

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/140402

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/328778468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/140402
mailto:wrap@warwick.ac.uk

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. VOL, NO. NO, MONTH YEAR 1

Feluca: A Two-Stage Graph Coloring Algorithm
with Color-centric Paradigm on GPU

Zhigao Zheng, Xuanhua Shi†, Ligang He, Hai Jin, Shuo Wei, Hulin Dai, Xuan Peng

Abstract—There are great challenges in performing graph coloring on GPU in general. First, the long-tail problem exists in the
recursion algorithm because the conflict (i.e., different threads assign the adjacent nodes to the same color) becomes more likely to
occur as the number of iterations increases. Second, it is hard to parallelize the sequential spread algorithm because the color
allocation depends on the adjoining iteration. Third, the atomic operation is widely used on GPU to maintain the color list, which can
greatly reduce the efficiency of GPU threads.
In this paper, we propose a two-stage high-performance graph coloring algorithm, called Feluca, aiming to address the above
challenges. Feluca combines the recursion-based method with the sequential spread-based method. In the first stage, Feluca uses a
recursive routine to color a majority of vertices in the graph. Then, it switches to the sequential spread method to color the remaining
vertices in order to avoid the conflicts of the recursive algorithm. Moreover, the following techniques are proposed to further improve
the graph coloring performance. i) A new method is proposed to eliminate the cycles in the graph; ii) a top-down scheme is developed
to avoid the atomic operation originally required for color selection; and iii) a novel color-centric coloring paradigm is designed to
improve the degree of parallelism for the sequential spread part. All these newly developed techniques, together with further
GPU-specific optimizations such as coalesced memory access, comprise an efficient parallel graph coloring solution in Feluca. We
have conducted extensive experiments on NVIDIA GPU. The results show that Feluca can achieve 1.19 – 8.39× speedup over the
state-of-the-art algorithms.

Index Terms—Graph Coloring, GPGPU, Parallelism, Color-centric Paradigm, Pipeline.

F

1 INTRODUCTION

G IVEN a graph G = (V,E), where V is the set of
vertices and E ⊂ V × V is the set of edges. Two nodes

v1, v2 ∈ V are regarded as being adjacent to each other if
(v1, v2) ∈ E, i.e., an edge exists between v1 and v2. Let
C be a set of colors. Graph coloring is a task of assigning
each vertex v ∈ V a color c ∈ C such that there are no
two adjacent vertices which have the same color and the
number of different colors used, |C|, is as small as possible.
Graph coloring is widely applied to the problems such as
resource allocation and scheduling, time-tabling [1], register
allocation & spilling [2], and puzzle-solving (Sudoku) [3].

The smallest number of colors that is needed to color
a graph is called Chromatic number, χ(G) [4]. Determining
χ(G) is an “NP-complete” problem. Hence, a practical ap-
proach to such a computationally intractable problem is to
relax the optimality constraint and find the “near-optimal”
solution [5]. Suppose A is a coloring algorithm, and A(G) is
the number of colors used by algorithm A on graph G. The
near-optimal solution can be defined as: finding an efficient
coloring algorithm A such that A(G)/χ(G) is close to 1.

• Zhigao Zheng, Xuanhua Shi, Hai Jin, Shuo Wei, Hulin Dai and Xuan
Peng are with National Engineering Research Center for Big Data
Technology and System / Services Computing Technology and System
Lab, Huazhong University of Science and Technology, Wuhan 430074,
China.
E-mail: {zhengzhigao,xhshi,hjin,weishuo,hulindai,piecesix}@hust.edu.cn

• Ligang He is with the Department of Computer Science, University of
Warwick, United Kingdom.
E-mail: ligang.he@warwick.ac.uk

†: Corresponding Author.
Manuscript received Month Date, Year; revised Month Date, Year.

Several research studies have been conducted to use the
heuristics and greedy approaches to perform near optimal
coloring [6]. However, due to the burgeoning size of real-
world graphs, even the algorithms with the linear times
need to resort to parallel computing to achieve practical
solving times. Furthermore, the solving speed (i.e., perfor-
mance) of a near-optimal algorithm typically contradicts
its solving quality. Therefore, it is important to strike a
balance between performance and quality for the designed
algorithms. This paper aims to design an efficient parallel
coloring algorithm that is able to find near optimal solu-
tions.

The Graphic Processing Unit (GPU) is a promising de-
vice to accelerate graph coloring on large scale graphs,
thanks to its massive degree of parallelism and high mem-
ory access bandwidth. However, inherent issues in graph
processing such as random memory accesses and workload
imbalance make it very challenging to fully utilize the
parallel computing power of GPU [7], [8], [9], [10], [11], [12],
[13]. A significant amount of work has been carried out to
develop new data layout models [14], graph programming
models (GAS, BSP), memory access patterns, workload
mapping in order to optimize graph processing on GPU
[15], [16], [17], [18], [19]. In graph coloring, although recent
attempts [20], [21] have been made, unleashing the full
power of GPU to achieve high-performance graph coloring
still remains a great challenge.

In this paper, we propose a two-stage graph coloring al-
gorithm, called Feluca, which is custom-designed to unleash
the full potential of GPU. In the first stage, Feluca adopts a
recursive coloring algorithm to color a majority of vertices

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. VOL, NO. NO, MONTH YEAR 2

in a small number of iterations. To avoid the long tail
phenomenon with the recursive coloring approach, Feluca
switches to the sequential spread approach in the second
stage. Moreover, Feluca proposed the following techniques
to further improve the graph coloring performance and
comprise an efficient parallel graph coloring solution.

1) We present a two-stage coloring algorithm on GPU,
Feluca, which combines the recursive approach (the
first stage) with the sequential spread approach (the
second stage).

2) We design a cycle elimination method to ease the
process of spreading the color value in Feluca.
Specifically Feluca changes the directed edge <
vi, vj > to < vj , vi > if i > j, so as to eliminate
the cyclic paths in a graph and avoid the infinite
loops caused by cyclic sub-graphs. Based on the
cycle elimination technique, we design a top-down
color selection scheme to select the suitable colors
from the color array sequentially. Most existing
color selection schemes generate many atomic op-
erations to ensure the correctness of the algorithms.
In order to improve the efficiency of color selection,
we propose a continuous top-down color selection
scheme to select next color of the current vertex for
the conflicting vertex.

3) We design a color-centric paradigm to improve
the degree of parallelism for the sequential spread
stage. We allocate thread block(s) to process a color
and organize these blocks in pipeline. With this
pipeline mechanism, the results of the (i − 1)th

iteration can be easily used by the ith iteration.
4) We design a set of evaluation schemes for Feluca.

The experimental results show that Feluca outper-
forms the existing state-of-the-art algorithms by up
to 8.39× on GPU.

The rest of this paper is organized as follows: Section 2
demonstrates the performance problem of graph coloring
algorithm on GPU and discusses the motivation of this
research. Then the algorithm design is presented in Section
3. Section 4 presents the optimization strategies for the pro-
posed graph coloring algorithm. The overall performance
of Feluca is evaluated in Section 5. Section 6 discusses
the related work and Section 7 concludes the paper and
discusses future research opportunities.

2 MOTIVATION

In this section, we demonstrate the main problem when run-
ning the graph coloring algorithms on GPU, which motivate
us to develop Feluca.

According to previous studies, the graph coloring al-
gorithms can be divided into several categories, in which
sequential spread and recursion are most often used [22], [23],
[24].

The basic idea of the sequential spread algorithm is
to traverse the entire graph using the algorithms such as
greedy coloring, and check the vertex’s color one by one.
These algorithms proceed in synchronized steps and use the
threads to work on the active vertices. A crucial attribute

of a synchronous computing model is the number of syn-
chronized steps. An algorithm that has a less number of
synchronized steps delivers the better performance.

In the sequential spread model, each synchronized step
can be divided into three phase. In the first phase, the col-
ored vertices need to send their colors to their neighbouring
vertices. In the second phase, the neighbours receive the
message about the colors and then in the third phase, the
neighbours execute the local computation. However, we ob-
served from our benchmarking experiments that although
the number of synchronized steps is large, there are only a
small number of active vertices in each step. Moreover, it is
difficult to run this execution model in parallel, because the
active vertices in current iteration can be colored only when
the results of previous iterations are known.

The other type of graph coloring algorithms employs
the recursive execution, which works in a similar way as
PageRank. High performance recursion-based graph color-
ing algorithms have been developed in recent works [20],
[25]. In this coloring model, every vertex is assigned a color
at the beginning. Then every vertex sends its color value
to its neighbours. Next, the neighbouring vertex updates its
color if the color conflicting occurs (i.e., the neighbouring
vertices have the same color).

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

co
lo
re
d
ve
rt
ic
es

x
10

00
0

iterations

Colored vertices in each iteration

dblp youtube web‐stanford

(a) Colored vertices

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26iterations

the ratio of the number of conflicting vertices to the
number of active vertices in each iteration

dblp youtube web‐stanford

(b) Vertices conflict rate

Fig. 1: The number of colored vertices (Figure 1a) and the
ratio of the number of conflicting vertices to the numberof
active vertices (figure 1b) as the graph coloring process
progress through each iteration.

The colors of most vertices converge in the first few
iterations. The remaining small fraction of vertices take a
long time to converge to the final color due to color conflicts.
This long-tail phenomenon can be demonstrated from the
following benchmark experiments. We ran the experiments
on a NVIDIA Tesla P100 GPU, which is equipped with

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. VOL, NO. NO, MONTH YEAR 3

16 GB on-board memory, 3,584 CUDA cores, and Red Hat
Enterprise Linux Server release 6.2 (Linux version 3.10.0-
514.el7.x86 64). As shown in figure 1a, the number of ver-
tices that are colored in each iteration drops dramatically in
the first few iterations (i.e., these vertices converge to their
final colors) and only a very small fraction of vertices are
active in a large number of remaining iterations. Take the
youtube dataset as an example. There are 1,157,828 vertices
in total. 1,148,571 vertices converge in the first 2 iterations,
while the remaining 9,257 vertices take more than 30 itera-
tions to converge. We also plot the ratio of the number of
conflicting vertices to the number of active vertices in each
iteration, shown in figure 1b. The ratio is only 4% in the first
iteration, and increases to 92.3% in the 26th iteration. These
results suggest the recursion algorithm is very effective in
the first few iterations, but does not conduct much useful
work in the remaining iterations.

