
A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL: 
http://wrap.warwick.ac.uk/140256 

Copyright and reuse:
This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. 
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications



-

MODULAR REERBSEMTaTIONS OP FINITE 
GROUPS WITH UNSATURATED 

SPLIT (B,N)-PAIRS

N. B. Tinberg

A dissertation submitted for the degree of 
Doctor of Philosophy at

University of Y/arwick 
Department of Mathematics

June 1978

4/



TABLE OF CONTENTS

Acknowledgements
Declaration
Summary
Conventions and Standard Notations

IA) Modular representations of finite groups 
with split (B,N)-pairs.

I. Unsaturated split (B,N)-pairs
1. Preliminaries
2. The endomorphism algebra E

II. The rank one case
1. Cosets of G by U
2. The endomorphism algebra B
3. Examination of d = I X  (h(u ))

III. Normality of C - A counterexample
References IA)

IB) Some indecomposable modules of groups with 
split (B,N)-pairs.

I. Determination of irreducible modular representations 
of parabolic subgroups
1. Notations and definitions
2. Restriction and induction formulae

II. The dimensions of the indecomposable components 
of Y
1. Distinguished coset representatives
2. Dimensions and Brauer characters
3. Examples
4. Generators for the indecomposable 

components of B and Y
III. The vertices of the indecomposable components 

of Y
1. Preliminaries on G-algebras
2. G-algebras with monomial base
3. An example
4. Vertices of Y(J, X»)
5. Duality of Y

References IB)

v r-... - .

Page
i
ii
iii
iv

1
2
4
19
21

23
24 
28 
34

35
35
40

47
47
48
53

58

69
69
72
78
83
89
93



i

ACKH0WL3DGBM3HTS

I would like to express my thanks to ray supervisor, 
Professor J.A. Green, for suggesting the topics dealt 
with in this thesis and for his patience and guidance 
during my research. It has been an honour to have 
worked with someone who is both an excellent research 
mathematician and an excellent teacher. Also thanks 
mu3t go to Dr. R.M. Peacock for his time and attention 
during my M.Sc. studies.

To my mother and brothers, Howard, Hal and Sid, 
who helped to support me financially so that I could 
pursue my studies at Warwick, I owe a special, debt 
of gratitude.

I thank Blaine Shiels for her kindness and help 
and special thanks go to my friend John D. Jarratt for his 
encouragement, companionship, and sense of humour.



i i

DECLARATION

The proof of (A) I 2.7 is due to J.A. Green who 
proved that E is Frobeniua in the case of saturated 
split (B,ir)-pairs. I thank him for permitting me to 
include it in my thesis.

<r



i i i

SUMMARY

Let k be an algebraically closed, field of characteristic 
p >  O. let G = (G,B,N,R,U) be a finite group which 
satisfies all conditions of a split (B,N)-pair except
that of saturation; we allow C = n U11 >  1. Let Y = Ind^tky)n€N
3 = End^tY) where is the trivial U-inodule k. In
part (A) we discuss 3 and the set of isomorphism classes 
of (finite dimensional) right B-modules and recover most 
of the work of Curtis, Richen and Sawada on the modular 
representations of split (B,H)—pairs by using a recent 
result of Green. By this method we are able to discard 
the saturation condition from the general theory. The 
main results of (A) are:

(1) 3 is Frobenius .
(2) Every simple right 3-module is one-dimensional 

and is thus given by a multiplicative character •'f :B — k .
(3) Bach such ^  is determined by a vector (̂(. ,...

where %, is a linear character of B and € k.
Using a result of Kantor and Seitz on 2-transitive 

permutation groups we show that if p is odd then 
C ̂  G for all unsaturated split (B,N)-pairs and give 
an example when p = 2 and C 4l G.

Results of (A) are applied to the parabolic subgroups
GJGj (J C R) of G and to Yj ~ Ind^(k^) in order to study 

the indecomposable components of Y. In part (B) we determine:
(1) a formula which describes how Ind? (V) breaks

up as a direct sum of indecomposable components of Y for 
any indecomposable kGj-module V which is a component of Yjj

(2) the dimensions of the indecomposable components of 
Y and find an irreducible character of G corresponding 
to the Steinberg character;

(3) the vertices of the indecomposable components of Y;
(4) a permutation on the set of indecomposable 

components of Y taking each to its dual;
(5) a set of generators for the indecomposable 

components of 3 (and Y) based on Bromich's work.
We also extend Green's work on G-algebras with 

permutation base to those with monomial base.
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CONYSNTION
This thesis has two major divisions, (A) and (B), 

each containing its own reference list. Bach such 
division contains chapters (designated by Roman numerals) 
and each chapter contains various sections (designated 
by Arabic numerals). The convention adopted for 
referring to results within the thesis can best be 
illustrated by the following example: Assume (A) II 2.12 
is the result to which we wish to refer. If we are in 
(B) we refer to it as (A) II 2.12; if we are in (A) III 
we refer to it as II 2.12 and if we are in (A) II we 
refer to it simply as 2.12.

If k is any field and M is a kG-module, M|H denotes 
the restriction of M to H 4 G (we sometimes write

STANDARD NOTATIONS AND ABBREVIATIONS
|X| the cardinality of X 

X is a subset of TX C T
T \ X
If G is a group,

the complement of X in T

H *  G
H «; G H is a subgroup of G 

H is a normal subgroup of G 
the subgroup of G generated
by S,, • •. fSj. C G

P JH if p is the character afforded by M)

hcf highest common factor
dim dimension

Throughout this thesis all vector spaces are
assumed to be finite dimensional.

i/
«



(A) Modular representations of finite groups with 
split (3,R)-pairs.

1

I. Unsaturated (B,R)-pairs.

Assume p is a prime number. Let G = (G,3,R,R,U) 
be a finite group which satisfies the following conditions:
(i) G has a (B,N)-pair (according to £3, Definition 2.1, 
p. B- 8̂ ] ) where H = B O R and the Weyl group
W = R/H is generated by the set R = }
of special generators.

(ii) There exists a p-subgroup U of G such that
B = UH is a semi-direct product, U is normal in B 
and H is abelian with order prime to p.

Then G satisfies all axioms of a split (3,R)-pair 
( £ 3 » Definition 3.1, p. 3-12^ ) except that of saturation; 
we allow the intersection of the N-conjugates of B to 
be larger than H. We say G has an unsaturated split 
(B,R)-pair of characteristic p and rank n. The 
term unsaturated means 'not necessarily saturated.'
We assume unless otherwise stated that k is an algebraically

nclosed field of characteristic p. Let Y = Indyik^) 
and E = Endj^,(Y) where k^ is the trivial U-module k. 
Sawada w  was the first to examine Y and E for 
groups with split (B,N)-pairs and established a bijective 
correspondence between the set of isomorphism classes of 
irreducible left kG-modules and the set of isomorphism 
classes of irreducible right E-modules. In doing so he 
relied on work done by Curtis (£3]) and Richen (£7 )̂ on 
irreducible kG-nodules. We will start by discussing the 
the B-modules directly and be able to recover most of the 
results of Curtis, Richen and Sawada by using a recent
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theorem of Green (jjj J). By this method, we will be able to 
discard the saturation condition.

notations. Since H is abelian, U a p-group, all modular
representations of B are linear ond we let B = Hon(B,k*)
where k* = k\| 1}. If x,g € G then x® = g- 1xg. For
any subset T of G, TV! = i t  € kG and Tg = g-1Tg

J t£T
(similarly for Jw where J C R, w £ W). Let w £ W,
(w) £ n with (w)H = w. For X any subgroup of G 
containing H we write Xw for X(w) (similarly for wX, XwX).
If A is any subgroup of G normalised by H, then 

= A*1^  any h £ H so we write Aw. Since H 
is abelian the V/eyl group W acts on the elements of H 
by hw = h (w).

Let V:JT W be the natural epimorphism and the 
length of w £ W as a minimal product of generators is 
denoted l(w). The unique element of maximal length in W 
is written wQ.

Let y £ Y correspond to 1̂ . If {ĝ J i £ 1}
is a left transversal for the cosets of U in G then
Y = kGy has k-basis Jg^l i £ ij.

We assume that { (w)| w £ W} is a fixed but arbitrary 
set of coset representatives of H in N.

The reader will notice that the proofs of certain 
facts in I have been deferred to (A) II where the 
specific rank one case is discussed.
1. Preliminaries. In this section we state results which, though
proven in and C ? 3  under the assumption of saturation, do
not actually depend on that condition. For example, statements 
in ^7, Chapter Il]J which do not involve H = B O N will be 
true in the unsaturated case. V/e also make adjustments 
to other results when necessary to suit our unsaturated
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hypothesis.
flotation. Let w € W. 'i'hen WB+ = B n  Bw ; = U n  Uw ;
WB~ = B n  Bw°w ; and = U n Uw°w .

Remark. 1. Notice that WB+ =. WB+H, WB~ = wlTH (see [7, 
proof of Theorem 3.3(h)» p.44.4^ ) and that H normalises 
wh+ > for any w € W.

1.1 Lemma. The intersection of the fl-conjugates of B
is b  n Bw°. Also n u31 = n u v = u n uw° . •

n€N w€W
Proof. V/e need only show that B n Bw° C _fB+ for a~n w € 
A proof of this fact can he found in £7 » proof of Lemma 2.4., 
p.4413 • The second statement follows from the remark 
above.
Remark 2. Let C == IT4". Then Cw = C for all w € Wwo
hy 1.1 .
1.2 Lemma. Let w,v € W satisfy l(vw) = l(v) + l(w>.
Then w lT = wlT (vlT)w and WU“ n (vlT)W = 0 .
Proof. The first part follows hy an easy induction 
on l(w) from ĵ 7, proof of Theorem 3.3(a)* P.444J .
By 1.1, C C wU " n  (VTT)W and

wu* n (vu“ jw = u n uw°w n uw°w  n uw 
c  uw°w n uw

=■ (uw° n u)w

= C hy remark 2.
1.3 Corollary. Let w € W. Then U = U+ U~ and  W W
yB'*’ O  If" = C . Hence |U| c = |WU+ | |WU~ | where 

c = |C|.
Proof. Let v = w0w_1 and apply 1.2 .
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hypothesis.
Notation. Let w € W. Then wB+ = B n  BW ; IT*" = U n  Uw ;
WB“ = B O  Bw°w ; and wU- = U O Uw°w .

.Remark 1. Notice that B+ = D+H, B~ = U~H (see f7,w iv w w l
proof of Theorem 3.3(h), p.444^ ) and that H normalises 
WU+, wli~ for any w € W.

1.1 Lemma. fne intersection of the N-conjugates of B
is b n bw°. Also n u51 = n uw = u n uw° .

n£N w€U
Proof. We need onlv show that B n Bw° C . B+ for all w £— —  ~ — vT
A proof of this fact can he found in £7 » proof of Lemma 2.A, 
p.441 3 • The second statement follows from the remark 
above.
Remark 2. Let C = _ U*. Then Cw = C for all w € W --------  w0
hy 1.1 .
1.2 Lemma, let w,v € W satisfy l(vw) =  l(v) + l(w).
Then T = wlT (VTT)W and ^U" n (TlT)w = C .
Proof. The first part follows hy an easy induction 
on l(w) from ĵ 7, proof of Theorem 3.3(a), P.44-4-J .
By 1.1, C C WU" n (VIT)W and

wiT n (vu“ )w = u n uw°w n uw°w  n uw 
c  uw°w n uw

= (uw° n u)w

= C by remark 2.
1.3 Corollary. Let w £ W . Then U = 1(U+ wD~ and 
v\f* n IT = C . Hence |Uj c = |WU+ | |wtf~| where

c = |C|.
Proof. Let v = w0w“1 and apply 1.2 .
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1.4 Let w £ W. Let A  be a left transversal (containing 1)w
of ..U" by C. Then A  is automatically a transversal w“ 1 w
of U by U+ by 1.3 and | n | = I . IT | / o .w w
Also BuB = UwB = A  wB.w
Notation. Bor w. € R, write A- for A TT » B. for „ a~ 

x x wi 1 wi
and U. for „ U~ . i w±

The following short lemmas are consequences of 
results proven in the rank one case (see Chapter II, 1.1— 1.4) 
and the Bruhat Decomposition Theorem (see jj, Theorem 1,
P.25] ).
1.5 Lemma. Let w € W. Then llw lw) O B  = 1 .
1.6 Lemma. Let w, w 1, w2 £ W, u^, u2 £ U, h.j, h2 G H .
Then

u . h ^ w ^ U  = u2h2(w2)U <f=> w = w2 , u2“1Ui £ _ 1i)+, h 1 = h^.w
The set JT = (u^hiw) | h £ H, û . £ A w , w £ Wj is a 
transversal for the left cosets of U in G.
1.7 Lemma. Every element of G can be uniquely expressed
as g = u(%Ohu' where w € V/, u £ A.w , h € H and u* £ U.

The next lemma is a consequence of 1.6 and 1 .7 .
1.b Lemma. The elements of N form a transversal for the 
U-U double cosets of G.

'¿. The endomorphism algebra E.
In this section we characterise the simple right E-modules.
By 1.8 E has k-basis (An | n£ Nf where

A (y) = p y and p„ is the sum of those Y £ T  which n n n
lie in Untf (see, for example £ 8, p.32^ ) The elements 

(n £ II) are clearly independent of the choice of
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transversal of the cosets of U in G. therefore, using 1.6

Clearly = h all h € H. Multiplication in E is 
given by the formulae

2'2 V n  = ^  cmnt At n €
where = zmnt' ̂ k ancl znnt e s is tiie nuatler of pairs
( Y > 3 ) G r *  T  such that If € Unli, 5 G limU and 
Yl G tu since A. (y) is the sun of all the distinct
U-translates of ty and gy = g'y 4^ gU = g'U any g, g' £ G. 
The following lemma is immediate:
2.3 Lemma. If t,m,n £ K are such that UtU UnUmU,
then the coefficient of Â . in is zero.

2.4 Lemma. Let n,m € N with V (n) = v f >* (m) = w be such 
that l(vw) = l(v) + l(w). Then .amAn = A^  .
Proof. V/e know A ^ A ^ y ) =  [ f l vl  a  [ i l w]m y

I c = I „ ^ l l  _iu-| • We sse th£Lt ArAn lyJ isw 1V V w
the sum of | jCL-̂ l I Xl w l U-translates of nmy by our 
choice of transversals (1.4). Therefore Ajĵ  = X  Arim

where X  is the integer | XLV I I ilw l / I XIw  I ♦ By 1.4

X  = 1 as required.
2.5 Corollary. Let h € H, n £ N. Then

2 . 1

Ulwl n where y(n) = w

= [fty] n [ilw>-1nmy 
-1By 1.2 , _1IT = _1U“ ( _1U~) andW TT TT Uw y v w

An~1hn An

4 «- ■ ■
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2.6 Corollary. The set A^w h € H, w^ € RJ
k-algebra generates B.

V/e can now state and prove one of the main results 
of this paper. The proof is due to G-reen who proved it 
for the saturated case. Notice that the proof relies only 
on 2.4 and is therefore true for any field.
2 . 7 Proposition, let G be a finite group with an 
unsaturated split (B,N)-pair of characteristic p and 
rank n. Let k be any field. Then 3 is a Brobenius 
algebra.
Proof, let q £ If satisfy Via} = wG» the unique element 
of maximal length in W. let f: B x B -► k be given a3 

follows: for ed,|S £ B, f ) is to be the coefficient 
of in the expression of e£j5 as a linear combination
of the basis elements }An | n € H }. Certainly f is 
bilinear and associative and we need only show that f 
is non-degenerate. Let jZn | n £ Nj be the basi3 of 
B given by '¿n -  An_iq .

2.8 let n, n' € N, Vln) = w, V l n 1) = w ’ . Then 
flZn , An ,) is zero if either (i) llv) >llw') or 
lii) l(w) = l(w’) but w 4 w*. In the case w = u 1,
f(Zn, An <) =  ̂ n n* 1 for n = n' and 0 otherwise).
Proof of 2,8 By 2.3 the coefficient of A^ in

Bw B £ Bw'Bw“1w B O ’* o
Since Hw'w' 1w0) < l(w') + llw"1w0) = Hw'J + • 

(*) holds in (i) or lii)
If w = w', we see that An_ 1qAn , = An ,n_i^ by 2.4 

since llw'w_1w0) = llwQ) = l(w') + l(w“ 1w0) . Hence

llw') + 1 U 0 ) - 1 (tt)
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£(Zn , An ,) is 0 or 1 depending upon whether n 4= n' 
or n = n' and 2.8 is proved.

Now the elements of N can be totally ordered so 
that 1( i)(n) ) <  1( -2̂ (n* ) ) =$■ n <  n'. So if for
n, n* € N we have n n' then we must have lt^ln)) ^  linin')
By 2.8 f (A_, A ,) = £ . and we see that the matrixn n n,n
( f(Zn> An ,) )n n i £ is unitriangular and hence non
singular. Me have shown that f is non-degenerate and the 
proof of Proposition 2 .7 is completed.
Definition. Let w^ € R. Define U^Wi/ ,

H± = G± O H.

