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Abstract

To infer the parameters of mechanistic models with intractable likelihoods, techniques such

as approximate Bayesian computation (ABC) are increasingly being adopted. One of the

main disadvantages of ABC in practical situations, however, is that parameter inference

must generally rely on summary statistics of the data. This is particularly the case for prob-

lems involving high-dimensional data, such as biological imaging experiments. However,

some summary statistics contain more information about parameters of interest than others,

and it is not always clear how to weight their contributions within the ABC framework. We

address this problem by developing an automatic, adaptive algorithm that chooses weights

for each summary statistic. Our algorithm aims to maximize the distance between the prior

and the approximate posterior by automatically adapting the weights within the ABC dis-

tance function. Computationally, we use a nearest neighbour estimator of the distance

between distributions. We justify the algorithm theoretically based on properties of the near-

est neighbour distance estimator. To demonstrate the effectiveness of our algorithm, we

apply it to a variety of test problems, including several stochastic models of biochemical

reaction networks, and a spatial model of diffusion, and compare our results with existing

algorithms.

1 Introduction

When using quantitative models to explore biological or physical phenomena, it is crucial to

be able to estimate parameters of these models and account appropriately for uncertainty in

both the parameters and model predictions. Bayesian statistics offers a wealth of tools in this

regard [1, 2]. Bayes’ theorem gives us that the posterior, p(θ|y), of parameters, θ, given data, y,

is proportional to the prior, π(θ), on the parameters multiplied by the likelihood, p(y|θ), of

data, y, given those parameters: p(θ|y)/ p(y|θ)p(θ). The prior represents our beliefs about the

parameters prior to observing the data, the likelihood gives the probability of observing the

data, given a certain set of parameters, and these result in the posterior, which returns updated

beliefs about the parameters after having observed the data.
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However, much of the current theory surrounding the generation of posterior distributions

for parameter inference relies on being able to evaluate the likelihood of the data given the

parameters of a model. In practice, for a large class of mechanistic models the likelihood is not

tractable, either due to computational or analytical complexity. Therefore, the use of likeli-

hood-free methods for inference has become widespread [3]. These likelihood-free methods

include indirect inference [4], synthetic likelihoods [5, 6], and expectation propagation [7].

Markov Chain Monte Carlo (MCMC) methods for doubly intractable distributions with

parameter dependency in the normalizing constant have been developed [8, 9] using auxiliary

variable methods, and these provide exact inference. Multiple Try Metropolis methods [10, 11]

can improve mixing properties by comparing multiple reference draws at once and these

methods offer an implicit approximation of the marginal likelihood. Similarly, pseudo-mar-

ginal MCMC and particle Markov Chain Monte Carlo (pMCMC) methods [12–16] provide

exact inference for intractable distributions including state space models. However, pMCMC

methods often have extremely low acceptance rates and poor mixing properties. Methods to

mitigate these issues include the use of noisy Monte Carlo methods [17, 18], but these no lon-

ger provide exact inference, and correlating the pseudorandom numbers used to estimate the

likelihood [19]. The focus of this work, however, will be on one of the most popular methods

for likelihood-free inference, approximate Bayesian computation (ABC) [20–25], which has

been widely adopted due to its ease of understanding and implementation.

1.1 Approximate Bayesian computation

Suppose we wish to infer a posterior distribution over parameters θ of a generative model such

that we can simulate from x� f(x|θ). In ABC, parameters θ are drawn from a prior, π(θ), and

data, x�, is simulated from the generative model using those parameters, such that x� � f(x|θ).

The distance between the simulated dataset, x�, and the real data, y, is calculated using a dis-

tance function d(x�, y). If this distance is less than a certain tolerance, �, then the parameters

θ can be accepted into the approximate posterior sample. Choice of the tolerance � can be

avoided, to some extent, by simulating a large number, N, of parameter samples and datasets,

calculating the corresponding distances for these and accepting the proportion α that lie clos-

est to the real data [26, 27]. We will use this approach in this work.

ABC can be viewed as providing a regular Bayesian analysis, but with an approximation to

the likelihood function of the form [28]:

pABCðyjyÞ ¼
Z

1½dðx; yÞ � ��pðyjyÞdx; ð1Þ

where pABC(y|θ) is the ABC approximation of the likelihood, and p(y|θ) is the exact likelihood.

The quality of the approximation depends on the choice of tolerance, �, and distance function

d(x, y).

In cases where the prior and posterior distributions are very different, the rejection sam-

pling version of ABC described above can have very low acceptance rates. Algorithm 1 sum-

marizes how samples from an approximate posterior can be generated via a more efficient

version of ABC using sequential Monte Carlo (SMC) techniques, known as ABC-SMC [29–

31]. Importance sampling is used iteratively so that instead of sampling repeatedly from the

prior, parameters are sampled from an approximate posterior at each generation of the algo-

rithm. A weight must be given to each sample to correct for the fact that it is not drawn from

the prior.

Algorithm 1 ABC-SMC
1: for t = 1 to T do
2: Set i = 1.
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3: while i � N do
4: if t==1 then
5: Sample from prior y

i
1
� pðyÞ.

6: Set weight to vi
1
¼ 1=N. Set i = i + 1.

7: else

8: Sample θ� from previous population fyit� 1
g
N
i¼1

with weights fvt� 1g
N
i¼1
.

Perturb θ� to give θ�� � Kt(θ|θ�). If π(θ��) = 0, then resample
θ� and repeat.

9: Simulate dataset x�i � f(x|θ��) and calculate distance d(s
(x�i), s(y)).

