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SUMMARY

Let k be an algebraically closed, field of characteristic
p> 0. let G= (G,B,N,R,U) be a Finite group which
satisfies all conditions of a split (B,N)-pair except
that of saturation; we allow C = %NUH > 1. Let Y = Ind*tky)

n
3 = End”™tY) where is the trivial U-inodule k. In
part (A) we discuss 3 and the set of isomorphism classes
of (finite dimensional) right B-modules and recover most
of the work of Curtis, Richen and Sawada on the modular
representations of split (B,H)—pairs by using a recent
result of Green. By this method we are able to discard
the saturation condition from the general theory. The
main results of (A) are:

(1) 3 is Frobenius .

(@) Every simple right 3-module is one-dimensional
and is thus given by a multiplicative character <f:B - k

(@) Bach such ~ is determined by a vector (@ e
where %, is a linear character of B and € k.

Using a result of Kantor and Seitz on 2-transitive
permutation groups we show that if p 1is odd then
C~ G for all unsaturated split (B,N)-pairs and give
an example when p =2 and C 41 G.

Results of (A) are applied to the parabolic subgroups

G (UJCR) of G and to Yj ~ Ind%%kA) in order to study
the indecomposable components of Y. In part (B) we determine:
(D) a formula which describes how Ind? (V) breaks

up as a direct sum of indecomposable components of Y for
any indecomposable kGj-module V which is a component of Yjj

(2) the dimensions of the indecomposable components of
Y and find an irreducible character of G corresponding
to the Steinberg character;

(@) the vertices of the indecomposable components of Y;

(@) a permutation on the set of indecomposable
components of Y taking each to its dual;

(®) a set of generators for the indecomposable
components of 3 (and Y) based on Bromich"s work.

We also extend Green"s work on G-algebras with
permutation base to those with monomial base.



CONYSNTION

This thesis has two major divisions, (A) and (B),
each containing its own reference list. Bach such
division contains chapters (designated by Roman numerals)
and each chapter contains various sections (designated
by Arabic numerals). The convention adopted for
referring to results within the thesis can best be
illustrated by the following example: Assume (A) Il 2.12
is the result to which we wish to refer. |If we are in
B) we refer to it as (A) Il 2.12; if we are in (A) 111
we refer to it as Il 2.12 and if we are in (A) 1l we

refer to it simply as 2.12.

STANDARD NOTATIONS AND ABBREVIATIONS

Xl the cardinality of X
XCT X is a subset of T
T\X the complement of X in T

If G 1is a group,

H«G H 1is a subgroup of G

H>* G H 1is a normal subgroup of G
the subgroup of G generated
by S,,e=.f§.C G

IfT k 1is any field and M is a kG-module, M]H denotes

the restriction of M to H 4 G (we sometimes write

PJH if p is the character afforded by M)

hcf highest common factor

dim dimension

Throughout this thesis all vector spaces are

assumed to be finite dimensional.

«



(A) Modular representations of finite groups with

split (3,R)-pairs.

I. Unsaturated (B,R)-pairs.

Assume p 1is a prime number. Let G = (G,3,R,R,U)
be a finite group which satisfies the following conditions:
(i) G has a (B,N)-pair (according to £3, Definition 2.1,
p- B- 8] ) where H =B O R and the Weyl group
W = R/H is generated by the set R = }

of special generators.

(ii) There exists a p-subgroup U of G such that
B = UH is a semi-direct product, U is normal in B
and H 1is abelian with order prime to p.

Then G satisfies all axioms of a split (3,R)-pair
(£3» Definition 3.1, p. 3-12" ) except that of saturation;
we allow the intersection of the N-conjugates of B to
be larger than H. We say G has an unsaturated split
(B,R)-pair of characteristic p and rank n. The
term unsaturated means "not necessarily saturated.”

We assume unless otherwise stated that k is an algebraically
closed field of characteristic p. Let Y = IndgikA)

and E = Endj™,(Y) where Kk~ is the trivial U-module k.
Sawada w was the first to examine Y and E for
groups with split (B,N)-pairs and established a bijective
correspondence between the set of isomorphism classes of
irreducible left kG-modules and the set of isomorphism
classes of irreducible right E-modules. In doing so he
relied on work done by Curtis (£3]) and Richen (£7°) on
irreducible kG-nodules. We will start by discussing the
the B-modules directly and be able to recover most of the

results of Curtis, Richen and Sawada by using a recent
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theorem of Green (§jjJ)- By this method, we will be able to

discard the saturation condition.

notations. Since H is abelian, U a p-group, all modular
representations of B are linear ond we let B = Hon(B,k*)
where k* = kK\]1}. If x,g € G then x® = g-1xg. For

any subset T of G, TVI = it € kG and Tg = g-1Tg
J tET

(similarly for Jw where JCR, w£ W. Let w£W,

W) £ n with (WH =w. For X any subgroup of G

containing H we write Xw for X(w) (similarly for wX, XwX).
IT A is any subgroup of G normalised by H, then

= AN any h £ H so we write Aw. Since H
is abelian the VWeyl group W acts on the elements of H
by hw = hWw).

Let V:JT W be the natural epimorphism and the
length of w £ W as a minimal product of generators is
denoted I(w). The unique element of maximal length in W
is written wQ.

Let y £ Y correspond to 1~ If {gJ 1 £1}
is a left transversal for the cosetsof U 1in G then
Y = kGy has k-basis Jg™l 1 £ ij.

We assume that {(W)] w £ W} is a fixed but arbitrary

set of coset representatives of H in N.

The reader will notice that the proofs of certain
facts in 1 have been deferred to (A) Il where the
specific rank one case is discussed.
1. Preliminaries. In this section we state results which, though
proven inand C?3 under the assumption of saturation, do
not actually depend on that condition. For example, statements
in ~7, Chapter IlI]J which do not involve H =BO N will be
true in the unsaturated case. We also make adjustments

to other results when necessary to suit our unsaturated



hypothesis.
flotation. Let w € W. "ien WB+ = B n Bw; = Un Uw;
WB~ = B n Bw°w; and = U N Uw°w

Remark. 1L Notice that WB+ = WB+H, WB~ = wlTH (see [7,
proof of Theorem 3.3(h)» p.444~ ) and that H normalises

wh+ > for any w € W.

1.1 Lemma. The intersection of the fl-conjugates of B

is bNBwe. Also NUL = NnuUV = Uun uy . o
n€N wEW

Proof. Ve need only show that B n Bw° C B+ for an w €
A proof of this fact can he found in £7» proof of Lemma 2.4.,
p-4413 = The second statement follows from the remark
above.

Remark 2. Let C =:WOHHZ Then Cw = C Tfor all w €W

hy 1.1
1.2 Lemma. Let w,v € W satisfy I(w) = I(v) + I(w>.
Then w IT = wIT (ITw and wWu“ N IT)W = 0

Proof. The first part follows hy an easy induction
on I(w) from y%, proof of Theorem 3.3(a)* P.444J
By 1.1, CC wU"n (VTDW and
w’*n (vUjw = u n wwn uwWw n w
c wwn uw

= (w°n uww

= C hy remark 2.
1.3 Corollary. Lgt w € W. Then U= U+ U~ and
w0 I = C . Hence U ¢ = MWU+| WU~] where

c = |C].
Proof. Let v = wOw_1 and apply 1.2



hypothesis.
Notation. Let w € W. Then wB+ =Bn BW; I*= Un Uw;
WB*“ = B O Bw°w; and wU- = U O Uw°w

.Remark 1. Notice that WB+ = ND+H’\NB~ = WU~H (see 17,
proof of Theorem 3.3(h), p-.444~ ) and that H normalises

WU+, wli~ for any w € W.

1.1 Lemma. fne intersection of the N-conjugates of B

is bNobowe. Also N A = nuwv = un uww
neN w€U

Proof. We need only show that B n Bw® C vB+ for all w £
A proof of this fact can he found in £7» proof of Lemma 2_A,
p-4413 = The second statement follows from the remark

above.

Remark 2. Let C = ,U*. Then Cw =C for all we€W
1.2 Lemma, let w,v € W satisfy I(w) = I(v) + I(w).
Then T = WT vtmw and U'n (TIMw = ¢
Proof. The first part follows hy an easy induction

on I(w) from y¥v, proof of Theorem 3.3(a), P.44-4-J

By 1.1, CC WwWu"hn (VITW and

u n wwn uv¥w n uw
cC uwwn uw

(W n uw

WT n (vu“)w

= C by remark 2.
1.3 Corollary. Let w £ W. Then U = 1U+ wD~ and
wWw*n IT = C . Hence |y ¢ = WU+|] WwtF] where

c = |C].
Proof. Let v = wOw“1l and apply 1.2



1.4 Let w £ W. Let A W be a left transversal (containing 1)
of “i-U' by C. Then A is automatically a transversal
w w

of U by U+ by 1.3 and |n | = I IT|/ o
w w

Also BuB = UwB = A WWB.

Notation. Bor w. € R, write A- for AT » B, for
X X wi 1

and U.i for W1U~

The following short lemmas are consequences of
results proven in the rank one case (see Chapter 11, 1.1-1.4)
and the Bruhat Decomposition Theorem (see jj, Theorem 1,

P.25] ).
1.5 Lemma. Let w € W. Then I1lwlw) OB =1

1.6 Lemma. Let w, w1, w2 £ W, u™, u2 £ U, hj, h2 G H
Then

u.h”w/~rU = u2h2(W2)U <F=>w = w2, u2“WUi £ _1ipr, hl = h™.
w

The set JT = (uUhiw) |h £H, U WMEAw,w£E£W 1is a
transversal for the left cosets of U in G.
1.7 Lemma. Every element of G can be uniquely expressed

as g = u(Ohu* where w€ W, u£f£ Aw, h€H and u* £ U.

The next lemma is a consequence of 1.6 and 1.7
1.b Lemma. The elements of N form a transversal for the

U-U double cosets of G.

- The endomorphism algebra E.
In this section we characterise the simple right E-modules.
By 1.8 E has k-basis ((An | nE NF where

An(y) = PyY and Py is the sum of those Y £ T which

lie in UntfF (see, for example £8, p.32~) The elements

(n £ ID are clearly independent of the choice of
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transversal of the cosets of U 1in G. therefore, using 1.6

2.1

Ulwl n  where y(n) =w

Clearly = h all h € H. Multiplication in E is

given by the formulae

272 V n =N cnnt At n €
where = zmnt"k axl 2znnt e s is tiie nuatler of pairs

(Y>3)G r* T such that IF€ Wli, 5 G limJ and

YI G tu since A.(y) is the sun of all the distinct
U-translates of ty and gy = g"y4”~ gU = g"U any g,g" £ G.
The following lemma is immediate:

2.3 Lemma. If t,m,n £ K are such that UtU unuUmu,

then the coefficient of AN in is zero.

2.4 Lemma. Let n,m€ N with V (h) =vFf >(m) =w be such
that I(w) = I(v) + I(w). Then aAn = A"

Proof. Ve know A"MA7™y) = [flvl a [ilwmy

= [fty]l n [ilw>-1nmy

1

By 1.2 1T = W*(_1~)  and
G

Wy

= N iu- - i
IW v c \/ 11 W_lu | We sse thElt ArAnlyd is
the sum of |JOM IXIwl U-translates of nmy by our

choice of transversals (1.4). Therefore Aj® = X Arim

where X is the integer |XLVIIilwl/ I1XIw |1 ¢ By 1.4

X = 1 as required.
2.5 Corollary. Let h € H, n £ N. Then

An~lhn An



2.6 Corollary. The set A™Nw h €H, w*€ RJ
k-algebra generates B.

Ve can now state and prove one of the main results
of this paper. The proof is due to G-reen who proved it
for the saturated case. Notice that the proof relies only
on 2.4 and is therefore true for any field.
2.7 Proposition, let G be a finite group with an
unsaturated split (B,N)-pair of characteristic p and
rank n. Let k be any field. Then 3 is a Brobenius
algebra.
Proof, let q £ IF satisfy Via} = wG» the unique element
of maximal length in W. 1let f: B x B - k be given a3
follows: for ea,|S £B, F ) is to be the coefficient
of in the expression of &€ as a linear combination
of the basis elements 3}An | n € H}. Certainly f 1is
bilinear and associative and we need only show that f
is non-degenerate. Let jZn | n £ Nj be the basi3 of
B given by 0 - An_iq .
2.8 let n, n" €N, VIn) =w, VInl)) =w”> . Then
flzZn, An,) is zero if either @) Ilv) >1lw") or
i) Iw) =1 (w?) but w4 w*. |In the case w = ul,
f(Zn, An< = ~n on* 1 for n = n" and O otherwise).

Proof of 2,8 By 2.3 the coefficient of A" in

BWOB £ BW'BW“]WOB
Since Hw*w"1w0) < I(w") + Hlw"lw0) = W) + 2U0) - 1 (@)
) holds in (i) or lii)

IT w=w", we see that An_lgAn, = An,_i® by 2.4

since Hlw"w_1w0) = 1IwQ) = I(w") + I(w*“1lw0) . Hence
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£(Zn, An,) is 0 or 1 depending upon whether n 4=n"
or n=n" and 2.8 is proved.

Now the elements of N can be totally ordered so
that 1(D@M)) < 1(22(*))Wn < n". So if for
n, n* € N we have n n

By 2.8 f(ﬁq_, An D) = En,n . and we see that the matrix

(f(Zn> An,) dn ni £ is unitriangular and hence non-
singular. Me have shown that ¥ is non-degenerate and the
proof of Proposition 2.7 is completed.

Definition. Let w™» € R. Define Uuwi/ ,
H+ = G+ O H.

2.9 Lemma, (see £3» Proposition 3.7» p.B-15\J) Let w™ £ R.

\le can arrange that (wi) £ G*. In tnis case

G+ = LiHi u w~jHi (wi)U.

Proof. Consider P. = B U Bw_.B and any representative
w.)"
W) 1of wr. let 14 u £ £1~. Then u £
N O

and if u £B then u=1by 1.5 Therefore

K .

u ) £ Bw.B = AL.w.B. Hence there exists a representative

wi> £ UX1J_r( v Ul.1 The subgroup (U, - @D F does
w.)- w w™M)*

not depend on (")l since = 11~ C =

and y = <U,Eii W) C> = <Tu, Uz

The subgroup G~ has the required form since c p~

We assume from now on that W) £ G», Tfor every

wi e R*
The proofs of the following two lemma3 can be found

in Chapter 11, 1.6 and 2.4

Iv)”
i

" then we must have 1t~In)) ~ linin"®)

C
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2.10 Structural agnations in G. Le* w™ £ R, 11~ =XI~\ 11}.

There exist functions - X\i , gi:Q-i *U >

hi; Clji*r "*H where F~ 1is a bisection, such that for
every u £ Il i*
wHuwil) = Fi (uhx @) (wi)si )

Since (wt) £ h~u) £ for all u€ H ~

2.11 Lemma. Let w™ £ R. Then

2 Mi)
A(wt) “ Awt) Jj, Vi~ ) where b(i) = |H~”S
S
*
and U, ,...,U. are certain elements of 1T1.4
+1 xb(1)

(.ot necessarily distinct).

The following formulae were first determined by
Sawada (£8, Proposition 2.6, p. 34] ) for the saturated
case.