2.9 Lemma, (see £3» Proposition 3.7» p.B-15^J) Let w^ £ R. 
V,Te can arrange that (wi) £ G^. In tnis case 
G± = LiHi u ■̂ -jlHi(wi)U.
Proof. Consider P. = B U Bw_.B and any representative 

1 1 (w.)'
(w^) 1 of w^. let 1 4 u £ £1^. Then u £

and if u
(v. )

£ B then u = 1 by 1.5 Therefore
K ) ' _u £ Bw.B = AL.w.B. Hence there exists a representative

( V  1 1  / ~  (wi)'s(wi> £ UX1± U . The subgroup \U, r does
(w.)' w± (w^)' lv±)'

not depend on (w^ ) 1 since =  11^ C =Ili c

and y  =  <U,£ii(Wl) C> =  <Tu, U± .

The subgroup G^ has the required form since C P^ 

We assume from now on that (w^) £ G^, for every

wi e R*
The proofs of the following two lemma3 can be found

in Chapter II, 1.6 and 2.4



2.10 Structural agnations in G-. Le* w^ £ R, 11^ = XI ^ \  11}.

There exist functions f^: —  X\i , gi:Q-i -* U >

hi; -CIjl* "* H where f^ is a bisection, such that for 
every u £ II i*

(w±)u(w1) = fi(u)h± (u) (wi)si(u) ..

Since (w±) £ h^u) £ for all u € H  ̂

2.11 Lemma. Let w^ £ R. Then
2 Mi)

A (w±) “ A (w±) Jj, V j ^  ) where b(i) = | H ^ S
s

n *and u., , ...,u. are certain elements of 11.^
±1 xb(i)

(.not necessarily distinct).
The following formulae were first determined by 

Sawada (£8, Proposition 2.6, p. 34] ) for the saturated 
case.
2.12 Formulae. Let n £ R, D  (n) = w.

8

(i) If l(w±w) =  l(w)+1, then AnA (w±) - A (w± )n - 
b(i)

(ii) If l(w.w) = 1(W)-1, then AnA (w±) = A*s=1 V * i B> *
(iii) If l(ww±) = l(w)+1, then A (w±)An = An(w± ) *

Mi)
(iv) If l(wwi) = 1(W)-1, then A (wi)An

Proof. Parts (i) and (iii) follow from 2.4 . ?or (ii) 
let w = w±v with l(v) = l(w)— 1 . Then (w.̂ ) 1n = n € N ,

v  (m) = v and An = A(w_)m = V ^ )

AnA (w±) =  AmA (w±)2

by 2.4 Therefore
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V i, J a k i  bJ'2-ns
Mi)

“ Ansfl \ l * x >
S

by 2.4 .

Part (Iv) is proved similarly using Lemma 2.5 .

■Definition. Let 5, w € V/. Then £ B where
w %(hu) = %  (hWu) for h € H, u € U.

‘i'he proof of the following lemma is based on 
£ 3 , proof of Theorem 4.3a, p.B-2C>3 *
2.13 Lemma, ¿very irreducible right 3-module X is one-

/V
dimensional and if X = kx there exists a character ^ € 3  
uniquely defined by x = /¿lb) x for all h € H.

Proof. Every one-dimensional right E-module will uniquely 
determine a character of B since by 2.4 A^A^, = A^,^ = A ^ A ^

(h , h ’ £ H).
Let B, E* = _1_ E %  (h 1 )Ah

A |H| h€H
SvA. = 9Clh)E,y all h £ H and 1_ = £ ®n a  A
X = E ®  X E„, there exists ?C€ S withpceS A
for 0 4 z £ X, aukiWt z E ^ 4  0 and let t = 
Then t A^ = %(h) t all h € E ..

. Then

E ^  . S i n c e

X  ^
+  0  .

z  E * •

Choose w € W of maximal length so that x = t - 0.
Then x affords the character W JC » that is

x A h = W % U )  x since x Afa = t A ^ A ^

= t A -| ,A by 2.5 (w) 'h(w) (w)
= W %  (h) t A (w) .
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We now consider x A, » for w. € R.tw±) 1
Case 1. H w ^ )  >  l(w)

Then x = t A ^ A ^ j

= t A (w^Hw) ^  2 . 1 2 (i)

= t A (w.w)h SOEie h e H aince
1 V U w iHw).) = iHl^w);

= t W ±W) by 2 -4

= %lb) "t A (w ŵ )

= 0 by choice of w.
Case 2. H w ^ )  <  l(.w)‘

Then x A lWiJ = t A (w)A (w_ }

b(i)
= 15 w

b(i)
8=1 hilUig)

= *2 °  w X(h,lu )) x3=1 1 XS

by 2 . 1 2 (ii)

Therefore x generates a one-dimensional right E-submodule 
of X by 2.6. But X irreducible ̂  X = kx .

We are able to formulate more results based on the
ramc one case, the first being the following crucian, lemma.

b(i)
2.14 Lemma. Fix X  £ B, Wj € R. let d̂  = E X  (hn. (u< )) .   1 1 s=1 1 za

If d± 4 0 then = .t* Hence dĵ  = -1 .
Proof. By Theorem 3.2 of Chapter II there exists a one
dimensional Pi = B U Bw^B - module K such that if H 
affords 3  sP^ k* then 3  |H — X  |H. How G-̂  is

l\
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We now consider x A, . for w. £ R.IW-L) i
Case 1. l(w.w) >  l(w)

Then x A (Wi) = t A (w)A (Wi)

a t V ) ( w )  by 2 . 1 2 (i)

= 17 A (w.w)h sone h e H alrice 
1  V U w i)(w).) =

= t AhA {w±w) hy 2 -4

= X^bJ t

= 0 by choice of w.
Case 2, l(w^w) <  Rw)'

Then x A ^  = t A (w)A (w_}

Mi)
= t A (w) J 1 X t u ±s) 

Mi)
= x s!i V v
b(i)

= Z w X(h. lu, ) ) 2s=1 1 xs

by 2 . 1 2  Ui)

Therefore x generates a one-dimensional right E-aubmoduie 
of X by 2.6. But X irreducibleX = kx .

We are able to formulate sore results based on the
raihc one case, the first being the following crucial lerra.

A Mi)2.14 Lemma. Pix X  € B, w^ € R. let di = Z ?C (h^i^ )) .
S =  1 S

If di 4 0 then ^6 |H± = t.* Hence djL = -1 .
Proof. By Theorem 3.2 of Chapter II there exists a one
dimensional Pi = B U Bw^B — module K such that if K 
affords 3  :P^ -* k* then 5  |H — X|H. Now G^ is

#



generated by p-groups so that ^ = 1 and 5 |E^ = 1 .
therefore ?0|H. = 1 and since h. (u. ) £ H . (,s=1 ,... ,b(i) ) x x xs x
(by 2.10) and b(i) = lil^l - 1 » the result follows since 
1 <  in.j.1 is a power of p.
2.15 Lemma. Let "v̂ be any multiplicative character :ü — k.

Aïaen there exist % €  B, ,... ,/xn € k such that

(i) ^  (Ah) = ^  (h) all h £ H

(ii) Y (A(w.)^ = A i  * 1 *
Moreover, f\, . = 0 or -1 and 4 0 implies ^ i H ± = 1 .
Proof. Part (i) follows from 2.15 and (ii) follows from 
2 . 1 1 end 2.14.

We might call the sequence (% ,/v.,. .. >^n ) the 
'weight of ~\y ' to correspond with Curtis' Terminology.
Definition. Let J Ç_ R. Then Wj = <V± I W. € J>  .

2.16 Lemma. Let % €  B, J Ç K .  Suppose %|E^ = 1 for 
every w^ € J. Then W %  = %  all w € Wj .
Proof. It is sufficient to show wf for all w^ € J.

A/ Mi)Since %  |H. = 1, d . = E %  (^(u. )) 4 0 every w± € J
s=1 xs

and the result follows by Lemma 3.1 of Chapter II;

The above lemma is also proved in £3 » Lemma 5.4» p.3-26^] 
and |*7', Corollary 3.22, p.453^j under the saturation condition 

V/e wi3h to prove the converse of 2.15; that is, given 
any sequence ( » • • • >>*n) where B, € k (1*i<n)
and where [K ̂  = 0 or -1 with fX-̂  4 0 implying /Cl^ = 1 , 
then there exists a multiplicative character "Y :B — k with

11
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properties (*). In order to do this we place additional 
restrictions on the choice of coset representatives 
{ I w± € Rj .

The following lemma is due to Tits, a proof can 
be found in j~4, (1G), p.5]\ .

2 . 1 7 Lemma. Let w^ € R. Then B^ U B-^j^i is a subgroup 
of fi.
Remark, liotice that the above lemma does not depend on 
a saturated condition since B^ = U^H, U C\ I3W° is 
normalised by K and U O Uw° C (ŵ  ̂e R).

2.18 Lemma. Let w. € R. Then coset representative
✓ wi V(w.) can be chosen in \ IL , U . /  .w. 1 1

Proof. Clearly <U±, U± C B± U BiwiBi =  U±H U  U ^ E w ^  . 
w . w .

If U± C U±H then IL 1 =  U. so that
w . w . w .

B 1 =  U. XL. 1^) 1 Hi

- ui w /  H

= B, contrary to the pair axioms.
wiHence n U^Hw^U; is non-empty and there exists a

co3et representative sad u^,u2»u^ e such that 
wiU 1 = u2 n± u3 .

wi2.19 The coset representative (w^ can be chosen in Li

and the proof of 2.18 is completed.

Remark. Statement 2.19 is important since we are able to 
choose the co3et representatives {(w^)j wi € R} in the sane 
way whether the (B,N)-pair is saturated or not {.see £ 2,
Lemma 2.2, p. 351] or {3 , Definition 3.9, p.B-lfi] ).
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we assume from now on that coset representatives 
H wj_) I € Rj are chosen according to 2.19.

i'he next lemma, proved by Kichen in £ 7, Lera a. a 3.23, p.4.56^  
holds in the unsaturated case.
2.20 Lemma. Let J Ç R. Ooset representatives {(w) | w £ W j}
can be chosen so that if w, w 1 £ w, thenJW v

(w)(w')(ww' ) “ 1 £ Hj = <H± I w £ Wj, wi € J / .
Definition. Por any %  £ D, let e(X) =• Z (h~1 )a. .

h£H ü
2.21 Theorem, (see [8 , Proposition 35.1, p.36]| ) Let J Ç R 
and let coset representatives {(w) | w £ Wj} be chosen 
according to 2.20. Let X e  D and suppose XlHf = 1
all w^ £ J. Let

Vm „> •
J

Then z = z (J, generates a one—dimensional right
K-module (right ideal of S) with the following properties:

(i) z Ah %  (h) z (h € H)

(ii> z A (w.) ■ i  °
wi € J or %  |H± *  1

L -z w^ J and XlHi = 1

-Proof. Dy 2.6, we need only verify properties (i) and (ii). 
Take h £ H, w £ Wj. Then

e (  ° ^ ^ A(w)(w0 )Ah = e (W° X ) A h ( w)(w Q) by 2'A

= e('°X)AW ( V o J ( ^ r 1  (w)-1h(w)(wQ)

- e( 0 X ) A lWo)_1 ( w r ih(w)(WoJA (w)lWo)

toy k.4



= eC'° JC)W° $0 ( (wo)“1 (w)-1k(w) (w0))A(w) (i

= e(wo?C) JClh) A (wJ( } by 2.16 
so that z Ah = X (h) z any h € H.

(i) Take ^ J. Then l(w^ww0) <  1 (v w q) (see j~3, proof 
of lemma 5.5, p.B-27] ) for all w € V,'. And

Mi)
= elW° ^ A(w)(w0 )sf 1 Aki (ui ) by2*12(ii)

b(i)
"sfi elWOi:) A (w)(w0)

so that by 2.14 

z A C o  X  |H. + 1
L< v  = l1  -z 9C|H± = 1

(iij liow suppose € J. Vie take a decomposition of 
Wj into cosets {w, w/wj with respect to the subgroup \ w.^ .
We show that terms in z A^w j corresponding to w 
and w^w cancel each other. Without loss of generality 
we may assume l(wiwwQ) = l(wwo)+1 (a3 in £ 3 , proof of 
lemma 5.5» p.B-27^] ).

The term corresponding to w in z A/ , is (by 2.12(i})
ŵi'

e(W°9C)A(W)(wo)A (w;L) = e^ °  X)A(w.)(xO(wo)

Since l(w^wwQ)-1 = l(wwQ) the term corresponding to w^w

is e (Wo^ ) A (wiw)(w0)A (w1) = elWo'^)A(wiw)(w0 ) sf1 )
s

by 2.12(ii)
W rV M ± )- e( 09C) £  Ahl(u± )(w±w)(wo)

s by 2.4
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By 2.5 this last term is
b(i) w
s=1 ^  ̂ A (w0)“ 1 (wjLw)-1hl(ujL ) (w±w)(w0)A (wiw) (wQ)s
b(i)

= s=1 e(W°^ )rf° % ’((w0)_ (wlw)“ 1hl (ul )(w1 w)(w0))A (wiw)(w0)s
b(i)

= 3^  ^  (hi(uia))e("°^)A (Wiw)(wo) 2 *16

- e C ° % )A(Wiw)(w0) slnce w± € J, X|H± = 1 

-e(W° % ) A (Wi)(w)h(Wo) some h € Hj by 2.20

"e(WO?i)A(wo)- 1h(wo)A (wi)(w)(wo) ^  2 *4 

-e(w°X)W°X ((w0) 1h(wo)A(W;L)(w)(w0)

■e(W0^)A(Wi)(w)(wo) sinc0 XlHj = 1 by 2.16.

The term above cancels with (1) and the proof is completed.

Remarks.(1) As in the saturated case we can show that 
for every w± € R, H± = H O  < U±, U±Wi ̂  (see for example

0 3* Lemma 3.6, p. 38̂ J ) using lemmas 2.9, 2.17, and 2.18. It 
then follows that

a) H±wi = H± all w± £ R
W W .

b) Hwowiwo ° 1 = Hi a11 wi € R
- . ATherefore for /(, € 3

(2) M(X) = w0M(w°%)w0 since

XlH± = 1 4=^ w° %  |H±wo = 1

^  W°XlHw W°WiW° = , by (b)
o i o

*=> Wo£ K  w w - 1 by <a>-wowiwo
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The following two remarks were proved by Oawada £<a> 
for the saturated case and remain true for unsaturated pairs:

(3) the map (J,%) - (Jwo ,wo% ) is a bisection of 
the set of a.dmi3sible G—pairs where jW0 = woJw .

Let z = z(J,pc) be as in 2.21 and let z afford 
the S-character d>(J,X). Then since z(Jw°,wo^) = e(jC)Z A^w

w£V/j W°
it follows from the proof of 2.21 that

(4) 2z(JW°»w°pC) generates a left 3-module which 
affords the E-character <p(J, X); that is

Ahz(JW°,W°X) = £(h)z(Jw°,w°X,) all h € H

A (w1)z(jW°'W0^ )  = <f (J*X)A(Wi))a (JW°,W°X) all WjL € R. 

We will use this fact later.

We can now prove the converse of 2.15» one of the main 
results of this chapter. We might call the sequence 
(X » » . . . ,  Jjî ) an 'admissible vector' if B> all

€ jO, —1 } and 4= 0 implies = 1 .

2.22 Theorem. Let G be a finite group with an unsaturated 
split (B,IT)-pair of characteristic p and rank n, and let 
k be an algebraically closed field of the same characteristic. 
Given any sequence »/*. 1 ,... ,yUn) where ^:B k* is
a homomorphism, Al € k (1<i«in) such that = 0  or -1 , 
there exists a multiplicative character /y/:E -» k given
by Y ^ Ah) = 8111 h € H and Y ( A(w±)) = f^i
if and only if for any i £ |1 ,...,n| with JX± 4= 0 we 
have ^  | = 1 .
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Proof. ( ) Follows by 2.15 .

( <£= ) Let J = |w± € R | jiL. = O and ft |H± = 1} . 

let z(J,ft) be as in theorem 2.21 and the result follows.

Renark. We have shown that ( ft ?... >p-n) is the 
weight of some multiplicative character Tp :R —  k 
if and only if it is an admissible vector.

Definition. Let ft € B, J  C M ( ft) = iwjL € R | ft |H± =- 1}. 
Then (J, ft) is called an admissible pair.

By 2*21 each admissible pair (J, ft.) determines 
an admissible vector (ft , fa ,... ,f*-n ) where ^ = 0 

(for w^ £ J or ft |H^ =j= 1) or Jk ̂  = -1 (for w^ ef j and

%|±L = 1). If for each admissible vector ( % ,fa ,... 

we let J = {w^ € R | = 0 and ft = 11 we see by

2 .2 2  that the correspondence

U,ft) (ft, fa,... ,fa)

described above is a bijective one between the set of all 
admissible pairs and the set of all admissible vectors.
We now show how such weights and vectors correspond to 
Curtis' weights (see Ĵ 3» Definition 4 . p.B-17,B-183 ) 
and find a full set of irreducible left kU—nodules in Y.

Definition, let li be any finite dimensional left kG-module. 
let F (K) = |m € N| um = m , all u € Uj.

Green l [>, 1.3] ) describes how F (II) may be regarded 
as a right K-nodule. In fact if m  £ F(M) and ft £ K



p ^ m  where oC(y) = (y) (P* € kG)m ct =

In particular (by 2.1)

2 .2 3 n V ±) = lA il (w± G R)

n = hm (h G H)

all m G F(M).

