Confirming 

previous diffusion studies, I find that once a civil conflict starts geotemporal interdependencies 



play an important role in determining how events evolve over time and space.  Significantly 

contributing to our understanding of these interdependencies, and in line with my theoretical 

arguments, my findings indicate that the geotemporal evolution of the conflict is conditioned 

by the damages suffered by the combatant sides, and that it is events with losses on the state 

side that are likely to be associated with geotemporal spillovers, whereas events with 

insurgency losses are less likely to be followed by further violence in the neighborhood.  

In the next section, I discuss diffusion patterns in civil conflicts and introduce my 

theoretical arguments. Then I introduce my case, my data, my statistical model, the results and 

robustness checks in the following sections.  

Theory and Literature 

The conflict diffusion literature has two main branches. The first branch focuses on 

international diffusion and analyzes the mechanisms behind transnational spillovers of 

violence. The works under this branch are in fact cross-country studies of conflict onset that 

assess a country’s risk of experiencing a civil conflict based on its local characteristics and its 

interactions with the outside world. Among the interactions identified in this literature as 

transborder carriers of conflict risk are refugee flows (Salehyan & Gleditsch, 2007; Braithwaite, 

2010; Rüegger, 2018), communication networks (Weidman, 2015; Beiser, 2016), circulation of 

arms and combatants (Lane, 2016; Bara, 2018; Braithwaite & Chu, 2018), learning and strategic 

emulation (Buhaug & Gleditsch, 2008; Maves & Braithwaite, 2013; Hill, Rothchild & 

Cameron, 1998; Forsberg, 2008; Ayres & Saideman, 2000), and external sponsorship of 

insurgencies (Gleditsch, Salehyan, & Schultz, 2008; Cederman, Girardin & Gleditsch, 2009; 

Schultz, 2010). 

The findings of this impressive literature provides theoretical and methodological insights 

for the second branch which takes a micro-level approach to analyze the within-conflict 

diffusion of violence. This literature is still in its early stages; however, existing works have 

already firmly established that conflict events exhibit a strong spatial and temporal 

interdependency (Townsley, Johnson & Ratcliffe, 2008; Hegre, Ostby & Raleigh, 2009; Lyall, 

2009; Raleigh et al., 2010; Weidmann & Ward, 2010; Schutte & Weidmann, 2011; O’Loughlin 

& Witmer, 2012). Recent works have investigated the mechanisms that explain this spatio-

temporal clustering and provided empirical evidence for the role played by factors such as the 

accessibility of locations via road networks (Zhukov, 2012), environmental conditions (Carter 

& Veale, 2015), internal displacements (Bohnet, Cottier & Hug, 2018), and state coercion 

(Duffy Toft & Zhukov, 2012) in determining the time and location of conflict events.  

Interestingly however, attention is yet to be paid to the incapacitating effects conflict events 



may have on the warring sides, and how these effects may influence the likelihood of 

geotemporal spillovers. This, I argue, is a serious shortcoming. Civil conflicts involve strategic 

actors making strategic decisions on whether, when and how to act. It is, thus, not possible to 

construct an accurate understanding of how conflict events evolve over time and space without 

taking into account those factors that shape these decisions. Operational capability is one of the 

most important of such factors. Operational capability refers to the capacity of conflict actors 

to carry out successful combat operations against the adversary on the battlefield, and is mainly 

determined by resources available to them and their ability to successfully use those resources 

(Tellis et al., 2000). Note that conflict events can inflict damages on both of those determinants 

of operational capability and as such can have incapacitating effects on conflict actors.  

The argument that the evolution of a conflict is associated with how conflict actors are 

affected by events has in fact already been raised by those works that emphasize the tit-for-tat 

nature of conflicts and the retaliatory motives of conflict actors (Jaeger & Paserman, 2008; 

Lyall, 2009; Haushofer, Biletzki & Kanwisher, 2010; Linke, Witmer & O’Loughlin, 2010; 

Kocher, Pepinsky & Kalyvas, 2011; O’Loughlin & Witmer, 2012; Braithwaite & Johnson, 

2012; Schutte & Donnay, 2014). However, even those works implicitly assume that combatants 

will always have the capacity to react against all instances of violence. In this study, I relax this 

assumption by controlling for combatant casualties in each violent event as a measure of the 

damage to the operational capability of warring sides.  

The size of the military force is an important resource in all armed conflicts, but especially 

so for insurgents fighting against powerful state adversaries. In fact, the opportunity cost 

theories of conflict onset posit the availability of labor as the binding constraint on the 

production of violence by insurgencies (Grossman, 1991; Mikulascheck & Shapiro, 2018). 

Most civil conflicts are fought between organized, well-armed, and sizable state military forces 

and relatively much smaller and ill-equipped insurgent groups1. Balcells & Kalyvas (2014) use 

the term ‘irregular conflicts’ (p.1391) to refer to civil conflicts with such power asymmetry.  

The asymmetry in resources in irregular civil conflicts means that, compared to state forces, 

casualties are expected to be more costly and debilitating for insurgents since each combatant 

corresponds to a higher share of their operational capability. The relative difficulty of recruiting 

and training replacements inflates this cost further. Heavy losses against state forces may also 

                                                        
1 According to the Technologies of Rebellion dataset, during the Cold War period, 66.34% of all major civil 
conflicts were  asymmetric (Kalyvas & Balcells, 2010).   



have a deterrent effect on both the insurgents and their civilian support base which may then 

render recruitment even more difficult and may even lead to defections.   

The asymmetry in resources not only renders them more valuable for insurgents but also 

shapes the way they utilize them. Due to state’s material advantages, insurgent groups stand a 

high risk of defeat if they try to fight the state with conventional tactics in consistent theaters 

of combat. They thus favor mobility and guerilla warfare. Staying mobile helps them evade 

attacks. It also gives them an opportunity to compete with the state’s armed forces by varying 

targets and using the element of surprise to their advantage (Beardsley, Gleditsch & Lo, 2015). 

McColl’s (1969) influential account of how revolutionary insurgencies evolve emphasizes the 

need for mobility as well.  

Note that this type of irregular warfare creates a pattern in which insurgents proactively 

stage hit-and-run attacks which then drive state forces into reactive counterinsurgency 

operations2. But, the insurgents’ capacity to sustain such a pattern depends on whether they can 

hit their targets and run afterwards without getting hit themselves. Casualty counts give us a 

grim account of their success in doing so. While security force casualties provide a measure of 

the hit the state side takes, insurgency casualties provide a measure of their (in)ability to run. It 

follows that with each insurgent casualty this pattern becomes less sustainable, and the 

likelihood of future hit and run attacks in the vicinity goes down. On the other hand, state 

casualties can be expected to bolster this pattern. It is reasonable to expect  damages on state 

forces to make it easier for insurgents to escape after an attack. Successful attacks may also 

boost morale among rebels, help them in their efforts to gain public support and find new 

recruits (Kalyvas, 2006) thereby allowing them to increase the geotemporal scope of their 

activities.  

Casualties are important in determining the actions of state forces as well.  The size 

advantage and the relative ease of recruitment shield the operational capability of state forces 

against losing soldiers, thus state casualties are less likely to have a dampening effect on conflict 

activity. On the contrary, in many cases, losses on the state side carry heavy political costs for 

state leaders (Kibris, 2011), and lead them to resort to retaliatory actions that perpetuate 

violence (Jaeger & Paserman, 2008).  Holtermann (2016) argues that state casualties can also 

be seen as a measure of the relative capacity of rebels and as such they can indicate higher 

likelihood of future conflict events in the neighborhood. Relatedly, losses in one area may lead 

                                                        
2 Confirming this pattern, Linke, Witmer & O’Loughlin (2012) indicate that most attacks around Baghdad in the 
2004-2009 period were initiated by insurgents (p.6). 



to a transfer of state military resources from nearby locations and may leave those areas 

vulnerable.  

If these are valid mechanisms then we should expect events with insurgency casualties to 

curb the potential for future events in nearby locations and events with state security force 

casualties to be harbingers of geotemporal spillovers. The next two hypotheses are derived from 

these expectations: 

Hypothesis 1: In irregular civil conflicts, casualties on the state side are positively associated 

with future conflict events in other locations in the neighborhood. 

Hypothesis 2: In irregular civil conflicts, casualties on the insurgency side are negatively 

associated with future events in other locations in the neighborhood. 

I test these hypotheses on a new and detailed event dataset I introduce on the long running 

civil conflict in Turkey. The Turkey-PKK Conflict Event Database (TPCONED) includes the 

exact date and county level location for the fatal events of the armed conflict between the 

Turkish state and the rebel organization PKK in the 1984-2018 period with detailed information 

on combatant casualties.  