2.12 Formulae. Let n £ R, D (n) = w.
O} I 1(wiw)

IW+1, then  apawe) - A@erdn -

b(i)

Ggi) If 1w.w) 1(W)-1, then

AnA (W) _ A*s=1 V * i B> *
Gii) I¥f IQwwx) = I(w)+1, then AW£AN = An(wt) *
Mi)

Giv) If IQwwi) = 1(W)-1, then A (yj)an

Proof. Parts (i) and (iii) follow from 2.4 . ?or (ii)
let w = wtv with I(v) = I(w)—-1. Then W 1In =n € N

v (M v and An = A(w)m=V ~) by 2.4 Therefore

AnA(wt) = AmA (wt)2



V i, J a k i bJ"2-n
Mi)

by 2.4
“ Ansfl \'1 *x;

Part (Iv) is proved similarly using Lemma 2.5

mDefinition. Let 5, w € V. Then £ B where
w%(Chu) = % (hWu) for h € H, u € U.
i're proof of the following lemma is based on

£3, proof of Theorem 4.3a, p.B-2C>3 *

2.13 Lemma, ¢very irreducible right 3-module X is one-
dimensional and if X = kx there exists a character N € 3

uniquely defined by x = /¢lb) x for all h € H.

Proof. Every one-dimensional right E-module will uniquely

determine a character of B since by 2.4 AMNAN, = AN, N = ANAN
(h,h” £ H).
Let B, E* = 1 E % (h 1)Ah . Then
A I[Hl h€H

SvA. = 9CIh)E,y all h£H and 1 = £® e~ . since
n a A

X = E® X E,, there exists ?CE S with v 0
pceS A xon
for 0 4 z £ X, akiwt z E"4 0 and let t =, ¢+ .

Then t A= %(h) t all h € E

Choose w € W of maximal length so that x = t - 0.

Then x affords the character WJ » that is

X Ah = W%U) x since x Afa= t AMNAN

Ay lhay® @y Y 25

W% (h) t AW
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We now consider X A’t\/@ for V\1€ R.

Case 1. Hw~”™) > I(w)

Then x = tAMNAN]

= tA WMHwW) N 2.12 @)

tA (Wl.w)h SOEi

tw +W) by 2-4

%Ib) "tA@W)

O by choice of w.
Case 2. Hw”™) < I(w*

Then x AIWiJ t AWAW_}

b(i)
-5 W by 2.12 (ii)

b(i)
8=1 hi lUig)

*2° wX(h,lu ))x
3=1 1 XS
Therefore x generates a one-dimensional right E-submodule

of X by 2.6. But X irreducible”™ X = kx

We are able to formulate more results based on the

ramc one case, the first being the following crucian, lemma.
b(1)

2.14 Lemma. Fix X £ B, 1Wj € R. let 1d’\ E X fhn(u< ) I
za

IT dt 4 0 then = .t Hence dy*= -1

Proof. By Theorem 3.2 of Chapter Il there exists a one-
dimensional Pi = BU Bw™B-module K such that if H

affords 3 sP® k* then 3 JH- X |H. How G 1is



We now consider

X A

W-L)

Case 1. I(w.w) > I(w)

Then

x A (Wi)

o))

Case 2, I1(w™W) < Rw)

Then

Therefore

of X by

X A N

t A QWDA (Wi)

t V) (w)

7 A(w.w)h
1

t AhA{w+w) hy 2-4

X"bJ t

for w.

by 2.12 (i)

10

sone h e H alrice

VUw

DW.) =

O by choice of w.

t AWA(_}

Mi)

tAMWJI 1 Xtuzxs) by 2

Mi)

X shi
b(i)
Z
=1

\ \Y%

wX(h. lu, ))2
1 xs

X generates a one-dimensional right

2.6. But X

irreducibleX = kx

12 Ui)

E-aubmoduie

We are able to formulate sore results based on the

raihc one case,

A
2.14 Lemma. Pix X € B,

If di 4 0 then ™6 |Ht = t*

Proof. By Theorem 3.2 of Chapter 11

dimensional

affords 3

wN € R.

Hence

Mi
let di = Z)

S=1

di= -1

Pi = BU Bw™B —module K

PR g

then

5

IH -

X|H.

such that

Now G/

the first being the following crucial lerra.

2 (h~ir ) .
S

there exists a one-

if K

is
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generated by p-groups so that ~ =1 and 5|~ = 1.

therefore ?0le = 1 and since hX(UXs) £ Hy Gsl,... ,b(1))
(by 2.10) and b(i) = 1il™l - 1» the result follows since

1 < injl 1is a power of p.

2.15 Lemma. Let 'V be any multiplicative character 0 - k.
A
Taen there exist %€ B, ,--- M € k such that
() N ) = ~ (h) all h £H
an Y (AN = Ai * 1=
Moreover, f\,. =0 or -1 and 4 0 implies "iHzx= 1.

Proof. Part (i) follows from 2.15 and (ii) follows from
2.11 end 2.14.
We might call the sequence (% ,/A-,...>™n) the

"weight of -\ " to correspond with Curtis®™ Terminology.
Definition. Let J C R. Then Wj = <V IW. € J> .

2.16 Lemma. Let %€ B, J CK. Suppose %]E~ = 1 for
every wN € J. Then W% = % all w € Wj

Proof. It is sufficient to show wf for all w™ € J.

Since 6%/ H. = 1, d. :'VILI)% (™(u. )) 40 every wx€ J
s=1 XS

and the result follows by Lemma 3.1 of Chapter I1;

The above lemma is also proved in £3» Lemma 5.4» p.3-26"]
and P7, Corollary 3.22, p.453%j under the saturation condition
Ve wi3h to prove the converse of 2.15; that is, given
any sequence ( »eee>) where B, € k (1*i<n)
and where [K”~ =0 or -1 with x4 0 implying /CI» =1,

then there exists a multiplicative character "Y :B—- k with
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properties (*). In order to do this we place additional
restrictions on the choice of coset representatives
{ lwt € Rj -

The following lemma is due to Tits, a proof can

be found in fa, (16), p.5I\

2.17 Lemma. Let w™ € R. Then B~ U B-~j”i is a subgroup

of fi
Remark, liotice that the above lemma does not depend on

a saturated condition since BN = UMM, UOQ BV° is

normalised by K and UO Uw° C W™ e R).

2.18 Lemma. Let w. € R. Then coset representative

(w.) can be chosen in \IL, U.W'y .

w. 1 1
Proof. Clearly <Uzx, Uz C B+ U BiwiBi = UtH U U~Ew”™
W W .
If Ut C UtHthenIL 1 = U. so that
W W W .
B1 =U. XL. 1 1H
i
- uiw/ H
= B, contrary to the pair axioms.
Hence WE n UMHWAUG s non-empty and there exists a
co3et representative sad UM, u2»u’ e such that
ut"' = u2 nt u3
2.19 The coset representative (w” can be chosen in W

and the proof of 2.18 is completed.

Remark. Statement 2.19 is important since we are able to
choose the co3et representatives {(WY)j wi € R} in the sane
way whether the (B,N)-pair is saturated or not {see £2,

Lemma 2.2, p-351] or {3, Definition 3.9, p.B-Ifi] ).
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we assume from now on that coset representatives
Hwp) 1 € Rj are chosen according to 2.19.
i'he next lemma, proved by Kichen in £7, Leraaa 3.23, p.456"

holds in the unsaturated case.

2.20 Lemma. Let J C R. Ooset representatives {(W) |w £ Wj}

can be chosen so that if w, wl £ w3 then

W \Y,
W Hww')“l £ Hj = <H% lw £ Wj, wi € 3/ .

Definition. Por any % £ D, let e(X) == Z (h~1)a.
h£H u

2.21 Theorem, (see [8, Proposition 35.1, p.36]] ) Let JCR
and let coset representatives {(w) |w £ Wj} be chosen

according to 2.20. Let Xe D and suppose XIHf =1
all w™ £ J. Let

Vm,>
Then z = z(J, generates a one—dimensional right

K-module (right ideal of S) with the following properties:

(i) z Ah % (h) z (h € H)
Gi> 2 A L wi € J or 9% |Ht * 1

L -z wh J and XIHi 1

-Proof. Dy 2.6, we need only verify properties (i) and (ii).
Take h £ H, w £ Wj. Then

e( °~NA(W)(w0)Ah e(WX)Ah(w)(wQ) by 2°A

e("°X)AW (Vol(™ rl (w-1hw)(wQ)

e( 0X)AIWo) 1 (wr ih(w)(WoJA (w)Iwo)

toy k.4



eC"° JOW® $0 ((Wo)“ 1 (w)-1k(w) (WO))AM) G

e(wo?C) JCIh) A(WJ( } by 2.16
so that z Ah = X(h) z any h € H.
(i) Take N~ J. Then ITw™Www0) < 1(wq) (see j3, proof

of lemma 5.5, p.B-27] ) for all w € V,". And

Mi) . .
= dW ™ AW )sf Ad (U ) by2*12(ii)
b(i)
"sTi elwoi:) A(w)(wo)

so that by 2.14

“Acv :j

o] X H. + 1

-z ofCHE = 1

(iij Hliov suppose € J. Vie take a decomposition of
Wj into cosets {w, w/wj with respect to the subgroup \w.”
We show that terms in z A”™w J corresponding to w

and w”™w cancel each other. Without loss of generality

we may assume I(wiwwQ) = I(wwo)+l (@3 in £3, proof of
lemma 5.5» p.B-27~] ).

The term corresponding to w in z A/ , is (by 2.12(i})
Wit

e(WeOD)AWY(WO)A(wW;D) = en° XDAWw.)(xo0(wo)

Since T(w™wwQ)-1 = I(wwQ) the term corresponding to w?w

is eWor)Awiw)(wO)AWL) = elWo"™ ™ )Awiw)(w0) sfl D)
s

by 2.12(ii)
W v M=)
- e 090 £ Ahl (ux ) (wxw) (wo)

s
by 2.4



By 2.5 this last term is

b(i) w
s=1 A A WO)“ T (wiw) -1h 1 Ui ) (wew) (WODA (wiw) (WQ)
s
b(1)
= s=l eWe™ )PP % *((w0)_ (wiw)“1hl (uls)(wl w) (WO))A (wiw) (w0)
b(i)
= 3n N (hiuia))e(°MHAWiw) (wo) 2*16

-eC°% AWiw)(w0) sInce wt € J, XJHx =1

-e(W°e%) A(Wi)(w)h(Wo) some h € Hj by 2.20

"e(WO?i1)AWo)-1lh(wo)A wWi)(w)(wo) N 2*4

e(WPXINPX (o) th(wo)A@:L) (w) (wo)

me(WOA)A(WI) (W)@Wo)  sincO XIHj

1 by 2.16.

The term above cancels with (1) and the proof is completed.

Remarks.(1) As in the saturated case we can show that

for every wx € R, Ht = HO < Uz, UtWi~ (see for example

03* Lemma 3.6, p. 38" ) using lemmas 2.9, 2.17, and 2.18.
then follows that
a) Htwi = Htx all wx £ R
W W.
b) Hwowiwo © 1 = Hi all wi € R
Therefore for A € 3
@ M(X) = wOM(w°%)wO since

XIHx = 14=" w°% |JHwo = 1

N WRKIHWY S VWA =, by (D)
bVEKWOVXIiWo_ 1 ky<a>-

It
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The following two remarks were proved by Oawada £<a>
for the saturated case and remain true for unsaturated pairs:
() the map (J,%) - (Jwo,wo%) is a bisection of

the set of a.dmi3sible G—pairs where jWO = woJw

Let z = z(3,pc) be as in 2.21 and let 2z afford
the S-character d>(J,X). Then since z(Jw°,wo”) = e(JC)Z A™w

WEV/j  We
it follows from the proof of 2.21 that
(G)) Z(AW°»w°pC) generates a left 3-module which
affords the E-character <p(J, X); that is
Ahz(dwe,weX) = £(h)z(Iw°,w°X,) all h€H
A@Dyz@we=wor) = <F (I*X)AWI))a@we,wex) all WL € R.

We will use this fact later.

We can now prove the converse of 2.15» one of the main
results of this chapter. We might call the sequence

X »» ..., J¥) an “admissible vector® if B> all

€ jo,—+ 3} and 4=0 implies = 1.

2.22 Theorem. Let G be a finite group with an unsaturated
split (B,IT)-pair of characteristic p and rank n, and let
k be an algebraically closed field of the same characteristic.
Given any sequence w*.1,....yUn) where ~:B k* is

a homomorphism, A|€ k (<i«in) such that =0 or -1,
there exists a multiplicative character A/:E » k given

by Y~Ah) = 8111 h € H and Y (AWt)) = i

if and only if for any i £ |l,...,n] with JXx &0 we

have ~ | = 1.
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Proof. ( ) Follows by 2.15

(E)Let J= vt € R |ji.. = O and ft |Hx = 1}
let z(J,ft) be as in theorem 2.21 and the result follows.
Renark. We have shown that (ft ?...pn) is the

weight of some multiplicative character Tp R — Kk

if and only if it is an admissible vector.
Definition. Let ft€ B, JCcM(f) = wpL€ R | ft |H =1%}.
Then (J, ft) is called an admissible pair.

By 2*21 each admissible pair (J, ft) determines
an admissible vector (ft.,fa,... ,Fsn) where ~=0

(for w»£ J or ft|HrF1D or Ik~ = -1 (for wn e j and
%lxL = 1). IF for each admissible vector (% ,fa,...

we let J= {wW€ R | = 0 and Tt = 11 we see by

2.22 that the correspondence
u,ft) (ft,fa, ... ,fa)

described above is a bijective one between the set of all
admissible pairs and the set of all admissible vectors.
We now show how such weights and vectors correspond to
Curtis™ weights (see J3» Definition 4 . p.B-17,B-183 )
and find a full set of irreducible left kU-nodules in Y.

Definition, let Ili be any finite dimensional left kG-module.

let FEK) = M€ N] um=m , all u € Uj.

Green |1 [>, 1.3] ) describes how F{I) may be regarded
as a right K-nodule. In fact if m £ F(M) and ft£ K



mce = p~m where oy = ) (P* € kG)
In particular (by 2.1)
2.23 nv 4 - lAil = G R

n = hm (h G H)

all m G F(M).

Green proves (.5 theorem 2°) that the correspondence
ft — F(f©) induces a bijaction between the set of isomorphism
classes of irreducible left kG-modules and the set of
isomorphism classes of simple right E-modules. Since we
have shown that all simple right E-nodules are one-dimensional
(2.13), F(M) is one dimensional if ft is an irreducible
kG—modulle and 3Xft) is associated with an admissible vector
(X e ¢ by 2.22. By 2.23 this vector coincides
with the Curtis-Hichen weight of ft and any non-zero
m G E(M) is called a "weight element™ of. weight (X >—* ex/* Y™
In other words F{t) 1is precisely the set of all weight elements

in M and H irreducible implies M has a unique U (hence B) line

The following theorem was first proved by bawada
([e]) using Curtis-Bichen results ([?3 » IVJ) and therefore
relies on the saturation hypothesis.
2.24 Theorem, let G be a finite group with an unsaturated
split (B,ii)-pair of characteristic p and rank n. Jlet Kk
be an algebraically closed field of the same characteristic.

There exist bijective correspondences between the following:

(i) the set of admissible vectors,
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(ii) the set of admissible pair3,

(iii) the set of isomorphism classes of simple right
E-modules, and

(iv) the set of isomorphism classes of irreducible
left kG-modules.