Green proves ( .̂5» theorem 2^) that the correspondence 
ft —  F(ft) induces a bijaction between the set of isomorphism 
classes of irreducible left kG-modules and the set of 
isomorphism classes of simple right E-modules. Since we 
have shown that all simple right E-nodules are one-dimensional 
(2.13), F(M) is one dimensional if ft is an irreducible 
kG—module and 3?(ft) is associated with an admissible vector 
(X »• • ♦ by 2.22. By 2.23 this vector coincides
with the Curtis-Hichen weight of ft and any non-zero 
m G E(M) is called a 'weight element' of. weight (X  > - * • »/*n̂ * 
In other words F(ft) is precisely the set of all weight elements 
in M and H irreducible implies M has a unique U (hence B) line .

The following theorem was first proved by bawada 
([e]) using Curtis-Bichen results ([? 3 » IV J ) and therefore 
relies on the saturation hypothesis.
2.24 Theorem, let G be a finite group with an unsaturated 
split (B,ii)-pair of characteristic p and rank n. let k 
be an algebraically closed field of the same characteristic.
There exist bijective correspondences between the following:

(i) the set of admissible vectors,
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(ii) the set of admissible pair3,
(iii) the set of isomorphism classes of simple right 

E-modules, and
(iv) the set of isomorphism classes of irreducible 

left kG-modules.
These correspondences are given by:
( X f / V - ’/ V  (J,%) ** kz(J,?t) kGz(J, %)(y)

Proof. V/e need only verify the correspondence between 
(iii) and (iv). Green (p, ..Sol ) proves that the map 
£ —  P(Y) given by p — |*(y) ( ? € E) is a right
E-isomorphism. Let (J,^() be an admissible pair. Since 
z(J,2C) generates a one—dimensional right ideal of E (2.21), 
kz(J,/C)(y) is a one-dimensional right E-3ubmodule of 
F(Y). Therefore by £5 , 2.ba~\ , kGz(J,%)(y) is an 
irreducible left kG-module and F(kGz(J,9C ) (y)) = kz (J,X)(y )* 
If ii is any irreducible left kG—module, there exists an 
admissible pair (J,/C) with F(M) = kz(J, /C) = ks(J, /£)(y) 
as right E-modules. But M irreducible implies 
M = kGz(J,%)(y). Therefore }kGz(J, %  ) (y) | (J,X ) admissible} 
is a full set of irreducible left kG-nodules. (Curtis also 
determines such a set in £ 3» Corollary 6.12, p.3-373*)

II. The rank one case.
assume k is any algebraically closed field of 

characteristic p. If G is a finite group with an 
unsaturated split (B,N)— pair (G,B,Ii,R,U) then for any 
w^ €. R the parabolic subgroup =  B U B w ^  has an

i\ v : ■» /



unsaturuted split (B,N)-pair Jw.̂ } ,U) of rank
one where = E U  w.H. Let (w.̂ ) € If satisfy (wi)H = w±. 
We show in section 2 that the set {A^, A£w  ̂ | h € H)

1 Pik-algebra generates E^ = End^p (Yi ) where Yi ~ Indy (k^).

By Corollary 2.6 of Chapter I there exists an injecrive 
k-linear algebra hononorphista

:Ei - E given by

Ah -* Ah (h € H)

A U i) - A (w±)

since the set Jh.hlw.^ | h € Hj forms part of a transversal 
for the U-U dotible cosets in G (see Chapter I, 2.2). 
Therefore results proved for the rani: one case can be 
extended to G.

It becomes necessary in section 3 to examine 
b , ad = £ %  (h(u )) where %  € B is fixed and the h(us) 
s=1 s

(s=1 ,...»b) are certain elements of II determined by 
(w^) and Richen's 'structural equations.' Since these
equations exist for every £ R, we refer in Chapter I 

b(i)
to d. = 1 9C(h(u )) .

1 s=1 s
Therefore we now assume G has an unsaturated 

split (B,iJ) pair (G,B,N,R,U) of rank one. Let 
W = N/H = (1, wj. The subgroup U O  Uw i3 denoted by WU+ .
As in Chapter I, Y = Ind^Cky), y corresponds to ^

. Let E = 3ndkG(Y). Let (w)£ H satisfy t,wjHso that Y = kGy
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1. Cosets of U- bv U.
1.1 Let XL be any left transversal (containing 1) of U 
by WU+. Then XL ̂  O B = 1 .
Proof. Since XL O Bw Q B n  BW = (U il Uw )H)the result folio vs.

Renark. Note that | jfj_ | >  1 , for otherwise U = wu+» 
wBvr = B, contrary to the (B,N)-pair axions.

1.2 Cosets of the form gU (g € G) contained in BvB = BwU 
are of the form uh(w)U for some u £ U, h £ H. Moreover, 
if u.j, u2 € U and , h2 £ H then

UjhilwjU = u2h2 (w)U <=>■ u2 û.j £ WU+ and h^ = h2 .

Proof. Clearly u.,1̂  (w)U = if u., = u2u for some
u £ U+ since H normalises U and U+ .

Iff w

Say u^h^ (w) = u2h2 (:i)u (u £ U).
—1 —1 —1Then u2 u 1 = h2 (w)u(w) h^

= (w)h2uthj1 )w (w)” 1 so that £ Bw n  B = WB+H.
Therefore uT1u, £ U+ since it is an element whosec. 1 W
order is a power of p. Therefore h2u(h.j 1 )rf £ wU"r C U 

so that (h2u(h21 )w )(h2 (h"1)w ) £ U . Therefore h^(h“ 1 )w £ U 

and it follows h2 = h 1 .

1.3 Let r  = {h, u(w)h | h € H, u £X1). Then T  is a 
set of representatives of left comets of U in G.
Proof. V/e know that for h ’, h £ H

U )  UhU = Uh'U h = h<
(ii) UhU 4 Uh'(w)U (for otherwise (w) £ B)
(iii) Uh(w)U = Uh' (w)U <=> h = h' (by 1.2)

1 .4 Bvery element g of G can be uniquely expressed as
g = Ujh o r g  = u(w)hu2 w ith  u1 ,u2 €  U, u £  X I. , h 6  H.



Proof, file result follows by 1.2, the fact that B is 
the semidirect product of U and H and that BwB = XL wB.
1.5 The elements of N form a transversal for the 
U-U double cosets in U-.
Proof. By 1.3 and 1.4.

Richer determines ’structural equations* in the 
saturated case and we adapt his proof in [7 , p.445] to 
suit our hypothesis.
1.6 Structural equations in G-. let XI* = XL\i 1 }. Bor 
any u € XL* there exist functions f: A *  -  XI*,
g: XL -* U , h: XX -* H where f is a bisection and

(w)u(w) = f (u)h(u) (w)g(u) .
Proof, let u e XL*. If u (w) € B, then u = 1 by 1.1. 
Therefore u^w  ̂£ BwB and (w)u(w) £ BwB = XL wHU and 
the existence of f: XL" -* XL , g: XL —■ TJ, and h: XL 
is established by 1.4. Say there exists u £ XL for 
which flu) = 1. Then (w)ulw) = h(u)lw)glu) so that 
u(w) £ B, lw) £ B, contradiction.

Now say there exist u, u1 £ XL* with flu) = f(u.j).
fnen lw)u“1 (w)“1 = lw)2g(u)-1lw)“1hlu)_1f(u)-1 so that
(v)u_1u1 (w)_1 = lw)u~1 lw)“1 (w)u1 lw)(w)“2

= (w)2g(u)-1 (w)_1hlu)“1h(u1) (w)g(u.j ) (w)” 2 £

Therefore lw)u"*̂ u1 (w)-1 € \JW O B C Then.
lw)u-1u, (w)“1 £ U+ since it is an element in B whose 
order is a power of p. Finally u-1û  £ WU+ so that 
u. = u and f is bijective.
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2. The endomorphism algebra E.
As in Chapter I section 2 the set 

is a k-basis for H where for h € H

2.1 A^(y) = hy

= Lnilw)y •

It is easy to see that

2 *2 Ah A (w) = A (w)h 0114 A (w) Ah

Ia; I n £ Nj

= Ah(w) for any h € E '

Therefore
2.3 The set |A£, A|w  ̂ | h € HJ k-algebra generates £.

2.4 Lemma, 
distinct)

There exist elements 
* 1 ’ub

belonging to H.
2

such that

A(w) - A (w) £  *¿0»*)

(not necessarily

where

b = i n  i-i.
Proof . We can write = 1 X y K  + h£H * ü - J t i W ) Ah(w)

where i  h" X h(w) £ 11 ^ h € H. Eix h e H. Me show

(i) if X  k + o then h = (w)2 and X  ̂ 2  = |il| 1,jL

(ii) if X  4 0 then h = h(u) some u €
Proof of (i): By Chapter I (2.2) there exist u., u2 € iTl.

such that u. (w)u~(w) € hU. Vie must have u2 = 1 for
1 .. * otherwise (w)“1u2(w) € (w)-<ihU C B contradicting 1.1.

How u ^ w ) 2 £ hU (w)2 = h. It follows that X(W )2 = IJTL I lk

Proof of (ii); If X  4 0 there exist u 1, u., £ IL

such that u.(w)u2(w) € h(v)U. Therefore by 1.6
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W b
■ 8( !“ *!.)b S~1

by 2.4

= E X U l u J J y  s=1 s
by part U )

= d v .

Therefore there exists a multiplicative character ^ :eS -* k 
such that ^ = d and ^ = PC (hj all h € H.

m t  ^ A {v)AV  = « M ^ w r ^ W W  “ y ^ e n ^ 2 - 2

so that $ ( A ( w ) ) $ U £ )  = f U | w r 1M w ) ) ^ U [ w } ) any h £ K
and so d/Cth) = W/C (h) d all h £ H anoL the 
result follows.
5.2 Theorem. Assume d 4 0. Then there exists a one-dimensicnal 
kU—module Ii affording the character : G —■ k* with 
1 |H = ?C|H.
Proof. By 5.1 A [-\-f) commutes with e(JC). Hence el%J
is in the centre of S and

e ( % ) 2 =  e(^)3 e(0C) =  k e{%) ©  *  e{%)A^f)

is an algebra which has basis e = e{%) and t = e(# )A'W).
2 2Now e = e, et =- te = t, t = dt and e = eQ + ê  is 

a decomposition of e into primitive idempotents in 
e(X)3 where eQ =(1/dXde - t; and e1 =r(l/d.)t . let 
Y ^  = el%}Y. Then is a kG-moduie of dimension

p¡G : B| = |X\| + 1- since Y^ = Ind^il^) where 1^ is a 
kB-module affording the character %  . let K = eQ(. Y) 
and Mt = e^Y). Then Y^ = Ii0 ©  M., where
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Mq and 111 are indeconposable left kG—modules. Vie 
show that the dimension of M is one by showing the 
dimension of 1^ is i n  i. let x.j = e^y). Then x̂  
is U-invariant and

[nl(w )x1 = C n l o o e ^ y )
= e1([n.3(w)y)

= eiA(w)(y)
= 1/d e{%) A|w)2(y)

b
= 1/ d  e C X ) 1 A £ (u  j l y )  b y  2.4

S— 1 s

b
= 1/d e{%) E jC(h(us))y since s{%)

8=1 and A,' vUJ
commute

= d e1(y)
= d | 0 as d 4 0 .

therefore 1-i. contains an element x = (w) x̂  such, 
that M m  4 0 and x is stabilised by WU+. let

1 = Indml̂ -j.) where T = WU+ . Then there exists a

surjective kU-map S' : 1 — kUx given by B'iz) = x 
where z = 1 ®  1. Hence { / ( E o & z )  = E to as 4 0 .

Since U is a p-group, socle(1) is its space of U-invariants 
which is clearly [fljz. Therefore &  is a bijaction and the 
k-space kU x has dimension I A. I* But kbx C Kj 
and dimension = dimension — diniension H0 ^ in. I 20 ~nat
dimension of is |il |.

Assume 14 affords the character :G -* k* and let 
v = eQ(y). Then MQ = kv and if h £ H
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h(1/d(de - t)ly))

1/d(dhe - ht)(y)

1/d(d OC (h) e(y) - h e  A{w)Cy)J

1/d(d OC (h)e(y) - h A ^ e ( y ) )  since e and
conmute

1/d(d OC (h)e(y) - (h e(y))

1/d(d OCCh)e(y) - A|w) %  (h)e(y))

%  (h) V . Therefore ? |H = X  |K-
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HI» Normality of C - A counterexample.

In this short chapter we examine the subgroup 
C = U H  Uw°. Clearly C = 1 if and only if G has 
a saturated split (B,TT)-pair. If C is normal in G 
there is a bisection between the set of isomorphism classes 
of irreducible kG-modules and the set of isomorphism 
classes of irreducible k(G/C)-modules since C is a 
p-group*and since G/J has a saturated split (B,N)-pair 
(.G/C,B/C,Ii,R,U/C) the results of (A) I could have been 
deduced from the 1 saturated' theory. Since C is 
normalised by H and N (see (A) I Remark 2 of section 1)
C ^  G if and only if C ̂  U. We show that if C± = U n UW;L̂ U  
all wi e R then C 3  U; that is, C ^ G  if this condition 
is satisfied for all rank 1 parabolic subgroups of G.
Using a theorem of Kantor and Seitz [6] on doubly-transitive 
permutation groups we show that C ̂  G if p is odd and 
we give an example of a rank 1 (B,N)-pair when p = 2 
and C G.

1.1 Lemma. U = ^(U±)w | w e W and K w w ^ j a  l(w)+1^ •
Proof. Let w = w. ...w. be a reduced expression for w € W.H  H
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Since Cw = 0 all w € W
1.2 lemma. G ̂  U if and only if C ̂  LL all w± € R.

1.3 lemma, let w± € R. Assume U n UW± ̂  U. Then C ^ U±. 
Proof. We have C = U n Uw° n UWiW°

= u n  (Dn uwi)wiwo #

By assumption (U n UWf)WiW° ^  UWiW° so that 
C s? U n Uw±w° and C = Cw°wi 3  uw°w± n U = U. .

The next lemma i3 immediate by 1.3 and 1.2.

1.4 lemma. Say C± = U O UWl <̂  P^ = B U  B w ^  all w± e R.

Then C ¿3 G; that is C i? G if thi3 condition is satisfied 
by all the rank 1 parabolic subgroups of G.

lemma 1 .4 tells us that we can restrict our 
attention to the rank 1 case so suppose then that

G = B U BwB where
(G,B,N, {w} ,U) is an unsaturated split (B,lf)-pair of 
rank 1. Then

a) G acts 2-transitively on CL = G/B, the space 
of cosets gB (g € G) and

Ab) G = G/Z acts faithfully and 2-transitively on .CL
where

Z = n Bg . 
gSG

let d  , p € XX. where «(. = B, fb = wB. Notice 
III I = I G/B | = 1 + p1 where 2 < |U/C| = p1 and

(G), = B/Z, the stabiliser in G of «C .

Since U is a p-group, U 4  B, B/Z contains a normal 
nilpotent subgroup Q = UZ/Z which is transitive on 
_fl\ 1*U since BwB = UwB.
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Since Cw = 0 all w € W
1.2 Lemma. C i  U if and only if C £  U± all e R.

1.3 Lemma. Let w± € R. Assume U O UWi ̂  U. Then C U.. 
Proof. Vie have C = U n Uwo n uWlW°

= u n (u n uw±)WiW° .

By assumption (U n UWf)WiW° ^  UWiWo so that 
C «! U O UWiW° and C = CW°W1 3 Uw°Wi O II = U± .

The next lemma i3 immediate by 1.3 and 1.2.

1.4 Lemma. Say C± = U n UW± 4  i± = B U B w ^  all w± € R.

Then C ^  G; that is C ̂  G if thi3 condition is satisfied 
by all the rank 1 parabolic subgroups of G.

Lemma 1.4 tells us that we can restrict our 
attention to the rank 1 case so suppose then that

G = B U  BwB where
IG,B,N, {w} ,U) is an unsaturated split (B,H)-pair of 
rank 1. Then

at) G acts 2—transitively on JCL = G/B, the space 
of cosets gB (g € G) and

Ab) G = G/Z acts faithfully and 2-transitively on XL
where

Z = O 3g .
geo

Let c(.» p € jfl where /, = B, j} = wB. Notice 
|XL| = |G/B| = 1 + p1 where 2 < |U/C| = p1 and

(G)^ = B/Z, the stabiliser in G of «(. .

Since U is a p-group, U 4  B, B/Z contains a normal 
nilpotent subgroup Q = UZ/Z which is transitive on 
XI\ }«tj since BwB = UwB.
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By a result of Kantor and Seitz £ 6 , Theorem C', p. 13ll
either

(i) Q is regular on £l\{otj which implies in
particular that Q ̂  = 1  and

Q jj = {uZ| u € U, u(wB) = wB} = |uZ| u € U, uw € B{

= (u n uw)z/z 

= cz/z .
Therefore CZ/Z = 1 implies C < Z

so that C < Z O U < U O B W « U O UW = C 
so that 0 = Z O U . But Z 4 3  will then give C ̂  G. 
or

(ii) G contains a regular normal subgroup of order
2q where q is a Mersenne prime (q = 2r - 1, r prime).

2Therefore |_Q_ | = q is an odd integer and

ln\ I is even which implies p1 is even
and p = 2

We have therefore proved the following theorem:

1.5 Theorem. If p is odd, C ^ G  for all unsaturated 
split (B,N)-pairs.

The argument in £6
leads to the following example of a rank 1 unsaturated 
split IB,W)-pair where p = 2, C ^  G.

with defining relations x® = x^ = 1; x0"1x1x0 = x:

let let
.3
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Then U € Syl2(GL(2,3)) 2nd the elements of U are:

■ ( ; : )

x. =

x: =

x4' =

x', =

x, =

x7 - X1 “

/ o n

r  °>

( - : : :

( - 1  0 >
l 0-1 

( : ■ :  

t :  

f t :

=

xox1

xox1

xox?