Statistical analysis of conflict diffusion offers an empirical challenge because it comes with 

very specific and demanding data requirements. In order to be able to track the geotemporal 

path of violence, one needs a comprehensive and complete event dataset with detailed 

information on the time, location and characteristics of conflict events. Comprehensiveness, 

which is full geotemporal coverage of the conflict, is important to make sure that any observed 

association is not specific to a period or a location. Completeness, which is not having any 

missing observations, is even more important. Missing observations introduce a serious 

selection bias in any statistical analysis, but they are even more problematic in diffusion studies 

since with each missing observation another step in the geotemporal progression of events gets 

lost and the accuracy of the data set in reflecting the diffusion of violence weakens. TPCONED 

is a comprehensive and complete event data set on the armed conflict between the rebel 

organization PKK and the Turkish state, and as such, it avails the armed conflict in Turkey as 

a rich case study for understanding the geotemporal dynamics of civil conflicts. 

The conflict 

Since late 1984, Turkey has been suffering from an insurgency campaign led by the 

Kurdish separatist guerrilla organization the Kurdistan Workers' Party (PKK). The organization 

was first founded with the goal of establishing an independent Kurdish state in south-eastern 

Turkey, though later on in the 1990s, it appeared to have rolled back on its goal to a federational 

structure that would grant more autonomy to the large Kurdish minority in the country. The 



armed conflict between the PKK and the Turkish security forces (TSF) has been geographically 

concentrated in south-eastern and eastern regions which have traditionally been inhabited by 

ethnic Kurds. First dismissed by Turkish governments as the acts of a handful of outlaws, this 

irregular conflict has been going on for more than 35 years3. Financially, it has cost the country 

billions of dollars. But more importantly, it claimed the lives of tens of thousands. 

 
Figure 1 depicts the total number of  TSF and PKK casualties over time. As can be seen,  

the 90s has been the bloodiest period of the conflict. The insurgency announced a unilateral 

ceasefire after its leader Abdullah Öcalan was captured in 1999, and ceased its attacks in the 

early 2000s. Unfortunately, peace in the area did not last long and violence flared up again after 

2004. The latest ceasefire was announced in March 2013 as part of a peace process which 

unfortunately broke down in July 2015 only to bring more bloodshed. Figure 2 depicts the 

geographical distribution of combatant casualties at the province level and reveals their 

geographical concentration. 

  

                                                        
3 The Turkish prime minister of the time referred to the PKK as a handful of outlaws after their first  attacks in 
1984 (Pulur, 2010). 
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Figure 1. Combatant casualties, 1984 - 2018 



The Turkey-PKK conflict event database - TPCONED 

I test my hypotheses with a new, high-resolution event dataset that I introduce in this study 

on the armed conflict between the rebel organization PKK and the Turkish state. This is one of 

the longest running civil conflicts in the world, and it plays an important role in the political 

turmoil of the Middle East, and as such it has a lot to tell us about civil conflicts. However, due 

to scarcity of reliable data, it has been analyzed by only a handful empirical studies so far.  I 

release the Turkey-PKK Conflict Event Database (TPCONED)  with the hope of motivating 

those much-needed studies that will bring this deadly conflict into the spotlight.  

TPCONED (https://wrap.warwick.ac.uk/138227) is a dataset on the fatal events of the 

armed conflict between the rebel organization PKK and the Turkish state that took place on 

Turkish soil and in which there was at least one combatant casualty. It contains detailed 

information on 7063 conflict events with 17308 PKK casualties and 7514 state casualties over 

the course of the conflict in the 1984-2018 period4. For each event, the exact date, location at 

the county (town) level, location at the province level, number of TSF and PKK casualties, and 

the data sources are listed. The dataset has been in the making since 2009, and relies on a wide 

range of local sources which include reports and publications by the Turkish Ministry of 

Defence, Turkish General Staff, the Directorate General of Press and Information of Turkish 

Prime Ministry and by various other state offices and local administrations in Turkey; the 

archives of the Gendarmerie Museum in Ankara; the digital and hard copy archives of five 

major Turkish daily newspapers (Cumhuriyet, Milliyet, Hürriyet, Sabah, and Zaman); PKK 

publications; daily and yearly reports by the Turkish Human Rights Association; scholarly 

works (Tezcür, 2016); and personal contacts and interviews with the families of the casualties. 

I provide detailed information on these sources in section A1 in the online appendix. 

Note that my sources belong to different political affiliations and views. I cross checked 

contentious events across these sources to make sure that the resulting dataset is as 

comprehensive and accurate as possible. A very important thing to note here is that combatant 

casualties do not only serve as a binary decision rule for an event to be included in TPCONED 

but more importantly they provide a solid confirmation of the validity of each event in the 

dataset.  

Turkey has a draft army and a mandatory military service system that requires each Turkish 

man, when he comes of age, to serve in the army for about a year. This mandatory system is 

supported by a military and religious culture that glorifies the army and service to the country. 

                                                        
4 The dataset is continuously updated. Currently, events of 2020 are being coded. 



When a soldier or a police officer dies in service he or she is considered a martyr, both legally 

and culturally. A state funeral is held for each of them in their hometowns. These funerals have 

always been important public events attended by high-level military and state officials and 

thousands of locals. The national and the local media cover the story of the fallen soldier or 

officer, his grief-stricken family, and the funeral ceremony, and by so extensively publicizing 

the casualties on the state side, they create the most credible way of tracking down the events 

and the geotemporal evolution of the conflict.  

A similar glorification of combatant casualties is also present on the PKK side. They also 

refer to their casualties as martyrs and commemorate them by special publications. Although 

very limited compared to the information on the Turkish side, such resources present valuable 

information on conflict events. 

Hence, all the events recorded in TPCONED have been confirmed by information on the 

identity of the each of the 7514 TSF casualties involved and of a good portion of the PKK 

casualties5.   

To demonstrate the accuracy, precision and comprehensiveness gains that TPCONED 

accomplishes, I present a systematic and detailed comparison (á la Donnay et al., 2018) of 

TPCONED and the UCDP-GED database (Sundberg & Melander, 2013), which is one of the 

most commonly used conflict event databases by researchers, in section A2 in the online 

appendix. Note that the GED does not have any data on the conflict for its first five years, and 

then has only a total of 4682 conflict events recorded for the 1989-2018 period. Moreover, of 

the recorded events, only 54%, have location information at the county level, that is, location 

at the county level is missing in 46% of the observations. With nearly half the observations 

missing, it becomes quite impossible to track the evolution of the conflict at the county level 

with the GED data. Unfortunately, the problem with missing observations persists at larger 

geographical aggregations as well. For 7.5% of the observations, reported location covers 

almost the entire conflict zone6.  

Another major problem that diminishes the quality of existing conflict event databases is 

that most of them rely on international news agencies. Going back to the GED example, nearly 

                                                        
5 No personal information on the casualties is included in TPCONED but anonymized information is available on 
request. 
6 The Global Terrorism Database (GDT) which is also commonly used in conflict studies, includes even fewer 
observations with only 2208 events recorded for the conflict between the Turkish state and the PKK. Moreover, 
the database’s coverage remains very lacking for the 1990’s which, as Figure 1 depicts, is the most intense period 
of the conflict. A more serious shortcoming for my purposes is that the GTD reports fatalities in aggregate without 
any breakdown, thus, it does not allow one to assess the losses of the sides. Finally, data source is missing for 850 
(38.5%) observations and location is coded as unknown for 14% (309) of the recorded events. 



all the observations under the Turkey-PKK conflict are coded from sources like the BBC, 

Reuters, Agence France Press, etc. Admittedly, these international news agencies themselves 

rely on local sources for information, but they tend to rely more on state sources or agencies 

which, in many cases, feed them with biased information. In the Turkish case for example, they 

mostly rely on the Anadolu (News) Agency which is in fact owned and controlled by the 

Turkish state. Moreover, they tend to be biased towards more substantial events in their 

reporting while ignoring smaller ones. They also tend to summarize the information they 

receive from local sources and leave out certain details, like precise location of the event, which 

they deem irrelevant for their international readers. Moreover, in many cases, a lot gets lost in 

translation. 

Statistical model and analyses 

Simply stated, diffusion refers to the temporal and geographical spread of conflict events.  

In this study, I define a conflict event as any conflict related lethal violence that results in the 

death of at least one combatant. I use casualties as a measure of the size of losses in terms of 

operational capability of each warring faction in each conflict event.  