We have shown that a single coloring strategy in the
entire execution may be problematic because the conflict
always exists and can be dramatically different in each
iteration. This motivates us to develop an adaptive and
hybrid algorithm for graph coloring, where the coloring
mode changes adaptively and automatically at different
stages, aiming to achieve the best overall performance.

3 ALGORITHM DESIGN

This section presents the design philosophy and describes
the algorithm in Feluca.

3.1 Design Philosophy

Graph coloring is widely used to partition the connected
tasks in many parallel applications. The connected tasks
are partitioned into independent tasks, which can then be
executed concurrently. There are two basic objectives in the
graph coloring work: a) reducing the number of colors, and
b) improving the partition speed. If the tasks represented
by the vertices in the graph are computationally expensive,
then typically the objective of the graph coloring is to use
as few colors as possible. Since the tasks with the same
color can be run in parallel, the graph coloring with this
objective can help achieve the highest average degree of
parallellism for the set of tasks in the graph. This objective
represents the effectiveness of the coloring algorithm. A
large amount of works have been carried out regarding this
coloring objective [26], [27], [28].

On the other hand, if the tasks in the graph are fairly
small and one has to find new graph coloring results re-
peatedly, then the time spent by graph colorings may take
up a significant portion of the entire computation time. In
these types of application, the coloring efficiency is more
important than the coloring effectiveness. There are some
works with respect to this objective recently [29], [30], [31],
[32]. In this paper, we focus on the second objective.

In this work, we present a high performance graph
coloring algorithm on GPU, the fundamental idea of which
is to combine the advantages of the recursion and the
sequential spread model and avoid their drawbacks (as
discussed in the motivation section). Hence, the target of our
algorithm is to maintain the coloring effectiveness (resulting

in a coloring plan no worse than the existing research) while
improving the coloring efficiency (coloring the graphs faster
than current methods). The fundamental strategy of our
method is to color as many vertices as possible in a round
and avoid the conflicts.

In order to meet the above objectives, There are two
stages in Feluca. It starts with the recursion execution
model, which can color a majority of vertices in the first
few iterations, and then switches to the sequential spread
execution model once there are too many conflicts occurring.
We also propose a novel color-centric coloring paradigm to
improve the degree of parallelism in the sequential spread
stage.

Further, we develop several optimization techniques in-
cluding the top-down coloring scheme and the cycle elimi-
nation method, which is presented in Section 4.

3.2 Two-Stage Graph Coloring Algorithm
The coloring processing starts on the host. The color array
and the graph topology data are then loaded on GPU for
coloring. The two-stage graph coloring algorithm is outlined
in algorithm 1.

Algorithm 1 Feluca: A High-Performance Graph Coloring
Algorithm

Require: Graph, G; fraction
Ensure: Graph coloring plan, COLORS; and the colors

color num used for coloring graph G;
1: function RECURSIONEXEC(G)
2: C(G)← init color randomly(G);
3: while coloredvertices

Totalvertices ≤ fraction do in parallel
4: while vj ∈ Vi && i < j do
5: if ci == cj then
6: update cj ;
7: end if
8: end while
9: if coloredvertices

Totalvertices > fraction then
10: while vj ∈ Vi && i < j do
11: if ci == cj then
12: ConflictQueue.enqueue(vj);
13: end if
14: end while
15: SequentialExec(ConflictQueue);
16: end if
17: end while
18: end function
19: function SEQUENTIALEXEC(ConflictQueue)
20: while ConflictQueue do in parallel
21: while c ∈ C and c is available do
22: if vi /∈ nbor(vj) then
23: ConflictQueue.dequeue(vi);
24: end if
25: end while
26: end while
27: end function

In Feluca, we maintain a read-only color array, denoted
by COLORS, which can be visited by all threads. The pa-
rameter fraction is the colored vertex rate in the recursion
stage, which can be set by the user or the algorithm itself. In

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. VOL, NO. NO, MONTH YEAR 4

Section 5, the experiments are carried out to obtain a suitable
value of fraction. In our algorithm, we initialize the colors
of all the vertices in COLORS randomly. We define Vi as the
set of neighbours of vertex vi and ci as the color of vi. In
the recursion loop, vertex vi broadcast its own color ci to
its neighbours in Vi following the edges’ directions. Once
vertex vj ∈ Vi receives the color from vertex vi, it compares
its color cj with ci. The comparisons conducted by different
vertices are conducted in parallel. If cj = ci, vj selects a new
color from the COLORS array and updates cj . The process
repeats until the colors of all vertices in Vi are different with
the color of vi.

In the sequential spread stage, Feluca generates a block
of threads and scans the remaining vertices in parallel to
find the suitable vertices for each color. In order to improve
the degree of parallelism for this algorithm and avoid the
conflicts, Feluca assigns a block of threads for each color.
The thread blocks for different colors are put into execution
in a pipeline. The late blocks can use the coloring results of
the early blocks in the pipeline. By doing so, the conflicts in
the sequential spread model can also be avoided.

Ni and ti denote the colored vertices and the time spent
in iteration i. si = Ni/ti can then be used to express the
coloring speed in iteration i. The coloring rate (i.e., the
percentage of the vertices that have been colored) up to
iteration i can be expressed by Equation 1, where N is the
total number of vertices in the graph.

Feluca switches to the sequential spread coloring method
once the color rate (λ) in the recursion stage is lower than
the value of the parameter fraction. T denotes the total
coloring time.We can have T =

∑r
i=1 ti +

∑r+q
j=r+1 tj , where

r is the number of iterations in the recursion stage while q
is the number of iterations in the sequential spread stage.
Hence, we can express the coloring time as formula 2.

λ =

∑i
j=1Nj

N
(1)

T =
r∑

i=1

ti +

r+q∑
j=r+1

tj =
r∑

i=1

Ni

si
+

r+q∑
j=r+1

Nj

sj
(2)

r∑
i=1

Ni

srmax
+

r+q∑
j=r+1

Nj

ssmax
≤ T ≤

r∑
i=1

Ni

srmin
+

r+q∑
j=r+1

Nj

ssmin

(3)
Furthermore, we use srmin, srmax and ssmin, ssmax to

denote the minimum and maximum value of the coloring
speed at recursion and sequential spread stage, respectively.
Then we can express T as formula 3.

Combining equation 1 and formula 3, we can have
formula 4.

λ×N
srmax

+
(1− λ)×N

ssmax
≤ T ≤ λ×N

srmin
+

(1− λ)×N
ssmin

(4)

Formula 4 indicates that T can be formulated as the form
of function over λ shown in formula 5, where sr and ss
are the coloring speed in the recursion stage and sequential
spread stage, and tr ts are the coloring time spent in the
recursion stage and sequential spread stage, respectively,

and f1(tr) and f2(ss) are the functions that takes sr (or
tr) and ts as input, respectively.

T = λf1(sr)+(1−λ)f2(ss) = λf1(
N

tr
)+(1−λ)f2(

N

ts
) (5)

It can be seen from equation 5 that finding a minimum
T is a convex optimization problem. When the color rate
λ is higher than fraction, the graph coloring in Feluca
switches from the first stage (recursion) to the second stage
(sequential spread). In section 5, we will carry out the
experiments to obtain a suitable threshold value fraction
for λ.

4 OPTIMIZATION TECHNIQUES

In this section, we present the optimization techniques to
improve the algorithm efficiency.

4.1 Cycle Elimination Method and Top-down Coloring
Scheme

When the recursion-based coloring algorithm works on
cyclic graphs, it is easy to fall into an infinite loop since
the algorithm runs following the edge’s direction. In order
to solve this problem, we develop a method in Feluca to
eliminate the cyclic paths in the directed graphs. In the
method, Feluca checks all the vertices vj ∈ Vi (i.e., the set of
neighbours of vertex vi) before coloring vi, and changes the
edge < vi, vj > to < vj , vi >, if i > j. For example, the edge
< v4, v1 > in figure 2a is changed to < v1, v4 > in figure
2b. The change of edge direction does not affect the coloring
plan. For example, these two coloring scheme in figure 2a
and figure 2b are regarded as same.

The color selecting scheme is the most important part of
a graph coloring algorithm. A sophisticated color selecting
scheme can reduce the number of colors. However, it is often
hard to parallelize these color selecting algorithms, and the
color conflicting may slow down the coloring process. On
the contrary, a simple color selecting algorithm may be
parallelized easily, but often leads to a huge color set in the
final coloring plan.

13

7

8

11

3

4
1

5 6
2

9

10

7

8

11

3

4
1

5 6
2

9

10

(a) Cyclical graph coloring

13

7

8

11

3

4
1

5 6
2

9

10

7

8

11

3

4
1

5 6
2

9

10

(b) Acyclic graph coloring

Fig. 2: Coloring scheme for cyclical graph and acyclic graph.

