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Abstract  

The physical and biological attributes of riverine ecosystems interact in a complex manner 

which can affect the hydrodynamic behaviour of the system. This can alter the mixing 

characteristics of a river at the sediment-water interface. Research on hyporheic exchange has 

increased in recent years driven by a greater appreciation for the importance of this dynamic 

ecotone in connecting and regulating river systems. An understanding of process-based 

interactions driving hyporheic exchange is still limited, specifically the feedbacks between 

the physical and biological controlling factors. The interplay between bed morphology and 

sediment size on biofilm community development and the impact on hyporheic exchange 

mechanisms, was experimentally considered. Purpose built recirculating flume systems were 

constructed and three profiles of bedform investigated: i) flat, ii) undulating  = 1 m ii) 

undulating  = 0.2 m, across two different sized sediments (0.5 mm and 5 mm). The 

influence of biofilm growth and bedform interaction on hyporheic exchange was explored, 

over time,  using discrete repeat injections of fluorescent dye into the flumes. Hyporheic 

exchange rates were greatest in systems with larger sediment sizes (5 mm) and with more 

bedforms (undulating  = 0.2). Sediment size was a dominant control in governing biofilm 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

growth and hyporheic exchange in systems with limited bedform. In systems where bedform 

was prevalent, sediment size and biofilm appeared to no longer be a control on exchange due 

to the physical influence of advective pumping. Here, exchange rates within these 

environments were more consistent overtime, despite greater microbial growth. As such, 

bedform has the potential to overcome the rate limiting effects of biotic factors on hyporheic 

exchange and sediment size on microbial penetration. This has implications for pollutant and 

nutrient penetration; bedforms increase hydrological connectivity, generating the opportunity 

to support microbial communities at depth and as such, improve the self-purification ability 

of river systems.  

Keywords: hyporheic exchange, bedform features, biofilm growth, advective pumping, 

sediment size.   

1. Introduction  

The hyporheic zone is a transition boundary in which surface water flows into and out of a 

fixed sediment bed (Sabater & Vila, 1991; Harvey & Wagner, 2000; Clark et al., 2018). 

Solutes (i.e. pollutants and nutrients) within the hyporheic flow are continuously transferred 

back and forth across the overlying water column and streambed interface (Boano et al., 

2006; Tonina & Buffington, 2007). This vertical bidirectional flow takes place on a relatively 

small scale, typically centimetres to tens of metres. This distinguishes it from surface flow 

and the unidirectional flow pathways governing groundwater recharge and discharge (Boano 

et al., 2006).    

 

Scientific interest in hyporheic flow has gained recent momentum, sustained by an increased 

appreciation for river connectivity in mediating important ecohydrological processes 

(Williams & Hynes, 1974; Stanford & Ward, 1993; Gilbert et al., 1994; Battin et al., 2003; 

2008; Sawyer et al., 2009; Boano et al., 2014; Huettel et al., 2014; Azizian et al., 2015; Clark 
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et al., 2018; Schaper et al., 2018). This dynamic ecotone (i.e. meeting point) act as a 

biogeochemical ‘hot spot’ creating an interface for the exchange between chemical solutes 

(Boulton et al., 1998; Gandy et al., 2007) and aquatic biota (Jones and Mulholland, 2000). 

This, in turn influences ecological community distributions (Boulton, 2007) which drives 

changes in microlevel processes, including biogeochemical cycling (Triska et al., 1993; 

Battin et al., 2003; Nogaro et al., 2010; Danczak et al., 2016) nitrogen mineralisation (Krause 

et al., 2013) and contaminant processing (Stegen et al., 2016). As such, there is a strong 

coupling between hyporheic exchange and stream functioning, making the hyporheic zone a 

key focus for river restoration goals (Hester & Doyle, 2008; Magliozzi et al., 2019).  

It is well established that hyporheic exchange influences mixing characteristics. This is 

governed by a range of environmental parameters including: flow rate, sediment composition 

and channel morphology, particularly bedform (Marion et al., 2002; Cardenas et al., 2008; 

Bottacin-Busolin et al., 2009; Boano et al., 2014; Clark et al., 2018). These factors have the 

capacity to impact the extent to which dissolved pollutants carried in water come into contact 

with degrader communities and thus, control their environmental fate (Scharper et al., 2018). 

Increased anthropogenic activity including mining, urban and industrial development, dam 

construction and agriculture can disrupt the bio-hydrological connections within the 

hyporheic zone (Hancock et al., 2002). As such, it is vital that a wider understanding of the 

controls governing hyporheic exchange are investigated. This is necessary if strategies are to 

be designed that successfully exploit the central role of this ecotone in water quality 

maintenance.  