In most civil conflicts, violence remains geographically clustered, and a great deal of places 

never experiences any events while a small subset of locations accounts for nearly all the 

violence in a recurring fashion. Civil conflicts are violent struggles about state formation 

(Weinstein, 2007; Tull, 2004; Pegg, 1998), in other words, insurgencies are would-be states. 

Note that no such would-be-state-maker takes up arms without a targeted territory. Insurgents 

may target to take over a country as a whole or some parts of it, either because it is the ethnic 

homeland, the promised territory, or because it is rich in economic resources, or home to 

ideologically sympathetic populations, etc. The fact that insurgents target certain territories 

implies that there is an underlying, base risk distribution over space, and that the geotemporal 

evolution of the conflict is correlated with this distribution. This implication is consistent with 

the observed geographical clustering of conflict events. It is also consistent with McColl’s 

(1969) account of how insurgencies evolve. The targeted base areas become the hubs of conflict 

events, the areas in their periphery experience relatively fewer incidents as insurgents try to 

expand, and the rest of the territory remains outside the conflict zone. But if particular territorial 

units are not likely to experience any conflict events, then their inclusion in the sample may 

lead the diffusion analysis astray. Braumoeller & Goertz (2002) and Mahoney & Goertz (2004) 

argue that including irrelevant cases where the outcome of interest is impossible induces 

erroneous inference. Having said that trying to exclude them can also be very problematic since 

it requires distinguishing between the relevant and irrelevant areas when relevancy is 



unobservable. Any ad hoc identification risks excluding relevant areas or including irrelevant 

ones. Note that a similar problem had been discussed in the study of international conflicts. 

There the argument is that some country dyads, because they lack any opportunity to fight, are 

not relevant for an empirical study on the determinants of international war. To deal with this 

problem, Clark & Regan (2003) and Xiang (2010) propose split population models in which 

they estimate relevance as a latent variable. In this study, I follow their proposition and employ 

a split population bi-probit model to analyze the geotemporal evolution of conflict events.  

In a split population model an additional binary choice regression—used as a selection 

step—is added to a standard statistical model to capture the idea that there are two data 

generating processes behind the observed data. In the context of modelling civil conflict 

diffusion, the selection step is meant to estimate the underlying risk distribution over territorial 

units and identify the potential base areas. A split population model, in that sense, can be used 

to bring together the civil conflict onset literature which explains the occurrence of violence in 

relation to specific conditions existing prior to the conflict, and the diffusion literature which 

emphasizes the importance of geotemporal interdependencies7.  

My dependent variable Yi,t is a binary incidence variable that takes on the value 1 if a 

conflict event took place in location i in time t, and 0 if not, and 

Yi,t ~ 0 with probability 1 – pi and  

Yi,t ~ Fi,t with probability pi  

where Fi,t is a cumulative distribution function for a binary choice model.  

Let pi = Gi where Gi is also a cumulative distribution function for a binary variable. Then, 

because the zero outcome is generated by both the binary choice models Gi  and Fi,t, we have  

Yi,t = 0 with probability (1 – Gi)+ Gi(1 – Fi,t) and  

Yi,t = 1 with probability GiFi,t 

under the assumption that the two distributions are independent. Here, Gi determines the 

distribution of underlying conflict risk and Fi,t determines the distribution of event risk. Note 

that the underlying risk is not observable. We only observe whether a location experiences a 

conflict event at a given time or not. 

The independence assumption is not a reasonable one in a civil conflict context. Locations 

with high underlying risk will most probably have high probability of experiencing conflict 

events. I therefore adopt a bivariate standard normal distribution to model the two correlated 

cumulative distribution functions. As a result, the above model becomes  

                                                        
7 The identification restrictions are discussed in Section A3 in the online appendix. 



Yi,t = 0 with probability [1 - F2(bXi,t, gZi,t; r )] 

Yi,t = 1 with probability F2(bXi,t, gZi,t; r ) 

where F2 is the bivariate standard normal cumulative distribution function and r is the 

correlation coefficient. Z is the vector of covariates that affect the base risk, and X is the vector 

of covariates that affect the probability of diffusion. This is very similar to the binary choice 

model Xiang (2010) employs in the context of international war.  

The subscripts i and t designate time and space units to be used. In terms of designating 

space, the literature hosts two approaches. The first approach makes use of administrative 

divisions (Holtermann, 2016; Ward & Weidman, 2010; O’Louglin & Witmer, 2012; Zhukov, 

2012) to identify distinct spaces. Scholars justify the distinctiveness of administrative units by 

referring their socioeconomic differences. However, as Schutte & Weidmann (2011) argue 

‘administrative boundaries may have little relevance in civil wars, since they can be crossed 

easily by armed forces’ (p.147). But this concern is even more valid for the second approach 

which divides the area of study into grid cells of equal size and treats each grid cell as a distinct 

space (Schutte & Weidman, 2011; Raleigh & Hegre, 2009; Townsley, Johnson & Ratcliffe, 

2008). Unfortunately, there is not much discussion in the works that employ geographical grids 

on what makes two adjacent grid cells distinct spaces from the perspective of conflict actors 

and/or for the sake of conflict dynamics. To deal with the ad hoc nature of this gridding exercise 

two alternatives have been offered so far. The more commonly adopted alternative is to repeat 

the analyses with multiple grid sizes. While this practice may help ease concerns about the 

robustness of estimated associations, it does not provide any theoretical justification for the 

relevance of resulting geographical units. Moreover, exact event coordinate information is very 

hard to come by. Most conflict event databases, including the GED, report the coordinates of  

the administrative unit in which the event takes place. The second alternative is offered in a 

recent study by Schutte (2017) where he employs a point process model (PPM) in which, rather 

than relying on predefined spatial units, suitable spatial windows are heuristically defined from 

the distribution of events over territory.  As Schutte (2017) argues, these windows offer a better 

alternative to ad hoc spatial grids but are so far limited to cross-sectional analysis as ‘the 

introduction of a temporal dimension provides additional challenges’ (p.454). 

Schutte & Weidman (2011) argue that spatially aggregating conflict activity leads to a loss 

of information, and they favor using as fine a spatial resolutions as possible with the data to 

hand. In this study, I follow up on their advice and estimate my model under the highest spatial 

resolution possible with my data, namely, the county level. This is quite a high resolution 



especially considering that I am able to sustain it across all events throughout the whole span 

of the conflict and that it cannot be attained by any of the other available data sets. Moreover, 

my socioeconomic controls are able to match the geographical resolution of my event data. To 

make sure that my results are not specific to any time aggregation, I estimate my model under 

monthly, quarterly, half-yearly and yearly time denominations.  

My X vector of diffusion covariates contains within conflict dynamics. To control for the  

geotemporal interdependencies, I include the length of the last peace spell; the percentage of 

past periods with conflict incidences; one-period lagged state casualties; one-period lagged 

insurgent casualties; one period lagged inverse-road-distance-weighted state casualties in other 

counties; and one period lagged inverse-road-distance-weighted insurgent casualties in other 

counties. These last two are the control variables of interest for this study as they are the 

spatiotemporal lags whose association with the dependent variable will inform us about the 

extent and nature of geotemporal spillovers.  Unlike existing studies, I do not limit geotemporal 

interdependencies to immediately neighbouring administrative units or units within a fixed 

distance. Instead, my spatio-temporal lags take into account all events of the previous period 

after assigning them weights according to distance. Accordingly, the one period lagged inverse-

road-distance-weighted insurgent casualties for county i at time t is 

Sk¹i (1/dki)(state casualties)k,t-1 

where dki is the road distance between county k and county i in kilometers. Similarly,  

Sk¹i (1/dki)(insurgency casualties)k,t-1 

is the spatio-temporally lagged insurgency casualties for county i at time t8. I use road distances 

to calculate these spatial lags in order to account for the role of the road networks in facilitating 

the spread of violence (Zhukov, 2012). 

I also control for area, border status and percentage of rural mountainous terrain across 

counties. Finally, I include season and year dummies to capture the seasonal and yearly 

variations. 