10: if d(s(x�i), s(y)) < �t then
11: Accept the parameters.

Set y
i
t ¼ y

��
:

Calculate the weight vit for particle y
i
t via

vit ¼
pðy

i
tÞ

PN
j¼1
vjt� 1Ktðy

j
t� 1
; y

i
tÞ
:

12: Set i = i + 1.
13: end if
14: end if
15: end while
16: Normalize the particle weights fvitg

N
i¼1
.

17: end for

18: return fyiTg
N
i¼1
, fviTg

N
i¼1

Regression adjustments

Post-processing methods to aid with some of the approximations of ABC have long been advo-

cated [21]. Regression adjustments can correct for the relationship between parameters, θ, and

summary statistics, s(x), in the sense of accounting for the imperfect match between observed

and simulated data [20]. Further extensions include non-linear, heteroscedastic regression

adjustment [32] and ridge regression approaches [33].

1.2 Role of summary statistics in ABC

Suppose we are interested in inferring multi-dimensional parameters for a model that we can

simulate, but cannot evaluate the likelihood directly. In many practical circumstances, the data

(either collected experimentally or simulated from the in silico model) will be very high dimen-

sional. Such high-dimensional data poses difficulties within the ABC framework, as it is diffi-

cult to sensibly estimate when the output of a particular simulation is ‘close’ to the data. Even

taking account of domain expertise, it can be hard to determine which features of the data are

important. This issue of comparing high-dimensional data is further compounded using sto-

chastic models where there is noise in the process model in addition to measurement noise.

Repeatedly drawing from a stochastic model with the same parameter values can give vastly

different outputs.

As such, it is often necessary to work with a lower-dimensional vector of summary statistics,

s(x), of the data, such that we require the distance between summary statistics is less than the

tolerance, d(s(x�), s(y)) < �. Examples of these summary statistics may be data points within a

time series, an average transition time between different states of a system, or the moments of

a certain species within a model. However, not all summary statistics are equally informative

about the posterior. Common practice is to combine summary statistics based on some
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heuristic approach, such as weighting the contribution of each summary statistic according to

its standard deviation. However, it is not clear whether these heuristic approaches result in

optimal weighting of the various summary statistics available. As such, the aim of this work is

to provide an automated and adaptive method for determining the weighting of available sum-

mary statistics in order to optimize the quality of the resulting posterior.

Previous work has also considered how to weight or select summary statistics for ABC.

Fearnhead and Prangle [34] developed a popular method to find informative linear combina-

tions of summary statistics by fitting a regression for each model parameter. The result is

a reduction from the original high-dimensional set of summary statistics to a new lower

dimensional set of summary statistics with the same dimensionality as the parameter space.

Improved results are seen by using a pilot run of ABC to choose a subset of parameter space

as a training region for the regression. Further improvements are obtained by extending the

vector of summary statistics by concatenating with a non-linear transformation of the same

summary statistics, s(x) = (s, s2, s3, s4), where s is a given vector of summary statistics and the

superscripts indicating raising these to the given power. This method uses contributions from

all of the summary statistics and should optimize the mean quadratic loss.

Other successful approaches rely on subset selection methods [35–37]. Joyce and Marjoram

[36] use criteria for approximate sufficiency of a subset of statistics to test whether adding a

new statistic results in a change in the posterior above a certain threshold. [37] minimize an

information criterion based on k nearest neighbour entropy over all subsets of summary statis-

tics. Barnes et al. [35] use an approximate sufficiency criterion to select a subset of summary

statistics on which to base inference, by adding summary statistics until the Kullback-Liebler

(KL) divergence between the resulting posteriors is below a threshold in order to reduce any

loss of information. All of these methods seek to choose a lower dimensional subset of a given

list of summary statistics. Using this lower dimensional subset increases the acceptance rate

for samples in ABC by avoiding the curse of dimensionality for the data. However, the results

can depend on the order in which the summary statistics (or subsets) are analysed.

Further methods rely on assigning weights to each summary statistic within the ABC dis-

tance function and considering how best to choosing these weights. Prangle [38] present a

method for adaptively choosing summary statistic weights for ABC based on the scale of the

summary statistics from the predictive distribution for summary statistics at each generation

of an ABC-SMC algorithm. The median absolute deviation (MAD), a measure of spread of a

statistic, is used for the scaling. All summary statistics are scaled by a measure of their spread,

but if the summary statistics are not equally informative about the posterior distribution this

may not be the best choice. A genetic algorithm has been used to choose the weights of differ-

ent summary statistics [39]. This genetic algorithm attempts to optimize the mean squared

error (MSE) of the posterior samples from the true parameter. Recently, Singh and Hellander

[40] have proposed a multi-armed bandit problem approach to selecting summary statistics

for ABC. Other work has avoided using summary statistics at all by considering the Wasser-

stein distance between full data sets [41, 42] or by using classification techniques from machine

learning to discriminate between datasets [43], and thus choosing a classification method and

features rather than a distance function and summary statistics.

In this work, we approach the problem from the point of view of finding the optimal dis-

tance function, adapted to information contained in a fixed list of known summary statistics,

rather than selecting a certain subset of summary statistics. Following the perspective of ABC

offering an approximation to the likelihood, as in Eq (1), we can consider how optimizing the

choice of ABC distance function, given a set of summary statistics, can improve the approxi-

mation to the likelihood offered by ABC. We provide an automatic algorithm that adaptively

selects weights for each summary statistic within the ABC distance function.
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1.3 Outline

Our contribution in this work is to present a flexible, novel framework for improving inference

with ABC by adapting the weights of different summary statistics to maximize the gain in pos-

terior information from a dataset. This is helpful for avoiding bias and variance from redun-

dant information in data (such as would be the case when including a summary statistic that is

uncorrelated with the parameters of interest). A further advantage of our work is that it can

alleviate the burden of designing and selecting summary statistics ‘by hand’, since a large col-

lection of summary statistics can be used and weighted appropriately via our procedure. It is

also possible to combine our framework with existing dimensionality reduction techniques for

summary statistics in ABC (see Section 4.7).