1 0 
0 -1

1 - 1 '  

1-1 -1

• (
0 1 
1 0

1 r
1 -1

X xl = o 1
-1  -1  

-1  1

let M = V(2,3), the space of 2-dimensional column 
vectors over GF(3). We have a map

X : U — Aut(M) given by

x — X x' m -* xm (x € U, m € M) .

Let G = 1 (m,x) | m £ IT, x € U} be the semi-direct product 
of M and U. Multiplication in G is given by

4 1



32

(m,x) (m',x') = (m + xm'yxx') for n,m' € M, x,x' € U.
The identity of G i3 (0,1) and

M 1 = ((n, 1)| n € M) =? M and M., G

Ut = |(0,x) | x € U} = U .

Let Q  = V(2,3) (= M). Then G acts on XI toy
(0,x)(v) = xv

(m,1)(v) = m + v all m € M, x € U, v € XI. .

The following are easily verified: 
a, ^

b) U, = 1(0,1), (0,xQ)} .
(o)

c) is transitive on and since (ei,1)^q) = m

any m € V(2,3),
d) G is transitive on XX . Hence G is 2-transitive 
on XI and
e) 0 = Ga U G&gGa any g € G \ G a, a € XL .
Vie now show that G has an unaaturated solit (13,N)-pair of 
rank 1:

Let w = ((¿) , ) € G. Then w2 = 1,

w $ U1 and

»((¿V (o) • "((o))" (o) • Iet
B = U1 and H = 1. Then G = toy a) and e)
taking a = q̂ |, g = w. Also wU.j, UjW, wU.,w C U 1 U U1wU1 = G.
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The Vfeyl group is N and R = M . lastly wU.w 4 u.
for otherwise there exists U 1 e U1 with

( 1 - A
(o) toWUjW =

Vi i) ‘
Applying both

sides gives

: ) ■

Ji n u?

exchanges (o) “ «* (o)*

, contradiction.

since w
(o)

Using b) it follows that

U. C wU1w. Therefore C = |(0,1), (OiXĵ )} but

(°)
C is not normalised by the element (0,Xj) for example

-1 6 since x.| xQx̂  = xQx̂  .
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I. Determination of irreducible modular representations 
of parabolic subgroups.

Assume G = (G,3>H,R,U) is a finite group with an 
unsaturated split (B,JT)-pair of characteristic p and rank n 
and k is an algebraically closed field of the same 
characteristic. Let J be any fixed subset of R. Then 
Gj = (Gj ,B>Nj ,J,U) is an unsaturated split (B,IT)-pair

(see £l# Proposition 1, p. 28"] ) of characteristic p 
and rank |j| where Wj = » Nj = V  -1 (Wj)
and G = U BwB. Notice that H = B n II = B O  N T.

Assume {(w) | w € Wj} is a fixed but arbitrary set 
of representatives of the cosets of Nj by H.
1,1 Notations and Definitions. We denote by Wj the 
unique element of maximal length in Wj. Let w £ Wj. 
Define

U-J = U O UWJWW

llo u n uwJ .

We write
wi

and wD as w„. R o

as
Clearly

for w± € J, wU~R 
C C Cj and Cj =

as

CJ

WU , CR as C 
any w £ Wj

(see (A) I 1.1). The reader is reminded that WU+ = U O Uw
any w € W. For convenience we write as U”**w"
and , U+ as U+ . w-1

Take w € W. Let il w (1 € ilw) be a left transversal 
of U” by C. (Write for i~L any w^ £ R .)

1.2 Lemma. Let w £ WJ# Then Ci v i3 also a left transversal 
of V~J by Cj.
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Proof. V/e show iTJ = u CT and u n CT = Cw w J w J
Let a = vrwT, o J b = w-1. Th en 1(WjW"1) = !(wj .-1

since w £ Yfj. Therefore 
-11( W r ') = 1 (wo■* “ l(WjW-1) = l(woWj) -f K w - 1) and 

we apply (A) I 1.2. We •then have

abU~ = hU_(aU")b and bU~ ° (aU“)b = C*
But u“ = U O UWJ = CT so that ( U“)b = C™ 1 = C T anda J 'a. J J

.-1

the lemma is proved.
Remarks. 1) Since U = U~ any w £ W ((A) ,1.1.3) it

follows that U = IT CT = U“J U* any w € W T by (*).W «J W W W d
Moreover just as U+ O „1f~ = G any w € W we have w w

o
w

y  n  y 1 - 0j for any w £ Y/j. Of course ilw remaian s

a transversal for U modulo U„.w
2) In (A)I2.9 we chose (w^) £ ^U, foi

any w^ £ R. Notice that by (*) if w^ £ J that

<U, (Ui)wi) = <U, (U±)wi Cj>

» <U, (U±)wi CjWi)

= <U, (U-Cj^i)

= <U, ( u ^ i  >  .

Most of the results below follow from the work in (A) 
and the proofs are omitted.

1.3 Lemma. The set iTj = ju^Mw) | h £ H, û . £ Xlvf» w £ Yij} 

is a left transversal of Gj by U.
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Notice that Pj can be taken to be a subset of P =

1 . 4 Lenraa. The elements of Nj form a transversal for the 
U—U double cosets in G,.tJ

so that Yj = kGjy-. Denote by Ej the endomorphism

algebra EndkG (Yj). let YR = Y, yR = y and E^ = E.
J

We’ve shown ((A),I 2.1) that E has k-ba3is 
lAn l n £ N} where An(y) J]ny for nH = w. In fact:
1.5 Lenna. -he k-algebra E T ha3 k-basis {A! |n £ N T{

” 1 "" H cJ

where A1 (y,) - [ O - J K  where nH = w £ Wj.

The k-linear map £) :E, — £. given by A ’ - A for n £ NT
y XI XI o

is an injective algebra homomorphism by Lemma 1.4 and using 
(A) 12.2., Therefore any right E-module X can be made
into a right Ej-module by restriction; that is. if r £ X

can be applied to our present case.
1.6 Lemma. The set {A^, A|w  ̂| h £ H, £ jj k-algebra 
generates 3j.
1.7 Theorem.(i) The algebra Ej is Frobenius.

and if X €  B = Hom(B,k*) then H(9( ) = {w± £ R| X  1 %  = 1}.
If w £ W, Vl)i £ B where w,)£(hu) = %,(hwu) any h £ H, u £ U.

^ JLet YjS Indy (ky) and yj correspond to

x An = for n £ NJn

It is via the ’structual equations’ of (A) I 2.10 
for v. £ J and the map 0 above that results from (A)

(ii) All simple (right) Bj-modules are one-dimensional 

Remember that for any w^ £ R, = H O (U^)WX^

By remark 2 above the work in (A) can be applied to both 
the E and Ej (kG and kGj) irreducible modules.
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Definition. Let % &  B, 3 C I4( %) n J = Mj( %). We call 
(Sj X) an admissible G T-pair. Let P, be the set of all 
such pairs.
1.8 Theorem. The multiplicative characters of 3j and the 
set of isomorphism classes of irreducible kGj-modules are 
in a one-to-one correspondence with the elements of P T.
In particular if the character <p corresponds to the 
admissible Gj-pair (S,?C) then y = ^jiS, X) is given by

9 (A£) = X  (h) any h e H

9(AU)> -
0 w± € S or X  |H± 4= 1 

-1 ^ s and X|H^ = 1 .
Moreover if kZj(S,%) is the right Bj—module affording

(see (A) I 2.21 ;) and Mj(3, % )  = kGjZj(3,X ) (yj)‘ 
then {llj(S, X) ! (3» X) € Pjj is a full set of irreducible 
left kGj-modules.

Sawada proved the following lemma in the ca.se J = R when 
G has a saturated (B,IT)-pair (£9, Corollary 5.5 (ii)» p. 37~|).
1f9 Lemma. The indecomposable components of Yj have 
simple head and simple socle and are in a one-to-one 
correspondence with the elements of Pj.
Proof. See £6, Theorem 1 (i), (2.3)» (2.6) Remark 2̂ ] and 
1.7 Ui).

The following lemma is most useful. Curtis ( p-, Theorem 6.1p 
p. B-383) first proved it for the case J == R under the 
saturation condition. We adapt his proof.
1.10 Lemma. Let IIj(3, X) be as above. Then Mj(S» X) has 
a unique B-line and this line affords the character %  .
Moreover the parabolic subgroup Gg is the full stabiliser
in Gj of that line.
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Proof. V/e know by £6, Theorem 2"] that F(llT(3, )) > the 
k-space of U-invariant elements in IIj(3 , X  )» is an 
irreducible E^-nodule. By 1.7 (ii) and [̂ 6, 2.6a3
P(Mj(3»0C)) = ksj(f>, %  ) (yj) is the unique U-line and hence 
the unique B-line in iij(S,X). Let z = Zj(S, X  ) (jrj) .

of 3j -* P(Yj) with z the image of Zj(3,/C). Since 
Zj(S, 7C ) = %(h)zj(S,X) any h £ H  by Theorem 1.8, we
get by applying 3 both sides that

z Ah = %  (*0 z any h £ H.
Since hs = zA^ (see for example (A) I 2.2p) for all h £ H, 
kz affords X  aa required.

Now let v± £ 3, X± = A T  = H ^ f l } .  Then by 1.8

The map J : j> — |> (yj) is a right Ej-isomorphisn

0

(wi)2z + Z fjL(u)hjl(u)(w1)gi (u)z

(by (A) I 2.10 ) where f±(u) £ X±, 
h±(u) £ Hi, g±(u) £ U any u £ X±

((w±)2z) + Z f±(u)hi (u)(wi)z si..ce

z is IP-invariant
z + [ a i](wi)z - (w^Js since (wi ) 2 £ Hi, 

w .
x  |% = 1 and 1 X  = %  by (A) I 2.16

Z - (w^z .



It follows that (w)z = z any w € V/g by adapting (A) I 2.2 
to our present case.

Conversely, say vk € J satisfies (w.)z = X z  some 
X. £ k. Then there exists Jji. £ lc such that

z A (w±) “ rK z = 0

(since 1 >  I í l i  I is a p-power) so that = 0. Now z 
is stabilised by U so it is stabilised by U?. Therefore

z is stabilised by so that PClHi = By 1.8
w^ must belong to S and the lemma is proved.

2. Restriction and Induction Formulae.

In this section we discuss the relationship between 
(1) simple S modules and simple Ej modules, and (2) the 
indecomposable components of Y and those of Yj.

2*1 Lemma. Let y  : Ej — k be any multiplicative character. 
Then there exists a multiplicative character ”'{/ :E k 
such that <j> = • In fact if <p is determined by
the admissible Gj-pair (S,'X) and "p* is determined by 
the admissible G-pair (Z, %') then

< D =  -y | E j  X  = X  ' and 3 =  K O J .

Proof. We prove the second statement and the first will 
follow with K = S. Notice that by 1.8

3 = {w± e J | <J> (A{ j )  = 0 andX|H± = 1 }

Z = |w± e R | y ( A (w j) = 0  and ^ 1 %  = 1}.

(=^) Let (p = y  |Ej. Clearly X  = %' since 5? (A¿) = ^  (Ah)
all h £ H. Also S C Z O Mj(X ) = Z n J. If there
exists w± £ K n  J but w± $ 3 then we must have ^  (AJ >) =
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and Y ( A ^ w = 0, contradiction. So K O J = S.

(^) Say X  = %  ' and 3 = K H  J. Then <p (A^) = Y  (A^) = %  (h]
all h € H and by 1.6 we need only show ^(A(w )) = ^  (A^w ))

all w^ £ J. We consider the following- cases:
a) w± £ 3. Then w± £ K and ^p(A (w .)) = Y ( A(w.)^ = °*

b) w.̂  \ S, w. £ Ii(X/). r£hen w^ ^ K and 30

? % > >  - T (A(w1 )) "

c) $ 3, w± $ MiX.). Then <j> (A|w _j) = Y  (A(w )) = 0.

Now take any decomposition of Yj as a direct sum of 
indecomposable kGj-modules. By 1.9 given any admissible G T—pair 
(3,^C) exactly one such summand has head isomorphic to Mj(3,%).

2.2 Lemma. Let Yj(3»X) be the component of Yj whose 
head is isomorphic to Mj(S,pC). Then Yj(3, %) is unique 
up to isomorphism by the Krull-Schmidt Theorem and

(1 ) Yj = S ®  Yj(3,X) is a decomposition
(S,X )€Pj

of Yj into indecomposable kGj-submodules. The socle 
of Yj(S,X ) is isomorphic to Mj(SWJ»w^X) where SWJ= Wj3Vj.

Proof. Let IfjCSj/C) £ Bj be the projection of Y^onto Yj(S,X). 
Then 1V = S If ,(3,%) is an orthogonal decomposition of

X ti

(3,X)£Pj
the identity 1y of 3 into primitive idempotents in S.

We have arranged that 

f  j(3,X) (H'jiK.X')) =

Since 'irj(3,X)zJ(SwJ,wJX) = Zj(3wJ,wJ^ ) for any (S,X) € ?j
(see remark 4 following (A) I 2.21) we have (as in [[9» Theorem 3.1 
p. 40]] ) that TT'jO.X )Yj S. Mj(3wJ,wJX) and the result follows
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and Y ( A ^ w = 0, contradiction. So K O J = S.

(<v=-) Say X  = %  ' and S = K O J. Then <p (A^) = Y  (A^) = %  (h 
all h € H and by 1.6 we need only ahow ^  (A(w )) = Y  (A (v ))
all w^ £ J. We consider the following: cases:

a) W;L £ 3. Then w± £ K and <p (A(w .)) = Y ^ A(W .)) = °*

b) wi ^ S» £ M(PC/)• Then w.̂  $ K and ao

f  - t  <*(»,)’

c) w± 4 3» W± i M(%). Then <j> (A|w = Y  (A(w±) > = °*

Now take any decomposition of Yj as a direct sum of 
indecomposable kGj-modules. By 1.9 given any admissible Gj-pair 
(3,pC) exactly one such summand has head isomorphic to Mj(3,X)*

2.2 Lemma. Let Yj(3fX) be the component of Yj whose 
head is isomorphic to Mj(S,pC). Then Yj(3, %) is unique 
up to isomorphism by the Krull-Schmidt Theorem and

(1) Yj = S ®  Yj(3,%) is a decomposition
(S,X )£Pj

of Yj into indecomposable kGj-submodules. The socle 
of Yj (SiPC ) is isomorphic to Mj(SW^»W<̂ X.) where SWJ= WjSVj.

Proof. Let Tl'j(S,X) £ Ej be the projection of Yyonto Yj(3,X). 
Then 1v = S N f T(3,X) is an orthogonal decomposition ofI cJ

(3,X)£Pj
the identity 1y of 3 into primitive idempotents in 3.

m

We have arranged that 

Jj(3,X) (tfjdt.X’)) 

Since 1Tj(3,X )Zj(SwJ,wJ%)

' 1 3 = K, OC = X •
0 otherwise

= z t(3wJ,w J^) for any (S,X) € ?J
(see remark 4 following (A) I 2.21) we have (as in [[9» Theorem 3.1' 
p. 4cf] ) that H'jOfX )Yj 2. Mj(SwJ,wJ?C) and the result follows
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subgroups of G-, D C F .  If L> li'cJ
denotes the k-snace

Notations. Let D,F b
are kD-modules then (L, L' ), „ykD
Homfcu(L, L*) of all D-maps & :L —  L'. (Similarly we write 
(Z, 2')j, for Ej-modules Z and Z'). V,re sometimes 
write l1’ for Ind^(L).

Let {L^ | % C B} be a full set of irreducible left 
kB (or kH)— nodules. Then each is one-dimensional and
it is easy to see that

(ku)B =
XC3

Hence
(2) YJ

© G t- t . J
X£3

2.5 Lemma. Let Ax e 3. Then L % d = Y t(3,X) •
S C I i )— O

Proof. 3y (1), (2) and the Krull-Schnidt Theorem, it i
is enough to show that Yj(S, X ’) is a component of L ^  
only if X  = X  ' • C-jHow Yj(3, %') is a component of 1 ,v

(j T
= $  ( L ^  , HjO, ft'))kGj + 0 by 2.2

=£• (L^ , + 0 (Frobenius Reciprocity)

z=̂  %  = X  ' and 3 C Mj( % ) since Mj(S, X ’) has 

unique 3-line affording X ’ hy 1.10.
Q

Since IndG (L ̂  J) = L and IndG (Yj) s Y weJ* J
can prove the following lemma: (Write YR (K, X») as Y(K,%) 
for any admissible G-pair (K, %))
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2.4 Lemma. Let (5, 96) £ P_. ThencJ

Y j ( 3 ,  % ) G £  S e  Y ( K , %  ) .
K C T I ( % )

s = ir>j
Proof. By Lemma 2.3 and the same lemma applied to the case 
J = R

E ®  Yj (S,?6)G £ E ®  Y(K,X) .
SCHj (%) KQ/I(06)

r
By the Krull-Schmidt Theorem, Yj(3,X ) = E®Y(K, fl.)

Q
the sum over some set Q of admissible G—pairs. Thi3
implies that head Yj(S,9C )G = £®!4(K, %) summed over

Q
the same set Q by 2.2 .