These correspondences are given by:

(XF/V-7V J.%) ** kz(J,?t) kGz(J, %) (y)

Proof. VWe need only verify the correspondence between

(iii) and (iv). Green (p, --Sol ) proves that the map

£ — P(Y) given by p - & (? € E) 1is a right
E-isomorphism. Let (3,2 be an admissible pair. Since
z(J,2C) generates a one—dimensional right ideal of E (2.21),
kz(J,/C)(y) is a one-dimensional right E-3ubmodule of

F(Y). Therefore by £5, 2.ba~\ , kGz(J,%)(y) 1is an
irreducible left kG-module and F(kGz(J,9C)(y)) = kz (J,X)(y)*
IT §i 1is any irreducible left kG-module, there exists an
admissible pair (@J,/C) with FM) = kz(3J,/0) = ks, 7))
as right E-modules. But M irreducible implies

M = kGz(J,%)(y)- Therefore 3}kGz(J,% ) | (J,X ) admissible}
is a full set of irreducible left kG-nodules. (Curtis also

determines such a set in £ 3» Corollary 6.12, p.3-373%)

I1. The rank one case.

assume Kk is any algebraically closed field of
characteristic p. If G 1is a finite group with an
unsaturated split (B,N)-pair (G,B,l1i,R,U) then for any

w™ € R the parabolic subgroup = BU Bw” has an



unsaturuted split (B,N)-pair v} ,U) of rank
one where = EU w.H. Let W € I satisfy Wi)H = wt.

We show in section 2 that the set {A*, AEw ~ | h € H)
k-algebra generates E™ = End™p (Yi) where 1Yi ~ Ind@i(kA)-

By Corollary 2.6 of Chapter | there exists an injecrive

k-linear algebra hononorphista

:Ei - E given by
AR Ah (h € H)

AU i) - A (wt)

since the set Jh.hlw.~ | h € Hj forms part of a transversal
for the U-U dotible cosets in G (see Chapter 1, 2.2).
Therefore results proved for the rani: one case can be
extended to G.

It becomes necessary in section 3 to examine

b s
d=£ % (h(u )) where % € % is fixed and the h(us)
s=1 s

(s=1l,...»b) are certain elements of Il determined by

(W) and Richen®s “structural equations.” Since these

equations exist for every £ R, we refer in Chapter I
b(i)
to d. = 1 9C(CthQu )
1 s=1 s

Therefore we now assume G has an unsaturated
split @B,i1J) pair (G,B,N,R,U) of rank one. Let
W=N/H= (@, wj. The subgroup UO Uw i3 denoted by WU+.
As in Chapter 1, Y = Ind™Cky), y corresponds to n

so that Y = kGy- Let E = 3ndkG(Y).Let (WEH satisfy t,wjH
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1. Cosets of U bv U.

1.1 Let XL be any left transversal (containing 1) of U

by WU+. Then XL~ 0 B = 1.

Proof. Since XL O Bw Q B n BW = (U il Uw)H)the result foliovs.

Renark. Note that |jff |> 1, for otherwise U = wu+»

wBvr = B, contrary to the (B,N)-pair axions.

1.2 Cosets of the form gU (g € G) contained in BvB = BwU
are of the form uh(w)U for some u £ U, h £ H. Moreover,

if u.j, u2 € U and , h2 £ H then
Ughilwju = u2h2(W)U <m u27uj £ WU+ and h™ = h2

Proof. Clearly u.,2(W)U = if u, = u2u for some
u £ Ut since H normalises U and Wt -
Say u™h @) = u2h2(CGidu (@ £ V).

~t

Then u2_Lu1 h2 (w)u(w)_lh

Wh2uthjl)w (w)”1 so that £ Bwn B = WB+H.
Therefore uglu,1£ WU+ since it is an element whose

order is a power of p. Therefore h2ut.j 1)IfF£ wUrcC U
so that (2u(h2lw)2h"1)w) £ U . Therefore h~(h"1)w £ U
and it follows h2 = hl

1.3 Let r = {h, uw)h | h €H, u£X1). Then T is a
set of representatives of left comets of U in G.
Proof. /e know that for h’”, h £ H
U) UhU = Uh"U h = h<
(ii) Uhu 4 uh*(w)u (for otherwise (W) £ B)
GinD) Ulh@Wu =" WU <= h = h* (by 1.2)

1.4 Bvery element g of G can be uniquely expressed as

g = Ujh or g = u(w)hu2 with ul,u2 € U, uf XI. , h6 H.



Proof, file result follows by 1.2, the fact that B is
the semidirect product of U and H and that BwB = XL wB.

1.5 The elements of N form a transversal for the
U-U double cosets in U-.

Proof. By 1.3 and 1.4.

Richer determines ’structural equations* in the
saturated case and we adapt his proof in [7 , p-445] to

suit our hypothesis.

1.6 Structural equations in G- let XI* =XL\il}. Bor
any u € XL* there exist functions Ff: A* - XI*,

g: XL * U , h: XX =* H where T 1is a bisection and

Wu@) = FWh) Wg) .
Proof, let ue XL*. If u@W) € B, then u = 1 by 1.1.
Therefore u™w” £ BwB and (Wu(w) £ BwB = XLwHU and
the existence of Ff: XL™ =+ XL , g: XL —=a1J, and h: XL
is established by 1.4. Say there exists u £ XL for
which flu) = 1. Then (Wulw) = h(u)lw)glu) so that
u(w) £ B, Iw) £ B, contradiction.

Now say there exist u, ul £ XL* with flu) = fu.j)-

fnen IWWu“l1W)“1 = Iw)2g(u)-11w)*“1hlu)_1f(u)-1 so that

Mu_ulW)_ 1 = Iwu-1IwW)“1(Wullw)w)“2

W2g(u)-1 W)_1hlu)“Ih(ul) WgQu-j)w)"2 £
Therefore IWu™™ul(w)-1 € WO BC Then.

Iw)u-1u, W*“1 £ U+ since it is an element in B whose
order is a power of p. Finally u-1u™ £ WU+ so that

u. = u and f 1is bijective.
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2. The endomorphism algebra E.
As in Chapter 1 section 2 the set l; 1 n £ Nj

is a k-basis for H where for h € H

2.1 ANy) = hy
= Lnilw)y =
It is easy to see that
2*2  Ah A@W) = A(wh 014 AW Ah = Ah(w) for any h € EF

Therefore

2.3 The set |JAE, AJw™ | h € HJ k-algebra generates £.

2.4 Lemma, There exist elements 1 *ub (not necessarily
distinct) belonging to H. such that
2 where
AW - AW £ *0»%)
b= in i-i
Proof . We can write = X v K + =
h%H YK, JtiW)Ah(w)

where § - Xh@w) £ 1 A h € H. Eix h e H. Me show

@@ if X k+o0 then h= W2 and X "2 = [ill

i if X 4 0 then h = h(u) some u €
Proof of (i): By Chapter I (2.2) there exist u., u2 € il

such that u. Wu~(Ww) € hU. Vie must have u2 = 1 for
1 -
otherwise W*“1lu2W) € (W)=<ihU C B contradicting 1.1.

How u”~w)2 £ hU Ww)2 = h. 1t follows that X(W)2 = IJIL I 1K
Proof of (ii); If X 4 0 there exist ul, u, £ 1L

such that u.(Wu2®W) € h(v)U. Therefore by 1.6
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w b

m 8 I I by 2.4
bs ~ 77 s~1
= EXUluJdJdy by part y)
s=1 S
= dv

Therefore there exists a multiplicative character » :&-*k

such that ~ =d and ~ = PC(j all h € H.

mt ~ A{vAV = «Mr*wr ”~WW “y ~en”n 2-2
so that $(A(w))$UEL£) = fU|lwriIMw))~ U [w}) any h£K
and so ds/Cth) = w/AQA M) d all h £ H anoL the

result follows.
5.2 Theorem. Assume d 4 0. Then there exists a one-dimensicnal
kU-module Ii affording the character :G —mk* with
1 |[H = 2C|H.
Proof. By 5.1 AR commutes with e(JC). Hence el%J
is in the centre of S and
e(%)2 = e(™)3 e(0C) = ke{w) © * e{%)A™D
is an algebra which has basis e = e{%) and t = e(# )A™W).
Now e2=e, et =te = t, t2=dt and e = eQ + e is
a decomposition of e into primitive idempotents in

e(X)3 where eQ =(1/dXde - t; and el =r(l/d.)t . let

Y~ = el%}Y. Then is a kG-moduie of dimension
iG Bl = IX\] + + since YN = IndF’)\iI’\) where 17 1is a
kB-module affording the character % . let K = eQ¢)

and Mt= enY). Then Y~ = 10 © M, where
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Mg and 111 are indeconposable left kG—modules. Vie
show that the dimension of M 1is one by showing the

dimension of 1 is in i. let xj= e”y). Then x*

is U-invariant and

[n1(w)xl Cnlooe”y)

el([n-3(W)y)

= eilAW) )

= 1/d e{%) Alw)2()
b

= 1/d ecXx) 1 AE(U jly) by 2.4
s—1 s
b

= 1/d e{%) E jC(h(us))y since s{%)
8=1 and A,[JJV

commute
= del®)
= d ] O as d4 0

therefore H. contains an element x = (W) x* such,

that M m 4 0 and x is stabilised by WU+. let
1 = Indnl™-j.) where T = WU+. Then there exists a
surjective kU-map S' : 1 — kUx given by B'iZ) = X

where z= 1® 1. Hence {/(Eo&z) = Etwa 40

Since U 1is a p-group, socle(l) is its space of U-invariants
which is clearly [fljz. Therefore & 1is a bijaction and the

k-space kU x has dimension IA. I But kbx C Kj

and dimension = dimension — diniension HO ™ in. 1 20 ~nat
dimension of is |il |
Assume M affords the character :G *k* and let

v = eQ(y). Then MQ = kv and if h £ H
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h(1/7d(de - t)ly))
1/d(dhe - ht)(y)

17d(d &C () e(y) - h e A{w)Cy)J

1/7d(d @)e(y) - hA~e(y)) since e and
conmute

1/7d(d &C (he(y) - Gt ey))

1/d(d ocCh)e(y) - Alw) % (h)e(y))

% (h) V . Therefore ? |H = X K-
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HI» Normality of C - A counterexample.

In this short chapter we examine the subgroup
C=UH Uw°. Clearly C=1 1if and only if G has
a saturated split (B,TD-pair. If C 1is normal in G
there is a bisection between the set of isomorphism classes
of irreducible kG-modules and the set of isomorphism
classes of irreducible k(G/C)-modules since C 1is a
p-group*and since G/J has a saturated split (B,N)-pair
(.G/C,B/C,1i1,R,U/C) the results of (A) I could have been
deduced from the Ilsaturated® theory. Since C 1is
normalised by H and N (see (A) | Remark 2 of section 1)
C~ G if and only if C”™ U. We show that if C+ =Un UW;l~rU
all wi e R then C3 U; that is, CNAG if this condition
is satisfied for all rank 1 parabolic subgroups of G.
Using a theorem of Kantor and Seitz [6] on doubly-transitive
permutation groups we show that C~ G if p is odd and
we give an example of a rank 1 (B,N)-pair when p = 2

and C G.

1.1 Lemma. U = ~(Uxw JweWand Kwwrja T(w)+1" =

Proof. Let w = w. ...w. be a reduced expression for w € W.
H H
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Since Cw =0 all w€ W
1.2 lemma. G~ U if and only if C~ LL all wx € R.

1.3 lemma, let w+x € R. Assume Un UN+”™ U. Then C ™ Ux.
Proof. We have C =Un Uw° n UNIW®

= un (Dn uwb)wiwo #
By assumption W n UWHWIWe ~ Uwiwe so that
Cs?2Un Uwxw® and C = Cw°wi 3 uw°wx n U = U.

The next lemma i3 immediate by 1.3 and 1.2.

1.4 lemma. Say Cxt = U O uwl<~P»=B U Bw™ all wt e R.

Then C ¢3 G; that is Ci1?G if thi3 condition is satisfied

by all the rank 1 parabolic subgroups of G.

lemma 1.4 tells us that we can restrict our

attention to the rank 1 case so suppose then that

G = BU BwB where
(G,B,N, {w} ,U) is an unsaturated split (B,I1f)-pair of
rank 1. Then
a) G acts 2-transitively on CL = G/B, the space
of cosets ¢gB (g € 6) and

A
b) G = G/Z acts faithfully and 2-transitively on QL

where

let d.,p €XX. where «(= B, f=wB. Notice
I1= IG/B|] = 1+ pl where 2 < |JU/C|] = pl and

©), = B/Z, the stabiliser in G of <«

Since U 1is a p-group, U 4 B, B/Z contains a normal

nilpotent subgroup Q = UZ/Z which is transitive on

_FfI\ 1I*U since BwB = UwB.
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Since Cw =0 allwé€W
1.2 Lemma. Ci U if and only if C£ Ux all e R.

1.3 Lemma. Let w+x € R. Assume U O UWi ™ U. Then C U..
Proof. Vie have C = U n Uwo n uWlw®
= un (Uun WH)WW .
By assumption (U n UWHWIwWe ~ UWiIWo so that
C« UO UNEIWe and C = CW°W1 3 Uw°Wi O Il = U+

The next lemma i3 immediate by 1.3 and 1.2.

1.4 Lemma. Say C£+ = UN UW+4 ix=BU Bw”~ all wt € R.

Then C”N G; that is C~™ G 1if thi3 condition is satisfied

by all the rank 1 parabolic subgroups of G.

Lemma 1.4 tells us that we can restrict our

attention to the rank 1 case so suppose then that

G = B U BwB where
IG,B,N, {w} ,U) is an unsaturated split (B,H)-pair of
rank 1. Then
a) G acts 2-transitively on JL = G/B, the space
of cosets ¢gB (g € 6) and
b) AG = G/Z acts faithfully and 2-transitively on XL

where

Let o>»p € jfl where /,= B, j}= wB. Notice
IXXx] = I6/B] = 1+ pl1 where 2 < |JU/C|] = pl and

G~ = B/Z, the stabiliser in G of «

Since U 1is a p-group, U 4 B, B/Z contains a normal

nilpotent subgroup Q = UZ/Z which is transitive on

XI\ }4j since BwB = UwB.
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By a result of Kantor and Seitz £ 6 , Theorem C*, p. 1311

either

(i) Q 1is regular on £I\{otj which implies in
particular that Q~ =1 and

Qi = {WZ] u €U, uwB) =wB} = |uZ| u €U, uw € B{

= (un w)z/z

=cz/z .
Therefore Cz/Z = 1 implies C<2Z
so that C<ZOU<UOBW«UO UW= C
so that 0= Z0 U. But Z43 will then give C~ G.
or

(ii) G contains a regular normal subgroup of order

q2 where g 1is a Mersenne prime (g = 2r - 1, r prime).
Therefore |Q | = q2 is an odd integer and
In\ I is even which implies pl is even
and p = 2
We have therefore proved the following theorem:
1.5 Theorem. I¥f p 1is odd, C~G for all unsaturated

split (B,N)-pairs.

The argument in £6

leads to the following example of a rank 1 unsaturated

split I1B,W)-pair where p =2, C ™ G.
let let

with defining relations x® = x™ = 1; x0"1x1x0 = >c3
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Then U € Syl2(GL(2,3)) 2nd the elements of U are:

1 0
- 0 -1
1.1
LN ) xox1 1-1 -1
/0 n 0 1
X_ =
Xox 1 o 1 0
r °> (
1 r
X = X0X? ]__]_
(_
(-1 0>
xXF =
| O0-1
X, =
(:
X, =
t
-1 -1
= X X =
qo= o,

let M = V(2,3), the space of 2-dimensional column

vectors over GF(3). We have a map
X :U—- Aut(M) given by

X — XX™m = xm x€U, mEM

Let G = 1(m,x) | m £ M, x € U} be the semi-direct product
of M and U. Multiplication in G is given by
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m,x) (m",x") = (m+ xm"yxx") For n,m" € M, x,x" € U.