In Feluca, a top-down color selection scheme is proposed
to select the suitable color for the conflicting vertices. This
scheme can avoid the atomic operations fully. As presented
earlier in this section, we have transformed the graph to a di-
rected acyclic graph (DAG). Our top-down coloring scheme
starts coloring from the top level (root) of the graph, and
traverses the graph in the same way as the BFS (Breadth-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. VOL, NO. NO, MONTH YEAR 57

8

11

3

4
1

5 6
2

9

10

7

8

11

3

4
1

5 6
2

9

10

[1 2 3 4 5 6 7]
COLORS

NeighborColors
[2 7]

61

23

19100

Available Color Selected Color

Fig. 3: The top-down coloring scheme in Feluca. “COLORS”
and “NeighborColors” are the color array for the whole graph
and the temporary array for the colors which are just used
in iteration i − 1, respectively. The “Selected color” is the
color selected by Feluca for vertex 100 in iteration i. The
“Available Color” is the first color which can be used to
color vertex 100.

First-Search) algorithm. There are often multiple vertices
in a graph level, which are colored by multiple threads in
parallel. After a level of vertices are colored, the coloring
scheme moves onto the next level in the DAG graph (hence
a top-down coloring scheme), and the computation moves
into next iteration. The process repeats until all vertices have
been colored.

A color array COLORS is used to hold all used colors,
and a temporary array NeighborColors with the fixed length
is used to hold the colors which are used by the neighbours
of the current vertex. In our implementation, we allocate
two bytes for the NeighborColors array to store the mini-
mum and maximum color (i.e., the colors with minimum
and maximum IDs) of the neighbors. By only traversing
the COLORS array once Feluca can find the candidate color
for current vertex in the COLORS array from the minimum
color to the maximum color recorded in the NeighborColors
array. When a new color has to be used for a vertex, the new
color is appended to the end of the color array. After a thread
has colored a vertex in a level, Feluca finds the neighbours of
a vertex following its outgoing edge. The neighbours are the
vertices in the next level, which are also the vertices ready to
be colored in next iteration. When a thread is trying to color
a vertex in an iteration (suppose in iteration i), it checks
the array NeighborColors, which is constructed and assigned
to the vertex’s parents in last iteration (iteration i − 1), in
the following way. Suppose the length of NeighborColors
is len, Feluca goes through NeighborColors. If there exists
a color c = NeighborColorsj + 1, 0 < j < len, where
c < NeighborColorslen−1, then Feluca will assign color c to
this vertex. Otherwise, Feluca assigns to this vertex the color
that is immediately after the last color among all parents’
colors in the color array.

An example is illustrated in figure 3 to show how our
top-down coloring scheme works. In figure 3, suppose the
graph coloring is currently in iteration i, the array Neighbor-
Colors with the fixed length of 2. It can be seen from figure 3
that vertices 19, 23 and 61 are the parents of current vertex
100. Therefore when the coloring scheme colored vertices
19, 23 and 61 in iteration i − 1 (assume the colors assigned
to vertices 19, 23 and 61 are the 2nd, 5th and 7th color in
the color array COLORS, respectively, as shown in figure
3), it followed the edges < 19, 100 >, < 23, 100 > and
< 61, 100 > to find that vertex 100 is a vertex to be colored
in iteration i. Now suppose the coloring scheme is trying to

color vertex 5 in iteration i. Our coloring scheme realizes
that vertices 19, 23 and 61 are the parents of 100. Then,
it stores the colors that are just used into NeighborColors
(NeighborColors stores all colors that are just used if it is long
enough; otherwise, it stores the colors that has the lowest
and highest color number). Our coloring scheme will check
if the colorNeighborColors[j]+1 is in NeighborColors or not,
where 0 ≤ j ≤ NeighborColors.length − 1. It will assign
the color NeighborColors[j] + 1, which is the 3rd color in
the color array, to vertex 100 when NeighborColors[j]+1 /∈
NeighborColors. Our coloring scheme only needs to check
the colors of the parents assigned in last iteration, which
is stored in NeighborColors, to find a suitable color for the
current active vertex, while the traditional coloring scheme
would search the whole color array to find the first available
color, which would assign the 1st color in the color array
COLORS (labeled with “Available Color” in figure 3) to
vertex 100 in this example. Our color chosen scheme only
focuses on the current vertex and its parent vertices colored
in last iteration. This design enables the GPU threads to
update the colors of their current vertices in parallel without
atomic operation/lock.

4.2 Color-centric Coloring Paradigm

When GPU is used to accelerate graph processing, threads
in GPU are organized in a grid and all the threads in a grid
execute the same kernel function. The threads running a
kernel are organized in a two-level hierarchy: a grid consists
of a number of thread blocks and each block comprises
a set of threads. It is a great challenge to parallelize the
sequential spread coloring, because coloring the vertices in
iteration i depends on the results of iteration (i − 1). In
order to improve the degree of parallelism of the sequential
spread stage in Feluca, we proposed a new coloring scheme,
called the color-centric scheme. The traditional algorithm
for sequential pread coloring is vertex-centric, i.e., finding a
suitable color for each vertex. In our color-centric scheme,
we find all suitable vertices for each color, which is pre-
sented in detail next.

After the first coloring stage (the recursion stage) is fin-
ished, we record all the remaining vertices which have not
converged to the final colors yet (called uncolored vertices).
In the color-centric scheme, for each color, we generate a
thread block to find in the list of remaining un-colored
vertices all vertices that can be assigned with this color.
A thread block starts with the uncolored vertices in the
first graph level, and moves down the graph levels until
all uncolored vertices have been colored.

In the color-centric scheme, different thread blocks find
vertices for different colors in parallel. We develop two
parallelization strategies to run the thread blocks for each
color. In the first parallelization strategy, we set the number
of colors needed for the remaining uncolored vertices. We
then generate a thread block to find all vertices for each
color. In particular, a thread block for a color collectively
find all vertices that do not have direct links between any
two of them and assign all these vertices to this color.
We start the execution of all thread blocks at the same
time. In this strategy, it is possible that different thread
blocks assign different colors to the same vertex. When this

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. VOL, NO. NO, MONTH YEAR 6

happens, the vertex keeps the color which has the smallest
color ID among the conflicting colors. The shortcoming of
this parallelization strategy is that we have to first set the
number of colors for the remaining uncolored vertices. We
cannot accurately know the exact number of colors needed.
On one hand, if the number of colors is set too low, it is
impossible to deliver the final coloring plan which does not
contain conflicting. On the other hand, if the number is set
too high, the number of colors in the final coloring plan will
be much higher than that in the optimal coloring plan.

In the second parallelization strategy, we do not start all
thread blocks at the same time, but run the thread blocks in
pipeline. In particular, we first start the thread block for the
first color. The thread block starts with find all uncolored
vertices in the first level of the graph that can be assigned
to the first color. After the first level is processed, the thread
block moves to the second level and repeats the process.
While the thread block for the first color is processing the
second level, we start the thread block for the second color
and start to find all remaining uncolored vertices that can
be assigned to the second color. Similarly, when the thread
block for the first color moves to the third level, the thread
block for the second color moves to the second level and
the thread block for the third color start processing the
first level. The pipeline goes on until all uncolored vertices
after the recursion stage have been colored. In the second
strategy, we do not have the problem that we may set the
number of colors too high. When all vertices have been
colored, the pipeline stops and the number of used colors
then is the number of colors in the final coloring plan. Our
experiments show that the first and second parallelization
strategies have similar running performance. But the second
strategy typically uses a fewer number of colors than the
first strategy. Therefore, we use the second parallelization
strategy in the sequential spread stage in Feluca.

4.3 The Edgelist Graph Representation

A GPU can reach its peak memory access bandwidth only
when the algorithm has a regular memory access pattern,
i.e., the data accessed by the consecutive threads of a warp
occupies the contiguous memory locations. When there is
not a regular memory access pattern, a naive solution to
improve the GPU memory access efficiency is to sort the
edges by source vertex ID, which is shown in figure 4a.
Figure 4a shows the edgelist representation of the graph
in figure 2. The graph has 11 vertices and 15 edges. The 15
edges are partitioned into 4 edge blocks. In this partition,
the edges are sorted in the order of their source vertex
IDs and every edge block contains 4 edges. Suppose that a
warp contains 4 threads. Then a warp can process the whole
block. But in this partition, the edges with source vertex ID
3 are allocated to 2 blocks. Hence, the threads processing the
edges with source vertex 2 in block 2 need to wait for the
threads which process the edges with source vertex ID 3. It
is also the case for the threads which process with source
vertex 4. When processing the real-world graphs, the edges
of high degree vertices may be scattered in several blocks.
On the other hand, a block may contain the edges from more
than one low-degree vertex. Under this circumstance the
computing load of different edge blocks vary, which will

cause the threads in a thread block to wait for other thread
blocks with more computing load.

(a) The edgelist representation of
the graph in figure 2.

(b) The ordered graph with virtual
edges.

Fig. 4: An example of ordering the graphs by adding virtual
edges.

In order to address this problem, Feluca adds some
virtual edges, which do not take any memory space, in
the edgelist-based graph representation such that either the
edges in an edge block have the same source ID or an edge
block contains all edges from different vertices.

For example, We add a virtual edge with source vertex
ID 2 as shown in figure 4b. In the ordered graph, all the
edges with source vertex ID 1, 2 and 3 are located in a single
warp and all the remaining edges are located in the same
warp (i.e., the warp contains all edges for vertice 4, 5 and 7).
This representation can avoid the overhead that the threads
wait between the edges with source vertex 2 and 3. As
edges are sorted in the order of the source vertex ID in the
grid, continuous and coalesced memory access pattern can
be achieved. By using this method the threads for running
the virtual edges are figure 4a, two warps (marked by the
red box) are needed when coloring vertex 3. But in these
two warps, the four threads which work on the edges with
source vertices 2 and 4 are not performing the effective work
(since those edges have been processed in previous rounds).
In figure 4, after we add the virtual edge, only one warp
is needed to color vertex 3, and there is no idle thread.
On the other hand, adding virtual edge can not increase
overall run time since the bottleneck of the data transfer
from host to GPU is the PCI-E. The graph is loaded to the
GPU onboard memory through PCI-E bus but the PCI-E
bandwidth is much lower than the memory access in CPU
and GPU (the bandwidth for PCIe 3.0 is 32GB/s, while the
memory bandwidth of the NVIDIA K20m GPU is 208 GB/s,
the memory bandwidth of NVIDIA P100 GPU is 720GB/s).