Now (Yj(3,96 ) G/ M (J ' , 'X ) ) k0 =1= 0

( Y j ( S , X ) ,  I l ( J ' , ^ ) kG  ) kG  4  0  ( F P o b e a i u a  R e c i jJ tJ

(?(Yt(3,X )), ?(H(J',X)W  ))Vi_ 4 0

by [6 , 2. 1a ] .
J (+)

By [6, Theorem 1'(iii)] and Lemma 2.2 head F(Yj(3»X))
affords the character But
F ( i 4 ( J ' )) = F(M(J’,X)kG ) is a one-dimensional spaceJ
and affords the E-character y R (J',6>6). Therefore 
statement (+) is equivalent to

5>j(s>X) = i R C ^ X J l a ,

s = J* O J by 2.1 and the result follows 
U3 ing the same methods we can show:
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2.4 Lemma. Let (3,06) £ PT. ThenJ
Yj(3, X ) G & S® Y(K,%) .

E01(90 
s = inj

Proof. By Lemma 2.3 and the same lemma applied to the case 
J = R

E 0  Yj(S ,  X ) ° = E ® Y (K ,X )  .
SCMj ( % ) K

By the hrull-Schnidt Theorem, Yj(3,X )* £ E® Y(K, X )
n

the svim over some set Q of admissible G-pair3. This
implies that head Yj (S ,X  )G = E®M(E,X ) summed over 

Q
the same set Q by 2.2 .

now (Yjfg.oe)0, M(J',OC))kG 4= o

(Yj(3,iC), M{J',#)kG )k(, 4= 0 (Brobenius Reciprocity)<J J
^  (?(Tj(3,X ))» E(M(J', 0C)k(J ))H f 0 (+)J J

by {6 , 2. lâ j.

By [6, Theorem T(iii)] and Lemma 2.2 head P(Yj(3» .■(.))
affords the character <pj(3,X ) of Bj. But
F(M(J' ,% )) = P(M(J',X)kG ) is a one-dimensional spaceJand affords the E-character ^ R (.J',0C). Therefore 
statement (+) is equivalent to

= s v j , '*>isJ

s = J* n J by 2.1 and the result follows.
Using the same methods we can show:
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2.5 Corollary. Let J Ç  K Ç  E and let (3, %) be an 
admissible Gj—pair. Then

Yj(S» % )Gk = Z® YK(Q,0i) .
QCMk( %)
S^QOJ

2.6 Corollary. Let (K, ?(.) be an admissible G-pair.
Then Y (K, ) .is induced from the parabolic subgroup G^ - ̂
Proof. Take J = M(^X ) in 2.4 to get

TM(/£ )('K >y- )& = Y(K,#).

We now restate Lemma 2.4 using 2.1 but first we 
introduce some new notation.
Notation. Write Yj(S»'^) as Yj(<p ) if (p :Ej — k is 
determined by the admissible Gj-pair (s»9C). Similarly 
we write Y(K, 'X ’ ) as Y( Y  ) if 'Y: 3 -*k is determined 
by the admissible G-pair (K,%').

2.7 Lemma. Let (p :Hj k be any multiplicative character
of Ej. Then

IndG .(Yj(ÿ» Y('p)
Y*.E-k

We now consider an arbitrary subgroup G^ of G 
which contains U and discuss the relationship between
ri £ Ind^ (kĝ  ) and Y.

2.8 Lemma. Let G1 be as above. Then Yj is a component 
of Y; that is, there exists a kG-module X such that
Y £ x e> y 1 .
Proof. Let t = 1kG® kGl1k • Then T 1 = kGt* Let {xil 1 e 
be a left transversal of G by G1, Jv̂  | j € J} be a

■ ■ M M
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2.5 Corollary, let J Ç K Ç E  and let (3, %) be an 
admissible G^-pair. Then

Yj (s ,9C)Gk s s® YK (Q,tf) .
QCMK( % )
s=qnJ

2.6 Corollary. Let (K, 9C ) be an admissible G-pair.
Then Y(K, ?C) is induced from the parabolic subgroup ^ ̂
Proof. Take J = HiOi ) in 2.4 to get

TM(-X)(K,^ ) G = Y(K,%).

Vie now restate Lerama 2.4 using 2.1 but first we 
introduce some new notation.
Notation. Write Yj(S,'^) as Yj(<p ) if (p :Ej k is 
determined by the admissible Gj-pair (o>96). Similarly 
we write Y(K, ’X ’ ) as YCY) if k is determined
by the adnissible G-pair ( K , 1)•

2.7 Lemma. Let (0 :Sj k be any multiplicative character 
of Ej. Then

IndGJ (Yj(5>)) = ï 9 Y(Ÿ) 
"vji : E-k

We now consider an arbitrary subgroup G 1 of G 
which contains U and discuss the relationship between 
Y 1 S Ind^ ̂ kG1 ̂ and Y*

2.8 iCTra.. Let G1 be a3 above. Then Y^ is a component 
of Y; that is, there exists a kG-module X such that 
Y = X e> Y 1.
Proof. Let t = 1kG® kGi1k • Then Y1 = kGb* Iet lxj.l 1 e 
be a left transversal of G by G1, {v̂  | j € Jj be a

Wmm



45

left transversal of G1 by U. '¿'he map 3 :Y - Y1 given by 
xxvjir — xxvj^ - (i € I, j GJ) is surjective. Since
U is a Sylow p-subgroup of G, p does not divide |G-.:U |
and the map Q :Ŷ  -» Y given by t — 1/|G.:U| E v.y

jSJ
satisfies S& - 1V and ‘fc*10 result follows.

*1

Let be as above. Set B1 = B n Ĝ  , = IT O G  ̂.
Since U C G^, = B and Ĝ  = B^N^B^. There exists
a subset S C R  such that HG^ = G,H = Gg and 
(G^,B |H^) is a (B,N)-pair whose Weyl group is isomorphic 
to Vf„ (see £14» Proposition 2.5» p. 3173)* Clearly 
Gg is the unique minimal parabolic subgroup containing G^. 
In a recent paper ( D ° 3 ) Sawada describes all such Ĝ  
and in particular show3 that Ĝ  contains < \  .<U1)’*l>

all w± G S (see jfo, proof of Theorem 1.6(ii)"J )• Therefore 
{(WjL) | G 3 } can be taken to be in Ĝ  (see (A.) I 2.18) 
Me use these facts to prove the following useful lemma:

2.9 Lemma. Let U C Ĝ  be a subgroup of G. Let Gg be 
the unique minimal parabolic subgroup containing G^. Then

Y1 S E ©  Y(J, X)
SCJ

% \ ™ y  = 1

Proof. By 2.8 Y1 i3 a comoonent of Y. Therefore, by the
Krull-Schmidt Theorem, Y 1 = 5TY(J,%)j this sum over

Qsome set Q of admissible G—pairs (J,9C)° By 2.2
Y1 £ E ©  M(J, %).

(J, X)€Q
head
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Now ( Y ^  H (J ,X  ) ) kG 4= 0 ^  ( 1̂  ,  N( J» X ) k&i )k&i 4=0

(Probenius Reciprocity)

^MCJiOC) contains a trivial
Gj-line

the unique B-line of M(J,%), 
say kn, is also a trivial G^—line

=7» %\B n G^ = 1 and km is also 
a G„-line (since IIG. = G„)O I O

=£• X|B O Gj = 1 and 3 C J (by 1.10).

On the other hand, say X| b n Ĝ  = 1 and S C J. Then the 
unique B-line km of M(J,%) is also a Gg-line

km is a trivial G^-line (since G^ = B^N^B^ ,
{(w.)| € 3} C and we can arrange that
(w)m = n all w C V/0 as in the proof of 1.10)O

=$> ( k j , ^  ,  M ( J ,  X  ) k G i  ) kCr  ̂ 4= 0

=p (Y1 , M(J,X))kG 4= 0 using Probenius Reciprocity.

We apply this lemma, to parabolic subgroups of G.

2.10 Corollary. Let S C R .  Then

IndG (kG ) = Z& Y(J, 1B ) where
o S 3CJCR

i is the trivial character of B. In particular B
Ind^(kB) = E ® Y ( J ,  1B)

JCR
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II« The dimensions of the indecomposable components of Y.

Let (K, rA ) be an admissible G-pair; that is, %  G 3 and 
K C M(X)* We aim to calculate the dimension of Y(K, X  ).

The V/eyl group of a (H,If)-pair is isomorphic to the 
V/eyl group of a root system in Euclidean space (see jj7, p. 43 
in such a vray that R corresponds to the set of fundamental 
reflections. 'Ye therefore define

A  = {a.,...,a I w. G R} to be the set ofi n i
fundamental or simple roots of thi3 root system. If 
J C R let

A j  = {ai | vn G J}
1 . Distinguished coset representatives.

The following sets were first defined by Solomon in
£13]] for arbitrary Cometer groups:

1.1 Definitions. For each subset J of R define

Xj = {w G l/| w(Aj) >  0}

Vj = jw G V/j w(Aj) >  0, w(Aj) <  0} where J = R’N.J.

The next lemma follows from the definitions.
1.2 Lemma. Let J C R. Then Xj = U and this is

JCICCR
a partition of Xj.
1.3 Lemma. For any J C R the set Xj is a set of left
coset representatives for W modulo Wj. If w G W and
w = xv with x G Xj> v G Wj then l(w) = l(x) + l(v).
Proof. See |j3> Lemma 8, p.227] •
1 .4 Lemma. If v G Vj then vwj G Xj and l(v) = l(vw^) + 1 
Proof. See ^13, Lemma 9 > p. 228̂ ] .



1.5 Corollary. Lei v £ V T. Then v = ww* withd d

l(v) = l(w) + l(w~) ancl w £ X*.
d d

1.6 Corollary. For any J C R, wt is the unique element' d

of minimal length in V .

1.7 Lemma. Let J C R. Then G = U BwGj > a disjoint union.
w£Xj

Proof. The result follows from the Bruhat decomposition 
of G, 1.3 and the fact that for any w, w ’ £ Xj>
BwGj = Bw'Gj =r> wWj = w'Wj (see » Proposition 2, p. 28^ ).

Notation. Let w £  W. Set qw = |B:B+ i = |U:U_t| = |tT;cl = In I-------- ' W  ' W 1 W ' I 4“W ‘
w.

1.8 Lemma. (i) q > 1  any w^ € R

(ii) qw = qrf ary w £ \l
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Then .w
(iii) Let w

*1 O

•w. be a reduced expression for w.
H

Proof, (i) lO . I >  1 since otherwise w_.Bw_. = B, contradicting
* ** W ̂  JL -L

the axioms for a (B,N)-pair;(ii) Triwial; (iii) follows 
from an easy induction on l(w) from (A) I 1.2 •

The following is a generalisation of Solomon's result 
([12, p. 387^ ) for Chevalley groups:

1.9 Lemma. Let J C R. Then |G:Gj| = S qW .
w£Xj

Proof. The lemma follows from 1.7 and the fact that
B O wGjW-1 = B O  wBw-1 any w £ Xj.
2. Dimensions and Brauer characters.

Let (K, % ) be an admissible G-pair. By I 2.6

YN m (K , a )G 2 Y(K, 50
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vie also have:

2.Z Lemma. She dimension of Y(J,90 is E qW
w£V,d

Proof, v/e prove by decreasing induction on |j| that 
dj = Vj. Firstly dR = dim Yr (R,% ) = 1 by 2.1 anc
vR = E q.w = 1 since V.p = {1}. Wow suppose ¡j| ^  |r |

and that d^ = vR all K C R with |k | >  ¡Jj. She 
result follows using (2) and (3).

2.3 Lemma. The indecomposable component Y(']>, X) is
irreducible for the empty set 6  .

w
Proof. By 2.2 dim Y ( § , % )  = q ° = |U:C|. By I 2.2 
Y ( $ , % )  ha3 socle isomorphic to U ( Q * % )  = kOm where

= e(7C)A^w )(y) (see (A>I Theorem 2.21 ). Merem = " "  " V
e('X) = E % (h-1)Ah . Let x = (wQ)m. Then

h£H

[ o - . y  ■ i ^ » 0l<”o)«i*>4(5,o)(7)

- V )

= e(X)A(w X2(y) (see (A) I 2.23 )

= (-1)l(v'o)?C(h')e(%)A(w }(y) using (A) 12.12

for some h' € H
= jC(h')n + 0 .
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Consider the kU-epinorphism U -* kUx given by
z -» x where z = 1®). Since U is a p-group, the socle of

(k^)U is its space of U-invariants which is clearly

z. Because <1 (£0.w"] a) t  0 <C :nust be a bisection
and kUx has dimension q °. But kUx C Il(cb ,/C ) implies 
that K(|> ,/t ) S T ( f  ,X).

Vie can apply results of this section to the case 
%  = 1^, the trivial character of B for in this case 
ii('X ) = R. Prom the proofs of Lemmas I 1.10 and II 2.1 
see that for any subset J C R

Yj(J, 1B) kG ■

By I 2.4

(kp. )G S Y(K, 1B )
JCKCR

m e n
s I kJCKdt

Let ̂  y be the Brauer character of Y(K, 1-g) any IC2.J.

(all J C R)

Solving these equations for TV j (see |j , Exercise 25» p. 44-45j)

1 , -  .

we see that

JCKCR K

And specifically, we get the Steinberg character when J = ^  :

1 $ E <-1)|Ki 12
ECU rK

« M M
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Let V =  z (—1) Î I 1® be the ordinary character
Vr~ v> KKC R ^

corresponding to the Steinberg character; that is

is irreducible for an arbitrary finite group G with 
a (B,TT)-pair. Let p-reg. = (x € G| p does not divide 
the order of x}. We conclude this section with the 
following lemma:

2.4 Lemma. If G is a finite group with an unsaturated 
4.plit (B»N)-pair

G for all K C R„ Curtis has shown ([3]) that if

that is, Y  remains irreducible as a Brauer character

Remark Bromich determined the Y\ T in
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3. examples.

1. Consider the group G given in (A) III. Me have
G = {(m,x)| m € K, x C U} where K = V(2,3) and
U € Syl2(Gi(2,3)). let k be an algebraically closed
field of characteristic 2. Since H = 1, B = = }(u,x)|x£U},
the only character of B is the identity character 1g.

nTherefore Y = ) i3 a direct sum of two indecomposable
kG-modules corresponding to the admissible pairs ( 5  » V

and ({w},1-g). Both these components are in fact
irreducible (Lemmas 2.1 and 2.3). The dimension of
Y(^ ,1-g) = |U1 | / 1C | = 8 and the dimension of Y(|w},1B) is 1.
Since the dimension of Y = |G:Û  | = |fl| = 9, the dimensions
concur.

2. let G = GL(3»p) where k is an algebraically closed 
field of characteristic p. Then G has a split (B>lT)-pair 
with B = {upper triangular matrices}, N = {monomial matrices},
U = {uni-upper triangular matrices} and H = {diagonal matrices}, 
The Weyl group W = S^ = <w^ ,w2> = . We can
take n^, n2 € N where n1 H = ŵ  and n2H = w2 and

n 1 =|

0 1 ° \ /1 0

•1 0 0 a n d

oIICM
fi

0

0 0 1 / \o -1

since

/ SL(2,p) 
a,

H1 = H = 1 ^

1
t̂ 0 0
0 t"1 0
lO 0 1

and 0  )
l ° SL(2,p;/ Hence

t € GF(p) and
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K

' 1 0 0 \ >
H-, = H = I 14 a2 0 t 0 | t G GF(p)

\0 0 t_1J

V = |1, w1, w^» W-|W2 > W2W  ̂» W1W2WA  ' Ji‘he lonSe3‘t elemen'

of W is therefore w-|w2w i = W2W1W2* 'Por J C R,
Xj = |w € W| w(Aj) >  OJ.

Gj is of the form

G

Then XJ = |1, w2, w1w2| and

f / > -* \* * * G GL(3fp) •l\° 0 * / J
j has a split (B,N)-pair which is not saturated as

C T =
r f 1 o .(A

“ \ 0 1 p
\0 i 0 0 1 ■

GF(p) But Cj $ U, Cj ^  G.

Then

W1W2

W2W1
= ■

ia W1 ' p and |G:Gj| = 2 lilvlwGXj

0 0 . ]
0 1 A \ | 0F(p) f and

Vo 0 1 )
/1 JL 0 \  , i0 1 0 ■Ce GF(p) so that
,0 0 1 / J
w2*r I1

= p^ and |G:Gj| = 1 + p

b}. K = |w2}. Then Xj, = {1, w., J and
* * * 1

Ge  = I 0 * * 1 € GL(3,p) ?
0 * *

|g ; gk | = 1 +  P + pz

G?(p)

As above in a)
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XiG'fc o  ̂ cr .j f cr2}  ̂ • Define k *  by

h1 0 \ <r (T0 cr
0 2 h3j - *  h1 h2 h3 (heE)

These a re  a l l  th e c h a ra c te rs  o f H and

B =
l X V V ° 3

1 o ^ «; p -2  j .  N o tic e

t h a t
^ <rl> <r2 ’ ir3 = ^ 1 , 0 , (P ••koo

CM
b

 ^O*%oX

T h e re fo r e

c). M ^flr1 ,or2 ,or5 J “
i f 4 cr2 ; *2 4

W1 i f *1 = a2; *> 4 r 3

w2 i f *1 4 <r2; ^2 = ^3

W2 i f <r l = r2 =
ff3

I n  each case below we f in d  a l l  S C IU ^ 6 )  f o r  a  f ix e d

%  =  X  -  h~ and g iv e  th e  d im ension  o f  Y ( S ,  X ) .  N o tic e  
1 ,<r2* 3

i n  each case th a t  we must h ave  E dim  Y ( S , X  ) = |&:B|  =
s g u x ;

1 +  2p + 2p2 + (see  I  2 . 3  case J =  R ) .