We outline in Section 2 our adaptive algorithm for combining summary statistics in an

ABC framework. We provide theoretical justification for the algorithm in Section 3 and dem-

onstrate that we obtain convergence to the posterior distribution. To demonstrate the utility of

our algorithm, we apply it to several test problems based on biochemical reaction networks in

Section 4. We compare results of parameter inference using our algorithm against benchmark

results from applying ABC-SMC using other choices of weights for the summary statistics. In

Section 4.5, we evaluate the additional computational cost of our method versus the benefits it

offers for parameter inference. Finally, in Section 5, we summarize the work presented in this

article and compare our methodology for combining summary statistics with other techniques

in the literature that are based on dimensionality reduction of a set of summary statistics.

2 An algorithm for automatic weighting of summary statistics

A SMC algorithm produces a sequence of approximations that aid in moving between the

prior and posterior distributions. The motivation for the method introduced here is to accel-

erate that movement from the prior to the posterior by maximizing the distance between

the prior and the current approximation, subject to the procedure being a valid ABC-SMC

algorithm.

In order to use ABC-SMC (see Algorithm 1), we must specify a function to measure the dis-

tance between simulated and real datasets. Suppose we take a weighted Euclidean distance as

the ABC distance function such that

dwðsðx1Þ; sðx2ÞÞ ¼
Xk

i¼1

wiðs1i � s2iÞ
2
;

where sðxÞ ¼ ðs1; . . . ; skÞ 2 R
k

is a vector of summary statistics and the sum over i is taken

over all the summary statistics considered. This distance function is a reasonable and flexible

choice commonly used in the literature [44]. It is these distance weights, wi, that control how

the summary statistics are combined in this case. Given simulated pairs of parameter samples

and datasets, we find weights, w ¼ ðw1; . . . ;wkÞ 2 E � R
k, that maximize a distance between

the prior and the posterior that represents the maximum possible gain in information about

the parameters from the given data. Constructing the weights in this way allows us to account

for the scale of the summary statistics, as well as their relative contribution to a posterior.

2.1 Adaption of weights

We seek to optimize the weights, w, so that we can place less emphasis on summary statistics

that are not informative for the posterior, but also scale summary statistics appropriately so

that we do not neglect to obtain information about certain parameters. We do this within the
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ABC-SMC framework [29–31] given in Algorithm 1 using the implementation outlined in

[38]. We outline our proposed methodology in Algorithm 2.

At each generation, we search for the weights, w, of the distance function that maximize the

distance between the prior and resulting posterior, given N ABC samples from the model for

different θ values. This distance between prior and posterior gives a measure of the informa-

tion gain in moving from the prior to the posterior.

2.2 Distance between distributions

We use the Hellinger distance to measure the discrepency between the prior and approximate

posterior, and so to quantify the information gained in moving towards the true posterior dis-

tribution. The Hellinger distance is defined, for distributions P and Q, with densities p and q,

respectively, as

H2ðP;QÞ ¼
1

2

Z

ð
ffiffiffiffiffiffiffiffiffi
pðxÞ

p
�

ffiffiffiffiffiffiffiffiffi
qðxÞ

p
Þ

2 dx

¼ 1 �

Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxÞqðxÞ

p
dx:

Alternative measures of distance between distributions such as the Euclidean distance or KL

divergence can be used. In our experience, the Hellinger distance performs better than alterna-

tives, particularly for robustly identifying relatively small differences between posterior distri-

butions when weights are optimized, an observation that is supported by other work [45]. In

addition, the Hellinger distance is finite when comparing distributions with different support

(unlike the KL divergence). This property is desirable when comparing a broad prior with a

posterior distribution where we have gained some knowledge of parameter space and can

exclude certain regions.

Nearest neighbour distance estimator

To estimate the distance between two distributions, based on samples from these distributions,

we use a k nearest neighbour estimator [46–48] developed to describe a family of distances

between distributions known as α divergences, of which the Hellinger distance is a special

case. Suppose we have two probability distributions, P and Q with densities p(x), and q(x), and

are interested in the distance between these. We suppose that we have some samples, X1:N and

Y1:N from p and q. If we define Dα(p||q) =
R
pα(x)q1−α(x)dx for a 2 R, then the Hellinger dis-

tance, which is related to the divergence Dα for α = 1/2, is defined as

DhðpkqÞ ¼ 1 � D1=2ðpkqÞ:

The k nearest neighbour estimator that we use depends only on distances between observa-

tions in a sample. Let ρk(i) be the Euclidean distance from the sample Xi to its kth nearest

neighbour in X1:N. Similarly, let νk(i) be the distance from Xi to its kth nearest neighbour in the

samples Y1:N. Then the estimator [46] is given by

D̂a X1:NkY1:Nð Þ ¼
1

N

XN

i¼1

ðN � 1ÞrkðiÞ
NnkðiÞ

� �1� a

Bk;a; ð2Þ
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where

Bk;a ¼
GðkÞ2

Gðk � aþ 1ÞGðkþ a � 1Þ
:

At each generation of ABC-SMC we seek to find weights w 2 E � Rk such that

w� ¼ argmax
w2E

ð1 � D̂aðfxig
N
i¼1
kfyig

N
i¼1
ÞÞ; ð3Þ

where fxig
N
i¼1

are samples from the prior distribution, and fyig
N
i¼1

are samples from the

approximate posterior distribution, which depends on the summary statistic weights, w.