The identity of G i3 (0,1) and

M1

@Y neEM) 2 M and M, G

ut

10 I x€U}r = U

Let Q =V(@2,3) (EM. Then G acts on X1 toy

©. M
m, D)

XV

m+ v all m€M, XxX€ U, v € XI. .

The following are easily verified:

a, N
b) U, = 10,1, (©O,xQ)}
()
c) is transitive on and since (ei,1)?g) = m

any m € V(2,3),

d) G 1is transitive on XX . Hence G is 2-transitive
on XI and

e) 0= GalU G&gGa any g € G\Ga, a € XL

Vie now show that G has an unaaturated solit (@3,N)-pair of

rank 1:
Let w = (@), ) € G. Then w2 =1,
w$ U1l and
»(((V () ¢ "((0))" (0 ¢ let
B=U1 and H= 1. Then G = toy a) and e)

taking a= "g], g =w. Also w.j, UjW, w.,wC U1l U UlwUl = G.
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The Vfeyl group is N and R =M . lastly wU.w 4 u

for otherwise there exists Ule Ul with

WUjw = (1-A Applying both
Vi) . () to
sides gives
, contradiction.
Sy
JAn u? since w

0
exchanges (c» ‘& Gjyk Using b) ig %ollows that

u. C wUlw. Therefore C = |(0,1), QiXj)} but

C 1S not normalised by the element (0,Xj) for example

since x]lex“ = xQx‘6 .
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(B) Some indecomposable modules of ¢roups witi split
(B»rT)-pairs.

I. Determination of irreducible modular representations

of parabolic subgroups.

Assume G = (G,3>H,R,U) is a Ffinite group with an
unsaturated split (B,JT)-pair of characteristic p and rank n
and k 1is an algebraically closed field of the same
characteristic. Let J be any fixed subset of R. Then
Gj = (Gj ,B>Nj ,J,U) 1is an unsaturated split (B,IT)-pair
(see E£1# Proposition 1, p. 287 ) of characteristic p
and rank |j| where Wj = »Nj =V -1\
and G =U BwB. Notice that H =B n I = BO NT.

Assume {(W) | w € Wj} 1is a fixed but arbitrary set
of representatives of the cosets of Nj by H.

1,1 Notations and Definitions. We denote by Wj the

unique element of maximal length in Wj. Let w £ Wj.

Define
WU—J = U O uwaw
o = un uwl
We write as for w+ € J, wW\ >R as WU , CR as C

wi

and WB as Ww Clearly CC Cj and Cj = ¢y any w £ Wj

o -
(see (A 1 1.1). The reader is reminded that WU+ = U O Uw

any w € W. For convenience we write as U
W

and ,U+ as U+
w-1

Take w € W. Letilw @ € ilw) be a left transversal
of U” by C. (Write for i-L any w™ £ R))

1.2 Lemma. Let w £ WI# Then Ci v 113 also a left transversal

of V~J by Cj.
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Proof. Ve show i1J = U, le_ and U, ncCcj= C
Let a = vgw], b=w-1. Then 1(wiw"1> = 1(wj -
since w £ Yfj. Therefore

1w r_l') = 1(wow “ T(QWIW-1) = I(woWj) -fKW'—_:b and
we apply (@A) 1 1.2. We ethen have

abU~ = hU_(aU™)b and bU~ ° (@“)b = C*
But 4“ =U O UWJ = Cyso that (U“)b = Cj1=CT and

the lemma is proved.

Remarks. 1) Since U = U~ any wEW (@A ,1.1.3) it
follows that U = IW C(E W= U\‘A‘IJ UW any w € WJ by (*).
Moreover just as WU+ 0] Wlf~ =G any w€ W we have

y ny 1-0 forany w £ Y/j. OF course ®lw remamns
a transversal for U modulo Ure-
2 In (A)I2.9 we chose WY £ U, foi

any w™ £ R. Notice that by ) if w* £ J that

<U, Uxwi Cj>

<U, (Uiwi)

» <U, Uwi Cjwi)

= <U, (U-Cj"i)

= <U, (u™i >

Most of the results below follow from the work Iin (A)

and the proofs are omitted.
1.3 Lemma. The set iTj = ju™Mw) | h £ H, u. £ XIvB w £ Yij}

is a left transversal of Gj by U.
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Notice that Pj can be taken to be a subset of P =

1.4 Lenraa. The elements of Nj form a transversal for the

U-U double cosets in GtT

~J
Let YjS Indy (ky) and yj correspond to
so that YJj = kGjy-. Denote by Ej the endomorphism
algebra EndkG (Yj).- let YR=Y, yR =y and FE® = E.
J

We’ve shown ((A),l 2.1) that E has k-ba3is
IAn 1 n £ N} where An() Jlny for nH = w. In fact:

1.5 Lgnna. -he k-algebra ET ha3 k-basis {ﬁ! In £ NdT{

where AL (y,) - [0-JK where nH =w £ Wj.

The k-linear map 9 :Ej — £ given by A’ - A for n £ NT
is an injective algebra homomorphism by Lemma 1.4 and using
(A) 12.2., Therefore any right E-module X can be made

into a right Ej-module by restriction; that is. ifr £ X

< An = nfor n£NJ

It is via the ’structual equations” of (A I 2.10
for v. £ J and the map 0 above that results from ()
can be applied to our present case.

1.6 Lemma. The set {A®, Alw ™| h £ H, £ jj k-algebra
generates 3j.
1.7 Theorem.(i) The algebra Ej is Frobenius.

(i) All simple (right) Bj-modules are one-dimensional
Remember that for any w”" £ R, =HO UMHWXA
and if X€ B = Hom(B,k*) then H@O() = {wt £ R] X 1% = 1}.
If we W, WIE£ B where w,)EChu) = %,(hwu) any h £ H, u £ U.
By remark 2 above the work in (A) can be applied to both

the E and Ej (kG and kGj) irreducible modules.
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Definition. Let %& B, 3C K(%) n J = Mj(%).- We call
(5j X) an admissible GT-pair. Let P, be the set of all
such pairs.

1.8 Theorem. The multiplicative characters of 3j and the
set of isomorphism classes of irreducible kGj-modules are
in a one-to-one correspondence with the elements of PT.
In particular if the character <9 corresponds to the

admissible Gj-pair (5,?C) then y = ~jiS, X) 1is given by
9 (A) = X () any heH

0 wt € S or X |Ht &1

(Al>> -
9 -1 N s and X|HN = 1

Moreover if kZj(S,%) 1is the right Bj-module affording

(see A 1 2221 ) and MJ(B, %) = KkGjZJ@B,. X)W
then {IIJGS, X) 1P (3» X) € Pjj is a full set of irreducible
left kGj-modules.

Sawada proved the following lemma in the ca.se J = R when
G has a saturated (B,IT)-pair (£9, Corollary 5.5 (ii)» p. 37~]).
19 Lemma. The indecomposable components of Yj have
simple head and simple socle and are in a one-to-one
correspondence with the elements of Pj.

Proof. See £6, Theorem 1 (i), (2.3)» (2.6) Remark 2 and

1.7 Ui).
The following lemma is most useful. Curtis (p-, Theorem 6.1p

p- B-383) first proved it for the case J =R under the
saturation condition. We adapt his proof.

1.10 Lemma. Let 11J(3, X) be as above. Then Mj(S» X) has

a unique B-line and this line affords the character % .
Moreover the parabolic subgroup Gg is the full stabiliser

in Gj of that line.
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Proof. /e know by £6, Theorem 27] that F(IT(E, ))> the
k-space of U-invariant elements in I1J(3,X )» is an
irreducible E”-nodule. By 1.7 (ii) and [6, 2.6a3
P(Mj(3»0C)) = ksj(f>, % )(yj) is the unique U-line and hence
the unique B-line in i1ij(5,X). Let z = Zj(S, X )@gn) -
The map J : p— P(J) 1is a right Ej-isomorphisn
of 3j *P(Yj) with 2z the image of Zj(3,/C). Since
Zj(S, ) = w(h)zj(S,X) any h£H by Theorem 1.8, we
get by applying 3 both sides that

z Ah = % (0 z any h £ H.

Since hs = zA™ (see for example () | 2.2p) for all h £ H,

kz affords X aa required.

Now let v+ £ 3, Xt = AT = H~FI}. Then by 1.8

Wwi)2z + zZ Fjwhji(u)wl)gi (u)z

Gy A 1 2.10 ) where Ffx(u) £ Xz,
hx(@) £ Hi, gt £ U any u £ X+

(wx)2z2) + zZ fFfrx@hi (WWi)z si..ce

z is IP-invariant

z + [adl(wi)z - (WNIs since (wi)2 £ Hi,
w

x|% =1 and 1X =% by (A 1 2.16

Z - (whz



It follows that W)z =z any w € Vg by adapting (A 1 2.2

to our present case.

Conversely, say vk € J satisfies ((w.)z = Xz some

X. £ k. Then there exists J£ k such that

zAwt) “  rKz

1> Iili I is a p-power) so that = 0. Now

so it is stabilised by U?. Therefore

(since z

is stabilised by U

z is stabilised by so that PCIHiI = By 1.8

w™ must belong to S and the lemma is proved.

2. Restriction and Induction Formulae.

In this section we discuss the relationship between
(1) simple S modules and simple Ej modules, and (2) the
indecomposable components of Y and those of Yj.
: Ej— k be any multiplicative character.

k

2*1 Lemma. Let vy
Then there exists a multiplicative character ¥ :E
such that <= e In fact if < is determined by
the admissible Gj-pair (5,"X) and 'p* is determined by
the admissible G-pair (Z, %") then

<D= -y |Ej X=X "' and 3= KOJ.

Proof. We prove the second statement and the first will
follow with K = S. Notice that by 1.8
3={wt e J | <SA{ j) =0andX]|Hz =1}

Z=wt e R | y(A(w j =0and "1% = 1}.
) Let=1y |Ej. Clearly X =%" since 5?CA:) = ~ (Ah)
all h £ H. AlsoSC Z0 Mj(X )= Z n J. If there

exists wx £ Kn J but w+x $ 3 then we must have ~ (A >) =
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and Y (A™Mw = 0, contradiction. So KO J = S.
() Say X =% " and 3 =KH J. Then A = Y (A) =% (]
all h € H and by 1.6 we need only show "(A(w )) = ~ (AW ))

all w™ £ J. We consider the following- cases:

a) wt £ 3. Then wt £ Kand ~p(AW.) =Y (AWI"

b) wr\ S, w. £ li(X/). £hen w™ ™ K and 30

2%>> - T (A)) "

c) $ 3, wt $ MiX.). Then FPAlwv_J) =Y AW ))

I
e

Now take any decomposition of Yj as a direct sum of
indecomposable kGj-modules. By 1.9 given any admissible GT-pair

(3,7C) exactly one such summand has head isomorphic to Mj(3,%).

2.2 Lemma. Let Yj(3»X) be the component of Yj whose
head is isomorphic to Mj(S,pC). Then Yj(3, %) is unique
up to isomorphism by the Krull-Schmidt Theorem and

(€D Y] =S® Yj(3,X) is a decomposition
(S, X )€EPj
of Yj into indecomposable kGj-submodules. The socle

of Yj(S,X) is isomorphic to Mj(SWI»w~X) where SWJ= Wj3Vj.

Proof. Let IfjCSj/C) £ Bj be the projection of Y~onto Yj(S,X).

Then l\)/( = S Ifﬁ,(S,%) is an orthogonal decomposition of
(3.X)£P]

the identity 1y of 3 into primitive idempotents in S.

We have arranged that
T 3J(3.X) (HJiK.X")) =
Since " (3,X)zIGwI,wIX) = Zj@wl,wJ” ) For any (S,X) € ?j

(see remark 4 following (A) 1 2.21) we have (as in [[9» Theorem 3.1
p- 40]] ) that TT"jO.X )Yj S. Mj(BwJI,wIX) and the result follows
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and Y (A™Mw = 0, contradiction. So KO J = S.
@=) Say X =% " and S=KO J. Then A = Y (A =% (h
all h € H and by 1.6 we need only ahow ~ (A(w ) = Y AWV )

all w™ £ J. We consider the following: cases:

a WLE 3. Then wxt £ Kand PEAW.)) = Y*AW.))

b) wi ~ S» £ M(PC/)= Then w”$ K and ao
f -t <MD,

O%

©) wx 4 3» Wi M(%). Then <P Alw =Y Aw)>

Now take any decomposition of Yj as a direct sum of
indecomposable kGj-modules. By 1.9 given any admissible Gj-pair

(3,pC) exactly one such summand has head isomorphic to Mj(3,X)*

2.2 Lemma. Let Yj(3fX) be the component of Yj whose
head is isomorphic to Mj(S,pC). Then Yj(3, %) 1is unique
up to isomorphism by the Krull-Schmidt Theorem and

(€D Y] =S® Yj(3,%) is a decomposition
(S.X )EPj
of Yj into indecomposable kGj-submodules. The socle

of Yj (SiRC) is isomorphic to Mj(SWMMX.) where SWJ= WjSVj.

Proof. Let TI"j(S5,X) £ Ej be the projection of Yyonto Yj(3,X).
Then l\‘ = SNfJ(S,X) is an orthogonal decomposition of
(3.X)EPj
the identity 1y of 3 into primitive idempotents in 3.
We have arranged that
"1 3=K, @C= X =
JJ(3,.X) (tfjdt.X*)) ]
0 otherwise
Since 1Tj(3,X)Zj(SwJ,wi%) = zt@wI,wJI”) TFor any (S,X) € ?,

(see remark 4 following (A) 1 2.21) we have (as in [[9» Theorem 3.1°
p- 4cf] ) that H"jJOFX )Yj 2. Mj(SwJI,wJ?C) and the result follows
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Notations. Let D,F b subgroups of Gg DCF. If > Ir
are kD-modules then (L, L'}kD denotes the k-snace
Homfocu(L, L*) of all D-maps & :L — L*". (Similarly we write
@, 29j, for Ej-modules Z and Z"). \je sometimes
write 1 for Ind™(L).

Let {L™ ] 2C B} be a full set of irreducible left
kB (or kH)—nodules. Then each is one-dimensional and

it is easy to see that

(kuw)B =
XC3
Hence
© G
@ va - 9
X£3
A
2.5 Lemma. Let x e 3. Then L% d = Yt(3,X) -

SCol 1)
Proof. 3y (1), (@ and the Krull-Schnidt Theorem, it )
i
is enough to show that Yj(S, X ’) is a component of L~

only if X = X "e

G
How Yj(3, %") is a component of 1 yv
aT
=$ (L~ , HjoO, ft*))kG] + 0O by 2.2
=fe (L™ , + 0 (Frobenius Reciprocity)

z"% = X * and 3C Mj(% ) since Mj(S, X?) has

unique 3-line affording X ” hy 1.10.

Q
Since IndG (L™ J) = L and IndG (Yj) s Y we
J J

can prove the following lemma: (Write YR, X») as Y(K,%)
for any admissible G-pair (K, %))
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2.4 Lemma. Let (G, 9) £ Fé_ Then
Yi(3, %)G £ Se Y(K,% )
KCTI(%)
s = irj
Proof. By Lemma 2.3 and the same lemma applied to the case
J =R

E® Yj(S,26)6 £ E ® Y(K,X)

SCHj (%) KQ/1(06)
r
By the Krull-Schmidt Theorem, Yj(3,X ) = E®Y(K, fl)

Q
the sum over some set Q of admissible G—pairs. Thi3
implies that head Yj(S,9C )G = £14(K,%) summed over

Q
the same set Q by 2.2

Now (Yj(3,96)G/M(J','X))k0 =% O

Yi(S,X), 1I(J"'",")kG )kG 4 0 FPobeai R ij
(Y j( ) ( ) J) o (FPobeaiua Recij
Ct(3,X)), 2(HQ",XHw J))Vi_ 4 0 ()
by [6, 2. 1a].