My Z vector of covariates for base risk includes a rich set of controls which depict the 

socioeconomic situation at the start of the armed conflict. I control for percentage of farmers 

                                                        
8 Simply put, for each county i, these expressions add up the casualties that took place in all other counties in the 
previous period after dividing the casualty count from each county by the road distance between that county and 
county i. This way, casualties elsewhere are weighted according to their distance from county i. Consequently, 
casualties from nearby counties get assigned a higher weight in the calculation of the weighted average, whereas 
casualties that took place in faraway counties are divided by their higher distances and so get assigned much 
smaller weights. 



with no land; percentage of farmers with more than 100 acres of land; number of mosques per 

village; percentage of villages with no drinking water; percentage of villages with no electricity; 

unemployment rate; literacy rate and level of urbanization across counties as measures of state 

capacity and reach, and as indicators of economic development and welfare. Economic 

grievances and low state capacity create fertile environments for insurgencies (Holtermann, 

2012). I also control for the percentage of villages whose names were changed by the state as a 

measure of ethnic discriminatory policies. Ethnic discrimination is identified as an important 

factor that increases the vulnerability of a country to experience conflict (Metternich, Minhas 

& Ward, 2017; Cederman et al., 2013; Cederman, Wimmer & Min, 2010). Relatedly, I also 

control for the ethnic distribution of the population across counties to account for the potential 

support base of the PKK. 

Finally, I control for the percentage of mountainous area; border status and population 

across counties (Fearon & Laitin, 2003; Do & Iyer, 2010; Weidman & Ward, 2010; Zhukov, 

2012; Holtermann, 2016; Cederman, Girardin & Gleditsch, 2009; Cederman et al., 2013).  

I provide a detailed discussion on the control variables in Section A4 in the online appendix 

along with descriptive statistics and a visual representation of their predictive power in terms 

of the base risk of conflict across counties. 

Results 

Table I below presents the estimated parameters of the bivariate probit model under 

monthly, quarterly, half-yearly and yearly time aggregations.  

The estimated coefficients for the within-conflict-dynamics equation reveal the importance 

of geotemporal interdependencies. The longer a county stays peaceful the less likely it becomes 

to experience violence. Similarly, counties with more troubled histories, measured by 

percentage of past times with conflict events and with casualties in the county itself in the 

previous period, are more likely to experience conflict events.  

As hypothesized, results indicate that geotemporal spillovers are conditioned by the losses 

of the sides. The estimated parameters for the inverse-distance-weighted-lagged-casualties 

indicate that it is the state force casualties in an area that are heralds of conflict events in nearby 

locations.  On the other hand, events with insurgent casualties have a significant dampening 

impact on future events in the vicinity especially in the longer runs. These results are consistent 

with the asymmetric power structure in civil conflicts and with a rebel strategy of hit and run 

attacks whose likelihood of spilling over to nearby locations increases as state forces incur more 

military losses and decreases as insurgents themselves get hit.  



TABLE I. Partial observability bivariate probit results 

 

 

Unit of observation: 
County-month 

(1984-2018) 
Number of obs.: 

266845 

Unit of observation: 
County-quarter year 

(1984-2018) 
Number of obs.: 88734 

Unit of observation: 
County-half year 

(1984-2018) 
Number of obs.: 44367 

Unit of observation: 
County-year 
(1984-2018) 

Number of obs.: 
21862 

Within conflict dynamics     

Length of last peace spell -0.004** 
(-13.16) 

-0.012** 
(-12.35) 

-0.054** 
(-5.63) 

-0.037* 
(-2.13) 

Percentage of past time periods with conflict 
events 

0.035** 
(10.06) 

0.030** 
(16.60) 

0.017** 
(10.59) 

0.012** 
(9.42) 

Inverse- distance-weighted state casualties in 
other counties in t-1 

1.284** 
(6.43) 

0.619** 
(6.25) 

1.280** 
(4.82) 

0.827** 
(5.92) 

Inverse-distance-weighted insurgent casualties 
in other counties in t-1 

0.084† 
(1.90) 

-0.069** 
(-2.09) 

-0.119** 
(-2.74) 

-0.158** 
(-4.27) 

State casualties in the county in t-1 0.102** 
(6.08) 

0.047** 
(5.34) 

0.060* 
(2.19) 

0.158** 
(2.73) 

Insurgent casualties in the county in t-1 0.020* 
(2.41) 

0.012** 
(2.99) 

0.025** 
(3.21) 

0.067** 
(2.79) 

County area in km squares 0.0001** 
(4.04) 

0.0001** 
(3.52) 

0.0001* 
(2.50) 

0.0001* 
(2.39) 

Percentage of mountainous terrain in rural area 0.002* 
(2.02) 

0.003** 
(3.07) 

0.001 
(0.22) 

0.001 
(0.20) 

Border status  0.037 
(0.56) 

0.028 
(0.55) 

0.056 
(0.45) 

0.115 
(0.88) 

Estimated parameters for seasonal and year dummies are not reported.    

Base risk    

Percentage of mountainous terrain in rural area 0.002 
(0.80) 

0.001 
(0.27) 

0.006 
(0.99) 

0.004 
(1.09) 

Percentage of villages whose names were 
changed by the state 

0.007** 
(2.66) 

0.008* 
(2.27) 

0.006* 
(2.02) 

0.004* 
(1.97) 

Percentage of landless farmers 0.013** 
(3.02) 

0.008 
(1.45) 

0.011† 
(1.88) 

0.007** 
(2.94) 

Percentage of farmers with more than 100 acres 
of land 

-0.023** 
(-3.45) 

-0.021** 
(-3.09) 

-0.014* 
(-2.17) 

-0.010** 
(-2.98) 

Number of mosques per village -0.590** 
(-4.32) 

-0.260† 
(-1.68) 

-0.423* 
(-2.47) 

-0.223* 
(-2.49) 

Percentage of villages with no drinking water 0.005 
(1.15) 

-0.002 
(-0.70) 

0.003† 
(1.93) 

0.002 
(1.27) 

Percentage of villages with no electricity 0.004† 
(1.81) 

0.003 
(1.46) 

0.005† 
(1.86) 

0.003† 
(1.95) 

Border status 0.478 
(1.32) 

0.798** 
(3.26) 

0.341 
(1.09) 

0.159 
(0.88) 

Percentage of ethnically Kurdish population 0.031** 
(4.49) 

0.081** 
(4.98) 

0.013* 
(1.98) 

0.010** 
(3.21) 

Urbanization rate -0.009 
(-1.39) 

-0.004 
(-0.56) 

-0.009 
(-1.46) 

-0.002 
(-0.62) 

Literacy rate 0.008 
(0.95) 

-0.013 
(-1.03) 

0.008 
(1.06) 

0.004 
(0.87) 

Unemployment rate 0.107* 
(2.51) 

0.094* 
(2.22) 

0.085 
(1.54) 

0.041 
(1.74) 

Population in 10 thousand 0.016** 
(2.77) 

0.012** 
(2.84) 

0.022** 
(2.99) 

0.012** 
(3.05) 

Wald Chi-square 3786.69 3604.00 687.50 269.11 

Correlation (rho) between the two equations 
(robust standard error) 

0.341 
(0.191) 

0.684 
(0.131) 

-0.231 
(0.325) 

-0.912 
(0.282) 

Wald test of rho=0:  Chi-square 
 

2.70* 
 

11.56** 0.47 10.45** 

Standard errors are adjusted for 648 counties. 
z-values in parenthesis. 
† p<0.1, * p<0.05, ** p<0.01.  

 

The estimated parameters of the base risk equation point towards the importance of state 

reach and control. Mosques as preachers of state ideology, and big land owners as the agents 



of the state in the rural areas seem to make an important dampening impact on the underlying 

conflict risk.   

As expected, base risk is significantly higher for counties with higher Kurdish population 

percentages. Those locations which had been subject to discriminatory state policies and had 

their names Turkified by the state have a higher likelihood of being part of the conflict area.  

Difficult terrains are not significantly associated with the base risk but they facilitate the 

diffusion of violence in the short run. 

To make sure that these results are not specific to the biprobit model, I replicated the above 

analyses with a simple logit model as well. The estimated associations between the incidence 

probability and the control variables remain similar in direction but get statistically stronger9. I 

present the results in Table A5 in the online appendix.  

Figure 3 plots the average marginal effects of spatio-temporally lagged casualties in order 

to give a better understanding of their relative substantive significance. The marginal effect of 

a variable corresponds to the average expected change in the estimated probability of observing 

a fatal conflict event in county i at time t given a marginal change in that control variable while 

other control variables are evaluated at their mean values. As can be seen, the spatio-temporal 

lag of state casualties has a high marginal effect on the probability of diffusion. The average 

marginal effect of a unit-increase in inverse-distance-weighted state casualties on the 

probability of observing a fatal conflict event at county i in time t ranges from 2.5% to 7.1% 

across different temporal aggregations. On the other hand, the average marginal effect of a unit-

increase in inverse-distance-weighted insurgency casualties ranges from  (-1.3) % to 0.0% 

depending on the time unit10.  