Undulating bedforms strongly control mixing characteristics by influencing flow resistance 

and exchange, resulting in flow separation and associated energy dissipation (Wijbenga, 

1990; Ogink, 1988; Julien et al., 2002). Research has demonstrated that the larger the 
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amplitude (i.e. height) of the bedform the greater its impact on hydrological exchange (Elliott 

and Brooks, 1997; Marion et al., 2002; Packman et al., 2002). Solutes, both pollutants and 

nutrients, within the flow have the potential to penetrate to deeper depths in bedforms with 

smaller wavelengths and increase the hydrological connectivity of the riverbed. This 

facilitates deeper nutrient and pollutant distribution as well as altering environmental 

conditions. However, microbial community growth, alongside the flow through undulating 

bedforms and the hydrological connectivity between bedforms of different wavelengths is 

poorly understood in a river system. Central to this is the concept of ‘pumping’ whereby 

differences in bed topography create pressure and flow gradient variations across the river 

bed (O’Connor & Harvey, 2008). Bedform impediments can create high-pressure regions 

upstream of the obstruction and low-pressure regions downstream. This differential pressure 

can drive the overlying water into the interstitial pore spaces creating flow pathways through 

the obstruction and hyporheic circulation underneath (Tonina & Buffington, 2007). This can, 

in turn, alter the rate of hyporheic water mixing within the channel (O’Connor & Harvey, 

2008).     

 

Microorganisms grow and also excrete extracellular polysaccharides, enabling them to cover 

the riverbed, forming a biofilm (Wimpenny et al., 2000). These colonizing microbes, 

particularly prokaryotes and algae, alongside fungi and protozoa in mature biofilm, drive 

biogeochemical cycling processes (Fischer et al., 2005) as well as immobilising and 

dissipating contaminants and pollutants through sorption and degradation (Jarvie et al., 

2005). The importance of these microbial communities in lotic ecosystems has been widely 

recognised (Battin et al., 2016). Previous research has identified how bedform amplitude 

impacts both hyporheic exchange and solute residence times (Elliott & Brooks,1997; Marion 

et al., 2002; Packman et al., 2002; Tonina & Buffington, 2007; O’Connor & Harvey, 2008; 
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Aubeneau et al., 2016). However, there is a need to determine how bedform morphology (i.e. 

amplitude and wavelength) influences biofilm formation and the feedback on hyporheic 

exchange, which remains largely unknown.   

Changes in the water-sediment exchange can interact with and modify water flow patterns 

(Nogaro et al., 2013; Battin et al., 2016). For example, previous research has demonstrated a 

reduction in interstitial water flow around benthic biofilms (Bottacin‐Busolin et al., 2009; Orr 

et al., 2009; Larned et al., 2011), resulting in alterations in solute residence time distributions 

(Aubeneau et al., 2016). In addition, the growth of these benthic biofilms on sediments clogs 

the interstitial pore spaces within the sediment layers (Battin et al., 2008; Aubeneau et al., 

2016). This can alter the hydraulic conductivity of the sediment, impeding water penetration 

and solute transfer within the hyporheic zone (Nogaro et al., 2010; Aubeneau et al., 2016).  

In-situ studies have observed variability in biofilm growth in accordance with sediment 

composition, specifically particle size (Nogaro et al., 2010). Aubeneau et al. (2014) noted a 

25% greater exchange rate in channels with coarse gravel particles (5 cm) versus those with 

finer sediment (0.5 cm). This is partly attributed to the smaller infiltration capacity of finer 

sediments. As such, nutrient penetration is reduced, restricting the layer and depth of surface 

biofilm growth (O’Connor & Harvey, 2008).  

 

There have been a number of studies that have examined how the physical attributes (i.e. 

submerged bedform) of a habitat influence hyporheic fluxes (Magliozzi et al., 2018). This has 

been achieved through simulations (Elliott & Brooks, 1997; Boano et al., 2014), laboratory 

experiments (Tonina & Buffington, 2007; Haggerty et al., 2014) and in-situ field studies 

(Zimmer and Lautz., 2014; Lautz & Bauer, 2006). Similarly, the effect of the hyporheic 

exchange on the microbial community has been investigated (Nogaro et al., 2013; Caruso et 
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al., 2017). However, few studies have studied the mutual impact and interactions of bed 

morphology and biofilm on the hyporheic zone exchange (e.g. Bottacin-Busolin et al. 2014). 

As such, a mechanistic understanding of how hyporheic exchange is regulated and controlled 

is underdeveloped due to the complexity of natural systems.  

 

Here, we present an innovative approach to examine how bedform features such as dune 

wavelength and sediment size can interact with biofilm communities at both i) the sediment-

water interface and ii) bed profile depth, using an experimental flume system. Using 

fluorescent dye tracer experiments we then examine how this feeds back on hyporheic 

exchange and discuss the role of pumping in driving both biofilm growth and feedbacks on 

fluvial mixing. To our knowledge, the work presented here is the first attempt to explicitly 

consider the entire bed profile (i.e. sediment size, bedform, dune wavelength) in assessing 

both the physical and biological impacts on hyporheic exchange.  This is of functional 

importance for environmental remediation and restoration strategies, with functioning 

streambed interfaces also aiding in wider catchment nutrient cycling and maintenance of 

healthy streambed communities .  

 

2. Methods  

 

2.1 Water extraction site  

Water employed in the flumes was taken from the River Dene, a minor tributary of the River 

Avon, Warwickshire UK, which flows approximately 16 km from its origin in Burton Dasset 

Hills near Kineton to its confluence near Charlecote Park. The River Dene is surrounded by a 

mixture of land use; nearby urban transport routes, residential and commercial areas, but is 

predominantly agricultural. River water (pH 7.3; Phosphate levels 21 g ml
-1

 Nitrate 26 g 
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ml
-1

) was collected from Wellesbourne (52°11'51.7"N 1°36'09.3"W) and was first passed 

through a 200 μm mesh and then a 38 μm mesh to remove particulate matter. The water was 

then transferred to the flumes within 2 hours of initial collection.  