To perform the optimization in weight space in our implementation of Algorithm 2, we use

a constrained nonlinear optimizer, implemented via fmincon in MATLAB [49], with multi-

ple initializations of the optimizer. This nearest neighbour estimator is computationally inten-

sive in high dimensions, where the high-dimensional setting corresponds to using many

particles in SMC part of the adaptive ABC-SMC algorithm. In the context of ABC, the compu-

tational cost is dominated nonetheless by the expensive model simulations.

Algorithm 2 Adaptive ABC-SMC
1: Set generation index t = 1. Let M = dN/αe.
2: Set i = 1.
3: while i � M do
4: Sample from prior θ�� � π(θ).
5: Simulate dataset x�i � f(x|θ��).
6: Accept the parameters. Set i = i + 1.

Set y
i
t ¼ y

��
:

Calculate the weight vit for particle y
i
t as vit ¼ 1.

7: end while
8: Let

LðwÞ ¼ 1 � D̂1=2ðfx
i
g
N
i¼1
kfy

i
tg

N
i¼1
Þ;

where fyitg
N
i¼1

are the closest N samples when ranked according to ABC dis-
tance from the observed dataset, y, via dw(s(x

i�), s(y))).
9: Maximize L(w) as a function of summary statistic weights, w.

10: Keep the samples fyitg
N
i¼1

corresponding to the maximum of L(w) (i.e.
the maximum distance between prior and approximate posterior).

11: Normalize the particle weights fvitg
N
i¼1
.

12: Calculate tolerance, �t, as the α quantile of distances. Store the
optimum weights w�t.

13: for t = 2 to T do
14: Set i = 1.
15: while i � M do

16: Sample θ� from previous population fyit� 1
g
N
i¼1

with weights fvit� 1
g
N
i¼1
.

17: Perturb θ� to give θ�� � Kt(θ|θ�). If π(θ��) = 0, resample θ� and
repeat.

18: Simulate dataset x�i � f(x|θ��).
19: if dw�j ðsðx

i�Þ; sðyÞÞ < �j for all j < t then

20: Accept the parameters.
Set y

i
t ¼ y

��
:
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Calculate the weight vit for particle y
i
t as

vit ¼
pðy

i
tÞPM

j¼1
vjt� 1Ktðy

j
t� 1
; y

i
tÞ
:

21: end if
22: Set i = i + 1.
23: end while
24: Let

LðwÞ ¼ 1 � D̂1=2ðfx
i
g
N
i¼1
kfy

i
tg

N
i¼1
Þ;

where fyitg
N
i¼1

are the closest N samples when ranked according to ABC dis-
tance from the observed dataset, y, via dw(s(x

i�), s(y)).
25: Maximize L(w) as a function of summary statistic weights, w.

26: Keep the samples fyitg
N
i¼1

corresponding to the maximimum of L(w)
(i.e. the maximum distance between prior and approximate
posterior).

27: Normalize the particle weights fvitg
N
i¼1
.

28: Calculate tolerance, �t, as the α quantile of distances. Store
the optimum weights w�t.

29: end for

30: return fyiTg
N
i¼1
, fviTg

N
i¼1

3 Theoretical justification

In the following, we demonstrate that by using the nearest neighbour estimator, we can obtain

optimum weights that maximize the distance between the prior and approximate posterior.

Furthermore, we show by using standard arguments that the adaptive ABC-SMC algorithm

given by Algorithm 2 will converge to the correct ABC posterior distribution.

3.1 Convergence of the nearest neighbour estimator

The estimator we use is a k nearest neighbour estimator relying only on distances between

observations in a sample, as described above in Section 2.2. With this nearest neighbour esti-

mator, Eq (2), under conditions on p and q, we have L2 convergence of the estimator [46] and

this ensures that, in the limit of more samples, estimates of the distance between p and q will

become more concentrated around the true distance, such that optimizing the estimate of

the distance will give the true optimum, w�. We note that although the Hellinger distance,

Dh(p||q), is symmetric in p and q, the estimator above in Eq (2) is not. By using the estimator

from Eq (2) and choosing q as the distribution that depends on the weights, w, we are able to

make strong assumptions about p independent of the weights, w, and make weaker assump-

tions about q. In the context of our algorithm for ABC, this allows us to treat p as the prior and

q as the approximate posterior distribution.

Theorem 1. Suppose that k� 2 and thatM ¼ suppðpÞ. Assume that

(a). q is bounded above,

(b). p is bounded away from zero,

(c). p is uniformly Lebesgue approximable,
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(d). 9δ0 such that 8δ 2 (0, δ0)
Z

M
Hðx; p; d; 1=2ÞpðxÞdx <1;

where H(x, p, δ, ψ) =

Xk� 1

j¼0

1

j!

� �c

G
1

2
þ jc

� �
pðxÞ þ d
pðxÞ � d

� �jc

ðpðxÞ � dÞ�
1
2

ðð1 � dÞcÞ
� 1

2
� jc
:

(e).
R

Mkx � ykgpðyÞdy <1 for almost all x 2M,
R R

M2kx � ykgpðyÞpðxÞdydx <1,

(f). E � Rk is compact,

(g). a unique w� 2 E maximizes Dh(p||q(w)).