By [6, Theorem 1*"(iii)] and Lemma 2.2 head F(Yj(3»X))
affords the character But

F(i4(J3")) = FWM@’,X)kKG ) 1is a one-dimensional space
and affords the E—characterJ y R(@",66). Therefore

statement (+) is equivalent to
5>j(s>X) = iRC™XJla,

s=J0J by 2.1 and the result follows

U3ing the same methods we can show:
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2.4 Lemma. Let (3,06) £ I?JT. Then

Yj(3, X)G & S® Y(K,%)
EO1 (90
s = inj
Proof. By Lemma 2.3 and the same lemma applied to the case
J =R

EO Yi(S, X)® = E ® Y(K,X)
SCMj (%) K

By the hrull-Schnidt Theorem, Yj(3.X)* £ E®Y(K, X)
n

the svim over some set Q of admissible G-pair3. This

implies that head Yj(S,X )G = E®M(E,X) summed over
Q
the same set Q by 2.2

now (Yjfg.oe)0, M(JI",0C))kKG £ o

(Yj(@3,i0), M{I",#)KG Hk( 4 0 (Brobenius Reciprocity)
J J

" 3, X H)» EM@A-, OC)k(JJ))HJ f o0 ™)
by {6, 2. Ixj.

By [6, Theorem T(iii)] and Lemma 2.2 head P(Yj(3» mD))

affords the character <pj(3,X) of Bj. But
FA(M@A" ,%)) = PM@",X)kG ) 1is a one-dimensional space
J
and affords the E-character ”~ R(.J",0C). Therefore
statement (+) is equivalent to
= svj,'*>isl
=J*n J by 2.1 and the result follows.

Using the same methods we can show:
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2.5 Corollary. Let JC KC E and let @G, %) be an

admissible Gj—pair. Then

Yi(S» % )ek = Z® YK(@Q,0i) .
QCMK (%)
SAQ0J

2.6 Corollary. Let (K, A) be an admissible G-pair.
Then Y, ) .i induced from the parabolic subgroup G~ -"

Proof. Take J = M("™X) 1in 2.4 to get

TMUZE DEK>y-)& = Y(K,#).

We now restate Lemma 2.4 using 2.1 but first we
introduce some new notation.
Notation. Write YJj(S»"") as Yj(<p) if Q:EjJ — k 1is
determined by the admissible Gj-pair (s»9C). Similarly
we write Y(K, X?) as Y(Y ) 1if "Y:3-*k is determined
by the admissible G-pair (K,%").

2.7 Lemma. Let (p :Hj k be any multiplicative character
of Ej. Then

IndG . (Yj (y» YC'P)
Y*.E-k

We now consider an arbitrary subgroup G* of G

which contains U and discuss the relationship between

ri £ Ind® (kg*) and Y.

2.8 Lemma. Let G1 be as above. Then Yj is a component
of Y; that is, there exists a kG-module X such that

Y £ xeyl.

Proof. Let t = 1kG® kGllk « Then T1l = kGt* Let <{xil 1l e
be a left transversal of G by Gl1, W] j€ J} be a
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2.5 Corollary, let JCKCE and let @3, %) be an

admissible G™-pair. Then

Yj (s ,9C)Gk s s® YK(@Q,tP)
QCMK (% )

s=gnJ
2.6 Corollary. Let (K, 9C) be an admissible G-pair.

Then Y(K, ) is induced from the parabolic subgroup NN
Proof. Take J = HiOi ) 1in 2.4 to get

TM(-X)(K,A) G = Y(K,%).

Vie now restate Lerama 2.4 using 2.1 but Ffirst we
introduce some new notation.
Notation. Write YJ(S,"™) as Yj(<p) 1if ( :Ej k 1is
determined by the admissible Gj-pair (0>96). Similarly
we write Y(K, X ) as YCY) if k is determined
by the adnissible G-pair (K, 1)~

2.7 Lemma. Let Q :Sj k be any multiplicative character
of Ej. Then

TO  Y(Y)

IndGJ (Yj (5>)) 5 EK

We now consider an arbitrary subgroup G1 of G

which contains U and discuss the relationship between

Y1 S Ind™ 7kG1” and Y*

2.8 iCTra.. Let G1 be a3 above. Then Y~ is a component
of Y; that is, there exists a kG-module X such that

Y = XeY1l.

Proof. Let t = 1kG® kGilk e Then Y1l = kGb* let |Ixjl 1e

be a left transversal of G by G1, '] J € JJ be a
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left transversal of Gl by U. %Temap 3 :Y - Y1 given by

XXV JIr— Xxvj»~ - (€1, jGJ) is surjective. Since

U 1is a Sylow p-subgroup of G, p does not divide |G.:U|]|
and the map Q Y »Y given by t - 1/]G.:U] E v.y

JSJ
satisfies S& - 1\9{1 and 10 result follows.
Let be as above. Set Bl1=Bn &, = mo .
Since U C G*, =B and G = BMN™B”. There exists

a subset SCR such that HG™ = G,H = Gg and

@G™,B Y is a (B,N)-pair whose Weyl group is isomorphic
to W, (see £14» Proposition 2.5» p. 3173)* Clearly

Gg is the unique minimal parabolic subgroup containing G”.
In a recent paper (D°3) Sawada describes all such &

and in particular showd that G contains <\ _.<U1)*I>

all w+x G S (see ij, proof of Theorem 1.6(ii)"J )= Therefore
{Qv) | G 3} can be taken to be in & (see @)1 2.18)

Me use these facts to prove the following useful lemma:

2.9 Lemma. Let U C G be a subgroup of G. Let Gg be

the unique minimal parabolic subgroup containing G~. Then

Y1 S EO Y@, X)
sCJ

\™y =1
Proof. By 2.8 Y1 i3 a comoonent of Y. Therefore, by the
Krull-Schmidt Theorem, Y1 = b5TY(J,%)j this sum over

Q
some set Q of admissible G-pairs (J,9C)° By 2.2

head Y1 £ EO© M(J, %).
@A, X)€Q
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Now (Y~ H(J,X))kG 4= 0 ~ (r , N(JI» X )k& )k& 4=0
(Probenius Reciprocity)

AMCJi0C) contains a trivial

Gj-line

the unique B-line of M(J,%),

say kn, is also a trivial G™~line

=»%\B n G =1 and km is also

a GO—Iine (since IIG.I = GO)

£+ X|BO G =1 and 3 C J (byl.10).

On the other hand, say X]Jbn G~ =1 and S C J. Then the

unique B-line km of M(J,%) 1is also a Gg-line

km 1is a trivial G”™-line (since G = B™"\"B" ,
{w)] € 3} C and we can arrange that
wm=n all wC \[8 as in the proof of 1.10)

=$>  (kj,», M(J, X )kGi)kCrr & 0
=p (Y1, M(J,X))kG 4 O wusing Probenius Reciprocity.

We apply this lemma, to parabolic subgroups of G.

2.10 Corollary. Let SCR. Then

IndG (kG ) = Z2& Y, 1B) where
o] S
3CJCR

is the trivial character of B. In particular

Indr(kB) = E®Y(J, 1B)
JCR
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I« The dimensions of the indecomposable components of Y.

Let (K, A ) be an admissible G-pair; that is, % G 3 and
K C M(X)* We aim to calculate the dimension of Y(K, X ).

The VWeyl group of a (H,IF)-pair is isomorphic to the
V/eyl group of a root system in Euclidean space (see jj7, p- 43

in such a vray that R corresponds to the set of fundamental

reflections. “Ye therefore define

A = {a-,-.-,anlw.iGR} to be the set of
fundamental or simple roots of thi3 root system. It
JCR let

Aj = {ai|wm G J}

1. Distinguished coset representatives.
The following sets were first defined by Solomon in

£137] for arbitrary Cometer groups:

1.1 Definitions. For each subset J of R define

=
1

j {Wwé Nw(Aj) > OF

j jwG Vw(Aj) > 0, w(Aj)< 0O} whereJ = RN.J.

<
1

The next lemma follows from the definitions.

1.2 Lemma. Let J C R. Then Xj = U and this is
JCICCR

a partition of Xj.

1.3 Lemma. Forany J C R the set Xj is a set of left
coset representatives for W modulo Wj.If w G W and
w=xv with X G Xj> vG Wj then I(w) = I(X) + I(V).
Proof. See |j3> Lemma 8, p-227] =

1.4 Lemma. I¥f v G Vj then wvwj G Xj and I(v) = I(w?) + 1
Proof. See ™3, Lemma 9 > p. 2287] .
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1.5 Corollary. Lei v £ V(;I’- Then v = wwé‘ with
Iv) = 1(w) + I(WE) acl w £ Xa"-

1.6 Corollary. For any J C R, Wa: is the unique element

of minimal length in V

1.7 Lemma. Let JC R. Then G = U BwGj > a disjoint union.
WEXJ

Proof. The result follows from the Bruhat decomposition
of G, 1.3 and the fact that for any w, w” £ Xj>

BwGj = Bw"Gj =r> wWj = w"Wj (see » Proposition 2, p. 28" ).

Notation. Let w£ W. Set qw = |B:Bfi= JU:Ug} = |t;ll—;C|.= |r11wl

W
1.8 Lemma. (i) q >1 any wh € R

(i) qw = qrf ary w £\

(iii) Let w <. be a reduced expression for w.
Then -V * °
Proof, (i) *QN.,\I > 1 since otherwise w.Bv. = B, contradicting

the axioms for a (B,N)-pair;(ii) Triwial; (iii) follows

from an easy induction on I(w) from (A1 1.2 =

The following is a generalisation of Solomon®s result

([12, p. 387~) for Chevalley groups:

1.9 Lemma. Let J C R. Then |G:Gj] = S qgWw
WEXj

Proof. The lemma follows from 1.7 and the fact that
BO wGjw-1 = BO wBw-1 any w £ Xj.

2. Dimensions and Brauer characters.
Let (K, % ) be an admissible G-pair. By | 2.6

YN m (K,a)G2 YK, 50






50

vie also have:

2.Z Lemma. She dimension of Y(J,90 is E qw
w£Vd
Proof, we prove by decreasing induction on |j] that

dj = Vj. Firstly dR =dimYr(R,%) =1 by 2.1 anc

VR = E gw = 1 since Vp= {1}. Wow suppose gl ™ Il

and that d»=vR all KCR with |k]> iJj- She
result follows using (@) and (3).

2.3 Lemma. The indecomposable component Y(p, X) is

irreducible for the empty set 6
w
Proof. By 2.2 dimY(8,%) = q ° = JU:C]- By 1 2.2

Y($,%) ha3 socle isomorphic to U(Q*%) = kOm where
m = e(7C)A™ )(y) (see (A>l Theorem 2.21 ). Mere
BV

e("X) = E % (h-1)Ah . Let x = (WQ)m. Then
h£H

[o-.y ®m i"»A<"0)«i*>4G0) ()

- V)
= e(XDAW X2) (see (A 1 2.23 )

= (DI o)?Cthme()YAw }(y) wusing (A 12.12
for some h" € H

= jcth>H n  + 0
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Consider the kU-epinorphism U * kUx given by
z »Xx where =z = 1®8). Since U 1is a p-group, the socle of

(k™MU is its space of U-invariants which is clearly

z. Because < (£0.wla) « 0 <C :nust be a bisection

and kUx has dimension q °. But kUx C N ,/C) implies
that K(]> ,/7t) ST(F .X).

Vie can apply results of this section to the case
% = 1~, the trivial character of B for in this case
i(’X) = R. Prom the proofs of Lemmas || 1.10 and Il1 2.1

see that for any subset JC R
Yi(d, 1B) KGm
By 1 2.4

Gp- )G S Y(K, 1B)
JCKCR
Let ~ y be the Brauer character of Y(K, 1g) any IC2.J.

men

. @Il JCR)

JCKdt
Solving these equations for TV j (see |j , Exercise 25» p. 44-45j)

we see that

JCKCR

And specifically, we get the Steinberg character when J = ~

E <) [Ki 12
1 $ ECU K

«MM



Let V= z DI 1® be the ordinary character
KC R K

corresponding to the Steinberg character; that is

G for all K C R,, Curtis has shown ([3]) that if
is irreducible for an arbitrary finite group G with
a (B,M-pair. Let p-reg. = (X € G] p does not divide

the order of x}. We conclude this section with the
following lemma:
2.4 Lemma. If G 1is a finite group with an unsaturated

4_plit (B»N)-pair

that Is, Y remains irreducible as a Brauer character

Remark Bromich determined the W T in

52
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3. examples.

1. Consider the group G given in (A) Ill. Me have

G = {(mx)] m€ K, xCU} where K = V(,3) and

U € SyIl2(Gi(2,3)). let k be an algebraically closed

field of characteristic 2. Since H= 1, B = = F}(u,X)|xEU},
the only character of B is the identity character I1g.
Therefore Y = )n i3 a direct sum of two indecomposable
kG-modules corresponding to the admissible pairs (5 » V

and ({w},1-g). Both these components are in fact

irreducible (Lemmas 2.1 and 2.3). The dimension of

Y™ ,19) = UL IC] = 8 and the dimension of Y(|Jw},1B) is 1.
Since the dimension of Y = |G:W» | = ] = 9, the dimensions

concur.

2. let G = GL(3»p) where Kk 1is an algebraically closed

field of characteristic p. Then G has a split (B>IT)-pair
with B = {upper triangular matrices}, N = {monomial matrices},

U = {uni-upper triangular matrices} and H = {diagonal matrices},
The Weyl group W = SN = <w™ ,w2> = . We can

take n™, n2€ N where nlH=w* and n2H = w2 and

nl :I -1 (o] (o] and =E = 0 o] since

/5L(2.p) and ) Hence
a, 1 o SL(% .p:7
~ 0 O
Hl1=Hr = o ¢10 t € GF(p) and

I0 0 1
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>

‘1 0 0\
W2 = Hap = 0Ot O |t ¢ orgy
N0 0 t1

V= |1, wl, w™» WW2 > W2WA» WIW2WA =  dhe lonSe3t elemen”

of W is therefore w{2wi = W2WIW2* Por JC R,

Xj = w€W w(Aj) > 0J.