 

2.2 Flume design  

 

A custom-built recirculating flume experimental system was constructed enabling tracer 

studies to be conducted in a replicate system with identical physical and hydraulic 

characteristics. The experimental system consisted of 9 recirculating rectangular flume 

channels, comprised of 3 separate units each containing 3 flumes. Each flume was 1.98 m 

long, 0.1 m wide and 0.2 m deep (Figure 1). The flumes were constructed from 0.01 m thick 

glass allowing for a clear visual observation of the experiment. To maintain the structural 

rigidity of the system an aluminium frame was constructed to hold the flumes in place. The 

frame had adjustable legs which aided in generating sufficient flow depth along the channel 

length for different bedform morphologies. The slopes placed on the flumes created a gravity 

chute down which water could flow. The water flowed over a weir, positioned downstream, 

which could be adjusted accordingly to achieve uniform flow. The water then proceeded 

down a pipe and through a flow meter where a Grundfos UPS15 recirculating pump then 

pumped the water through additional piping back into the flume system (Figure 1). Average 

flow depth and bed height was fixed at 0.03 m and 0.1 m respectively, with a discharge of 12 

L min
-1

 to ensure sufficient water mixing.   

 

2.3 Range of experimental flow conditions  
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In the experiments we systematically varied bed-profiles. Experiments were run over a 

maximum of 20 days with data collected every 2 days. Three profiles were chosen: i) flat, ii) 

undulating with two dunes ( = 1 m), iii) undulating with multiple dunes ( = 0.2 m) (Figure 

2a). Two sizes of smooth synthetic glass beads (VWR International) were applied for each of 

the bedding profiles. The glass beads may have affected the penetrance of light into the 

sediment and thus, permitted greater biofilm depth penetration. However, the choice to use 

glass beads minimised sorption as a factor, as the synthetic glass beads were smooth and 

impermeable, adding uniformity to the bed sediment. The mean particle sizes chosen for 

investigation were 5 mm and 0.5 mm to represent gravel and coarse sand environmental 

conditions, respectively. In summary a total of six bedding profiles were investigated.  

 

Each set of bed profiles was allocated its own bank of three flumes enabling each experiment 

to be run in triplicate. Experiments were first conducted using the 0.5 mm particle size, after 

which the flumes were cleaned with ethanol before bed profiles were created with the 5 mm 

particle size.  

 

The artificial substrates were poured into the bed section of the recirculating flume to an 

average bed height of 0.1 m, with a maximum dune height of 0.11 m from peak to base 

(Figure 2a). Templates were constructed for each of the bed profiles and sediment weight 

used in each system was logged.  

 

2.4 Analytical method to determine hyporheic exchange   
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Hyporheic exchange in natural systems is controlled by a complex array of both biological, 

chemical and physical processes. It can be modelled using an effective dispersion coefficient 

(D) which encompasses these complex interactions and can be formulaically displayed as,    

 D = β (Dm + Db) + Dd  (1) 

where: β  is the sediment diffusion correction term, Db is the biodiffusivity (L
2
 t

-1
; i.e. 

biologically mediated diffusive transport of solutes and solids in sediments), Dd is the 

dispersion coefficient (encompassing turbulent diffusion and pumping, L
2
 t

-1
) and Dm  is the 

molecular diffusion coefficient (L
2
 t

-1
), all of which can be obtained empirically or through 

modelling (Berg et al., 1998).  

O’Connor & Harvey (2008) developed a succession of scaling relationships that related 

effective diffusion coefficients to a variety of fluid flow and sediment characteristics, a 

concept originally proposed by Richardson & Parr (1988). A measured value of effective 

diffusion over a sediment can be determined indirectly using a conservative tracer (e.g. 

Rhodamine) in a closed system (i.e. laboratory flume). In this case the concentration (C) is 

initially 0 in the bed sediment. The concentration in the overlying water column (Cwc) is 

equal to an initial concentration (C0). As the water recirculates, hyporheic exchange will 

drive the tracer into the sediment interstitial pore space resulting in a decrease in 

concentration in Cwc over time. As such, the slope of a temporal concentration profile (i.e. Cwc 

versus t
1/2 

) can be used to calculate D, briefly  

 

D = (
√π

2

Vw

As

dC
*

d(t
1/2
)
)

2

  (2) 

Where: Vw is the volume of the overlying water column in the recirculating flume (m
3
), As is 

the surface area of bed sediment (m
3
), C

* 
is the normalised solute concentration (i.e. Cwc / C0) 
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Fluorescent tracing was used to quantify the rate of solute penetration at the water-sediment 

interface. Rhodamine was chosen as the tracer due to its high detectability and low levels of 

photochemical decay. Turner Design Cyclops 7 fluorimeters were used to measure the 

change in tracer fluorescence (as a voltage output) in the channel over time. These were 

placed in the inlet of the flume so that decreases in fluorophore levels in the water column (an 

indication of hyporheic exchange within the interstitial sediment pore space) could be 

monitored (Figure 1).  