GPUs have been successfully used for in-memory graph
processing systems [33], [34], [35]. These systems can
achieve up to two orders of magnitude of speedup over the
state-of-the-art CPU-based graph systems [34], [36]. These
execution models can only process the graphs that are
smaller than the GPU memory (i.e., the entire graph can
be loaded into the GPU memory). However, GPUs have
limited memory space. NVIDIA Tesla K20m and P100 are
the most typical GPU accelerator, which are widely used in
HPC and some other application areas. The global memory
of NVIDIA Tesla K20m is 5 GB, while P100 has 16 GB
memory. However, many real-word graphs have millions
of vertices and edges which are too large to fit into the GPU
memory. Table 1 in section 5 lists eight graphs used in this
paper, which also often used by the literature [34], [35], [37].
Suppose that storing an edge consumes 8 bytes, and a vertex

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. VOL, NO. NO, MONTH YEAR 7

ID consumes 4 bytes. Then 12 GB and 16 GB memory are
needed to hold the topology data of random-graph and
webbase-2001 graph, respectively. Since more memory
space will be used to store the attribute data during the
graph processing, the actual memory consumption is even
larger. So, how to load a large scale graph into GPU is a
great challenge.

To process the graphs bigger than the GPU memory, we
partition the graphs into several blocks and then assign the
blocks to the GPU in a pipeline fashion. In Feluca, we begin
to color the graph block once it loaded into the GPU, and
we also begin to transfer the next graph block to the GPU at
the same time. By doing so, we overlap the computation
with communication. This is a widely used approach in
most large-scale graph processing systems on GPU, such
as Frog [35] and Gunrock [36]. Benefit from the edgelist-
based graph presentation, it is easy to partition the graphs
into several transport streams. By using this model, Feluca
can transfer graph data from host memory to GPU memory
simultaneously with the computation, which enable Feluca
to process large-scale graphs on a single GPU.

5 EVALUATION

In this section, we present the results of experimental eval-
uation for different design choices in Feluca and compare
Feluca with the state-of-the-art graph coloring techniques
on both power-law and random graphs.

5.1 Experimental Setup

We have conducted the experiments with both directed and
undirected graphs. (u, v) represents the undirected edge
between vertices u and v while < u, v > represents a
directed edge from u to v.

TABLE 1: Datasets used in the experiments

Datasets Vertices Edges Direction
Stanford 281,903 2,312,497 Directed
dblp 986,207 6,707,236 Undirected
youtube 1,157,828 2,987,624 Undirected
RoadNet 1,971,282 5,533,214 Undirected
Wiki 2,394,385 5,021,410 Undirected
soc-lj 4,847,571 68,993,773 Directed
RMAT 9,999,993 160,000,000 Undirected
random 19,999,888 100,000,000 Undirected
twitter 41,652,230 1,468,365,182 Directed
webbase 118,142,155 1,019,903,190 Directed

We have carried out the experiments on total of 10
different graphs, 8 real-world graphs and 2 synthetic graphs
as detailed in table 1. The vertex degree among all graphs
ranges from 2 to 106. Synthetic graphs RMAT and random
are generated using PaRMAT [37] and have the random
degree distribution. The twitter and webbase are shared
in the Laboratory for Web Algorithmics (LAW) [38] and
the remaining graphs are obtained from Stanford Network
Analysis Project (SNAP) [39].

We conduct the experiments on a NVIDIA Tesla P100
GPU, which is a Pascal architecture-based GPU equipped
with 16 GB on board memory and 3,584 CUDA cores. The
GPU is coupled with host machine equipped with 2 Intel(R)
Xeon(R) E5-2670 CPUs, each at 2.60 GHz, and 8 GB memory.

The host machine is running RedHat OS version 4.4.5-6. The
algorithm is implemented with C++ and CUDA 9.0 using
the “-arch=sm35” compute compatibility flag.

5.2 The Algorithms for Comparison

We compared Feluca with three state-of-the-art methods in
the experiments, which are Kokkos, JPL and cuSPARSE. All
these three methods are implemented on NVIDIA GPU. We
describe some operation details of these three methods as
follows.

• Kokkos. Kokkos uses a first-fit policy to assign color
for the vertices [20]. In the first-fit algorithm, a large
FORBID array is used to store the colors of the
neighbors of the current coloring vertex. Namely, the
current coloring vertex cannot choose the colors from
the FORBID array. This method can achieve good
processing speed. But the FORBID arrays of the large
degree vertices consume large memory space. On the
other hand, if a small FORBID array is used for for
the large degree vertices, multiple memory accesses
are then needed, which slows down the coloring
process. In Feluca, we use an array COLORS to hold
all used colors, and a temporary array NeighborColors
with a fixed length is used to hold the colors which
are just used by the neighbors of the current vertex.
In our method, we can find the candidate color
for current vertex in the COLORS array from the
minimum number of NeighborColors to the maximum
number of NeighborColors by just access COLORS one
time.

• Jones-Plassmann-Luby (JPL) Graph Coloring Algo-
rithm. The JPL coloring algorithm uses an approx-
imate maximal independent set policy to partition
the vertices into several sets and assign the colors
to each set [40]. This coloring policy uses the itera-
tion approach, which can be trapped in the long-tail
problem easily.

• cuSPARSE. The cuSPARSE library is developed by
NVIDIA. The coloring implementation of cuSPARSE
follows a csrcolor [40] routine by using a multi-hash
method to find the independent sets. Similar as the
JPL graph coloring algorithm, it is easy to be trapped
in the long-tail problem. Feluca uses the iteration
execution only to color part of the vertices quickly,
and then switches to the sequential spread stage.
The second stage adopts the color-centric method,
which enables higher degree of parallelism and con-
sequently further reduces the execution time (see
Figure 6).

5.3 Recursion vs. Sequential Spread

In contrast to majority of existing solutions that adopt
purely recursion based approach or sequential spread based
approach, Feluca combines the both approach into a sin-
gle solution. In this section, we empirically evaluate the
strengths and weaknesses of both approach. As explained
in Section 3, Feluca utilizes a parameter called fraction
to control the switching from recursion based processing
to sequential spread based approach. The fraction is the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. VOL, NO. NO, MONTH YEAR 8

ratio of number of vertices already colored to total number
of vertices in the graph. Setting fraction to 0.0 makes the
system purely sequential while setting fraction to be 1.0
makes it fully recursive algorithm.

TABLE 2: Execution time for different coloring algorithms
(in milliseconds)

Datasets Recursion Only Sequential Spread Only
Time Color Time Color

Stanford 8.696 115 98.152 113
dblp 49.876 255 339.137 120
youtube 27.792 167 172.035 45
RoadNet 30.438 110 183.646 6
Wiki 129.233 112 272.397 97
soc-lj 493.387 490 5002.41 329
RMAT 1892.932 82 7989.48 78
random 3431.787 89 12496.272 84
twitter 15319.55 1189 51823.1 910
webbase 10438.999 1650 186029.255 1507

Table 2 shows that recursion only coloring method can
achieve better runtime performance as compared to sequen-
tial spread only coloring method, but it tend to use more col-
ors on some datasets. As we explained this problem clearly
in Section 2, this phenomenon occurs because that only
active vertices updated in sequential spread only processing
model, while all the vertices are updated in the recursion
only coloring method. While the vertices are colored perma-
nently once the color is choosed in recursion only coloring
model, but the colors may changed in later iterations in
recursion only coloring method. We can also conclude that
random graph can be colored in fewer iterations under
recursion only coloring method, because all the degrees of
the vertices are change in a narrow space which can better
suitable for GPU SIMD processing model.

5.4 Timing for Switching the Execution Stage

In order to find a suitable value of the parameter fraction,
which is used to control when the execution of Feluca is
switched from the recursion stage to the sequential spread
stage, we designed a set of experiments for different datasets
with different value of fractions. The execution time of these
two stages in Feluca with different fraction values are shown
in figure 5. The left side y-axis in figure 5 is the coloring
time in milliseconds, while the y-axis at the right side is
the number of colors. The red line with gray diamond dots
shows the total coloring time of Feluca, while the black line
and the green line show the coloring times of the recursion
and the sequential spread stage, respectively. The number
of colors is shown by the yellow line with triangle dots.

We can make the following observations from figure 5.

1) The sequential spread stage is most time consuming
with a small fraction value, which means there are
very few vertices colored in the recursion stage.
Figure 5 shows that for all the power-law graphs,
the execution time of the recursion stage is much
smaller than that of the sequential spread stage with
a small fraction value, which means the recursion
algorithm is much faster than the sequential spread
algorithm. On the contrary, the recursion method
needs more time with a big fraction value, which

means there are more conflicts occurred at the end
of the recursion stage.

2) Feluca can achieve good performance on both
power-law graphs and random graphs with a small
number of colors.

3) Figure 5 shows that the execution time of Feluca
is a convex function over fraction. Hence, Feluca
can achieve the best coloring time when the deriva-
tive of the execution time function is close to 0.
The derivative of the execution time function can
be approximated as ∆t = ti−ti−1

fractioni−fractioni−1
. It

can be assumed that the execution times of two
consecutive iterations are almost the same. Then,
Feluca can achieve minimal executing time once it
switches from the recursion stage to the sequential
spread stage when the number of active vertices is
the same as the number of conflicting vertices in two
consecutive iterations.