C ase 1: X  = X  _  _  rr- and a l l  cv d i s t in c t  i  = 1 , 2 , 3 .
' u .j * »2 >'■'•j -1-

The o n ly  a d m is s ib le  G -p a ir  i 3  ( £ , X j  s in c e  K ( X )  = 5

and. Y „ ( £ , X  ) has d im ension  1 . T h e re fo re  Y(§> , 5 0
*  2 3

h a s  d im ension  | G-: B | = 1 + 2p +  2p +  p .

Case  2;  %  =  x v 1 4 &  .  As in  case 1 N( X  ) = 5  and
* * 2 3

Y l 3 E * X . )  has d im ension  1 + 2p + 2p + p .

Case 3; %  = X  <rttT,X, X * T  • " hen = {w1 I 311,1

we have two a d m is s ib le  G -p a ir s  (<£, >X ) ( l wi i » X ) .
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Let 0 s

h =

3 < P-2. Define X r ¡y
1 9 c

h’0  3/
0- cr2 

- h1 h2 1 (h e H)

These are all the characters of H and 
B = o-t ,0-̂ .cr < P"2 }* * Notice

t h a t  X ,Cr2,<r3 ^ 1 ,0,0  ̂ 1 ̂ 0,1,0^ ^ 0 , 0 , 3 .

Therefore

c). M (X  ^  ,0-2,0-̂ > “
t if 4 * 2 * ^ 4 *3
W1 if ff1 = * 2 ; *> 4 °3
W2 if *1 4 ; cr2 = ^5
W2 if a = (r2 = a3

In each case below we find all S C l\yC) for a fixed
X  = %  - — n- and give the dimension of Y(b, X). liotice

1 ,02 ' 3
in each case that we must have E dim Y(S,X ) = |G:B| =

s a u x )
1 + 2p + 2p2 + p  (see I 2.3 case J  = R).

Case 1: X  = X  _  _ and all (T* distinct i =  1,2,3.■ u -j 9̂ 2*'̂ ^

The only admissible G— pair i3 (<£ * X  ) since M X )  = 5
and Y-(|,X) has dimension 1. Therefore Y(§>,X)

* 2 3has dimension |G:B| = 1 + 2p + 2p + p .
Case 2: %  = X,r> t>{r ^ 4 ̂  . As in case 1 M X  ) = ll and
Y ( ^ , X  ) has dimension 1 + 2p + 2p2 + p .

Case 3: %  = X  (r>£r>t, . Then M X )  = 1", J and
we have two admissible G—pairs >X> ) J *X )•
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(i) (2£ >X )• Now , X  ) has dimension
|U:Cj| = p by a) above so that Y(5 » X) has dimension 
I Gf-;G-j. |p = p + p2 + p3.

(ii) ( lWj I , X ) • Now Yj(jŵJ,Xj has dimension 1 
so that Y(|ŵ},X ) has dimension |G:Gj| = 1 + p + p2.
Case 4: 9C = X j. ̂  ̂ t 4 ®” • Then N(X) = {w2J and

2 3as in Case 3 Y(c[> , has dimension p + p + pJ and
pY({ J » X) has dimension 1 + p + p .

Case 5: X = X <y (rt <r • Then K( X  ) - R and there
are four admissible G-pairs:

(i) (̂  , X) • Then Y(<j>,X) has dimension 
|U/C | = |U | == p . This is the EH;einberg character.

(ii) Uw^jPC). now Vjw j = {w2, w^j so that
2Y(lw.},X) has dimension T. in j = p + p .îw,}(iii) ([w2 | , % ) . Then vjw { = lwi» w2w.j} so ‘fchat

2Y(|w2},X) has dimension p + p as in (ii).
(iv) ( |w1 ,w2{, X ) • The dimension of Y( |w.j ,w2f > X ) is 1.

Me summarise these results in the following table:
Type of X ITumber of such X» Humber of J with Dimensions o■‘-.y f- __ J Ç- H ( X J_ Y(J,X ).

X (T, t*2 ,<r3 (p-1)(p -2)(p -5) 1 1+2p+2p2+p3

X tr. x .  er (P-1)(P -2) 1 1 +2p-t-2p^+p3

X <r, r ,  X (P-1)(P -2) 2 p-fp2+p3 
1 -i-p-p2

X<r, t (p-1) (p-2) 2 2 3 P+P +P . 2 1+p+o

X o', tr, cr (P-1) 4 P3
P+P2

2p+p
________ 1 ■
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Therefore the total number of %  is
lp -1 ) fp " '  - 5 p + b + 3 p - b + 1 J  = I P - 1 ) ( P 2 -  2p + 1)

= (P-1)5 = |H|.
The total number of components of Y is

(p-0
(P-1 ) (P - 2 )  (p -3 ) + (p -1 ) (p -2 )  + 2 (p -1 ) (p —2) + 2(p-1 ) ( p - 2 )+ 4 ^ -  

= (p -1 ) (p 2 -  5P + b + 5p -10 + 4)

= (P-1)P2
= the number of isomorphism classes of irreducible kG—nodules
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4. Generatore for the Indecomposable summands of and Y.

In this section we generalise some of Bromich's work 
) on the decomposition of the algebra Bnd^(l) where

L £ Indp(k^) foz* G with a (3,N)-pair and k an
?or

B v 3
algebraically closed field of characteristic p.
each % £ B ,  let E(%) = _J_ Z X  (h~1 )Ay. . Since

h€HII
E = £A®B(%)E is a decomposition of E = End, (Y) intoft£B ^
right ideals we decompose 3(X)3 for a fixed X s  B. Vie 
need only make slight adjustments to Bromich's definitions 
and proofs as her proofs will apply in the case M(X ) = F-.

The following is a generalisation of Ĵ 2, section 4.4 j : 
Fix J C H ( X ) .  Assume coset representatives
{(v/) | w £ Wj} have been chosen according to (A) I 2.19» 2.20.

4.1 Notations (see section 1).

XJ “ XJ,?C — {w e x'h (X) 1 w(Aj) >  0}

VJ = v j ,pc - {w € V*m (X)* w(Aj) >  0, w(Aj) <  0}
where AJ = M( X  )\J

T ii t-
3 = {w £  Vfi w(AH ( X ) } >  °} *

Notice if M(X) = F* fh®11 T = |1}.
As in section 1:

4.2 lemma, (i) T is a set of left coset representatives 
of W modulo WM ̂ j and if t € T» w £ Wj^ ̂  ̂ > 
l(tw) = l(t) + l(w).

(ii) Xj i3 a set of left coset representatives of 
WM(X) modul0 wj and if x £ Xj, w £ Wj then l(xw) = l(x) + l(w)
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(iii) WM(J6) = U Vo, » a disjoint union.O
SCM(X-)

!J = eJ,X " S(X)w£Sj A (w)

'j = °J,X = E(X)(-1)1(WJ) l(Wj)
where Wj is the unique element of maximal length in W..

eJAh ~ AheJ
0)AII all h € H.

°JAh = Ah°J = X(h)Oj all h € H.

6JA(wi) = A (w±)eJ = 0 all w^ C J.

°JA(w.) “ A (w±)0J = "°J all € J.

Proof. Most of (i) and (ii) follows since A^E(X ) = E(% )A^= ‘XChjA 

any h € H. But J C M(%) is important:

eJAh “ 3(^') ^|w A(w)Ah
J

= S('^) S A(w)“1h(w)A (w)
w€W T

((A) I 2.5)

= E(X) S W%(h)A 
w€Wt

(w)

= 2(%) S X(h)A
w€W t

= X(h)ej.

(w) ((A) I 2.16)

Also OjAh - E(X)(-1)  ̂ <Ĵ A (wj)”1h(wj) A (Wj) ^ A  ̂ 1

= B(%)(-1)1(WJ) WJX(h)A(w )

= X(h)Oj (using ((A) I 2.16).
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For (iii) take a decomoosition of ,/j into coaets 
jw,w^w} with respect to ^w^/. We show terms corresponding 
to w and w.w cancel for any w £ V/_. Fix w £ W T. 
"Without loss of generality assume lfw^w) = l(w) + 1 . Then

V i V p  - A(»1 )(w) (1) 1 2 - 12

= AhA (w.w) ^or some h £ H with X(h) = 1

so that S(X)A(w)A (Wi) = 

BUt A (wiw)A(w.) = A(w.w)

by choice of representatives
E ( * > A(w.w) * (+)
b(i)
s Ah t u  i by (A> 1 2*12 (ljL)s=1 i' i ' s

so that

b(i)
=1 A (wiw)-1hi(ui )(w1w)A (wiw)s

E(PC)A(wiw)A (w;L) E(X ) | WiW%  ( M ui ))s 1 1s A (w±w)

= -B(X)A(WiW) by (A) I 2.16 (++)

Therefore 6jA^w j = 3(^C) E A(W)A(W .) = 0 by (+) and (++).i w€Y/j i
Similarly for A^w )ej*

For (iv) we know that l(w^Wj) = l(wjW^) = 1(Wj) - 1 
any w^ £ J so that

3 ( * ) ( - 1  )1(” T)i(Kj )A(Wi)

,/ •. b(i)
E(X)(-1)1 ( A (wj)S-1 Ahi(ui ) ((A) 1 2*12 (il)

T t \ ^ ( i )
A(Wj)-,hl(Ul )(»,) A(>j)

s
E(X )bS ^ J  %  ( h ^  )) (-1 )1(wJ)A (Wj)

= -Oj by (A) I 2.16. Similarly for A (Wi)°J*
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4.5 Lemma. The elements Oj and ej are ideapotents in B. 
Proof. First notice that 3(̂ C ) is an idempotent. By
4.4 (iii) ej A(w) = 0 any 1 4= w  ̂ 7j .  Therefore

eJ  = eJA (1) ~ eJ* Also ° j  - ° jB(X) (-1  )***A(w
H  il

where Wj = is a reduced expression. All

w. (Km<t) belong to J  so that by 4.4 (iv) xm
oj = (_1 )21(wj ) B( X )  ( -1 )1(wJ)A(Wj )  = 0j .

4.6 Lemma. (£2, (4 . 4 . 4)]) Let v £ V_, x £ T. Then 
(i) oj A (v) = E(X)A(v)

(li) eJ ° J  A(v) = A(v)(w)
J

(iii)  ej0 * A(v)A(x) = E(X) s A(x) (v) (w)
w€W.

Proof.* <*> ° J  A(v) = H )1(¥3)B(X)A,tÎ AM . Let<*$)*(▼)'
W4 = w. ...w. be a reduced expression so that J 11 xt
A f = A,A/„ \...A/„ \ some h £ H with X (h) = 1(ŵ .; h (w^j 'wi^

since J  C Il(X-)* But v £ Vj implies livw. )̂ = l(v) - 1 

any ŵ  £ J  so that 0* A(v) = (-1 )2 1 ŴJ^E(X )A(V)

by (a) I 2.16 and repeated applications of (A) I 2.12 (iv).
(ii) ejOJ A(t) = ej  a(v) = B(X) S A(w)A(v) . But

w£U.
Vj  C Xj and the result follows by 4*2 \ ii) . Part ( iii)  
follows by (ii) and 4.2  (i) since vw £ ^ j  any w £ Wj.

Notation. Let v £ ^ ^, w € T. I f  we define
CT(v,w) = ejOj A ^ A ^  where v € Vj, the value

of J  is  uniquely determined (by A.'L ( iii)) .
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4.7 Lemma. ([2, (4.4.7)"]) Let <}̂  = f C(v,w)| v £ VJf w £ T}. 
Then J ^  is a set of linearly independent elements of
3(X)K-
Proof. Say there exist X w £ k with

0 v£Vj w£T ^  v,w °"(v’w) • (+)

Let 3 = E X CT(v,w)
v,w
l(w)+l(v)^n

V/e show that if Sn = 0

then X v>w = 0 all w,v with l(w) + l(v) = n which

will imply 3 +1 = 0» Since expression (+) is equivalent
to 3q = 0 we will have proved hy induction on n
that all „ are zero.

Let v1,... ,vt he all elements in ^ ( ^  ) which
satisfy the following condition: For each v± (1^i«t)
there exists (at least one) w £ T with l(v^) + l(w) = n.
Then v. £ V T/-\ some unique s\ibset J(i) C R hy 4.1, (iii).

1 J t1)
Let w £ T. Then

Cr(vi,w) = 0J(i)°j(i) A (v.)A (w)

= »<*) S A (w) (v,) (w* 1) by (ii)
w ” €WJ(i)

= 3(X)A(w)(v ) + 3(* ) ^ sum of terms A (w,} 

with i(w’) >  i(w) + i(v±)^ by 4*2 •

Hence Sn = ^  ^ v ±,w E(^ )A(w)(v±)
where

l(w)+l(vi)=n

+ j2(X ) I linear combination of terms A (w<)7 
L with l(w‘) >  n J
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= Z
hen

t
i=1 5: 1HI X  (h**1 )w£T A.vi,w'(w)(vi)h

l(w)+l(vi)=n

+ \ linear combination of terms A/ . \A,_j (W ) h
L where h £ H, l(w') >  n .

But the elements {(w) (v)h| w € T, v € ^ £ H}
are all distinct (use 4.2 (i) and (iii)) and are in fact 
all the elements of IT. Since ¡A In  £ IT} i3 a k-ba3i3 
for 3 this implies that if S„ = 0 then

= 0 all h £ H , w £ T with
l(v±) + 1 (w) = n any v\ (1^iit)

^  ^v. ,w ” 0 1
all w £ T, with K v ± ) + l(w) = n
any (1̂ i=&t)

= *  V i  ■ 0 as required.

4.8 Lemma. ({J2, (4.4.9)3) Le'fc S* Th9n "taere exist
„ £ k such that v,w

ej°j&  = E 5 VfW 0-(v,w) 
v£Vj, w€?

Proof. We know = S A  ̂  KA-r„\ (Av, ,.r £ M----- h£H,w£W n’ v ' ’

and by 4.4 (ii) we need only show that for all w £ W 
eTo*A/ x has the required form. We do this by inductiontJ eJ V W)
on 1(w). If l(w) = 0 then w = 1 and

ej ° j  -  v !  -  H ) 1<“J) *j=3i (»3) -  M ) 1(”i ) “■ (» },1 ).

Assume l(w) > 1 .  Let w = w^w' with l(w) = l(w') +1.
By induction
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eJ°JA (W) -
J

x£T

L(w )  =  a h i i ( W ) A (w 1 )

( S e k),v / v,w

But A/„n = A.A, . vA, . i 3one h € H By (A) I 2.12 (i)

so we need only show that CT(v»x)A^w  ̂ has the required
fora for any v € Vj, x £ T, £ R. Fix v £ Vj» x £ T, wj_ ■=. R.

We know A (v)A(x) = A(x)(v) by 4.2 (i).

Case I. I(w .c t ) = l(xv) - 1; v-1x-1(a±) <  0.
Then CT(v,x)A( j = ej°J A (x)(v)A (w±)

= eJ°J

= eJ°J

b(i)
A (x)(v) S Ah±(u ) s=1 1 s
b(i)
£ A (v)-1(x)"1hi(uib— I g

by (A) I 2.12 (ii) 

)(x)(v) A(x)(v)

by (A) I 2.5

= bSl)?C((v)"1 (x)"1h.(u )(x)(v)) «•(▼,*)
« ss=1

by 4.4 (ii)

Case II. KWjXv) = l(xv) + 1; v 1x 1 (a±) >  °*

(i) x“1(ai) >  0; l(wix) = l(x) + 1

a) x“1(ai) + at any at e A , , ^ )  .
w^x £ T and C(v,x)A(w^  = ej°j A(v)A (wi)(x)

by (A) I 2.12 (i)

- eJ°?AhA (v)A (wiX) 80136 h £ H

= ^C(h) 0*(v,w±x) .
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t>) x 1 (a± ) = at  s o n s  at  € A j ^ ) .  'A‘hen

x = and v - 1 (at ) > 0 so t h a t  e i t h e r

1 ) v -1 (at ) 4= a s any a„ £  A  T ord

llCM

a s some a Q £  A t .s  J

■ £ VT and

C ( v ,x ) A ( Wi) = ej ° j  A( w . ) ( x ) ( v )  by 4*2 <*>

= X ( h ) e j 0 A A(x ) ( i^ ) ( v )  (+)

f o r  some h €  H

= X ( H ' ) e Jo*A(WtV)A(x)  some h* £ H

= X  (h' ) cr(wt v , x ) .

In 2 ) we have v  w^v = wg 6  J and

CT(v , x )A(w i ) = e j  A( v ) A( x ) A(Wi) by 4 .6  ( i )

= ^ (h) e j A ( x ) ( v t ) ( v )  as  in  (+)

above f o r  some h € H

= X ( k ' ) ej A ( x ) ( v ) ( w  ) some h' £ H
0

= X ( h " ) e j A(w )A( x ) ( v )  some h* • €  H 
s

= 0 by 4 . 4  ( i i i ) .