                                                        
9 I also reran the model after controlling for the vote share of the ethnically Kurdish parties across counties in the 
1995, 1999, 2002, 2015 and 2018 general elections. The inclusion of this control either in the base risk or the 
diffusion equation does not create any substantive difference in the results which are available upon request. 
10 I report the estimated average marginal effects for all control variables in Table A4 in the online appendix. 



 
Robustness of Results 

In this section, I employ the Coarsened Exact Matching (CEM) (Blackwell et al., 2009) 

technique as a robustness check on my results.  

Matching is a nonparametric method of controlling for some or all of the confounding 

influence of pretreatment control variables. The key goal of matching is to prune observations 

in order to better approximate experimental conditions in observational data. More specifically, 

a statistical matching criterion based on the similarity of confounding factors or their effect on 

the probability of treatment is used to pair treated and untreated observations, and only those 

matched observations are retained in the dataset while the unmatched ones are discarded. I 

argue that matching is a good robustness check for the results I obtain from the above split 

population biprobit model because it in fact offers another way of defining the relevancy of 

observations based on their similarity in terms of treatment likelihood. Those unmatched 

observation are left out as irrelevant for the purpose at hand. 

The predicted base risk gives me a composite pre-treatment variable subsuming the 

socioeconomic pre-conflict variables across which I can match my observations. Note that 

matching techniques are usually employed on cross-sectional data with binary treatments, 

whereas I have a panel data set and my treatment, i.e. the spatio-temporally lagged casualties, 

is by design a continuous variable. The panel nature of the data is easily incorporated by treating 

groups of observations under each time unit as a separate cross section subset and by conducting 

matching within each of these subsets11. The continuous treatment variable is a more 

challenging obstacle. Matching methods have rarely been applied to a continuous treatment. 

Researchers have proposed techniques to generalize the binary case to continuous treatments 

(Hirano & Imbens, 2004; Bia & Mattei, 2007; Fong, Hazlett & Imai, 2018); nevertheless, these 

                                                        
11 Otherwise, for each location, observations over time get matched to each other. 
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Figure 3. Average marginal effects with 95% CIs 



techniques come with some untrivial assumptions (Fong, Hazlett & Imai, 2018) which are not 

suitable for my purposes. 

Instead, I adopt the more common approach in applied social sciences and binarize my 

treatment. My binary treatment variable takes on the value 1 if location i at time t has a high 

inverse-road-distance-weighted average of conflict event incidences in the neighbourhood at 

time t-1 and zero otherwise. Formally, I define my treatment variable as 

Treatmenti,t = 1  if Sk¹i (1/dki)(incidence)k,t-1 > 90th percentile 

Treatmenti,t = 0  otherwise  

where dki is the road distance between locations k and i in kilometers. 

The choice of the cutoff value is based on the distribution of the treatment variable and is 

chosen to distinguish between observations with high and low spatiotemporal incidence lags.  

To make sure that my results do not depend on my choice of cutoff value, I repeated the exercise 

with different cutoff percentiles such as the 75th and the 95th, and obtained substantively similar 

results12. 

I then use the CEM to match my observations. I then run a probit regression with clustered 

errors at the county level on my matched sample. Table II below presents the results13. As can 

be seen, the estimated coefficients still associate events with state force casualties with higher 

risks of future events in the vicinity, while events with insurgency casualties are associated with 

lower risks of mayhem in the neighborhood in the longer runs. 

 

                                                        
12 Results available upon request. 
13 The results are very similar when socioeconomic controls are included (and they are available upon request) but 
please note that in this subsample they are already controlled for by matching.  

TABLE II.  Results of the probit regression on matched sample  

 

Unit of observation: 
County-month 

(1984-2018) 
Number of obs.: 

94206 

Unit of observation: 
County-quarter 

(1984-2018) 
Number of obs.: 

33029 

Unit of observation: 
County-halfyear 

(1984-2018) 
Number of obs.: 

15739 

Unit of observation: 
County-year 
(1984-2018) 

Number of obs.: 
11528 

 

Length of last peace spell -0.006** 
(-4.52) 

-0.015** 
(-5.96) 

-0.063** 
(-4.82) 

-0.076** 
(-4.22) 

 

Percentage of past time periods with conflict events 0.041** 
(8.81) 

0.034** 
(12.13) 

0.020** 
(15.64) 

0.019** 
(18.12) 

 

Inverse-distance-weighted state casualties in other 
counties in t-1 

1.387** 
(4.99) 

0.648** 
(3.97) 

0.890** 
(9.33) 

0.671** 
(8.90) 

 

Inverse-distance-weighted insurgent casualties in 
other counties in t-1 

0.182 
(1.51) 

0.064 
(1.14) 

-0.107** 
(3.86) 

-0.103** 
(4.16) 

 

State casualties in the county in t-1 0.096** 
(3.04) 

0.011 
(0.98) 

0.041** 
(3.57) 

0.035** 
(3.16) 

 

Insurgent casualties in the county in t-1 0.017 
(1.40) 

0.015* 
(2.20) 

0.012** 
(3.20) 

0.022** 
(4.19) 

 

County area in km squares 0.0001** 
(3.24) 

0.0002** 
(5.85) 

0.0001** 
(4.71) 

0.0001** 
(3.67) 

 

Percentage of mountainous terrain in rural area 0.001 
(0.79) 

0.002† 
(1.75) 

0.0003 
(0.36) 

0.001† 
(1.73) 

 

Border status  -0.086 -0.091 0.040 0.096†  



 

Conclusion 

Kalyvas (2008) applauds the emergence of the literature on micro-dynamics of civil 

conflicts as a very exciting development that deepens our understanding of political violence. 

But he also points out some recurrent flaws in the literature stemming from ‘insufficient 

theorization, superficial engagement with the case at hand and reliance on off-the-shelf 

datasets’ (p.398). My starting point in this study echoes Kalyvas’ criticisms specifically for the 

emerging literature on within-country diffusion of civil conflicts.  

I argue that existing works fail to acknowledge that conflict events can have incapacitating 

effects on warring sides. I tackle this shortcoming by hypothesizing that the geotemporal 

interdependency among conflict events is conditioned by the impact these events have on the 

operational capability of the sides of the conflict. I then test my hypotheses on a new and 

detailed event dataset on the long running civil conflict in Turkey. TPCONED has been in the 

making for more than a decade. It relies on a wide range of local sources from different political 

affiliations and views, and as such offers comprehensive, accurate, high resolution and unbiased 

coverage of the long running civil conflict between the Turkish state and the rebel organization 

PKK. I release TPCONED with the hope that it will be a valuable resource especially for in-

depth studies on micro-level dynamics of civil conflicts.  

One important point to note here is that the hypotheses tested in this study are about the 

diffusion patterns of irregular civil conflicts, and not about their outcomes or their level of 

violence. While the first hypothesis does imply that an irregular civil conflict is likely to 

continue and geographically expand as long as rebels are able to inflict damages on state forces, 

this implication does not allow us to conclude on a rebel victory in such conflicts. In fact, we 

know from cross-country studies that irregular civil conflicts do last long, but, because of the 

power asymmetry that characterizes them, are mostly won by incumbents (Balcells & Kalyvas, 

2014; Kalyvas & Balcells, 2010).  

Similarly, while the second hypothesis does imply that states can curb the geographical 

spread of conflict events by inflicting damages on the insurgents, this implication does not mean 

that states can resolve conflicts by going on a killing rampage. Military coercion, as the 

theoretical arguments and the empirical results here indicate, can be effective in containing or 

even extinguishing violence in the short run, but  it must be remembered that civil conflicts are 

(-0.94) (-0.91) (0.68) (1.74) 

Estimated parameters for seasonal and year dummies are not reported. 
Robust errors clustered at the county level. 
z-values in parenthesis. 
† p<0.1, * p<0.05, ** p<0.01.  

 



population-centric contests with social, political and economic dimensions. Insurgent 

organizations will have the ability to generate political support and continue their violent 

campaign as long as states fail in their counterinsurgency efforts to address those social, 

economic and/or political problems and to secure the loyalties of civilians. The Turkish case 

itself is a good example. Turkish security forces dealt a major blow to the PKK through their 

use of extensive military coercion in the 90s and even captured its leader Abdullah Öcalan in 

1999. The PKK then declared a unilateral ceasefire. Many commentators heralded this as the 

PKK’s defeat and as the end of the conflict (Bila, 2000; Cemal, 1999). However, because the 

Turkish governments failed to take the necessary steps to address the political, economic and 

social problems underlying the conflict, the organization easily recovered in the early 2000s 

and violence resumed.  