Since Feluca assigns the colors to the conflicting vertices
following the edges directions, most conflicting vertices can
find suitable colors in the first few iterations. However, after
a majority of vertices find the suitable colors, these colored
vertices will have impact on the colors of the remaining
vertices. This causes a small number of remaining vertices
to change their colors repeatedly in later iterations and
therefore slows down the progress. This is why Feluca
switches from the recursion stage to the sequential spread
stage when the condition stated in the last observation made
from figure 5 is met.

As discussed above, Feluca can achieve the minimal
executing time if it switches from the recursion stage to
the sequential spread stage when the number of active
vertices is the same as the number of conflicting vertices
in two consecutive iterations. As we revealed in this paper,
the coloring time is a convex function over the switching
time point, which indicates that as we move the switching
time point earlier, the number of used colors decreases
while the coloring time increases. Since Feluca is a graph
coloring algorithm, whose primary goal should be using as
few colors as possible. The balance between the number of
used colors and the coloring time should tilt towards the
former. Hence, we conducted the experiments to investigate
the impact of moving the switching time point earlier on
both the coloring time and the number of used colors. Table
3 shows the number of used colors and the coloring time for
processing the ten datasets when the switch point is set as
when the number of active vertices is more than the number
of conflicting vertices in two consecutive iterations by α
percent. Higher value of the parameter α, the earlier the
switch time point is. From this table, we can observe that
1) indeed moving the switch time point early can reduce
the number of used colors but increase the coloring time;
2) as we move the switch time point further earlier, the
less number of colors can be reduced but the coloring time
increases more prominently; and 3) when α is 10%, we can
obtain a much less number of used colors without increasing
the coloring time by too much.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. VOL, NO. NO, MONTH YEAR 9

40

60

80

100

120

140

160

180

200

0

5

10

15

20

25

30

35

40

45

50

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

C
o
lo
rs

Ti
m
e
(i
n
 m

ill
is
ec
o
n
d
s)

fraction

Coloring performance of Web‐Stanford

Recursion Sequential

Total Colors

(a) Stanford

50

100

150

200

250

300

0

20

40

60

80

100

120

140

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

C
o
lo
rs

Ti
m
e
(i
n
 m

ill
is
ec
o
n
d
s)

fraction

Coloring performance of dblp

Recursion Sequential

Total Colors

(b) DBLP

50

70

90

110

130

150

170

190

0

10

20

30

40

50

60

70

80

90

100

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

C
o
lo
rs

Ti
m
e
(i
n
 m

ill
is
ec
o
n
d
s)

fraction

Coloring performance of youtube

Recursion Sequential

Total Colors

(c) Youtube

0

10

20

30

40

50

60

70

80

0

50

100

150

200

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

C
o
lo
rs

Ti
m
e
(i
n
 m

ill
is
ec
o
n
d
s)

fraction

Coloring performance of RoadNet

Recursion Sequential

Total Colors

(d) RoadNet

50

100

150

200

250

300

0

50

100

150

200

250

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

C
o
lo
rs

Ti
m
e
(i
n
 m

ill
is
ec
o
n
d
s)

fraction

Coloring performance of wikitalk

Recursion Sequential

Total Colors

(e) Wiki

50

150

250

350

450

550

650

750

850

950

0

200

400

600

800

1000

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

C
o
lo
rs

Ti
m
e
(i
n
 m

ill
is
ec
o
n
d
s)

fraction

Coloring performance of livejournal

Recursion Sequential

Total Colors

(f) soc-lj

50

150

250

350

450

550

650

750

850

950

0

500

1000

1500

2000

2500

3000

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

C
o
lo
rs

Ti
m
e
(i
n
 m

ill
is
ec
o
n
d
s)

fraction

Coloring performance of RMAT

Recursion Sequential

Total Colors

(g) RMAT

50

150

250

350

450

550

650

750

850

950

0

500

1000

1500

2000

2500

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

C
o
lo
rs

Ti
m
e
(i
n
 m

ill
is
ec
o
n
d
s)

fraction

Coloring performance of RandomGraph

Recursion Sequential

Total Colors

(h) Random

1500

1700

1900

2100

2300

2500

2700

2900

0

2000

4000

6000

8000

10000

12000

14000

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

C
o
lo
rs

Ti
m
e
(i
n
 m

ill
is
ec
o
n
d
s)

fraction

Coloring performance of twitter

Recursion Sequential

Total Colors

(i) Twitter

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

0

2000

4000

6000

8000

10000

12000

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

C
o
lo
rs

Ti
m
e
(i
n
 m

ill
is
ec
o
n
d
s)

fraction

Coloring performance of webbase

Recursion Sequential

Total Colors

(j) Webbase

Fig. 5: Coloring time with different fraction. X-axis is the value of fraction, the Y-axis on the left is the coloring time in
milliseconds, while Y-axis on the right is the number of colors. “Sequential” means the time spent by the sequential spread
stage of the coloring algorithm while “recursion” means the time by the recursion stage. The parameter fraction indicates
the ratio of the number of colored vertices in the recursion stage to the number of total vertices in the graph.

5.5 Comparison Against the State-of-the-art Tech-
niques

We compared Feluca with some state-of-the-art methods in
this area, such as kokkos [20], Gunrock [36], GraphBLAST
[41], ChenGC [42], [43], SIRG [44], cuSPARSE [40] and JPL
[40]. In this experiment, Feluca switches the execution stage
by setting α to 10%. Namely, Feluca switches from the
recursion stage to the sequential spread stage when the
number of active vertices is 10% more than the number
of conflicting vertices in two consecutive iterations. Table 4
shows the execution time and the number of colors used for
all ten graphs. A performance value plotted in each graph
is the average of 5 independent runs of the GPU-based
solutions (Feluca, kokkos, Gunrock, GraphBLAST, ChenGC,
SIRG, cuSparse, and JPL).

The experimental results show that Feluca achieves up to
8.39×, 14.70×, 7.55×, and 9.70× speed up over kokkos [20],
Gunrock [36], SIRG [44] and ChenGC [42], [43], respectively.

Table 4 shows that Feluca outperforms all other com-
petitors in terms of run-time with all ten datasets. All these
algorithms can generate a complete coloring plan except
cuSPARSE, which is an approximate coloring algorithm.
In cuSPARSE, the parameter fractionToColor is the fraction
of nodes to be colored, which should be in [0.0, 1.0]. The
algorithm stopped when the number of the colored vertices
is the fractionToColor percentage of the whole vertices of the
graph. In the above experiments, there are still so many
vertices that are not colored correctly even when we set
fractionToColor as 1.0. For example, out of the 4,847,571 ver-
tices in soc-lj, 41,652,230 vertices in twitter, 118,142,155
vertices in webbase, cuSPARSE assigns 2,437,231 and
22,396,212 and 104,173,619 vertices, respectively, to the same
color. From another point of view, cuSPARSE does not
choose another right color for the vertices when the conflicts
occur. 41,652,230 vertices of twitter are colored with 947
colors in Feluca while cuSPARSE only colored the 19,256,018
(46% of all the vertices) vertices using 917 colors and assigns
the remaining 22,396,212 vertices to the same color. This is
the main reason why cuSPARSE can achieve a fewer number
of colors on soc-lj, twitter and webbase.

As described in section 4.1, Feluca only focuses on the
current vertex and their parents and does not search the
entire color array to find the available color for the current
vertex. Although this scheme avoids the use of atomic
operations (hence improve the run-time performance), it
may increase the number of used colors to some extent.
Table 4 shows kokkos can color the Stanford and Wiki
datasets with the fewer colors than Feluca.

5.6 The Color-centric Scheme in Feluca
In this experiment, we implement Feluca with and without
the color-centric paradigm. The experiment is designed to
show the ratio of the number of conflicting vertices to the
number of active vertices in each iteration. The experiment
result is shown in figure 6. The figure shows that, with-
out the color-centric paradigm the tested three datasets,
Stanford, youtube and random, need at least 24 itera-
tions to converge. While with the color-centric paradigm,
random converged at the 7th iteration and other two
datasets converged at the 11th iteration.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 24
iteration

youtube ‐ w/ color‐centric

youtube ‐ w/o color‐centric

Stanford ‐ w/ color‐centric

Stanford ‐ w/o color‐centric

random ‐ w/ color‐centric

random ‐ w/o color‐centric

Fig. 6: The ratio of the number of conflicting vertices to the
number of active vertices in each iteration with and without
color-centric optimization.

Figure 6 also shows that with the color-centric paradigm,
the ratio of the number of conflicting vertices to the number
of active vertices in each iteration is no more than 45% for
youtube and RandomGraph, while the conflict ratio can
increase to 80% 87% without the color-centric paradigm.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. VOL, NO. NO, MONTH YEAR 10

The color-centric paradigm can avoid about 50% conflicts
for these two datasets. The conflict ratio of Stanford
increased to 87% at the 10th iteration, while the conflict ratio
is no more than 63% with the color-centric paradigm.

Figure 7 shows the percentage of issue slots that issued
at least one instruction, averaged across all cycles. The
figure shows that the color-centric paradigm can improve
the performance by 111% (on RoadNet dataset) 410% (on
Stanford dataset), which indicates that more instruction
were executed in every iteration by using the color-centric
paradigm.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

Stanford dblp youtube RoadNet soc‐lj RMAT random

Percentage of issue slots that issued at least one instruction,
averaged across all cycles

w/o color‐centric
w/ color‐centric

Fig. 7: The percentage of the issue slots that issued at least
one instruction, averaged across all cycles, with and without
the color-centric scheme.

Figure 8 plots the average number of warps that are
eligible to issue per active cycle. It shows that on the
RoadNet dataset, the average number of warps in each
active cycle is no more than 2.2 without the color-centric
paradigm, while with the color-centric paradigm it increases
to 3.12. On Stanford dataset, the color-centric paradigm
can improve the average number of warps in each active
cycle by up to 4.9×. These experiments show that the color-
centric paradigm can improve the active warps in each
execution cycle, which means the there are more active
threads by using the color-centric paradigm.