Then |1, w2, wiw2|] and

XJ
Gj i f the T f/?*‘ f: * \
J 1Is O e form G GL(3 -
N o * (3fp)
Gj has a split (B,N)-pair which is not saturated as
r
fl o (A
T\ o L GF(p) But Cj$U, Cj ~ G.
vi0 o 11
ian_ p and [GGIl — 5 jivi
WGXJ
Then
0O O ) 1
WIW2 o 1 AN oF(p) T and
VO o 1)
/1 31 0 :
ot 1 0 ’ mCe GF(p) SO that
00 1f ]
w2ﬁ1| = p~ and |G:Gj] = 1+ p
b}. K= |w2}. Then Xj,= {1, w., J and
* * *1
Ge = 10 * *1€GL(3,p)? G?(p)

0 * *

As above in @) |gigk|] =1 + P + pz
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XGft o N ajrcs n + Define k* by
hi 0 \ T+ O o
0 2 h3j-* hi h2 h3 (heE)

These are all the characters of H and

B = 10 AN € p-2 j. Notice
IXV V °3
that _ x >
ANasa2iis - 1000 °s P ° %% .
Therefore
if 4 cr2; x4
c). MAMfIrla2,ab J « i £ _
wi Ty T a2 > 4 3
w2 if k1 4 42;/\2:,\3
w2 it S T2 T g3
In each case below we find all S CIU”6) for a fixed
% = X - h~ and give the dimension of Y(S, X). Notice
1,<r2* 3
in each case that we must have E dim Y(S,X ) = |&:B| =
sgux;
1+ 2p + 2p2 + (see | 2.3 case J = R).
Case 1: X =X . rr- and all cv distinct i = 1,2,3.
) uj *»2 >'me 1

The only admissible G-pair i3 (£,X] since K(X) =5

and. Y, (£,X ) has dimension 1. Therefore Y(§8 ,50

* 2 3
has dimension |G:B| = 1+ 2p + 2p + p
Case 2; % = XV 14& . As in case 1 N(X ) =5 and

YI3E*X.) has dimension 1+ 2p + 2p + p

Case 3; % =X atff X, X* T « "hen = {wll 3111

we have two admissible G-pairs (<£, >X ) (Twii»X).
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Let O s 3 < P-2. Define Xr iy
19 ¢
- a2
h = n- - h h2 1l (heH
0 3/
These are all the characters of H and
B = ot ,0N.cr < P"2 }* Notice
that X a2 a3 A 1,0,001%0,1,00 ~0,0, 3
Therefore )
t if 4 ko * A 4 *3

c). MX~ ,02,00 > .
Wl If fﬂ_ *D - *> 4 03

w2 0F 4 @27 g

w2 o if a = (r2

a3

In each case below we find all S C I\yC) for a fixed

X =% - — n and give the dimension of Y(b, X). liotice
1,027 3
in each case that we must have E dim Y(S,X ) = |G:B] =
saux)

1+ 2p+ 2p2+p (see | 2.3 case J = R).

Cz.ise 1: X =X 0 9rx=nn and all (™ distinct i= 1,2,3.

The only admissible G-pair i3 (< *X ) since MX) =5
and Y-(].,X) has dimension 1. Therefore Y(8>,X)

has dimension |G:B] = 1+ 2p + 2p2 + p3-

Case 2: % = X,r>t{r "4~ . As incase 1 MX ) =11 and
Y(~,X) has dimension 1+ 2p + 2p2 + p.

Case 3: % =X (rfrt, . Then MX) = 1,3 and

we have two admissible G—pairs > ) J*X )=
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@ &E>x) Nw X ) has dimension
JU:CJ] = p by @& above so that Y(5 »X) has dimension

B3 p=pt+tp +B8.

@ (1§ . X)» Nw YJ(wd,§ hes dimesian 1
otatY(W}x ) kesdmesan  |&g| =1 +p+ 2
CGes: GLXpML2@ = Ten NX) =42J ad
asnGe: Y, Msdesan p+p+@ ad
Y{ P Xresdrmasin 1 + p+p_.

Ges: X=Xy (ot = TN |’(X) - R adtae
are for adnssible Gians.

® 0= Te YGR) s diesim
LCl= Ul=p - Thes s tre Harag daada-.

@ U D). mov Vi j={2,wYj o tet
YW} rascirefsicn/\iT\.N inj =p+p .

Gi) @), Ten viv{ = Wbwwg o it
Y(e},9) fesdiesin p+p & in G.

@) (bt v2{,x) = Tre dnesionof Y(Jg2PX) is1.

ve SMman<e ttexe resits n te followy Eole:

Med X  Mum-ofsd Hibarof Jwith Dnesloso

J G H(XJ_ Y(3,X ).
X (T, t*2 <3 (P-1)(p-2)(p-5) 1 1+2p+2p2+p3
X tr. x. @& (P-1)(P-2) 1 14+2pt2p™+p3
X <, r, X (P-1)(P-2) 2 p-fp2+p3
o 1-i-p-p2
2 3
X<r, t (p-1) (p-2) 2 I;IP +B
p+o
X 0, tr, cr (P-1) 4 P3
p+o

1m
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Therefore the total number of % is
Ip-L)fp"™ -5p+b+3p-b+1J = IP-1)(P2 - 2p + 1)
= (P-1)5 = |H]-
The total number of components of Y is

(p-0
(P-1)(P-2) (p-3) + (p-1)(p-2) + 2(p-1)(p—2) + 2(p-1)(p-2)+4"-

(p-1)(p2 - 5P + b + 5p -10 + 4)

(P-1)P2

the number of isomorphism classes of irreducible kG—nodules



58

4. Generatore for the Indecomposable summands of and Y.

In this section we generalise some of Bromich"s work

) on the decomposition of the algebra Bnd~(l) where
L £ Indg(}(’é) fozr G with a (3,N)-pair and k an
algebraically closed field of characteristic p. ?or

each £B, let E(%) =_J Z X (h~-1)4&. . Since
I h€H

E = £8B(%)E is a decomposition of E = End, (Y) into
Tt£B n

right ideals we decompose 3(X)3 for a fixed Xs B. Vie

need only make slight adjustments to Bromich®"s definitions

and proofs as her proofs will apply in the case M(X ) =
The following is a generalisation of J2, section 4.4j :

Fix J C H(X). Assume coset representatives

{() | w £ Wj} have been chosen according to (A) 1 2.19» 2.20.

4.1 Notations (see section 1).

X3 =« x3,2c — e Xy WA > O

VI = vi e WE VY, (o~ WA > 0, WCAD) < 0}
where 5 - M(X O\

T = = {w. A W(AH(X)}> 0y

Notice if M(X) = F* fhell T = |1}
As in section 1:
4.2 lemma, (i) T 1is a set of left coset representatives
of W modulo WM~ j and if t € T» w £ WA~ >
1) = 1(®) + 1T(w).

(i) Xj i3 a set of left coset representatives of

WM(X) modul0 wj and if x £ Xj, w £ Wj then 1Gxw) = 1) + (W)
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(iii) WM(JG) U Vo »a disjoint union.
SCM(X-)
D=el,X = S(X)WESj A W)
i=c3,x = ECOCGLIWI) ywj)

where Wj is the unique element of maximal length in W. .

eJAh ~ AheJ = >go all h € H.

°JAh = Ah°J = X(h)Oj all h € H.

GAWI) = AQ)ed =0 allwhCJ.

"o all € J.

CIA(W.) Y A @Wwx)0J
Proof. Most of (i) and (ii) follows since AME(X ) = E(% )A™= XChjA
any h € H. But J C M(%) is important:

eJAh  “  3(~") ~lw AW)Ah
J

= S(") S AW)“1h)A (W) @ 125
WEW T

wEWt

= 2(%) SX(h)A(W) @A 1 2.16)
wEWt

= X(h)ej.

Also OjAh EQCOC-1) M"<SAWi”1hwj) AW) ~AN1

= B(%)(-1)1(WI) WIX(h)A@W )

X(h)0j (using ((A) 1 2.16).
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For (iii) take a decomoosition of ,j into coaets
Jw,w™w} with respect to ~w”/. We show terms corresponding
to w and w.w cancel for any w £ VW . Fix w&E£ WT.

"Without loss of generality assume Ifw™w) = I(w) + 1. Then

ViVvep - AGLY(W) @O 1 2-12

= AhA(w.w) “"or some h £ H with X(h) =1

by choice of representatives

so that S(X)AMWAWI) = E(*>A(w.w) * )
b(i)
BUL AWIWAW.) = AW.w) S Ah:ll;ui i by (A>1 2*12 (jb
s
b(i)

=1 A (Wiw)—lhi(uis)(wlw)A Wwiw)

= -B(XDAWIW) by (A 1 2.16 (D)
Therefore 6jA"wij = S(AC)V\EY/j A(W)A(Wi-) =0 by () and (++).

Similarly for A”™w )ej*
For (iv) we know that I(w™Wj) = ITQww™) = 1(Wj) - 1

any w™ £ J so that

3(*)(-1 )2(" T)i(Kj)A(Wi)
J o= b(i)
ECO)(-1)1 ( A @j)S-1 AhiQui ) (&) 1 2*12 (D)

TE \~ (i) .
AW))-,hI(UIT )(»,) A))
S

E(XDbSAI % Ch ™)) (1)LWIDA )

= -0 by (® 1 2.16. Similarly for A(Wi)°J*
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45 Llemme. The elements § and ej are ideapotents in B,
Proof. First notice that 3('C) is an idempotent. By

4.4 (iii) AW =0 any 14w~” 7). Therefore

el =elad) ~e* Also °j - °jB(X) (-1 ! )***A(W“
where W = Is a reduced expression. All

w  (Km<t) belong to J so that by 4.4 (iv)

oj = (L1)21(wi)B(X) (-1)1(wJ)AW) = 0Oj

46 Llemma (£2, (4.4.4)]) Let VEV, XE£ T Then
@@ oj AWM = E(XDAWM

(l) e’ Alv) = ;AIW)

(ii)) ¢0* AMAKX) = E(X) s A (V) W
WEW.

Proof*x <> °J A(v) = H ) 1A B(X)ALKYAM - Let

VBI =W ..w. be areduced expression so that

Al 11 ARn)Abya\ sme hE H with X () = 1
since J CI(X-)* But v £ Vjimplies livw?) =1(v) - 1
any WNEJ so that o* Alv) = ()2 1"WEX )AV)
by (a) | 2.16 and repeated applications of (A | 2.12 (iv).
(i) ¢gOJ Alt) =¢ a(v) = B(X) S AWA(v) . But
U.

\j CXj and the result follows by 4\’1‘% \ii). Part (iii)
follows by (ii) and 4.2 (i) since w £ Npoany wE WL
Notation. Let v £ Aa,w€ T If we define

CTivw) = €O AMAN where v € Vj, the value
of J is uniquely determined (by A."L (iii)).
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4.7 Lemma. ([2, (4.4.7)]D Let <= FC(v,w)] v £ VIf w £ T}.

Then J”~ is a set of linearly independent elements of

3(X)K-
Proof. Say there exist X w £ k with

oty 3 +
0 VEV] WET ~ovLw TIvW) . ©
Let 3 = E X CT(V, W) V/e show that if Sn = 0
V,W
I(w)+1 (V)™

then X v>w = 0 all w,v with I(w) + I(v) = n which

will imply 3 +1 = O» Since expression (+) 1is equivalent
to 3g = 0 we will have proved hy induction on n
that all ,, are zero.

Let vi1,...,vt he all elements in ~(” ) which
satisfy the following condition: For each vz (17i«t)
there exists (at least one) w £ T with I(v) + I(w) = n.
Then v1 £ \3'{{—)\ some unique s\ibset J(i) C R hy 4.1, (iii).

Let w £ T. Then

avi,w) = 03()°J@) ANVIAW)
= »<*) § AW (v.)W D by )
w” €WJ(i)
= 3(XDAMWv ) + 3(* ) ™ sum of terms A(w,}
with 1T(w?) > 1(w) + i(v)? by 4*2 -
Hence Sn = n ~NvE,w ECN ) A(w)(v)
where

T(w)+1(vi)=n

+ jJ2(X ) 1 linear combination of terms A W<)7
L with I(w®) > n J
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t

= Z 3 *x . -
hen izt wer 0P X (D AV wr @ vidh

IT(w)+I(vi)=n
+ ) linear combination of terms A/(W)A’H
Lwhere h £ H, I(w") > n

But the elements {(W) (Wh] w € T, v € N £ H}
are all distinct (use 4.2 (i) and (iii)) and are in fact
all the elements of IT. Since jA In £ M} i3 a k-ba3i3
for 3 this implies that if S, =0 then

all h £ H, w£ T with

IGvx) + 1MW =n any W @7iitb)
A AvLw "0 all w£ T, with Kv+) + I(w) =n
any @ik

as required.

4.8 Lemma. R, (4.4.9)3) LeE S* Th9n "taere exist
_ £ k such that

ej°j& = E 5 VFW 0-(v,w)
VEV], W€?
Proof. We know = S AN KA-r,,\ (Av, y£ M
————— hEH , wEW n’ v " ?

and by 4.4 (ii) we need only show that for all w £ W
eaoy/wvs( has the required form. We do this by induction
on 1(w). If 1w =0 then w = 1 and

g°j - v ! - H)IH)*=3i(»3) - M )L("i) “m(»},1).
Assume I(w) >1. Let w=ww" with I(w) = I(w") +1.

By induction
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eJ°IJA(W) - $Fvw e
J
XET

But A/V,v,n = Q\-A, 3one h€H By (A I 2.12 (i)

A, VA, . i
(W) R {w )yATwl)
so we need only show that CT(v»x)A™ ~ has the required
fora for any v € Vj, X £ T, £ R. Fix v £ Vj» xX£ T, wj =R.
We know AMAX) = AQX)() by 4.2 ().
Case 1. I(w.ct) = I(xv) - 1; v-1x-1(at) < O.

Then CT(v,X)A(C ]

ej°d A () (WA (W)

b(i)

eJ°J A() S Ahx(u )
s=1 1 s

by (&) 1 2.12 (i)

b(i)
e3°J £, A(v)—l(x)"lhi(uig)(X)(V) ACOM)

by (® 1 2.5

bSD?C((V)"1()"1h.(u HYCIMV)) «=(7,*)

s=f S

by 4.4 (ii)
Case Il1. KWjXv) = I(xv) + 1; v Ix 1(at) > °*
() x“1ai) > 0; Iwix) = IxX) + 1
a) x“l@i) + at any ateA,,”n)
w £ T and C(v,xX)AW™ = ej°jJ AMWMAWI)X)

by & 1 2.12 (i)

eJ°?AhA (WA (wiX) 80136 h £ H

~C(h) 0*(v,wx)
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) x 1(ax) = at sons at € Aj~). Aen
X = and v-1(at) > 0 so that either
1) v-1 (at) 4=as any a,, £ A a’ or

9 = g SOme aQE Af

mf VT and
C(v,x)A(Wi) = ej°j A(w.)(X)(v) by 4*2 <>

= X(h)ejoA A(X)(i” )(v) (+)

for some h € H

= X(H')eJo*A(WtV)A(X) some h* £ H

= X (h") cr(wtv,x).

In 2) we have v ww =wg 6 J and

CIllv,x)A(wi) = ej A(V)A(X)AMWIi) by 4.6 (i)

= ~ (h)ejA(x)(vt)(v) as in (+)

above for some h € H

X (k")ejA(x)(v)(w ) some h* £ H

X (h"™)ejAw )A(x)(v) some h*e € H
S

0 by 4.4 (iii).

(ii) x-™~an) < 0. Then ICwjX) = 1I(x) - 1 and
b (i)
a(v,x)A( 1) = Vj AWMV)AX) é_} (E ’ig) by (A) 1 2*12 (ii)

This expression will have the required form as in Case I.
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4.9 Lemma. Let J = {eJ>% o0 jJ A WAW |fa B, w£E , JO«* ),

.
Then ,4 1is a set of linearly independent elém\e/llts of B

and form a basis for E.
yr 9°%E- The set J is linearly independent by 4.7 and the
direct sum decomposition E = zF;e(")E . The
X€EB
elements of J must form a k-basis since

BEE |\1/
II I S * 5 NI, X>1T*
PEB X \ ZB JCM (ft)

W-WM(iC)1 hy 4,2
xeB 19 y
= s W]
X<£B
= b W]= 1M .