 

The Rhodamine tracer was introduced into the centre of the channel at the outlet weir. The 

solute was made up to a concentration of 10
6 

ppb which was diluted using water extracted 

from the flume. The amount of injected Rhodamine was designed to increase fluorescence 

level to 30 ppb by the time equilibrium had been reached.  The equilibrium states of each 

experiment was assumed when the sediment transport rate and bed height were invariant. To 

determine this Vernier depth gauges were placed along the length of the channels. The bed 

height and water depth were measured in relation to the flume base at two points, across the 

width, every 0.1 m along the length of the flume. After the achievement of equilibrium the 

sediments were assumed to remain constant, with bed morphology remaining constant 

throughout the experiment. Repeat discrete injections of tracer were added into each flume at 

48-hour intervals.. After data collection the voltage data was converted into a concentration 

(ppb). Voltage and concentration were related by a linear relationship obtained by calibration.  

 

2.5 Biofilm growth  
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Biofilm growth was measured i) temporally on the sediment surface every 48 hours for 20 

days and ii) within the bed profile (i.e. every 1 cm in 10 cm depth) after 20 days. The flume 

units were placed in a controlled environment room, light was used to stimulate the 

photosynthetic growth of algae and cyanobacteria, and therefore accelerate biofilm growth 

within the interstitial pore spaces. Fluorescent daylight bulbs were covered with Lee DS 226 

UV filter screens to prevent transmission of light wavelengths < 380 nm. The lights were set 

on a timer to provide 16 hours of light and 8 hours of dark. The collected river water acted as 

an inoculum to permit microbial growth in the system.  

 

Modifications to the experimental design were made to permit the quantification of in-situ 

microbial growth within each unit (Figure 2b). This included the addition of 2.5 cm
2
 length 

glass sides on the surface to act an extractable synthetic surface (Kowalczyk et al., 2013) 

from which to extract and quantify surface biofilm (Figure 2b). The slides were placed in 

triplicate along the length of the flume starting at t = 0, spaced at 20 cm intervals along the 

sediment bed. During the experiment three slides were extracted every 48 hours from the 

same locations on each experimental unit to asses biofilm growth rate on the surface of the 

sediment bed. Biofilm was resuspended and carbohydrate was quantified using a phenol- 

H2SO4 assay (Kowalczyk et al. 2016, and further described in Dubois et al. 1959) as a proxy 

for biomass.  

 

The sediment bed was also cored in order to quantify biomass growth within the bed profile 

at depth. Due to the destructive sampling involved, coring was only undertaken at the end of 

the tracer experiment (i.e. after 20 days, to a depth of 10 cm). Sediment cores were taken 

every 20 cm (Figure 2b), in triplicate, along the sediment bed using perspex corers (length 10 

cm; diameter 2 cm). Once removed the cores were frozen and dissected into sections of 1 cm 
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intervals using a scalpel. Each 1 cm segment was placed into a 25 ml Falcon tube with 5 ml 

of water and vortexed to suspend the biofilm. Following biofilm extraction, the biofilm 

biomass was analysed for carbohydrate content in the same manner as described above.  

 

2.6 Statistical analysis 

 

2.6.1 Biofilm growth   

We applied a multiple linear regression (MLR) approach to test whether sediment size (two 

levels factor: 5 mm and 0.5 mm, explanatory variable) and bedform type (three level factor: 

flat, two-dune, multi-dune, explanatory variable), control the biofilm biomass (response 

variable, number of samples (n) = 540) within the bed sediment at the final timepoint (20 

days). Subsequently, we also tested under the same approach the effect of sediment size 

(explanatory variable) and bedform type (explanatory variable) on the surface biofilm 

biomass over time (response variable, n = 198). In this instance, we also included time 

(continuous covariant) in the model as a controlling variable for the non-independence of the 

repeated observations over time.  

 

The generated MLR model coefficients were used to calculate the modelled relationship 

between factors and compared to the observed values.  All output results from the regression 

models are provided in the Supplementary Material (Tables S1-S2; Figure S3), alongside the 

model metric outcomes (standardized beta values, t statistic = t, degrees of freedom = df, 

adjusted r
2
 and p value) and the number of samples (N).  

 

 

2.6.2 Hyporheic exchange  
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The initial slope of the concentration profile (i.e. Cwc versus t
1/2 

) referred to hereafter as the 

‘exchange gradient’ was used as a metric of hyporheic exchange. We selected biofilm, 

sediment size and bedform as the likely controlling factors governing the hyporheic 

exchange. A MLR model was applied to the dataset to produce a unique model integrating 

biofilm biomass (explanatory variable), sediment size (explanatory variable) and bedform 

(explanatory variable) as predictors for hyporheic exchange (response variable; n = 198; 

Table S3, Supplementary Material). Linear regression was also used to test observed trends 

between hyporheic exchange and biomass across experimental systems. All output results 

from the regression models are provided in the Supplementary Material (Tables S3; Figures 

S4-S5), alongside the model metric outcomes (standardized beta values, t statistic = t, degrees 

of freedom = df, adjusted r
2
 and p value) and the number of samples (N).  