0

0.5

1

1.5

2

2.5

3

3.5

Stanford dblp youtube RoadNet soc‐lj RMAT random

Average number of warps that are eligible to issue per active cycle
w/o color‐centric

w/ color‐centric

Fig. 8: The average number of warps that are eligible to issue
per active cycle with and without color-centric optimization.

5.7 Running Feluca on Different GPU Devices

In order to show the performance of Feluca on three differ-
ent GPU device, NVIDIA K20, NVIDIA K40 and NVIDIA
P100. The configuration of NVIDIA K20 is the same as
in previous experiments. There are 2880 CUDA cores and
12GB on-board memory in NVIDIA K40, and there are 3,584
CUDA cores and 16GB on-board memory in NVIDIA P100.
Figure 9 shows the performance achieved by Feluca scales
well with the increase of the GPU capability.

On the other hand, we also implement Feluca on a node
equipped with multi-GPUs. In this implementation, we first
partition the graphs into several blocks and then assign the
blocks to GPUs in a round-robin fashion. A GPU needs to
synchronize its coloring results with other GPUs to obtain
the final coloring plan. In Feluca, we begin to color the graph
block once it was loaded into the GPU, and we also begin
to transfer the next graph block to a GPU immediately. We
overlapped the computation with communication by using
this round-robin graph transfer method. In the multi-GPU
version, the synchronization is costly because fast tasks need
to wait for slow tasks. Furthermore, the synchronization
communication is completed through PCI-E. In order to test
the scalability of Feluca on multi-GPUs, we run Feluca on
a node that equipped with 2 NVIDIA K20m and 2 NVIDIA
P100 GPUs, the experiments show that Feluca can achieve
2.57 – 5.16× speedup on a multi-GPU platform over a single
NVIDIA K20 GPU. From this experiment, we can conclude
that the communication cost for multi-GPU coloring is much
higher than the computation due to the synchronization
among multiple GPUs. We will try to design a scalable
graph coloring algorithm for multi-GPUs in our further
work.

Stanford dblp youtube RoadNet WiKi soc-lj RMAT random
0

100

300

400

500

ex
ec

ut
io

n
tim

e
(in

 m
illi

se
co

nd
s)

 K20
 K40
 P100

Fig. 9: The performance of Feluca on different GPU devices.

6 RELATED WORK

Although the graph coloring is an NP-Hard problem, it has
been included in the DIMACS Implementation Challenge 1

and there are vast amount of research work have been done.
This section introduce the recent state-of-the-art works on
parallel graph coloring.

The existing research shows that the simple greedy
implementation can archive near optimal solutions [45].
However, it is inherently sequential, which is difficult to
be parallelized. Gebremedhin and Manne [46] proposed
a multi-threaded parallel algorithm based on the greedy
coloring scheme. In their work, all the threads run as a
greedy coloring algorithm asynchronously in the first phase.
There exist many conflicts in this execution model, due to
the reason that two threads may color two neighboring
vertices at the same time. The authors check the conflicts in
the second phase and store the conflict vertices in a table. In
the third phase, the conflict vertices are colored sequentially.
The iterative coloring approach was first proposed based
on the independent set finding method [25], and later this

1. http://archive.dimacs.rutgers.edu/Challenges/

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. VOL, NO. NO, MONTH YEAR 11

coloring scheme is adopted on the shared-memory systems
[47]. The proposed scheme is easy to be parallelized. But the
atomic operation is needed for the conflict resolution. On
the other hand, this method may also cause more colors
being needed. Unlike the previous work, we propose a
color-centric paradigm in this work to improve the degree
of parallelism for the sequential spread stage. In our color-
centric paradigm, we organize the GPU thread blocks in
pipeline. There is no conflict occurring with this paradigm.

Another important aspect of the parallel graph coloring
algorithm is conflict resolution. In the work by Deveci et
al., the atomic operation is used to resolve the conflicts [20].
Following Gebremedhin and Manne’s work [46], Rokos et
al. proposed a variation, which combined the conflict detec-
tion and resolution phase together, to reduce the number
of kernel launches [48]. Bozda et al. proposed a parallel
graph coloring algorithm based on the first-fit method [49].
In this work, each processor colors its assigned vertices by
the chosen colors from a section of the whole color array.
This method reduces the conflicts to some extents. However,
it needs a temporary array to locate the candidate color area
for a thread, which leads to more memory consumption.
This color chosen scheme may also cause a large number of
colors to be used. A hybrid MPI and OpenMP implemen-
tation was developed by Sariyce et al. [50]. Similar to the
work by Deveci et al. [20], the atomic operation is used to
resolve the conflicts. In our work, we propose a top-down
coloring scheme, which instructs every thread to chose a
suitable color for the current active vertex according to
its parents color. In our proposed method, a fixed-length
temporary array, which holds the colors that were just used,
is used to locate the candidate color area from the color
array, which can avoid most of the conflicts. On the other
hand, the memory size of the temporary array is very small.
For example, two integers are enough.

There are also a few works focusing on the GPU op-
timization. Çatalyürek et al. proposed a multi-threaded
dataflow algorithm for Cray XMT [47], which replies on the
hardware support and it is not suitable for the current GPU.
Grosset et al. implemented the G-M algorithm [51] on GPU
[21]. But the authors left part of the conflict resolution work
to CPU. Naumov et al. developed a fast coloring heuristic
[40], which is part of the widely used cuSPARSE library.
This algorithm is a variation of Jones and Plassmann (JP)
[52] independent set based coloring algorithm. It is fast,
but usually needs more colors than JP. Che et al. studied
the variations of the JP algorithm on GPU [53], they imple-
mented the work-stealing technique and designed a hybrid
algorithm to address the load imbalance problem. In our
work, we implemented the edge-list graph representation
method and added some virtual edges to address the load
imbalance problem, which do not consume any memory
space.

Gunrock [36] is a data-centric graph processing library,
the authors abstract the frontier operation into the steps of
advance, filter and compute, rather than the widely used
operations of Gather, Apply and Scatter. Combined with
the load balancing and workload management techniques,
Gunrock can achieve the overall system performance com-
parable to some other graph processing frameworks. Graph-
BLAST [41] is a sparse linear algebra based graph processing

library on GPU. By implementing load balancing, mem-
ory efficiency, and some general optimization techniques
(push/pull), GraphBLAST provides an easy-to-use interface
and competitive performance. There is extension work on
Gunrock and GraphBLAST to implement graph coloring
algorithms.

Osama at al. [54] map the graph coloring algorithm
based on the independent set to Gunrock and GraphBLAS
by using the JPL heuristic. SIRG [44] proposes a re-coloring
scheme, by using a data-driven programming method, to
handle the conflict vertices. Chen et al. [42], [43] assign the
threads by using a work-efficient manner, which is similar
with Kokkos [20]. But the authors use a greedy algorithm
to assign the colors. Their implementation can improve the
utilization of threads. On the other hand, however, the
greedy color assignment limits the parallelization of the
algorithm. In our work, we combine the recursion-based
method with the sequential spread-based method. Namely,
both the greedy approach and the approach based on the
independent set are used to process the vertices at different
execution stages, which can improve the thread efficiency
and maintain the parallelization of the algorithm.

7 CONCLUSION AND FUTURE OPPORTUNITIES

We present Feluca, a highly efficient hybrid GPU graph
coloring algorithm by adaptively switching execution model
based on monitoring the conflict rate of the active vertices
in each iteration. This approach is necessary to acquire
the advantage of both sequential spread and recursion
based coloring method, and consequently and significantly
improve overall performance. Furthermore, the craftly-
designed color-centric coloring paradigm, which improved
the degree of parallelism for the sequential spread part. Our
intensive experiments show the high effectiveness of Feluca.

In the future, we plan to focus on other aspects of graph
coloring, such as coloring the graphs in hybrid systems,
coloring the graphs on new devices and coloring the dy-
namic graph on GPU, multi-GPU computer, and other new
devices.

ACKNOWLEDGMENTS

This work is partly supported by National Key R&D Pro-
gram of China (No. 2017YFC0803700), the National Science
Foundation of China (No. 61772218).

REFERENCES

[1] D. Marx, “Graph colouring problems and their applications in
scheduling,” Periodica Polytechnica Electrical Engineering, vol. 48,
no. 1-2, pp. 11–16, 2004.

[2] G. J. Chaitin, “Register allocation and spilling via graph coloring,”
Feb. 1986, uS Patent 4,571,678.

[3] A. M. Herzberg and M. R. Murty, “Sudoku squares and
chromatic polynomials,” Notices of the American Mathematical
Society, vol. 54, pp. 708–717, June/July 2007. [Online]. Available:
http://www.ams.org/notices/200706/

[4] G. Chartrand and P. Zhang, Introduction to Graph Theory. McGraw
Hill Education, 2017.

[5] M. R. Garey and D. S. Johnson, “The complexity of near-optimal
graph coloring,” Journal of the ACM, vol. 23, no. 1, pp. 43–49, Jan.
1976. [Online]. Available: http://doi.acm.org/10.1145/321921.
321926

http://www.ams.org/notices/200706/
http://doi.acm.org/10.1145/321921.321926
http://doi.acm.org/10.1145/321921.321926

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. VOL, NO. NO, MONTH YEAR 12

[6] M. K. Ta, K. Kaya, and E. Saule, “Greed is good: Parallel algo-
rithms for bipartite-graph partial coloring on multicore architec-
tures,” in Proceedings of 2017 46th International Conference on Parallel
Processing (ICPP), Aug 2017, pp. 503–512.