Then

lim
N!1
P
�
argmax

w2E
D̂hðX1:N jjY

ðwÞ
1:N

�
¼ w�Þ ¼ 1: ð4Þ

Proof. See S1 File for details.

The proof of Theorem 1 relies on results from [46] showing L2 consistency of the nearest

neighbour estimator, which ensures that the estimates of the distance between p and q become

more concentrated around the true values as more samples are used. This requires the con-

struction of an integrable function as a bound such that Lebesgue’s dominated convergence

theorem can be applied. Most of the conditions on p and q are to ensure that this all holds. We

assume that the space of ABC distance weights, E, is compact. In practice this is not a problem,

since we can work with a constrained optimization problem and assume that the summary sta-

tistic weights lie within a large but finite region. Although there are several conditions on the

prior distribution, p, most reasonable choices of prior distribution will satisfy these, and only a

single condition on the approximate posterior distribution, q, is assumed. In the limit of hav-

ing more samples from the distributions p and q(w), selecting summary statistic weights, w,

based on optimizing the estimate from D̂h will converge to give the true optimum, w�, of this

distance between distributions.

3.2 Convergence of adaptive ABC-SMC

We demonstrate here that Algorithm 2 converges to the correct target distribution by using

arguments from [38].

Theorem 2 [38]

Suppose that the following conditions hold:

(a). y 2 Rl sðxÞ 2 E � Rk and these random variables have joint density π(θ, s(x)) with
respect to the Lebesgue measure;

(b). the sets At ¼ fsðxÞ j dw�t ðsðxÞ; sðyÞÞ < �tg are Lebesgue measureable, wherew�t are the opti-
mal weights at generation t, and �t are the tolerances at each generation;

(c). π(s(y)) > 0;
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(d). limt!1m(At) = 0, where m(�) represents Lebesgue measure;

(e). the sets At have bounded eccentricity. That is for any At, 9 a ball Bt = {s(x)|||s(x − s(y)||2�

rt} about s(y) with radius rt such that At� Bt and m(At)� cm(Bt), where ||�|| is the Euclid-
ean or L2 norm and c> 0 is a constant.
Then the posterior approximations converge:

lim
t!1

pABC;tðyjsðyÞÞ ¼ pðyjsðyÞÞ for almost all ðy; sðyÞÞ;

where pABC,t(θ|s(y)) is the ABC posterior defined as

pABC;tðyjsðyÞÞ /
Z

pðsjyÞpðyÞ1½dw�t ðsðxÞ; sðyÞÞ � �t� dx:

Proof. See S1 File for details.

Similarly to [38], we can take At ¼ fsðxÞ j dw�t ðsðxÞ; sðyÞÞ < �t for all i � tg as the accep-

tance region for Algorithm 2, which ensures that m(At) is decreasing in t. This acceptance

region is not guaranteed to converge to zero under all circumstances due to model misspecifi-

cation or particles becoming trapped in the wrong mode of a multimodal posterior within the

SMeC algorithm. However, these are issues that equally affect the conventional ABC-SMC

algorithm, as discussed in [38]. The bounded eccentricity condition is ensured for the scaled

Euclidean distance in Algorithm 2 by using weights w 2 E with compact support, since the

weights will be bounded by a maximum upper bound at each generation. Thus the conditions

for convergence of Algorithm 2 are essentially the same as those for convergence of standard

ABC-SMC algorithms, provided that the weights considered in the distance function have

compact support.

4 Examples

We apply the adaptive ABC-SMC algorithm for weighting of summary statistics to a variety of

test problems, including toy models and problems based on different chemical reaction net-

works. The dynamics of these networks are simulated stochastically using Gillespie’s direct

method [50], which allows trajectories to be sampled directly from the model. The summary

statistics collected for each of the chemical reaction network problems are in the form of a

time series, to imitate data that could be collected from a biological experiment. For some of

these models it is possible to solve for the likelihood analytically, and we show comparisons

with exact posterior distributions sampled via MCMC. However, for some of the more com-

plex, but more biologically realistic, test problems, the likelihood is very computationally

expensive to compute and the exact posterior distribution is not available.

To demonstrate the effectiveness of taking a flexible choice of distance weights, we make

two comparisons. Firstly, we compare results obtained using Algorithm 2 to those generated

using a uniform choice of weights: wi = 1 8i. Secondly, we compare to results generated using

weights that scale with each summary statistic, as in the method of [38]. For this method, we

use wi = 1/σi 8i, where σi is the MAD of the given summary statistic based on simulations from

a given generation of ABC-SMC. We show approximate posterior distributions produced by

each method for choosing weights. For the tractable test problems considered, we compute the

MSE, Hellinger distance between prior and approximate posterior, and Hellinger distance

between approximate posterior and exact posterior sampled via MCMC, all averaged over 40

repeats of Algorithm 2.
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We note that a table summarising the parameters used in the implementation of all the test

problems can be found in S1 File. For the k nearest neighbour estimator, k = 5 is used through-

out, as recommended by previous work [47].

4.1 Uniform toy model

We consider a tractable toy problem with a sufficient statistic to illustrate our method. We

observe

xi � Unifð½0; y�Þ; ð5Þ

for i = 1, . . ., r. In this case, the maximum of the observed values is a sufficient statistic, s(x) =

maxi xi. We input into Algorithm 2 the full vector of data points sorted in ascending order,

such that the summary statistics are the order statistics of the sample s(x) = (x(1), . . ., x(r)). We

can sample the true posterior distribution p(θ|s(y)) directly via (likelihood-based) MCMC and

compare to the approximations obtained via ABC.