( i i )  x-  ̂(a^) <  0 . Then lCw.jX) = l ( x )  -  1 and
b ( i )

a ( v , x ) A (  ) = V j  A( v ) A(x)  ¿ \ ( u ,  ) by (A) 1 2 *12 ( i i )1 S-l 1 ig
This express ion  w i l l  have t h e  required  form as i n  Case I .
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4.9 Lemma. Let J  = { eJ>% o j A (y)A (w) | fa B, w £ , J O « *  ),

V£Vj'*Then ,4 is a set of linearly independent elements of B 
and form a basis for E.
y.r_9°'£- The set J  is linearly independent by 4.7 and the 
direct sum decomposition E = zP e (^)E . The

, A.
X€B

elements of J must form a k-basis since

li I = S ! Jy
P(£B X 5 lVJ,X>lT*

\ ZB JCM (ft )

lW:WM(iC)l hy 4,2X€B

= s |W|
X<£B

= |h | I w | = I IT | .

4.10 Corollary, a) For each X- B, JX is a k-basis for 3(X)3.
b) For a fixed admissible G-pair (<J,X) 

ejO^E has dimension I ̂ j X | ¡TX i and the set

ieJ°J A (v)A(w)! v e VJ,-X ’ w € V  is a Basis .

Proof. Part a) follows by 4.7 and the proof of 4.9. Part b) 
follows by 4.7 and 4.8.

4.11 Corollary. For each admissible G-pair (J,X )
eJ ?C °J %  E is an indecomposable right E-module (ideal) and

(1) E = s ®  eJ,X°J,XB (J, X)£P
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Proof. Decomposition (1) follows from 4.3 and 4.9. Each 
eJ,X °J,X 3 raU31; therefore be an indecomposable right 
E-module since ej ^  °j ̂  S ^ 0 and there is a bijective 
correspondence between the set of indecomposable components 
of E, the set of indecomposable components of Y and the 
set P of admissible G-pairs.

From decomposition (1 ) we can write

1Y = 5 PJ,X ^  (pj,x € eJ,X°J,X 3)*
(<T,?C)€P

Then the are mutually orthogonal primitive idenpotents
in E and

U) pj,x E = eJ,/C°;?,x3 •
Since E(Y) = Y we get by applying both sides of (2) 

to Y that

^  PJ,%'Y ) = (Y) and

4.12 Corollary. Y = S ®  ej V  °J ?C Ŷ  ̂ is a t̂ecomP03i‘tion
(J,X)£P

of Y into indecomposable kG-submodules.

4.13 Corollary. For any admissible G-pair (J>X )

ej,x°j,x (Y) = Y(J’X) •
Proof. In order to identify ej ^  we nee<* only
show that ) (Pjf%  ) = 1 (see proof of I 2.2). This
will follow if we show that <p R (J> X. ) 4= 0 by (3).
Let w £ W. Then by (A) I 2.21

0 w $ '*t

. , .l(w )_(-1 ) w £
J r<j . X ) a iw)
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It is easily seen that ^  R (J,X- )ej,j£ = ^ R(J>X )°J JC = 1 *

We now consider Yj as a subspace of Y for any 
J C R and we take y T = y (see I 1.3) so that Y T = kGTy.
We can consider e^ ^  and Oj ^  as elements of Ej

via the injective algebra homomorphism &:3j — 3 given 
in (B) I section 1. As such, ej ^  affords the 3j character 
j(J,X ) and Oj ^ affords the 3j character f  j ( 5  * X  ) . 

Therefore

4.14 e j ^  (Yj) = Hj(J,X) and

°J X S MJ ($.’ X  ) for “ y admissible

G-pair (J,X).
By 2.1 and 2.3 (Yj) £ Yj(J»X ) and 05^  (Yj) S Y

Since Y = Y T where Ol is a set of representatives
¿g a  J

of left cosets of G by Gj

J»XeT « (Y) = Z e x (*_Yj)
¿ € 0. J’ X J

= 3 cC e * (Y,)
.ce& J’X J

= ̂ | ^ <ej,x (TJ* since ej»x (YJ) - Yj'
Therefore Jej>x (Yj)"] ® = eJ>x (Y) and similarly

[O. ^  ŷ j )3 G = °j,X (Y )* Therefore by 2.4

4.15 Lemma. ej ^ (Y) = Yj(J>X )G = 5®Y(K>% )
K2J

°J,?C (Y) 3  y j ( 5 ' X ) G = S ® Y ( : î »0C)
3CJ

and Y(J,X ) is the unique common indecomposable
component of Yj(J,X )G and Y,t(5”' X)' *
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III. 'The vertices of the indecomposable components of Y.

In this chapter we calculate a vertex for Y(J,9C) for 
any admissible 6-pair (J, %). We refer to Green's work on 
G-algebras and generalise the notion of G-algebras with 
permutation base to those with monomial base. The 
author realises that the vertices of the components of Y 
can be calculated by appealing only to L.L.Scott's work ["] 
on permutation modules (see 3-7 Remark (ii)). V/e include 
the work on the monomial case for general interest.

1 . Preliminaries on G-Algebras.
V/e begin by recalling some definitions and results from 

£5» p. 138-14l3. V/e assume that 6 is any finite group 
and k is any commutative ring with identity.

Definition. A G-algebra over k is a k-algebra A with 
identity element on which G act3 as a group of k-algebra 
automorphisms; that is» g € G acts on a £ A to give 
ag £ A making A into a right G-module and

(ab)^ = a® b® all a»b £ A» g £ G.
Notice 1g = 1 for all g £ G where 1 is the identity of A.

Definition. Let A be a G-algebra over k. For each 
subgroup H of G, define

A.. = j a £ A| ah = a all h £ H j.

1.1 Lemma. Let H be a subgroup of G. Then A^ is 
a subalgebra of A and if H and K are both subgroups 
of G»

H < K — A^ £ Ajj .
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1.2 Definition. If H and K are both subgroups of 
G and H « K, we define the k-linear map Tti Ati — A„
fey

% , x (a) = s aV (a G A:0
v£V

where V i3 a set of representatives of the cosets 
Hv in K. Since a € Ajj, T^ ^(a) does not depend on 
the choice of V. Moreover TR K (a)x = K (a)

any x £ K since Vx is an H-transversal of K if V is.

Definition. If H and IC are subgroups of G with H « K 
define

AH,K = Ilaase Th >k = % , k (aH )-

1.3 lemma. let A be an G-algebra and let D,H,K be 
subgroups of G with D « H « K. Let a € A^» b G A^, g G G 
Then

(i) TH,K(ab> = TH ,K(a) b

(ii) TH>K(fea) = b TR>K(a)

(iii) th ,k td ,h = Tq k (Transitivity Law)

(iv) (ah>S - V
(v) TH,K (a)e - w (aS)

1.4 Lemma. If H and K are subgroups of G with H < K 
then Ajj ^ is an ideal of A^.

Proof. By 1.3 (i) and (ii).

Notation. If D and H are subgroup of G, then D ^ H
G

means that D is conjugate in G to a subgroup of H,
D = H mean3 D is conjugate in G to H.G

i f f m: m
'¡SL 3
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Assume k is a field of characteristic p >  0. We 
must include the notion of defect groups in G-algebras.

1 .5 Theorem. Let A be a G-algebra over k and let e be 
a primitive idempotent in the algebra A&. Then there 
exists a subgroup D of G such that 

(i) e € ADjG and

(ii) if e £ A^ G for any subgroup H of G, then
D « H.
G

Thus D is determined up to conjugacy in G and 
we call D a defect group of e in the G-algebra A.

1.6 Lemma. Let D,H,K be subgroups of G with D  ̂H * K
and hcf (p, |H: I)l) = 1. Than A-. „ = A„ v1) 9 H 9 XV
Proof. We always have

AH,K = TH,K^AH^ 2  TH,K^AG,H^ = AD,K by 1 , 5  

However when p does not divide |H:D| the map
TD Ad - AH is surjective for we have A^ C

where V is a set of representatives 

* 0 .
and a d ,k = th ,k â d ,h  ̂ = th ,k âh  ̂ = ah ,e

I1.7 Lemma. The defect group D defined above is'a p-subgroup 
of G.

Let M be a left kG-module. The k-algebra £, = £,(M) = 2ndk
can be made into a G-algebra by defining

and if P £ Ag then

td , h <J> > = £ f  rv£V
of cosets Dv in H

= | H: D | f
Therefore A ^ ^  =* Ag
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0r (m ) = g 1 (gm) for £)-££,, g £ G, in € M.
For any subgroup H of G, £, jT is the algebra of kH-endomorphisms 
of M.

We conclude this section with the following lemon: 
1 .8 Lemma. Let M be any left kG-nodule and let £. be 
an idempotent in £  Then

kG-module.

The defect group of £ in £,M indecomnosable, coincides
with the vertex of £ M.

2. G-algebras with monomial base.
For this discussion we assume k is an integral 

domain and that A is a G-algebra over k. Vie generalise

2.1 Definitions. A line L is a free 1-dimensional k-submodule 
of A.

A is said to have a monomial base if there exists 
a finite set of lines -A- such that

(i) A = £ ® LL£A_
(ii) -A. is permuted by G; that is if L £ A  , g £ G» 

then LS £ A  •
Given any line L there exists at least one free 

generator so that each element of L can be written
uniquely as ($£ k). The set L £ -A} is

then a free-basis for A by 2.1 (i) which affords a 
monomial representation of G by 2.1 (ii) of dimension 
equal to the cardinality of A  .



Let H be a subgroup of G and let fJV^I i £ I ) 
be the set of K-orbits of -A. . Let ¡L̂ l L^ i € I }
be a set of renresentatives of these H-orbits. For 
each i £ I choose to. = co , a free k-generator of L-.

Notation. For L £ A . let H(L) = ¡h £ H| Lh = L}, the
tTstabiliser of L in H. Also denote by 1 the sum 

in A of the elements in the H-orbit of L. Ofcourse 
there are |H:H(L) | elements in the H-orbit of L.

2.2 Definition. Let L = kio^ £ -A.. The character 
of H(L) is given by

H(L) — k* where

ooj1 = ^>1 (h)u)L for h £ H(L). Here

k* is the group of units of k.
The character is easily seen to be independent of

the choice of free generator for if CO ̂  is another free
t.generator of L and Co £ = J^(h) CO £ then

73

CO £ = X, co ^ some J  £ k  CO ih = 3 “ Lh

- 5 5 V » )  “ l

= ^ L (h)co £ any  h H(L

Returning to the H-orbit representative Li> let

Í í - f v  « v - 1* and let X. be a set of

representatives of cosets H(L^)x in H. Then L^ gives 
ments in the H-orbit of 

as x ranges over X^. Hence
all elements in the H-orbit of L± without repetition

mm
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2.3  The elements { co^l x £ X^j are independent and

i€I
U) / | x € X^j is a k-basis for A since

^  contains a free generator from each L £ -A- .

The set ^  is called an H-standardised basis of A. 
To determine the action of h € H on u> A  write

xh = fv, f £ H(Li), v £ X±. Then

2.4 ( to ±X )h = CO ixh = W ±fv = ^ i(f) w J iV *

This resembles the usual procedure for giving an 
induced representation in explicit matrix form.

We show that not all H-orbits make a contribution to 
the subalgebra A^. We make the following definition:

2.5 Definition. A line L = kco is called H-soecial

if lof = CO all f £ H(L).
Clearly L is H-3pecial-^ y L(h) = 1 a 1 1 h € H(L)

2.6 Remarks, (i) This property is invariant to the choice 
of C O  ,  the free generator and (ii) L is H-special if and 
only if L*1 is H-special for all h € H. v We write L*1 = Lx 
for some representative x of cosets H(L)x in H and
Lx = ktox if L = k u  . v/e must show ( u> x )^ = LOx all 
f £ H(LX) =:x"1H(L)x. Then u>xf = cO(xfx )x = LOx

if L is H-special.)
Definition. Let H be a subgroup of G. Let L = k lO £ _A_ 
be H-special. Then define

coH ■ th (l ),h ( u5) = s t° X where Xx£X
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is a set of representatives of cosets H(L)x in H.
Ofcourse oj is invariant to the choice of X.

We can say that the H-orbit A f  is H-special if 
any line in i3 H-special (by Remark 2.6(ii)).
The following is a generalisation of £5, lemma 5a, p. 141^

2.7 Lemma. Let \J[ = { to ̂  | TV^ is H-3pecial, i £ I). Then 
x) is a k-basis for A^.

Proof. Let a £ A. By 2.3
a = E £ 3 . U> ,X

i€I x£X± 1,x 1
£ k)

and
a £ Ag ■&> i»x S 5  • f c O h all h £ Hi,x x»x 1

T  i,x “  iX • Ji. - * ? ! < «  “ i’

where for every h £ H, xh = fv (f £ H(L^), v £ X^) by 2.4

h £ H

4 ^  for all i £ I, x £ X±
T = S ' . _ f >.(f) where xh = fv any

4=^ for all i £ I, x € X±, f ±>v = <f ±(f)

for all f £ H(Li), all v £ Xi# since as h runs through
H, xh also runs through H so that f ranges over all
the elements of HiL^) and v ranges over all those of X±.

^  for all i £ It x £ X± either L± is 
H-special and 5 i>v = 1>x a1 1 v € X± or L± is not
H-special in which case there exists f' £ HCL^ such 
that + 1* Therefore since J i>x =

we must have j> ^ x = 0 all x £ X^.
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We continue in the spirit of ĵ 5> section 5^*
2.8 Lemma. Let H and D be subgroups of G with D c H. 
Let L = koo C-A.be D-special. Then

|H(L):D(L)| H if L is H-special
0 otherwise

Proof. If L is not H-special w  ^  = 0 by 2.7.

W "  } =

Now TDjH( OO D )
j'D»h Td (l ) ,d  ̂10 ^

= TD(L),H( u> ) by 1.5 (iii)

^ ( L ^ H ^ i L K H i L ) ^   ̂ by 1 , 5

= T,'h(L),h IH L̂) :I>(l) I ( ̂  ) if L is H-special

= |H(L):D(L) to H

Definition. Let 

N( to ;D,H)

Dh = h“ 1Dh.

D»H be as above and L = kOO. Define

= hcf { |H(L) : Dh O H(L) | j where 
h£H

2.9 Lemma. ( (̂ 5» Lemma 5d, p. 141 3 ) The set
vXT = { N( W  ĵ jDiH) w  ±H | A ± ia H-special, i € I } 

is a k-basis for Ap>H.
Proof. By 2.7 AD is k-generated by | u  L = k w  , L is D-special
By 2.8 {|H(L) :D(L) | oo H | L = ku> , L is Il-special}
k-generates AQ>H. Now a)H = c o ^  for exactly one i C I
and c o ^  = if and only if there exists h £ H such
that U> = CO^*1. Therefore AD>H has k-basis { 0)^1 i € I,

A  is H-special| where \  ± is the highest common factor
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of the set of integers { |H(I.±h) j , h € H}.
Since G(L”) = G(l)® any line L and any g ¡E G

_1
H(l®) = H O  G(l®) = (H® O G(L))®. therefore for
any h € H

|H(Lih ):D(Lih)| = |Hh 'n G(l±) :Dh 1n G(L±) |

= |H(l±):Dh O H(L±)|.

let t be any field of characteristic zero with 
discrete valuation V  such that V(p) = 1 for some 
prime p. let R be the valuation ring of V  and 
let F = R/P where P is the unique maximal ideal 
of R so that characteristic of F is p. If k = R or F 
we can replace each integer N( to ̂ ;D,H) by the highest 
power of p dividing it for if N = prN' with (p, N') = 1 
then N* is a unit in k and prk = Nk.
2.10 lemma. ( ̂ 5> lemma 5d, p. 142J ). let k = R or F.
The set t\T = {pn( U>i;D,H) ^ H j  J ±g H_special, i £ I }

is a k-basis for where
n( W  i ;D,H) = min { V |H(1±):Dh n H(l±) | } . 

h£H

1 .1 . Scott ( £ 1 1 , p. 104^ ) defines the notion of 
a 'defect group' of a basis element in Sndj^Oi) where 
M is a permutation module. We generalise his definition 
for the monomial case. Assume k = F.

Definition, let be an H-special H-orbit and S be
a p-3ubgroup of H. Then 3 is called a defect group 
of -A. ̂  if 3 is a Sylow p-subgroup of H(l^) some



Since = II(L^)̂  any h £ H, a defect group
is determined up to conjugacy in H. We choose a fixed defect 
group of an H-special H-orbit -A-^ and denote it by

A(A±).
We conclude this section with the following lemma:

2.11 Lemma. Let k be a field of characteristic p. Let 
D and H be subgroups of G with D H. The ideal
Ap has k-basis consisting of those H-special

where A(-A_.) « D.
1 H

Proof. By Lemma 2J®» TT ha.s k-basis consisting of all" D*ll
H-special Go ̂  for which n( to ^;D,H) = 0 since we 
are in a field of characteristic p.

Now n( CO ±;D,H) = 0 <=? v |H(L±' ; :Dh O H(L±) | = 0
for some h € H

(p, |H(Li) jD11 n H(L±) | ) =1 
for some h € H

Da contains a Sylow p-subgroup 
of H(L^) for some h € H

<=* A(-A_±) * D
H

Remark. By 1.6 we need only consider A ^ y  for p-subgroups 
D.