[7] X. Zhang, G. Tan, S. Xue, J. Li, K. Zhou, and M. Chen,
“Understanding the gpu microarchitecture to achieve bare-
metal performance tuning,” in Proceedings of the 22nd ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP 17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 3143. [Online]. Available:
https://doi.org/10.1145/3018743.3018755

[8] K. Meng, J. Li, G. Tan, and N. Sun, “A pattern based algorithmic
autotuner for graph processing on gpus,” in Proceedings
of the 24th Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP 19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 201213. [Online]. Available:
https://doi.org/10.1145/3293883.3295716

[9] W. Han, D. Mawhirter, B. Wu, and M. Buland, “Graphie: Large-
scale asynchronous graph traversals on just a gpu,” in 2017 26th
International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2017, pp. 233–245.

[10] Z. Peng, A. Powell, B. Wu, T. Bicer, and B. Ren, “Graphphi:
Efficient parallel graph processing on emerging throughput-
oriented architectures,” in Proceedings of the 27th International
Conference on Parallel Architectures and Compilation Techniques, ser.
PACT 18. New York, NY, USA: Association for Computing
Machinery, 2018. [Online]. Available: https://doi.org/10.1145/
3243176.3243205

[11] D. Mawhirter and B. Wu, “Automine: Harmonizing high-level
abstraction and high performance for graph mining,” in
Proceedings of the 27th ACM Symposium on Operating Systems
Principles, ser. SOSP 19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 509523. [Online]. Available:
https://doi.org/10.1145/3341301.3359633

[12] A. H. Nodehi Sabet, J. Qiu, and Z. Zhao, “Tigr: Transforming
irregular graphs for gpu-friendly graph processing,” SIGPLAN
Not., vol. 53, no. 2, p. 622636, Mar. 2018. [Online]. Available:
https://doi.org/10.1145/3296957.3173180

[13] H. Park and M.-S. Kim, “Evograph: An effective and efficient
graph upscaling method for preserving graph properties,” in
Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, ser. KDD 18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 20512059.
[Online]. Available: https://doi.org/10.1145/3219819.3220123

[14] G. Chen, X. Shen, B. Wu, and D. Li, “Optimizing data placement
on gpu memory: A portable approach,” IEEE Transactions on
Computers, vol. 66, no. 3, pp. 473–487, 2017.

[15] Y. Cho, F. Negele, S. Park, B. Egger, and T. R. Gross, “On-the-fly
workload partitioning for integrated cpu/gpu architectures,”
in Proceedings of the 27th International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT 18. New York,
NY, USA: Association for Computing Machinery, 2018. [Online].
Available: https://doi.org/10.1145/3243176.3243210

[16] M. C. Kurt, S. Krishnamoorthy, K. Agrawal, and G. Agrawal,
“Fault-tolerant dynamic task graph scheduling,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC 14. IEEE Press, 2014, p.
719730. [Online]. Available: https://doi.org/10.1109/SC.2014.64

[17] J. Maglalang, S. Krishnamoorthy, and K. Agrawal, “Locality-aware
dynamic task graph scheduling,” in 2017 46th International Confer-
ence on Parallel Processing (ICPP), 2017, pp. 70–80.

[18] A. Li, S. L. Song, W. Liu, X. Liu, A. Kumar, and
H. Corporaal, “Locality-aware cta clustering for modern gpus,”
in Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS 17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 297311. [Online]. Available:
https://doi.org/10.1145/3037697.3037709

[19] M. E. Belviranli and J. S. Vetter, “Flame: Graph-based hardware
representations for rapid and precise performance modeling,”
in 2019 Design, Automation Test in Europe Conference Exhibition
(DATE), 2019, pp. 1775–1780.

[20] M. Deveci, E. G. Boman, K. D. Devine, and S. Rajamanickam,
“Parallel graph coloring for manycore architectures,” in Proceed-
ings of the 2016 IEEE International Parallel and Distributed Processing
Symposium, ser. IPDPS’ 16, May 2016, pp. 892–901.

[21] A. P. Grosset, P. Zhu, S. Liu, S. Venkatasubramanian, and M. Hall,
“Evaluating graph coloring on gpus,” in Proceedings of the 16th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP’ 11, 2011, pp. 297–298.

[22] M. Kubale, Graph Colorings, ser. Contemporary Mathematics.
American Mathematical Society, 2004.

[23] T. Husfeldt, Topics in Chromatic Graph Theory, ser. Graph Colouring
Algorithms, L. W. Beineke and R. J. Wilson, Eds. Cambridge
University Press, 2015.

[24] A. Panyala, O. Subasi, M. Halappanavar, A. Kalyanaraman,
D. Chavarria-Miranda, and S. Krishnamoorthy, “Approximate
computing techniques for iterative graph algorithms,” in 2017
IEEE 24th International Conference on High Performance Computing
(HiPC), 2017, pp. 23–32.

[25] Çatalyürek Ümit V., J. Feo, A. H. Gebremedhin, M. Halappanavar,
and A. Pothen, “Graph coloring algorithms for multi-core
and massively multithreaded architectures,” Parallel Computing,
vol. 38, no. 10, pp. 576 – 594, 2012. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0167819112000592

[26] L. Addario-Berry, S. Bhamidi, S. Bubeck, L. Devroye, G. Lugosi,
and R. I. Oliveira, “Exceptional rotations of random graphs:
A vc theory,” Journal of Machine Learning Research, vol. 16,
no. 1, pp. 1893–1922, Jan. 2015. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2789272.2886810

[27] S. Arora and E. Chlamtac, “New approximation guarantee for
chromatic number,” in Proceedings of the Thirty-eighth Annual
ACM Symposium on Theory of Computing, ser. STOC ’06. New
York, NY, USA: ACM, 2006, pp. 215–224. [Online]. Available:
http://doi.acm.org/10.1145/1132516.1132548

[28] A. Rok and B. Walczak, “Outerstring graphs are χ-bounded,”
in Proceedings of the Thirtieth Annual Symposium on Computational
Geometry, ser. SOCG’14. New York, NY, USA: ACM, 2014,
pp. 136–143. [Online]. Available: http://doi.acm.org/10.1145/
2582112.2582115

[29] K. Kothapalli and S. Pemmaraju, “Distributed graph coloring
in a few rounds,” in Proceedings of the 30th Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
ser. PODC ’11. New York, NY, USA: ACM, 2011, pp. 31–40.
[Online]. Available: http://doi.acm.org/10.1145/1993806.1993812

[30] L. Barenboim and M. Elkin, “Deterministic distributed vertex
coloring in polylogarithmic time,” Journal of the ACM, vol. 58,
no. 5, pp. 1–25, Oct. 2011. [Online]. Available: http://doi.acm.
org/10.1145/2027216.2027221

[31] L. Barenboim, M. Elkin, and T. Maimon, “Deterministic
distributed (delta + o(delta))-edge-coloring, and vertex-coloring
of graphs with bounded diversity,” in Proceedings of the ACM
Symposium on Principles of Distributed Computing, ser. PODC ’17.
New York, NY, USA: ACM, 2017, pp. 175–184. [Online]. Available:
http://doi.acm.org/10.1145/3087801.3087812

[32] M. Ghaffari, J. Hirvonen, F. Kuhn, and Y. Maus, “Improved
distributed delta-coloring,” in Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, ser. PODC ’18.
New York, NY, USA: ACM, 2018, pp. 427–436. [Online]. Available:
http://doi.acm.org/10.1145/3212734.3212764

[33] A. Gharaibeh, L. Beltrão Costa, E. Santos-Neto, and M. Ripeanu,
“A yoke of oxen and a thousand chickens for heavy lifting graph
processing,” in Proceedings of the 21st International Conference on
Parallel Architectures and Compilation Techniques, ser. PACT ’12.
New York, NY, USA: ACM, 2012, pp. 345–354. [Online]. Available:
http://doi.acm.org/10.1145/2370816.2370866

[34] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan, “Cusha:
Vertex-centric graph processing on gpus,” in Proceedings of
the 23rd International Symposium on High-performance Parallel
and Distributed Computing, ser. HPDC ’14. New York, NY,
USA: ACM, 2014, pp. 239–252. [Online]. Available: http:
//doi.acm.org/10.1145/2600212.2600227

[35] X. Shi, X. Luo, J. Liang, P. Zhao, S. Di, B. He, and H. Jin, “Frog:
Asynchronous graph processing on gpu with hybrid coloring
model,” IEEE Transactions on Knowledge and Data Engineering,
vol. 30, no. 1, pp. 29–42, Jan 2018.

[36] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the
gpu,” in Proceedings of the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP’ 15.
New York, NY, USA: ACM, 2015, pp. 265–266. [Online]. Available:
http://doi.acm.org/10.1145/2688500.2688538

https://doi.org/10.1145/3018743.3018755
https://doi.org/10.1145/3293883.3295716
https://doi.org/10.1145/3243176.3243205
https://doi.org/10.1145/3243176.3243205
https://doi.org/10.1145/3341301.3359633
https://doi.org/10.1145/3296957.3173180
https://doi.org/10.1145/3219819.3220123
https://doi.org/10.1145/3243176.3243210
https://doi.org/10.1109/SC.2014.64
https://doi.org/10.1145/3037697.3037709
http://www.sciencedirect.com/science/article/pii/S0167819112000592
http://www.sciencedirect.com/science/article/pii/S0167819112000592
http://dl.acm.org/citation.cfm?id=2789272.2886810
http://dl.acm.org/citation.cfm?id=2789272.2886810
http://doi.acm.org/10.1145/1132516.1132548
http://doi.acm.org/10.1145/2582112.2582115
http://doi.acm.org/10.1145/2582112.2582115
http://doi.acm.org/10.1145/1993806.1993812
http://doi.acm.org/10.1145/2027216.2027221
http://doi.acm.org/10.1145/2027216.2027221
http://doi.acm.org/10.1145/3087801.3087812
http://doi.acm.org/10.1145/3212734.3212764
http://doi.acm.org/10.1145/2370816.2370866
http://doi.acm.org/10.1145/2600212.2600227
http://doi.acm.org/10.1145/2600212.2600227
http://doi.acm.org/10.1145/2688500.2688538

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. VOL, NO. NO, MONTH YEAR 13

[37] F. Khorasani, R. Gupta, and L. N. Bhuyan, “Scalable simd-efficient
graph processing on gpus,” in Proceedings of the 2015 International
Conference on Parallel Architecture and Compilation, ser. PACT ’15.
Washington, DC, USA: IEEE Computer Society, 2015, pp. 39–50.
[Online]. Available: https://doi.org/10.1109/PACT.2015.15

[38] C. S. D. of the University of Milan, “Laboratory for web al-
gorithmics,” http://law.di.unimi.it/index.php, November 2002,
accessed July 17, 2018.