Here in Fig 1 we show marginal posterior distributions generated using uniform weights,

weights scaled with the MAD of each summary statistic via the adaptive method of Prangle

[38], and adaptively chosen weights via the method outlined in Algorithm 2. The results indi-

cate that the method in Algorithm 2 is able to produce a higher quality approximation of the

posterior for a given number of parameter samples compared to other methods of weighting

the summary statistics. The true parameter is θ = 10, a prior uniform on the logarithm of the

parameters over the interval [100, 102] was used, and r = 10 samples of the uniform model

were used as the dataset.

4.2 Bimodal model

Although distances between distributions can be intuitive for unimodal Gasussian-like distri-

butions, we want to ensure our method is robust to multimodal posterior distributions. The

benefit of using a general distance measure like the Hellinger distance is that it is well suited to

quantifying distance between such general distributions. In this second example, we aim to

infer y ¼ ðy1; y2Þ 2 R
2

based on observations

sðxÞ � N
sin ðy1Þ

sin ðy2Þ

 !

; 0:12I2

 !

:

We take a prior distribution for θ1 and θ2 uniform on [0, 2π]. We suppose that we observe

sðyÞ ¼ ð
ffiffiffi
2
p

=2; �
ffiffiffi
2
p

=2Þ, which leads to four distinct modes of a multimodal posterior distri-

bution in two dimensions. As shown in Fig 2, the adaptive method is robust to multimodal

posterior distributions and is competitive with the other methods considered. There are added

complications in evaluating the quality of an approximation to a multimodal posterior distri-

bution, since several distinct regions of parameter space can equally well explain the observed

data. Using the symmetry of the posterior, we measure MSE by distance of the approximate

posterior mean from (π/2, π/2) at the centre of the four modes.

4.3 Dimerization system

To examine a system with multiple scales, we consider also a dimerization system, which

undergoes a fast initial transient followed by slower subsequent dynamics [51]. This system

provides a more biologically realistic example with higher dimensional parameter and
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summary statistic spaces. The dimerization system consists of the following reactions:

R1 : S1 � !
k1
;;

R2 : S2 � !
k2 S3;

R3 : S1 þ S1 � !
k3 S2;

R4 : S2 � !
k4 S1 þ S1:

Fig 1. Posterior for parameter θ of the uniform toy model for different weights in the ABC distance function. The posterior distribution for parameter θ of

the uniform toy model for different weights in the ABC distance function is shown in (a). ABC-SMC was used to provide estimates of the posterior, with 10

generations and N = 2, 000 particles at each generation with the posterior constructed from the closest 50% of the simulations (α = 0.5). Metrics to evaluate the

performance of Algorithm 2 are shown in (b), (c), and (d) as N varies resulting in different total numbers of simulations from the model. Results are averaged

over 40 repeated runs. In (b), is shown the Hellinger distance from the prior to approximate posterior distribution, which is maximized directly within

Algorithm 2. In (c), the Hellinger distance from the approximate posterior to the exact posterior distribution (as sampled via MCMC) is displayed. A lower

value of this distance indicates a better approximation to the posterior. In (d), the MSE from the approximate posterior mean to the exact posterior mean is

shown. The orange, yellow and light purple lines show the scaled, uniform and adaptive methods, respectively. For comparison as a gold standard for this

problem, the dark purple line shows the posterior obtained with MCMC using the exact likelihood without any ABC approximation. The true parameter value

used to simulate the observed data is indicated by the vertical dashed black line.

https://doi.org/10.1371/journal.pone.0236954.g001
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Fig 2. Posterior for parameters θ of the bimodal toy model for different weights in the ABC distance function. The posterior distribution for parameters θ
= (θ1, θ2) of the bimodal toy model for different weights in the ABC distance function is shown in (a) and (b). ABC-SMC was used to provide estimates of the

posterior, with T = 10 generations and N = 2, 000 particles at each generation with the posterior constructed from the closest 50% of the simulations (α = 0.5).

Metrics to evaluate the performance of Algorithm 2 are shown in (c), (d), and (e) as N varies resulting in different total numbers of simulations from the

model. Results are averaged over 40 repeated runs. In (c), is shown the Hellinger distance from the prior to approximate posterior distribution. In (d), the
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We take initial conditions S1(0) = 105, S2(0) = 0, S3(0) = 0 and consider an observational

time period of [0, 100] with n = 8 geometrically spaced observations (to capture the multiple

timescales present), without observational noise. For the dimerization system, we take the time

series s(x) = [S1(t0), . . ., S1(tn), S2(t0), . . ., S2(tn), S3(t0), . . ., S3(tn)] as summary statistics and

infer the four-dimensional parameter θ = (k1, k2, k3, k4). We note that for a choice of parameter

θ� = (1, 0.04, 0.002, 0.5), and the given initial conditions, we obtain a fast decay of species S1

and accumulation of species S2, followed by a slower decay of S2 and accumulation of S3 (see

Fig 3(a)).

The results of parameter inference for this system can be seen in Fig 3. The true parameters

used are θ = (1, 0.04, 0.002, 0.5), and we apply a prior uniform on the logarithm of the parame-

ters over the intervals [10−2, 102], [10−3, 101], [10−5, 10−1], [10−3, 101], respectively, for each

parameter. Parameters k1 and k2 are clearly identified by the adaptive choice of weights. The

fast transient behaviour initially involves reactions at rate k1, while k2 corresponds to the lon-

ger timescale accumulation of species S3. Parameters k3 and k4 are harder to identify with

broader resulting posteriors, but again the adaptive algorithm does a better job at excluding

regions of search space than a uniform choice of weights, or a scaling with the standard

deviation.