 

The performance of all the models were assessed using the following metrics:  

a) The coefficient of determination (R2) for the regression between measured and 

modelled biofilm amounts/ hyporheic exchange.  

b) The Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970), a measure of goodness of fit 

between the modelled and measured data i.e.:  

𝑁𝑆𝐸 = 1 −  
∑(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑)2

∑(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑚𝑒𝑎𝑛)2
 

 (3) 

where ‘measured’ is the measured data, ‘modelled’ is the modelled amount estimated using 

the various predictors and ‘mean’ is the mean measured data. The closer the NSE is to 1 the 
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stronger the model fit. A value of 0 or lower indicates that the model performs no better than 

the mean of the data (Nash and Sutcliffe, 1970).  

 

 

Statistical analysis (including: descriptive statistics, alongside multi-linear and linear 

regression) was performed using Graphpad Prism v8 (GraphPad Software, Inc., 

www.graphpad.com) and SPSS v25 (SPSS Inc., Chicago, Ill., USA). The threshold for 

statistical significance was set at a confidence level of 95% but greater significance was 

noted. Normality and homogeneity of variance was tested on the residuals using the Shapiro-

Wilk test and Levene’s tests, repectively.  

 

3. Results  

 

3.1 Biofilm growth  

Microbial growth was measured on the surface and at depth across all experiment flume 

systems (Figure 3 to 6). Biofilm growth gradually increased over the course of all 

experiments (Figure 3) and was concentrated on the sediment surfaces, irrespective of 

sediment size or bedform (Figure 4 to 6).  

The maximum biofilm biomass was 105.1  6.1 and 115.1  6.0 μg carbohydrate equivalent 

mm
-3

, respectively for the 5 mm and 0.5 mm sized particles, within the flat bed system, 

stabilising around day 10. The two-dune ( = 1 m) system reached peak biofilm growth, 

across both particle sizes, by approximately day 10 (Figure 3) at which peak biofilm growth 

plateaued. Biofilm growth was slower within the multiple-dune system ( = 0.2 m) across 

both sediment sizes but reached the highest levels from day 12 (Figure 3). Biomass reached a 
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peak of 129.1  6.4 and 106.1  5.8 μg carbohydrate equivalent mm
-3

, respectively for the 5 

mm and 0.5 mm sized particles for the two-dune system and 131.2  7.2  and 149.4  8.7 μg 

carbohydrate equivalent mm
-3 

within the multi dune system.  

A MLR analysis between bedform and sediment size (explanatory variables) and day 

(controlling factor) revealed all three parameters were significant (adjusted r
2
 = 0.76) in 

predicting changes in biomass over time  ( bedform, t = 2.21, p<0.0001; days, t = 24.13, 

p<0.0001; sediment size, t= -6.43, p<0.0001; degrees of freedom, df = 194 ). 

After 20 days there was a trend for higher levels of surface biofilm growth on the 0.5 mm 

compared to the 5 mm sediment particle size across all systems, and biomass reduced with 

depth across all experimental systems (Figure 4 to 6). In the flat bed system there was a 

gradual reduction within the 5 mm sediment systems, with only a 40% reduction in biomass 

at a depth of 6 cm (Figure 4). Conversely, the 0.5 mm sediment systems displayed a rapid 

reduction in biomass with depth, with a 42% reduction in biomass observed after a depth of 

only 2 cm (Figure 4). By contrast, two-dune system generally did not exhibit sudden drops in 

the maximum biofilm growth until approximately 3 cm in depth (Figure 5), with biomass 

levels in the multi-dune beds typically only dropping rapidly after a depth of around 4 cm 

(Figure 6). Biofilm depth infiltration extent varied depending on the dune sample location 

from where the core was extracted (i.e. up-slope, slope peak etc; Figures 5 and 6). The MLR 

model revealed that depth (t= -32.46, p< 0.0001), sediment (t=7.93, p<0.0001) and bedform 

(t = 4.32, p <0.0001, df = 536) were the dominant controlling factors governing biofilm 

growth (adjusted r
2
 = 0.68), within the bed profile (Table S2, Supplementary Material).  

 

Using the generated model coefficients (Tables S1-2, Supplementary Material) biofilm 

biomass was plotted as a function of sediment size and bedform across time (Figure 7a) and 
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with depth (Figure 7b).  As expected, both the modelled and measured data displayed a 

significant correlation between biofilm biomass growth over time (Figure 7a) and with depth 

(Figure 7b), across all sediment sizes.  Days explained 71% to 79% of the biofilm data across 

the 0.5 mm and 5 mm sediment systems (Figure 7 a), respectively, with depth having a 

greater control in biomass growth within the 5 mm sediment systems, explaining over 70% of 

the biofilm data, in contrast to 64% in the 0.5 mm sediment systems (Figure 7b).  Both 

modelled temporal and depth biomass data correlated strongly to the measured data 

producing r
2 

values of 0.76 and 0.68, respectively (Table 1; Figure S3; Supplementary 

Material). This corresponded to NSE metrics of 0.74 and 0.90 for the depth and temporal data 

sets, respectively (Table 1).  