Finally, results must be tempered by the study’s limitations. First, it must be admitted that, 

rather than absolute numbers, the ratio of casualties to group size in each location at each time 

period provides a better measure of the extent of the damage on the operational capabilities of 

the sides. Not surprisingly though, for strategic purposes, no army or insurgent organization 

reveals such information, hence working with ratios remains as an ideal.  

Second, it must be emphasized that this is a single-case study. While the media coverage 

of ongoing conflicts around the world offers ample anecdotal evidence of the generalizability 

of results14, a comparative study is yet to be conducted. 

 

 

 

Replication data 

The dataset, codebook, and do-files for the empirical analysis in this article, along with the 

online appendix, can be found at http://www.prio.org/jpr/datasets. All statistical analyses were 

conducted using Stata15. TPCONED is available at the University of Warwick Research 

Archive Portal https://wrap.warwick.ac.uk/138227.   
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The geo-temporal evolution of violence in civil conflicts 

Online appendix 

A1. The data 

TPCONED (https://wrap.warwick.ac.uk/138227) is a dataset on the fatal events of the armed 

conflict between the rebel organization PKK and the Turkish state that took place on Turkish 

soil and in which there was at least one combatant casualty. It contains detailed information 

on 7063 conflict events with 17308 PKK casualties and 7514 state casualties over the course 

of the conflict in the 1984-2018 period15. For each event, the exact date, location at the county 

(town) level, location at the province level, number of TSF and PKK casualties, and the data 

sources are listed. Table A1 presents some basic descriptive statistics for the numeric 

variables. 

Table A1. Descriptive statistics  

Temporal coverage: 1984 - 2018 

Geographical coverage: Turkey 

Number of observations: 7063 

Variable Mean Standard deviation Minimum Maximum 

TSF casualties 1.06 2.06 0 66 

PKK casualties 2.45 6.34 0 174 

 

TPCONED relies on a wide range of local sources of information as listed below. The main 

source for each observation is listed under  the variable “mainsource” in the dataset, and the 

complete reference for each source is available on the References page in the TPCONED excel 

file (https://wrap.warwick.ac.uk/138227). 

1- The digital and hard copy archives of five major Turkish daily newspapers, Cumhuriyet, 

Milliyet, Hürriyet, Sabah, and Zaman. The digital archives of Milliyet, Hürriyet, Sabah 

and Zaman were available online on the websites of these newspapers. The online 

archive of Cumhuriyet was accessed through Sabancı University library. The hard copy 

archives were accessed and studied at the Ataturk Library in Istanbul.  

2- A 5-volume publication, named "Our Martyrs" (Şehitlerimiz), published by the Turkish 

Ministry of Defense in late 1998. The publication lists the names, ranks, and place of 

death of all Turkish soldiers that died in combat since 1918. The fifth volume contains 

the list of soldiers who died in the fight against the PKK in the August 1984-September 

                                                        
15 The dataset is continuously updated. Currently, events of 2020 are being coded. 



1998 period. In total, the list contains information on 5554 soldiers. This publication 

actually provides the most credible, and accurate information on Turkish military 

casualties of the period as the information is directly from the personnel records of the 

Turkish General Staff. 

3- Publications by local administrations, especially district governorships, 

commemorating their local security force casualties. Most of these “martyr albums” 

were published in 1998 on the occasion of the 75th anniversary of the Turkish Republic. 

They include information on local security force casualties and on the conflict events 

that claimed their lives. The list of these publications is available on the References page 

in the TPCONED excel file (https://wrap.warwick.ac.uk/138227). 

4- Monthly reports of the Directorate General of Press and Information of Turkish Prime 

Ministry. These reports (Ayın Tarihi) were available online however, the Directorate 

(and hence its website) was abolished with the switch to a presidential regime in Turkey 

in 2017. 

5- Issues of Serxwebun, a PKK publication (Serxwebun.org).  

6- Daily and yearly (1990-2016) Human Rights Reports by the Turkish Human Rights 

Association (tihv.org.tr). 

7- Web searches using the keywords terror, martyr, PKK, armed attack, insurgent, 

insurgency. Some 359 websites were referred. The list is available on the References 

page in the TPCONED excel file (https://wrap.warwick.ac.uk/138227). Most of these 

are websites of local administrations like district governorships, district and town 

municipalities, and village associations with pages commemorating and providing 

information on their local security force casualties. There are also websites by civil 

society organizations that are completely devoted to commemorate casualties. 

8- I have also contacted and worked with the Associations of Families of Martyrs (Şehit 

Aileleri Dernekleri) across Turkey. These associations are very common in Turkey. 

There is one in almost every city. They are civil society organizations founded by 

families of soldiers and police officers who died on duty. The aim is to help each other 

cope with the situation. Some of them are very active, and have their own websites 

containing information on those family members they had lost to the conflict. I 

contacted 28 of these associations and worked with them in verifying the conflict events 

and casualties. 



9- The Kurdish Insurgency Militants database (Tezcür, 2016). This database includes 

biographical information on 9,196 Kurdish militants who died while fighting in the 

ranks of the PKK between 1984 and 2016. 

(available at https://sciences.ucf.edu/politics/kps/kim-dataset/). 

10- The personnel archives of the General Directorate of Security (Turkish police forces). 

The public relations office of the Directorate was kind enough to provide the list of their 

casualties. 

11- I visited the "martyr cemeteries" in Ankara, Istanbul, and Bursa, three major cities in 

Turkey with more than a thousand security force casualties resting in their cemeteries. 

Note that the tombstones contain information on the date and place of death. 

12- The Gendarmerie Museum in Ankara proved to be an invaluable source of information 

with its extensive database on gendarmerie casualties. The museum also hosts an 

impressive monument at  its entrance in the form of a great wall on which names, places 

and dates of deaths of gendarmerie “martyrs” were carved. 

 

A2. Comparison of TPCONED with the UCDP-GED data 

Donnay et al. (2018) proposes using temporal and spatial windows to assess the overlap 

between data sets. In this section I adopt their proposed data set comparison methodology and 

systematically compare TPCONED with the UCDP-GED data on the Turkish-Kurdish conflict 

for the 1984-2018 period. I used a 10-day temporal window and considered adjacent (border 

sharing) counties as my spatial window. Table A2 summarizes how TPCONED compares to 

the UCDP-GED dataset.  
Table A2. Comparison with the UCDP-GED data TPCONED UCDP-GED dataset 

Number of observations 7063 4682 

Time span 1984-2018 1989-2018 

Spacial unit precision County level for all observations Only 20.6% of observations have exact location 
(a known point like a village, county or city); 
17% have a location within a 25 km radius 
around a known point; 17.5 % have a reference 
to a second order administrative division; 40% 
of observations have only a provincial 
reference; remaining 5.3%  have spatial 
references to large and fuzzy regions or to the 
whole country. 

Time unit precision Exact date (dd/mm/yy) for all observations. 88% of observations have exact date 
(dd/mm/yy). For the remaining 12%, the date is 
only known within a number of days ranging 
from 2 to  180. 

Overlapping observations within a 10-day 

temporal, and neighboring (border sharing) 

county spatial window 

 

3480 

 

Unmatched observations 3583 1202 



Nonmatches with explanation  

 

287 

(the 1984-1988 period which is not covered 

by the GED) 

1202 

(explanations below) 

 

 

Explanations for the 1202 unmatched GED observations: 

a. 685 of the 1202 unmatched GED observations (57%) have very broad and imprecise (4 

or above in GED time and place precision coding) spatial and/or temporal references. It 

is thus impossible to match them with reasonable accuracy with my data. 

b. 92 of the remaining 517 unmatched GED observations do not have any province or 

county listed even though their location precision coding indicates relatively precise  

location (4 or less in GED coding).  

c. 42 of the remaining 425 unmatched GED observations refer to a location outside Turkey 

(Syria, Iraq or Iran). 

d.  87 of the remaining 383 unmatched GED observations refer to events with no 

combatant casualties. TPCONED only includes events with combatant casualties.  

e. 4 of the 296 unmatched GED observations refer to clashes between the PKK and 

paramilitaries. My data set only includes encounters with the state forces and the PKK. 