4.4 Simple spatial model

Spatial models produce very high dimensional data, containing information about dynamics

in both space and time. Here, we consider a simple spatial model in one dimension to describe

the spreading of particles by diffusion without volume exclusion. We divide our spatial domain

X 2 [−1, 1] into m boxes or voxels, and label the numbers of particles in voxels 1, . . ., m as

S1, . . ., Sm, respectively. Particles can jump between neighbouring voxels at rate θ = D/h2,

where D is the macroscopic diffusion constant and h is the width of the voxel. We assume zero

flux conditions at X = ±1 and take m = 8, so that h = 1/4. As an initial condition, we place 10

particles in each of the m/2 voxels on the left-hand side of the domain where x< 0, and allow

the system to evolve over the time interval [0, 20]. We observe the system at n = 8 equally

spaced time points, and take as our summary statistic the time series for each voxel, s(x) =

[S1(t0), . . ., S1(tn), S2(t0), . . ., S2(tn), Sm(t0), . . ., Sm(tn)], where Si(tj) is the number of particles in

voxel i at time point tj. Using synthetic data simulated with θ = 0.1, we attempt to recover the

jump rate θ. The results of parameter inference for this problem are shown in Fig 4, where we

have used a prior uniform on log10(θ) over the interval [10−4, 100]. We successfully obtain an

informative unbiased posterior for θ using the adaptive choice of weights, with a notable

improvement in comparison to the other methods for selecting the weights.

4.5 Comparison of computational costs

If our proposed approach of adapting the weights of each of the summary statistics is to be

used in practice, we must ensure that the increases in the quality of the resulting posterior jus-

tify the computational overhead required for optimizing the weights of the ABC distance func-

tion. Otherwise, it would be preferable simply to generate the posterior using ABC-SMC with

more samples, but with fixed summary statistic weights. Therefore we are interested in

Hellinger distance from the approximate posterior to the exact posterior distribution is displayed. In (e), the MSE from the approximate posterior mean to the

point (π/2, 3π/2) is shown. The orange, yellow and light purple lines show the scaled, uniform and adaptive methods, respectively. For comparison as a gold

standard for this problem, the dark purple line shows the posterior obtained with MCMC using the exact likelihood without any ABC approximation. The true

parameter value used to simulate the observed data is indicated by the vertical dashed black line.

https://doi.org/10.1371/journal.pone.0236954.g002
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Fig 3. Posteriors for parameters θ of the dimerization system for different weights in the ABC distance function. Posteriors for parameters θ = (k1,

k2, k3, k4) in the dimerization system for different weights in the ABC distance function. ABC-SMC was used with 10 generations and N = 2000 particles

at each generation with the posterior constructed from the closest 50% of the simulations (α = 0.5). (a) shows typical output from the model for the true

parameters, for each species, Si. Posterior marginal distributions for parameters k1, k2, k3, k4 are shown in (b) to (e). The orange, yellow and light purple

lines show the scaled, uniform and adaptive methods, respectively. The true parameter values used to simulate the observed data is indicated by the

vertical dashed black line.

https://doi.org/10.1371/journal.pone.0236954.g003
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evaluating the computational overheads of the search process, and how to limit the cost of the

search in higher dimensions.

For each of the test problems described in Section 4, we compare a baseline scenario using

ABC-SMC with uniform weights, with a second scenario where optimization of summary sta-

tistic weights is performed as in Algorithm 2, and with a third scenario such that an equivalent

amount of additional computational effort is devoted to further model simulations so that more

particles can be used in ABC-SMC with uniform summary statistic weights. Using the dimer-

ization test problem, as described in Section 4.3, we ran Algorithm 2 with N = 5, 000, α = 5%.

To compare this to ABC-SMC with uniform weights, we performed parameter inference with

uniform weights using both N1 = 5, 000, α1 = 5% and N2 = 5, 600, α2 = 4.46%. The value of N2

was chosen such that an equal length of computation time was spent in the search steps to find

the summary statistic weights in Algorithm 2, as was spent in generating extra samples in

ABC-SMC with uniform weights. A corresponding lower value of α was chosen so that the

number of particles in the parameter sample was equivalent. Due to the differing computational

complexities of each model, different values of N2 and α2 will be used for each test problem.

In this case, adaptively choosing weights using Algorithm 2 resulted in a significantly

greater distance between the prior and posterior, and reduced the bias in the posterior com-

pared to running ABC-SMC with more samples, as measured by the distance between the

maximum posterior estimate and the true parameters. These results, which represent improve-

ments in the posterior for the same computational cost, are shown in Table 1 and the same

procedure was used for the other test problems.

4.6 Consistent weights

Ideally, our search process should find the global optimum weight vector, so that if Algorithm

2 is run multiple times the same weight vector is obtained. In practice, for the examples we

Fig 4. Posteriors for parameter θ in the simplediffusion model for different weights in the ABC distance function. Posteriors for parameter θ in the simple

diffusion model for different weights in the ABC distance function. ABC-SMC was used for the inference with 10 generations and N = 2000 particles at each

generation with the posterior constructed from the closest 50% of the simulations (α = 0.5). (a) shows the spatial profile at three different time points (t = 0, 10,

20) and demonstrates the variability in the output for this spatial process across four realizations with the same parameter, θ = 0.1. In (b), we compare the

posteriors obtained for θ with different choices of weights. The orange, yellow and light purple lines show the scaled, uniform and adaptive methods,

respectively. The true parameter value used to simulate the observed data is indicated by the vertical dashed black line.

https://doi.org/10.1371/journal.pone.0236954.g004
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have explored, the function to be optimized (distance between prior and posterior as a func-

tion of the distance weights) is very flat with respect to some of the distance weights. This

makes it hard to consistently identify a global maximum. In Fig 5, we explore how the chosen

weights vary for the uniform toy model. We can interpret this as the algorithm identifying the

informative summary statistics and appropriately using the information from these, while

allowing weights for other summary statistics to take a range of values without much effect on

the resulting posterior. The largest weight is given to the most informative summary statistic.