 

3.2 Hyporheic exchange  

 

To elucidate whether the growth of microbial communities on the flume bedforms impacted 

hyporheic exchange, the trace data was normalised to permit the identification of temporal 

changes in exchange gradients. A MLR analysis and model was constructed using sediment 

size, bedform and biomass as predictors for hyporheic exchange over time. The MLR 

analysis  releveled that 70% of the variance in hyporheic exchange was controlled by a 

combination of these three factors. Using the model coefficients hyporheic exchange was 

modelled across all experimental systems. There was a weak but significant correlation 

between the modelled and measured hyporheic exchange data (Table 1; Figure S4, 

Supplementary Material). However, the low overall NSE metric, 0.38, suggested a poor 

overall fit between the modelled and measured hyporheic exchange data, using sediment size, 

bedform and biomass as predictors.  

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

A linear regression between biomass and hyporheic exchange (Figure 8a) revealed there was 

a strong correlation between these two parameters within the two dune (r
2
 = 0.60, p<0.0001, 

df = 31) and flat dune (r
2
 = 0.45, p <0.0001, df =31) 0.5 mm sediment systems, with no 

significant relationship between biofilm and hyporheic exchange reported in any of the 5 mm 

sediment systems (Figure 8b). Here, increased bedform complexity resulted in a larger 

hyporheic exchange, regardless of the biofilm present. This trend is emulated within the multi 

dune 0.5 mm sediment system, which also displayed consistently higher hyporheic exchange 

gradients than the flat or two dune systems when biomass was below 75 g mm
-3

 (Figure 8a). 

A predictive model for hyporheic exchange, within the flat and two-dune 0.5 mm sediment 

systems, was built using biofilm alone (Table 1; Figure S4, Supplementary Material). This 

revealed a moderate goodness of fit (r
2
 = 0.54; p <0.0001; df = 64, NSE 0.60) between the 

measured and modelled hyporheic exchange data sets.   

 

4. Discussion  

4.1 Surface biofilm growth   

Utilising river water as inoculum in the experimental systems provided an insight into the 

process of microbial community growth in sediment beds. All flume systems permitted the 

growth of microbial communities both on and within the sediment beds. Biofilm succession 

greatly varies on artificial substrates, with algal colonisation divided up into three 

components: i) green algae, ii) diatoms and iii) cyanobacteria (Sekar et al., 2004). However, 

the pattern of succession can be highly dependent on river ecosystem and differences in water 

quality.  (Tien et al., 2009; Li et al., 2017; Cai et al., 2018). Bedform and sediment size were 

all significant in controlling the surface biofilm growth, that significantly increase over time, 

and were good model predictors. Battin et al. (2016) noted large changes in sediment surface 

area associated with different sediment particle sizes. For example, one cubic meter of 
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homogenous sediment with a particle size of 5 cm and 0.5 cm have a corresponding surface 

area of 100 m
2
 and 1000 m

2
, respectively. Our observations are consistent with those 

proposed by Battin et al. (2016) with the small particle size beds creating a greater sediment 

surface area and total area for microbial colonization. This could also help to promote a 

greater biogeochemical exchange (Parker et al. 2018) driving higher biofilm community 

metabolism and thus, promote microbial growth further. Biofilm growth was slower within 

the multiple dune systems but reached higher peaks across both sediment sizes, in 

comparison to the flat and two-dune systems.   

In river systems this localised development of organic matter (i.e. biofilms), can impact 

sediment hydraulic conductivity and permeability, reducing rates, and in turn, increase 

residence times across the hyporheic zone (Gomez-Velez et al., 2015; Peralta-Maraver et al., 

2018). These biofilms act as ‘hyporheic bioreactors’ (Peralta-Maraver et al., 2019) with the 

operational metabolic capacity to degrade and consume a wide range of compounds. This, 

combined with longer residence times, has the potential to improve downstream water quality 

through the removal of contaminants and enhanced river connectivity (Peter et al., 2019). 

However, Harvey et al., (2019) demonstrate that to achieve this there must be a balanced 

ratio between hyporheic residence to reaction time. Otherwise an imbalance will cause the 

reactants to be used up promoting the storage of biochemically inactive water (Harvey et al., 

2019).  

4.2 Biofilm growth with depth    

In general, higher amounts of biofilm developed on the smaller experimental substrate (0.5 

mm) and was concentrated on the surface of the bedform. There was a reduction in microbial 

community biomass with depth in all flume systems irrespective of sediment size and 

bedform, a trend demonstrated by several researchers (e.g. Nogaro et al., 2013; Danczak et 
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al., 2016). However, in general, the 5 mm particle size permitted greater autotrophic biofilm 

depth penetration across all bedforms. This trend is supported by observations from several 

in-situ based river studies (Nogaro et al. 2010; Parker et al. 2018). Depth, particle size and 

bedform were strong predictors for biofilm growth in the sediment bed. This is likely 

attributable to porosity which is known to influence the exchange of flows and energy in 

fluvial systems (Sawyer & Cardenas, 2009; Nogaro et al., 2010). The larger pore spaces 

within the 5 mm system will permit more water and light to penetrate the entirety of the 

sediment bed, as well as maintain aerobic conditions (Elliott & Brooks, 1997), which could 

also contribute to a more intensive exchange of matter. As such, the porous structure may 

allow the biofilm matrix to spread deeper into the sediment bed (Packman et al., 2004) as 

well as encourage interstitial habitat colonisation.  