[39] J. Leskovec, “Stanford network analysis project,” http://snap.
stanford.edu/index.html, November 2009, accessed July 11, 2018.

[40] M. Naumov, P. Castonguay, and J. Cohen, “Parallel graph coloring
with applications to the incomplete-lu factorization on the gpu,”
NVIDIA, Technical Report NVR-2015-001, May 2015.

[41] C. Yang, A. Buluc, and J. D. Owens, “Graphblast: A high-
performance linear algebra-based graph framework on the gpu,”
2019.

[42] X. Chen, P. Li, J. Fang, T. Tang, Z. Wang, and C. Yang,
“Efficient and high-quality sparse graph coloring on gpus,”
Concurrency and Computation: Practice and Experience, vol. 29,
no. 10, p. e4064, 2017, e4064 cpe.4064. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4064

[43] P. Li, X. Chen, Z. Quan, J. Fang, H. Su, T. Tang, and C. Yang,
“High performance parallel graph coloring on gpgpus,” in 2016
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2016, pp. 845–854.

[44] M. A. Sistla and V. K. Nandivada, “Graph coloring using gpus,”
in Euro-Par 2019: Parallel Processing, R. Yahyapour, Ed. Cham:
Springer International Publishing, 2019, pp. 377–390.

[45] T. F. Coleman and J. J. Moré, “Estimation of sparse
hessian matrices and graph coloring problems,” Mathematical
Programming, vol. 28, no. 3, pp. 243–270, Oct 1984. [Online].
Available: https://doi.org/10.1007/BF02612334

[46] A. H. Gebremedhin and F. Manne, “Scalable parallel graph
coloring algorithms,” Concurrency and Computation: Practice and
Experience, vol. 12, no. 12, pp. 1131 – 1146, 2000. [Online].
Available: https://doi.org/10.1002/1096-9128(200010)12:12〈1131::
AID-CPE528〉3.0.CO;2-2

[47] E. Saule and Çatalyürek Ümit V., “An early evaluation of the
scalability of graph algorithms on the intel mic architecture,” in
Proceedings of the IEEE 26th International Parallel and Distributed
Processing Symposium Workshops PhD Forum, May 2012, pp. 1629–
1639.

[48] G. Rokos, G. Gorman, and P. H. Kelly, “A fast and scalable graph
coloring algorithm for multi-core and many-core architectures,”
in Proceedings of the 2015 European Conference on Parallel Processing,
J. L. Träff, S. Hunold, and F. Versaci, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 414–425.

[49] B. Doruk, A. H. Gebremedhin, F. Manne, E. G. Boman,
and Çatalyürek Ümit V., “A framework for scalable greedy
coloring on distributed-memory parallel computers,” Journal of
Parallel and Distributed Computing, vol. 68, no. 4, pp. 515 –
535, 2008. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S074373150700144X

[50] A. E. Sariyüce, E. Saule, and U. V. Çatalyürek, “Scalable hybrid
implementation of graph coloring using mpi and openmp,” in Pro-
ceedings of the 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops PhD Forum, May 2012, pp. 1744–
1753.

[51] D. Zuckerman, “Linear degree extractors and the
inapproximability of max clique and chromatic number,” Theory
of Computing, vol. 3, no. 6, pp. 103–128, 2007. [Online]. Available:
http://www.theoryofcomputing.org/articles/v003a006

[52] M. T. Jones and P. E. Plassmann, “A parallel graph
coloring heuristic,” SIAM Journal on Scientific Computing,
vol. 14, no. 3, pp. 654–669, May 1993. [Online]. Available:
http://dx.doi.org/10.1137/0914041

[53] S. Che, G. Rodgers, B. Beckmann, and S. Reinhardt, “Graph color-
ing on the gpu and some techniques to improve load imbalance,”
in Proceedings of the 2015 IEEE International Parallel and Distributed
Processing Symposium Workshop, May 2015, pp. 610–617.

[54] M. Osama, M. Truong, C. Yang, A. Bulu, and J. Owens, “Graph col-
oring on the gpu,” in 2019 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2019, pp. 231–240.

Zhigao Zheng, Xuanhua Shi†, Ligang He, Hai Jin, Shuo
Wei, Hulin Dai, Xuan Peng

https://doi.org/10.1109/PACT.2015.15
http://law.di.unimi.it/index.php
http://snap.stanford.edu/index.html
http://snap.stanford.edu/index.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4064
https://doi.org/10.1007/BF02612334
https://doi.org/10.1002/1096-9128(200010)12:12<1131::AID-CPE528>3.0.CO;2-2
https://doi.org/10.1002/1096-9128(200010)12:12<1131::AID-CPE528>3.0.CO;2-2
http://www.sciencedirect.com/science/article/pii/S074373150700144X
http://www.sciencedirect.com/science/article/pii/S074373150700144X
http://www.theoryofcomputing.org/articles/v003a006
http://dx.doi.org/10.1137/0914041

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. VOL, NO. NO, MONTH YEAR 14

TABLE 3: Performance of Feluca with different switching point

Datasets α = 0 α = 5% α = 10% α = 15%
Time Color Time Color Time Color Time Color

Stanford 28.810 92 36.623 76 42.690 64 68.372 53
dblp 42.388 139 46.737 126 54.555 114 62.566 106
youtube 58.777 57 72.401 48 86.151 39 93.363 37
RoadNet 12.524 6 69.904 6 46.804 5 69.904 5
Wiki 122.464 95 169.683 91 190.811 80 224.433 76
soc-lj 448.574 427 587.678 382 1180.120 325 9547.690 279
RMAT 410.309 373 876.434 281 1811.190 79 2740.070 72
random 283.491 207 320.409 137 353.643 86 640.600 68
twitter 2275.830 2068 4298.45 1892 5040.660 947 8847.250 873
webbase 1066.990 1575 2044.13 1564 2729.500 1559 4416.150 1537

TABLE 4: Running performance of different coloring algorithms

Algorithm Stanford dblp youtube RoadNet Wiki soc-lj RMAT random twitter webbase Speedup

Feluca time 42.690 54.555 86.151 46.804 190.811 1180.120 1811.190 353.643 5040.660 2729.5 –color 64 114 39 5 80 325 79 86 947 1559

kokkos time 50.765 183.034 230.806 162.546 631.069 1629.902 4454.264 2968.788 null null 1.19 – 8.39color 45 119 46 6 65 330 87 94 null null

kokkos MIC time 2200.720 6106.440 3022.930 4893.600 5042.670 63284.500 163517.000 96557.300 728099 940540 26.42 – 344.58color 45 119 46 5 67 251 93 103 679 1226

Gunrock time 200.456 104.335 214.082 277.802 2804.297 null 4842.506 3613.233 5288.629 null 1.05 – 14.70color 57 136 41 8 155 null 134 163 1013 null

GraphBLAST time 71.005 309.587 331.184 682.126 745.667 4518.840 11127.100 11783.700 23026.600 60001.9 1.66 – 33.32color 78 126 76 6 199 330 121 128 1517 1363

ChenGC time 135.323 435.936 385.500 453.840 645.778 9474.651 3728.278 2124.772 7589.630 null 1.51 – 9.70color 240 153 194 32 394 557 210 203 1639 null

SIRG time 100.230 172.978 86.780 246.134 448.208 2612.175 2265.292 2669.664 7549.797 null 1.25 – 7.55color 65 119 68 6 135 352 160 157 960 null

JPL time 1121.790 787.762 1409.490 806.787 8703.570 11000.500 18774.900 17264.300 null null 9.32 – 48.82color 169 121 262 13 489 646 316 334 null null

cuSPARSE
time 1463.250 541.429 617.205 531.205 818.762 1792.390 6910.610 9264.060 41201.300 264022

1.52 – 96.73color 95 70 103 32 159 184 129 112 917 412
Incorrect 134993 933161 283515 1953477 184167 2437231 6966819 4804572 22396212 104173619

Note: Null means that the algorithm cannot process such a dataset. The kokkos_MIC is run on the Intel(R) Xeon(R) E5-2670 CPU with 16
threads, while others are run on NVIDIA Tesla P100 GPU. Reference [20] shows that kokkos can achieve the best performance by using the
edge-based coloring method. So we set the parameter --algorithm as COLORING EB for kokkos and kokkos_MIC in our experiments.
The execution time is in milliseconds.

	Introduction
	Motivation
	Algorithm Design
	Design Philosophy
	Two-Stage Graph Coloring Algorithm

	Optimization Techniques
	Cycle Elimination Method and Top-down Coloring Scheme
	Color-centric Coloring Paradigm
	The Edgelist Graph Representation

	Evaluation
	Experimental Setup
	The Algorithms for Comparison
	Recursion vs. Sequential Spread
	Timing for Switching the Execution Stage
	Comparison Against the State-of-the-art Techniques
	The Color-centric Scheme in Feluca
	Running Feluca on Different GPU Devices

	Related Work
	Conclusion and Future Opportunities
	References