In the case of the uniform toy model, this is s(x) = maxi xi.

4.7 Comparison to dimensionality reduction methods

Adaptively choosing the summary statistic weights within the ABC distance function can be

seen as achieving a similar goal to summary statistic dimension reduction techniques [33, 37].

These techniques either project high-dimensional summary statistics into a lower dimensional

subspace, or select an optimal subset of summary statistics via some optimality criterion. In

contrast, a similar effect is achieved here when the statistics are combined in the weighted

Euclidean distance function, dw(x1, x2), by weighting summary statistics to take account of both

their inherent scale, and also their relative contribution towards the posterior distribution.

Table 1. Performance of Algorithm 2 compared with increasing the number of samples in ABC-SMC. Results are

shown for each of the test problems in the form: ABC-SMC with N1 and α1 / ABC-SMC with N2 and α2 / Algorithm 2

with N and α. Highlighted in bold is the method with best performance according to each metric.

Test problem Hellinger distance between prior and posterior Bias in posterior

Uniform toy model 0.7998 / 0.8088/ 0.8275 0.184 / 0.141 / 0.134

Bimodal toy model 0.865 / 0.867 / 0.866 0.029 / 0.034 / 0.031

Dimerization 0.921 / 0.919 / 0.921 0.563 / 0.493 / 0.421

Diffusion 0.700 / 0.710 / 0.743 0.533 / 0.475 / 0.125

https://doi.org/10.1371/journal.pone.0236954.t001

Fig 5. The optimal distance weights found from the search procedure after 40 successive runs of Algorithm 2 on

the toy model test problem (described in Section 4.1). Parameters used are as for Fig 1. The faint purple lines show

the resulting summary statistics weights from repeated runs of the ABC distance weight algorithm, while the black line

shows the mean of the weights selected.

https://doi.org/10.1371/journal.pone.0236954.g005
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Uninformative summary statistics are automatically assigned a lower weighting, while more

informative summary statistics are given high weights relative to their scale.

We tested our adaptive weight selection algorithm against the semi-automatic ABC method

[34] (using the implementation available via abctools [52]), and the subset selection method of

Barnes et al. [35] based on an approximate sufficiency criterion. In general, for the test prob-

lems considered, as described in Section 4, our method outperforms the competing methods,

as shown by the metrics in Table 2. A larger value of the Hellinger distance indicates a greater

distance between prior and posterior. The bias gives the distance between the posterior mean

and the true parameter value. Values shown have been averaged over 10 successive runs of

each method on different datasets. In implementing these methods, we have used only ABC

rejection sampling, equivalent to a single generation of ABC-SMC, to compare the methods.

This hinders our method which makes use of adaptive selection of weights, but is evaluated

only on a single generation. In practice, these results mean that our method outlined in Algo-

rithm 2 for adaptively choosing the weights of summary statistics produces a more informative

posterior than competing methods based on dimensionality reduction of summary statistics.

5 Discussion

In this work, we have presented a method for improving the quality of posteriors resulting

from approximate inference using ABC-SMC by optimizing the weights of the ABC distance

function, dw(s(x1), s(x2)). By applying the methodology to several test problems we have dem-

onstrated that our novel, adaptive method allows effective combination of summary statistics.

We see superior performance using our algorithm in comparison with naive choices of uni-

form weights or using the scale of the summary statistics. Further benefits of adapting the

weights include removing the requirement for design and selection of summary statistics ‘by

hand’.

5.1 Further work

Our method for automatically adapting the weights of the ABC distance function could be

combined with other methods for dimensionality reduction of summary statistics to further

improve the quality of posteriors produced with ABC for given computational effort. A partic-

ular area to consider would be how best to combine optimization of the distance weights for

ABC and dimensionality reduction of the summary statistics. These are related approaches

that can work well together. One approach that could be explored, for example, is enforcing

some sparsity of the weights during the search step of the weights optimization. By setting

some weights to be explicitly zero, we exclude the corresponding summary statistics, effectively

reducing the dimensionality of our summary statistics. Further investigations could explore

how best to sample sparse subsets of weights in high dimensions.

Table 2. Comparison of the quality of the posteriors obtained using different methods to combine summary statis-

tics. Results given as adaptive method / Barnes et al. [35] / Fearnhead and Prangle [34]. Bold text highlights the best

performance on a metric for a test problem.

Test problem Hellinger distance between prior and posterior Bias in posterior

Uniform toy model 0.822 / 0.806 / 0.815 0.055 / 0.059 / 0.056

Bimodal toy model 0.873 / 0.872 / 0.855 0.025 / 0.024 / 0.028

Dimerization 0.930 / 0.914 / 0.925 1.109 / 1.274 / 0.783

Diffusion 0.723 / 0.680 / 0.709 0.358 / 0.399 / 0.373

https://doi.org/10.1371/journal.pone.0236954.t002
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5.2 Conclusion

In summary, we propose a computationally efficient search procedure to identify a set of opti-

mum weights to allow us to combine summary statistics within the ABC distance function in

such a way that the gain in information in the posterior over the prior is maximized.
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