By the same logic the restricted interstitial pore space in the 0.5 mm sediment systems will 

inhibit effective diffusion into the sediment bed, confining nutrients and biofilm growth to 

the sediment surface layers (Nogaro et al., 2010). This is reflected in the rapid reduction in 

surface biomass, for all 0.5 mm particle size test studies, in response to sediment core depth. 

The feedback from microbial growth will promote rapid bioclogging of the interstitial pore 

spaces creating impermeable bedforms. This feature has been shown to alter flow dynamics 

with Haggerty et al. (2014) reporting an increase in transient storage times by a factor of 4 in 

response to biofilm clogging.  

Greater biofilm depth penetration was observed in the systems with a greater number of 

dunes. This is particularly evident when comparing the 0.5 mm sediment systems. Biomass 

dropped immediately after only a depth of 1 cm within the flat bed system. By contrast, two-

dune system generally did not exhibit sudden drops in the maximum biofilm growth until 

approximately 3 cm in depth, with biomass levels in the multi-dune beds typically only 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

dropping rapidly after a depth of around 4 cm. The presence of dunes increases hydraulic 

roughness by protruding into the flow (Paarlberg et al. 2009). High pressure regions develop 

upstream of the obstruction with low pressure forming downstream, creating a pressure 

gradient, which pumps through the obstruction and increases flow connectivity (Tonina & 

Buffington, 2007). As such, the greater number of bedforms within the dune systems may be 

creating a strong pumping mechanism, permitting nutrients to be propelled further into the 

sediment bed, supporting biofilm growth. This could also explain why biofilm growth on the 

sediment surface was slower within the multi-dune systems.  

Pumping may be enabling the biofilm matrix to overcome the physical constraints of the 0.5 

mm sediment. As such, biofilm is likely controlled by the light and nutrient deficit 

experienced with increased sediment depth. This could explain why biomass levels tended to 

be greater on the up and peak slope locations within the multi-dune and two-dune systems, 

where the force of pumping is likely greater. Equally, the lower pressure experienced after 

the dune structure would explain why the down-slope and trough sections tended to exhibit 

lower biomass concentrations with increasing sediment depth. From an ecological 

perspective, these biological drivers emphasise the importance of considering not only the 

magnitude of the hyporheic exchange flux but also the flow pathways within the hyporheic 

zone, which play an equally crucial role in modulating biogeochemical river processes 

(Lewandowski et al., 2019).  

4.3 Hyporheic exchange mediating factors    

Impact of microbial growth on the hyporheic exchange was quantified by repeat discrete dye 

injections into the flume systems. Hyporheic exchange was controlled by a combination of 

sediment size, bedform and biofilm, with sediment size the dominant controlling factor. This 

is visually supported by the faster rate of exchange in systems with a larger sediment particle 

size (i.e. 5 mm) and in systems with bedforms present. These findings are in-keeping with the 
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theoretical background regarding sediment size and bedform structures (Elliott and Brookes, 

1997; O’Connor and Harvey, 2008; Magliozzi et al. 2018). Within the 0.5 mm sediment 

systems biofilm was the dominant controlling factor, and predictor, of hyporheic exchange 

within flat and two dune environments. In these sediment systems, exchange gradients 

became progressively slower with increased biofilm. This implies that the microbial growth 

and associated bioclogging, over time, impeded the rate of hyporheic exchange. This is 

reinforced by Aubeneau et al. (2016) noting decreases in conservative solute transport in 

response to biofilm growth.  

Conversely, the multi-dune system exhibited the opposite trend to the 0.5 mm sediment flat 

and two-dune systems with no significant change in exchange rates identified in relation to 

biofilm growth. This implies that microbial growth had limited impact on the movement of 

water through the sediment, despite increased biofilm overtime. Similarly, exchange rates 

were consistent across all 5 mm sediment experimental series, despite changes in biofilm 

growth. This suggests that the 5 mm sediments used in the test system are too large to permit 

sufficient quantities of microbial growth on the surface to impede effective diffusion. This is 

supported by greater biofilm growth at depth within the 5 mm particle systems. This could 

also explain why the model to predict hyporheic exchange as a function of biofilm, sediment 

size and bedform performed poorly within the 0.5 mm multi-dune system and all 5 mm 

experimental systems.  The integration of more intermediate sediment sizes within the 

experimental framework would help in modelling the predictive forces of bedform and 

sediment size in response to hyporheic exchange.  