I deliberately left out encounters between paramilitaries and the PKK from my data set 

because paramilitaries (they are called village guards in Turkey) are in fact civilians and 

their identities are of course not public. As such it is very difficult if not impossible to 

distinguish between civilian casualties and paramilitary casualties. And not 

surprisingly, it has not been uncommon for both the PKK and the Turkish state to 

proclaim civilian killings as paramilitary deaths. So, there is significant uncertainty 

surrounding such events. 

f. 12 of the 292 unmatched GED observations refer to terrorist attacks by other armed 

organizations like DEV-SOL or DHKPC. So, they are not part of the armed conflict 

between the Turkish state and the PKK. 

g. 12 of the 280 unmatched GED observations are double entries, i.e. they are either 

duplicates or parts of other matched GED observations. 

h.  4 of the 268 unmatched GED observations refer to killings of public servants (like 

prosecutors or teachers who in fact are civilians) by the PKK. 

i. 5 of the 264 unmatched GED observations refer to a location (village) that does not 

exist. 



j. 18 of the remaining 259 unmatched GED observations refer to a mountain or a river as 

location even though their location precision coding is less than 4. Thus, it is not 

possible to decipher the county information for these observations. 

k. Of the remaining 241 unmatched GED observations 117 have no “original source” 

listed. 105 observations have only the Turkish authorities  (Turkish state news agency, 

security forces, general staff, governors, etc.) listed as their original source, 7 of them 

list Turkish media sources as their original source of information. Only 12 observations 

list Kurdish media or PKK sources as their original source. Not surprisingly, while most 

of these events involve PKK casualties (as high as 76 casualties in some of them), 

Turkish security forces are reported to incur casualties in only  33 of them which 

indicates that there might be a source bias concerning these observations. Moreover, it 

is not possible to confirm any of those 33 events via the identity of TSF casualties 

because no such casualties at those dates and locations are listed or mentioned in any of 

the official and media resources that TPCONED refers to.   

 

A3. Model identification 

The biprobit model employed in this study is mathematically equivalent to a bivariate probit 

model with partial observability. This implies that identification requires  a restriction that 

affects only one of the equations (Xiang, 2010; Poirier, 1980). In his model of interstate conflict 

Xiang (2010) argues that  the control variables that are uncommon in the two equations serve 

as identification restrictions (p. 491). I have a similar but a much stronger argument for 

identification in my model. Note that the base risk equation (Z vector of covariates) includes 

a rich set of controls which depict the socioeconomic and political situation at the start of the 

armed conflict, and these (cross sectional) controls are unique to the base risk equation. These 

variables are all measurements taken at early 1980s, and thus, are geared towards taking the 

socioeconomic picture of the country (at the county level) right around the start of the armed 

conflict in order to understand the conditions that render certain areas ripe for the conflict. 

In contrast, the diffusion equation is mainly composed of within conflict dynamics, aimed at 

understanding those factors that facilitate geotemporal spillovers, and accordingly, the 

measurements for these panel variables all belong to the period after the start of the armed 

conflict. And similarly, these controls are unique to the diffusion equation. In total, the model 

includes some 55 control variables and only 2 of them (percentage of mountainous terrain in 



rural area, and border status) are common to both equations. The remaining 53 control 

variables, with 11 of them uniquely in the base risk equation and cross-sectionally measured 

right around the start of the conflict in 1984, and 42 of them uniquely in the diffusion equation 

with panel measurements belonging to the period after the start of the conflict, create the 

necessary restriction for identification.  

 

A4. Socioeconomic controls and the base risk of conflict 

The vector of covariates for base risk in my split population bi-probit model includes a rich set 

of controls which depict the socioeconomic situation at the start of the armed conflict. The 

data comes from a “village inventory” study conducted in 1981 by the Turkish Ministry of 

Agriculture and Rural Affairs, and the general census of 1985 which coincides roughly with the 

start of the armed conflict in August 1984. I control for percentage of mountainous rural area; 

percentage of farmers with no land; percentage of farmers with more than 100 acres of land; 

number of mosques per village; percentage of villages with no drinking water; percentage of 

villages with no electricity; and percentage of villages whose names were changed by the 

Turkish state; the unemployment and literacy rate, border status, Kurdish population 

percentages, and urbanization and population across counties.  

Land ownership is both an indicator of wealth and an indicator of political participation in 

rural areas. The Turkish state has a long tradition of using big land owners as its agents in the 

periphery. Since the foundation of the Republic, large landowners have been co-opted in 

politics by political parties (Tachau, 1973). The political dominance of agas (large landowners) 

within the Parliament and local party structures have been frequently noted by scholars of 

Turkish politics (Kudat, 1975; Meeker, 1972). Hence, I expect the state to establish better 

control and authority over rural areas where big land owners reside and thereby to reduce 

any political and military opportunity for organizing an insurgency (Holtermann, 2012). 

On the other hand, landless peasants can also be an important determinant of the 

underlying risk distribution as their presence is associated with economic grievances which  

create a more fertile recruitment ground for the insurgency (Holtermann, 2012).   

I also control for the number of mosques per village as mosques in Turkey have always 

been instrumental in establishing state control and disseminating state ideology over 

populations. In the context of the Turkish-Kurdish conflict, religious institutions have been 

used by the state to promote an encompassing Muslim identity over ethnic ones. Note that 



all imams in Turkey are public employees appointed from the center by the state. Not only 

that, their sermons are also prepared at and sent from the Directorate of Religious Affairs.  

The percentage of villages with no water and electricity are included to control for the 

infrastructure and services provided by the state. 

Another control I include is the percentage of villages whose names were changed by the 

state. The Turkish state had replaced the official names of a great deal of administrative units 

which originally had names in the native languages of local inhabitants from different ethnic 

groups, with new Turkish names as part of a Turkification strategy. I use the percentage of 

such villages across geographical units as a proxy for the intensity of ethnic discriminatory 

state policies. Ethnic discrimination is identified as an important factor that increases the 

vulnerability of a country to experience conflict (Metternich, Minhas & Ward, 2017; Cederman 

et al., 2013; Cederman, Wimmer & Min, 2010). I make a similar argument for within country 

distribution of conflict risk. 

Apart from the controls I derive from the 1981 village inventory study, I also control for 

the unemployment and literacy rate, border status, Kurdish population percentages, and 

urbanization and population across locations. The data for these controls comes from the 

1985 census except for the Kurdish population percentages which is an estimate I calculated 

based on prior scholarly work on the ethnic distribution of population in Turkey (Mutlu, 1996).  

Unemployment and literacy rates are indicators of economic development and welfare. I 

expect unemployment rate to be positively associated with the base risk of conflict since it is 

an indicator of economic grievances and the opportunity costs of joining a rebellion. Literacy 

rates can cut both ways. On one hand, illiterate populations are expected to be more 

religiously conservative, less politically aware, and less sensitive to social issues. On the other 

hand, one can expect opportunity costs of joining a rebellion to be lower for less educated 

people. 

I expect the distribution of ethnically Kurdish populations to be one of the most important 

determinants of base risk of conflict since the PKK is an ethnic insurgency founded with the 

goal of establishing a Kurdish state. Naturally, those areas inhabited by ethnically Kurdish 

populations are expected to make up the targeted “ethnic homeland”. Relatedly, ethnically 

Kurdish populations constitute the main support base for the insurgency.  

Border locations are also more likely to be targeted by insurgencies especially in cases 

where ethnic kins live on both sides of the border (Cederman, Girardin & Gleditsch, 2009; 



Cederman et al., 2013), or neighbours are sympathetic to the insurgents for various reasons 

(Salehyan & Gleditsch, 2007). In the Turkish case, neighbouring countries like Syria and Iraq 

host large Kurdish populations. Moreover, these countries have weak states with limited 

ability to control their territories and borders.  

I expect urban areas to carry less risk since insurgencies mostly target rural areas with 

limited state reach. I also control for population as more populous locations are expected to 

have a higher risk of conflict (Weidman & Ward, 2010). 

Finally, I control for the percentage of mountainous rural areas. There exists ample 

empirical evidence that difficult terrains provide fertile grounds for civil conflicts (Fearon & 

Laitin, 2003; Do & Iyer, 2010; Weidman & Ward, 2010; Zhukov, 2012; Holtermann, 2016). 

Table A3 presents the descriptive statistics for the socioeconomic controls included in the 

analyses. 
TABLE A3. Descriptive statistics of socioeconomic controls 
 
 

Mean Standard 
deviation 

Range 

County area in km squares 1025.9 704.1 [11-6585] 

Percentage of mountainous terrain in rural area 50.4 27.2 [0-100] 

Border status  0.07 0.26 [0-1] 

Percentage of villages whose names were changed by the state 32.7 30.7 [0-100] 

Percentage of landless farmers 27.4 14.4 [0-76] 

Percentage of farmers with more than 100 acres of land 10.1 12.7 [0-77] 

Number of mosques per village 0.96 0.44 [0-4.3] 

Percentage of villages with no drinking water 12.9 13.8 [0-87] 

Percentage of villages with no electricity 46.3 36.1 [0-100] 

Percentage of ethnically Kurdish population 16.2 24.5 [0.1- 85] 

Urbanization rate 32.7 19.4 [6-100] 

Literacy rate 71.8 12.5 [29-93] 

Unemployment rate 3.5 2.6 [0.2-20] 

Population in 10 thousand 6.9 9.6 [0.4-100] 

 

Figure A1 plots the base risk across counties predicted by these variables along with the actual 

distribution of total combatant casualties. As the two maps reveal, the model accurately 

points to the southeastern part of the country as the conflict zone. 