3. An example.
Let k be any field of characteristic p and U 

any subgroup of G. We consider the special case when 
M = Indy(3)

where S is a one-dimensional kU-module. Let X sU — '*■*
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be the character of U afforded by 3 = ks.
Ve have already seen that £ = dnd̂ O'I) is a 

G— algebra, let jx̂ l i £ 1} be a set of representatives 
of cosets x^U in G. Let x̂  = 1.

The group G acts trail sit ively on I by the 
action (g, i) gi given by g(x.U) = x .U (any g £ G, i £ I).-L &-L

Since gxi = g^) we have that xgi 1gx^ lies

in U and

5.1 g(x± ® S) = ^(xgi- 1SXi)xgi® 3 for 8111 S € G » 1 e !•
ATherefore M has monomial base since M = £ x . S> Si£I 1

as k-spaces and G acts on the set of lines jx^& s| i € 1} by 

(x± ®  S)e = g_1 (xi ®  3) = xg_1±®  3.

For each pair (i,j) € I x I let 5K  ̂£ 6. be defined 
hy

i x . & s  i = i’
3

0 otherwise.

Then ( O' . .| (i,j) £ 1 x 1 }  is a k-basis for £  andf J

£  = £ ®  Mi j where = k ^  i,j *
i»j J>'

A  denote the set of lines }M^j| (^>3) £ I x I}. We 
need to calculate the precise action of g £ G on an 
arbitrary line 4:let g £ G. Then
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g- 1 i^jigi^,© s))

g-1 ^ i , j (xgi' * A(xgi’gxi ) s ) by 3.1

i 8"
A  (xi_1gXg-1 i)Xjg> 3 gi i

l 0 gi' + i

’A (V 1« V U >  A < v 7Se“ S )xg- 1 3 ®  S gi

0 gi
by 3.1. Hence

3 . 3 & lf3g =

and Mi,Jg = Mg-*1i,g-1 j for g e G, (i,j) € I x I.

Therefore G(tL .= ) = x.Ux. “ 1 n x.,Ux .-1.-*-> J 1 1  J J

Statements 3.2 and 3.3 combine to show

3.4 £, is a G-algebra with monomial base -A = {Mj i|(i,i)SI

In order to calculate S = the algebra oi all
kG-endomorphisms of M we must find the G-orbits on the 
set of lines A_ . We examine the action of G on I x I 
given by g(i,j) - (gi.gj).

Each G-orbit of I x I must contain at least one 
element of the form (1,j) some j £ I. Clearly (l,j) and (1»s) 
in the same G-orbit if and only if j and s are in the 
same U-orbit.

3.5 Let 1 = j4*j2 be representatives of the
U-orbit» on I. Then . } is a set

' = i

* 4= i

x 1 }.

are
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of representatives of the G~orbits on A .  . Assume
M. . = k 0" . . is from the orbit A_..1 > J i »J 3

We concern ourselves with G-special G-orbits 
which are described by the following lemma.
3.6 Lemma. The G-orbit A. is G-special if and only
i f  A (t) - 1txd)

J

all t € G (PL .)' y J

Proof. The orbit A  i isJ G-special

»-1
t

>3 * 1 . ! all t e 0(M1 .)» y J

4=5 >3 A(txt_i A.(xj“ 1txt_i j )

all t; e by 3.3

4? A k (tx^) = Ak(t) = X ( ^ - 1tx.)tx.) all t G G(M. .),1 > j

3.7 Remarks, (i) The orbit _A_1 is always G-special.
(ii) If A  is the trivial character (identity character)
on S all orbits are G-special and we are in the permutation 
case.

By 2.11» the defect group D of a primitive idempotent
£. € £  G will contain (up to conjugacy in G) some of
the A(-A_1)'s. The following lemma is more precise.J

3.8 Lemma. Let £ be a primitive idempotent in £. &

and let D be the defect group of £- . Then £• has a 
unique decomposition

(1) £ = 2 ^  j ( *  J e k*)

A i  G-special
A (A.) < DJ G

and D is actually equal to one of the A (  A ^ )  some j € I.
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More precisely, D coincides with any maximal (with 
respect to order) one of the A(-/\_^) given in (1 ).

Proof. Decomposition (1 ) follows from 2.1<l). i’or any j e I

&1,j = i"7---- r~/\ ,-A T A  ( ^ i , d }|o(M1f3)s A (-A - j ) |  3

since

T A ( A j ) , G( ^Itj* _ TG(K1 >;j),GTA.(A;j)»G(M1>;.)( ^  1 ,3} 
by 1.3 (iii)

-  l o » , , j ) ^ ( J V i )lT0(„1( i ) (G< f r - i , 3)

- l°(,,1,j);ACA.;))l S',,/.

(2) Therefore £. £ 2 C  A,(A ),0 .
J k.. G-special J

A  ( A , )  < D

By Rosenberg's lemma, £ £ S  ̂  CA_{.) G some t £ I

given in (2) so that D  ̂ A  CA_+) by 1.5. ThereforeG
D = A  CA + ).G *

If A  CA.q  ̂ is a maximal one among the subgroups 
given in (1) then

|A  CAq ) | ^  ! A ( A t ) |  = |D| >  | A ( A q ) |

so that D = A  (_A._ ) •



83

Remark. L.L. Scott gives a statment analogous to the 
above lemma in [ » ■  p. 105]J in which he defines a 
defect group of a primitive idempotent in in the
permutation case h$r the properties in the lemma.

In [*11» Proposition 3(2), p. 106 ̂  Scott gives a 
characterisation of defect groups using certain nodular 
characters of We give a similar lemma based on
^8, lemma 3.1» p. 211 "][ .

3.9 lemma. Say X  is a k-algebra epimorphism of £  G

onto a simple algebra S. let f be a primitive idempotent 
of Assume X  (f) 4= 0. For any subgroup D t G

f G ^ D , G ^  ^ ^ D , G ^  ^ °*

Proof. Clearly f £ implies ^(^-3 ,0) 4= 0.

Say 't(£D>G) 4= 0. Since X ( t  D &) is an ideal of

t ( £  &) = S we must have r ( £  D Q) = S since S is 
simple. Therefore there exists a € £ such that
X(&) =X(f) ao that

f £ £- „ + kernel^ (since f = a + (f - a) ) .lJf u-

Therefore f € „ by Rosenberg's lemma.1)

4. Vertices of Y(J,%>).
We now assume that G = (G,B»N»R»U) is an 

(unsaturated) split (B,N)-pair of characteristic p and 
k is an algebraically closed field of the same characteristic, 
let {x̂ J i £ 1} be a set of representatives of the 
left cosets of U in G and all notations are as in 
the preceeding sections 1,2, and 3. We take M =S Y, S = k^ .

Vie have shown that E has k-basis {A 1 where* n
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An (.y) = [a 1 ny where nH = w • 3y 2.7> 3.5 a:

G I 1 •

nd
y. Q.

3 • 7 (ii ) i i -i 9 & i i ”>•••> j i i
1,1 , , ; ]2 1 » 3 1 ij J ^ I-1.

representatives of the U-orbits of 1} is also a k-basis
of E where

4. 1 9, , ' U ±y) = Xjy x ± e u

otherwise
any i, j £ I .

Relating the bases { and { 8/ifjG} we see that

4.2 Lemma. fT = A =̂r“ Ux.U = UnU . •»J n j
Proof. Notice that given any j € I there exists a unique
n £ N for which UnU = Ux.U end if Ux.U = U x ’J any s,1 e {1

J J 3
then there is u €. U such that s = uj so that s and j
belong to the same U—orbit; that is j = s.

Now &. J* = 2 &\ .z where Z is a set of
1,3 z£Z 1»3

representatives of cosets (U n x.Ux.“1)^ in G (by 3.3-).J J
Let z = tx where X is a set of representatives of cosets 
Ux in U and T is a set of representatives of cosets 
(U n XjUXj_1)t in U ,and t € T, x € X.

■fhen O' 1 > (y) = 8r^>ĵ 'X(y)
x€X

>|S|)

- S & x-1t“1l,x-1t-1j(y ) by 3,31/ f X

= 2 < since the contributionv i > j of x is O unless
x C U)

= E x . y t£T f 1 j

■ P H » «



= S t“1x.y t£T J
If Ux.U = UnU = n  nU, x. ha3 (unique) decomoosition

J W J

Xj = U.Jnu2 where u1 £il-w, u2 £ U (see (A) I 1.7).

Then x..Ux_. 1 = (n'Jn-1 )u1 ~1 = u1 (wUw-1 )û  “1 for nH = w

and the set T can be taken to be u. .Q. -1u . s o  thatI W 1

&1 -iG(y )  = s t_1x y 1'J t£T 3

■ ui ur ' xi7

- «.[fL,,]«-

- [ n . l - r

- An (y) and 6,,,J° = A n.

Conversely, say Ux U = Un'U for n’ £ N, n'H = w'.J
Then &-|,jG = An implies [ * u  ny = [ i u  n'y by
the work above so that A = A„, and n = n*.n n'

The following lemma is immediate by (1):

4.3 lemma. Let Ux^U = UnU -OT some n £ iT. Then
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A  CA-h ) = ,.U+ where nH = w-^." U

We have shown in I section 2 that we can U3a the 
following notation:

Y = £ ®  Y(J,0C ) is a decomposition
(j,X) e P

of Y into indecomposable kG-modules summed over the set P of 
admissible G-pairs and

1Y = S Tf (J,X ) is an orthogonal 
(J*X) € P

decomposition of 1Y into primitive idemootents where

‘)

¡■PPUBHpPMI
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Y(J,X ) = V  (J, X )Y and we arrange (see I 1.8) that

y r (j ,x  )ir(3,'X*) j - 3, x = x
otherwise

Ye can now calculate the vertex of Y(J,X ) for any 
admissible G-pair

4.4 theorem. Let (J,X ) be an admissible G-pair. Then 
„A U+ is a vertex for the indeconnosable component Y(J,?C )

where J = M(X )\J.

Proof. Let % = f R U>X)- ?hen t(IT(J,X)) + 0 and
we can apply Lemma 3.9. Let w £ V. Then there exists 
h £ H for which

(D X  (A, ,) (w)
(-D l(w) X (h) w £ V/J

w <£ W

by I 1.8. Now let P be any p-subgroup of G. Then 

X ( £ P,0) there exists j £ I such that
X  ( &'1f -j)G + °  w ith  A - (-A-j)
by 2.11

4=> there exi3t3 n £ N such that
X  (A ) + 0 and U* < P where n w Q
nH = w by 4.2 and 4.3 •

By 3.9 and (1) we see that the vertex is WU+ for some
w £ V/t . For any w £ W with reduced expression w = w. ...w.J X1 it
we have

9W±*

(2 ) |U by II 1.8 (iii)

Q 
/A
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If w £ V/* f w 4 w j » then there exists v € V/j with 

wj = wv with l(v) ^  1 and l(w) + l(v) = l(wj) since

by (2) and II 1.8 (i). Hence A U+ must be a vertex of
WJ

Y(J»X) hy the minimality of its order.
Remark. This theorem shows the importance of 3.9 which 
allows us to calculate the vertex of Y(J>X ) with little 
information about the idanootent TT(J»X )•
4.5 Lemma. Let (J,X) be an admissible G—pair. Then 
Y(J,X) is projective if and only if M(% ) = R, J = 
and C = 1.

Proof. Y(J,X ) is pro j ective 4=^ vertex of Y(J»X) is 1

Our last lemma of this section uses the main result 
of II section 2.

4.6 Lemma. Let X e B be such that M(X) = R* Since 
U+ i3 a vertex for Y(J,X) the dimension of Y(J,X )

wj is the unique element of maximal length in V/t .

any w £ •/« , w 4=t) t;

* *  lus WA u+| = |u|WJ

|C| <1
o

<B=^ C = 1, wj wo 'using II 1.8)

c = 1 , J = R

C = 1 , M(X) = R» J = 1L

is divisible by q TIn fact q is the highest power
of p dividing the dimension.
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Proof. The first statement follows since the dimension 
of Y(J,X) is divisible by |U: vertex Y( J , X )I since 
U is a Sylow p-subgroup of G.3y II 1.6 w4 is the

unique element of minimal length in V T so that if w € V x 
WJq d divides qwby II 1.8(iii). Since by II 2.2 

dim Y(J,X) = ' £ qW
w^Vj

w«7 *
= q J (1 + d)

where d is divisible by p, the result follows.
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5. The duality of Y .
The module Y Is self-dual, that is Y = Y* = Hom,.(Y,k) 

since ((ky)0)* s (ky*)G S kyG. Therefore there exists

a permutation (J,X) - (J',X') of the set of admissible 
G-pairs such that Y(J,%)* = Y(J',X'). (Notice this
implies that all Y(J, %) have simple socle if and onljr 
if all Y(J,%) have simple head.) We determine this 
permutation in this section.

As an alternative to the classification of irreducible 
nodules of groups with split (3,II)-pairs by weights (or 
equivalently by admissible G-pa±rs), Curtis shows that 
each such irreducible module is completely determined 
by its unique B-line and the parabolic subgroup which is 
the full stabiliser of that line (see £4, Theorem 6.15* p. 3-38 ] 
We showed in I 1.10 that this remains true in the unsaturated 
case and it is using this point of view that we compute 
our result.

5.1 Lemma. Let J C R and let j> :Gj -» k* be a homomorphism 
afforded by the kGj-module L . let (3,X) be 
an admissible G-pair. Then there exists a kG-monomorphism 

J> *: M(S,X) - Lj,G
if and only if Gj stabilises the unique B-stable line
of M(3, X )* .
Proof. There exists an injective homomorphism

j)*: M(S, X) -  L̂ P

(M( 3» X ) » + 0

(M(3,X)kG * L a )k(J 4= 0 (Probenius Reciprocity)J / «J
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there exists 0 4= f: M(3,X) - k such that f 
is a homomorphism and f(gx) = f(g)f(x) for all 
x £ M(3,X ) and all g £ Gj.

4=^ there exists 0 =j= f £ M(3,X ) * such that gf = J> (g-1)f 
all g £ (I..

4=^ Gj stabilises the unique B-stable line kf of M ( 3 ) * .  

Definition. If % £ 3, define p(*:B — k* by

X*(b) = X(b~1) all b £ B. Then and ll(% ) = M(X  *) -

5.2 Lemma. Let (J»̂ C ) be an admissible G-pair. Then

Y ( J > X  >* = Y( J»  X * )  •

Proof. By I 2.2 we need only determine which admissible 
G-pair satisfies Let
M = M(J»X ) have unique B-line km affording %  . Then

kU(w0)m = kG(wQ)m = M (since Proposition 3.3 (v) and 
Theorem 4.3 (b) of ^4^ hold for unsaturated split pairs 
and we have the structural equations of (a ) I 2.10 ).
Therefore as in the proof of £ 4» Theorem 6.6, p. 2-32̂ j:

M = k(wQ)m © rad (kU)(wQ)m and

k(wo)m affords W° X  ♦ Let M* be given as
follows: If ra' € M then \  (m') is the coefficient 
of (wQ)m in the decomposition above, that is

m* = A ( m ')(w0)m + x1 where x1 £ rad (kU)(wQ)m.

Then kX is the unique U-line in M* since for all u £ U

u“1m' = X  (m' )u-1 (wQ)m + u“1x1
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= ^ (m' )((u 1 - 1)(-wo)m+ (wQ)m) + x2
where x2 € rad(kU) (wQ)m

= X (m')(w0)ni + Xj where x^ € rad(kU) (wQ)m

so that u \  = A  . Furthermore if h £ H then

h_1m' = X  (n* )h”1 (wo)m + h_1x1

= %  (m’) °X(h-1)(w0)m + x^ where

x, £ rad(kU)(wo)m since H normalises If. Therefore
w

k X  affords the character ( °X)* •
The parabolic subgroup G is contained in thejwo

full stabiliser of k X  since for all w^ £ J we have 
(w^m = m (3ee I 1.10) and

(i) (wQ) (wi) (wo)-1 (wQ)in = (wo)m and

(ii) (wo)(wi)(w0)“1 rad(kU) (wQ)m C rad(kU)(w0)m .

The second statement follows as in ^4, proof of Theorem 
6.6, p. B-33^ using £4, Corollary 3.6, p. B-14[{which 
holds in the unsaturated case since Cj = Cj all w £ Wj 
(see I 1.1) .

Let the full stabiliser of k\ be Ĝ , with I 2  Jrf° . 
Then M* m M(T,(W°?C)*) 311(1 Y(J,X )* = Y(TW°,X*) by
I 2.2 since (W°X)* = W°(X*) • show T = Jw° .

By results II 2.2 and III 4.6

d = dimension Y(TW°»X*) = V *) I E GW
«ev woQ»"0

where V w is a certain subset of X *) = ^M(% )

• ‘
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i . w ( m^O \and d = IG:Gm (*,)I 9 ' (1 + t) where w
(TW°)

is the ionique elernent of maximal length in Il(9<)\ Two 
and t is an integer divisible by p. But also

w*
d = dim Y(J.-X) = lG:Gîi(X)^ 9. (1 + t') where t' is
divisible by p and J = M ( % ) \  J.

Hence q '(Twü;
(*)

w.If J C T 0 then (T °) C J and wh = w /v. v forJ (Two)
some v with l(v) ^-1 and l(w^ ) = l(w y**. ) + l(v)." (fW0)

By II 1.8 we must have

qW? = qW(i^) But qv > (  all V + 1

wgives a contradiction to (* ). Hence J = T °.

5.3 Corollary. Let (J»X) be an admissible G-pair. 
Then M(J,?Ç)* S M(JW°, (Wo%)*) .
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