4.10 Corollary, a) For each X- B, JXis a k-basis for 3(X)3.

b) For a fixed admissible G-pair (<J3,X)

eJO™E has dimension IMj X ]iTX i and the set
ieJ°J AWAW! ve VIJ,X > w€ V is a Basis .

Proof. Part a) follows by 4.7 and the proof of 4.9. Part b)
follows by 4.7 and 4.8.

4.11 Corollary. For each admissible G-pair (J,X )

el °J % E 1is an indecomposable right E-module (ideal) and

Q) E = s® el,X°J,XB
@, X)£P
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Proof. Decomposition (1) follows from 4.3 and 4.9. Each

eJ,X °J,X 3 raBlL therefore be an indecomposable right
E-module since e ™~ °J~ S~ 0 and there is a bijective
correspondence between the set of indecomposable components

of E, the set of indecomposable components of Y and the

set P of admissible G-pairs.

From decomposition (1) we can write

1y = 5 PJ, X ~ @j.x € el,X°J,X 3)*
(<T,?C)€P
Then the are mutually orthogonal primitive idenpotents

in E and

U) pj.x E = eJ,/C°;?,x3 e

Since E(Y) =Y we get by applying both sides of (2

to Y that
~ PJ,%"Y) = ) and
4.12 Corollary. Y = S® ejV °J TY™ is a tecomPO3ition

(J.X)EP

of Y into indecomposable kG-submodules.

4.13 Corollary. For any admissible G-pair (J>X)

ej.x°J,x () =YQA’X) =

Proof. In order to identify ej we nee<* only
show that Y(Pj#s ) = 1 (see proof of I 2.2). This
will follow if we show that PR (>X. ) £0 by (3).
Let w £ W. Thenby (A I 2.21
J r<j.X)aiw) 0 W e
Aw)

(D w £
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It is easily seen that ™~ R@,X-)ej,jJE = "R(A>X ) X = 1*

We now consider Yj as a subspace of Y for any
JCRand we take yT=vy (see I 1.3) so that YT = kGTy.

We can consider e ™ and O as elements of Ej

via the injective algebra homomorphism &:3j — 3 given
in (B) 1 section 1. As such, ej ~ affords the 3j character

J@Q,X) and 0Oj ~ affords the 3j character f j(5 *X )

Therefore
4.14 ej™ ) = HIQ@,X) and
°J X S MI@’X ) for “y admissible
G-pair (J,X).
By 2.1 and 2.3 P £YjJ@A»X )and 05~ (Yj) SY
Since Y = YT where O is a set of representatives

iga J
of left cosets of G by Gj

e < M = Z e xC¢YD
» ¢€0.J°X J
= 3 €e * (,)
.ce& JX J
=~ "r<ej,x (TJ* since ej»x (YI) - Yj*©
Therefore Jej>x (YP'1® = eld>x (Y) and similarly
[0. ~ vj)3 G = °j,X (Y)* Therefore by 2.4
4.15 Lemma. e~ (M = YJ@A>X ) = 50Y(K>%)
K2J
°J,?2C (Y) 3 yj(5'X)G = SeY(:1»0C)
3CJ

and Y(J,X ) is the unique common indecomposable

component of Yj(J,X )G and Y, t(E"X)" *
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I11. "The vertices of the indecomposable components of Y.

In this chapter we calculate a vertex for Y(J,9C) for
any admissible 6-pair (J,%). We refer to Green"s work on
G-algebras and generalise the notion of G-algebras with
permutation base to those with monomial base. The
author realises that the vertices of the components of Y
can be calculated by appealing only to L.L.Scott"s work ["]
on permutation modules (see 3-7 Remark (ii)). We include

the work on the monomial case for general interest.

1. Preliminaries on G-Algebras.

/e begin by recalling some definitions and results from
£5» p. 138-1413. V/e assume that 6 is any finite group

and k 1is any commutative ring with identity.

Definition. A G-algebra over k is a k-algebra A with
identity element on which G act3 as a group of k-algebra
automorphisms; that is» g € G acts on a £ A to give

ag £ A making A into a right G-module and

(ab)”
Notice 1g = 1 for all g £ G where 1 is the identity of

a® b® all a»b £ A» g £ G.

Definition. Let A be a G-algebra over k. For each

subgroup H of G, define
A. = Jaft£A ah=a all h£H j.
1.1 Lemma. Let H be a subgroup of G. Then A" is

a subalgebra of A and if H and K are both subgroups

of G»
H<K= ANE Ajj

A.
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1.2 Definition. If H and K are both subgroups of

G and H « K, we define the k-linear map Ta Aa — A,,

Ry

%,x@ = s aVv (@G A:0
VEV

where V i3 a set of representatives of the cosets
Hv in K. Since a € Ajj, T~ (@) does not depend on

the choice of V. Moreover TR K(@)x = K@

any X £ K since Vx is an H-transversal of K if V is.

Definition. If H and K are subgroups of G with H « K

define
AH,K = lHlaase Th> = %, k@H)-

1.3 lemma. let A be an G-algebra and let D,H,K be
subgroups of G with D «H «K. Let a€ A bsc A", gc G

Then
@ mH,kG@> = THK@ Db
(i) TH>K@m) = b TR>K@
GiD) g = Tak (Transitivity Law)
V) @hss - V
™ THKk@e _ S

1.4 Lemma. IFT H and K are subgroups of G with H <K
then Ajj ~ 1is an ideal of AN,

Proof. By 1.3 (i) and (ii).

Notation. If D and H are subgroup of G, then D ~H

G
means that D is conjugate in G to a subgroup of H,

D =H mean3 D is conjugate in G to H.

iff m:->m
Yy a
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Assume k is a field of characteristic p > 0. We

must include the notion of defect groups in G-algebras.

1.5 Theorem. Let A be a G-algebra over k and let e be
a primitive idempotent in the algebra A&. Then there
exists a subgroup D of G such that

(i) e € ADjG and

(ii) if ef£ A~ G for any subgroup H of G, then

D « H.
G

Thus D is determined up to conjugacy in G and

we call D a defect group of e in the G-algebra A.

1.6 Lemma. Let D,H,K be subgroups of G with D ”~H *K
and hcf (o, [H:DD = 1. Than A—l)g = 'AH’Q)V
Proof. We always have

AH,K = TH,KMHN 2 TH,KMAG,HA = AD,K by 1,5
However when p does not divide |H:D] the map

TD Ad - AH 1is surjective for we have A" C
and if P £ Ag then

tdh<>>= £ fr where V 1is a set of representatives
' VEV

of cosets Dv in H
= H:D|F * 0
Therefore A%7 = Ag and ad,k = th ,k’ad,h™ = th ,k’ah” = ah ,e
1
1.7 Lemma. The defect group D defined above is"a p-subgroup
of G.

2nd

Let M be a left kG-module. The k-algebra £, = £,(M)

can be made into a G-algebra by defining
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o mM) = gl (@) Tfor £)-££,, g £ G, N€ M
For any subgroup H of G, £, jT 1is the algebra of kH-endomorphisms
of M.
We conclude this section with the following lemon:
1.8 Lemma. Let M be any left kG-nodule and let £. be

an idempotent in £ Then

kG-module.

The defect group of £ in £,M indecomnosable, coincides

with the vertex of £ M.

2. G-algebras with monomial base.
For this discussion we assume Kk is an integral

domain and that A is a G-algebra over k. Vie generalise

2.1 Definitions. A line L 1is a free 1-dimensional k-submodule
of A.

A is said to have a monomial base if there exists
a finite set of lines -A- such that

G A = £0L
LEA

(ii) -A. is permuted by G; that is if L£A , g £ G»
then LS £A -

Given any line L there exists at least one free
generator so that each element of L can be written

uniquely as ($£ k). The set L £ -A} is

then a free-basis for A by 2.1 (i) which affords a
monomial representation of G by 2.1 (ii) of dimension

equal to the cardinality of A
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Let H be a subgroup of G and let fIVM 1 £ 1 )
be the set of K-orbits of -A. . Let 1 L i€1 3}
be a set of renresentatives of these H-orbits. For

each 1 £ | choose to. = co , a free k-generator of L-.

Notation. For L £A. let H(L) = jh £ Hl Lh =L}, the
a

stabiliser of L in H. Also denote by 1 the sum

in A of the elements in the H-orbit of L. Ofcourse

there are |H:H(L) | elements in the H-orbit of L.

2.2 Definition. Let L = kio® £-A.. The character
of H(L) is given by

H(L) - k* where

oojl = ~>L (DL for h £ H(L). Here

k* is the group of units of k.
The character is easily seen to be independent of
the choice of free generator for if Q7 is another free

t
generator of L and CG£ = J~(h) £ then

QE = X co”™ some J £ k COih =3 “Lh

-55V») “ 1

= 2~ L (h)co £ any h

Returning to the H-orbit representative Li> let

i T -Fv « v - 1* and let X. be a set of

representatives of cosets H(L™)x in H. Then L~ gives
all elements in the H-orbit of L+ without repetition

as X ranges over X*. Hence

H(L
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2.3 The elements {co”l x £ X%j are independent and

U/ | x€ X 1is a k-basis for A since
i€l

N contains a free generator from each L £ -A- .

The set ~ is called an H-standardised basis of A.

To determine the action of h € H on v A write

xh = fv, F £ H(Li), v £ Xt. Then

2.4 (Dh = Wixh = Wfv =~ iF)wIiv *

This resembles the usual procedure for giving an
induced representation in explicit matrix form.
We show that not all H-orbits make a contribution to

the subalgebra A™. We make the following definition:

2.5 Definition. A line L = kco is called H-soecial

if lof =CO all T £ HQ).
Clearly L is H-3pecial-~yL() =1 all h € H()

2.6 Remarks, (i) This property is invariant to the choice
of co . the free generator and (ii) L is H-special if and
only if L* is H-special for all h € H.v We write LM = Lx
for some representative x of cosets H(L)x in H and

Lx = ktox if L = ku . wemust show (u>x)" = LOx all

f £ H(LX) =:x"IH(L)Xx. Then u>xf = cO(xfx )x = LOx

if L is H-special.)
Definition. Let H be a subgroup of G. Let L =klI0 £ _A_

be H-special. Then define

coH m th@),h(ub) = s X where X
XEX
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is a set of representatives of cosets H(L)x in H.
Ofcourse 0 is invariant to the choice of X.

We can say that the H-orbit Af is H-special if
any line in i3 H-special (by Remark 2.6(ii)).

The following is a generalisation of £5, lemma 5a, p. 141~
2.7 Lemma. Let \[ = { ©~ |TV~N is H-3pecial, i £ ). Then
X) is a k-basis for A~

Proof. Let a £ A. By 2.3

a = E £ 3. WBX £ K

and

a £ Ag &> S 5« fcOh all h £H
1»X i,Xx X»X

i “ - * ?2l<« “ 0¥’
where for every h £ H, xh = fv (F£ H(L™), vV £ X») by 2.4

4~ for all 1 £ 1, X £ X+

T = S*"._Ff>.(FH where xh = fv any

h £H
4= Ffor all 1 £ I, X € X, F+>v = <f +(F)

for all f £ H(Li), all v £ Xi# since as h runs through
H, xh also runs through H so that ¥ ranges over all

the elements of HilL”) and v ranges over all those of Xz.

N for all 1 £ 1t x £ X+ either L% is

H-special and 5 i>v = 1>x all v € Xt or Lz is not

H-special in which case there exists T £ HCL” such

that + 1* Therefore since J I>x =

we must have P~ x =0 all x £ X~
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We continue in the spirit of J%5 section 5°*

2.8 Lemma. Let H and D be subgroups of G with D c H.
Let L = koo C-A.be D-special. Then

W " } _ [HW D) H if L is H-special
0 otherwise
Proof. If L 1is not H-special w N =0 by 2.7.

Now TDjH(COOD
THC ) iDhTd@),d”~10 ~

= TD(L),H(U> ) by 1.5 (iii)

ACLAHATLKHiL)~ ~ by 1,5

= Th@O,h HL):B@I(™ ) if L is H-special

= HL:DW to

Definition. Let D»H be as above and L = kOO. Define

N(to ;D,H) = hcf {JH) : Dh 0 H(L) |J where
h£H
Dh = h*1Dh.

2.9 Lemma. (5> Lemma 5d, p. 141 3 ) The set
vXT = {N(W jjDiH) w tH]A =+ ia H-special, 1 € 1 }
is a k-basis for Ap>H.
Proof. By 2.7 AD is k-generated by |u L=kw , L is D-special
By 2.8 {H(L) :D(L) JooH] L = ku> , L is Il-special}
k-generates AQ>H. Now a)H = co” for exactly one i C 1

and co” = if and only if there exists h £ H such

that U> = CO™1. Therefore AD>H has k-basis { oM i €1,

A is H-special] where \ % is the highest common factor
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of the set of integers {|H(l.th) J, h € H}.
Since G(L”) = G(I)® any line L and any g EG
1
H(I® =H 0 G(I®) = H® 0 G(L))®. therefore for

any h € H
|[H(Lih):D(Lih)]

[Hh *n G(1£):Dh In G(L%)|

[H(Ix£):Dh O H(L*)]-

let t be any field of characteristic zero with
discrete valuation V such that V(p) = 1 for some
prime p. let R be the valuation ring of V and
let F = R/P where P is the unique maximal ideal
of R so that characteristic of F is p. If k=R orF
we can replace each integer N( to”;D,H) by the highest
power of p dividing it for if N = prN* with (p, N*) = 1
then N* is a unit in k and prk = Nk.

2.10 lemma. (~5> lemma 5d, p- 1423 ). let Kk =R or F.
The set t\T= {pn(U>i;D,H) "HJ J +g H_special, 1 £ 1 }

is a k-basis for where

n(W i;D,H) = min {V |HA%):Dh n H(IX)] } .
h£H

1.1. Scott (£11, p. 104" ) defines the notion of
a "defect group®™ of a basis element in Sndj”™0i) where
M is a permutation module. We generalise his definition

for the monomial case. Assume k = F.

Definition, let be an H-special H-orbit and S be
a p-3ubgroup of H. Then 3 is called a defect group
of -A.~ if 3 1is a Sylow p-subgroup of H(I™) some



Since = 1Y any h £ H, a defect group
is determined up to conjugacy in H. We choose a fixed defect

group of an H-special H-orbit -A-~ and denote it by

A(AD.

We conclude this section with the following lemma:

2.11 Lemma. Let k be a field of characteristic p. Let
D and H be subgroups of G with D H. The ideal

Ap has k-basis consisting of those H-special

where A(-A_.) « D.
1 H

Proo¥. By Lemma 2J®» qum.s k-basis consisting of all
H-special Go~  for which n(to ~;D,H) = 0 since we
are in a field of characteristic p.

Now n( @ +;D,H) = 0<=? v JH(£";:Dh O H(Lx)] =0

for some h € H

(@, [IHi)jDlln H(LE) P =1

for some h € H

Da contains a Sylow p-subgroup

of H({») for some h € H

<=*A(-A_ ) * D
H

Remark. By 1.6 we need only consider A~y for p-subgroups

D.

3. An example.
Let k be any field of characteristic p and U

any subgroup of G. We consider the special case when
M = Indy®

where S is a one-dimensional kU-module. Let X sU - ™
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be the character of U afforded by 3 = ks.
Ve have already seen that £ = dnd™O"l) is a
G-algebra, let jx 1 £ 1} be a set of representatives

of cosets x™U in G. Let x* = 1.

The group G acts trailsitively on 1 by the

action (g, i) gi given by g(x.U) =% .U @y g £ G, i £ .