Here, bedform was identified as the major controlling factor determining exchange rates, 

with a greater number of dunes contributing to higher rates of hyporheic exchange. This, 

coupled with the consistent levels of exchange reported in the multi-dune 0.5 mm sediment 
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system adds support to the concept of pumping. Pumping will become ‘activated’ from the 

increased presence of bedforms, reflected in more consistent and higher exchange rates in the 

multi-dune system, irrespective of sediment size. This mechanism was sufficient to force the 

Rhodamine tracer through fine particles and thus, overcome the i) small interstitial pore 

spaces and ii) excess clogging of the small interstitial pore spaces overtime. Greater 

advective mass transfer between the water column and stable sediment bed will create a 

positive cascade effect within the system. Faster water exchange will shorten residence times 

and lower microbial growth. This is supported by the slower biofilm growth rates within the 

multi-dune system. This will, in turn, reduce interstitial pore space clogging and further 

increase the rate of exchange between the water and sediment column. In a river environment 

these mechanisms can work to increase material transport (e.g. pollutants; Peralta-Maraver et 

al., 2019) and water influx into the sediment. Enhanced vertical flow could aid in the removal 

of trace organic compounds, by increasing contact between microbial degraders and the 

pollutant (e.g. pharmaceuticals; Schaper et al., 2019). However, this increased contact can 

simultaneously permit the input of substances into the hyporheic zone (Peralta-Maraver et al., 

2019) should the microbial potential for biodegradation be absent. This can have implications 

for chemical persistence allowing greater mobility and deeper sediment penetration with 

potential groundwater contamination (Liu et al., 2019). 

It is commonly recognised that hyporheic flow depends on high and low permeability regions 

within the stream bed (Sawyer et al., 2009; Packman et al., 2002). Laboratory recirculating 

flume experiments have identified differences in the flow pathways over permeable versus 

impermeable beds of the same topography (Cooper et al., 2017). In general, turbulence over 

permeable beds is less intense resulting in greater energy flow and momentum transport. The 

force generated from pumping enhances the permeability potential of the sediment. As such, 
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energy levels within the dune environments will likely be higher further contributing to 

higher rates of material transport across the sediment-water interface.  

However, it is also important to note that biofilm growth is cyclically associated with changes 

to morphology and physiological states (Hall-Stoodley & Stoodley, 2002) and can result in 

microbial community detachment from the sediment (Chen et al., 2017). This could explain 

why peak exchange rates within the multi-dune 5 mm system are observed (i.e. -0.0091) 

alongside times of peak surface biofilm (i.e. 112 g mm
-3

), as the interstitial pore spaces 

became unclogged, thus increasing hyporheic exchange. The larger pore space may also 

encourage unclogging.  As such, hyporheic exchange could be dependent upon biofilm 

stability; if microbial communities develop to the point at which sloughing occurs 

(detachment of portions biofilm), any inhibition on exchange can potentially be reversed.   

This study uses biomass as a surrogate for total biofilm growth, ignoring the structural and 

functional taxonomic diversity that makes up the biofilm matrix. This paper identifies a 

potential reciprocal interaction of hydrodynamics within the physical structure and biofilm 

growth in the pore space. This interaction could have significant repercussion on the 

biotransformation of pollutants and nutrient recycling. Research by Scheidweiler et al. (2003) 

explores this further, providing evidence that biofilms are able to differentiate and actively 

remodel their matrix, in porous environments, in order to exploit their surrounding space. 

This can increase their carrying capacity and function as hyporheic bioreactors. This is 

further supported by Battin et al. (2003) noting the functional ability of biofilms to increase 

hydrodynamic transient storage of stream water and retention of suspended particles, feeding 

back into biochemical process changes. Subsequently, further analysis into the succession of 

biofilms both over time and depth would make a natural extension to the current 

investigation. Furthermore, given the impact of bedform and its link with advective pumping, 
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further investigations should seek to explore how bedform height also impacts hyporheic 

exchange.  

5. Conclusion  

This research highlights the important and interconnected feedback mechanisms involved in 

both driving and sustaining water-sediment interactions. Biological changes in the flume 

systems exerted a strong control on the conservative transport of our solute, supported by the 

fact that no modifications were made to the flume systems during each experiment series and 

microbial communities were freely allowed to proliferate. The extent of biological control 

was strongly influenced by the environment’s physical parameters including bedform 

structure and particle size. These physical controls, in turn, feedback into the biological 

system and can work to dampen or intensify the biological influence on solute transport.  

Bedform structures have the potential to overcome the flow limited effects of biofilm 

clogging which is enhanced in systems with larger sediment sizes. This finding is of 

functional importance for both river management and stream restoration design but also 

water quality. More bedform features and greater hyporheic exchange rates could aid in 

driving water purification, nutrient recycling and altering streambed community organisation.  

As such, understanding more about the coupling between microbial and hyporheic flow 

represents an important frontier of research for ecosystem scientists.  
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Table 1. Summary of goodness of fit metrics for the models. R2 values and slope of regression lines between 

modelled and measured biofilm and hyporheic exchange data for the model approaches, along with Nash-

Sutcliffe efficiency (NSE) values. n =  number of samples.  
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 Biomass 

Hyporheic Exchange in all 

experimental systems 

Hyporheic Exchange in flat and 

two-dune 0.5 mm sediment systems 

Significant 

predictors 

Depth 
Sediment size 

Bedform 

Days 
Sediment Size 

Bedform 

Sediment Size 
Bedform 

Biofilm Biofilm 

n 540 198 198 66 

R2 0.68 0.76 0.66 0.54 

NSE 0.74 0.90 0.38 0.60 
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