 



  

 

Figure A1. Comparison of the estimated base risk with the actual distribution of combatant casualties 

 

Table A4 reports the estimated average marginal effects from the main split population 

biprobit model in order to give a better understanding of the relative substantive significance 

of the estimates parameters. 

 
TABLE A4. Marginal effects in percentages 

 

County-
month 
dy/dx 

County-quarter 
year 

dy/dx 

County-half year 
dy/dx 

County-year 
dy/dx 

Length of last peace spell -0.0001** 
(-10.97) 

-0.0005** 
(-11.65) 

-0.003** 
(-5.65) 

-0.003* 
(-2.19) 

Percentage of past time periods with conflict events 0.001** 
(9.88) 

0.001** 
(16.73) 

0.001** 
(10.96) 

0.001** 
(8.62) 

Inverse-distance-weighted state casualties in other 
counties in t-1 

0.030** 
(7.06) 

0.025** 
(6.20) 

0.071** 
(6.08) 

0.069** 
(8.41) 

Inverse-distance-weighted insurgent casualties in 
other counties in t-1 

0.002† 
(1.90) 

-0.003* 
(-2.09) 

-0.007** 
(-2.96) 

-0.013** 
(-5.24) 

State casualties in the county in t-1 0.002** 
(6.65) 

0.002** 
(5.26) 

0.003* 
(2.18) 

0.013** 
(2.82) 

Insurgent casualties in the county in t-1 0.0005* 
(2.53) 

0.0005** 
(2.99) 

0.001** 
(3.10) 

0.006** 
(2.69) 

County area in km squares 0.000002** 
(4.00) 

0.000003** 
(3.52) 

0.000004* 
(2.51) 

0.000006** 
(2.65) 

Percentage of mountainous terrain in rural area 0.0001** 
(2.86) 

0.0001** 
(3.21) 

0.0002** 
(2.66) 

0.0003** 
(2.82) 

Border status  0.003** 
(2.65) 

0.005* 
(2.49) 

0.012** 
(2.97) 

0.019** 
(3.45) 

Percentage of villages whose names were changed by 
the state 

0.00003*  
(2.24)                        

0.00004*   
(2.34)                        

0.0002*   
(2.32)                        

0.0002*   
(2.17)                        

Percentage of landless farmers 0.00006*  
(2.26)   

0.00004   
(1.46)   

0.0003**   
(3.02)   

0.0004**   
(3.26)   

Percentage of farmers with more than 100 acres of 
land 

-0.001*  
(2.42)   

-0.0001*   
(3.15)   

-0.0004*   
(3.00)   

-0.0006*   
(3.25)   

Number of mosques per village -0.003*   
(2.41)   

-0.001†   
(1.66)   

-0.011**   
(3.03)   

-0.013**   
(2.94)   

Percentage of villages with no drinking water 0.00002   
(1.01)   

-0.00001   
(-0.71)   

0.0001   
(-0.98)   

0.0001   
(1.30)   

Percentage of villages with no electricity 0.00002†   
(1.69)   

0.00002   
(1.47)   

0.0001*   
(2.50)   

0.0002*   
(2.21)   

Percentage of ethnically Kurdish population 0.0001**  
(5.05)   

0.0004**   
(5.86)   

0.0003**   
(3.93)   

0.0006**   
(4.26)   

Urbanization rate -0.00004 
(1.09)   

-0.00002 
(0.56)   

-0.0002 
(1.47)   

-0.0001 
(0.64)   



Literacy rate 0.00004   
(0.83)   

-0.00007   
(1.01)   

0.0002   
(1.17)   

0.0002   
(0.93)   

Unemployment rate 0.0005*   
(1.97)   

0.0005*   
(2.20)   

0.002*   
(2.25)   

0.002*   
(1.97)   

Population in 10 thousand 0.00008†   
(1.67)   

0.00006**   
(2.81)   

0.0006*   
(1.98)   

0.0007**  
(3.44)   

Estimated parameters for seasonal and year dummies are not reported. 
† p<0.1, * p<0.05, ** p<0.01.  
z-values in parenthesis. 

 

A5. Results from a logit model 

Table A5 presents the estimated odds ratios under a simple logit model with clustered errors 

at the county level. The model includes the same controls as the main biprobit model. 

 
TABLE A5. Logit results, odds ratios 

 

 

Unit of observation: 
County-month 

(1984-2018) 
Number of obs.: 

266845 

Unit of observation: 
County-quarter year 

(1984-2018) 
Number of obs.: 

88734 

Unit of observation: 
County-half year 

(1984-2018) 
Number of obs.: 

44367 

Unit of observation: 
County-year 
(1984-2018) 

Number of obs.: 
21862 

Length of last peace spell 0.988** 
(-13.77) 

0.971** 
(-11.72) 

0.892** 
(-8.28) 

0.875** 
(-4.54) 

Percentage of past time periods with conflict 
events 

1.056** 
(10.11) 

1.042** 
(13.39) 

1.025** 
(10.52) 

1.018** 
(8.18) 

Inverse-distance-weighted state casualties in 
other counties in t-1 

6.275** 
(9.13) 

2.996** 
(6.89) 

5.256** 
(10.08) 

3.030** 
(7.75) 

Inverse-distance-weighted insurgent casualties 
in other counties in t-1 

1.156* 
(2.33) 

0.867** 
(-2.77) 

0.878** 
(-2.63) 

0.854** 
(-3.50) 

State casualties in the county in t-1 1.116** 
(5.48) 

1.071** 
(4.72) 

1.060** 
(2.83) 

1.078** 
(3.48) 

Insurgent casualties in the county in t-1 1.022** 
(3.39) 

1.020** 
(2.71) 

1.023** 
(3.20) 

1.038** 
(3.78) 

County area in km squares 1.0001† 
(1.87) 

1.0001* 
(2.27) 

1.0001* 
(2.52) 

1.0002** 
(3.29) 

Percentage of mountainous terrain in rural area 1.005† 
(1.93) 

1.005* 
(2.23) 

1.006* 
(2.454) 

1.007** 
(2.94) 

Border status  1.236* 
(1.96) 

1.288* 
(2.32) 

1.435** 
(3.20) 

1.617** 
(3.88) 

Percentage of villages whose names were 
changed by the state 

1.004† 
(1.93) 

1.006* 
(2.54) 

1.006** 
(3.08) 

1.008* 
(3.14) 

Percentage of landless farmers 1.008** 
(3.27) 

1.009** 
(3.20) 

1.009** 
(3.07) 

1.012** 
(3.49) 

Percentage of farmers with more than 100 acres 
of land 

0.986** 
(-2.84) 

0.987** 
(-2.82) 

0.988** 
(-2.84) 

0.986** 
(-3.07) 

Number of mosques per village 0.681** 
(-4.11) 

-0.683 
(-4.30) 

0.664** 
(-4.33) 

0.649** 
(-3.93) 

Percentage of villages with no drinking water 1.003 
(0.80) 

1.002 
(0.85) 

1.003 
(0.95) 

1.003 
(0.91) 

Percentage of villages with no electricity 1.008** 
(3.27) 

1.008** 
(3.39) 

1.008 
(3.39) 

1.006** 
(2.85) 

Percentage of ethnically Kurdish population 1.018** 
(6.77) 

1.017** 
(5.98) 

1.011** 
(3.89) 

1.014** 
(4.19) 

Urbanization rate 0.986** 
(-3.28) 

0.986** 
(-3.12) 

0.988* 
(-2.61) 

0.989* 
(-2.01) 

Literacy rate 1.009† 
(1.68) 

1.009† 
(-1.70) 

1.008 
(1.55) 

1.011† 
(1.84) 

Unemployment rate 1.107** 
(4.55) 

1.116** 
(4.60) 

1.106** 
(4.00) 

1.104** 
(3.57) 

Population in 10 thousand 1.022** 
(6.79) 

1.022** 
(6.99) 

1.024** 
(6.95) 

1.024** 
(6.14) 

Estimated parameters for seasonal and year dummies are not reported. 
Standard errors are clustered at the county level. 
† p<0.1, * p<0.05, ** p<0.01.  
z-values in parenthesis. 
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