Since gxi = g”) we have that xgi lgx”™ lies

in U and

5.1 gxx® 9S) N(xgi-1SXi)xgi® 3 for 8lll S € G» 1 e le

A
Therefore M has monomial base since M = £ x1.$S
i£l

as k-spaces and G acts on the set of lines jx”& s| i € 1} by

xx® S)e = g li® 3) = xg 1+® 3.

For each pair (i,j) € 1 x 1 let 5K ~£ 6. be defined

hy

X.&S

0 otherwise.
Then (O° 'fJI (,)) £1x1} is a k-basis for £ and
£ = £® Mi j where =k "™ i,j *
i»] J>"

A denote the set of lines WAL (S3) £ 1 x 1. We

need to calculate theprecise action of g £ G on an

peeitgaryclingnhen 4:
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g-1 i7jigin,05s))

g-]. N ,j (Xgi' * A(Xgi’gxi )S) by 3.1
A xi_1gXg-1idXig> 3 gi i
i g
i 0 gi= + 1
AV XVU> A<v Re"S yxg-13@s 971
0 gi* k1
by 3.1. Hence
3.3 & If3g =
and Mi,Jg = Mg*i,g-1j for ge G, (i,J) € I x L.

Therefore G(tggja = XIUf. 1n XTUXJ—l.

Statements 3.2 and 3.3 combine to show

3.4 £, is a G-algebra with monomial base -A = {Mj 1](@,i)SI x 1}

In order to calculate S = the algebra oi all
kG-endomorphisms of M we must find the G-orbits on the
set of lines A_ . We examine the action of G on 1 x |
given by g(@i,j) - (gi-gj))-

Each G-orbit of 1 x | must contain at least one
element of the form (14,jJ) some j £ 1. Clearly (1,J) and (I»s) are
in the same G-orbit if and only if j and s are in the

same U-orbit.

3.5 Let 1= j4*j52 be representatives of the

U-orbit» on [I. Then -} 1is a set



of representatives of the G~orbits on A. . Assume

Myog = k 0 i,y 1S from the orbit A_3.

We concern ourselves with G-special G-orbits
which are described by the following lemma.
3.6 Lemma. The G-orbit A.J is G-special if and only
if A@® -1txd) all t €G(PLyJ.)

Proof. The orbit A 5 iS G-special

ol g «p, all teoqn )
45 3 A(txt 1 A.(xj“1txt_i >
all te by 3.3

4?  Ak(tx®) = Ak(t) = X (M-1tx.) all t6 60y 0,

3.7 Remarks, (i) The orbit A1l is always G-special.
(ii) If A is the trivial character (identity character)
on S all orbits are G-special and we are in the permutation
case.

By 2.11» the defect group D of a primitive idempotent
£ € £ G will contain (up to conjugacy in G) some of

the A(—A_EI]_) "s. The following lemma is more precise.

3.8 Lemma. Let £ be a primitive idempotent in £.&
and let D be the defect group of £ . Then £ has a

unique decomposition

(1) £ = 2 N (* Je k¥
A i G-special

A@)SD

and D is actually equal to one of the ACA™) some j € I
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More precisely, D coincides with any maximal (with

respect to order) one of the A(-/\ ") given in ().

Proof. Decomposition (1) follows from 21<I). ¥or any je |

8.3 = fo(vamfs A A TAC 3 ~iLd}
since
TA (A j),G( Mtj* _ TG(KI>]),GTA. (AD»G(MI>.)(~ 1,3}
by 1.3 (iii)
- lo»,,j)~IVi)ITO(,Ai) (G<fr-i,3)

- I°PGAL)ACA. L st , 7.

(@ Therefore £ £ 2 cC A,(A ),0

J k.J G-special

A (A,) <D

By Rosenberg®s lemma, £ £ S~ CA{) G some tE£ 1

given in (2) so that D™~ A CA+) by 1.5. Therefore
G
D=A CA+).
G *

IT A CAg™ is a maximal one among the subgroups

given in (1) then

A CAq)| ~ !'A(AT)] = oI > [A(AQ)]

so that D= A (A.)e-
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Remark. L.L. Scott gives a statment analogous to the
above lemma in [»m p. 105P in which he defines a
defect group of a primitive idempotent in in the
permutation case My the properties in the lemma.

In [*11» Proposition 3(2), p.- 106 Scott gives a
characterisation of defect groups using certain nodular
characters of We give a similar lemma based on

~8, lemma 3.1» p. 211'[ -

3.9 lemma. Say X 1is a k-algebra epimorphism of £ G

onto a simple algebra S. let f be a primitive idempotent

of Assume X () 40. For any subgroup D t G

fG /\D’G/\ /\/\D,G/\ N\ O%
Proof. Clearly f £ implies ~(*-3,0) £0.

Say "t(£D>G) £0. Since X(t D &) 1is an ideal of

t(£ &) =S we must have r(£D Q) =S since S is
simple. Therefore there exists a € £ such that
X(&) =X(F) ao that

f£ £_lfu-+ kernel” (since f=a + (F-2a) ).

Therefore f € D by Rosenberg®s lemma.

4. Vertices of Y(J,%>).
We now assume that G = (G,B»N»R»U) is an
(unsaturated) split (B,N)-pair of characteristic p and
k is an algebraically closed field of the same characteristic,
let ™I 1 £ 1} be a set of representatives of the
left cosets of U in G and all notations are as in
the preceeding sections 1,2, and 3. We take M 8Y, S = k™ .

Vie have shown that E has k-basis {Anl where
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An(y) = [a ].my where nH = we 3y 2.7> 3.5 and

J 9810 0 "Seee> G 1

3 7)1 1 j
@ 1,1 .12 1»3%j3 ~ I-1.

representatives of the U-orbits of 1} 1is also a k-basis

of E where

- Xt e u
4.1 9, ,'U#y) = Xy
otherwise
any i, jJ £ 1
Relating the bases { and {8/ifjG} we see that
4.2 Lemma. .»Jﬂ' = An = ijU = Unu

Proof. Notice that given any j € 1 there exists a unique
n £ N for which UnU = ijU end if ijU = Uéﬂ any s,1e {l >I1SD
then there is u € U such that s = uj so that s and j

belong to the same U-orbit; that is j = s.

Now &. J* = 2 & =z where Z is a set of
1,3 zEZ 1»3

representatives of cosets (Un XJUXJ"l)’\ in G (by 3.39).
Let z = tx where X 1is a set of representatives of cosets
Ux in U and T is a set of representatives of cosets

WUn Xjuxj_ 1Dt in U ,addt€ T, x € X.

sfhen 01> (y) 8r > X ()

XEX

- 1&?x & x-1t“1l,x-1t-1j(y) by 3,3

= 2 Vo> <since the contribution
of x 1is O unless
x C U)
= E x_ .
1 f ij”

m P H» «
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= S tUlx.y
teT J

I Ux5U = UnU =n mpU, X ha3 (unique) decomoosition
Xj = U.Jnu2 where ul £il-w, u2 £ U (see (A) 1 1.7).
Then x..Wx. 1 = M In-1)Hul~1 = ul@Uw-1)H)ur“l Ffor nH = w )

and the set T can be taken to be u1-Q-W—1u1- s 0o that

& -G = s t 1x
1°J (y) tET ~ 3 Y
® ui ur " xi7
- «.[fL,,]«-
- [n.1-r

- An(¢y) and 6,,,J°=An.

Conversely, say UXJU = Un"U for n” £ N, n"H = w".
Then &-],j6 = An implies [ *u ny =[ i u n"y by

the work above so that An = An’ and n

I
>
*

The following lemma is immediate by (1):
4.3 lemma. Let Ux™U = UnU -OT some n £ il. Then

A CA—n) a .U where nH = w-~.

We have shown in | section 2 that we can U3a the

following notation:

Y = £ ® Y(@,b0C) is a decomposition

a.x) epP
of Y into indecomposable kG-modules summed over the set P of

admissible G-pairs and

1y = S TF (J3,X) is an orthogonal
(J*X) € P

decomposition of 1Y into primitive idemootents where

i aPPUBHpPMI
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Y(IJ,X)=V (@, X)Y and we arrange (see | 1.8) that
j-3 X=X

otherwise

y r(G,x )Iir(3,"x*)

Ye can now calculate the vertex of Y(J,X ) for any

admissible G-pair

4.4 theorem. Let (J,X ) be an admissible G-pair. Then

»A U+ is a vertex for the indeconnosable component Y(J,?C )

where J = M(X )\J.

Proof. Let % = fRU>X)- ?hen t(1IT(J,X)) + 0 and

we can apply Lemma 3.9. Let w £ V. Then there exists

h £ H for which
-0 '™ x @) WE VA

(D X Ay
wy w <EW

by 1 1.8. Now let P be any p-subgroup of G. Then

X(£EP,0) there exists j £ 1 such that
X (&1 -)G+ ° with A- (-A-) ‘;
by 2.11

4=> there exi3t3 n £ N such that
X(,’-\1)+O and Uy 6 P where

nH = w by 4.2 and 4.3 =

By 3.9 and (1) we see that the vertex is WU+ for some

wE Wt. Forany w £ W with reduced expression w = w. ..
X1
we have
v
2 by 1l 1.8 (iii)

IW+*

it
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If wE W f w4 wj»then there exists Vv € VWj with
wj =wv with I(v) » 1and I(W) + I(v) = I(wj) since
wj is the unique element of maximal length in Wt .

any w £ '6<,W4=t

by (2 and 11 1.8 (i). Hence A U+ must be a vertex of
wJ

Y(I»X) hy the minimality of its order.

Remark. This theorem shows the importance of 3.9 which
allows us to calculate the vertex of Y(J>X ) with little

information about the idanocotent TT(J»X )=

4.5 Lemma. Let (J,X) be an admissible G-pair. Then
Y(J,X) is projective if and only if M% )=R, J =
and C = 1.

Proof. Y(J,X ) is projective 4=~ vertex of Y(I»X) is 1

**  Jus WA U+ = |u|
WJ
o}
Icl <
<B=" C = 1, wj Wy "using Il 1.8)
c=1J =R
C=1,M(X) =R» J =1L

Our last lemma of this section uses the main result

of Il section 2.

4.6 Lemma. Let Xe B be such that M(X) = R* Since
U+ i3 a vertex for Y(J,X) the dimension of Y(J,X)
is divisible by q In fact q | s the highest power

of p dividing the dimension.
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Proof. The first statement follows since the dimension
of Y(J,X) is divisible by JU: vertex Y(J,X)Il since

U 1is a Sylow p-subgroup of G.3y Il 1.6 w4 is the

unique element of minimal length in VT so that if w€ Vx

qwa divides qwby Il 1.8(iii). Since by 11 2.2
dimvY(J3,X) = "£ qgw
WAV j
W
= qgJ @+d

where d is divisible by p, the result follows.
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5. The duality of Y.
The module Y Is self-dual, that is Y = Y* = Hom,.(Y,k)
since ((ky)0)* s (ky*)G S kyG. Therefore there exists

a permutation (J,X) - (J",X") of the set of admissible
G-pairs such that Y(J,%)* = Y(I",X"). (Notice this

implies that all Y(J, %) have simple socle if and onljr

if all Y(J,%) have simple head.) We determine this

permutation in this section.

As an alternative to the classification of irreducible
nodules of groups with split (3,1)-pairs by weights (or
equivalently by admissible G-patrs), Curtis shows that
each such irreducible module is completely determined
by its unique B-line and the parabolic subgroup which is
the full stabiliser of that line (see £4, Theorem 6.15* p. 3-38]
We showed in 1 1.10 that this remains true in the unsaturated
case and it is using this point of view that we compute

our result.

5.1 Lemma. Let JCR and let p :Gj » k* be a homomorphism
afforded by the kGj-module L . let (3,X) be

an admissible G-pair. Then there exists a kG-monomorphism

P *: M(S,X) - LJ,G
if and only if Gj stabilises the unique B-stable line
of M(3, X)* .

Proof. There exists an injective homomorphism
D MS X) - LP
WM(3» X )» + 0

(M(3,X)kGJ* L;.)Mqﬂ £ 0 (Probenius Reciprocity)



90

there exists 0 4 f: M(3,X) - k such that F
is a homomorphism and ¥f(gx) = F(@F(x) Tor all
X £ M(3,X ) and all g £ Gj-

4= there exists 0 F T £ M(3,X )* such that gf = > (g-1)f

all g £ (..

4=~ Gj stabilises the unique B-stable line kF of M(3) *.

Definition. If % £ 3, define p(:B- k* by

X*(b) = X(b~1) all b £ B. Then and %) =

5.2 Lemma. Let (I»C) be an admissible G-pair. Then

Y(JI>X >* = Y(I» X*)
Proof. By | 2.2 we need only determine which admissible
G-pair satisfies Let

M = M(I»X ) have unique B-line km affording % . Then
kU(wO)m = kG(wQ)m = M (since Proposition 3.3 (v) and
Theorem 4.3 (b) of ~4~ hold for unsaturated split pairs

and we have the structural equations of (@) 1 2.10 ).

Therefore as in the proof of £4» Theorem 6.6, p. 2-32Vj:
M = kwQ)m © rad (kU)WQ)m and

k(wo)m affords WeX o Let M* be given as
follows: If @ € M then \ (m") is the coefficient

of (WQ)m in the decomposition above, that is

m* = A(m)WO)m + x1 where x1€£ rad (kU)(wQ)m.

Then kX is the unique U-line in M* since for all u £

u“im” = X @ )u-l @Q)m + u“ixl

M(X *) -

u
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AU 1- DEw))m+ (WQm)  +  x2
where x2 € rad(kU) (WQ)m

X Mm@ + Xj where x»™ € rad(kl) (wQ)m

so that u\ = A . Furthermore if h £ H then

I:T
=
3
[]

I

X (m)H)h”1(wo)m + h_1x1

% (m?) °X(h-1)(WO0)m + x~ where

X, £ rad(kU)(wo)m since H normalises [If. Therefore
w
k X affords the character ( °X)* =

The parabolic subgroup G_WO is contained in the

full stabiliser of kX since for all w™ £ J we have

(w m =m (@Bee I 1.10) and

G )W) Wo)-1wWQin = (wo)m and
i) wo))wi)wo)“1 rad(kUV) wQ)m C rad(kU)(wO)m

The second statement follows as in ~4, proof of Theorem
6.6, p. B-33~ using £4, Corollary 3.6, p. B-14[{which
holds in the unsaturated case since Cj = Cj all w£ Wj
(see 1 1.1)

Let the full stabiliser of k\ be &, with 1 2 JrP
Then M* m M(T,(W°?2C)*) 3UA Y(JI,X )* = Y(TW®,X*) by
I 2.2 since W°X)* = We(X*) e show T = Jw° .

By results Il 2.2 and 11l 4.6

d = dimension Y(TW®»X*) = VI E GW

«evowp
where V w is a certain subset of X* = "M% )
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and 4= B:6n ()1 9" M + 1) where
awe)

is the ionique element of maximal length in I1I(&<)\ Two

and t 1is an integer divisible by p. But also

w*
d = dim YQJ.--X) = G:GTi(X)"™ 9. @ + t") where t" is

divisible by p and J =M(%)\ J
“(Twi;
Hence (q (@)

W.
If JCTO then (T ° CJ and wh =w /v. v for
J (Two)

some Vv with I(v) -1 and IT(w? ) = I(w(f%'g_) ) + T(v).

By Il 1.8 we must have
gw? = qgw (i) But qv>(C all V+1
w

gives a contradiction to (* ). Hence J =T °.

5.3 Corollary. Let (J»X) be an admissible G-pair.
Then M(3J,?C)* S M(IW°, @Wo%)*)
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